
YAP:
Parsing and Disambiguation
With Feature−Based Grammars

AIMS
Arbeitspapiere des Instituts für Maschinelle Sprachverarbeitung

Helmut Schmid

AIMS • 2000 • VOL. 6 • NO. 1

Lehrstuhl für Theoretische Computerlinguistik Universität Stuttgart

YAP:Parsing and DisambiguationWith Feature-Based Grammars
Helmut Schmid

Januar 2000Institut f�ur maschinelle Sprachverarbeitung der Universit�at Stuttgart

Previous Issues of AIMS:Vol. 1 (1) 1994: Wigner Distribution in Speech Research. Master thesis by Wolfgang Wokurek (inGerman), papers by Grzegorz Dogil, Wolfgang Wokurek, and Krysztof Marasek (in English), and abibliography.Vol. 2 (1) 1995: Sprachentst�orung. Doctoral Dissertation. University of Vienna, 1994 by WolfgangWokurek (in German with abstract in English). Full title: Sprachentst�orung unter Verwendung einesLautklassendetektors (Speech enhancement using a sound class detector).Vol. 2 (2) 1995: Word Stress. Master thesis by Stefan Rapp (in German) and papers mostly byGrzegorz Dogil, Michael Jessen, and Gabriele Scharf (in English).Vol. 2 (3) 1995: Language and Speech Pathology. Master theses by Gabriele Scharf and by J�org Mayer(in German) and papers by Hermann Ackermann, Ingo Hertrich, J�urgen Konczak, and J�org Mayer(mostly in German).Vol. 3 (1) 1997: Tense versus Lax Obstruents in German. Revised and expanded version of Ph.D. Dis-sertation, Cornell University, 1996 by Michael Jessen (in English). Full title: Phonetics and phonologyof the tense and lax obstruents in German.Vol. 3 (2) 1997: Electroglottographic Description of Voice Quality. Habilitationsschrift, University ofStuttgart, 1997 by Krysztof Marasek (in English).Vol. 3 (3) 1997: Aphasie und Kernbereiche der Grammatiktheorie (Aphasia and core domains in thetheory of grammar). Doctoral Dissertation, University of Stuttgart, 1997 by Annegret Bender (inGerman with abstract in English).Vol. 3 (4) 1997: Intonation and Bedeutung (Intonation and meaning). Doctoral Dissertation, Univer-sity of Stuttgart, 1997 by J�org Mayer (in German with abstract in English).Vol. 3 (5) 1997: Koartikulation und glottale Transparenz (Coarticulation and glottal transparency).Doctoral Dissertation, University of Bielefeld, 1997 by Kerstin Vollmer (in German with abstract inEnglish).Vol. 3 (6) 1997: Der TFS-Repr�asentationsformalismus und seine Anwendung in der maschinellenSprachverarbeitung (The TFS Representation Formalism and its Application to Natural Language Pro-cessing). Doctoral Dissertation, University of Stuttgart, 1997 by Martin C. Emele (in German).Vol. 4 (1) 1998: Automatisierte Erstellung von Korpora f�ur die Prosodieforschung (Automated gener-ation of corpora for prosody research). Doctoral Dissertation, University of Stuttgart, 1998 by StefanRapp (in German with abstract in English).Vol. 4 (2) 1998: Theoriebasierte Modellierung der deutschen Intonation f�ur die Sprachsynthese(Theory-based modelling of German intonation for speech synthesis). Doctoral Dissertation, Universityof Stuttgart, 1998 by Gregor M�ohler (in German with abstract in English).Vol. 4 (3) 1998: Inducing Lexicons with the EM Algorithm. Papers by Mats Rooth, Stefan Riezler,Detlef Prescher, Sabine Schulte im Walde, Glenn Carroll, and Franz Beil. Chair for TheoreticalComputational Linguistics, Institut f�ur Maschinelle Sprachverarbeitung, Universit�at Stuttgart.Vol. 5 (1) 1999: Probabilistic Constraint Logic Programming: Formal Foundations of Quantitative andStatistical Inference in Constraint-Based Natural Language Processing Doctoral Dissertation, Univer-sity of T�ubingen, 1999 by Stefan Riezler.Vol. 5 (2) 1999: Timing bei Dysarthrophonie (Timing in Dysarthria) Doctoral Dissertation, Universityof Stuttgart, 1999 by Gabriele Scharf (in German with abstract in English).Vol. 5 (3) 1999: Semantikkonstruktion (Semantic Construction) Doctoral Dissertation, University ofStuttgart, 1999 by Michael Schiehlen (in German with abstract in English).

YAP:Parsing and DisambiguationWith Feature-Based Grammars
von der Fakult�at Philosophie der Universit�at Stuttgartzur Erlangung der W�urde eines Doktors der Philosophie (Dr. phil.)genehmigte Abhandlung

vorgelegt von Helmut Schmid aus Reutlingen
Hauptberichter: Prof. Ph. D. Mats RoothMitberichter: Prof. Dr. phil. Christian RohrerTag der m�undlichen Pr�ufung: 9. Februar 1999

Januar 2000Institut f�ur maschinelle Sprachverarbeitung der Universit�at Stuttgart

Helmut Schmid { YAP: Parsing and Disambiguation With Feature-Based Grammars

CIP-Kurztitelaufnahme der Deutschen BibliothekHelmut Schmid:YAP: Parsing and Disambiguation With Feature-Based Grammars /Helmut Schmid { Stuttgart, 2000. AIMS - Arbeitspapiere des Instituts f�urMaschinelle Sprachverarbeitung, Vol. 6, No. 1, 2000, Stuttgart, Germany.ISSN 1434-0763

Copyright c 2000 by Helmut SchmidUniversit�at StuttgartInstitut f�ur Maschinelle SprachverarbeitungLehrstuhl f�ur Theoretische ComputerlinguistikAzenbergstra�e 12D { 70 174 Stuttgartwww: http://www.ims.uni-stuttgart.de/�schmidemail: schmid@ims.uni-stuttgart.de

iv

AcknowledgementsThe research presented here has been conducted while I was a member of the Graduiertenkol-leg \Linguistische Grundlagen der maschinellen Sprachverarbeitung" at the Institute for Com-putational Linguistics of the University of Stuttgart. It would not have been possible withoutthe help and support of my colleagues at the institute and within the Graduiertenkolleg.Special thanks go to my supervisor Prof. Mats Rooth for his support and advice. I am alsograteful to Andreas Eisele for all the discussions we had on various aspects of my work.Then I would like to thank Prof. Grzegorz Dogil who �rst got me interested in problemsof Computational Linguistics while I was a computer science student, and Prof. ChristianRohrer who gave me the opportunity to actually work in this area.Many thanks �nally go to Esther K�onig-Baumer, Stefan Riezler and Detlef Prescher for theircomments on earlier versions of this thesis.

v

vi

Contents
1 Introduction 12 Grammar Formalism 52.1 Declarations . 52.1.1 Category and Feature Declarations . 52.1.2 Feature Type Declarations . 62.1.3 Variable Declarations . 72.2 Grammar Rules . 82.3 Lexicon Entries . 92.4 Further Grammar Elements . 102.4.1 Templates . 102.4.2 Generic Entries . 102.4.3 Feature Inheritance . 112.4.4 Automatic Features . 112.4.5 Disjunctive Values . 122.4.6 Dummy Values . 122.4.7 Abbreviations . 132.5 Missing Features in the Formalism . 132.5.1 Semantic Representations . 132.5.2 Type Hierarchies . 142.5.3 Head Movement . 152.5.4 Unrestricted Feature Structure List Elements 152.6 Grammar Design Considerations . 16vii

viii CONTENTS3 Theoretical Foundations 193.1 The Feature Logic . 193.2 Feature Structure Models . 213.3 Parse Trees . 303.4 Feature Computation . 313.4.1 The Algorithm . 323.4.2 Completeness . 373.4.3 Soundness . 373.5 Extensions . 383.5.1 Variables . 383.5.2 Typing . 383.5.3 Disjunctive Feature Values . 403.5.4 Feature Structure Lists . 413.5.5 Function Values . 433.5.6 Parse Forests . 434 Parsing 454.1 Parsing Strategies . 454.2 Context-Free Parsing . 464.3 Computation of Feature Structures . 464.3.1 Dealing with Parse Forests . 464.3.2 Disjunctive Feature Structures . 474.3.3 Feature Computation in YAP . 474.4 Grammar Compilation . 554.4.1 Grammar Transformation . 554.4.2 Generation of the Context-Free Grammar 604.5 Implementational Details . 634.5.1 Lexicon Compression . 634.5.2 Avoiding FS Recomputations . 634.5.3 Lazy Copying . 654.5.4 Feature Structure Representatives . 664.5.5 Chart Insertion . 664.5.6 Storing the Results of Expensive Computations 67

CONTENTS ix5 Experimental Results 695.1 The English Grammar . 695.2 Parsing the Wall-Street-Journal Corpus . 695.3 Comparison With Other Parsers . 715.4 Tree Matching . 736 Parse Forest Disambiguation 796.1 Probabilistic Grammars . 806.1.1 Probabilistic Context-Free Grammars 806.1.2 Head-Lexicalized Probabilistic Context-Free Grammars 806.1.3 Probabilistic Constraint-Based Grammars 826.2 Hybrid Disambiguation Methods . 846.3 A Disambiguation Method for YAP . 856.3.1 The Basic Idea . 856.3.2 Computation of the Scores . 856.3.3 Disambiguation . 876.3.4 Disambiguation Results . 886.3.5 Error Analysis . 896.3.6 Conclusions . 927 Summary 95A BNF Syntax of the YAP Grammar Formalism 101B The English YAP Grammar 105C The English LPCF Grammar 183D Disambiguation 191D.1 Test Sentences . 191D.2 Results . 195

x CONTENTS

List of Figures2.1 A sample parse tree . 172.2 Parse tree with feature structures illustrating the Slash percolation mechanism. 183.1 Cyclic feature structure . 223.2 Sample feature trees . 233.3 A lattice over a set of values . 403.4 A feature structure list represented as a feature tree 414.1 Feature computation . 485.1 Empirical parsing complexity . 705.2 Parsing complexity of the YAP grammar and di�erent versions of the XLEgrammar . 726.1 Parse trees for the phrases this man and these men 83

xi

xii LIST OF FIGURES

List of Tables2.1 Morphosyntactic features of the German determiner die 125.1 Parse times for 25 randomly selected sentences and a single complex sentence 716.1 A context-free grammar . 816.2 Mapping of lexical choice frequencies from the head-lexicalized grammar tolexical association frequencies . 866.3 Mapping of the categories of the English YAP grammar to the categories ofthe association table. 88

xiii

Chapter 1IntroductionSyntactic parsers belong to the most basic tools in natural language processing (NLP) andmost NLP applications use some form of parser. If an NLP application does without aparser, the reason is often that no parser was available which was su�ciently fast, robust,and/or accurate, and which provides linguistically adequate and unambiguous analyses. Thereare parsers (e.g. parsers for feature-structure based grammar formalisms like HPSG andLFG) which provide sophisticated analyses, but they are often slow and not robust wrt. ill-formed input, and they either cover only a fragment of the language or their output is highlyambiguous. There are other parser (e.g. �nite-state parsers) which are very fast, robustand which produce unambiguous output, but their analyses are incomplete and too simplefor many linguistic phenomena. Finally there are parsers (the statistical parsers) which arehighly robust, coping with all sorts of well-formed and ill-formed input, and which produce asingle analysis (or a small number of likely analyses). But again, the generated analyses aretoo simplistic and some statistical parsers are also quite slow.This thesis presents a new fast parsing algorithm for feature-structure based grammars, calledYAP, and discusses the question of what grammar writers can do to accelerate parsing. Thesecond part of the thesis describes an attempt to integrate statistical techniques into the YAPsystem in order to be able to rank analyses and to select the most likely ones.Parsers need formal grammatical descriptions of the languages which they analyse. Thesedescriptions are written in grammar formalisms such as Lexical Functional Grammar (LFG),Head-Driven Phrase Structure Grammar (HPSG) or De�nite Clause Grammar (DCG) toname just a few. Many grammar formalisms including the formalisms just mentioned usefeature structures to represent the syntactic properties of grammatical units. E�cient parsingwith feature-structure based grammars is a di�cult task, however. Parsing with LFGs, e.g.,is undecidable in the general case, and even with suitable constraints such as the o�ineparsability constraint [Kaplan and Bresnan, 1982], it is still NP-complete which means thatthe parse time of any known algorithm grows exponentially with the length of the input inthe worst case.Fortunately, the worst case is not typical when natural languages are parsed. Natural lan-guages seem to be only slightly more complex than context-free languages. Hence there ishope that an average parsing complexity not too far from the cubic complexity of context-freegrammars could be achieved with real-world grammars and data.1

