
Developing a Stemmer for German Based on a Comparative Analysis of
Publicly Available Stemmers

Leonie Weißweiler Alexander Fraser
Center for Information and Language Processing

LMU Munich
weissweiler@cis.lmu.de fraser@cis.lmu.de

Abstract

Stemmers, which reduce words to their
stems, are important components of many
natural language processing systems. In
this paper, we conduct a systematic evalua-
tion of several stemmers for German using
two gold standards we have created and
will release to the community. We then
present our own stemmer, which achieves
state-of-the-art results, is easy to under-
stand and extend, and will be made publicly
available both for use by programmers and
as a benchmark for further stemmer devel-
opment.

1 Introduction

1.1 The stemming task

In Information Retrieval (IR), an important task
is to not only return documents that contain the
exact query string, but also documents containing
semantically related words or different morpholog-
ical forms of the original query word. (Manning
et al., 2008, p.57)

This is achieved by a stemming algorithm.

A stemming algorithm is a computa-
tional procedure which reduces all words
with the same root (or, if prefixes are left
untouched, the same stem) to a common
form, usually by stripping each word of
its derivational and inflectional suffixes
(Lovins, 1968).

Thus, the purpose of a stemmer is not to find
the morphologically correct root for a word, but
merely to reduce it to a form it shares with all
words that are sufficiently semantically related to
be considered relevant to a search engine query
for one of them. The exact nature of that form is
irrelevant.

1.2 Motivation

Stemming for German is naturally a task that at-
tracts less attention then stemming for English.
There are, however, a number of different avail-
able stemmers for German, the most popular of
which are the Snowball German stemmer, devel-
oped by the team of Martin Porter, and the stemmer
developed by Jörg Caumanns (Caumanns, 1999).
Available stemmers are fairly different in terms of
their algorithms and their approaches to stemming,
with solutions ranging from recursive stripping of
just a few characters to identifying prefixes and suf-
fixes from a pre-compiled list. Of all the stemmers
presented here the Snowball stemmer is the only
one for which an official implementation is avail-
able. For the others, the implementations that are
used in NLP toolkits are by third parties, and, as we
will show, sometimes contain flaws not intended
by the original authors.

At the same time, we are not aware of any com-
prehensive evaluation of stemmer performance for
German. The main goal of this paper is therefore
to supply such a study in order to enable NLP pro-
grammers to make an informed choice of stemmer.
We also want to improve existing stemmers and
therefore present a new state-of-the-art stemmer,
which we will make freely available in Perl, Python
and Java. So a secondary goal is to make a clean
and simple implementation of our stemmer avail-
able for programmers. Finally, we will release the
two gold standards we have developed, which can
act as a benchmark for future stemmer development
work.

1.3 Summary of Work

We looked at five available stemmers for German
and compared their algorithms.

We then automatically compiled two different
gold standards from the morphological informa-
tion in the CELEX2 data (Baayen et al., 1995) for
German. They aim to represent two slightly dif-



ferent opinions on what stemming should be. One
was compiled by stripping away morphemes that
had not been assigned their own wordclass and the
other using the wordform to lemma matching in
the CELEX2 data.

We then evaluate the stemmers on the two
gold standards, computing precision, recall and f-
measure in a cluster-based evaluation that evaluated
performance based on which words were stemmed
to the same stem (and not how the stems actually
looked, which is not relevant in most applications
of stemming, as we discussed above).

Based on the results of our evaluation, we de-
veloped a new stemmer called CISTEM which is
simpler and more aggressive than the previously ex-
isting stemmers. We show that CISTEM performs
better than the previously existing stemmers.

2 Existing stemmers for German and
related work

Adlers Adlern Adler adle

Snowball

Text::German

Caumanns

UniNE Light

UniNE Agressive

CISTEM

adl

Adl

adl

adle

adl

adler

adler

adlers

Adler adl

adl

Figure 1: Comparison of all stemmers using the
words ”Adler” (eagle), ”Adlers” (eagle, genitive
case), ”Adlern” (eagles, dative case), ”adle” (in-
flected form of ”to ennoble”)

2.1 German Stemmers

In this section we provide an overview of the Ger-
man stemmers that we studied, briefly outlining
their availability and the algorithms used. We show
the differences between them with the example
shown in Figure 1, where we stemmed the word
”Adler” (eagle). We show the stem produced and
the other words reduced to the same stem for each
stemmer. All stemmers except Text::German have
the same preprocessings steps which are lower-
casing the word and replacing umlauts with their
normalized vowel versions (e.g., ü is replaced with

ue). These steps will therefore not be mentioned
below.

