
PARSING BY SUCCESSIVE APPROXIMATIONHelmut SchmidIMS-CL, University of StuttgartAzenbergstr. 12, D-70174 Stuttgart, GermanyEmail: schmid@ims.uni-stuttgart.deAbstractIt is proposed to parse feature structure-based grammars in several steps. Each step is aimed to eliminate asmany invalid analyses as possible as e�ciently as possible. To this end the set of feature constraints is dividedinto three subsets, a set of context-free constraints, a set of �ltering constraints and a set of structure-buildingconstraints, which are solved in that order. The best processing strategy di�ers: Context-free constraints are solvede�ciently with one of the well-known algorithms for context-free parsing. Filtering constraints can be solved usinguni�cation algorithms for non-disjunctive feature structures whereas structure-building constraints require specialtechniques to represent feature structures with embedded disjunctions e�ciently. A compilation method and ane�cient processing strategy for �ltering constraints are presented.1 IntroductionThe e�ciency of context-free parsing is well known [Younger, 1967]. Since many featured structure-basedgrammars either have a context-free backbone or can be transformed into a grammar with a context-freebackbone, it is possible to take advantage of the e�ciency of context free parsing if the parser proceeds in twosteps: First a context-free parser builds the context-free part of the syntactic analysis which is then extendedby the calculation of feature structures. Maxwell and Kaplan [Maxwell III and Kaplan, 1994] experimentedwith variants of this strategy in their LFG parser. One result of their experiments was that their grammar isprocessed more e�ciently by their parser if the rather broad context-free categories chosen by the grammarwriters are replaced by more speci�c categories. To this end some relevant features have been compiled manuallyinto the context-free grammar. Of course one would prefer to have a compiler perform this task automatically.This would enable the grammar writer to use the categories which he considers appropriate, without loosinge�ciency. How this can be done is shown in section 3.Often it is useful to split the second part of processing, the evaluation of feature constraints, into twosteps as well. Feature constraints which are likely to eliminate analyses (�ltering constraints) are evaluated�rst whereas the evaluation of other constraints (structure-building constraints) which mainly serve to buildsome (e.g. semantic) representation is delayed. The ALEP system (Advanced Language Engineering Platform[Simpkins, 1994]) allows the user to explicitly specify features whose constraints are to be delayed. Kasper andKrieger [Kasper and Krieger, 1996] present a similar idea for HPSG parsing.Separating �ltering constraints and structure-building constraints has two advantages: Since many analysesare eliminated by the �ltering constraints, the parser does not waste time on the { usually costly { evaluationof structure-building constraints for analyses which will fail anyway. As another advantage, it is possible tochoose the most e�cient processing strategy for each of the two constraint types independently.Structure-building features tend to reect the syntactic structure of a constituent. The semantic featureof a VP node e.g. would encode the attachment side of an embedded PP if there is ambiguity. In order toavoid such local ambiguities multiplying out in the semantic representation, it is necessary to have means torepresent ambiguity locally; i.e. the feature structure representation must allow for embedded disjunctions. Arepresentation in disjunctive normal form (i.e. as a set of alternative non-disjunctive feature structures) would beine�cient because the number of feature structures would grow too fast as local ambiguities multiply out. Moree�cient algorithms for processing disjunctive feature constraints have been presented e.g. in [Kasper, 1987],[D�orre and Eisele, 1990], [Maxwell III and Kaplan, 1996], and [Emele, 1991].

