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1. What is SVM?



What is Support Vector Machine?

* Support vector machines (SVMs) are a set of supervised |learning
methods used for:

» classification
* regression
* outliers detection

* |t holds a significant place in machine learning:
— Strong Theoretical Foundationregression
— Effective in High-Dimensional Spaces
— Versatility with Kernels
— Margin Maximization
— Widespread Applications
— Interpretability



What is the goal of SVM?

* to find a hyperplane(decision boundary) that best separates data
points into two different classes
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2. Key concepts of SVM



Key Concepts in SVM

* Support Vectors: These are the data points closest to the hyperplane and highly
influence its position and orientation.

 Margin: The margin is the distance between the hyperplane and the nearest data point
from either class. A larger margin implies a better generalization of the classifier.

 Hyperplane: In a two-dimensional space, this is a line that separates the data into two
parts. In higher dimensions, it's a plane or a higher-dimensional analog.

/\/ejo\tive Positive
HUPE’FP{QHQ Hyperplone
Xt Ny 1/
Y :
@
@ Y,
o 2@ %,
7/
'////A @ class A
/A A class 2
| | > x
iI: ;II Fd 14
Maximuwm

Maljfn

SV‘PPO“’C
\Vectors



How does SVM work?

* Imagine you have a dataset with two types of data points:

* You want to classify new data points as either red or green. The main challenge is that numerous
possible hyperplanes can separate the two classes, so there’s a big question as we mentioned:

How to find the best hyperplane?
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Find the one that has the maximum
distance from both classes!



3. Mathematical principles of SVM



Mathematical Intuition Behind SVM

* optimization problem
given x, solve for w and b
x: data points (feature vectors)

w: weight vector

b: bias >/<l<' & hyperplane
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Step 1: Establish decision rules

given a random point X:

If X- W > c— It's a positive sample.
If X- W < ¢ — It's a negative sample.
If X- W = ¢ — It's on the decision boundary.
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How to Solve the Problem?

Linear separability is an idealized condition, but in reality, most data are not linearly

separable.
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Use Soft Margin and Kernel
Trick!



Soft Margin
* handles non-linearly separable data
» slack variables z
* hinge loss

e penalty parameter ¢
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Kernel Trick

* another solution to tackle the problem of linear inseparability

* Kernel functions are generalized functions that take two vectors (of any dimension)
as input and output a score that denotes how similar the input vectors are.
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Kernel Trick (2)

« Common Kernel functions
- linear k(x1,X2) = X1 * X2
- polynomial  k(x1,X2) = (- (x1 - X2) + c)d
- Gaussian or radial basis k(x1,Xs) = exp(—7||x1 — x2||%)

- sigmoid  k(x1,X3) = tanh(y - (X1 X3) + ¢)

» Selecting the appropriate kernel

- data complexity
- computational resources

- model performance



Step 2: Determine How to Find the Hyperplane

* calculate the distance (d) between the support vectors and the hyperplane (margin)

How? --> Use Projection!



Projection Principle
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Step 3: Determining Constraints
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Step 4: Determining the Optimization Goal
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the original optimization problem
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Step 4: Determining the Optimization Goal (2)

Given:

Positive Swppor’v' Veeror: WX+ b=
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Step 4: Determining the Optimization Goal (3)

Let's take a look at the graphs of these two equations:

Both of them are convex functions, and it's evident that
the latter is easier to differentiate and compute.

And convex functions make optimization convenient,
since it has only one extremum point.

— Zwli*

Therefore, we transform the previous equation into the
standard primal optimization problem.
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Step 4: Determining the Optimization Goal (4)
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Or another expression:
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Step 4: Determining the Optimization Goal (5)
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The primad problem the constroints

This is a convex optimization problem with constraints.

Convex functions have a global optimal solution, and there is no issue of local optimal
solutions.

— Use the Lagrange multiplier method!

Why?

Because it was made for problems like this!



