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Introduction
Ø Goal: 

1. Save time on data annotation (reduce the scale of labeled examples)

2. Maintain good performances

Ø Main Idea: 

Ø Main Contributions: 

Use GAN to extend the fine-tuning of BERT-like architectures with unlabeled data in a  
generative adversarial setting

1. Extended the limits of Transformer-based architectures (i.e., BERT) in poor training conditions

2. Systematically improved the robustness of such architectures, while not introducing additional        

costs to the inference
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BERT – Bidirectional Encoder Representations from Transformers

2 3 / 0 1 / 2 0 2 3 4

• A stack of  Transformer Encoder Layers that consists of  multiple self-attention “heads”

• Workflow (crucial part):

1. Pre-training: MLM (masked language modeling) & NSP (next sentence prediction)

2. Fine-tuning: (basically tells BERT what to ignore)
Special tokens in NSP: [CLS], [SEP]

• Presumably teach the model to rely more on the representations useful for the task at hand
• Possibilities of improving the fine-tuning of BERT:

1. Taking more layers into account: learning a complementary representation of the information in deep and output layers, 
using a weighted combination of all layers instead of the final one and layer dropout

2. Two-stage fine tuning: introduces an intermediate supervised training stage between pre-training and fine-tuning. Ben-
David et al. (2020) propose a pivot-based variant of  MLM to fine-tune BERT for domain adaptation

3. Adversarial token perturbations: improve the robustness of  the model (Zhu et al., 2019)

4. Adversarial regularization: helps alleviate pre-trained knowledge forgetting and therefore prevents BERT from overfitting
to downstream tasks (Jiang et al., 2019a)

5. Mixout regularization: improves the stability of BERT fine-tuning even for a small number of training examples (Lee et al., 
2019)
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BERT – Bidirectional Encoder Representations from Transformers

• Using dif ferent open-source models on the Hugging Face for fine-tuning 

Bert Model VariationsBert Model Overview on Hugging Face

src: https://huggingface.co/bert-base-uncasedsrc: https://huggingface.co/transformers/v3.0.2/model_doc/bert.html

https://huggingface.co/bert-base-uncased
https://huggingface.co/transformers/v3.0.2/model_doc/bert.html


GANs – Generative Adversarial Networks
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• An approach to generative modeling using deep learning methods, such as convolutional neural
networks, applied in CV

• Automatically discovering and learning the regularities or patterns in input data

• Generate or output new examples that plausibly could have been drawn from the original dataset

Components of GANs:

Ø Generator (G): be trained to generate new examples

Ø Discriminator (D): tries to classify examples as either real (from the domain) or fake (generated)

Ø Process: The two models are trained together in a zero-sum game, adversarial, until the
discriminator model is fooled about half  the time, meaning the generator model is generating
plausible examples
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GANs – Generative Adversarial Networks

Fake data
(generated, from the Generator)

Real data
(from the training dataset/domain)

Endpoint of training



Detailed Illustration of GANs 
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Generator Model

1. Takes a fixed-length random vector as input and generates a sample in the
domain

2. The vector is drawn randomly from a Gaussian distribution, and the vector
is used to seed the generative process

3. Points in this multidimensional vector space will correspond to points in the
problem domain after training, forming a compressed representation of the
data distribution
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Detailed Illustration of GANs 
Discriminator Model

1. The discriminator model takes an 
example from the domain as input
(real or generated) and predicts a 
binary class label of real or fake 
(generated)

2. The discriminator is a normal (and 
well understood) classification model

Adversarial Process



SS-GANs
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• SS-GANs: semi-supervised learning in a GAN framework

• A (k + 1)-class objective:

Ø “real” examples are classif ied into target classes [1, 2, … , k]

Ø generated / “fake” examples are classif ied into k + 1

• Components:

Ø Generator (G)

Ø Discriminator (D) [1, 2, … , k]

k+1

(labeled + unlabeled)
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SS-GANs

ØLoss of  SS-GANs:  𝑳𝑫 and 𝑳𝑮

ØWe will have two Loss functions, one for L(D) and one for L(G):

Ø 𝑳𝑫= 𝑳𝑫𝒔𝒖𝒑. + 𝑳𝑫𝒖𝒏𝒔𝒖𝒑.