2 CHAPTER 1. INTRODUCTIONThe key to parsing e�ciency is to avoid repeated computation of subproblems. To this end,intermediate results of parsing are usually stored in a table called a chart . The number of cellsin the chart grows quadratically with the length n of the input sentence. In case of context-free parsing, the number of items (categories in case of the Cocke-Younger-Kasami algorithm,\dotted rules" in case of Earley's algorithm) in a cell of the chart is limited by a constantwhich depends only on the grammar. Each item can be built in at most n many ways, eachrequiring constant time wrt. sentence length. The runtime complexity of context-free parsingis therefore at worst cubic in the length of the input.1In feature-structure based grammars, feature structures play the role of the category labels.So, a chart parser for feature structure-based grammars inserts feature structures ratherthan categories into the chart. Because the number of di�erent feature structures is in�nite,however, there is no limit to the number of items in a chart cell, and the cubic runtimecomplexity is lost.Maxwell and Kaplan [Maxwell III and Kaplan, 1996] show that it is possible to circumventthis problem if constituents with di�erent feature structures but spanning the same input aremerged by pushing down the disjunction from the topmost level to the lowest possible level,as long as the feature structures do not di�er in their \relevant" parts. The relevant partsof a feature structure are those which may later lead to a feature clash. If the \relevant"substructures of the feature structures of a grammar form a �nite set, the grammar can evenbe parsed in cubic time.The question arises, however, why syntactically irrelevant information is represented in thegrammar at all, if sophisticated algorithms are required to reduce their detrimental e�ectson parse time. In the LFG formalism, the feature structure (called f-structure) of the top-most node represents the function-argument structure of the whole sentence. The f-structureis therefore a simple semantic representation. Because most local ambiguities are reectedin the predicate-argument structure, they are propagated to the dominating nodes and theirfeature structures. The problem disappears if the semantic representation is built in a separatestep.The YAP formalism reects these considerations. It is a feature-based grammar formalismwhich is solely intended for syntactic analysis. It combines ideas from LFG, HPSG andprocedural programming languages. Similarly to LFG, the formalism uses grammar rules witha context-free backbone and feature structure constraints. Like HPSG, it is a typed formalism,but the type system resembles more that of a programming language. Subcategorization andargument extraction are handled similarly as in HPSG, namely with argument cancelling fromSubcat lists and gap threading via Slash features. A particularity of the YAP formalism isthe possibility to compile features with �nite value range into the context-free backbone ofthe grammar to enhance e�ciency.The parser for this grammar formalism uses a novel iterative method for the computationof the feature structures after the context-free backbone of the syntactic analysis has beencomputed by a standard context-free parser. Feature structures are represented as treeswithout reentrancies rather than graphs, and disjunctions are restricted to the atomic level.The feature structures are computed by iteratively solving local feature constraints. Theparsing algorithm is guaranteed to terminate for cycle-free feature structures and is very1A formal proof of this result is found e.g. in [Younger, 1967] and [Earley, 1970].

3fast in practice. The simplicity of the data structures and operations facilitates an e�cientimplementation of the parser.Another important problem in parsing is disambiguation. Many sentences are syntacticallyambiguous. Some ambiguities may be solved with a simple rule preference mechanism whichfavours e.g. analyses with fewer traces. Other ambiguities require some sort of semantic knowl-edge to be resolved. Examples are PP attachment ambiguities as in the sentence I lookedat the moon through a telecope where through a telecope could { according to strictlysyntactic criteria { either modify the moon or the verb looked, and coordination ambigu-itites as in They met with the finance ministers of France and the United Stateswhere either France and the United States or the finance ministers of France andthe United States could coordinate.Hindle and Rooth [Hindle and Rooth, 1993] presented a simple statistical algorithm whichcorrectly disambiguates most PP attachment problems. It compares how likely the preposi-tional phrase is to attach to the di�erent possible attachment sites and chooses the most likelyattachment. This approach is extended in this thesis to resolve other types of ambiguity aswell. The statistical parameters of the algorithm were determined from a 100 million wordcorpus which was parsed and disambiguated with a parser for head-lexicalized context-freegrammars [Carroll and Rooth, 1998].The chapters of this thesis are organized as follows. Chapter 2 presents the YAP grammarformalism in detail. A feature logic for this formalism is developed in chapter 3. This chapteralso contains a proof for the correctness of the iterative method for the feature computation.Chapter 4 describes the implementation of the parsing algorithm and chapter 5 shows resultsof experiments with the parser. Chapter 6 presents the disambiguation method and andreports on preliminary disambiguation results. Chapter 7 summarizes the main points of thisthesis and gives an outlook to future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2Grammar FormalismYAP is a symbolic parser for a feature-based grammar formalism. It assigns a set of parsetrees decorated with feature structures to sentences. Each parse tree represents one anal-ysis of a sentence. Fig. 2.1 shows a sample parse tree which was printed with the Xmfedprogram [Groenendijk, 1993]. The small boxes represent \imploded" feature structures. Thegrammar formalism which is used to express the constraints which hold for well-formed parsetrees is based on phrase structure rules. It is somewhat similar to the PATR-II formalism[Shieber, 1992], but in contrast to PATR-II the feature structures are typed [Carpenter, 1992].The type of a feature structure determines its set of features.Feature structure typing has several advantages. It allows for a more e�cient representationof feature structures because feature names do not have to be represented explicitly. Insteadof a list of feature-value pairs, we only store an array of feature values. Access to featurevalues is faster because feature names are translated to indices into the feature value array.No searching of lists is required.Feature typing also facilitates grammar development. The compiler knows which featuresand feature values are appropriate in any given context and is therefore able to detect manyerrors at compile time, e.g. misspelled feature names or erroneous feature paths. Typing alsosupports a more structured approach to grammar writing.2.1 DeclarationsA grammar description in the YAP formalism starts with a set of declarations which specifythe grammatical categories, the features and the feature types.2.1.1 Category and Feature DeclarationsA category declaration starts with the keyword category followed by the category name anda list of feature declarations enclosed in braces. The declaration is terminated by a semicolon.A feature declaration in turn consists of the feature value type followed by the feature nameand a semicolon. A feature declaration is local to a category declaration. It is possible to5

6 CHAPTER 2. GRAMMAR FORMALISMuse the same feature name in di�erent category declarations, and even with di�erent featuretypes.Example:1category NP {STRING Phon;NUMBER Number;GENDER Gender;CASE Case;};The YAP categories are special feature value types (see the next section) which can neverappear in a feature declaration, i.e. no feature value will ever have a \category" type. Theonly feature structures with a category type are the root nodes of feature structures and theelements of feature structure lists (see below).2.1.2 Feature Type DeclarationsThere are two prede�ned feature types: STRING and FS LIST. Features of type STRING mayhave any character string as value. FS LIST features take a list of complete feature structures(i.e. feature structures whose types are categories) as values.Enumeration TypesBesides the prede�ned feature types, there are two classes of user-de�ned feature types: enu-meration types and structured types. The de�nition of an enumeration feature type startswith the keyword enum followed by the name of the feature type and the list of possible valuesenclosed in braces. Again, the de�nition is terminated by a semicolon.Enumeration types have two advantages over STRING types: They allow for a more e�cientrepresentation of ambiguities and they provide information for error detection so that mis-spelled feature values are detected at compile time. Therefore enumeration types should bepreferred whenever the limit of 32 possible feature values is not exceeded. Agreement featurevalue types are typical examples of enumeration types:enum NUMBER {sg, pl};enum GENDER {masc, fem, neut};Structured TypesStructured feature types are used to group a set of features. The de�nition of a structuredfeature is analogous to that of a category, except for the new keyword struct.1The following spelling conventions will be used throughout this book, although they are not enforced bythe grammar formalism. Categories and feature types are upper case. Feature names are capitalized. Featurevalues and variables are lower case. Variables usually have one or two characters and feature values three ormore characters.

2.1. DECLARATIONS 7struct AGR {NUMBER Number;GENDER Gender;CASE Case;};The types of the features in such a de�nition must have been de�ned before. Therefore cyclicfeature de�nitions, where a feature has the same type as one of its subordinated features, areexcluded unless there is an intervening feature of type FS LIST.2.1.3 Variable DeclarationsVariables create dependencies between features in grammar rules. A variable declarationresembles a feature declaration: it consists of the type of the variable followed by the nameof the variable and a semicolon. Variable declarations are always global, i.e. there is alwaysexactly one declaration for a given variable name. Nevertheless, the value of a variable isalways de�ned locally to a rule. In other words, each rule uses its own copy of the variable. Allfeature types (STRING, FS LIST, enumeration types and structured types) and the restrictortypes introduced in the next section are valid variable types.AGR a;STRING p1;Restrictor TypesRestrictor types are special variable types. They are used to exclude certain features frombeing uni�ed when two complete feature structures are uni�ed. When the feature structuresof a trace node and its �ller are uni�ed, for instance, the Phon feature has to be excludedbecause the Phon feature of a trace is always the empty string.The declaration of a restrictor type starts with one of the keywords restrictor+ andrestrictor- followed by the name of the restrictor type, a category name enclosed in paren-theses, a list of feature names enclosed in braces and a terminating semicolon. The list offeatures has to be a subset of the set of features de�ned for the given category. The di�erencebetween the two keywords is the following: restrictor+ instructs the compiler to unify allfeatures on the list, whereas restrictor- instructs the compiler to unify all features whichare not on the list.The following statements de�ne the restrictor types NP R and NP R2 and the variables npand np2. Variable np might be used to unify the feature structure of an NP argument witha feature structure on the Subcat list of the verb. Variable np2 might unify the featurestructure of an NP trace with the feature structure of its �ller and variable np3 could checkagreement between a relative pronoun and the preceding noun. See the next section for twosample rules.restrictor- NP_R(NP) {};

8 CHAPTER 2. GRAMMAR FORMALISMrestrictor- NP_R2(NP) {Phon};restrictor+ NP_R3(NP) {Number, Gender};NP_R np;NP_R2 np2;NP_R3 np3;Remark: The restrictor types only make grammar development more convenient in contrastto the restrictor functions in [Shieber, 1992] which are needed to guarantee termination ofthe parsing process.2.2 Grammar RulesA grammar rule in the YAP formalism consists of a mother node speci�cation, followed by anarrow, a sequence of daughter node speci�cations and a semicolon. Each node speci�cation inturn consists of a category name and a set of feature constraint equations which are enclosedin braces. One of the daughter nodes is marked as the head daughter with a backquote (`) infront of the category name.NP {Phon=cat(p1,p2);Number=n;Gender=g;Case=c;} ->DT {Phon=p1;Number=n;Gender=g;Case=c;}`N {Phon=p2;Number=n;Gender=g;Case=c;};A constraint equation consists of a feature path, an equals sign (=), a feature value and aterminating semicolon. Possible feature values are variables, constants, function terms andfeature structure lists. The only function currently de�ned is the string concatenation operatorcat. A function term therefore consists of the function name cat and a comma-separatedlist of arguments which is enclosed in parentheses. Variables of type STRING are the onlyaccepted arguments. The type of such a function term is also STRING.A Feature path is a sequence of feature names which are separated by dots (.). Each featuremust have been declared as a subfeature of the feature value type of the preceding feature inthe sequence. The �rst feature must have been declared as a feature of the current category.If the list of feature names in a feature path is empty, the constraint equation has to movebehind the closing brace and the terminating semicolon is dropped. So, instead of NPf=np;g,we get NP fg=np.A feature structure list consists of a set of comma-separated node speci�cations optionallyfollowed by a vertical bar (j) and a variable of type FS LIST. It is enclosed in square brackets.This notation is analogous to the notation in the Prolog programming language if we ignorethe fact that Prolog variables have to be capitalized. The type of a feature structure list isFS LIST.The following grammar rule uni�es the �rst element of the Subcat list with the featurestructure of the argument and propagates the remaining arguments to the parent node.VP {Subcat=r;} -> `V {Subcat=[NP{}=np|r];} NP {}=np;