Filtering constraints, on the other hand, can be processed with standard uni�cation algorithms and a dis-junctive normal form representation for feature structures if the feature values restricted by these constraintshave limited depth and therefore limited compexity. The SUBCAT and SLASH features in HPSG e.g. havethis property whereas e.g. the SUBJ and OBJ features in LFG do not. Even if the depth of a feature valueis unbounded it is still possible to limit the complexity of the feature structures arti�cially by pruning featurestructures below some level of embedding. Little of the restrictive power of the constraints is lost thereby, sinceconstraints seldom refer to deeply embedded information. However, in order to ensure the correctness of the �nalresult, the �ltering constraints have to be evaluated again in the next step together with the structure-buildingconstraints.In this article a parser is presented which implements the �rst two steps of the parsing strategy outlinedabove. Currently it is assumed that the grammars do not contain structure-building constraints which wouldrequire the third processing step (see also section 4.3). Section 2 provides an overview of the grammar formalismused by this parser. Section 3 describes the compilation of the grammar. Details of the parsing strategy andits current limitations are given in section 4. Section 5 presents results from experiments with the parser andsection 6 closes with a summary.2 The Grammar FormalismThe parser employs a rule-based grammar formalism. Each grammar rule has a context-free backbone. One ofthe daughter nodes in a rule is marked as the head with a preceding backquote. Trace nodes are marked with anasterisk after the category name. At least one daughter node has to be non-empty because rules which generateempty strings are not allowed. Associated to each node in a rule is a set of feature constraint equations whichrestrict the values of its features. Variables are used to express feature uni�cation: Two features are uni�ed byassigning the value of the same variable to both of them (e.g. f1 = v; f2 = v;). Feature structures are totallywell-typed, i.e. they are typed and each feature which is appropriate for some type is present and has a valueof an appropriate type. Equality is interpreted extensionally, i.e. two feature structures are considered equal ifthey have the same type and all of their feature values are equal. Feature structures have to be acyclic. Typehierarchies are not supported currently.Two prede�ned feature types and three classes of user-de�ned types are available to the grammar writer.Features of the prede�ned type STRING accept any character string as value. Features of the prede�ned typeFS LIST take a list of feature structures of the class category (see below) as value. The user de�nes his ownfeature types of the class enumeration type by listing the corresponding set of possible values which have tobe atomic. Another class of user-de�ned feature types are the structured types which are de�ned by listingthe set of attributes appropriate for this type with the types of their values. Categories are the last class ofuser-de�ned feature types. Their de�nition is analogous to that of a structured type. Each node of category Xhas an associated feature structure of type X.To simplify the grammar writer's task, the grammar formalism supports templates, default inheritance be-tween the mother node and the head daughter of a rule (the value of a feature of the head daughter of a ruleis inherited from the mother node if it is unde�ned otherwise and if the feature structure of the mother nodecontains a feature with the same name and type { and vice versa), automatic handling of the two featuresPhon and HeadLex (lexical head), and special variable types called \restrictor" types which de�ne a subset offeatures which are to be uni�ed when two category feature structures are (partially) uni�ed by assigning thesame variable to both of them. The last feature is needed e.g. to exclude the Phon feature from uni�cationwhen the feature structure of a trace node is uni�ed with the feature structure of a �ller node which has beenthreaded through the tree.The grammar formalism allows disjunctive value speci�cations in the case of features of an enumeration type1.A simple toy grammar written in this formalism is shown in the appendix.3 CompilationA compiler transforms the plain text representation of the grammar into a form which is appropriate for theparser and provides error reports. Compilation aims to minimize the computations required during parsing.1Using a bit-vector representation, such disjunctions are easy to store and process e�ciently.