Ø 𝑳𝑮= 𝑳𝑮𝒖𝒏𝒔𝒖𝒑. + 𝑳𝑮𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒎𝒂𝒕𝒄𝒉𝒊𝒏𝒈
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SS-GANs
• First Loss of  SS-GANs:  𝑳𝑫 = 𝑳𝑫𝒔𝒖𝒑. + 𝑳𝑫𝒖𝒏𝒔𝒖𝒑.
Ø𝑳𝑫𝒔𝒖𝒑. measures the error in assigning the wrong class to a real example among the 

original k categories. 

Ø𝑳𝑫𝒖𝒏𝒔𝒖𝒑. measures the error in incorrectly recognizing a real (unlabeled) example as fake 

and not recognizing a fake example. 

Probs of  associating 
real data in k classes

Probs of  associating 
fake data into k+1 class

real data

real data

fake data



2 3 / 0 1 / 2 0 2 3 13

SS-GANs

• Second Loss of  SS-GANs:  𝑳𝑮 = 𝑳𝑮𝒖𝒏𝒔𝒖𝒑. + 𝑳𝑮𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒎𝒂𝒕𝒄𝒉𝒊𝒏𝒈

Ø The 𝑳𝑮𝒖𝒏𝒔𝒖𝒑. considers the error induced by fake examples correctly

identified by D 

Probs of  associating 
real data in k classes

Probs of  associating fake 
data into k+1 classes

fake data
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SS-GANs

• Second Loss of  SS-GANs:  𝐿! = 𝐿!!"#!$. + 𝑳𝑮𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒎𝒂𝒕𝒄𝒉𝒊𝒏𝒈

Ø Reason for feature matching: G is expected to generate examples that 
are similar to the ones sampled from the real distribution P(d). 

Ø Feature matching loss calculation: Let f(x) denote the activation on an 
intermediate layer of  D; the generator should produce examples whose 
intermediate representations provided in input to D are very similar to the 
real ones. 

real data distribution in input to D 

fake data distribution in input to D



GAN-BERT
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• GAN-Bert: an extension of  pre-trained BERT model by using SS-GANs for 

the fine-tuning stage. 

• Two components:

Ø task-specif ic layers, as in the usual BERT f ine-tuning

Ø SS-GAN layers to enable semi-supervised learning
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GAN-BERT

• GAN-BERT architecture: 

ØG generates a set of  fake examples F given a random distribution. 

ØFake examples F, along with unlabeled U and labeled L vector representations 

computed by BERT are used as input for the discriminator D. 
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GAN-BERT

• Loss of  GAN-BERT (as of  SS-GANs): 

Ø 𝑳𝑫= 𝑳𝑫𝒔𝒖𝒑. + 𝑳𝑫𝒖𝒏𝒔𝒖𝒑.

Ø 𝑳𝑮= 𝑳𝑮𝒖𝒏𝒔𝒖𝒑. + 𝑳𝑮𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒎𝒂𝒕𝒄𝒉𝒊𝒏𝒈

• Weight update: G, D, BERT
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GAN-BERT
- Pre-trained BERT model: 

- Given input sentence:

- BERT output n+2 vector representations:

- We adopt the 𝒉𝒄𝒍𝒔representation as a sentence
embedding

hCLShCLS

Train
Set

Labeled Data Unlabeled Data

hCLS



Noise
Vector

100-dimensional
drawn from

Fake Vector

hCLShCLShfake
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GAN-BERT
- Generator G: 

- MLP with one hidden layer

- Activated by a leaky-relu function
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GAN-BERT
- Discriminator D: 

- MLP with one hidden layer

- Activated by a leaky-relu function

- Followed by a softmax layer for the

final prediction

hCLShCLShCLS
hCLShCLShfake

Final Prediction k+1 category
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GAN-BERT
Training Procedure: 

1. Encode real data in Transformer

2. Generate fake data

3. Put real and fake data into Discriminator

4. Separate the Discriminator’s outpu for real and fake data
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GAN-BERT
Loss of GAN-BERT (as of SS-GANs):

Weight update: G, D and BERT



Experimental Part
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Goal: 
- Assess the impact of GAN-BERT over sentence classification tasks characterized by different 

training conditions, i.e., number of examples and number of categories.

