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Structure

● Types of Transformers
● Evolution of LLMs
● Attention Mechanism, Context Window, Bottleneck of LLMs
● Parameter Efficient Fine-tuning
● Quantization - QLoRA
● Instruction Tuning
● Experiments & Results
● Limitations & Future Work
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https://arxiv.org/pdf/2304.13712
5



https://arxiv.org/pdf/2304.13712
6



7
Slide adapted from 
Karpathy, Andrej



8
Slide adapted from 
Karpathy, Andrej



“You shall know a word by the company it keeps!” - Firth, 1957
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The size of the attention pattern is equal to the half of the square of the context size.
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Cost of predicting Professor Snape
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https://huggingface.co/blog/hf-bitsandbytes-integration



Fortunately we are Gryffindor, so Hermione is in the team. “Capacious Extremis!”
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Positional Encoding
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RoPE Scaling
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Parameter Efficient Fine Tuning (PEFT) - LoRA

“We propose Low-Rank Adaptation, or LoRA, which freezes 
the pretrained model weights and injects trainable rank 
decomposition matrices into each layer of the Transformer 
architecture, greatly reducing the number of trainable 
parameters for downstream tasks. Compared to GPT-3 
175B fine-tuned with Adam, LoRA can reduce the number 
of trainable parameters by 10,000 times and the GPU 
memory requirement by 3 times. LoRA performs on-par or 
better than finetuning in model quality on RoBERTa, 
DeBERTa, GPT-2, and GPT-3, despite having fewer 
trainable parameters, a higher training throughput, and, 
unlike adapters, no additional inference latency. (Hu et al., 
2021).”
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QLoRA 
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Instruction Tuning with Unsloth 
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Instruction Tuning with Unsloth 
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Instruction Tuning with Unsloth 

Letters_Data_Train_Stats: (500 random instances)

[200, 1.2214837500452995, {"train_runtime": 220.2717, 

"train_samples_per_second": 7.264, "train_steps_per_second": 0.908, 

"total_flos": 1.5138050631204864e+16, "train_loss": 1.2214837500452995, 

"epoch": 3.176}]

News_Data_Train_Stats: (500 random instances)

[200, 0.9034367097914219, {"train_runtime": 217.9002, 

"train_samples_per_second": 7.343, "train_steps_per_second": 0.918, 

"total_flos": 8826574976188416.0, "train_loss": 0.9034367097914219, "epoch": 

3.176}]

Sentiment_Data_Train_Stats: (500 random instances)

[400, 1.625782641917467, {"train_runtime": 458.0575, 

"train_samples_per_second": 6.986, "train_steps_per_second": 0.873, 

"total_flos": 6.570031342829568e+16, "train_loss": 1.625782641917467, "epoch": 

6.352}]
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Limitations & Future Work 

● Hyperparameter Optimization
● Further fine-tuning with the whole dataset
● Prompting Techniques 
● Interpretability
● Creating agents to bring the authors back to life :)
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 Code: 4506 7563
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     Thank you for your attention!
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