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Abstract

In this paper, a new probabilistic tagging method is presented which avoids problems that

Markov Model based taggers face, when they have to estimate transition probabilities from

sparse data.

In this tagging method, transition probabilities are estimated using a decision tree. Based on

this method, a part-of-speech tagger (called TreeTagger) has been implemented which achieves

96.36 % accuracy on Penn-Treebank data which is better than that of a trigram tagger (96.06 %)

on the same data.
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1 Introduction

Word forms are often ambiguous in their part-of-speech (POS). The English word form store for

example can be either a noun, a �nite verb or an in�nitive. In an utterance, this ambiguity is

normally resolved by the context of a word: e.g. in the sentence "The 1977 PCs could store two

pages of data.", store can only be an in�nitive. The predictability of the part-of-speech from the

context is used by automatic part-of-speech taggers.

Several methods have been proposed to annotate words automatically with part-of-speech tags.

Some researchers used rule-based systems [Greene and Rubin, 1971] [Brill, 1993]. Others imple-

mented probabilistic methods, e.g. [Bahl and Mercer, 1976] [Church, 1988] [Cutting et al., 1992]

[DeRose, 1988] [Kempe, 1993]. Finally, neural network models have also been tested in POS

tagging [Federici and Pirrelli, 1994] [Schmid, 1994] and the related problem of POS prediction

[Nakamura et al., 1990].

All probabilistic methods cited above are based on �rst-order or second-order Markov Models.

Because of the large number of parameters (particularly in the case of trigrams), these methods

have di�culties in estimating small probabilities accurately from limited amounts of training data.

In this paper, a new technique is presented which avoids this sparse data problem by using a

decision tree to obtain reliable estimates of transition probabilities. The decision tree automatically

determines the appropriate size of the context which is used to estimate the transition probabilities.

Possible contexts are not only trigrams, bigrams and unigrams, but also other kinds of contexts as

e.g.: (tag

�1

= ADJ and tag

�2

6= ADJ and tag

�2

6= DET )

�
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2 Probabilistic Tagging

The TreeTagger has much in common with a conventional ngram tagger [Church, 1988] [Kempe, 1993].

Both of them model the probability of a tagged sequence of words (in the case of a second order

Markov model) recursively by:
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The methods di�er, however, in the way the transition probability p(t
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Ngram taggers often estimate the probability using the following formula based on the maximum

likelihood estimation (MLE) principle:
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This estimation method is problematic since many frequencies are small so that the correspon-

ding probabilities cannot be estimated reliably. Particular di�culties are posed by zero frequencies:

it is di�cult to decide whether the corresponding trigram is syntactically incorrect (in which case the

probability is zero) or just rare (in which case the probability has a small positive value). Another

point is that a robust tagger should be able to cope with ungrammaticalities in the input. Other-

wise, ungrammaticalities would lead to the assignment of a zero probability to a whole utterance

independent of the sequence of tags. This should be avoided.

Therefore, the above formula is often modi�ed by replacing zero probabilities with a small value

and renormalizing the probabilities, so that they sum up to 1 (for a comparison of some of the

methods, see [Kempe, 1993]). A proper choice of the replacement value is essential for the quality

of the tagging result.

3 The TreeTagger

In contrast to an ngram tagger, the TreeTagger estimates transition probabilities with a binary de-

cision tree. Figure 1 shows a sample decision tree

1

. The probability of a given trigram is determined

by following the corresponding path through the tree until a leaf is reached. If we look e.g. for the

probability of a noun which is preceded by a determiner and an adjective p(NN jDET;ADJ), we

must �rst answer the test at the root node. Since the tag of the previous word is ADJ , we follow

the yes-path. The next test (tag

�2

= DET ) is true as well and we end up at a leaf node. Now, we

just have to look for the probability of the tag NN in the table which is attached to this node.