- Binary Classification (Sentiment Analysis)
- Multi-Class Classification (Author Identification)

Dataset:

- Sentiment (40,000 texts for Train set / 10,000 texts for Test set)
- Letters (39,077 texts for Train set / 4,881 texts for Test set)

Baseline: 

- BERT-base model fine-tuned as described in [Devlin et al., 2019] on the available training material
Hyperparameters:

Repeat the training of each model with an 
increasing set of annotated material (L)

Transformer parameters:
> Max Sequence Length = 64
> Batch Size = 64

Optimization parameters:
> Learning Rate of D = 5e-5
> Learning Rate of G = 5e-5
> Epsilon = 1e-8

GAN-BERT specific parameters:
> Number of Hidden Layers in G = 1
> Number of Hidden Layers in D = 1
> Size of Noisy Vector = 100
> Dropout Rate = 0.2
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Experiment 1: Sentiment Analysis

Dataset: Sentiment 
Label: Sentiment (Negative / Positive)

Text Sentiment

count 40000 40000

unique 39745 2

- Training set:                                           - Test set:

Text Sentiment

count 10000 10000

unique 9983 2

- Neg: 20015                                                                  - Neg: 4985
- Pos: 19985                                                                   - Pos: 5015

40, 000 training data
10, 000  testing data
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Experiment 1: Sentiment Analysis

positive

Annotated Data: 0.1% (40 texts)
BERT: BERT-base
Epochs: 10
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Experiment 1: Sentiment Analysis
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Annotated Data: 0.25% (100 texts)
BERT: BERT-base
Epochs: 10
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Experiment 1: Sentiment Analysis
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Annotated Data: 0.5% (200 texts)
BERT: BERT-base
Epochs: 10
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Experiment 1: Sentiment Analysis
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Results

GAN-BERT performs better than
BERT:

with 0.1% and 0.25% of labeled
training data
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Experiment 2: Author Identification
Dataset: Letters
Label: Authors

39, 077 training data
4, 881  testing data

Virginia 
Woolf

Henrik 
Ibsen

James 
Joyce

Wilhelm 
Busch

Franz 
Kafka

Friedrich 
Schiller

Johann 
Wolfgang von 

Goethe

Virginia 
Woolf

Henrik 
Ibsen

James 
Joyce

Wilhelm 
Busch

Franz 
Kafka

Friedrich 
Schiller

Johann 
Wolfgang von 

Goethe

1901

897

682 627

280 266 228

15211

7172

5459
5018

2238 2139 1840

- Training set:                                                                       - Test set:
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Experiment 2: Author Identification

Annotated Data: 0.1% (39 texts)
BERT: mBERT
Epochs: 3
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Experiment 2: Author Identification

Annotated Data: 0.25% (97 texts)
BERT: mBERT
Epochs: 3
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Experiment 2: Author Identification

Annotated Data: 0.5% (195 texts)
BERT: mBERT
Epochs: 3
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Experiment 2: Author Identification

Annotated Data: 1% (390 texts)
BERT: mBERT
Epochs: 3
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Experiment 2: Author Identification

Annotated Data: 5% (1953 texts)
BERT: mBERT
Epochs: 3
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Results

GAN-BERT performs better than
BERT:

with 0.1% (39 cases), 
0.25% (97 cases), 
0.5% (195 cases), 
1% (390 cases),
5% (1953 cases), 
20% of Dataset



Conclusion
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● GAN-BERT improved the robustness of fine-tuning 
○ even in poor training condition (low training data)
○ (intuitively) GAN provide massive negative samples during training

● GAN-BERT does not introduce additional cost during inference
○ Only additional discriminator (simple)

● More improvement of GAN-BERT is more significant on Multiclass Classification than Binary 
Classification

Inference
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Conclusion

Limitation:
● Carefully separate dataset

Outlook:
● Long-Tail Distribution Problem

● Why Kafka, Schiller, Goethe performs not well?
○ size of training data is limited

result of GAN-BERT on 5% of dataset



2 3 / 0 1 / 2 0 2 3 39

Conclusion
● BERT
● GAN (Generative Adversarial Networks)
● GAN-BERT: Fine-Tune of BERT with GAN
● Experiments

○ Sentiment Analysis
○ Author Identification

● Advantage of GAN-BERT
○ GAN provides a large number of negative samples
○ Robustness with low training data
○ Not introducing additional costs during inference

● Limitation
○ Carefully separate dataset
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