Part-of-Speech Tagging with Neural Networks*

Helmut Schmid?

Institut fiir maschinelle Sprachverarbeitung, Universitat Stuttgart,
Azenbergstr.12, 70174 Stuttgart, Germany,
schmid@ims.uni-stuttgart.de

Topic area: large text corpora, part-of-
speech tagging, neural networks

1 Abstract

Text corpora which are tagged with part-of-
speech information are useful in many areas of
linguistic research. In this paper, a new part-
of-speech tagging method based on neural net-
works (Net-Tagger) is presented and its perfor-
mance is compared to that of a HMM-tagger
[CKPS92] and a trigram-based tagger [Kem93].
It is shown that the Net-Tagger performs as well
as the trigram-based tagger and better than the
HMM-tagger.

2 Introduction

Words are often ambiguous in their part of
speech. The English word store for example can
be either a noun, a finite verb or an infinitive. In
an utterance, this ambiguity is normally resolved
by the context of a word: e.g. in the sentence
”The 1977 PCs could store two pages of data.”,
store can only be an infinitive.

A part-of-speech tagger is a system which au-
tomatically assigns the part of speech to words
using contextual information. Potential appli-
cations for part-of-speech taggers exist in many
areas including speech recognition, speech syn-

*This is a revised version of the original paper pub-
lished in the Proceedings of the International Confer-
ence on Computational Linguistics, August 1994, Kyoto,
Japan.

TThis work was supported partially by the Land
Baden-Wiirttemberg within the project Textkorpora und
Erschlieffungswerkzeuge and partially by the German
BMFT within VERBMOBIL.

thesis, machine translation and information re-
trieval.

Different methods were used for the imple-
mentation of part-of-speech taggers. TAGGIT
[GRT1], an early system, which was used for the
initial tagging of the Brown corpus was rule-
based. It was able to assign the correct part-of-
speech to about 77 % of the words in the Brown
corpus.

In another approach, contextual dependencies
are modelled statistically. Church [Chu88] and
Kempe [Kem93] use second order Markov Mod-
els and train their systems on large handtagged
corpora. Using this method, they are able to
tag more than 96 % of their test words with
the correct part-of-speech. The need for reli-
ably tagged training data, however, is a problem
for languages, where such data is not available
in sufficient quantities. Jelinek [Jel85] and Cut-
ting et al. [CKPS92] circumvent this problem
by training their taggers on untagged data us-
ing the Baum-Welch algorithm (also know as the
forward-backward algorithm). They report rates
of correctly tagged words which are comparable
to that presented by Church [Chu88] and Kempe
[Kem93].

A third and rather new approach is tagging
with artificial neural networks. In the area of
speech recognition, neural networks have been
used for a decade now. They have shown per-
formances comparable to that of Hidden Markov
model systems or even better [Lip89]. Part-of-
speech prediction is another area, closer to POS
tagging, where neural networks have been ap-
plied successfully. Nakamura et al. [NMKS90]
trained a 4-layer feed-forward network with up
to three preceding part-of-speech tags as input
to predict the word category of the next word.
The prediction accuracy was similar to that of

a trigram-based predictor. Using the predictor,
Nakamura et al. were able to improve the recog-
nition rate of their speech recognition system
from 81.0 % to 86.9 %.

Federici and Pirrelli [FP94] developed a part-
of-speech tagger which is based on a special type
of neural network. It disambiguates between al-
ternative morphosyntactic tags which are gener-
ated by a morphological analyzer. The tagger
is trained with an analogy-driven learning pro-
cedure. Only preliminary results are presented,
so that a comparison with other methods is dif-
ficult.

In this paper, a part-of-speech tagger based
on a multilayer perceptron network is presented.
It is similar to the network of Nakamura et al.
[NMKS90] in so far as the same training pro-
cedure (Backpropagation) is used. It differs in
the structure of the network and also in its pur-
pose (disambiguation vs. prediction). The per-
formance of the presented tagger is measured and
compared to that of two other taggers [CKPS92]
[Kem93].