3.1 Construction of the Decision Tree

The decision tree is built recursively from a training set of trigrams using a modi�ed version of the

ID3-algorithm [Quinlan, 1983]. In each recursion step, a test is created which divides the set of

trigram samples in two subsets with maximal distinctness regarding the probability distribution of

the third (predicted) tag. The test examines one of the two preceding tags and checks whether it

is identical to a tag t. A test has the following form:

tag

�i

= t; i 2 f1; 2g; t 2 T; (3)

where T is the tagset.

At each recursion step, all possible tests are compared and the best one yielding most information

is attached to the current node of the decision tree. Then this node is expanded recursively on each

1

The decision tree in �gure 1 is not a realistic example. It is just for illustration.
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Figure 1: A sample decision tree

of the two subsets of the training set which are de�ned by the test. The resulting subtrees are

attached to the current node as the yes- and no-subtree.

The criterion which is used to compare all possible tests q is the amount of information which

is gained about the third tag by making each test. Maximizing the information gain is equivalent

to minimizing the average amount of information I

q

which is still needed to identify the third tag

after the result of the test q is known:
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Here, C is the context which corresponds to the current node and C
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)) is the probability of the third tag t if the test succeeded (failed). These

probabilities are estimated from frequencies
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with MLE:
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The recursive expansion of the decision tree stops if the next test would generate at least one subset

of trigrams whose size is below some prede�ned threshold, e.g. 2 (i.e. f(C

+

) < 2 or f(C

�

) < 2).

Tag probabilities p(tjC) for the third tag are then estimated from all trigrams which have been

passed to this recursion step and they are stored at the current node.

p(tjC) :=

f(t; C)

f(C)

(9)

2

f(C) is the number of trigrams in the current training set. f(C

+

) (f(C

�

)) is the number of trigrams which (do

not) pass the test. f(t; C

+

) is the number of trigrams which pass the test and whose third tag is t.



3.2 Pruning of the Decision Tree

After the initial version of the decision tree has been built, the tree is pruned. If both subnodes

of a node are leaves, and the weighted information gain at the node is below some threshold, the

subnodes are removed and the node becomes a leaf itself. The weighted information gain G is

de�ned as:

G = f(C)(I

0

� I

q

) (10)

I

0

=

X

t2T

p(tjC) log

2

p(tjC) (11)

where I

0

is the amount of information which is needed to disambiguate at the current node and I

q

,

as above, is the amount of information which is still needed after the result of test q is known. This

information gain criterion should not be used during the construction of the decision tree, because

it is possible that a node fails to meet it, although all its subnodes would. So, this part of the tree

would not be constructed if we would use the information gain criterion at �rst.

As other probabilistic taggers do, the TreeTagger determines the best tag sequence for a given

sequence of words with the Viterbi algorithm [Viterbi, 1967].

4 The Lexicon

The lexicon contains the a priori tag probabilities for each word and is similar to the lexicon which

was used by [Cutting et al., 1992]. It has three parts: a fullform lexicon, a su�x lexicon and a

default entry .

During the lookup of a word in the lexicon of the TreeTagger, the fullform lexicon is searched

�rst. If the word is found there, the corresponding tag probability vector is returned. Otherwise,

the uppercase letters of the word are turned to lowercase, and the search in the fullform lexicon is

repeated. If it fails again, the su�x lexicon is searched next. If none of the previous steps has been

successfull, the default entry of the lexicon is returned.

The fullform lexicon was created from a tagged training corpus (some 2 million words of the

Penn Treebank Corpus). The number of occurrences of each word/tag pair was counted and those

tags of each word with a relative frequency of less than 1 percent were removed since they were in

most cases the result of tagging errors in the original corpus.

The second part of the lexicon, the su�x lexicon, is organised as a tree. Each node of the tree

(excepted the root node) is labeled with a character. At the leaf nodes, tag probability vectors are

attached. During a lookup, the su�x tree is searched starting a the root node. In each step, the

branch which is labeled with the next character from the end of the word su�x is followed.