Lagrange Multiplier Method

Imagine you are standing on a level curve (f=a) of a mountain. If you want to move in the
steepest direction of the slope, the curve you are on must be perpendicular to the path you
take. This is the gradient: f
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Lagrange Multiplier Method (2)

Now, an additional condition is introduced: there is a plane slicing through the mountain, and
you can only move forward or backward along the direction defined by this plane (this is
called the constraint). Your goal is to climb as high as possible on the mountain, but you
cannot go higher than the point where g=c cuts into the peak.

a T

"F(XA ’ x;)

3 = ¢ (constroant)



Lagrange Multiplier Method (3)
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Therefore, we need to find the highest point along the boundary where the constraint
Intersects with the function (the green line).

When the slope of the constraint line is greater than the slope of the level curve, we move to
the right;

otherwise, we move to the left.

If the two slopes are equal, it means we have reached the maximum value on the
constraint line.



Lagrange Multiplier Method (4)
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At this point, f = a2 s parallel to g, and both are perpendicular to the gradient of £

This means that the gradients of fand g point in the same direction, differing at most by
a scalar A.
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Lagrange Multiplier Method (5)

o/

This is the conclusion we just reached:
vi=AV(y)

Let's transform it into...

vi-Av(g =0



Lagrange Multiplier Method (6)
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Then, the crucial step comes:

We construct a function here!

L= f=atg-=
Or more exactly:

L (x4, %2, N) = f()(d:x?-)-' A (3()(4,)(2)"' c)
Why?



Lagrange Multiplier Method (7)

To understand how this equation works, we can calculate the first-order derivatives of
the three components of L and set them equal to zero:
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You will find that the first and second elements of the vector exactly satisfy the previous
conditions, as marked in red. Additionally, the third element also satisfies the constraint.



Lagrange Multiplier Method (8)

In fact, for this type of constrained optimization problem, we have a general formula,
which is known as the Lagrange multiplier method. Here, A is the multiplier.

P
L(XA,v)= f(")“' i fi G0+ %vzhfcx)

Where:

.P
= Vihi (x)|: equality constraint, e.g. g=c

i=n

M
= % ;(X)I: Inequality constraint: to standardize, we make... AiZ9. fica<o.

The strength of the Lagrange multiplier method lies in its ability to transform a constrained
optimization problem into an unconstrained one. We can then solve it by simply setting
the gradient to zero.



Karuch-Kuhn-Tucker (KKT) Conditions

In constrained optimization problems, in addition to optimizing the objective function
f(x), a set of equality and inequality constraints must also be satisfied. Directly solving
such problems is very complex because:

- It requires finding the optimal solution within the “feasible region” defined by the
constraints.

- The “relaxed” or “tight” state of inequality constraints can dynamically change.

The KKT conditions unify these complex concepts by providing a mathematical framework that
Integrates the objective function and constraint conditions, transforming them into a solvable
system of equations, especially for inequality-constrained optimization.

Functions:
- Verification of Optimality: Determine whether a solution satisfies all requirements of  the
optimization problem.

- Finding the Optimal Solution: Transform the problem into a system of equations, making it
easier to solve.

But what'’s the “relaxed” or “tight” state of inequality constraints?



Complementary Slackness

- part of the KKT Conditions

- used to handle optimization problems with inequality constraints

- to dynamically determine which constraints are "active” (tight constraints) and which
are "inactive” (loose constraints)
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Primal Feasibility

- part of the KKT Conditions
- determine whether the solution to the primal problem satisfies all the constraints

f;(_x) <0, L\,J-LX)‘-’- 0.



Dual Feasibility

- part of the KKT Conditions
- related to the dual problem



Stationarity

- part of the KKT Conditions

- ensures that the gradients of the objective function and the constraints are linearly
related

- provides a necessary condition for the optimal solution of the optimization problem

U0+ Z A7 ki) + ? Vj V4;00=0



Karuch-Kuhn-Tucker (KKT) Conditions (2)

- Primal Feasibility
fico g0, hjoo=o.