2.3. LEXICON ENTRIES 9If a node is marked with an asterisk (*) after the category name, then it is a trace node andit generates an empty string.The following rule generates an NP trace node whose feature structure is uni�ed with the �rstelement of the Subcat list. Furthermore the NP feature structure minus the Phon feature isuni�ed with the element on the Slash list of the parent node. The next rule generates thesubject of the sentence and percolates the Slash feature. The last rule generates the �ller anduni�es its feature structures with the feature structure on the Slash list. Fig. 2.2 shows theparse tree for the clause \who Mary loves".VP {Subcat=r;Slash=[NP{}=np2];} ->`V {Subcat=[NP{}=np|r];Slash=[];}NP*{}=np=np2;S {Slash=r;} -> NP {}=np `VP {Subcat[NP{}=np];Slash=r;};SBAR {} -> NP {}=np `S {Slash=[NP{}=np];};The feature path on the left side and the value on the right side of a constraint equation musthave the same type. If the feature path is empty, then the value must bear a restrictor typefor the category of the corresponding node. If the feature path is not empty, then the typeof the last feature in the path has to be identical to the type of the right side.Structured features often simplify grammar rules. With a structured Agr feature as declaredabove and an appropriate declaration of the NP category, it is possible to simplify the aboveNP rule. A single constraint equation is now su�cient to enforce agreement in number, genderand case.category NP {STRING Phon;AGR Agr;};NP {Phon=cat(p1,p2);Agr=a;} ->DT {Phon=p1;Agr=a;}`N {Phon=p2;Agr=a;};2.3 Lexicon EntriesA lexicon entry in the YAP formalism consists of the word form enclosed in double quotes(") followed by a colon (:), a node speci�cation and a semicolon. If there is more than onelexicon entry for a word form, the di�erent entries constitute alternatives."him" : NP {Agr.Number=sg;Agr.Gender=masc;Agr.Case=acc;};

10 CHAPTER 2. GRAMMAR FORMALISM2.4 Further Grammar ElementsSo far, the essential parts of the YAP grammar formalism have been presented. The formalismcontains some additional features mainly to facilitate grammar development by reducing theredundancy in grammar descriptions.2.4.1 TemplatesIf a set of constraint equations is repeated in several rules, it is useful to de�ne a templatefor it. A template de�nition consists of the template name, a colon (:), a node speci�cationand a semicolon. Templates and lists of &-separated templates can replace category names innode speci�cations.NPsg: NP {Agr.Number=sg;};NP3: NP {Agr.Person=3rd;};NPacc: NP {Agr.Case=acc;};NPm: NP {Agr.Gender=masc;};NPf: NP {Agr.Gender=fem;};NP3sma: NPsg & NP3 & NPacc & NPm {};NP3sfa: NPsg & NP3 & NPacc & NPf {};"him": NP3sma {};"her": NP3sfa {};The compiler expands the templates by adding the constraints from the template de�nitionto the constraints of the current node. The scope of variables is always local to a templatede�nition, lexicon entry or grammar rule. In other words, the compiler renames the variablesused in a template before it is expanded.2.4.2 Generic EntriesSome classes of words like numbers are di�cult or even impossible to list exhaustively becausethere are so many of them. Generic lexicon entries may be used to provide lexical informationfor a prede�ned set of such word classes.In a generic entry, the quoted word form is replaced by either <cardinal>, <ordinal>,<propername> or<default>, de�ning entries for cardinal numbers, ordinal numbers, propernames and other unknown word forms, respectively.Generic entries have low priority. They are only accessed if there is no regular lexicon entryfor a word. Among the generic entries, default entries have lower priority than the others.They are only accessed if no other generic entry matches.

2.4. FURTHER GRAMMAR ELEMENTS 112.4.3 Feature InheritanceThe mother node of a rule and its head daughter usually share a large set of features. In orderto relieve the grammar designer from the tedious task of writing all these constraints and tokeep the grammar more concise and easier to read, the YAP compiler automatically inserts aconstraint whenever a feature is unde�ned otherwise. The corresponding feature inheritancerule states that1. if the value of a feature of the head daughter is unspeci�ed, and2. a feature with the same name and type is declared for the mother node,then add a constraint which uni�es the values of both features.A similar rule applies in the other direction:1. If the value of a feature of the mother node is unspeci�ed, and2. a feature with the same name and type is declared for the daughter node,then add a constraint which uni�es the values of both features.Sometimes, the default inheritance rule has undesired e�ects. Section 2.4.6 will show how itis overridden.2.4.4 Automatic FeaturesThere are some features which are usually declared for all categories and which are alwayscomputed in the same way. This is the case for the Phon feature which contains the portionof the input string which is covered by a constituent.The compiler will automatically insert declarations for the Phon feature and constraints forthe computation of its value if the grammar contains the command:auto Phon;Besides Phon there is another automatic feature called HeadLex which contains informationabout the lexical head of a constituent. The value of the HeadLex feature is automaticallyde�ned by the feature inheritance rule. In lexicon entries, however, the value of the HeadLexfeature has to be speci�ed by the grammar writer."cats": N_pl {HeadLex="cat";};Since the feature inheritance rule is a default rule which applies only if a feature is unde�nedotherwise, it can be overridden. In the following rule for noun compounds, e.g., the valueof the HeadLex feature of the mother node is de�ned as the concatenation of the HeadLexfeatures of the daughter nodes.N {HeadLex=cat(h1,h2);} -> N {HeadLex=h1;} `N {HeadLex=h2;};

12 CHAPTER 2. GRAMMAR FORMALISM2.4.5 Disjunctive ValuesLinguistic entities are often ambiguous. A good example is the German determiner die whichis either feminine singular or a plural form of any gender. Independently of this alternative,the case of die is either nominative or accusative (cp. table 2.1).masc sg fem sg neut sg masc pl fem pl neut plnominative x x x xgenitivedativeaccusative x x x xTable 2.1: Morphosyntactic features of the German determiner dieFour lexicon entries are needed for die:"die" : DT {Gender=fem;Number=sg;Case=nom;};"die" : DT {Gender=fem;Number=sg;Case=acc;};"die" : DT {Number=pl;Case=nom;};"die" : DT {Number=pl;Case=acc;};The third and the fourth entry each covers three possibilities since gender is unspeci�ed.Leaving the value of the case feature ambiguous between nominative and accusative wouldfurther reduce the number of entries to two. To this end, disjunctive feature values areintroduced into the formalism. A disjunctive feature value is a list of comma-separatedconstant values which is enclosed in parentheses."die" : DT {Gender=fem;Number=sg;Case=(nom,acc);};"die" : DT {Number=pl;Case=(nom,acc);};2.4.6 Dummy ValuesSometimes it is necessary to block the feature inheritance rule. In the NP-coordination rulebelow, the Number and the Person feature of the coordinated NP are di�erent from that ofthe head daughter. Feature inheritance is inhibited by assigning a disjunction of all possiblevalues to the corresponding features of the daughter node.NP {Number=pl;Person=3rd;} ->NP {} CC {HeadLex="and";}`NP {Person=(1st,2nd,3rd);Number=(sg,pl);};Enumerating the possible values takes a lot of space and is not always possible (e.g. not forSTRING features). The dummy value * can be used instead. It marks the respective featurevalue as speci�ed without restricting it in any form.

2.5. MISSING FEATURES IN THE FORMALISM 13NP {Number=pl;Person=3rd;} ->NP {} CC {HeadLex="and";}`NP {Person=*;Number=*;};The dummy value is also used as a proxy for elements on feature structure lists. In thefollowing rule, the Subcat value of the VP node is a list with one element of an arbitrarycategory.VP {Subcat=r;Subcat=[*];} -> `V {Subcat=[NP{}=np|r];} NP {}=np;2.4.7 AbbreviationsAn expression of the form XP{}=xp may be abbreviated as xp if it is embedded, i.e. if it is anelement of a feature structure list.A set of constraint equations with the same left hand side like f=a; f=b; can be contractedto one equation f=a=b;. A set of feature or variable declarations with the same type is alsocontractable, e.g. FS_LIST Subcat,Slash; or STRING p1,p2;.A shorter version of the above VP rule is:VP {Subcat=[*]=r;} -> `V {Subcat=[np|r];} NP {}=np;2.5 Missing Features in the FormalismAlthough the YAP formalism is a simple grammar formalism, it is nevertheless expressiveenough to allow for a linguistically motivated description of syntactic phenomena more orless along the lines of HPSG theory [Pollard and Sag, 1994]. However, the descriptions aresometimes less general in the YAP formalism because it is based on explicit phrase struc-ture rules rather than on general principles about well-formedness. Some features which arefamiliar from other grammar formalisms are missing in the YAP formalism. These will bediscussed now.2.5.1 Semantic RepresentationsFeature structures are sometimes used to integrate phonological, syntactic, semantic andother information in a single data structure. Since all the information is available at the sametime, constraints from di�erent levels of linguistic analysis can be processed in parallel. It iseven possible that one and the same constraint refers to information from linguistic levels asdi�erent as, say, phonology and pragmatics.For several reasons, YAP does not follow this approach. First, it is contrary to the con-cept of modularization, which is generally regarded as an important technique for keepinglarge software projects manageable by splitting them into separate modules, which hide ir-relevant information from each other. Large NLP development projects like the Verbmobilproject [Wahlster, 1993] consequently use modular systems with separate components for

14 CHAPTER 2. GRAMMAR FORMALISMspeech recognition, parsing, semantic construction, discourse analysis, transfer and genera-tion, and specify well-de�ned interfaces.Some experiments also indicate that modularization is advantageous with respect to process-ing speed. Kasper and Krieger [Kasper and Krieger, 1996] report a speedup of their HPSGparser resulting from delaying semantic construction to a second pass after parsing. A delaymechanism was also implemented in the Alep grammar development system [Simpkins, 1994].There is also reason to believe that di�erent processing strategies are required for syntacticanalysis and semantic construction. During parsing it is important to eliminate invalid anal-yses as quickly as possible. Few analyses usually remain after parsing, and for most of them,a consistent semantic representation can be built. Therefore the size of the search space is aproblem in parsing but not in semantic construction. Of course, there is often a large searchspace to be explored after the initial semantic representation has been built in order to �nde.g. antecedents for pronouns and information satisfying presuppositions. These tasks aremore or less orthogonal to the task of semantic construction, however, and are, again, bestaccomplished in separate steps.On the other hand, the size of the feature structures is more or less constant during parsing (ifthe grammar is designed appropriately, s. section 2.6), whereas it grows about linearly withthe number of dominated nodes during semantic construction. The number of alternativesemantic representations for a constituent often grows exponentially with sentence length,because the semantic representation of a node reects syntactic ambiguities. Hence an e�cientrepresentation of ambiguity in feature structures is essential for semantic construction, butnot so for parsing.Since the requirements on syntactic parsing and semantic construction are so di�erent, itseems more promising to develop specialized processing strategies for both of them. Algo-rithms for semantic construction have been presented in [Schiehlen, 1996] and [D�orre, 1997].2.5.2 Type HierarchiesFeature structures in the YAP formalism are typed, but in contrast to many other typedgrammar formalisms, the types are not ordered. In this respect, the features types of YAPresemble data types of programming languages like Modula or C. Type checking is mostlydone at compile time and there is no need for type inference at runtime.Feature types mainly serve two purposes in the YAP formalism: They extend the error detec-tion capabilities of the compiler compared to untyped formalisms like the Lexical FunctionalGrammar and they allow a more e�cient representation of the feature structures.Feature types mainly de�ne the structure of feature structures. If the type of a featurestructure is known, it is possible to deduce the whole feature tree except for the values ofterminal nodes and the number and the categories of feature structure list elements. Thesetwo de�ne the informational content of the feature structure.The typing system restricts the grammar designer with respect to the granularity of thegrammar rules. While it easy to make a grammar rule more speci�c by adding further featureconstraints, there is a limit to the level of abstraction because grammar rules cannot abstractover categories. Therefore it is necessary e.g. to write a coordination rule for each category

