
Part-of-Speech Tagging with Neural Networks�Helmut SchmidyInstitut f�ur maschinelle Sprachverarbeitung, Universit�at Stuttgart,Azenbergstr.12, 70174 Stuttgart, Germany,schmid@ims.uni-stuttgart.deTopic area: large text corpora, part-of-speech tagging, neural networks1 AbstractText corpora which are tagged with part-of-speech information are useful in many areas oflinguistic research. In this paper, a new part-of-speech tagging method based on neural net-works (Net-Tagger) is presented and its perfor-mance is compared to that of a HMM-tagger[CKPS92] and a trigram-based tagger [Kem93].It is shown that the Net-Tagger performs as wellas the trigram-based tagger and better than theHMM-tagger.2 IntroductionWords are often ambiguous in their part ofspeech. The English word store for example canbe either a noun, a �nite verb or an in�nitive. Inan utterance, this ambiguity is normally resolvedby the context of a word: e.g. in the sentence"The 1977 PCs could store two pages of data.",store can only be an in�nitive.A part-of-speech tagger is a system which au-tomatically assigns the part of speech to wordsusing contextual information. Potential appli-cations for part-of-speech taggers exist in manyareas including speech recognition, speech syn-�This is a revised version of the original paper pub-lished in the Proceedings of the International Confer-ence on Computational Linguistics, August 1994, Kyoto,Japan.yThis work was supported partially by the LandBaden-W�urttemberg within the project Textkorpora undErschlie�ungswerkzeuge and partially by the GermanBMFT within Verbmobil.

thesis, machine translation and information re-trieval.Di�erent methods were used for the imple-mentation of part-of-speech taggers. TAGGIT[GR71], an early system, which was used for theinitial tagging of the Brown corpus was rule-based . It was able to assign the correct part-of-speech to about 77 % of the words in the Browncorpus.In another approach, contextual dependenciesare modelled statistically . Church [Chu88] andKempe [Kem93] use second order Markov Mod-els and train their systems on large handtaggedcorpora. Using this method, they are able totag more than 96 % of their test words withthe correct part-of-speech. The need for reli-ably tagged training data, however, is a problemfor languages, where such data is not availablein su�cient quantities. Jelinek [Jel85] and Cut-ting et al. [CKPS92] circumvent this problemby training their taggers on untagged data us-ing the Baum-Welch algorithm (also know as theforward-backward algorithm). They report ratesof correctly tagged words which are comparableto that presented by Church [Chu88] and Kempe[Kem93].A third and rather new approach is taggingwith arti�cial neural networks . In the area ofspeech recognition, neural networks have beenused for a decade now. They have shown per-formances comparable to that of Hidden Markovmodel systems or even better [Lip89]. Part-of-speech prediction is another area, closer to POStagging, where neural networks have been ap-plied successfully. Nakamura et al. [NMKS90]trained a 4-layer feed-forward network with upto three preceding part-of-speech tags as inputto predict the word category of the next word.The prediction accuracy was similar to that of

a trigram-based predictor. Using the predictor,Nakamura et al. were able to improve the recog-nition rate of their speech recognition systemfrom 81.0 % to 86.9 %.Federici and Pirrelli [FP94] developed a part-of-speech tagger which is based on a special typeof neural network. It disambiguates between al-ternative morphosyntactic tags which are gener-ated by a morphological analyzer. The taggeris trained with an analogy-driven learning pro-cedure. Only preliminary results are presented,so that a comparison with other methods is dif-�cult.In this paper, a part-of-speech tagger basedon a multilayer perceptron network is presented.It is similar to the network of Nakamura et al.[NMKS90] in so far as the same training pro-cedure (Backpropagation) is used. It di�ers inthe structure of the network and also in its pur-pose (disambiguation vs. prediction). The per-formance of the presented tagger is measured andcompared to that of two other taggers [CKPS92][Kem93].3 Neural NetworksArti�cial neural networks consist of a large num-ber of simple processing units. These units arehighly interconnected by directed weighted links.Associated with each unit is an activation value.Through the connections, this activation is prop-agated to other units.Figure 1: A 3-layer perceptron network
hidden units