- Dual Feasibility
A Z20
- Complementary Slackness
Aifi0)=0 Vi

- Stationarity

vfcx)—\— ZA.‘ V hiG)+ ? Vj Vg0 =0

Based on the KKT conditions, we can solve for the final decision hyperplane.

However, in the SVM model, for efficiency and to facilitate the use of the kernel
trick, the primal problem is often transformed into its corresponding dual
problem for solving.



4. Implementation of SVM in Python

- Letter « Author identification
e Language identification

- News

- Sentiment



Letter

{'author": 'Virginia Woolf", 'year". collections Counter
1 1 1 1 1 1 1 jSOn
1908 » lang: e te_Xt' FeltEEIm sklearn.feature_extraction.text TfidfVectorizer
of Clarissa last nlght, she was new sklearn.svim Ve
born, and had a fine row of teeth, sklearn.metrics classification_report
which were without roots: and she sklearn.metrics confusion_matrix
could say ‘no objection” which | seaborn =< sns

y J _ matplotlib.pyplot as plt
thought proved something out of nuMpy 25 np
Moore. Yr. B, file™ train_file_path = ...
'woolf/json/letter_450.json'} evaluate_file_path = ...

(file_path):

texts, authors, langs

train_texts, train_authors, train_langs = load_data(train_file_path)
eval_texts, eval_authors, eval_langs = load_data(evaluate_file path)
vectorizer = TfidfVectorizer(max_features )

X_train = vectorizer.fit_transform(train_texts)
X _eval = vectorizer.transform(eval_texts)



{'author": 'Virginia Woolf', 'year"
'1908', 'lang’: 'en’, 'text": 'l dreamt
of Clarissa last night; she was new
born, and had a fine row of teeth,
which were without roots; and she
could say ‘no objection’ which |
thought proved something out of
Moore. Yr. B.", file":
'‘woolf/json/letter_450.json'}

#Author Classification
svc_author = SVC(kernel C )
svc_author.fit(X _train, train_authors)

y_pred_eval_author = svc_author.predict(X_eval)

( )

(classification_report(eval_authors, y_pred_eval_author))

#Language Classification

svc_lang = SVC(kernel C class_weight
svc_lang.fit(X_train, train_langs)

y_pred_eval _lang = svc_lang.predict(X _eval)

target _classes = list(Counter(eval_langs).keys())

( )

(classification_report(eval_langs, y_pred_eval_lang,
labels=target_classes))



Author Report:

precision recall fl-score support
Franz Kafka 0.88 0.90 0.89 280
Friedrich Schiller 8.72 0.79 0.76 266
Henrik Ibsen 1.00 0.98 0.99 897
James Joyce 0.94 0.92 0.93 682
Johann Wolfgang von Goethe 0.73 0.64 0.68 228
Virginia Woolf 0.97 0.98 0.98 1901
Wilhelm Busch 0.93 0.95 0.94 627
accuracy 0.94 4881
macro avg 0.88 0.88 0.88 4881
weighted avg 0.94 0.94 0.94 4881 -1’
: G _ Ef‘ 1 (Precision; x Support;)
s Weighted Precision = > Suppo[t_:-u
Language Report: * Weighted Recall = Za(lecrtl Support)
precision recall fl-score support . cighted £ Score z;-é&_lngf;if:ﬂi)
de 1.00 1.00 1.00 1448
da 1.00 1.00 1.00 844
fr 8.95 0.95 0.95 38
it 0.86 0.97 8.91 32
en 1.00 1.00 1.00 2519
micro avg 1.00 1.00 1.00 4881 1L
macnro an 0 . 96 0 a 98 0 ” 97 4881 Precision (Micro) — T:?tal True Positives (TP) _
. Total True Positives (TP) + Total False Positives (FP)
WElghtEd an 1.00 1.00 1-00 4881 Total True Positives (TP)