2.5. MISSING FEATURES IN THE FORMALISM 15which might be coordinated instead of one general rule for all of them. Using a single categoryX for all feature structures is not a practical solution to this problem because it would meanthat all feature structures have the same set of features. It follows that certain generalizationswhich are desirable from a linguistic point of view cannot be expressed in the YAP formalism.2.5.3 Head MovementIn contrast to argument movement, the YAP formalism provides no general mechanism forhead movement, though it is possible to generate a head trace together with a non-emptyconstituent as e.g. in the following rule:VP {Subcat=r2;Slash=[v_p];} ->`V* {Aux=+;VForm=fin;Subcat=[vp_p|r2];}=v_pVP {Subcat=r2;Slash=[];}=vp_p;It would be better to handle this type of movement more generally with a lexicon entry forverb traces and a more general VP rule which is needed anyway:VP {Subcat=r2;Slash=r;} ->`V {Aux=+;VForm=fin;Subcat=[vp_p|r2];}VP {Subcat=r2;Slash=r;}=vp_p;"": V {Aux=+;VForm=fin;Slash=[V{Aux=+;VForm=fin;Slash=[];}];};Such a rule is problematic, however, because the context-free part of the grammar is weakenedto the point where it hardly constrains anything. Just assume that the grammar also containsthe following rules:VP {...} -> V {...}; % intransitive verbS {...} -> NP* {...} VP {...}; % Wh-movement of a subjectSBAR {...} -> NP* {...} S {...}; % relative clause without relative% pronoun, e.g. "the film I saw yesterday"The context-free part of this grammar is able to generate vacuous V's, VP's, S's and SBAR'sat any position of the input string. Due to this problem, a general mechanism for headmovement has not been included in the YAP formalism.2.5.4 Unrestricted Feature Structure List ElementsFeature structure lists (FS LIST) are used to implement subcategorization lists and Slashfeatures. The elements of feature structure lists are restricted to be feature structures of acategory type. This contrasts with current HPSG theory where the elements of subcat listsare synsem values rather than signs in order to enforce the linguistically motivated constraintthat a lexical item not refer to the phonology or constituent structure of its arguments. Theotherwise unmotivated union of syntactic and semantic features to the synsem feature is theprice paid for this.

16 CHAPTER 2. GRAMMAR FORMALISMThe YAP formalism is not intended to enforce linguistically motivated constraints. The re-strictor types exclude the features which are not to be uni�ed, allowing the grammar designerto de�ne atter and more readable feature structures.So far, there was no real need to allow other elements than categorial feature structures onfeature structure lists.2.6 Grammar Design ConsiderationsThe major advantages of the YAP formalism compared to other formalisms are extensiveerror detection capabilities and ease of e�cient implementation.For maximal parsing e�ciency, however, the grammar designer should adhere to the rulethat the feature structure of a node only contains information which is relevant to its syn-tactic behaviour. Semantic representations have to be built by a separate module speci�callydesigned for this task as discussed in section 2.5.1. Explicit links to the feature structuresof daughter nodes (like the Daughters feature in HPSG) are to be avoided. They merelyreplicate information already contained in the chart of the parser. Finally, information aboutarguments should not be propagated upward in the parse tree once the argument has beengenerated. HPSG-style Subcat lists, where elements are cancelled from the list as soon asthey are generated, are appropriate, whereas LFG-style argument slots are problematic be-cause their information is propagated to the root node in order to build a simple semanticrepresentation.These grammar design rules do not restrict the syntactic phenomena which the grammarwriter is able to describe, but merely the way they are described.

2.6. GRAMMAR DESIGN CONSIDERATIONS 17

Figure 2.1: A sample parse tree

18 CHAPTER 2. GRAMMAR FORMALISM

Figure 2.2: Parse tree with feature structures illustrating the Slash percolation mechanism.

Chapter 3Theoretical FoundationsIn the previous chapter, the grammar formalism of YAP has been presented. In this chapter,we will formally de�ne a feature logic for the grammar constraints. Feature trees will beintroduced as models for the feature logic and an algorithm for the computation of the featuretrees will be presented and its correctness will be proved. Finally, it will be shown how YAPconstraints are converted to formulas of the feature logic.As in Shieber's dissertation, the presented feature logic is based on its own set of axiomsrather than on standard predicate logic. This seems a reasonable approach since we aremainly interested in a proof of the correctness of the parsing method. All de�nitions andproofs which do not directly relate to the parsing algorithm can be found in similar form in[Shieber, 1992]. The purpose of this chapter is not to introduce a new feature logic but toprove the correctness of the presented parsing method. Readers familiar with Shieber's thesismay skip sections 3.1 and 3.2.The notation in this chapter is partially adopted from [Shieber, 1992]. If nothing else isstated, p; p0; q; r will denote feature paths, c; c0 will denote constants and v; v0 will denoteentities which are either constants or feature paths. � and will denote single constraintsand � and 	 will denote sets of constraints. A set of feature constraints will be called aformula of the feature logic.3.1 The Feature LogicThe de�nition of the feature logic follows the de�nition in [Shieber, 1992].De�nition 1: A feature path is a �nite sequence of labels from a �nite set of feature labelsL. Path is the set of all feature paths.A feature path will be written as a sequence of labels which is enclosed in angle brackets, e.g.hf1f2 : : : fni. Concatenation of paths is notated with a the center dot (`�').The length of a feature path p (written jpj) is de�ned in the obvious way.De�nition 2: A constraint equation is an equation of the form p _= q or the form p _= c,where p and q are feature paths and c is a constant from a set of constants C.19

20 CHAPTER 3. THEORETICAL FOUNDATIONSThe symbol _= is used rather than = in order to avoid confusion with the equality symbol ofthe meta-language.We will now de�ne what it means for a constraint set to be consistent. The de�nition formal-izes the requirements that feature structures cannot be atomic and compound at the sametime (constant/compound clash), and that the label of an atomic feature structure is unique(constant/constant clash).De�nition 3: A set of constraint equations is consistent i� it does not entail a pair ofconstraints of either of the following two forms:Constant/constant clash: p _= c and p _= c0 where c 6= c0 orConstant/compound clash: p _= c and p � hfi = v.Entailment in the feature logic is de�ned by the inference rules:Triviality: ` hi _= hiSymmetry: p _= q ` q _= pReexivity: p � r _= v ` p _= pSubstitutivity: q _= p; p � r _= v ` q � r _= v� ` � means that � is deducible from � by means of the above inference rules.De�nition 4: A set of constraint equations � is called cyclic if two feature paths p and qexist such that q 6= hi and � ` p � q _= p.We will now prove that the length of the feature paths in all constraints which are deduciblefrom an acyclic set of feature constraints is limited by a constant. This lemma will help usto prove that the feature computation algorithm to be presented in section 3.4 terminates.Lemma 1: If � is a �nite, acyclic set of constraint equations, then there is an N 2 N suchthat for all constraints � = p _= v which are deducible from �, the length of path p is shorterthan N .Proof: We prove this lemma with a pigeon hole argument and set N := 2 +Pp _= q2� jpj +jqj � 1 +Pp _= c2� jpj.We will �rst show that at most N � 1 many di�erent feature paths are de�ned, i.e. thereare at most N � 1 many feature paths p1; p2; : : : ; pN�1 such that 81�i<N [9v� ` pi _= v and81�j<N ;i 6=j� 6 ` pi _= pj].Each constraint equation p _= q 2 � introduces two paths, namely p and q. Because of p _= q,the constraint adds at most one new path to the set of di�erent paths. Each constraintequation p _= c 2 � also adds at most one new path to the set of di�erent paths.The Triviality inference rule adds at most one new path, namely the empty path hi to theset of di�erent paths. The Symmetry rule does not add any new paths. The Reexivity ruleadds for a rule of the form hf1f2 : : : fni _= c at most n � 1 new paths to the set of di�erentpaths. (The empty path has already been added by the Triviality rule and hf1f2 : : : fni has

3.2. FEATURE STRUCTURE MODELS 21been added as well.) Similarly, the Reexivity rule adds at most jpj+ jqj � 2 new nodes for aconstraint p _= q.The Substitutivity rule q _= p; p � r _= v ` q � r _= v does not add any new paths to the set ofdi�erent paths because for any q �r0 with r = r0 �r00 (including r = r0), it follows that q �r0 _= p�r0.(Proof: q _= p; p � r _= v ` p � r0 _= p � r0 ` q � r0 _= p � r0)Therefore there are at most N � 1 = 1 +Pp _= q2�(jpj+ jqj � 1) +Pp _= c2� jpj many di�erentpaths. Now assume that � ` p _= v for some p with jpj > N , then q _= q follows by theReexivity rule for all q such that q � r = p for some r. There are at least N many such q.Because there are less than N many di�erent paths, it follows that q = q � r with r 6= hi fortwo pre�xes q; q � r of p. Hence the set of constraints must be cyclic in contradiction to theassumption that it is not.3.2 Feature Structure ModelsIn this section, we will de�ne models for feature constraint sets. Stuart Shieber considers inhis dissertation [Shieber, 1992] a range of feature structure models and assesses them in termsof denotational soundness, logical soundness, logical completeness, minimal model existence,categoricity, �niteness of minimal models and computability of operations. These propertiesof models are de�ned as follows:Property 1: (DENOTATIONAL SOUNDNESS) For all formulas � from a feature logic L,if there is a model M in the set of modelsM such that M j= �, then � is consistent.Denotational soundness implies that models exist only for consistent feature constraints.Property 2: (LOGICAL COMPLETENESS) For all formulas � and �0 of L, if all modelsof � are also models of �0, then � ` �0.Logical completeness requires that logical inferences hold for all semantically entailed formu-las.Property 3: (DENOTATIONAL COMPLETENESS) For all formulas � of L, if � is con-sistent, then there is a model M 2M such that M j= �.There must be a model for each consistent set of formulas.Property 4: (LOGICAL SOUNDNESS) For all formulas � and �0 of L, if � ` �0, then allmodels of � are also models of �0.Property 5: (CATEGORICITY) For any two distinct models M and M 0, there exists aformula � such that either M j= � and M 0 6j= � or vice versa.Categoricity requires that any two models are distinguished by some formula. We now de�nean ordering on models (called subsumption) such that a model subsumes another model if ithas less information, i.e. it satis�es fewer formulas.De�nition 5: A modelM subsumes another modelM 0 (writtenM �M 0) i� for all formulas� of L, M 0 j= � whenever M j= �.