input units

output units

In multilayer perceptron networks (MLP-net-works), the most popular network type, the pro-cessing units are arranged vertically in severallayers (�g. 1). Connections exist only between

units in adjacent layers. The bottom layer iscalled input layer , because the activations of theunits in this layer represent the input of the net-work. Correspondingly, the top layer is calledoutput layer . Any layers between input layer andoutput layer are called hidden layers . Their ac-tivations are not visible externally.During the processing in a MLP-network, acti-vations are propagated from input units throughhidden units to output units. At each unit j, theweighted input activations aiwij are summed anda bias parameter �j is added.netj =Xi aiwij + �j (1)The resulting network input netj is then passedthrough a sigmoid function (we use the logisticfunction) in order to restrict the value range ofthe resulting activation aj to the interval [0,1].aj = 11 + e�netj (2)The network learns by adapting the weights ofthe connections between units, until the correctoutput is produced. One widely used method isthe backpropagation algorithm which performs agradient descent search on the error surface. Theweight update �wij , i.e. the di�erence betweenthe old and the new value of weight wij , is herede�ned as:�wij = �api�pj ; where�pj = 8>>>><>>>>: apj(1� apj)(tpj � apj);if j is an output unitapj(1� apj)Pk �pkwjk ;if j is a hidden unit (3)Here, tp is the target output vector which thenetwork must learn1.Training the MLP-network with the backprop-agation rule guarantees that a local minimum ofthe error surface is found, though this is not nec-essarily the global one.In order to speed up the training process, amomentum term is often introduced into the up-date formula:�wij(t+ 1) = �api�pj + ��wij (t) (4)1We assume here that the bias parameter �j is realizedas a weight to an additional unit which has always theactivation value 1 (cp. [RM84]).2

For a detailed introduction to MLP networks seee.g. [RM84].4 The Tagger NetworkThe Net-Tagger consists of a MLP-network anda lexicon (see �g. 2).Figure 2: Structure of the tagger network with-out hidden layer; the arrow symbolizes the con-nections between the layers.

p f

n

n

outout2out out out31 n

in

in

in

in

in

in

in

in

-pn

-p3

-p2

-p1

-2n

-23

-22

-21

in

in

in

in

in

in

in

in

-1n

-13

-12

-11

0n

03

02

01

in in in

in in in

in in in

in in in

1n fn

13 23 f3

12 22 f2

11 21 f1

2n

In the output layer of the MLP network, eachunit corresponds to one of the tags in the tagset.The network learns during the training to acti-vate the output unit which represents the cor-rect tag and to deactivate all other output units.Hence, in the trained network, the output unitwith the highest activation indicates, which tagshould be attached to the word that is currentlyprocessed.The input of the network comprises all the in-formation which the system has about the partsof speech of the current word, the p precedingwords and the f following words. More precisely,for each part-of-speech tag posj and each of thep+1+ f words in the context, there is an inputunit whose activation inij represents the proba-bility that wordi has part of speech posj .For the word which is being tagged and thefollowing words, the lexical part-of-speech prob-ability P (posj jwordi) is all we know about the

