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Transformers
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Large Language Model (LLM)
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Training them is more involved.

Think of it like compressing the internet.
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parameters.zip

~140GB file

‘ .
St LR )

Chunk of the internet, 6,000 GPUs for 12 days, ~$2M
~10TB of text ~1e24 FLOPS

*numbers for Llama 2 70B

Slide adapted from
Karpathy, Andrej



“You shall know a word by the company it keeps!” - Firth, 1957
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Predicts the next word in the sequence.
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Next word prediction forces the neural
network to learn a lot about the world:

Ruth Marianna Handler (née Mosko; November 4, 1916 — April 27,
w) was an American businesswoman and inventom
known for inventing the Barbie doll in 1959,“) and being co-founder
of toy manufacturer Mattel with her husband Elliot, as well as serving
as the company's first president from 1945 to 1975.°)

The Handlers were forced to resign from Mattel in 1975 after the
Securities and Exchange Commission investigated the company for
falsifying financial documents. %]

Early life [edt)

Ruth Marianna Mosko!®2Il2] was born on November 4, 1916, in
Denver, Colorado, to Polish-Jewish immigrants Jacob Moskowicz, a
blacksmith, and Ida Moskowicz, née Rubenstein.!®!

She married her high school boyfriend, Elliot Handler, and moved to
Los Angeles in 1938, where she found work at Paramount.”!

Ruth Handler

Handler in 1961

Born Ruth Marianna Mosko
November 4, 1916
Denver, Colorado, U.S.
Died April 27, 2002 (aged 85)'"!
Los Angeles, California, U.S.
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How does it work?

RICIOES Little is known in full detail...
T - Billions of parameters are dispersed through the network
- We know how to iteratively adjust them to make it better at prediction.
- We can measure that this works, but we don’t really know how the
| ——=(__Decoderez___) billions of parameters collaborate to do it.

Decoder #1

= % They build and maintain some kind of knowledge
e : . database, but it is a bit strange and imperfect:
S S - 0 —
! . I Recent viral example: “reversal curse”

Positional /<~ A ~ P
Encoding 1”-’ a0 4

Q: “Who is Tom Cruise’s mother”?
A: Mary Lee Pfeiffer

i
[®®®®] [®@ ] 100 billion parameters

e A

Q: “Who is Mary Lee Pfeiffer’'s son?”
A: | don’t know X

=> think of LLMs as mostly inscrutable artifacts,
develop correspondingly sophisticated evaluations.
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Short distance

One \Igole of carbon dioxide
o

Slide adapted from Sanderson,
Grant(3Blue1Brown)

Long distance

Harry Potter was a highly unusual boy in many ways. For one thing, he hated
thusummethnlid&yxmmthsnuxyothethmaofyw For ancther, he really
mwdwdohbhomwwkbutmﬁorwdwdoitmm.inthodeadof
night. And he also S v

It was nearly midnight,
blankets drawn right over e
large leather-bound book (A Hifn
open against the pillow. Ha
the page, frowning as he loo

Non-madc pwple (mom

Harry put his quill between his teeth and reached underneath his pillow
for his ink bottle and a roll of parchment. Slowly and very carefully he
unscrewed the ink bottle, dipped his quill into it, and began to write, pausing
waymmdtmwmbmmﬂmﬂemmmdmemm
ofhmqmllontheuwaywtheb&thmom he’d probably find himself locked in
the cupboard under the stairg for the rest of the summer.

The Dursley family of Aumber four, Privet Drive, was the reason that
Harry never enjoyed his/summer holidays. Uncle Vernon, Aunt Petunia, and
their son, Dudley, weref Harry’s only living relatives. They were Muggles, and

o al attitude toward magic. Harry’s dead parents, who
i wizard themselves, were never mentioned under the

yehrs, Aunt Petunia and Uncle Vernon had hoped that if
thnyheptﬂnn-ynd noddmaapodb]e,thuywmﬂdbeablemsquashthn

This separation from spellbooks had been a real problem for Harry,
because his teachers at Hogwarts had given him a lot of holiday work. One of
the essays, a particularly nasty one about shrinking potions, was for Harry’s
least favorite teacher, Professor



The size of the attention pattern is equal to the half of the square of the context size.

T
Attention(Q, K,V) = softmax%QA 4
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Cost of predicting Professor Snape
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La rge La ng uage MOdels - sorted by billion parameters
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5408 176B  100B = 208 1B

PaLM

e B I e R e @ 205 Much larger models, like PaLM would require even more resources.

https://huggingface.co/blog/hf-bitsandbytes-integration
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Fortunately we are Gryffindor, so Hermione is in the team. “Capacious Extremis
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Positional Encoding

Positional e

Input
Embedding

Encoding PE(pos 2i) = 5in(pos/10000%/ mour)

In this paper, we introduce a novel method, namely Rotary Position Embedding(RoPE), to leverage the positional
information into the learning process of PLMS. Specifically, RoPE encodes the absolute position with a rotation matrix
and meanwhile incorporates the explicit relative position dependency in self-attention formulation. Note that the
proposed RoPE is prioritized over the existing methods through valuable properties, including the sequence length
flexibility, decaying inter-token dependency with increasing relative distances, and the capability of equipping the
linear self-attention with relative position encoding. Experimental results on various long text classification benchmark
datasets show that the enhanced transformer with rotary position embedding, namely RoFormer, can give better
performance compared to baseline alternatives and thus demonstrates the efficacy of the proposed RoPE.