22 CHAPTER 3. THEORETICAL FOUNDATIONSFor computational purposes, it is useful to have a unique minimal model for each consistentformula. All computations will be carried out on these minimal models.Property 6: (MINIMAL MODELS) if � is a consistent formula, then there is a model Msuch that M j= � and for all M 0 such that M 0 j= �, it is the case that M �M 0.There is a class of models which has all the above properties, namely the feature graphs. Fea-ture graphs are rooted, directed graphs with labelled arcs and labelled terminal nodes. Theyform canonical models for the feature logic in the sense that two sets of feature constraintsare logically equivalent if and only if their minimal models are equivalent. Therefore it ispossible to replace operations on constraint sets by operations on the feature graphs whichmodel the constraint sets. In particular, it is possible to compute a model for the union oftwo constraint sets by unifying their minimal feature graph models.Graph models are well-suited models for the feature logic, but they are not the only possiblemodels. One alternative are �nite trees. Finite trees are trees with labelled arcs and terminalnodes. They are the simplest feature structure models that Shieber considers. He identi�esthe following problems with �nite tree models (feature trees):� Feature trees are not denotationally complete because they fail to model cyclic featurestructures. There is no feature tree, e.g., which satis�es the constraint hi _= hfi. (Afeature graph satisfying this constraint is shown in �g. 3.1)� Feature trees are not logically complete (if the set of labels is �nite). Each model forthe formula � = fhfxi _= ajf 2 ff1; f2g; x 2 Lg also models � = hf1i _= hf2i. However,� 6 ` �. This problem arises because feature equality in feature trees is extensional (twofeatures are equal if they have the same value) whereas equality in the feature logic isintensional (two features p and q are only equal if an explicit equality constraint p _= qis entailed by the constraint set).
fFigure 3.1: Cyclic feature structureAs Shieber notes, the denotational completeness of feature trees is recovered if cyclic con-straints and in�nite constraints are disallowed. Because neither of these types of constraintsseems useful as a syntactic constraint1, this restriction is acceptable for syntactical analysis.Logical completeness of feature trees is recovered if feature trees contain additional informa-tion about which features have been set equal. Shieber calls this type of model Eqtree. Wewill not consider them here because they o�er no advantages over feature graphs.Although simple feature trees are not the ideal models for feature constraints from a theoret-ical point of view, they are nevertheless useful to implement a parser because their represen-tation and manipulation is very e�cient. Using feature trees to represent feature structureshas some consequences, however:1Cyclic constraints might be useful to encode the semantics of so called \liar" sentences like ``Thissentence is false'' [Barwise and Etchemendy, 1988]. But we are not concerned with semantics, here.

3.2. FEATURE STRUCTURE MODELS 23� Constraints de�ning cyclic feature structures have to be disallowed. It is possible todetect cyclic feature constraints within a single rule at compile time, but it is not clearhow this could be done for the grammar as a whole. A simple heuristic can be used inpractice to detect the other cases at runtime. This heuristic limits the depth of featurestructures to a �xed maximal value, e.g. 10. If a feature structure exceeds this limit,the parser will stop and report an error. This heuristic is not applicaple, of course, ifthe grammar is known to generate feature structures of arbitrary depth. But this isunlikely for an appropriately designed grammar (comp. section 2.6).� It is not possible to distinguish whether two features values are incidentally the sameor because some constraint enforces agreement. Some syntactic theories make use ofthis distinction in the analysis of reexives. Here, it would be necessary to move theapplication of the respective constraints to semantic construction.� It is not possible to compute a model for the union of two constraint sets simply byunifying the feature trees which form minimal models for the two constraint sets.� Since feature trees cannot represent equality constraints, a problem arises in case ofdisjunctive feature values: If there are two features in a feature tree with the samedisjunctive value, then we are only allowed to choose the values from the disjunctionindependently for both features if no equality constraint exists. However, since theequality information is missing in feature trees, there is no way to decide which combi-nations of feature values are valid.The third point is related to the fact that feature trees are not logically complete. Featuretree (a) in �gure 3.2, for example, is a minimal model for �1 = fhfi _= hgig and feature tree(b) is a minimal model for �2 = fhgfi _= hgfig. Feature tree (c) results from unifying (a) and(b), but it is not a model for the union of constraints � = �1 [�2 because (c) violates theconstraint hfi _= hgi. The minimal feature tree model for � is shown in �gure 3.2 as (d).
f g

f

g f g

f

f g

ff

(a) (b) (c) (d)Figure 3.2: Sample feature treesThe problem arises because feature tree (a) fails to represent the constraint that the values off and g have to be equal. Hence feature f is not updated together with g as it ought to be.Note however, that (c) subsumes (d), the minimal model for �. This is always true. If the treeuni�cation had failed, then � would have been inconsistent. YAP exploits this property bycomputing a sequence of increasingly larger feature trees which subsume the minimal modelfor the constraints at a node and �nally converge to this minimal model.

24 CHAPTER 3. THEORETICAL FOUNDATIONSFeature trees will now be formally de�ned as partial functions from the set of labels to theset of feature structures. We follow the presentation in [Shieber, 1992]. From now on, theterms \feature structure" and \feature tree" will be used interchangeably.De�nition 6: The set TL;C of feature structures is de�ned as TL;C = Si�0 Ti, where T0 = Cis the set of atomic feature structures, and Ti is the set of all partial functions from L toSj<i Tj. ? is the feature structure with dom(f) = ;.F (f) is the value of feature f in feature structure F . This notation is extended to paths byde�ning F (hf1 : : : fni) := F (f1) : : : (fn).? is the most general feature structure and contains no information.De�nition 7: A feature structure F subsumes another feature structure F 0, written F � F 0,i� either� F = c and F 0 = c, with c 2 C or� 8f2dom(F) f 2 dom(F 0) ^ F (f) � F 0(f)Shieber calls this the natural partial ordering . It does not exactly match the de�nition ofsubsumption in de�nition 5 because there are feature trees F and F 0 such that F � F 0, butF j= � and F 0 6j= � for some constraint �. For example, feature tree (a) in �gure 3.2 subsumesfeature tree (c), but feature tree (a) satis�es the constraint hfi _= hgi whereas feature tree (c)does not.De�nition 8: The uni�cation of two feature trees F and G (written F t G) is de�ned asfollows:� F tG = F , if F 2 C and G � F (Note that ? � F according to def. 7.)� F tG = G, if G 2 C and F � G� F tG = >, if either{ F 2 C and G 6� F , or{ G 2 C and F 6� G, or{ F (f) tG(f) = > for some feature f 2 dom(F) [dom(G)� otherwise, dom(F tG) = dom(F) [dom(G) and{ (F tG)(f) = F (f) if f =2 dom(G){ (F tG)(f) = G(f) if f =2 dom(F){ (F tG)(f) = F (f) tG(f) if f 2 dom(F) [dom(G)A feature structure is a model for a set of constraints if it satis�es those constraints. We willnow de�ne what it means when a feature structure is said to satisfy a constraint.De�nition 9: A feature structure F satis�es an equation p _= v (written F j= p _= v) i�either

3.2. FEATURE STRUCTURE MODELS 25� v is a path q 2 Path, and F (p) as well as F (q) are de�ned, and F (p) = F (q) or� v is a constant c 2 C and F (p) is de�ned and F (p) = c.A feature structure F satis�es a set of constraint equations � i� it satis�es each equation� 2 �.Now, we de�ne an operator which creates a new feature structure from a set of featurestructures by linking the feature structures as feature values to the root node of the newfeature structure.De�nition 10: The embedding Ff2I Ff nf is the partial function F with domain dom(F) = Iand F (f) = Ff for all f 2 I.If I contains only one element, the abbreviation Ff n f will be used.This complex embedding operator is de�ned directly rather than in terms of an elementaryembedding operator 'n' and a uni�cation operator 't' to simplify some proofs.De�nition 11: A set of constraint equations � will be called a description of a featurestructure F , written desc(F), if � = fp _= c j F (p) = c; c 2 Cg [fp _= p j F (p) is de�nedg.The description of a feature structure contains all constraints which are satis�ed by the featurestructure except for equality constraints. It is a comprehensive description of the informationcontained in the feature structure. (Remember that equality constraints are not representedin feature trees.)De�nition 12: The size of a feature tree F , size(F), is recursively de�ned as follows:size(F) = (1 if F 2 CPf2dom(F) size(F (f)) + 1 otherwiseWe will now show that the subsumption relation on feature trees is reexive, antisymmetricand transitive, and that it is therefore a partial order.Lemma 2: (REFLEXIVITY) For all feature structures F it is the case that F � F .Proof: This follows from de�nition 7.Lemma 3: (ANTISYMMETRY) Feature structure F subsumes feature structure F 0 andF 0 subsumes F i� F = F 0.Proof:'(': F = F 0 entails F � F 0 and F 0 � F according to the de�nition of subsumption.')': F � F 0 and F 0 � F entails F = F 0.Induction hypothesis: Lemma is valid for feature structures from Smi=0 Ti where m < n.F 2 T0: F is an atom c 2 C. From F 2 C and F 0 � F follows F 0 = c according to thede�nition of subsumption.

26 CHAPTER 3. THEORETICAL FOUNDATIONSF 2 Tn: F is a partial function. From F � F 0 follows according to the de�nition of sub-sumption that 8f2dom(F) f 2 dom(F 0) ^ F (f) � F 0(f) holds. From F 0 � F followsthat 8f2dom(F 0) f 2 dom(F) ^ F 0(f) � F (f) holds. Therefore dom(F) = dom(F 0) and8f2dom(F)F (f) � F 0(f)^F 0(f) � F (f). With the induction hypothesis we can conclude that8f2dom(F)F (f) = F 0(f) and therefore F = F 0.Lemma 4: (TRANSITIVITY) If F � F 0 and F 0 � F 00, then F � F 00.Proof: There are two cases. If F is a constant c 2 C, then F = F 0 and F 0 = F 00 by de�nition 7.Otherwise, F (f) � F 0(f) and F 0(f) � F 00(f) for all f 2 dom(F). F (f) � F 00(f) follows byinduction over the length of the longest path in F .Now we prove some lemmata which will be needed later to prove the correctness of the parsingalgorithm.Lemma 5: If feature structure F subsumes feature structure F 0 and F (p) with p 2 Path isde�ned then F 0(p) is de�ned and F (p) � F 0(p).Proof by induction over the length of path p.Lemma 6: If feature structure F does not subsume feature structure F 0, then a constraintequation p _= v exists with p 2 Path and v = p or v 2 C such that F j= p _= v and F 0 6j= p _= v.Proof:Induction hypothesis: Lemma is valid for feature structures from Smi=0 Ti where m < n.F 2 T0: We choose p := hi and v := F with F 2 C (remember T0 = C). F j= p _= v followsbecause of F (hi) = F = v (see def. of feature structures) and from F 6� F 0 follows that F 0 6= vand F 0 6j= hi _= v.F 2 Tn: F is a partial function from L to Sn�1i=0 Ti and because of F 6� F 0 there is a featuref 2 dom(F) with f =2 dom(F 0) or F (f) 6� F 0(f). If f =2 dom(F 0), then hfi _= hfi is a constraintequation which is satis�ed by F but not by F 0.Otherwise F (f) 6� F 0(f) and since F (f) 2 Sn�1i=0 Ti, there is an equation p _= v with p 2 Pathand v = p or v 2 C such that F (f) j= p _= v and F 0(f) 6j= p _= v (induction hypothesis).If v = p, then F (f)(p) exists, but F 0(f)(p) does not. Therefore F j= hfi � p _= hfi � p andF 0 6j= hfi � p _= hfi � p.If v 2 C, then F (f)(p) = v and F j= hfi � p _= v. Because of F 0(f) 6j= p _= v we conclude thatF 0(f)(p) 6= v and therefore F 0 6j= hfi � p _= v.Lemma 7: F subsumes F 0 i� F 0 j= desc(F).Proof:')': If F subsumes F 0 then F 0 j= desc(F)Otherwise there are feature structures F; F 0 with F � F 0 and an equation p _= v 2 desc(F)such that F 0 6j= p _= v. According to the de�nition of desc, v is either equal to p or a constantfrom C. Since p _= v 2 desc(F), F must satisfy p _= v and therefore F (p) must be de�ned.

