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1. What is SVM?



What is Support Vector Machine? 
• Support vector machines (SVMs) are a set of supervised learning 

methods used for:
• classification
• regression
• outliers detection

• It holds a significant place in machine learning:
– Strong Theoretical Foundationregression
– Effective in High-Dimensional Spaces
– Versatility with Kernels
– Margin Maximization
– Widespread Applications
– Interpretability



What is the goal of SVM? 
• to find a hyperplane(decision boundary) that best separates data 

points into two different classes



2. Key concepts of SVM



Key Concepts in SVM
• Support Vectors: These are the data points closest to the hyperplane and highly 

influence its position and orientation.

• Margin: The margin is the distance between the hyperplane and the nearest data point 
from either class. A larger margin implies a better generalization of the classifier.

• Hyperplane: In a two-dimensional space, this is a line that separates the data into two 
parts. In higher dimensions, it’s a plane or a higher-dimensional analog.



How does SVM work? 
• Imagine you have a dataset with two types of data points:

• You want to classify new data points as either red or green. The main challenge is that numerous 
possible hyperplanes can separate the two classes, so there’s a big question as we mentioned:

How to find the best hyperplane?



Find the one that has the maximum 
distance from both classes!



3. Mathematical principles of SVM



Mathematical Intuition Behind SVM
• optimization problem

• given x, solve for w and b

• x: data points (feature vectors)

• w: weight vector

• b: bias



• given a random point X:

If X⋅ W > c — It’s a positive sample.
If X⋅ W < c — It’s a negative sample.
If X⋅ W = c — It’s on the decision boundary.

Step 1: Establish decision rules



• Linear separability is an idealized condition, but in reality, most data are not linearly 
separable.

How to Solve the Problem?

Use Soft Margin and Kernel 
Trick!



• handles non-linearly separable data

Soft Margin
• slack variables z

• penalty parameter c

• hinge loss



• another solution to tackle the problem of linear inseparability

Kernel Trick
• Kernel functions are generalized functions that take two vectors (of any dimension) 

as input and output a score that denotes how similar the input vectors are.

No need to explicitly compute the mapping to the higher-dimensional feature space.



Kernel Trick (2)
• Common Kernel functions

- linear

- sigmoid

- Gaussian or radial basis

- polynomial

• Selecting the appropriate kernel

- model performance

- computational resources

- data complexity



Step 2: Determine How to Find the Hyperplane
• calculate the distance (d) between the support vectors and the hyperplane (margin)

How? --> Use Projection!



Projection Principle



Step 3: Determining Constraints



Step 4: Determining the Optimization Goal

the original optimization problem



Step 4: Determining the Optimization Goal (2)

Why?



Step 4: Determining the Optimization Goal (3)
Let's take a look at the graphs of these two equations:

Both of them are convex functions, and it's evident that 
the latter is easier to differentiate and compute.
And convex functions make optimization convenient, 
since it has only one extremum point.

Therefore, we transform the previous equation into the 
standard primal optimization problem.



Step 4: Determining the Optimization Goal (4)

Or another expression:



Step 4: Determining the Optimization Goal (5)

This is a convex optimization problem with constraints.
Convex functions have a global optimal solution, and there is no issue of local optimal 
solutions.

→ Use the Lagrange multiplier method!

Why?

Because it was made for problems like this!



Lagrange Multiplier Method
Imagine you are standing on a level curve (f=a) of a mountain. If you want to move in the 
steepest direction of the slope, the curve you are on must be perpendicular to the path you 
take. This is the gradient:

And:



Lagrange Multiplier Method (2)
Now, an additional condition is introduced: there is a plane slicing through the mountain, and 
you can only move forward or backward along the direction defined by this plane (this is 
called the constraint). Your goal is to climb as high as possible on the mountain, but you 
cannot go higher than the point where g=c cuts into the peak.



Lagrange Multiplier Method (3)

Therefore, we need to find the highest point along the boundary where the constraint 
intersects with the function (the green line).

When the slope of the constraint line is greater than the slope of the level curve, we move to 
the right; 

otherwise, we move to the left. 

If the two slopes are equal, it means we have reached the maximum value on the 
constraint line.



Lagrange Multiplier Method (4)

At this point, f = a2 is parallel to g, and both are perpendicular to the gradient of f.

This means that the gradients of f and g point in the same direction, differing at most by 
a scalar λ.



Lagrange Multiplier Method (5)

This is the conclusion we just reached:

Let's transform it into...



Lagrange Multiplier Method (6)

Then, the crucial step comes:

We construct a function here!

Or more exactly:

Why?



Lagrange Multiplier Method (7)
To understand how this equation works, we can calculate the first-order derivatives of 
the three components of L and set them equal to zero:

You will find that the first and second elements of the vector exactly satisfy the previous 
conditions, as marked in red. Additionally, the third element also satisfies the constraint.



Lagrange Multiplier Method (8)
In fact, for this type of constrained optimization problem, we have a general formula, 
which is known as the Lagrange multiplier method. Here, λ is the multiplier.

Where:

equality constraint, e.g. g=c

Inequality constraint: to standardize, we make...

The strength of the Lagrange multiplier method lies in its ability to transform a constrained 
optimization problem into an unconstrained one. We can then solve it by simply setting 
the gradient to zero.



