

WHISK: Learning IE Rules for Semi-
structured and Free Text

Roadmap

● Information Extraction

● WHISK Rule Representation

● The WHISK Algorithm

● Interactive Preparation of Training

● Empirical Results

Information Extraction System

● IE System can serve
– as a front end for high precision information retrieval and

text routing

– as a forst step in knowledge discovery systems

– as input to an intelligent agent

● IE Systems have been developed for writing styles
ranging from structured text with tabular information to
free text such as news stories

● A key element of such systems is a set of text
extraction rules

IE System and Text

● For structured text
– Specify a fixed order of relevant information and the labels

or HTML tags that delimit strings to be extracted

● For free text
– Need several steps: syntactic analysis, semantic tagging,

recognizer for domain objects such as person and company
names, and discourse processinf

● Semi-structured text falls between these extremes

Semi-structured Text

● Ungrammatical, Telegraphic in style, No rigid format

● Capitol Hill – 1 br twnhme. Fplc D/W/W/D. Undrgnd pkg
incl $675. 3 BR, upper flr of turn of ctry HOME. Incl gar, N.
Hill Loc $995. (206) 999-9999
 <i>(This
ad last ran on 08/03/97.)</i><hr>

● Rental: Rental:
– Neighborhood: Capitol Hill - Neighborhood: Capitol Hill

– Bedrooms: 1 - Bedrooms: 3

– Price: 675 - Price: 995

Free Text

● Input text:
– C. Vincent Protho, chairman and chief exedcutive officer of

this maker of semiconductors, was named to the additional
post of president,m succeeding John W. Smith, who
resigned to pursue other interests.

● Succession event
– PersonIn: C. Vincent Protho

– PersonOut: John W. Smith

– Post: President

● Mr. Adams, former president of X Corp., was named
CEO of Y Inc.

Roadmap

● Information Extraction

● WHISK Rule Representation

● The WHISK Algorithm

● Interactive Preparation of Training

● Empirical Results

Rules for structured and semi-structured
text

● WHISK rules are based on a form of regular
expression patterns

● The rule is re-applied starting from the last character
matched by the prior application of the rule

● WHISK rules allow a form of disjunction

ID:: 1
Pattern:: * (Digit) ‘BR‘ * ‚$‘ (Number)
OutPut:: Rental {Bedrooms $1} {Price $2}

Rental: Rental:
 Bedrooms: 1 Bedrooms: 3

Price: 675 Price: 995

Bdrm = (brs|br|bds|bdrm|bd|bedrooms|bedroom|bed)

ID:: 2
Pattern:: * (Nghbr) * (Digit) ‘ ‘ Bdrm * ‘$‘ (Number)
Output:: Rental {Neighborhood $1} {Bedrooms $2} {Price $}

Extensions of the Rules for grammatical
Text

● Needs
– Syntactic analyzer

– Entity recognizer

@S[
 {SUBJ @PN[C. Vincent Protho]PN , @PS[chairman and chief excutive officer]
 of this maker of semiconductots, }
 {VB @Passive was named @nam }
 {PP to the additional post of @PS[president]PS , }
 {REL_V succeeding @succeed @PN[John W. Smith]PN ,

who resigned @resign to pursue @pursu other interests. }
]@S 8910130051-1

ID:: 3
Pattern:: * (Person) * ‘@Passive‘ *F ‘named‘ * {PP *F (Position) * ‘@succeed ‚ (Person)
Output:: Succession {PersonIn $1} {Post $2} {PersonOut $3}

Roadmap

● Information Extraction

● WHISK Rule Representation

● The WHISK Algorithm

● Interactive Preparation of Training

● Empirical Results

The WHISK Algorithm

● The WHISK Algorithm
– Is a Supervised Learning Algorithm

– Requires a set of hand-tagged training instances

– Presents user with a batch of instances to tag

– Induces a set of rules from the expanded training set

● WHISK begins with a reservoir of untagged instances
and an empty training set of tagged instances

● At each iteration of WHISK a set of untagged instances
are selected from reservoir and presented to the user
to annotate

● The user adds a tag for each case frame to be
extracted from the instance

@S[
 Capitol Hill – 1 br twnhne. Fplc D/W W/D. Undrgrnd pkg incl $675. 3 BR,
 upper flr of turn of ctry HOME. Incl gar, grt N. Hill loc $995. (206) 999-9999

 <i> (This ad last ran on 08/03/97.) </i> <hr>
]@S 5
@@TAGS Rental {Neighborhood Capitol Hill} {Bedrooms 1} {Price 675}
@@TAGS Rental {Neighborhood Capitol Hill} {Bedrooms 3} {Price 995}

WHISK(Resorvoir)
 RuleSet = NULL
 Training = NULL
 Repeat at user‘s request
 Select a batch of NewInst from Reservoir
 (User tags the NewInst)
 Add NewInst to Training
 Discard rules with errors on NewInst
 For each Inst in Training
 For each Tag of Inst
 If Tag is not covered by RuleSet
 Rule = GROW_RULE(Inst, Tag, Training)
 Prune RuleSet