The compiler expands templates, adds constraint equations for automatic features and for inherited features,attens feature structures by replacing structured features with a set of new features corresponding to thesubfeatures of the structured feature, and infers in some cases additional constraints. E.g. while compiling therule2VP {Subcat=[*];Subcat=r;} -> `V {Subcat=[NP{}=np | r];} NP {}=np;the following constraint equations are obtained3 (among others):r = 0.VP.Subcat x = 0.VP.Subcat.cdr(1)r = 1.VP.Subcat.cdr(1) x = [] ...From these constraints the compiler infers the additional constraint:x = 1.VP.Subcat.cdr(2)These inferences are necessary for the constraint evaluation algorithm presented in section 4.1.Finally, the compiler replaces uni�ed variables with a single variable, merges equations of the formx=constant1; x=constant2 into a new equation x=constant3, eliminates redundant equations and generates�xed assignments for equations with a feature path expression on the right hand side if the variable on the lefthand side is uni�ed with an unambiguous constant in some other equation. This is e.g. the case for the thirdequation and the inferred equation above. The �xed assignments derived from these equations are:0.VP.Subcat.cdr(1) := [] 1.VP.Subcat.cdr(2) := []The three equations involved are removed at this point. For each of the remaining equations with a pathexpression on the right hand side, the compiler generates a variable assignment :0.VP.Subcat := r 1.VP.Subcat.cdr(1) := rEquations with the same variable on the left hand side are then grouped together:r: r = 0.VP.Subcat r = 1.VP.Subcat.cdr(1)The variables representing these groups are sorted so that variables which depend on the values of other variableswill follow these other variables4. This ordering is required by the constraint evaluation algorithm presented insection 4.1.3.1 Generation of Context-Free RulesThe compiler supports compilation of feature constraints into the context-free backbone of the grammar in thecase of features of the class enumeration type. Features of other types cannot be compiled because the numberof possible values is in�nite. The user has to specify which features are to be incorporated { i.e. compiled { foreach category, and the compiler automatically generates all valid context-free rules with the re�ned categories.The following algorithm is used for the generation of the context-free rules: First the compiler orders theincorporated features of all nodes of a given grammar rule. A sequence f1; f2; : : : ; fn is obtained. Then the setof permitted values for the �rst feature f1 is determined. To this end, the compiler checks whether there is a�xed assignment for this feature. If one exists, the corresponding value is the only permitted value. Otherwise,the compiler checks whether there are two constraint equations of the form v = f1 and v = (c1; c2; : : : ; cm) where(c1; c2; : : : ; cm) is a disjunction of constant values. In this case the set of permitted values is fc1; c2; : : : ; cmg.Otherwise all values appropriate for feature f1 are permitted features. The compiler chooses one of the permittedvalues and switches to the next feature.While assigning a value to feature fi, the compiler �rst checks whether fi is uni�ed with some feature fkwhere k < i. This is the case if there are two equations y = fi and y = fk. If there is such a feature fk,which already got a value since it has a smaller index, then its value is assigned to feature fi. Otherwise theset of permitted values is computed as described above and one value is selected. After the value of the last2The notation NPfg=np means \unify the feature structure of the node NP with the feature structure denoted by the variable npaccording to the de�nition of the restrictor type of the variable np," i.e. unify the subset of features listed in the restrictor de�nition.The list notation is similar to that in Prolog, but an asterisk rather than an underscore is used to mark dummy arguments.3The number in front of a path expression refers to the position of the node in the rule. The expression cdr(1) refers to the restlist at position 1 of a list, i.e. the list minus its �rst element.4Dependencies arise when a feature value of type STRING is de�ned as the concatenation of the values of two other STRINGfeatures. The value of the Phon feature e.g. is de�ned in this way.

feature has been �xed, the corresponding context-free rule is output. The other context-free rules are obtainedby backtracking.Assuming that the feature Number is to be incorporated into the categories NP, DT, and N, the parser willgenerate in case of the ruleNP {Number=n;} -> DT {Number=n;} `N {Number=n;};the following two context-free rules:NP_sg -> DT_sg N_sgNP_pl -> DT_pl N_pl3.2 Compression of the LexiconFor a parser to be able to process arbitrary text it is essential to have a large lexicon with broad coverage.In order to reduce the space requirements of such a large lexicon, the compiler checks for redundancies. Mostinformation is stored in the form of linked lists and if two lists are identical from some position up to the end,the common tail of the lists is stored only once. Also if two list elements (not necessarily of the same list) areidentical, only one copy is stored. With this technique it was possible to compress a lexicon with 300,000 entriesto about 18 MBytes, which is about 63 bytes per entry.4 ParsingThe parser proper consists of two components. The �rst component is a context-free parser which generatesa parse forest, i.e. a compact representation of a set of parse trees which stores common parts of the parsetrees only once. The BCKY parser developed by Andreas Eisele5 is used for this purpose. It is a fast bit-vector implementation of the Cocke-Kasami-Younger algorithm. The second component of the parser reads thecontext-free parse forest and computes the feature structures in several steps. In each step the parse forest istraversed and a new parse forest with more informative feature structures is generated. Parsing is �nished whenthe feature structures do not change anymore. The �rst step is the most expensive one computationally sincemost analyses are typically eliminated in this step. The goal is therefore to make the �rst step as e�cient aspossible, rather than minimizing the number of steps.The recomputation of the parse forest proceeds bottom-up and top-down in turn. During bottom-up process-ing, the parser �rst computes the feature structures of terminal nodes by evaluating the constraints associatedwith the lexical rules. Since the number of lexical rules for a terminal node can be larger than one, there may bemore than one resulting feature structure. The new nodes with their feature structures are inserted into a newchart. If a node with the same category and feature structure already exists in the new chart, the parser justadds the new analysis (i.e. the rule number and pointers to the daughter nodes) to the list of analyses at thisnode. Otherwise, a new node is generated. In both cases, the parser stores a link from the old node to the newone. When the feature structure of a nonterminal node is computed, the parser checks all alternative analysesof this node one after the other. For each analysis it has to try out all combinations of the new nodes whichare linked to its daughter nodes (cp. �gure 1). For each consistent combination, the parser builds an updatedfeature structure for the mother node and inserts it into the new chart as in the case of terminal nodes. Thismethod is analogous to the chart parsing techniques used in context-free parsing.During top-down processing, the parser �rst copies all top-level nodes which cover the whole input string tothe new chart and inserts them into a queue. Then the �rst node is retrieved from the queue and its daughternodes are recomputed. The recomputed daughter nodes are inserted into the new chart and, if new, also insertedinto the queue for recursive processing. After a traversal of the parse forest is completed, it is checked whetherany node has changed. If not, parsing is �nished. Otherwise the old chart is cleared, the charts are switchedand the next processing step begins.Why is it necessary to traverse the parse forest more than once? In contrast to formalisms like LFG and HPSGit is not assumed that the feature structure of the root node of a parse tree contains all relevant information6.Hence it is necessary to compute the feature structures of all nodes in a parse tree. If there were only oneunambiguous parse tree, it would be su�cient to traverse the parse forest once. By means of value sharing it5Andreas Eisele, IMS-CL, University of Stuttgart, andreas@ims.uni-stuttgart.de6It is even assumed that this is not the case (cp. section 4.3).