Assume e.g. we want to look for the word tagging in the su�x lexicon which is shown in �g. 4.

We start at the root (labeled #) and follow the branch which leads to the node labeled g. From

there, we move to the node labeled n, and �nally we end up in the node labeled i. This node is a

leaf and the attached tag probability vector (which is not shown in �g. 4) is returned.

The su�x lexicon was automatically built from the training corpus. A su�x tree was constructed

from the su�ces of length 5 of all words which were annotated with an open class part-of-speech

3

and tag frequencies were counted for all su�ces and stored at the corresponding tree nodes. Then

an information measure I(S) was calculated for each node of the tree:

I(S) = �

X

pos

P (posjS) log

2

P (posjS) (12)

Here, S is the su�x which corresponds to the current node and P (posjS) is the probability of tag

pos given a word with su�x S.

3

Open class parts-of-speech are those which are possible parts-of-speech of newly created words (e.g. noun, verb,

adjective).
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Figure 2: A sample su�x tree of length 3

Using this information measure, the su�x tree has been pruned. For each leaf, the weighted

information gain G(aS) was calculated:

G(aS) = F (aS) (I(S)� I(aS)); (13)

where S is the su�x of the parent node, aS is the su�x of the current node and F (aS) is the

frequency of su�x aS.

If the information gain at some leaf of the su�x tree is below a given threshold

4

, the leaf is

removed. The tag frequencies of all deleted subnodes of a parent node are collected at the default

node of the parent node. If the default node is the only remaining subnode, it is deleted too. In

this case, the parent node becomes a leaf and is also checked whether it is deletable.

To illustrate this process consider the following example, where ess is the su�x of the parent

node, less is the su�x of one child node and ness is the su�x of the other child node. Sample tag

frequencies of the nodes are given in table 4.

tag su�x ess su�x ness su�x less

JJ 86 1 85

NN 10 2 8

NP 45 45 0

RB 2 0 2

total 143 48 95

Table 1: Sample tag frequencies at a tree node and its two child nodes.

The information measure for the parent node is:

I(ess) = �

86

143

log

2

86

143

�

10

143

log

2

10

143

� ::: � 1:32 (14)

The corresponding values for the child nodes are 0:39 for ness and 0:56 for less. Now, we can

determine the weighted information gain at each of the child nodes. We get:

G(ness) = 48(1:32� 0:39) = 44:64 (15)

4

We used a gain threshold of 10.



G(less) = 95(1:32� 0:56) = 72:20 (16)

Both values are well above a threshold of 10, and therefore none of them should be deleted.

As explained before, the su�x tree is searched during a lookup along the path, where the nodes

are annotated with the letters of the word su�x in reversed order. If a leaf is reached at the end

of the path, the corresponding tag probability vector is returned. If no matching subnode can be

found at some node on the path, the default node is followed if it exists. If no default node exists,

the search in the su�x lexicon fails and the default entry is returned.

The default entry is constructed by subtracting the tag frequencies at all leaves of the pruned

su�x tree from the tag frequencies at the root node and normalizing the resulting frequencies.

Thereby, relative frequencies are obtained which sum to one.

5 Tests

The performance of the TreeTagger was tested on data from the Penn-Treebank corpus. Some 2

million words were used for training and 100,000 words from a di�erent part of the Penn-Treebank

corpus for testing.

The TreeTagger was compared to a trigram tagger [Kempe, 1993] which was trained and tested

on the same data. In contrast to the TreeTagger, the trigram tagger does not use a su�x lexicon.

Instead, its fullform lexicon was augmented by about 170,000 additional entries which were created

from a wordlist with a morphological analyzer.

Two versions of the TreeTagger were tested. In the �rst version, zero frequencies are replaced

by 0.1 before the tag probabilities at the leaves of the decision tree are calculated. In the second

version, zero frequencies were replaced by a very small value (10

�10

)

5

to see how strong the inuence

of the choice of this parameter on the tagging accuracy is.