Anchoring the Extraction Slots

Empty Rule: “ * (*) * (*) * (*) * “

Anchoring Slot 1:
Base_1: * (Nghbr)
Base_2: ‘@start‘ (*) ‘ -‘

Anchoring Slot 2:
Base_1: * (Nghbr) * (Digit)
Base_2: * (Nghbr) * ‘- ‘ (*) ‘ br‘

Anchoring Slot 3:
Base_1: * (Nghbr) * (Digit) * (Number)
Base_2: * (Nghbr) * (Digit) * ‘$‘ (*) ‘.‘

Adding Terms to a Proposed Rule

● WHISK tries adding either the term itself or its
semantic class to the rule
– Each word, number, punctuation, HTML tag

– Line breaks, line beginning with indentation, line followed by
colon, blanklines

– WHISK prefers terms near extraction boundaries

– WHISK can be given a window size of k tokens and only
consider termswithin k of an extraction slot

GROW_RULE(Inst, Tag, Training)
Rule = empty rule (terms replaced by wildcards)
For i = 1 to number of slots in Tag

ANCHOR(Rule, Inst, Tag, Training, i)
Do until Rule makes no errors on Training or no improvement in Laplacian

EXTEND_RULE(Rule, Inst, Tag, Training)

ANCHOR(Rule, Inst, Tag, Training, i)
Base_1 = Rule + terms just within extraction i
Test first i slots of Base_1 on Training
While Base_1 does not cover Tag

EXTEND_RULE(Base_1, Inst, Tag, Training)
Base_2 = Rule + terms just outside extraction i
Test first i slots of Base_2 on Training
While Base_2 does not cover Tag

EXTEND_RULE(Base_2, Inst, Tag, Training)
Rule = Base_1
If Base_2 covers more of Training than Base_1

Rule = Base_2

Laplacian = (e +1) / (n +1), where e is the number of errors and n is the number of
 extractions made on the training set

EXTEND_RULE(Rule, Inst, Tag, Training)
Best_Rule = NULL
Best_L = 1.0
If Laplacian of Rule within error tolerance

Best_Rule = Rule
Best_L = Laplacian of Rule

For each Term in Inst
Proposed = Rule +Term
Test Proposed on Training
If Laplacian of Proposed < Best_L

Best_Rule = Proposed
Best_L = Laplacian of Proposed

Rule = Best_Rule

Example: Error tolerance threshold is set to 0.10,
 a rule that applies 20 times with 1 error (L = 0.095) will be accepted
 unless an extension is found that covers 10 or more with 0 errors (L = 0.091).
 If the best extension has coverage of only 5 with 0 errors (L=0.167) this is not
 considered a more reliable rule ans WHISK keeps the rule with coverage
 20 instead.

Roadmap

● Information Extraction

● WHISK Rule Representation

● The WHISK Algorithm

● Interactive Preparation of Training

● Empirical Results

Interactive Preparation of Training

● Selecting informative instances
– In each iteration of WHISK, a batch of instances is selected

from the reservoir of untagged instances, presented to the
user for tagging, and then added to the training set

Instances covered by an existing rule

Instances that are near misses of a rule

Instances not covered by any rule

● When to stop tagging?

Roadmap

● Information Extraction

● WHISK Rule Representation

● The WHISK Algorithm

● Interactive Preparation of Training

● Empirical Results

Test Domains

● Structured texts:
– CNN weather forecast wb pages

– BigBook seachable telephone directory

● Semi-structured texts:
– Rental Ads

– Seminar Announcements

– Software Jobs

● Free texts:
– Management Succession from Wall Street Journal articles

Methods and Metrics

● Recall = TP / (TP + FN)

● Precision = TP / (TP + FP)

● Accuracy = (TP + TN) / (TP + TN + FP + FN)

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

Results for Structured Texts

● Structured Text: 100 % in Recall and Precision

 <TD NOWRAP> Thursday

<IMG SRC=“/WEATHER/images/pcloudy.jpg“ ALT=“partly
cloudy“ WIDTH=64 HEIGHT=64>

partly cloudy
 High:
 29 C / 84 F
 Low:
 13 C / 56 F </TD>

Results for Semi-structured Texts
Unpruned Pruned

Slot R P R P
Start Time 100.0 86.2 100.0 96.2
End Time 87.2 85.0 87.2 89.5
Speaker 11.1 52.6 0.0 0.0
Location 55.4 83.6 36.1 93.8

Results for Free Texts
Unpruned Pruned

Training R P R P
100 51.5 24.1 9.6 45.6
200 49.9 31.5 13.9 62.1
400 53.5 36.0 19.3 70.5
800 56.3 42.9 31.0 70.6

 6,900 61.0 48.5 46.4 68.9

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23