new chartold chartFigure 1: Recomputation of the parse forestwould be possible to update the values of uni�ed features of di�erent nodes in the parse tree synchronously.This is not possible in the case of parse forests, however, because cross-talk would result whenever two analyseshave a common node, unless such a shared node is always copied before it is modi�ed which is expensive andto no avail if the analysis later fails. Instead the parse forest is traversed again to update the feature structuresof the non-root nodes.The presented parser has to traverse the parse forest even more often because value sharing between di�erentfeatures of the same feature structure is not used, in order to keep data structures and algorithms as simple aspossible. By repeated recomputation, information is properly propagated within the parse forest so that thecorrect result is obtained. This strategy might seem ine�cient, but it turns out that the �rst two passes whichare necessary in any case account for about three quarters of the total processing time and the number of passesseldom exceeds �ve. As mentioned earlier, it seems more important to speed up the �rst pass than to reducethe number of passes.4.1 Constraint EvaluationThe recomputation of feature structures is carried out in four steps. First the input feature structures arespeci�ed. During top-down processing, the mother node is a node in the new chart and the daughter nodesare from the old chart. During bottom-up processing it is the mother node which is contained in the old chartand the daughter nodes are from the new chart. The parser then checks whether the �xed assignments arecompatible with the input feature structures. If this is the case, the parser computes the values of the variablesused in this rule by non-destructively unifying the values speci�ed in the constraint equations for this variable(cp. section 3). The values to be uni�ed are either values of feature paths, or constants7, or results of stringconcatenation operations.Once the values of the variables have been computed, the new feature structures are built by modifying theold feature structures according to the set of �xed assignments and variable assignments. The assignments havebeen sorted by the compiler so that assignments to less deeply embedded features are carried out �rst. A lazycopying strategy is used: Before the value of a feature is changed, all levels of the feature structure above thisfeature are copied unless they have been copied before. After all assignments have been made, the resultingfeature structure is inserted into a hash table. If an identical feature structure is already contained in the hashtable, a pointer to this feature structure is returned. Otherwise, the new feature structure is inserted. Thehashing is done recursively: All embedded feature structures (i.e. elements of feature structure lists), are hashedbefore an embedding feature structure is hashed. Hashing simpli�es the comparison of feature structures to amere comparison of pointers.4.2 OptimizationThe parsing scheme presented so far has been modi�ed in several ways in order to improve the speed of theparser.1. The compatibility check for �xed assignments can be done for each node independently of all the other nodes.It is not necessary to repeat it for all combinations of daughter nodes. If a feature structure turns out to be7Such constants are necessarily disjunctive values because otherwise a set of �xed assignments would have been generated.