2.1.1 Snowball
In 1996, Martin Porter developed the Snowball
stemmer for English (Porter, 1980). It became by
far the most widely used stemmer for English. The
Snowball team has developed stemmers for many
European languages, which are included as a set
in important natural language processing toolkits
such as NLTK (Bird et al., 2009) for Python or
Lingua::Stem for Perl.

The Snowball German stemmer is an adaptation
of the original English version and thus restrains
itself to suffix-stripping. It defines two regions R1
and R2, where R1 ”is the region after the first non-
vowel following a vowel, or is the null region at the
end of the word if there is no such non-vowel” and
R2 is defined in the same way, with the difference
that the definition is applied inside of R1. After
defining R1 and R2 Snowball deletes a number of
suffixes if they appear in R1 or R2. It does not do
this recursively but instead in three steps, in each of
which at most one suffix can be stripped. The first
two steps strip fairly common suffixes like ”ern”
or ”est”, while the third step strips derivational
suffixes, e.g. ”isch” or ”keit”, which are fairly
uncommon.

In our example, the Snowball stemmer correctly
places ”Adlers” (eagle, genitive case), ”Adlern”
(eagles, dative case) and ”Adler” (eagle) together
in the stem ”adl”. However, it also incorrectly
stems ”adle”, which is the first person singular of
”adeln” (to ennoble) to ”adl”. This is because the
length restriction on how short stems can become is
defined in terms of R1 and R2, as explained above,
and in this example, R1 for all four words is the
part after ”adl”.

2.1.2 Text::German
The stemmer in the Perl CPAN Module
Text::German was, as far as we could find
out, developed in 1996 at the Technical University
of Darmstadt by Ulrich Pfeifer, following work
by Gudrun Putze-Meier for which no reference is
available. It is not currently actively supported. We
made a number of efforts to contact both scientists
but were unsuccessful.

What sets Text::German apart from the other
stemmers examined here is the fact that it strips
prefixes, and that it uses small lists of prefixes,
suffixes and roots to identify the different parts of a



word. Although the implementation in CPAN has
significant flaws, the idea is novel and produced
good results, as can be seen in section 3.3.

While the behaviour of Text::German is at times
difficult to understand due to its binary-encoded
rules, we think that its performance on our example
is primarily due to two factors. One is that ”ers”
is not in its list of suffixes, which is why ”Adlers”
is stemmed to itself. The other is that it does not
lowercase stems, which results in ”adle” (correctly)
being stemmed seperately.

2.1.3 Caumanns
The stemmer proposed by (Caumanns, 1999) is
unique in two ways. One is that it uses recursive
suffix stripping of the character sequences ”e”, ”s”,
”n”, ”t”, ”em”, ”er” and ”nd”, which are the letters
out of which every declensional suffix for German
is built. The other is that it strips ”ge” before and
after the word, which makes it one of the two stem-
mers that stem prefixes. It also substitutes ”sch”,
”ch”, ”ei” and ”ie” with special characters so they
are not separated and replaces them back at the end
of the stemming process.

In our example, the Caumanns stemmer con-
flates all four words to the same stem ”adl”. This
is because of the recursive suffix stripping and be-
cause its length constraint is not producing words
shorter than three characters, which is why ”adle”
was stemmed to ”adl” which is exactly three char-
acters long.

2.1.4 UniNe
The UniNE stemmer, developed by (Savoy, 2006)
from the University of Neuchatel in 2006, has an
aggressive and a light stemming option.

Light Option The light option merely attempts
to strip plural morphemes. After the standard Um-
laut substitutions, it strips one of ”nen”, ”se”, ”e”
before one of ”n”,”r” and ”s” or one of ”n”,”r” and
”s” at the end of the word. As only one of these
options can take effect, it is a very conservative
stemmer.