3 Neural Networks

Artificial neural networks consist of a large num-
ber of simple processing units. These units are
highly interconnected by directed weighted links.
Associated with each unit is an activation value.
Through the connections, this activation is prop-
agated to other units.

Figure 1: A 3-layer perceptron network

output units

hidden units

input units

In multilayer perceptron networks (MLP-net-
works), the most popular network type, the pro-
cessing units are arranged vertically in several
layers (fig. 1). Connections exist only between

units in adjacent layers. The bottom layer is
called input layer, because the activations of the
units in this layer represent the input of the net-
work. Correspondingly, the top layer is called
output layer. Any layers between input layer and
output layer are called hidden layers. Their ac-
tivations are not visible externally.

During the processing in a MLP-network, acti-
vations are propagated from input units through
hidden units to output units. At each unit j, the
weighted input activations a;w;; are summed and
a bias parameter 0; is added.

netj = Zaiwij + 0]' (1)
A

The resulting network input net; is then passed
through a sigmoid function (we use the logistic
function) in order to restrict the value range of
the resulting activation a; to the interval [0,1].

1

aj = —————
T 14 e el

(2)
The network learns by adapting the weights of
the connections between units, until the correct
output is produced. One widely used method is
the backpropagation algorithm which performs a
gradient descent search on the error surface. The
weight update Aw;;, i.e. the difference between
the old and the new value of weight w;;, is here
defined as:

Awi; = napidpj, where
api (1 = ap;)(tp; — apj),
if 7 is an output unit
5pj = (3)

api (1 — apj) Xk: Opk Wik
if 7 is a hidden unit

Here, t, is the target output vector which the
network must learn®.

Training the MLP-network with the backprop-
agation rule guarantees that a local minimum of
the error surface is found, though this is not nec-
essarily the global one.

In order to speed up the training process, a
momentum term is often introduced into the up-
date formula:

Awij (t +].) - napi(s,,j + ozAwij (t) (4)

1'We assume here that the bias parameter 0; is realized
as a weight to an additional unit which has always the
activation value 1 (cp. [RM84]).

For a detailed introduction to MLP networks see
e.g. [RM84].

4 The Tagger Network

The Net-Tagger consists of a MLP-network and
a lexicon (see fig. 2).

Figure 2: Structure of the tagger network with-
out hidden layer; the arrow symbolizes the con-
nections between the layers.

n

A

()0 () (0
)0) ()

p

O

In the output layer of the MLP network, each
unit corresponds to one of the tags in the tagset.
The network learns during the training to acti-
vate the output unit which represents the cor-
rect tag and to deactivate all other output units.
Hence, in the trained network, the output unit
with the highest activation indicates, which tag
should be attached to the word that is currently
processed.

The input of the network comprises all the in-
formation which the system has about the parts
of speech of the current word, the p preceding
words and the f following words. More precisely,
for each part-of-speech tag pos; and each of the
p+ 1+ f words in the context, there is an input
unit whose activation in;; represents the proba-
bility that word; has part of speech pos;.

For the word which is being tagged and the
following words, the lexical part-of-speech prob-
ability P(posj|lword;) is all we know about the

608 09 0903

part of speech?. This probability does not take
into account any contextual influences. So, we
get the following input representation for the cur-
rently tagged word and the following words:
i>0 (5)

For the preceding words, there is more infor-
mation available, because they have already been
tagged. The activation values of the output units
at the time of processing are here used instead
of the lexical part-of-speech probabilities®:

iny; = P(pos;j|lword;), if

1M (t) = out; (t + ’i), if i<0 (6)

Copying output activations of the network into
the input units introduces recurrence into the
network. This complicates the training process,
because the output of the network is not correct,
when the training starts and therefore, it cannot
be fed back directly, when the training starts.
Instead a weighted average of the actual output
and the target output is used. It resembles more
the output of the trained network which is sim-
ilar (or at least should be similar) to the target
output. At the beginning of the training, the
weighting of the target output is high. It falls to
zero during the training.