incompatible, the number of combinations is reduced.2. The probability that a constraint fails is not identical for all constraints in a rule. Therefore the constraintsare sorted so that those constraints which are more likely to fail will be checked �rst. Inconsistent analysesare therefore eliminated earlier on average. The statistics are collected during parsing.3. Sometimes it is known in advance that a recomputation of a feature structure will not change its content.This is the case if all input feature structures remained unchanged when they were recomputed the last time.In this case it is su�cient to copy the feature structures to the new chart without recomputing them.4. Expensive computations are sometimes done repeatedly during parsing, e.g. feature structure uni�cations. Inorder to avoid this redundancy, the parser stores each uni�cation operation with pointers to the argumentfeature structures and the resulting feature structure in a hash table. Before a uni�cation of two featurestructures is carried out it is checked whether the result is already in the hash table. Other expensiveoperations like string concatenations are stored as well.5. The parser generates a large number of data structures dynamically. In order to avoid the overhead associatedwith memory allocation calls to the operating system, the parser uses its own simple memory managementsystem which allocates memory from the operating system in large chunks and supplies it to other functionsin smaller chunks as needed. Once a sentence has been parsed the allocated memory is freed in one step.The parser and the compiler have been implemented in the C programming language.4.3 LimitationsOnly the �rst two processing steps discussed in section 1 { context-free parsing and processing of �lteringconstraints { have been implemented in the parser so far. In order to be able to build a semantic representation, itwould be necessary to add another step which processes structure-building constraints e�ciently. The algorithmpresented in [Maxwell III and Kaplan, 1996] could be used for this purpose. An even better alternative isD�orre's algorithm [D�orre, 1997] which has polynomial complexity but only works if the constraints never fail.If alternative parse trees are scored after parsing, e.g. with a probabilistic model, semantic construction couldalso be con�ned to the best analyses.The presented parsing method cannot immediately be used to process other grammar formalisms like LFGor HPSG. LFG has no feature typing which is essential for the compilation of the context-free grammar. Aseparation of �ltering constraints and structure-building constraints is di�cult in LFG because the SUBJ andOBJ features are used to check subcategorization and to build a simple semantic representation at the sametime. The pruning strategy outlined in section 1 might help, but an additional module for the processing ofstructure-building constraints would still be needed. Of course, other modi�cations would also be necessary.The main problem when parsing HPSG with the presented method is to obtain a rule-based grammar fromthe principle-based representation. Apart from this it would be necessary to emulate the type hierarchy withfeatures. The head features could be partially compiled into the context-free grammar. It is not necessaryto compute the DAUGHTERS feature because the tree structure is already represented in the chart. Thecomputation of the features which store the semantic information would have to be done by an additionalmodule.5 Experimental ResultsAn English grammar with 290 phrase structure rules8 has been written for the parser. A lexicon ofabout 300,000 entries with subcategorization information was extracted from the COMLEX lexical database[Grishman et al., 1994]. The parser has been used to parse 30,000 sentences from the Penn Treebank corpus[Marcus et al., 1993]. Missing lexical entries were automatically generated from the part-of-speech tags in thetagged version of the corpus. However, the part-of-speech tags were not used for parsing itself. Quotationmarks were ignored during parsing. More than 7 words per second were parsed on average with a Sun Ultra-28About 90 rules only deal with coordination, quotation and punctuation.

workstation. Three times the parser stopped prematurely due to memory exhaustion. The calculation of thefeature structures was the most time-consuming part of parsing.For 80 percent of the sentences the parser produced at least one analysis. For 54 percent of the sentences therewas at least one analysis which was compatible with the Penn Treebank analysis. An analysis was consideredcompatible if there were no crossing brackets. However, analyses without crossing brackets are not necessarilyacceptable analyses. 100 sentences have been parsed and inspected manually to estimate how often there wasan acceptable analysis. For 57 of these sentences the parser had produced a Treebank-compatible analysis, butfor only 48 an acceptable one. Interpolating these results, the portion of sentences with an acceptable analysisis probably around 45 percent in the larger corpus.