In the ”Adler” example, the stemmer stems
”Adlers” and ”Adlern” to ”adler” and ”Adler” and
”adle” to ”adle”. It does not go further because it re-
moves at most two letters and doesn’t strip suffixes
recursively.

Aggressive Option The aggressive option goes
through a number of suffix stripping steps, which

always depend on the length of the word. The dif-
ference with the other stemmers is that UniNE has
two groups of stripping operations and at most one
out of each group is executed. Also, its conditions
for stripping ”s” and ”st” are very similar to those
of the Snowball stemmer, which defines a list of
consonants that are valid s- and st-endings respec-
tively and have to occur before the ”s” or ”st” so
that the consonant in question is stripped.

This stemmer’s main problem in our example is
that it stems ”Adlers” to itself because ”r” is not
included in its list of valid s-endings which have to
occur before ”s” for it to be stripped.

2.2 Evaluation studies

The literature on the comparative evaluation
of stemmers for German is relatively sparse.
(Braschler and Ripplinger, 2003) compared the
NIST stemmer and the commercial Spider stem-
mer with two baselines of simply not stemming
and morphological segmentation based on unsu-
pervised machine learning and morpho-syntactic
analysis. They found precision improvements of up
to 23 percentage points and recall improvements
of up to 12 percentage points for the NIST stem-
mer over no stemming compared to 20 percentage
points improvement in precision and 30 percentage
points in recall for the commercial Spider Stemmer.
(Savoy, 2006) tested their UniNE stemmer and the
Snowball German stemmer in an information re-
trieval system and found that the UniNE stemmer
improved the Mean Average Precision (MAP) by
8.4 percentage points while the Snowball stemmer
improved it by 12.4 percentage points against a
baseline without any stemming.

Our evaluation is based on two gold standards
which we will make publicly available, allowing
them to act as a benchmark for future work on
German stemming.

3 Evaluation

3.1 Runtime Analysis

The runtimes that can be seen in table 3.1 are aver-
aged over 10 runs of each stemmer. The Snowball
implementation used was our own implementation
in Perl which we did in order to better compare
the Snowball stemmer to the others (it should be
noted that the official implementation of the stem-
mer is in Martin Porter’s own programming lan-
guage Snowball, compiled to C code, which will
therefore, in practice, be much faster than imple-



R
un

tim
e 

in
 se

co
nd

s 

0

5

10

15

20

25

30

35

40

Snowball Text::German
UniNe Light UniNe Agressive
Caumanns CISTEM

�1

Figure 2: A comparison of stemmer runtimes.
624029 words were stemmed by each stemmer us-
ing a single threaded Perl 5.8.18 program on a Xeon
x7560 2,26 GHz Processor running openSUSE

mentations in Perl). For the UniNE stemmer, we
used the implementation in the CPAN module Lin-
gua::Stem::UniNE::DE, with slight modifications
of our own with regards to the use of a module,
and for the Caumanns Stemmer we used our own
Perl implementation, which was fairly difficult to
implement because the paper (Caumanns, 1999)
doesn’t clearly state a definitive algorithm, instead
describing main ideas and then making suggestions
for improvements.

To assess average runtime, we then stemmed a
corpus of 624029 words on each stemmer using
a single threaded Perl 5.8.18 program on a Xeon
x7560 2,26 GHz running openSUSE ten times and
computed the mean runtime. As can be seen in the
table, the runtimes of the Caumanns, UniNE and
CISTEM stemmers are fairly similar, while Snow-
ball takes about twice and Text::German nearly
three times as long.

3.2 Gold standard development

We compiled two different gold standards. The
reason for this is that exactly which words belong
to the same stem is something that is difficult for
people to agree on. The question of whether, for ex-
ample, ”billig” (cheap) belongs together with ”billi-
gen” (to approve) seen from an IR perspective, is a
difficult one because the adjective ”billig” also ex-
ists in the sense of ”something worthy of approval”.
Therefore, our hope is that the two gold standards

will capture the different ends of this spectrum
where one end, when in doubt, puts words in a clus-
ter together and the other doesn’t. Having two gold
standards capturing this distinction enables us to
be more objective in our evaluation.