The network is trained on a tagged corpus.
Target activations are 0 for all output units, ex-
cepting for the unit which corresponds to the cor-
rect tag, for which it is 1. A slightly modified
version of the backpropagation algorithm with
momentum term which has been presented in
the last section is used: if the difference between
the activation of an output unit j and the cor-
responding target output is below a predefined
threshold (we used 0.1), the error signal dp; is
set to zero. In this way, the network is forced to
pay more attention to larger error signals. This
resulted in an improvement of the tagging accu-
racy by more than 1 percent.

Network architectures with and without hid-
den layers have been trained and tested. In gen-
eral, MLP-networks with hidden layers are more
powerful than networks without one, but they
also need more training and there is a higher

?Lexical probabilities are estimated by dividing the
number of times a word occurs with a given tag by the
overall number of times the word occurs. This method is
known as the Mazimum Likelihood Principle.

3The output activations of the network do not neces-
sarily sum to 1. Therefore, they should not be interpreted
as probabilities.

risk of overlearning®. As will be shown in the
next section, the Net-Tagger did not profit from
a hidden layer.

In both network types, the tagging of a sin-
gle word is performed by copying the tag prob-
abilities of the current word and its neighbours
into the input units, propagating the activations
through the network to the output units and de-
termining the output unit which has the highest
activation. The tag corresponding to this unit is
then attached to the current word.

If the second strongest activation in the out-
put layer is close to the strongest one, the tag
corresponding to the second strongest activation
may be given as an alternative output. No addi-
tional computation is required for this. Further,
it is possible to give a scored list of all tags as
output.

5 The Lexicon

The lexicon which contains the a priori tag prob-
abilities for each word is similar to the lexicon
which was used by [CKPS92]. It has three parts:
a fullform lexicon, a suffix lexicon and a default
entry. No documentation of the construction al-
gorithm of the suffix lexicon in [CKPS92] was
available. Thus, a new method based on infor-
mation theoretic principles was developed.

During the lookup of a word in the lexicon of
the Net-Tagger, the fullform lexicon is searched
first. If the word is found there, the correspond-
ing tag probability vector is returned. Otherwise,
the uppercase letters of the word are turned to
lowercase, and the search in the fullform lexicon
is repeated. If it fails again, the suffix lexicon is
searched next. If none of the previous steps has
been successfull, the default entry of the lexicon
is returned.

The fullform lexicon was created from a tagged
training corpus (some 2 million words of the
Penn Treebank Corpus). First, the number of
occurrences of each word/tag pair was counted.
Then those tags of each word with an estimated
probability of less than 1 percent were removed,
because they were in most cases the result of tag-
ging errors in the original corpus.

4Overlearning means that irrelevant features of the
training set are learned. As a result, the network is unable
to generalize.

Figure 3: A sample suffix tree of length 3

The second part of the lexicon, the suffix lex-
icon, forms a tree. Each node of the tree (ex-
cepted the root node) is labeled with a charac-
ter. At the leaves, tag probability vectors are
attached. During a lookup, the suffix tree is
searched starting at the root node. In each step,
the branch which is labeled with the next char-
acter from the end of the word suffix, is followed.

Assume e.g., we want to look for the word tag-
ging in the suffix lexicon which is shown in fig. 3.
We start at the root (labeled #) and follow the
branch which leads to the node labeled g. From
there, we move to the node labeled n, and fi-
nally we end up in the node labeled 7. This node
is a leaf and the attached tag probability vector
(which is not shown in fig. 3) is returned.

The suffix lexicon was automatically built from
the training corpus. First, a suffiz tree was con-
structed from the suffices of length 5 of all words
which were annotated with an open class part-
of-speech®. Then tag frequencies were counted
for all suffices and stored at the corresponding
tree nodes.

In the next step, an information measure I(.S)
was calculated for each node of the tree:

I(S)= - ZP(pos|S) log2 P(pos|S)

pos

(7)

Here, S is the suffix which corresponds to the

50pen class parts-of-speech are those, which allow for
the production of new words (e.g. noun, verb, adjective).