part of speech2. This probability does not takeinto account any contextual inuences. So, weget the following input representation for the cur-rently tagged word and the following words:inij = P (posj jwordi); if i � 0 (5)For the preceding words, there is more infor-mation available, because they have already beentagged. The activation values of the output unitsat the time of processing are here used insteadof the lexical part-of-speech probabilities3:inij(t) = outj(t+ i); if i < 0 (6)Copying output activations of the network intothe input units introduces recurrence into thenetwork. This complicates the training process,because the output of the network is not correct,when the training starts and therefore, it cannotbe fed back directly, when the training starts.Instead a weighted average of the actual outputand the target output is used. It resembles morethe output of the trained network which is sim-ilar (or at least should be similar) to the targetoutput. At the beginning of the training, theweighting of the target output is high. It falls tozero during the training.The network is trained on a tagged corpus.Target activations are 0 for all output units, ex-cepting for the unit which corresponds to the cor-rect tag, for which it is 1. A slightly modi�edversion of the backpropagation algorithm withmomentum term which has been presented inthe last section is used: if the di�erence betweenthe activation of an output unit j and the cor-responding target output is below a prede�nedthreshold (we used 0.1), the error signal �pj isset to zero. In this way, the network is forced topay more attention to larger error signals. Thisresulted in an improvement of the tagging accu-racy by more than 1 percent.Network architectures with and without hid-den layers have been trained and tested. In gen-eral, MLP-networks with hidden layers are morepowerful than networks without one, but theyalso need more training and there is a higher2Lexical probabilities are estimated by dividing thenumber of times a word occurs with a given tag by theoverall number of times the word occurs. This method isknown as the Maximum Likelihood Principle.3The output activations of the network do not neces-sarily sum to 1. Therefore, they should not be interpretedas probabilities.3

risk of overlearning4. As will be shown in thenext section, the Net-Tagger did not pro�t froma hidden layer.In both network types, the tagging of a sin-gle word is performed by copying the tag prob-abilities of the current word and its neighboursinto the input units, propagating the activationsthrough the network to the output units and de-termining the output unit which has the highestactivation. The tag corresponding to this unit isthen attached to the current word.If the second strongest activation in the out-put layer is close to the strongest one, the tagcorresponding to the second strongest activationmay be given as an alternative output. No addi-tional computation is required for this. Further,it is possible to give a scored list of all tags asoutput.5 The LexiconThe lexicon which contains the a priori tag prob-abilities for each word is similar to the lexiconwhich was used by [CKPS92]. It has three parts:a fullform lexicon, a su�x lexicon and a defaultentry . No documentation of the construction al-gorithm of the su�x lexicon in [CKPS92] wasavailable. Thus, a new method based on infor-mation theoretic principles was developed.During the lookup of a word in the lexicon ofthe Net-Tagger, the fullform lexicon is searched�rst. If the word is found there, the correspond-ing tag probability vector is returned. Otherwise,the uppercase letters of the word are turned tolowercase, and the search in the fullform lexiconis repeated. If it fails again, the su�x lexicon issearched next. If none of the previous steps hasbeen successfull, the default entry of the lexiconis returned.The fullform lexicon was created from a taggedtraining corpus (some 2 million words of thePenn Treebank Corpus). First, the number ofoccurrences of each word/tag pair was counted.Then those tags of each word with an estimatedprobability of less than 1 percent were removed,because they were in most cases the result of tag-ging errors in the original corpus.4Overlearning means that irrelevant features of thetraining set are learned. As a result, the network is unableto generalize.

Figure 3: A sample su�x tree of length 3
ies

ity
man

ton
son
ion

ing
ive
nce
lle

ble

old
sed
ous

onso
o

n

e

g

n

d

s
e
n
u
e
l

l

c
v

y t
a

o

i
m
t
s
i
i
i
n
l
b
o
s

i

#

The second part of the lexicon, the su�x lex-icon, forms a tree. Each node of the tree (ex-cepted the root node) is labeled with a charac-ter. At the leaves, tag probability vectors areattached. During a lookup, the su�x tree issearched starting at the root node. In each step,the branch which is labeled with the next char-acter from the end of the word su�x, is followed.Assume e.g., we want to look for the word tag-ging in the su�x lexicon which is shown in �g. 3.We start at the root (labeled #) and follow thebranch which leads to the node labeled g. Fromthere, we move to the node labeled n, and �-nally we end up in the node labeled i. This nodeis a leaf and the attached tag probability vector(which is not shown in �g. 3) is returned.The su�x lexicon was automatically built fromthe training corpus. First, a su�x tree was con-structed from the su�ces of length 5 of all wordswhich were annotated with an open class part-of-speech5. Then tag frequencies were countedfor all su�ces and stored at the correspondingtree nodes.In the next step, an information measure I(S)was calculated for each node of the tree:I(S) = �Xpos P (posjS) log2P (posjS) (7)Here, S is the su�x which corresponds to the5Open class parts-of-speech are those, which allow forthe production of new words (e.g. noun, verb, adjective).4