Karuch-Kuhn-Tucker (KKT) Conditions
In constrained optimization problems, in addition to optimizing the objective function 
f(x), a set of equality and inequality constraints must also be satisfied. Directly solving 
such problems is very complex because:

- It requires finding the optimal solution within the “feasible region” defined by the 
constraints.

- The “relaxed” or “tight” state of inequality constraints can dynamically change.

The KKT conditions unify these complex concepts by providing a mathematical framework that 
integrates the objective function and constraint conditions, transforming them into a solvable 
system of equations, especially for inequality-constrained optimization.

Functions:

- Verification of Optimality: Determine whether a solution satisfies all requirements of     the 
optimization problem.
- Finding the Optimal Solution: Transform the problem into a system of equations, making it 
easier to solve.

But what’s the “relaxed” or “tight” state of inequality constraints?



Complementary Slackness
- part of the KKT Conditions 
- used to handle optimization problems with inequality constraints
- to dynamically determine which constraints are "active" (tight constraints) and which 
are "inactive" (loose constraints)  



Primal Feasibility
- part of the KKT Conditions 
- determine whether the solution to the primal problem satisfies all the constraints



Dual Feasibility
- part of the KKT Conditions 
- related to the dual problem



Stationarity
- part of the KKT Conditions 
- ensures that the gradients of the objective function and the constraints are linearly 
related
- provides a necessary condition for the optimal solution of the optimization problem 



Karuch-Kuhn-Tucker (KKT) Conditions (2)
- Primal Feasibility

- Dual Feasibility

- Complementary Slackness

- Stationarity

Based on the KKT conditions, we can solve for the final decision hyperplane.

However, in the SVM model, for efficiency and to facilitate the use of the kernel 
trick, the primal problem is often transformed into its corresponding dual 
problem for solving.



- Letter 

- News

- Sentiment

4. Implementation of SVM in Python

● Author identification
● Language identification



{'author': 'Virginia Woolf', 'year': 
'1908', 'lang': 'en', 'text': 'I dreamt 
of Clarissa last night; she was new 
born, and had a fine row of teeth, 
which were without roots; and she 
could say ‘no objection’ which I 
thought proved something out of 
Moore. Yr. B.', 'file': 
'woolf/json/letter_450.json'}

from collections import Counter
import json
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

train_file_path = …
evaluate_file_path = …

def load_data(file_path):
    …
    return texts, authors, langs

train_texts, train_authors, train_langs = load_data(train_file_path)

eval_texts, eval_authors, eval_langs = load_data(evaluate_file_path)

vectorizer = TfidfVectorizer(max_features=5000)
X_train = vectorizer.fit_transform(train_texts) 
X_eval = vectorizer.transform(eval_texts)

Letter



#Author Classification

svc_author = SVC(kernel='linear', C=1.0)

svc_author.fit(X_train, train_authors)

y_pred_eval_author = svc_author.predict(X_eval)

print("Author Report:")
print(classification_report(eval_authors, y_pred_eval_author))

#Language Classification

svc_lang = SVC(kernel='linear', C=1.0, class_weight='balanced')

svc_lang.fit(X_train, train_langs)

y_pred_eval_lang = svc_lang.predict(X_eval)

target_classes = list(Counter(eval_langs).keys())

print("Language Report:")
print(classification_report(eval_langs, y_pred_eval_lang, 
labels=target_classes))

{'author': 'Virginia Woolf', 'year': 
'1908', 'lang': 'en', 'text': 'I dreamt 
of Clarissa last night; she was new 
born, and had a fine row of teeth, 
which were without roots; and she 
could say ‘no objection’ which I 
thought proved something out of 
Moore. Yr. B.', 'file': 
'woolf/json/letter_450.json'}









News

{'category': 'CULTURE & ARTS', 'headline': 'Illustrator 
Draws 100 Happy Things To Get Over A Breakup', 
'authors': 'Maddie Crum', 'link': 
'https://www.huffingtonpost.com/entry/rinee-shah-
100-happy-things_us_560c37fee4b0dd85030a63f3', 
'short_description': 'A little art therapy can go a long 
way.', 'date': '2015-10-02'}

{'category': 'FIFTY', 'headline': '6 Foods That Fight Pain 
Naturally', 'authors': 'Yagana Shah', 'link': 
'https://www.huffingtonpost.com/entry/foods-for-
pain_n_5411711.html', 'short_description': '', 'date': 
'2014-06-01'}





Sentiment

{'text': "This film is the worst film I have ever 
seen. The story line is weak - I couldn't even 
follow it. The acting is high-schoolish. The 
sound track is irritating. The attempts at humor 
are not. The editing is horrible. The credits are 
even slow - I would be embarrassed to have 
my name associated with this waste of film. 
Don't waste your time even thinking about this 
attempt at acting.", 'sentiment': 'negative'}





5. Advantages and Disadvantages

Disadvantages 

1. Computationally Intensive:
2. Not Suitable for Large Datasets:
3. Sensitive to Parameter Selection:

Advantages 

1. Effective in High-Dimensional Spaces:
2. Robust to Overfitting:
3. Works Well with Small Sample Sizes



6. Development Trends of SVM

1. Integration with Deep Learning

2. Innovations in Kernel Functions
     -Adaptive Kernel
     -Graph-Based Kernel
     -Multiple Kernel Learning 

3.   Expansion of Application Domains
      -Bioinformatics
      -Financial Analysis
      -Medical Diagnostics
      -Network Security

https://www.pinterest.com/pin/machine-learningneural-
networks--95912667053739435/
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