Table 1: Sample frequencies at a tree node and
its two child nodes.

| tag | suffix ess | suffix ness | suffix less |
JJ 86 1 85
NN 10 2 8
NP 45 45 0
RB 2 0 2
total 143 48 95

current node and P(pos|S) is the probability of
tag pos given a word with suffix S.

Using this information measure, the suffix tree
has been pruned. For each leaf, the weighted
information gain G(aS) was calculated:

G(aS) = F(aS) (I(S) = I(aS)), (8)
where S is the suffix of the parent node, aS is
the suffix of the current node and F'(aS) is the
frequency of suffix aS.

If the information gain at some leaf of the suf-
fix tree is below a given threshold®, it is removed.
The tag frequencies of all deleted subnodes of
a parent node are collected at the default node
of the parent node. If the default node is the
only remaining subnode, it is deleted too. In
this case, the parent node becomes a leaf and is
also checked, whether it is deletable.

To illustrate this process consider the following
example, where ess is the suffix of the parent
node, less is the suffix of one child node and ness
is the suffix of the other child node. The tag
frequencies of these nodes are given in table 1.

The information measure for the parent node
is:

86 86 10 10
I(ess) = 13 ogzm—mlogzm—... ~ 1(?;?
The corresponding values for the child nodes are
0.39 for ness and 0.56 for less. Now, we can
determine the weighted information gain at each
of the child nodes. We get:

G(ness) = 48(1.32 — 0.39) = 44.64 (10)

(11)

Both values are well above a threshold of 10, and
therefore none of them should be deleted.

G(less) = 95(1.32 — 0.56) = 72.20

6We used a gain threshold of 10.

Table 2: Comparison of accuracy rates

method accuracy
Net-Tagger 96.22 %
trigram tagger 96.06 %
HMM tagger 94.24 %

As explained before, the suffix tree is walked
during a lookup along the path, where the nodes
are annotated with the letters of the word suffix
in reversed order. If at some node on the path,
no matching subnode can be found, and there
is a default subnode, then the default node is
followed. If a leaf is reached at the end of the
path, the corresponding tag probability vector
is returned. Otherwise, the search fails and the
default entry is returned.

The default entry is constructed by subtract-
ing the tag frequencies at all leaves of the pruned
suffix tree from the tag frequencies of the root
node and normalizing the resulting frequencies.
Thereby, relative frequencies are obtained which
sum to one.

6 Results

The 2-layer version of the Net-Tagger was
trained on a 2 million word subpart of the Penn-
Treebank corpus. Its performance was tested on
a 100,000 word subpart which was not part of
the training corpus. The settings of the network
parameters were as follows: the number of pre-
ceding words in the context p was 3, the number
of following words f was 2 and the number of
training cycles was 4 millions. The training of
the tagger took one day on a Sparcl0 worksta-
tion and the tagging of 100,000 words took 12
minutes on the same machine.

In table 2, the accuracy rate of the Net-Tagger
is compared to that of a trigram based tagger
[Kem93] and a Hidden Markov Model tagger
[CKPS92] which were trained and tested on the
same data. In order to determine the influence
of the size of the training sample, the taggers
were also trained on corpora of different sizes and
tested again’. The resulting percentages of cor-
rectly tagged words are shown in figure 4.

"For this test, a slightly simpler network structure
with two preceding and one following word in the input
context was used.

96 |

%

92

in

88
86

accuracy

82"

Net - Tagger ——
HVM Tagger —— 1
Trigram Tagger =

100000 le+06

size of training corpus

Figure 4: Accuracy for varying sizes of the training corpus.

These experiments demonstrate that the per-
formance of the Net-Tagger is comparable to that
of the trigram tagger and better than that of the
HMM tagger. They further show that the per-
formance of the Net-Tagger is less affected by
a small amount of training data than that of
the trigram tagger. This may be due to a much
smaller number of parameters in the Net-Tagger:
while the trigram tagger must accurately esti-
mate 110,592 trigrams, the Net-Tagger only has
to train 13,824 network parameters.