In another test, it was examined how much the tagging accuracy depends on the size of the

training corpus. A bigram version and a quatrogram version of the TreeTagger have also been

tested here.

Finally, the inuence of the pruning threshold on the accuracy of the trigram version and the

quatrogram version of the TreeTagger has been tested.

Due to an e�cient implementation of the tagger, training with trigrams on 2 million tokens took

only about 6 minutes on a SPARC10 workstation and about 10,000 words have been tagged per

second.

6 Results

As table 2 shows, the trigram version of the TreeTagger achieved an accuracy which is about 0.3 %

better than that of the standard trigram tagger. It is also about 0.6 % better than the bigram version

of the TreeTagger. Increasing the context to quatrograms still results in a very small improvement

method context accuracy

trigram tagger trigram 96.06 %

TreeTagger bigram 95.78 %

TreeTagger (0.1) trigram 96.34 %

TreeTagger quatrogram 96.36 %

TreeTagger (10

�10

) trigram 96.32 %

Table 2: Comparison of accuracy

5

Transition probability are not allowed to be equal to zero, because this would mean that the whole tagging

process breaks down, if this particular context appears in the input.



of the accuracy. This shows, that the TreeTagger is able to trim the context e�ectively, where this

is necessary to get reliable estimates.

Changing the replacement value for zero frequencies in the decision tree from a very small value

to 0.1 { which was found to be optimal { resulted in a small improvement of the accuracy. So,

in contrast to more standard Markov Model taggers, a proper setting of this parameter is not

important.
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Figure 3: Accuracy for varying sizes of the training corpus.

Figure 3 shows the inuence of the size of the training corpus on the tagging quality. Contrary

to the trigram tagger, the accuracy of the TreeTagger deteriorates slowly, as the size of the training

corpus shrinks. Further, the di�erence between the bigram version of the TreeTagger and the

trigram version is small for very small sizes of the training corpus. This shows that the TreeTagger

is robust with regard to the size of the training corpus in contrast to the standard trigram tagger.

Figure 4 shows that the inuence of the pruning threshold on the accuracy is negligible (below

0.02 % for the trigram version and below 0.05 % for the quatrogram version). The best results are

obtained with thresholds between 40 and 50. Further, the diagrams shows that the quatrogram

version of the TreeTagger is consistently better than the trigram version for thresholds above 15.

context #contexts #leaves depth

bigram 47 47 47

trigram 2209 710 62

quatrogram 103823 2251 67

Table 3: Number of ngrams, leaf nodes and the depth of the tree

Table 3 compares the number of possible ngram contexts to the number of leaf nodes and
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thereby the number of contexts which the TreeTagger distinguishes. In the case of bigrams, all

possible contexts are used by the TreeTagger, in the case of trigrams the number of leaves is about

a third of the number of possible contexts and in the case of quatrograms only about 2 percent of

all possible contexts are distinguished.

7 Summary

A new tagging method, the TreeTagger, has been presented. It di�ers from other probabilistic

taggers in the way the transition probabilities are estimated, namely with a decision tree. A method

for the construction of a decision tree was presented and it was demonstrated that the resulting

tagger achieves higher accuracy than a standard trigram tagger. Further, it was shown that the

TreeTagger is robust with respect to the size of the training corpus. Small training corpora did not

result in a sharp degradation of the accuracy, as it was observed for trigram taggers. The TreeTagger

trims the size of the context where this is necessary to obtain reliable probability estimates. Hence,

it was possible to improve the accuracy of the tagger by using a quatrogram context. Due to an

e�cient implementation, the tagger is able to tag up to 10,000 tokens per second on a SPARC10-

workstation. Thus, the TreeTagger is a fast and high-quality tool for the annotation of corpora

with part-of-speech information.
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