For the first gold standard, we used the mor-
phological information in CELEX 2. It gives the
flat segmentation into morphemes and annotates
each morpheme with its word class, and X if no
word class applies. This should be equivalent to the
distinction between lexical and grammatical mor-
phemes. We then stripped the morphemes anno-
tated with X to form the stem. For the second gold
standard, we simply used the fact that every word-
form in CELEX2 is assigned a lemma, and used
that lemma as the wordform’s stem. In each case,
we then grouped the wordforms by stem accord-
ing to the principle that the exact stem is irrelevant
as long as the cluster makes sense. The resulting
gold standards are 30951 stems large in the case
of gold standard 1 and 47852 stems for gold stan-
dard 2. From each, we took a random sample of
1000 stems and used those as gold standards for our
evaluation. To avoid overfitting, we changed the
samples several times while developing CISTEM,
including after the end of development for the final
evaluation.

As you can see in Figure 3.2, there are differ-
ences between the gold standards. For the ”absurd”
example, gold standard 2 classified ”absurd” as a
different lemma than ”absurditäten” (absurdities)
and thus put them in two seperate stems while gold
standard 1 sees them as having the same stem. The
difference is even more pronounced in the second
example, where the first gold standard has one stem
for ”relativier” (relative), one for ”Relativismus”
(a theory in philosophy), one for ”Relativität” (the
general noun for relative) and one for ”relativis-
tisch” (relative, but only in the context of Einstein’s
theory of relativity).

From an information retrieval point of view, one
would consider ”Relativismus” and ”relativistisch”
as belonging in one stem that relates to the theory
of Relativity, and the other two stems as belonging
in another stem. Overall, gold standard 2 is much
more likely to seperate words into several differ-
ent stems while gold standard 1 is more likely to
group them into a single stem. This makes sense
considering gold standard 2 thinks in lemmata, e.g.
in a dictionary one would like to have seperate
entries for ”Relativismus” and ”Relativität” while



gold standard 1 groups them together because nei-
ther ”ismus” nor ”tät” are lexical stems that can be
assigned a word class.

This confirms our hopes that the two gold
standards would capture two ways of looking at
stemming. Gold standard 1 represents a more
aggressive-stemming-friendly view and gold stan-
dard 2 a more conservative one. Personally, we con-
sider gold standard 1 on the whole to be more suit-
able for stemmer evaluation, but arguments could
also be made for the opposite point of view. For
this reason, both gold standards are included in the
following evaluation.

3.3 Evaluation

We stemmed the Celex2 corpus. We then went
through each of the stems from the gold standard
(1000 stems large) and matched them with a stem
from the stemmed corpus depending on how many
of the words belonging to these two stems matched.
For each stem of the gold standard, we computed
precision, recall and f1-measure and then computed
the average of each of those metrics to form the
overall evaluation results for that gold standard.
The results can be seen in table 2 and are illustrated
in Figures 3(a), 3(b) and 4.

3.4 Results

The most surprising result of our evaluation was
that the difference between the two gold standards
was not as pronounced as we expected, considering
that they represent the two ends of the spectrum
of what one wants a stemmer to do. The two gold
standards agree on the best stemmer and the worst
stemmer in terms of precision, recall and f-measure.
As can be seen in Figure 4, these measures differ
for the three middle ranked stemmers Snowball,
Text::German and UniNE Aggressive.

The difference between the two gold standards
is shown most clearly in their assessment of the
Snowball stemmer. This is to be expected as the
stripping of clearly derivational suffixes like ”lich”
or ”ung” matches the stemming concept of gold
standard 1 quite closely, where suffixes like these
suffixes are removed. This explains why, while
Snowball achieved the lowest precision on both
gold standards, the gap to the next best precision is
much lower in gold standard 1 (just 0.59 percentage
points) than in gold standard 2 (6.37 percentage
points), where Snowball’s aggressive stemming is
much more likely to affect precision negatively.