11 (Mi =
Recall (Micro) Total True Positives (TP) + Total False Negatives (FN)

Precision (Micro) x Recall (Micro)

Fl-score (Micro) = 2 x

Precision (Micro) + Recall (Micro)




Confusion Matrix for Author Classification

Franz Kafka - 251 4 0 0 4 0 21 1750

Friedrich Schiller - 8 210 0 0 M 0 7 s

1250
Henrik Ibsen - 5 5 5 3 0 2
1000
James Joyce - 0 4] 0 626 0 56 0
- 750
ann Wolfgang von Goethe - 8 58 0 0 146 0 16
- 500
Virginia Woolf - 0 0 0 38 0 0
- 250
Wilhelm Busch - 13 13 0 7 0 593
-0
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Report of News Classification:
r\J(a\AJS; precision recall fl-score  support
BLACK VOICES 0.43 B0.42 0.42 392
BUSINESS 0.37 0.42 0.40 380
COLLEBE 6.56 8.57 0.53 212
COMEDY 0.43 0.46 0.44 399
CRIME 0.56 0.65 8.60 409
CULTURE & ARTS 0.62 0.51 0.56 673
DIVORCE 0.83 8.71 8.77 419
EDUCATION 0.46 0.54 0.50 198
ENTERTAINMENT 0.35 B.41 0.38 387
ENVIRONMENT 0.48 .58 8.49 355
FIFTY 0.27 0.37 0.31 273
600D NEWS 6.35 8.37 0.36 365
HEALTHY LIVING 0.25 .30 9.27 386
HOME & LIVING 0.68 0.69 0.68 386
IMPACT 0.36 0.34 8.35 400
MEDIA 0.68 0.56 0.58 395
MONEY 0.55 0.55 8.55 324
PARENTING 0.43 0.49 8.46 391
POLITICS 0.45 B.49 0.47 420
QUEER VOICES 0.77 0.59 0.67 415
RELIGION 0.63 8.58 0.56 440
SCIENCE 0.62 0.52 0.56 414
SPORTS B.62 0.62 0.62 410
STYLE 0.49 0.49 9.49 413
STYLE & BEAUTY 0.74 0.63 0.68 391
TASTE 0.61 0.69 0.65 397
TECH 0.686 9.57 8.58 416
TRAVEL 08.61 0.56 8.58 485
WEDDINGS 0.77 0.78 0.77 400
WEIRD NEWS 0.33 0.32 0.32 408
WELLNESS 0.35 8.36 8.36 407
WOMEN 0.38 8.39 0.39 4080
WORLD 0.63 0.57 8.60 404
accuracy 0.52 12824
macro avg 0.52 0.51 0.51 12824
weighted avg 3 52 09.52 12824




Confusion Matrix on Evaluation Set
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Sentiment

Sentiment Report:
precision
negative 0.88
positive 0.86
accuracy
macro avg 0.87
weighted avg 0.87

recall fl-score

0.86 0.87
0.88 0.87

0.87
0.87 0.87
0.87 0.87

support

4985
5015

10000
10000
10000
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5. Advantages and Disadvantages

Advantages

1. Effective in High-Dimensional Spaces:
2. Robust to Overfitting:
3. Works Well with Small Sample Sizes

Disadvantages

1. Computationally Intensive:
2. Not Suitable for Large Datasets:
3. Sensitive to Parameter Selection:



6. Development Trends of SVM

Integration with Deep Learning

Innovations in Kernel Functions
-Adaptive Kernel
-Graph-Based Kernel

-Multiple Kernel Learning

Expansion of Application Domains
-Bioinformatics

-Financial Analysis

-Medical Diagnostics

-Network Security

When you move on to

https://www.pinterest.com/pin/machine-learningneural-
networks--95912667053739435/
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