Table 1: Sample frequencies at a tree node andits two child nodes.tag su�x ess su�x ness su�x lessJJ 86 1 85NN 10 2 8NP 45 45 0RB 2 0 2total 143 48 95current node and P (posjS) is the probability oftag pos given a word with su�x S.Using this information measure, the su�x treehas been pruned. For each leaf, the weightedinformation gain G(aS) was calculated:G(aS) = F (aS) (I(S)� I(aS)); (8)where S is the su�x of the parent node, aS isthe su�x of the current node and F (aS) is thefrequency of su�x aS.If the information gain at some leaf of the suf-�x tree is below a given threshold6, it is removed.The tag frequencies of all deleted subnodes ofa parent node are collected at the default nodeof the parent node. If the default node is theonly remaining subnode, it is deleted too. Inthis case, the parent node becomes a leaf and isalso checked, whether it is deletable.To illustrate this process consider the followingexample, where ess is the su�x of the parentnode, less is the su�x of one child node and nessis the su�x of the other child node. The tagfrequencies of these nodes are given in table 1.The information measure for the parent nodeis:I(ess) = � 86143 log2 86143� 10143 log2 10143� ::: � 1:32(9)The corresponding values for the child nodes are0:39 for ness and 0:56 for less. Now, we candetermine the weighted information gain at eachof the child nodes. We get:G(ness) = 48(1:32� 0:39) = 44:64 (10)G(less) = 95(1:32� 0:56) = 72:20 (11)Both values are well above a threshold of 10, andtherefore none of them should be deleted.6We used a gain threshold of 10.

Table 2: Comparison of accuracy ratesmethod accuracyNet-Tagger 96.22 %trigram tagger 96.06 %HMM tagger 94.24 %As explained before, the su�x tree is walkedduring a lookup along the path, where the nodesare annotated with the letters of the word su�xin reversed order. If at some node on the path,no matching subnode can be found, and thereis a default subnode, then the default node isfollowed. If a leaf is reached at the end of thepath, the corresponding tag probability vectoris returned. Otherwise, the search fails and thedefault entry is returned.The default entry is constructed by subtract-ing the tag frequencies at all leaves of the prunedsu�x tree from the tag frequencies of the rootnode and normalizing the resulting frequencies.Thereby, relative frequencies are obtained whichsum to one.6 ResultsThe 2-layer version of the Net-Tagger wastrained on a 2 million word subpart of the Penn-Treebank corpus. Its performance was tested ona 100,000 word subpart which was not part ofthe training corpus. The settings of the networkparameters were as follows: the number of pre-ceding words in the context p was 3, the numberof following words f was 2 and the number oftraining cycles was 4 millions. The training ofthe tagger took one day on a Sparc10 worksta-tion and the tagging of 100,000 words took 12minutes on the same machine.In table 2, the accuracy rate of the Net-Taggeris compared to that of a trigram based tagger[Kem93] and a Hidden Markov Model tagger[CKPS92] which were trained and tested on thesame data. In order to determine the inuenceof the size of the training sample, the taggerswere also trained on corpora of di�erent sizes andtested again7. The resulting percentages of cor-rectly tagged words are shown in �gure 4.7For this test, a slightly simpler network structurewith two preceding and one following word in the inputcontext was used.5