Being one of the more conservative stemmers,
Text::German scores significantly higher on gold
standard 2. On gold standard 1, it achieves fourth
place in both recall and f-measure and third place
in precision of the existing stemmers. We attribute
this mainly to the fact that Text::German stems at
most one suffix from a small list which doesn’t
include derivational suffixes, which is guaranteed
to hurt recall on gold standard 1 because gold stan-
dard 1 requires more than just very conservative
suffix stripping. This same fact results in a rela-
tively good score on gold standard 2, achieving
the second place (when compared with previously
existing stemmers) in all metrics. We think that the
main problem that hurts its performance on both
gold standards should be that Text::German iden-
tifies prefixes from a list, nearly all of which are
clearly lexical, and strips them according to a com-
plicated set of rules. From an IR standpoint, the
stripping of lexical prefixes which clearly change
the word’s meaning is suboptimal.

The Caumanns stemmer achieves first place
(with respect to already existing stemmers) in both
gold standards in recall and f-measure. The gap
to the other stemmers’ values is about 3 percent-
age points on both gold standards. An interesting
point here is that while precision is significantly
higher than recall on gold standard 1, the oppo-
site is true for gold standard 2. This points to the
Caumanns stemmer having achieved a middle line
between both gold standards’ concepts of stem-
ming. The stemmer is more conservative than gold
standard 1 and more radical than gold standard 2.
This, together with the large gap in performance to
the competitors, makes the Caumanns stemmer the
best stemmer for German we have seen so far.

The light option of the UniNE stemmer, as ex-
pected, scores last in recall and f-measure while
having the highest precision on both gold standards.
The gap between precision and recall is larger in
gold standard 1 (more than 30 percentage points)
than in gold standard 2 (more than 25 percentage
points). As the express goal of the light option is to
merely strip affixes denoting plural, the lack of re-
call is naturally more pronounced in gold standard
1 because it requires stemmers to be more radical in
order to score well. The overall bad performance is
not surprising, as stemming entails more than just
stripping plural suffixes.

The agressive option of the same stemmer, on
the other hand, achieves mediocre results, com-



Gold standard 1 Gold standard 2
• absurderen absurdestem [...] absurditäten

absurdität
• absurderen absurdestem absurder absur-

den [...]

• absurditäten absurdität

• relativem relatives [...] relativistischerer
[...] relativität relativitäten

• relativieret relativiertest [...]

• relativität relativitäten

• Relativismus

• relativistischsten relativistischen [...]

Table 1: Two examples for the differences between the two gold standards

Table 2: Evaluation results of different stemmers using our two gold standards, each of which is for the
same 1000 stems (note that CISTEM is our new stemmer which will be introduced later in the paper)

Gold standard 1
Stemmer Snowball Text::German Caumanns UniNE Light UniNE Aggressive CISTEM
Precision 96.17% 97.56% 96.76% 98.39% 97.37% 96.83%

Recall 83.78% 79.29% 89.43% 67.69% 80.29% 89.73%
F1 89.55% 87.48% 92.95% 80.20% 88.01% 93.15%

Gold standard 2
Stemmer Snowball Text::German Caumanns UniNE Light UniNE Aggressive CISTEM
Precision 85.89% 96.00% 92.26% 96.43% 94.50% 92.43%

Recall 86.61% 86.97% 96.17% 70.91% 83.81% 96.45%
F1 86.25% 91.27% 94.17% 81.72% 88.83% 94.40%

ing in third place in f-measure on both gold stan-
dards. While it does strip suffixes in several steps,
it doesn’t do so recursively, which is why it makes
sense that the performance is about as good as the
Snowball stemmer, which has a similar approach.
It also explains that the performance is somewhere
in the middle of all the existing stemmers as we
have seen that recursive suffix stripping in general
performs best and one-time stripping worst, be-
cause UniNE Aggressive’s approach is located in
between these two ideas.

The clearest lesson to be drawn from this anal-
ysis is that the problem of existing stemmers is
in recall. Precision is relatively similar for every
stemmer, only varying by 2.22 percentage points
while recall varies by 21.04 percentage points in
gold standard 1. The discrepancy is similarly pro-
nounced in gold standard 2, where precision varies
by 10.54 percentage points and recall by 25.54
percentage points. Because of the nature of f1-
measure, recall therefore decides the stemmer’s
f-measure ranking: in gold standard 1, the recall

order from best to worst exactly mirrors that of f-
measure and in gold standard 2, only the positions
of Snowball and UniNE Aggressive, the two mid-
dle stemmers, are reversed. The mean precision in
gold standard 1 is 97.13% and the mean recall is
82.04%. The mean precision in gold standard 2 is
92.62% and the mean recall is 87.45%. Not only
does recall vary much more, it is also consistently
much lower than precision.