3.2. FEATURE STRUCTURE MODELS 27From F � F 0 and lemma 5, it follows that F 0(p) is de�ned as well. However, if v = p thenF 0 j= p _= v in contrast to the above assumption. Therefore v must be a constant from Cand F (p) = v. However, since F subsumes F 0 and F (p) = v, it follows that F 0(p) = v andtherefore F 0 j= p _= v, again in contrast to the above assumption.'(': If F 0 j= desc(F) then F subsumes F 0Otherwise there are feature structures F; F 0 such that F 0 j= desc(F) and F 6� F 0. FromF 6� F 0 follows according to lemma 6 that a constraint p _= v with v = p or v 2 C existssuch that F j= p _= v and F 0 6j= p _= v. However, it follows that p _= v 2 desc(F) and thereforeF 0 6j= desc(F) in contrast to the initial assumption.Lemma 8: F (p) j= � i� F j= �[hi ! p] where �[p ! q] denotes the replacement of allpaths in � of the form p � r with q � r.Proof: see [Shieber, 1992] page 89.Lemma 9: F j= � i� F n f j= �[hi ! hfi].Proof: Replacing F with F n f and p with hfi in lemma 8, we get (F n f)(hfi) j= � i�F n f j= �[hi ! hfi]. From the de�nition of embedding follows (F n f)(hfi) = F .Lemma 10: If feature structure F is de�ned, then a feature path p exists such that F (p) = vwith v 2 C [f?g.Proof:Induction hypothesis: Lemma is valid for feature structures from Smi=0 Ti where m < n.F 2 T0: In this case, F = c with c 2 C and we choose p := hi so that F (p) = F (hi) = F = c.F 2 Tn: Here F is a partial function from L to Sn�1i=0 Ti. If dom(F) = ;, then we choosep := hi so that F (p) = F (hi) = ? holds. Otherwise, there is a feature f 2 dom(F) such thatF (f) is de�ned. According to the induction hypothesis, there is a feature path r such thatF (f)(r) = c0 for some c0 2 C [f?g. In this case, F (p) = c holds for p := hfi � r and c := c0.Lemma 11: (LOGICAL SOUNDNESS) For all F 2 TL;C and all sets of equations �, ifF j= � and � ` � then F j= �.Proof: see [Shieber, 1992] page 90.Lemma 12: The size of a feature structure F , size(F), is always �nite.Proof by induction over the depth of F .Lemma 13: If feature structure F subsumes feature structure F 0, then size(F) � size(F 0).Proof:Induction hypothesis: Lemma holds for feature structures in Smi=0 Ti where m < n.F 2 T0: In this case, F = c with c 2 C and, according to the de�nition of subsumption F 0 = c.So, size(F) = 1 and size(F 0) = 1 and therefore size(F) � size(F 0).

28 CHAPTER 3. THEORETICAL FOUNDATIONSF 2 Tn: In this case, size(F) = Pf2dom(F) size(F (f)). Now F (f) � F 0(f) holds for allf 2 dom(F) by de�nition of subsumption, and because F (f) 2 Sn�1i=0 Ti it follows thatsize(F (f)) � size(F 0(f)) holds for all f 2 dom(F) (induction hypothesis). It followsthat size(F) � Pf2dom(F) size(F 0(f)) and because the size function is always non-negativesize(F) �Pf2dom(F 0) size(F 0(f)) = size(F 0).De�nition 13: Feature structure F = tm(�), the tree model of a �nite and consistent setof acyclic constraint equations �, is de�ned as follows:1. F (p) = c with c 2 C i� � ` p _= c2. F (p) = ? i� � ` p _= p and 8r2Path� ` p � r _= v) r = hi ^ v =2 C3. f 2 dom(F (p)) and F (p)(f) = F (p � hfi) i� � ` p � hfi _= p � hfi.Lemma 14: If F = tm(�) and F (p) is de�ned then � ` p _= p.Proof:According to de�nition 13, there is a constraint � of the form p _= c or p _= p or p � hfi _= p � hfisuch that � ` �. � ` p _= p follows immediately by the reexivity rule.Because � is a �nite set of acyclic constraints and the number of feature labels is �nite, itfollows that the tree models have �nite size.Proof:For each node in F , there is a constraint � of the form p _= c or p _= p or p � hfi _= p � hfi suchthat � ` � (de�nition 13). Because � is acyclic, there is a constant N such that jpj < N forall feature paths (lemma 1). Therefore, if F (p) is de�ned then jpj < N .Lemma 15: (DENOTATIONAL COMPLETENESS) For all sets of constraints �, if � isconsistent, then there is a F 2 TLC such that F j= �.Proof: (Compare Shieber's proof for the denotational completeness of in�nite trees in[Shieber, 1992], page 94.)We prove that F = tm(�) as de�ned in de�nition 13 is a feature tree and satis�es �.F is a function: Suppose F were not a function, that is F assigned two distinct values G andG0 to a single path p. If G;G0 2 C, then � ` p _=G and � 6 ` p _=G0, so � is inconsistent, contraassumption. If G 2 C and G0 = ?, then � ` p _=G and � 6 ` p _=G, again a contradiction.If G 2 C and G0 =2 C [f?g, then � ` p _=G and � ` p � hfi _= p � hfi for some feature f . Butthen � is inconsistent due to a constant/compound clash.If G = ? and G0 =2 C [f?g, then � 6 ` p � r _= v for non-empty r and � ` p � hfi _= p � hfi, acontradiction.Finally, we have to consider the case where G =2 C [f?g and G0 =2 C [f?g. When F (p)is de�ned and F (p) =2 C [f?g then F (p) is a function whose range and feature values areuniquely de�ned by the third point of def. 13. Hence, g and G0 must be identical.F is pre�x-closed: This follows from the de�nition of tm and the reexivity rule.

3.2. FEATURE STRUCTURE MODELS 29F satis�es �: Any constraint equation � 2 � is of one of two forms. If � = p _= c, thenF (p) = c by de�nition of tm and F j= �.If � = p _= q, we must show that F (p) and F (q) are de�ned and that F (p) = F (q).1. If � ` p _= c for some c 2 C, then � ` q _= c follows immediately and by de�nition of tm,F (p) and F (q) are de�ned and F (p) = F (q) = c.2. From � ` p _= q follows � ` p _= p and � ` q _= q. If (� ` p � r _= v)) (r = hi ^ v =2 C),then (� ` q � r _= v)) (r = hi ^ v =2 C) holds because otherwise � ` p � r _= v wouldfollow for some non-empty path r, a contradiction to the assumption that (� ` p �r _= v)) (r = hi ^ v =2 C). Therefore F (p) and F (q) are de�ned by de�nition of tm andF (p) = F (q) = ?.3. None of the previous cases applies. Then there must be a feature f and a feature pathr such that � ` p � hfi � r _= v (follows from def. 13). � ` p � hfi _= p � hfi follows bythe reexivity rule. From � ` p � hfi _= p � hfi follows that F (p) is de�ned and thatf 2 dom(F (p)). The same follows for q. So F (p) as well as F (q) is de�ned and theirdomains are equal. Otherwise, there is a feature f which is in only one of the domains.Without loss of generality we assume f 2 dom(F (p)). According to the def. of tm,� ` p � hfi _= p � hfi and by the substitutivity rule � ` q � hfi _= p � hfi and by thereexivity rule � ` q � hfi _= q � hfi follows. But then F (q)(f) is de�ned as well becauseF j= �. We know that � ` p � hfi _= q � hfi holds. By induction over the height of thefeature trees, it is easy to prove that F (p � hfi) = F (q � hfi).Lemma 16: (EXISTENCE OF MINIMAL MODELS) If � is a �nite, consistent, acyclicset of constraints, then a feature structure F , called minimal model of �, exists such thatF j= � and for all F 0 such that F 0 j= �, it is the case that F � F 0.Proof:According to lemma 15, there is a feature structure F = tm(�) such that F j= �.F is the unique minimal model of �. Otherwise, another feature tree F 0 existed such thatF 0 j= � and F 6� F 0. From F 6� F 0 follows according to lemma 6 that a constraint equationp _= v with v = p or v 2 C must exist such that F j= p _= v and F 0 6j= p _= v. Because F 0 j= �and because feature trees are logically sound (lemma 11), it follows that � 6 ` p _= v.However, if v 2 C, then F (p) = v follows by de�nition of constraint satisfaction and � ` p _= vfollows by de�nition of tm which is a contradiction to � 6 ` p _= v.Otherwise, if v = p holds, then F j= p _= p and F 0 6j= p _= p and � 6 ` p _= p. It follows fromF j= p _= p and the de�nition of constraint satisfaction that F (p) is de�ned. This entails byde�nition of tm that � ` p _= c or � ` p _= p or � ` p � hfi _= p � hfi for some feature f . In allthree cases, � ` p _= p follows immediately, a contradiction to � 6 ` p _= p. Hence F is indeedthe unique minimal model of �.The minimal model of � is written MM(�).Lemma 17: Inconsistent constraints have no feature tree model.

30 CHAPTER 3. THEORETICAL FOUNDATIONSProof:Assume there is an inconsistent set of constraints � and a feature structure F which models �.Because � is inconsistent it is either possible to derive two constraints p _= c and p _= c0 wherec; c0 2 C and c 6= c0 or two constraints p _= c and p �r _= v where c 2 C and r a non-empty path.In the �rst case, F (p) = c and F (p) = c0 follows from the de�nition of constraint satisfactionwhich is impossible. In the latter case, F (p) is a constant and a function at the same time,which is impossible according to the de�nition of feature trees.Lemma 18: If F andG are feature structures and if FtG 6= >, then FtG =MM(desc(F)[desc(G)) holds.Proof:Looking at the de�nitions of uni�cation (de�nition 8) and subsumption (de�nition 7), it isobvious that F � F t G and G � F t G hold. It follows with lemma 7 that F t G j=desc(F) and F tG j= desc(G). Because of the logical soundness of feature trees, F tG alsosatis�es all formulas which are entailed by desc(F)[desc(G). Therefore F tG is a model fordesc(F) [desc(G).If F tG were not the minimal model for desc(F) [desc(G), then another model F 0 existedsuch that F t G 6� F 0. In this case, a constraint p _= v with p 2 Path and either v = p orv 2 C exists, according to lemma 6, such that F tG j= p _= v and F 0 6j= p _= v. If v 2 C, then(F tG)(p) = v and either F (p) = v or G(p) = v. in this case, p _= v 2 desc(F) [desc(G) andtherefore F 0(p) = v.If v = p, then F t G j= p _= p and therefore (F t G)(p) is de�ned. From the de�nition ofuni�cation follows that (F tG)(p) is only de�ned, if either F (p) or G(p) is de�ned. Thereforep _= p 2 desc(F) [desc(G) holds. We conclude that no such feature structure F 0 exists andthat F tG is the minimal model for desc(F) [desc(G).3.3 Parse TreesAfter de�ning the feature structures, we will now formally de�ne grammar rules and parsetrees.De�nition 14: A grammar rule is a pair hk;�i, where k is the arity of the rule and � isa set of constraint equations. All feature paths in � start with a label l 2 f0; 1; : : : kg andhii _= hii 2 � for all 0 � i � k.De�nition 15: A lexical rule is a pair hw;�i, where w is a word and � is a set of constraintequations. All feature paths in � start with the label 0 and h0i _= h0i 2 �.De�nition 16: A terminal parse tree node n is a triple hi; F; ri, where i 2 N is an index, Fis a feature structure and r is a lexical rule.i is called the index of node n. F is called the feature structure of n.