0

5

10

15

20

25

10 15 20 25 30 35 40 45 50

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
s/

se
nt

en
ce

sentence lengthFigure 2: Empirical parsing complexityFigure 2 shows the empirical parsing complexity which is close to n3 (the dashed line in the diagram) wheren is the sentence length9.strategy 25 sentences 1 complex sent.all optimizations 65.9 180no hashing of uni�cations 67.4 193no hashing of string concatenations 79.3 244recomputing always 67.3 236Table 1: Parsing times for 25 randomly selected sentences and a single complex sentenceAnother experiment was carried out to check the inuence of some of the optimization strategies describedin section 4.2 on parsing time. A randomly selected set of 25 sentences was parsed with di�erent variants ofthe parser in the �rst part of the experiment. In the second part a single complex sentence was parsed. Ineach variant of the parser one optimization was switched o�. Table 1 shows the results. Hashing of uni�cationsonly showed minor e�ects on parsing speed. Hashing of string concatenation operations was more e�ective.Presumably string concatenation operations are more likely to be repeated than feature structure uni�cations.Avoiding unnecessary recomputation of feature structures had a bigger inuence on the parsing of the complexsentence than on the parsing of the simpler sentences.The impact of the incorporation of features into the context-free grammar has also been examined. Weobserved in contrast to Maxwell and Kaplan [Maxwell III and Kaplan, 1994], only a marginal speedup of about3 percent from feature incorporation. The incorporation of some features let to disastrous results because theparse forest generated by the context-free parser became very big, slowing down both context-free parsing andthe calculation of the feature structures. A close relationship between the number of nodes in the context-freeparse forest and parsing time has been observed.9There is an outlier at (48, 36.7) which is not shown in the diagram.

The parser was also compared to a state-of-the-art parser, the XLE system developed at Rank Xerox whichwas available for the experiments. A corpus of 700 words which both parsers have been able to parse completelywas used in this experiment. The XLE system parsed this corpus in 110 seconds whereas our parser needed123 seconds. Of course it is very di�cult to compare these �gures since the parsers are too di�erent wrt. thegrammar formalisms used, the information contained in the analyses, the degree of ambiguity and other criteria.6 SummaryA parsing strategy has been outlined which splits parsing into three steps: context-free parsing, evaluationof �ltering constraints and evaluation of structure-building constraints. A parser has been presented whichimplements the �rst two of these steps. A compiler is used to transform grammar descriptions into a formwhich the parser is able to process e�ciently. The compiler automatically re�nes the context-free backbone ofthe grammar by compiling a user-de�ned set of feature constraints into the context-free backbone. An iterativeprocedure is used to compute feature structures in disjunctive normal form after a context-free parse forest hasbeen built. As long as the feature structures are not used to build representations which encode the structureof constituents, this parsing strategy works very well: Wall Street Journal data has been parsed at a speed of7 words per second.References[D�orre, 1997] D�orre, J. (1997). E�cient construction of underspeci�ed semantics under massive ambiguity.submitted to ACL'97.[D�orre and Eisele, 1990] D�orre, J. and Eisele, A. (1990). Feature logic with disjunctive uni�cation. In Proceed-ings of the 13th International Conference on Computational Linguistics, pages 100{105, Helsinki, Finland.[Emele, 1991] Emele, M. (1991). Uni�cation with lazy non-redundant copying. In Proceedings of the 29thAnnual Meeting of the Association for Computational Linguistics, pages 323{330, Berkeley.[Grishman et al., 1994] Grishman, R., Macleod, C., and Meyers, A. (1994). Comlex syntax: Building a compu-tational lexicon. In Proceedings of the 15th International Conference on Computational Linguistics, Kyoto,Japan.[Kasper, 1987] Kasper, R. T. (1987). A uni�cation method for disjunctive feature descriptions. In Proceedingsof the 25th Annual Meeting of the ACL, pages 235{242, Stanford, CA.[Kasper and Krieger, 1996] Kasper, W. and Krieger, H.-U. (1996). Modularizing codescriptive grammars fore�cient parsing. In Proceedings of the 16th International Conference on Computational Linguistics, pages628{633, Copenhagen, Denmark.[Marcus et al., 1993] Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large annotatedcorpus of English: the Penn Treebank. Computational Linguistics, 19(2):313{330.[Maxwell III and Kaplan, 1994] Maxwell III, J. T. and Kaplan, R. M. (1994). The interface between phrasaland functional constraints. Computational Linguistics, 19(4):571{589.[Maxwell III and Kaplan, 1996] Maxwell III, J. T. and Kaplan, R. M. (1996). Uni�cation-based parsers thatautomatically take advantage of context freeness. Draft.[Schiehlen, 1996] Schiehlen, M. (1996). Semantic construction from parse forests. In Proceedings of the 16thInternational Conference on Computational Linguistics, Copenhagen, Denmark.[Simpkins, 1994] Simpkins, N. K. (1994). ALEP-2 User Guide. CEU, Luxembourg. This document is onlineavailable at http://www.anite-systems.lu/alep/doc/index.html.[Younger, 1967] Younger, D. H. (1967). Recognition and parsing of context-free languages in time n3. Infor-mation and Control, 10:189{208.