80

82

84

86

88

90

92

94

96

10000 100000 1e+06

a
c
c
u
r
a
c
y

i
n

%

size of training corpus

Net-Tagger
HMM-Tagger

Trigram Tagger

Figure 4: Accuracy for varying sizes of the training corpus.These experiments demonstrate that the per-formance of the Net-Tagger is comparable to thatof the trigram tagger and better than that of theHMM tagger. They further show that the per-formance of the Net-Tagger is less a�ected bya small amount of training data than that ofthe trigram tagger. This may be due to a muchsmaller number of parameters in the Net-Tagger:while the trigram tagger must accurately esti-mate 110,592 trigrams, the Net-Tagger only hasto train 13,824 network parameters.It was further tested, whether an additionalhidden layer in the network with 50 unitswould improve the accuracy of the tagging. Itturned out that the accuracy actually deterio-rated slightly, although the number of trainingcycles had been increased to 50 millions8.Also, the inuence of the size of the input con-text was determined. Shrinking the context fromthree preceding and two following words to twopreceding and one following word reduced theaccuracy only by 0.1 %. Enlarging the contextgave no improvement. A context of three preced-ing and two following words seems to be optimal.As mentioned previously, the tagger can pro-8Due to the large training times needed to train the3-layer-network, no further tests have been conducted.

duce an alternative tag, if the decision betweentwo tags is di�cult. In that way, the accuracycan be raised to 97.79 % at the expense of 4.6 %ambiguously tagged words.An analysis of the errors of the Net-Tagger andthe trigram tagger shows that both have prob-lems with the same words, although the individ-ual errors are often di�erent9.7 ConclusionsIn this paper, the Net-Tagger was presented, apart-of-speech tagger which is based on a MLP-network. A comparison of the tagging resultswith those of a trigram tagger and a HMM tag-ger showed that the accuracy is as high as that ofthe trigram tagger and the robustness on smalltraining corpora is as good as that of the HMMtagger. Thus, the Net-Tagger combines advan-tages of both of these methods.The Net-Tagger has the additional advantagethat problematic decisions between tags are easyto detect, so that in these cases an additionaltag can be given in the output. In this way, the9Less than 60 % of the tagging errors were made incommon by both taggers.6

�nal decision can be delayed to a later processingstage, e.g. a parser.A disadvantage of the presented method maybe its lower processing speed compared to statis-tical methods. In the light of the high speed ofpresent computer hardware, however, this doesnot seem to be a serious drawback.References[Chu88] Kenneth W. Church. A stochas-tic parts program and noun phraseparser for unrestricted text. In Pro-ceedings of the Second Conference onApplied Natural Language Process-ing, pages 136{143, 1988.[CKPS92] Doug Cutting, Julian Kupiec, JanPedersen, and Penelope Sibun. Apractical part-of-speech tagger. InProceedings of the Third Conferenceon Applied Natural Language Pro-cessing, pages 133{140, 1992.[FP94] Stefano Federici and Vito Pir-relli. Context-sensitivity and linguis-tic structure in analogy-based paral-lel networks. Current Issues in Math-ematical Linguistics, pages 353{362,1994.[GR71] B.B. Greene and G.M. Rubin. Au-tomatic grammatical tagging of en-glish. Technical report, Depart-ment of Linguistics, Brown Univer-sity, Providence, Rhode Island, 1971.[Jel85] Fredrick Jelinek. Markov sourcemodeling of text generation. In J. K.Skwirzinski, editor, Impact of Pro-cessing Techniques on Communica-tion. Nijho�, Dordrecht, 1985.[Kem93] Andr�e Kempe. A probabilistic tag-ger and an analysis of tagging er-rors. Technical report, Institutf�ur maschinelle Sprachverarbeitung,Universit�at Stuttgart, 1993.[Lip89] R. P. Lippmann. Review of neu-ral networks for speech recognition.Neural Computation, 1:1{38, 1989.

[NMKS90] M. Naka-mura, K. Maruyama, T. Kawabata,and K. Shikano. Neural network ap-proach to word category predictionfor english texts. In H. Karlgren,editor, Proceedings of the Interna-tional Conference on ComputationalLinguistics, pages 213{218, HelsinkiUniversity, 1990.[RM84] D. E. Rumelhart and J. L. McClel-land. Parallel Distributed Processing.MIT-Press, Cambridge, MA, 1984.

7