4 Development

4.1 CISTEM development

Following the insight that recall is the most promis-
ing area for stemmer development, we focused on
improving recall over existing stemmers with CIS-
TEM. As starting point, we used the Caumanns
stemmer, as it was the best performing stemmer of
our evaluation, and tried to improve on it. We tried
several changes and evaluated each of them seper-
ately to improve f-measure. One feature of the Cau-
manns stemmer that we deleted was the substitution
of ”z” for ”x”, which improved precision slightly in



Pr
ec

is
io

n

60 %

70 %

80 %

90 %

100 %

Recall

60 % 70 % 80 % 90 % 100 %

CISTEM
UniNE AgressiveUniNE Light

CaumannsText::German Snowball

�1

(a) Gold standard 1

Pr
ec

is
io

n

60 %

70 %

80 %

90 %

100 %

Recall

60 % 70 % 80 % 90 % 100 %

CISTEM
UniNE Agressive

UniNE Light

Caumanns

Text::German

Snowball

�1

(b) Gold standard 2

Figure 3: Precision- Recall values on the two gold standards

50 %

60 %

70 %

80 %

90 %

100 %

Gold Standard 1 Gold Standard 2

Snowball Text::German
Caumanns UniNe Light
UniNe Agressive CISTEM

50 %

60 %

70 %

80 %

90 %

100 %

Sn
ow

ba
ll

Te
xt

::G
er

m
an

C
au

m
an

ns

U
ni

N
e 

Li
gh

t

U
ni

N
e A

gr
es

si
ve

C
IS

TE
M

Gold Standard 1 Gold Standard 2

�1

Figure 4: F1-measures on both gold standards

gold standard 1 and changed no other metrics. We
also found that stripping ”ge” before and after the
word after the suffix stripping, as proposed by Cau-
manns, didn’t work well. The version of this that
delivered the best performance was stripping ”ge”
as a prefix, before the suffix stripping and only if
the remaining word is at least four characters long.
This is consistent with the requirement for suffix
stripping that the resulting word needs to be at least
four characters long, while the Caumanns stemmer

undercuts that requirement by removing ”ge” after
the suffix stripping without checking the length of
the result. Interestingly, introducing a new variable
that measures true length (necessary because sub-
stitutions of multiple characters by one character,
e.g. ”ei” by ”%” make the word shorter than it
actually is) hurt performance quite clearly. We also
deleted the substitution of ”ch” by ”§” because we
found it hurt recall on gold standard 2 and changed
nothing on gold standard 1. The length constraint
on the stripping of ”nd”, which was at least five re-
maining characters in the Caumanns stemmer, was
changed to at least six, which doesn’t only improve
performance but also makes the algorithm simpler
as ”nd” is now stripped in the same step as ”em”
and ”er”. Our other contribution was to give the
steps a definitive order, which had not been clear
in the Caumanns paper and led to subtle flaws in
third-party implementations we tried.

The resulting algorithm, which can be seen in
Figure 5, is simpler than the Caumanns stemmer
and easy to understand and implement. We will
also offer a context-insensitive version which ig-
nores case for ”t”-stripping because the original
Caumanns stemmer’s performance is drastically
worse when using a corpus of only lowercase
words, which might be necessary in some contexts,
but would lead to the stemmer never stripping ”t”.

4.2 Final Evaluation

CISTEM shows slight improvements over the Cau-
manns stemmer in both precision and recall. The
difference in recall is more pronounced, which is



Replace

length > 3

Strip at endyes

no

no

yes

from to condition 

ß ss

ge ge at beginning 
length > 6 

sch $
xx x* x is any letter
ü u
ö o
ä a
ei %
ie &

Suffix condition 

em
length > 5er

nd
t word is lowercase
e

-s
n

Transform to lowercase

Replace

from to condition 

x* xx x is any letter

sch $
ei %

ei &

Figure 5: The CISTEM Algorithm

consistent with our goal of removing some con-
straints of the Caumanns stemmer to improve re-
call.