A A Toy Grammar% comments start with a percent sign%%%%%% declarations %%%%%%%%%%%%%%%% definition of the automatic% feature 'Phon'auto Phon;% enumeration type featuresenum PERSON {1st,2nd,3rd};enum NUMBER {sg,pl};enum CASE {nom,acc};enum VFORM {fin,inf,bse,prp,pap,pas};enum BOOLEAN {yes,no};% definition of a structured featurestruct AGR {NUMBER Number;PERSON Person;CASE Case;};% category definitionscategory TOP {};category COMP {};category SBAR {BOOLEAN Wh;};category S {FS_LIST Slash;};category VP {VFORM VForm;BOOLEAN Aux;FS_LIST Subcat;FS_LIST Slash;};% Definition of the features which% are to be compiled into the context% free grammar.VP incorporates {VForm, Aux};category VBAR {VFORM VForm;FS_LIST Subcat;FS_LIST Slash;};VP incorporates {VForm};category V {VFORM VForm;BOOLEAN Aux;FS_LIST Subcat;};VP incorporates {VForm,Aux};

category NP {BOOLEAN Wh;AGR Agr;};NP incorporates {Wh};category N {AGR Agr;};category DT {BOOLEAN Wh;AGR Agr;};DT incorporates {Wh};category PP {};category P {};% definition of restrictor typesrestrictor+ NP_R(NP) {Phon, Wh, Agr};% In the next definition, the Phon% feature is exempted from unification.restrictor+ NP2_R(NP) {Wh, Agr};restrictor+ SBAR_R(SBAR) {Phon, Wh};% variable declarationsBOOLEAN wh;AGR agr;NP_R np;NP2_R np2;SBAR_R sbar;FS_LIST r, r2;%%%%%% grammar rules %%%%%%%%%%%%%%%TOP {} ->`S {Slash=[];};S {} ->NP {Agr.Case=nom;}=np`VP {Subcat=[NP{}=np];};% The subject-NP is unified with the% single element of the Subcat list.VP {} -> % All features of the two`VP {} % VP nodes are unified duePP {}; % to feature inheritance.VP {} ->`VBAR {};VBAR {} ->`VBAR {}PP {};VBAR {Subcat=r;} ->`VBAR {Subcat=[NP{}=np|r];}NP {Agr.Case=acc;}=np;% All features of the VBAR nodes are% unified by default feature inheritance

% excepted the Subcat features.VBAR {Subcat=r;} ->`VBAR {Subcat=[SBAR{}=sbar|r];}SBAR {}=sbar;VBAR {Slash=[];} ->`V {};PP {} ->`P {}NP {Agr.Case=acc;};NP {Wh=wh;} ->DT {Wh=wh;Agr=agr;}`N {Agr=agr;};SBAR {Wh=no;} ->COMP {}`S {Slash=[];};SBAR {Wh=yes;} ->NP {Wh=yes;}=np2`S {Slash=[NP{}=np2];};% All features of the NP node and the% element on the Slash list are unified% excepted the Phon feature.% See the definition of NP2_R.VBAR {Subcat=r;Slash=[np|r2];} ->`VBAR {Subcat=[NP{}=np|r];Slash=r2;}NP* {Agr.Case=acc;}=np;% An NP trace is generated. Information% from the filler node is threaded via% the Slash feature.%%%%%% template definitions %%%%%%%%%%N_sg : N {Agr.Number=sg;};PRO : NP {Agr.Number=sg;Agr.Person=3rd;};NPRO : PRO {Wh=no;};WHPRO : PRO {Wh=yes;};%%%%%% lexical entries %%%%%%%%%%%%%%%"the" : DT {Wh=no;Agr.Person=3rd;};"a" : DT {Wh=no;Agr.Number=sg;Agr.Person=3rd;};"which": DT {Wh=yes;Agr.Person=3rd;};"man" : N_sg {};"pizza": N_sg {};"restaurant": N_sg {};"he" : NPRO {Agr.Case=nom;};"him" : NPRO {Agr.Case=acc;};"it" : NPRO {};"what" : WHPRO {};"eats" : V {Subcat=[NP{},NP{Agr.Number=sg;Agr.Person=3rd;}];};"at" : P {};"that" : COMP {};