3.4. FEATURE COMPUTATION 31De�nition 17: A nonterminal parse tree node is a quadruple hi; F; r;Di, where i 2 N is anindex, F is a feature structure, r = hk;�i is a grammar rule and D = hd1 : : : dki is the list ofindices of the daughter nodes.i is called the index of node n. F is called the feature structure of n.De�nition 18: A parse tree node is either a terminal parse tree node or a nonterminal parsetree node.De�nition 19: A parse tree node n immediately dominates another node n0 i� n is anonterminal node hi; F; hk;�i; hd1 ; d2; : : : ; dkii and there is a j with 0 < j � k such that dj isthe index of n0.De�nition 20: A parse tree node n dominates another node n0 i� n = n0 or there is a noden00 such that n immediately dominates n00 and n00 dominates n0.De�nition 21: A parse tree is a pair hPN; ki, where PN is a set of parse tree nodes andk 2 N is the index of a node n 2 PN called root node and PN is the set of nodes dominatedby n and n is not dominated by any node and any other node from NP is dominated byexactly one node.De�nition 22: A valid parse tree is a parse tree hPN; ki in which� for each terminal node hi; F; hw;�ii 2 PN it is the case that F n 0 j= � and� for each nonterminal node hi; F0; hk;�i; hd1; : : : ; dkii 2 PN and its daughter nodeshdj ; Fj ; : : :i 2 PN with 0 < j � k it is the case that Fki=0 Fi n i j= �.3.4 Feature ComputationWe will now present an algorithm which computes the features trees when the context-freeparse tree is given. This algorithm is a simpli�cation of the algorithm which is used in YAP(see section 4.3.3). The following simpli�cations have been made:1. unambiguous parse trees as input (rather than \parse forests")2. no feature typing3. no disjunctive feature values4. no feature operators (like string concatenation in the YAP formalism)This algorithm will be used to prove that iterative computation of feature structures with atree representation indeed returns the correct result.

32 CHAPTER 3. THEORETICAL FOUNDATIONS3.4.1 The AlgorithmThe algorithm is presented as a set of inference rules. It is assumed that the context-freeparse tree is given as a set of tuples of the form hi; hX ! w;�ii in case of terminal nodes andthe form hi; hX ! Y1 : : : Yk;�i; hd1; : : : ; dkii in case of nonterminal nodes, where i is a uniqueindex which identi�es the node and hX ! Y1 : : : Yk;�i is a grammar rule with a context-freebackbone X ! Y1 : : : Yk and a set of feature constraints �, and d1 through dk are the indicesof the daughter nodes. hX ! w;�i is a lexicon entry with feature constraints. It is furtherassumed that the root node of the parse tree has index 0.The feature computation algorithm uses the following auxiliary de�nition.De�nition 23: The most general extension MGE(�; i; T1; : : : ; Tk) of a feature tree Ti; 1 �i � k with respect to a set of feature constraints � and a set of other feature trees fTj j1 �j 6= i � kg is de�ned as:MGE(�; i; T1; : : : ; Tk) = (MM(Skj=0 desc(Tj)[hi ! hji] [�)) (i) if MM(...) exists> otherwise (3.1)The most general extension operation extends a set of features structures (by adding newfeatures or by making feature values more speci�c) such that the local constraints of a ruleor lexical entry are satis�ed.Initialisation hi; hX ! w;�iih0; hi;?; hw;�iii hi; hX ! Y1 : : : Yk;�i; hd1; : : : ; dkiih0; hi;?; hk;�i; hd1 ; : : : ; dkiii (3.2)Bottom-Up hj; hi; T; hw;�iiihj + 1; hi;MGE(�; 0; T); hw;�iii j even (3.3)hj; hi; T0; hk;�i; hd1; : : : ; dkiii hj + 1; hd1; T1; : : :ii : : : hj + 1hdk; Tk; : : :iihj + 1; hi;MGE(�; 0; T0 ; T1; : : : ; Tk); hk;�i; hd1; : : : ; dkiii j even (3.4)Top-Down hj; h0; T; hk;�i; hd1 ; : : : ; dkiiihj + 1; h0; T; hk;�i; hd1 ; : : : ; dkiii j odd (3.5)hj + 1; hi; T0; hk;�i; hd1; : : : ; dkiii hj; hd1; T1; : : :ii : : : hj; hdk; Tk; : : :iihj + 1; hd1;MGE(�; 1; T0; : : : ; Tk); : : :ii : : : hj + 1; hdk;MGE(�; k; T0; : : : ; Tk); : : :ii j odd(3.6)

3.4. FEATURE COMPUTATION 33Termination CriterionFailure: 9i hj; hi;>; hw;�iii (3.7)9i hj; hi;>; hk;�i; hd1 ; : : : ; dkiii (3.8)Success: 8i hj; hi; T; hw;�iii) hj + 1; hi; T; hw;�iii (3.9)8i hj; hi; T; hk;�i; hd1 ; : : : ; dkiii) hj + 1; hi; T; hk;�i; hd1 ; : : : ; dkiii (3.10)The initialisation step sets the feature structures to ? and initialises the generation countersto 0.The bottom-up step updates the feature structures from bottom to top. The �rst rule appliesto terminal nodes where the constraints of the lexical entry have to be satis�ed. The secondrule applies to non-terminal nodes whose feature structures are updated to reect changes inthe daughter node feature structures. The MGE operation also computes new values for thedaughter node feature structures. But these are not retained.The top-down step updates the feature structures from top to bottom. The feature structureof the root node (index 0) is just copied. The other feature structures are updated to reectchanges in the feature structures of the mother node and the sister nodes. The MGE operationalso computes a new feature structure for the mother node which is not retained.The algorithm terminates if one of the constraints cannot be satis�ed or if no feature structurechanged in the last iteration.Note that the feature structure for a particular node and generation is not guaranteed to beunique if the input structure is a graph rather than a tree. A slightly di�erent algorithm isttherefore needed to compute the feature structures of parse forests.To show the correctness of the algorithm, we prove �rst that any valid solution to the parsingproblem is subsumed by all intermediate results of the algorithm.Lemma 19: If hfnjg; ki is a valid parse tree with nj = hj; Fj ; rj ;Dji and if hfntjg; kiwith ntj = hj; F tj ; rj;Dji is the parse tree resulting after t iterations of the algorithm, then8i F ti � Fi.Proof:Induction hypothesis: F si � Fi for all i and s < tt = 0: F 0i = ? � Fi for all it > 0: Three cases have to be considered:1. F ti is the feature structure of the root node in a top-down pass and hence unchanged.F ti = F t�1i � Fi (induction hypothesis)2. F ti is the feature structure of a terminal node nti = hi; F ti ; hw;�ii resulting after abottom-up pass of the algorithm and F ti =MM(desc(F t�1i)[hi ! h0i] [�)) (0).

34 CHAPTER 3. THEORETICAL FOUNDATIONSAccording to lemma 7, F t�1i � Fi (induction hypothesis) implies that Fi j= desc(F t�1i).From lemma 9 it follows that Fi n0 j= desc(F t�1i [hi ! h0i]). From the de�nition of validparse trees follows that Fi n 0 j= �. From Fi n 0 j= desc(F t�1i [hi ! h0i]) [� followsMM(desc(F t�1i [hi ! h0i]) [�) � Fi n 0 and therefore F ti � Fi (lemma 5).3. F ti is the feature structure of some other node which was updated either during bottom-up or during top-down parsing. In other words, there is a non-terminal node nt�1d0 =hd0; F t�1d0 ; hk;�i; hd1; : : : ; dkii and a set of daughter nodes nt�1dl = hdl; F t�1dl ; : : :i with0 < l � k such that i = dj for some j in 0 � j � k. F t�1i = F t�1dj has been replacedwith F ti =MM(Skl=0 desc(Fdl)[hi ! hli] [�)) (j).According to lemma 7, F t�1i � Fi (induction hypothesis) implies that Fi j= desc(F t�1i)and according to lemma 9 it follows that Fi n l j= desc(F t�1i [hi ! hli]). From thede�nition of multiple embedding follows that Fkl=0 Fdl n l j= desc(F t�1dm [hi ! hmi]) forall 0 � m � k. From the de�nition of valid parse trees further follows that Fkl=0 Fdl nl j= �. Therefore Fkl=0 Fdl n l j= Skl=0 desc(Fdl)[hi ! hli] [� holds which entailsMM(Skl=0 desc(Fdl)[hi ! hli] [�) � Fkl=0 Fdl n l and therefore F ti � Fi (lemma 5).The local rule constraints which are associated with the nodes in a parse tree together form theconstraint system which the parser has to solve. We now de�ne a translation of this system oflocal constraints into an equivalent global constraint system 	. The translation replaces therelative indices (0 for the mother node, 1 for the �rst daughter etc.) in the constraint formulaswith the absolute indices of the respective feature structures. The translated constraint systemhas the advantage that its satis�ability is de�ned without reference to the parse tree.Lemma 20: Parse tree hfnig; ki with ni = hi; Fi; : : :i is a valid parse tree i� G = Fi Fi n isatis�es the constraint set 	 which is de�ned as follows:1. For each terminal node ni = hi; Fi; hw;�ii of the parse tree and for each � 2 �, if� = h0i�p _= h0i�q, then �0 = hii�p _= hii�q 2 	 else if � = h0i�p _= c, then �0 = hii�p _= c 2 	.Label i will be called the translation of label 0 at ni, written i = itri(0).2. For each non-terminal node nd0 = hd0; Fd0 ; hk;�i; hd1; : : : ; dkii with a set of daughternodes hdl; F t�1dl ; : : :i with 0 < l � k and for each � 2 �, if � = hii � p _= hki � q, then�0 = hdii � p _= hdki � q 2 	 else if � = hii � p _= c, then �0 = hdii � p _= c 2 	. Label dl willbe called the translation of label l at ni, written dl = itri(l).�0 is called the translation of � at ni, written �0 = tri(�). This notation is extended toconstraint sets by de�ning tri(�) = ftri(�)j� 2 �g.Proof:Since the de�nition of G assigns a unique value Fi to each feature i 2 dom(G) and since Fi iswell-de�ned, G is a well-de�ned function as well.For each constraint � in the parse tree, there is by de�nition of 	 exactly one correspondingconstraint in 	.')': We prove that G satis�es if the parse tree satis�es �.

3.4. FEATURE COMPUTATION 35For each non-terminal node hd0; Fd0 ; hk;�i; hd1 : : : dkii in the parse tree with daughter nodeshdj ; Fdj ; : : :i for 0 < j � k, it is the case that Fkj=0 Fdj n j j= �. Similarly, it is for eachterminal node hd0; Fd0 ; hw;�ii the case, that Fkj=0 Fdj n j j= � where k = 0. In both cases,an equation � 2 � is either of the form hji � p _= hli � q or hji � p _= c.If � is of the �rst form, then Fkm=0 Fdm nm j= hji � p _= hli � q because the parse tree satis�es �.Therefore Fdj (p) = Fdl(q) and, according to the de�nition of G, G(dj)(p) = G(dl)(q). Fromhji � p _= hli � q 2 � follows according to the de�nition of 	 that = hdji � p _= hdli � q is thecorresponding equation of � in 	 and that G j= .It is easy to prove with similar arguments that if � is of the form hji � p _= c, then G j= forthe translated constraint .'(': We prove that the parse tree satis�es � if G satis�es = tri(�), the translation of � atsome node ni.According to the de�nition of tri, there is either a terminal node hd0; Fd0 ; hw;�ii or a non-terminal node hd0; Fd0 ; hk;�ihd1 : : : dkii such that for some � 2 �, = tri(�).If = hji � p _= hli � q, then j = dm for some 0 � m � k and l = dn for some 0 � n � k. Hence� = hmi � p _= hni � q.Since G j= , it is the case that G(j)(p) = G(l)(q) and therefore Fdm(p) = Fdn(q) andFks=0 Fds n s j= hmi � p _= hni � q. Therefore the parse tree satis�es �.It is easy to prove with analogous arguments that if is of the form hji �p _= c then Fks=0 Fds ns j= � for the corresponding � with = tri(�).Lemma 21: If � ` � and tri(�) and tri(�) are de�ned, then tri(�) ` tri(�).Proof:It is possible to put an order on the constraints which are deducible from � such that � `1 �1and � [f�1g `1 �2 and � [f�1; �2g `1 �3 and so on, where � `1 � means that � followsfrom � by application of a single deduction rule. We de�ne �n = �[f�1; : : : ; �ng for n � 0.Induction hypothesis: 	 ` tr(�) holds for all � 2 �m where tr(�) is de�ned if m < n. � is ofthe form hi _= hi or the form hii � p _= hji � q or the form hii � p _= c where c 2 C.n = 0: From � 2 �0 and �0 = �, follows tr(�) 2 tr(�) = 	 and therefore 	 ` tr(�).n > 0: If � 2 �n, then either � 2 �n�1 and therefore 	 ` tr(�) by the induction hypothesis,or � follows from �n�1 by one of the following inference rules:1. Triviality: � ` hi _= hi.Since tr(hi _= hi) is unde�ned, there is nothing to prove. Furthermore, hi _= hi cannot beused to derive any new constraints. Hence we can ignore it.2. Symmetry: hii � p _= hji � q followed from hji � q _= hii � p 2 �n�1.According to the induction hypothesis, 	 ` hdji � q _= hdii � p holds if di = itr(i) anddj = itr(dj). It follows that 	 ` hdii � p _= hdji � q and therefore 	 ` tr(hii � p _= hji � q).