If we look back to the example in Figure 1, we
can see that CISTEM stems the four words cor-
rectly. It stems ”adle” to ”adl”, which is the same
stem that Caumanns assigned it, but stems the other
three words to ”adler” because the length require-
ment for stripping ”er” is that the resulting stem
will be longer than five characters (not four charac-
ters).

The main advantage of CISTEM over other stem-
mers available is that we have a definitive algorithm
shown in Figure 5. The algorithm is bug free, the
order is fixed and we will make it available in a
range of programming languages to prevent flawed
third-party implementations.

We hope that our new stemmer CISTEM will
be useful in a wide range of applications. In addi-
tion, stemming-based segmentation of German has
recently been shown to be effective in reducing vo-
cabulary in neural machine translation (Huck et al.,
2017). So we will additionally provide a version of
the algorithm which segments words, rather than
stemming them.

5 Conclusion

We presented two gold standards for stemming
which represent two different views on stemming.
We then evaluated five existing stemmers for Ger-
man on those gold standards and discussed the
results. Finally, we presented our own stemmer,
which improves on the stemmer of Caumanns and
achieves state-of-the-art results on both gold stan-
dards.

One of the main problems in stemmer develop-
ment is the divide between the stemmers that are
published and those that are actually used in NLP
applications. The Snowball stemmer continues to
be most widely used because it is the default stem-
mer for most NLP libraries and offers stemmers for
a wide range of European languages.

For this reason, we will publish official imple-
mentations in a range of programming languages,
starting with Perl, Python and Java. We are also
planning to release our gold standards in the hope
that they will be used in further work on stemming
for German. The code and gold standards will
be made available at https://www.github.
com/LeonieWeissweiler/CISTEM, and we
hope to also be included in some standard NLP
packages in the future. Other future work would
be to find other ways of building a gold standard
for stemming in order to have one definitive gold
standard where words are clustered exactly as they
should be for information retrieval. We were of-
ten obstructed in our development by having to
show improvements in both gold standards for ev-
ery change, which could be avoided by having just
one gold standard. Another more unconventional
idea would be implementing a small rule-learning
system that suggests new rules for the stemmer
based on their effectiveness in matching a gold
standard or when used actively in a working IR
system.

Acknowledgments

This project has received funding from the Euro-
pean Unions Horizon 2020 research and innova-
tion programme under grant agreement No 644402
(HimL). This project has received funding from
the European Research Council (ERC) under the
European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No 640550).



References
Baayen, R. H., Piepenbrock, R., and Gulikers, L.

(1995). The CELEX Lexical Database (Release 2)
on [CD-ROM]. Linguistic Data Consortium, Uni-
versity of Pennsylvania, Philadelphia, PA.

Bird, S., Klein, E., and Loper, E. (2009). Natural Lan-
guage Processing with Python. O’Reilly Media, Se-
bastopol, CA.

Braschler, M. and Ripplinger, B. (2003). Stemming
and decompounding for German text retrieval. In
Sebastiani, F., editor, Advances in Information Re-
trieval: 25th European Conference on IR Research,
ECIR 2003, pages 177–192, Berlin. Springer.

Caumanns, J. (1999). A Fast and Simple Stemming Al-
gorithm for German Words. Technical Report Nr. tr-
b-99-16. Freie Universität Berlin, Fachbereich Math-
ematik und Informatik.

Huck, M., Riess, S., and Fraser, A. (2017). Target-
side word segmentation strategies for neural ma-
chine translation. In Proceedings of the Second
Conference on Machine Translation (WMT), Copen-
hagen, Denmark.

Lovins, J. B. (1968). Development of a stemming algo-
rithm. Mechanical Translation and Computational
Linguistics, 11(1).

Manning, C. D., Raghavan, P., and Schütze, H. (2008).
Introduction to Information Retrieval. Cambridge
University Press, Cambridge.

Porter, M. F. (1980). An algorithm for suffix stripping.
Program, 14(3):130–137.

Savoy, J. (2006). Light stemming approaches for
the French, Portuguese, German and hungarian lan-
guages. In Proceedings of the 2006 ACM Sympo-
sium on Applied Computing, pages 1031–1035, New
York. ACM.