It was further tested, whether an additional
hidden layer in the network with 50 units
would improve the accuracy of the tagging. It
turned out that the accuracy actually deterio-
rated slightly, although the number of training
cycles had been increased to 50 millions®.

Also, the influence of the size of the input con-
text was determined. Shrinking the context from
three preceding and two following words to two
preceding and one following word reduced the
accuracy only by 0.1 %. Enlarging the context
gave no improvement. A context of three preced-
ing and two following words seems to be optimal.

As mentioned previously, the tagger can pro-

8Due to the large training times needed to train the
3-layer-network, no further tests have been conducted.

duce an alternative tag, if the decision between
two tags is difficult. In that way, the accuracy
can be raised to 97.79 % at the expense of 4.6 %
ambiguously tagged words.

An analysis of the errors of the Net-Tagger and
the trigram tagger shows that both have prob-
lems with the same words, although the individ-
ual errors are often different?.

7 Conclusions

In this paper, the Net-Tagger was presented, a
part-of-speech tagger which is based on a MLP-
network. A comparison of the tagging results
with those of a trigram tagger and a HMM tag-
ger showed that the accuracy is as high as that of
the trigram tagger and the robustness on small
training corpora is as good as that of the HMM
tagger. Thus, the Net-Tagger combines advan-
tages of both of these methods.

The Net-Tagger has the additional advantage
that problematic decisions between tags are easy
to detect, so that in these cases an additional
tag can be given in the output. In this way, the

9Less than 60 % of the tagging errors were made in
common by both taggers.

final decision can be delayed to a later processing
stage, e.g. a parser.

A disadvantage of the presented method may
be its lower processing speed compared to statis-
tical methods. In the light of the high speed of
present computer hardware, however, this does
not seem to be a serious drawback.

References

[Chu88]

[CKPS92]

[FP94]

[GRT1]

[Jel85)]

[Kem93]

[Lip89]

Kenneth W. Church. A stochas-
tic parts program and noun phrase
parser for unrestricted text. In Pro-
ceedings of the Second Conference on
Applied Natural Language Process-
ing, pages 136-143, 1988.

Doug Cutting, Julian Kupiec, Jan
Pedersen, and Penelope Sibun. A
practical part-of-speech tagger. In
Proceedings of the Third Conference
on Applied Natural Language Pro-
cessing, pages 133-140, 1992.

Stefano Federici and Vito Pir-
relli. Context-sensitivity and linguis-
tic structure in analogy-based paral-
lel networks. Current Issues in Math-
ematical Linguistics, pages 353-362,
1994.

B.B. Greene and G.M. Rubin. Au-
tomatic grammatical tagging of en-
glish. Technical report, Depart-
ment of Linguistics, Brown Univer-
sity, Providence, Rhode Island, 1971.

Fredrick Jelinek. = Markov source
modeling of text generation. In J. K.
Skwirzinski, editor, Impact of Pro-
cessing Techniques on Communica-
tion. Nijhoff, Dordrecht, 1985.

André Kempe. A probabilistic tag-
ger and an analysis of tagging er-
rors. Technical report, Institut
fiir maschinelle Sprachverarbeitung,
Universitét Stuttgart, 1993.

R. P. Lippmann. Review of neu-
ral networks for speech recognition.
Neural Computation, 1:1-38, 1989.

[NMKS90] M.

[RM84]

Naka-
mura, K. Maruyama, T. Kawabata,
and K. Shikano. Neural network ap-
proach to word category prediction
for english texts. In H. Karlgren,
editor, Proceedings of the Interna-
tional Conference on Computational
Linguistics, pages 213-218, Helsinki
University, 1990.

D. E. Rumelhart and J. L. McClel-
land. Parallel Distributed Processing.
MIT-Press, Cambridge, MA, 1984.