https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/2104.09864
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RoPE Scaling
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Figure 1: Implementation of Rotary Position Embedding(RoPE).

https://arxiv.org/pdf/2104.09864

https://medium.com/ai-insights-cobet/rotary-positional-embeddings-a-deta
iled-look-and-comprehensive-understanding-4ff66a874d83
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Parameter Efficient Fine Tuning (PEFT) - LoRA

« “We propose Low-Rank Adaptation, or LoRA, which freezes

h ' the pretrained model weights and injects trainable rank

I decomposition matrices into each layer of the Transformer

N k architecture, greatly reducing the number of trainable

et < - I parameters for downstream tasks. Compared to GPI-3

o Weights B 1738 fine-tuned with Adam, LoRA can reduce the number

w of trainable parameters by 10,000 times and the GPU

| memory requirement by 3 times. LoRA performs on-par or

= . ¥ better than finetuning in model quality on RoBERTy,

DeBERTa, GPT-¢, and GPT-3, despite having fewer

e . 3 ' trainable parometers, a higher training throughput, and,

IR e iion o LoRA. We feeze Wo s prevained v anameaa e Unlike adapters, no additional inference fatency. (Hu et al,
tune by training a pair of matrices A and B, updating those instead of W, and just sum W and 20 Zl] "

the updated AB.


https://web.stanford.edu/~jurafsky/slp3/10.pdf
https://arxiv.org/pdf/2106.09685
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Figure 1: Different finetuning methods and their memory requirements. QLORA improves over LoRA by
quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.

https://arxiv.org/pdf/2305.14314



Instruction Tuning with Unslath Y,
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Instruction Tuning with Unslath

model, tokenizer = FastLanguageModel.from pretrained(
model name="unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",

max_seq length=4600,
dtype= None,
load in 4bit= Tr
token="hf_ token",

model = FastlLanguageModel.get peft model(
model,
r= 16,
target modules=["q proj", "k proj"
“gate_proj”, "up_p
lora_alpha= 16,
lora_dropout= 0,
bias= "none",
use gradient checkpointing= "unsloth”,
random state= 3407,
use_rslora= False,
loftq config= None,




Instruction Tuning with Unslath

trainer = SFTTrainer(

model=model,

tokenizer=tokenizer,

train dataset= dataset,

dataset text field= "

max_seq length= 4600,

dataset _num proc= 2,

packing= False,

args=TrainingArguments(
per_device train batch size= 2,
gradient accumulation steps= 4,
warmup_steps= 5,
max_steps= 200,

learning_rate= 2e-4,

fp16= not is bfloatil6 supported(),
bf16= is bfloati6 supported(),
logging steps= 1

optim= t
weight decay= 0.01,
1r scheduler type=
seed= 3407,

"adamw _

"linear"”,

Letters Data Train Stats
[200, 1.2214837500452995

(500 random instan

"total flos":
3.176}1]

1.51380506

"epoch"

News Data Train Stats:

[200,

(500 random instances

0.9034367097914219, {"train runtime'": 217.9002,

"train samples per second" 343, "train steps per second":

"total flos": 0.90343670

8826574976188416.0, "train loss": 97914219,

Sentiment Data Train Stats: (500 random instances

{"train runtime": 458.0

"total flos":

6.570031342829568e+16,

"train loss":

0.918,

"epoch":




Confusion Matrix for Authors

Classification for Authors: .
virginia woolf 74 1 1] [}

precision recall fi-score support
friedrich schiller - 0
franz kafka 0.75 0.92 0.83 13
friedrich schiller 0.60 0.67 0.63 9 hang von godihe
henrik ibsen 1.00 0.97 0.99 36
james joyce 0.93 0.81 0.87 32 -
johann wolfgang von goethe 0.57 0.57 0.57 7
virginia woolf 0.94 0.96 0.95 77
wilhelm busch 0.96 0.92 0.94 26 fiennikibsert
accuracy 0.91 200 james joyce -
macro avg 0.82 0.83 0.82 200

weighted avg 0.91 0.91 0.91 200

wilhelm busch -

ich schiller
lenrik ibsen -



Confusion Matrix for Languages

Classification for Languages:

precision recall fl-score support

da 0.95 1.00 0.97 35

de 0.97 1.00 0.98 57

en 1.00 0.95 0.98 108
unknown 0.00 1.00 0.00 (%)
accuracy 0.97 200
macro avg 0.73 0.99 0.73 200

weighted avg 0.98 0.97 0.98 200

|
de
Predicted
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Classification for Sentiments:

precision recall f1-score

negative 0.93 0.96 0.94
positive 0.96 0.93 0.95
accuracy 0.94
macro avg 0.94 0.95 0.94
weighted avg 0.95 0.94 0.95

support

96
104

200
200
200

]
=
=t
@
Q
a

Confusion Matrix for Sentiments

positive

Predicted

negative
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Limitations & Future Work

Hyperparameter Optimization

Further fine-tuning with the whole dataset
Prompting Techniques

Interpretability

Creating agents to bring the authors back to life ;)
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Thank you for your attention!
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