
RAG-Fusion for Open-Domain 
Question Answering

Xinao Han
Masterseminar 

Suchmaschinen und Retrieval Augmented Generation
Sommersemester 2024



Introduction



How to make 
corn whiskey?

Introduction



How to make 
corn whiskey?

We made a corn whiskey mash recently and 

documented the process for others to see…

IntroductionIntroduction



Query: corn mash

How to make 
corn whiskey?

We made a corn whiskey mash recently and 

documented the process for others to see…

IntroductionIntroduction



Query: corn mash

How to make 
corn whiskey?

We made a corn whiskey mash recently and 

documented the process for others to see…

Creamed corn is the perfect side dish to serve 

alongside comfort food favorites, such as meatloaf. 
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Response

● The problem of a naive RAG system
○ Whenever we make a prompt, there is a difference between WHAT WE ASK and 

WHAT WE INTEND TO ASK. 
○ “ … there is inevitably a gap between the input text and the needed knowledge in retrieval.

(Ma et al., 2023)”
● Naive RAG ⇒ Advanced RAG
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RAG-Fusion



Overview ● What:
○ It combines RAG and reciprocal rank fusion (RRF) by 

generating multiple queries, reranking them with 
reciprocal scores and fusing the documents and scores.

● Who:
○ Developed by Adrian Raudaschl (2023) 

● Why: 
○ To bridge the gap between traditional search 

paradigms and the multifaceted dimensions of human 
queries

● Related Work: 
○ the Infineon RAG-Fusion chatbot for enhanced 

product information retrieval in Engineering and 
Account Management(Rackauckas, 2024)

● In this work:
○ Does RAG-Fusion also work well on open-domain 

QA task?



Zoom in on RAG-Fusion



Experimental Setup



Dataset
- MS MARCO V2 passage corpus 

● Query:
○ 100 queries 
○ Official topics for the TREC Deep Learning (DL) 2023 shared task

● Documents: 
○ Real word web documents 
○ Segmented into passages
○ Each passage roughly contains between 500-1000 characters
○ Total: 2M passages including ground truth for every query 



Evaluation Metric

● Information Retrieval 
○ mean reciprocal rank(MRR@10)

● Answer Generation
○ Bleu, Rouge-1, Rouge-2, Rouge-L, Meteor



Implementation Details

● RAG: 
○ LangChain 

● Embedding:
○ "BAAI/bge-small-en-v1.5"
○ BAAI general embedding (bge) model
○ Arch: bert
○ #para: 33.2M

● Vector Store: 
○ DB Chroma

● Generation: 
○ ChatGooglePalm
○  the Google Pathway 

Language  Model(PaLM) 
○ #Queries: 4



Results & Analysis



Information Retrieval

Figure 1: The impact of Temperature. The horizontal axis represents the value of 
Temperature and the vertical axis represents the MRR@10 metric.

● Temperature:

○ [0.0,1.0]
○ supervising - less surprising

● Analysis: 
○ RAG-Fusion's performance varies 

significantly with different temperature 
settings. 

○ The optimal temperature is 0.30, where 
RAG-Fusion slightly outperforms naive 
RAG. Higher temperature settings (0.35 
and above) lead to a decline in 
performance. 

○ temperature<0.30:
■ Unstable generation
■ ChatGooglePalmError: 

ChatResponse must have at least 
one candidate



Query Generation 1

● Original Query: "corn mash"
○ ⇒ rank 50

● Generate Similar Queries(temperature=0.3): 
○  "output": [   "1. How to make corn mash",

    "2. Corn mash recipe",

    "3. Corn mash for whiskey",

    "4. Corn mash for moonshine"

  ]

○ ⇒ rank 7



Query Generation 2

● Original Query: "similarity principle psychology definition"
○ ⇒ rank 6

● Generate Similar Queries(temperature=1.0):  
○ "output": ["1. Similarity principle in psychology definition",

    "2. Similarity principle examples",

    "3. Similarity principle in marketing",

    "4. Similarity principle in advertising"

  ] 

○ ⇒ rank 29



Answer Generation

Bleu Rouge-1 Rouge-2 Rouge-L Meteor

Naive RAG 0.010 0.181 0.036 0.168 0.168

RAG-Fusion
(temp=0.3)

0.007 0.180 0.031 0.163 0.168

● Analysis
○ The naive RAG tends to perform slightly better across most evaluation metrics (BLEU, 

ROUGE-1, ROUGE-L), indicating that RAG-Fusion does not notably improve answer 
generation performance in this context.



Conclusions

➔ RAG-Fusion does not show a notable improvement over naive RAG in Open 
domain QA tasks.

➔ The  parameter Temperature affects the quality of query generation, thereby 
influencing the performance of RAG-Fusion.
◆ Lower temperatures generally lead to better performance for RAG-Fusion, 

provided that enough queries are generated.
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Limitations

● Ground Truth Source:
○ The ground truth was derived from BM25 instead of being manually annotated, which 

makes the evaluation results not that reliable.

● Long Execution Time
○ Due to a more complex call to the LLM with multiple queries and more documents.
○ One of the major issues with the RAG-Fusion technique.



Future Work

● Increase Repetition: 
○ Black-box Nature of LLMs
○ Conducting RAG-Fusion multiple times across different runs to improving result reliability.

● Domain-specific QA tasks:
○ The suboptimal performance of RAG-Fusion in open domain QA tasks does not imply 

that the RAG-Fusion technique itself is not worth researching. 
○ Future work can explore the performance of RAG-Fusion in domain-specific QA tasks.
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