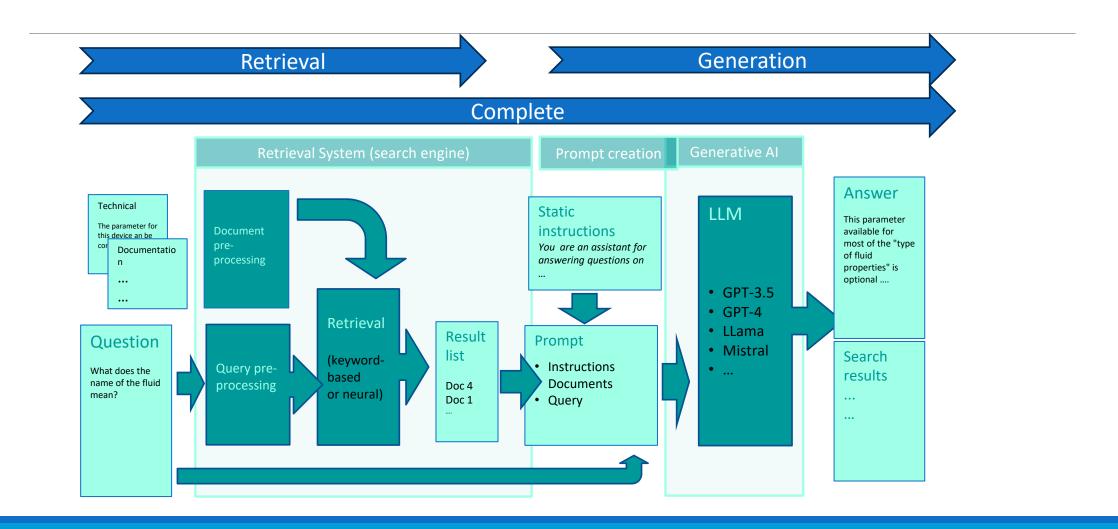
# Evaluation of Retrieval Augmented Generation

::: MASTERSEMINAR SUCHMASCHINEN & RAG, CIS, SOMMERSEMESTER 2025 :::

### Overview

- Introduction
- Recap: Evaluation measures for the retrieval component
- Evaluation measures using a ground truth Bleu, Rouge, Meteor, Bert Score
- Evaluation measures without ground truth -

### Recap: RAG architecture



### Retrieval measures

- Recall / Precision / F1
- Precision at k
- Mean reciprocal rank
- NDCG

### Bleu, Rouge, Meteor, Bert

### **RAG System**

### **Ground truth**

← Question →

Answer from RAG



answer 1

answer 2

answer 3

### Scores without embeddings

#### Bleu – precision based

Weighted geometric mean of modified n-gram precisions.

**N-gram Precision**: The precision is calculated as the number of matching n-grams in the output and reference text, divided by the total number of n-grams in the output.

**Brevity Penalty**: penalty for outputs shorter than the references to avoid rewarding overly short sequences. If the output length is less than the reference length, the BLEU score is multiplied by the ratio of these lengths.

**Cumulative BLEU Score**: To calculate the final BLEU score, the modified n-gram precisions are combined geometrically, and then a brevity penalty is applied.

#### Rouge – recall based

**ROUGE-N:** is a variant of ROUGE, which considers recall of n-grams. An n-gram is a contiguous sequence of n items from a given sample of text or speech. The recall is calculated as the total number of matching n-grams in the machine output and reference text, divided by the total number of n-grams in the reference text.

ROUGE-L: Another variant of ROUGE, ROUGE-L, measures the longest common subsequence (LCS) between the system and reference summaries. The LCS is the longest sequence of words that are the same between the system and reference summaries and appear in the same order.

#### Meteor – + linguistics

**Exact Matching:** Exact word-to-word correspondence between the output and the reference output.

**Stem Matching**: If exact matching fails, METEOR checks for matches in word stems.

**Synonym and Paraphrase Matching**: If stem matching fails, it checks for matches in synonyms and paraphrases using WordNet.

**Alignment**: METEOR creates an alignment between the words and phrases in the machine and reference translations to identify matching and non-matching spans.

**Penalty Calculation**: METEOR applies two penalties: a penalty for unmatched words and a penalty for non-sequential matches.

The final METEOR score is a weighted harmonic mean of precision and recall, penalized by the amount of fragmentation in the alignment.

## Scores using embeddings

BERT score (2020)

Semantic similarity between ground truth answer and found answer.

- match most similar word embedding between the two strings
- calculate average word embedding similarity
- uses transformer embeddings

Variants and other metrics:

- Bleurt
- BARTScore

# LLM as a judge - RAGAS score

| Score name             | Description                                                                 | Area       | Question | Context | Answer | Ground<br>truth<br>answer |
|------------------------|-----------------------------------------------------------------------------|------------|----------|---------|--------|---------------------------|
| Faithfulness           | How close is the answer content to the context?                             | Generation | no       | yes     | yes    | no                        |
| Answer relevancy       | How relevant is the answer with respect to question + context               | Generation | yes      | yes     | yes    | no                        |
| Context recall         | Does the context relate to the ground truth answer?                         | Retrieval  | no       | yes     | no     | yes                       |
| Context precision      | Is the best context ranked highest with respect to the ground truth answer? | Retrieval  | no       | yes     | no     | yes                       |
| Context relevancy      | Is the context relevant for the question                                    | Retrieval  | yes      | yes     | no     | no                        |
| Answer sem. similarity | Measures similarity with the ground truth                                   | End2End    | no       | no      | yes    | yes                       |
| Answer correctness     | Similarity and factual correctness                                          | End2End    | no       | no      | yes    | yes                       |

## LLM as judge – other frameworks

- DeepEval
- Promptfoo (general framework for reliability and security)

## LLM / RAG evaluation – testing dimensions

#### Quality

- RAGAS tests and related tests
- Language support
- Expert-reviewed data?

#### **Performance**

- Specific performance tests
  - End-to-end, retrieval, generative models
- Definition of performance requirements
- Tests on different platforms

#### **Security and reliability**

- Denial of service attacks
- Malicious output
- Data leakage