36 CHAPTER 3. THEORETICAL FOUNDATIONS3. Reexivity: hii � p _= hii � p followed from hii � p � r _= v 2 �n�1.According to the induction hypothesis, 	 ` hdii � p � r _= v0 holds where di = itr(i) andv0 = v if v 2 C, and v0 = hdji � q if v = hji � q and dj = itr(j). From 	 ` hdii � p � r _= v0follows 	 ` hdii � p _= hdii � p and therefore 	 ` tr(hii � p _= hii � p).hi _= hi follows from hii � p � r _= v 2 �n�1 as well, but we can ignore this case because theresulting constraint is the same as that generated by the Triviality rule.4. Substitutivity: From hii �p �r _= v 2 �n�1 and hii �p _= hji �q 2 �n�1 followed hji �q �r _= v.From hii � p � r _= v 2 �n�1 follows 	 ` hdii � p � r _= v0 with di = itr(i) and v0 = v if v 2 Cand v0 = hdli � q if v = hli � q and dl = itr(l).From hii �p _= hji �q 2 �n�1 follows 	 ` hdii �p _= hdji �q where di = itr(i) and dj = itr(j).From 	 ` hdii �p �r _= v0 and 	 ` hdii �p _= hdji �q follows 	 ` hdji �q �r _= v0 and therefore	 ` tr(hji � q � r _= v0).Lemma 22: The algorithm terminates.Proof:Suppose that the algorithm does not terminate. We de�ne 	 as in lemma 20 and Gt asGt = FF ti n i. In each cycle of the algorithm, at least one feature structure F t�1i is changedbecause otherwise the algorithm terminates. Since the modi�ed feature structure F ti mustbe subsumed by the original feature structure F t�1i , there are only three ways in which thefeature structure can be modi�ed, namely by changing F t�1i (p) = ? to F ti (p) = c for somep 2 Path and c 2 C or by adding a feature f 2 L with f =2 dom(F t�1i (p)) to the domain ofF ti (p) and de�ning F ti (p)(f) = ? or by combinations of these two elementary steps. In any ofthese case, the size of the modi�ed feature structure F ti will be at least one bigger than thatof F t�1i and therefore size(Gt) � size(Gt�1) + 1.Since each substructure Gt(p) of Gt is de�ned for at most jLj many features, it follows thatfor any N , there is a path p and a t such that Gt(p) is de�ned and the length of p is largerthan N . We will now prove that 	 ` p _= p must hold and that the constraint system 	 istherefore cyclic (lemma 1) in contradiction to the assumption that the grammar never givesrise to cyclic constraints.Induction hypothesis: 	 ` desc(F ti)[hi ! hii] for t < n.n = 0: F 0i = ?, therefore desc(F 0i) = fhi _= hig. There is either a terminal node n0i =hi; F 0i ; hw;�ii or a non-terminal node n0i = hi; F 0i ; hk;�i;Dii such that h0i _= h0i 2 � byde�nition of grammar rules and lexical rules. Therefore hii _= hii 2 	 holds by de�nition of 	and therefore 	 ` desc(F 0i)[hi ! hii].n > 0: If � is in desc(F ti), then it is either of the form p _= p or of the form p _= c.In the �rst case, it follows from � 2 desc(F ti) that F ti j= p _= p. Two cases have to bedistinguished:1. nti = hi; F ti ; : : :i is the root node during top-down parsing. In this case, F ti = F t�1i . Bythe induction hypothesis, it follows immediately that 	 ` desc(F ti)[hi ! hii].

3.4. FEATURE COMPUTATION 372. Otherwise there is either a non-terminal node ntd0 = hd0; F td0 ; hk;�i; hd1 : : : dkii withdaughter nodes hdj ; F tdj ; : : :i for 0 < j � k or a terminal node ntd0 = hd0; F td0 ; hw;�iiand k = 0 such that i = dl for some 0 � l � k and F ti = MM(Skj=0 desc(F t�1j)[hi !hji] [�)(l).If p _= p 2 desc(F ti), then F ti j= p _= p and therefore MM(Skj=0 desc(F t�1j)[hi ! hji] [�) j= hli � p _= hli � p (lemma 9). By lemma 14, it follows that Skj=0 desc(F t�1j)[hi !hji] [� ` hli � p � r _= v for some r and therefore that Skj=0 desc(F t�1j)[hi ! hji] [� `hli � p _= hli � p. By the induction hypothesis, 	 ` desc(F t�1dj)[hi ! hdji] for all 0 � j � kand by de�nition of 	, tr(�) � 	.By lemma 21, it follows from Skj=0 desc(F t�1j)[hi ! hji] [� ` hli � p _= hli � p thattr(Skj=0 desc(F t�1j)[hi ! hji][�) ` tr(hli � p _= hli � p). We already know that tr(�) � 	and that 	 ` desc(F t�1dj)[hi ! hdji] for 0 � j � k. We conclude than 	 ` tr(hli �p _= hli �p) holds, too.The case p _= c 2 desc(F ti) is analogous to the case p _= p 2 desc(F ti).3.4.2 CompletenessThe algorithm generates all valid solutions.ProofWe know by lemma 22, that the algorithm terminates after a �nite number of steps T . We alsoknow by lemma 19 that any solution fFig to the feature computation problem is subsumedby all the intermediate results fF 0i g; fF 1i g; : : : of the algorithm and therefore also by fF Ti g.It remains to show that the algorithm signals success after stopping, if a solution fFig doesexist. Suppose that this were not the case and that the algorithm signals failure.In this case, there is either a non-terminal node nTd0 = hd0; F Td0 ; hk;�i; hd1 : : : dkii with daugh-ter nodes hdj ; F Tdj ; : : :i for 0 < j � k or a terminal node nTd0 = hd0; F Td0 ; hw;�ii and k = 0such that MM(Skj=0 desc(F Tdj)[hi ! hji] [�) does not exist. It follows (lemma 16) thatSkj=0 desc(F Tdj)[hi ! hji] [� is inconsistent.However, F Ti � Fi entails Fi j= desc(F Ti) (lemma 7) and Fkj=0 Fdj nj j= � holds because fF Ti gis a solution. Therefore Fkj=0 Fdj n j j= Skj=0 desc(F Tdj)[hi ! hji] [� holds, a contradiction tothe assumption that Skj=0 desc(F Tdj)[hi ! hji][� is inconsistent (according to lemma 17).3.4.3 SoundnessAll solutions generated by the algorithm are valid.

38 CHAPTER 3. THEORETICAL FOUNDATIONSProofSuppose that the algorithm stops, signals success and returns fFig.Then fFig is a solution because otherwise there is either a non-terminal node nTd0 =hd0; F Td0 ; hk;�i; hd1 : : : dkii with daughter nodes hdj ; F Tdj ; : : :i for 0 < j � k or a terminalnode nTd0 = hd0; F Td0 ; hw;�ii and k = 0 such that Fkj=0 Fdj n j 6j= �. In this case, there are twopossibilities:1. There is an M with M = MM(Skj=0 desc(F Tdj)[hi ! hji] [�). M is not equal toG = Fkj=0 Fj n j because M j= � and G 6j= �.Because dom(M) = dom(G), there must be a label I such that M(l) 6=M(G). If l = 0,then the algorithm would have replaced Fd0 with M(0) in the last bottom-up pass. Ifl > 0, then the algorithm would have replaced Fdl with M(l) in the last top-down pass.In both cases, the algorithm would have continued for another cycle in contrast to theassumption that it has terminated.2. MM(Skj=0 desc(F Tj)[hi ! hji][�) does not exist. Since the algorithm checks all nodesin each cycle, it would have detected the inconsistency and would have signalled failurein contrast to the assumption that it signalled success.3.5 ExtensionsThe feature logic which has been presented in this chapter has to be extended in several waysin order to serve as the theoretical basis for the feature constraints in YAP.3.5.1 VariablesIn contrast to the presented feature logic, the YAP grammar formalism uses variables toexpress path equality constraints. However, equations with variables are easily translatedinto equations without variables (see e.g. [Carpenter, 1992]).3.5.2 TypingFeature structures are typed in the YAP formalism. The type of a feature structure de�neswhich features are appropriate for it and all appropriate features have to be present in thefeature structure. This corresponds to the notion of totally well-typed feature structures in[Carpenter, 1992].In contrast to grammar formalisms, like e.g. HPSG [Pollard and Sag, 1994], the feature struc-ture types are unordered in the YAP formalism. All types are pairwise inconsistent and noneof them is a subtype of another. They resemble data types in programming languages likeModula or C. The advantage of such a typing system is that proper typing can be checked atcompile time (with one exception which will be discussed in section 3.5.4).

3.5. EXTENSIONS 39Feature appropriateness is formally de�ned as a function AppropF : L�Type! TypeS f>g,where L is the set of feature labels and Type is the set of types. AppropF (f; �) is the mostgeneral type which is appropriate for feature f of a feature structure of type � . Because featuretypes are mutually disjoint, AppropF (f; �) is in fact the only type which is appropriate forfeature f . We de�ne AppropF (f; �) = > if feature f is not appropriate for feature structuresof type � . For each category X in a YAP grammar there is a corresponding feature structuretype �X in Type.Besides the appropriateness conditions on features, there are also appropriateness conditionson atomic feature values. Feature value appropriateness is de�ned as a function AppropV :Type ! C S fNONEg. AppropV (�) is the most general feature value which is appropriatefor type � . If some feature f is appropriate for � , i.e. AppropF (f; �) 6= >, then no atomicfeature value is appropriate for � and AppropV (�) = NONE where NONE is such that forall c 2 C, c tNONE is unde�ned. In other words, a feature structure with a constant valuehas no features because a constant/compound clash would result, otherwise.The set of constant feature values C di�ers from the one we having been considering so far.Earlier, we have assumed that C is an unordered set of values. Now we assume that C isordered such that for each feature type � , a most general value c� exists which subsumes allpossible values of features of type � (see section 3.5.3 for more details).The feature logic presented in section 3.1 will now be extended to a typed feature logic. Tothis end, we add type constraints to the feature logic.De�nition 24: A typed constraint equation is an equation of the form p _= q or the form p _= cor the form p : � , where p and q are feature paths and c is a constant from C S fNONEgand � 2 TypeS f>g.We also need the following set of deduction rule schemes in addition to the schemes in sec-tion 3.1 in order to be able to draw the intended conclusions from the type constraints.p : � ` p � hfi : � 0 [if AppropF (f; �) = � 0]p : � ` p _= p [if � 6= >]p : � ` p _= c [if AppropV (�) = c]p _= c; p _= c0 ` p _= c00 [if c00 = c t c0 exists] (see section 3.5.3)The �rst deduction rule scheme ensures that features have the appropriate type. The secondscheme ensures that each appropriate feature is present. The third scheme ensures thatatomic features have appropriate values (see section 3.5.3) and the fourth scheme deduces theconjunction of two constant feature values.De�nition 25: A set of typed constraints � is called inconsistent if and only if it entailstwo equations of the form� p : � and p : � 0 where � 6= � 0, (type clash) or� p _= c and p _= c0 where c t c0 does not exist. (constant/constant clash)Because the grammar formalism guarantees that each feature structure is typed (with oneexception which is discussed in section 3.5.4) and because feature types are disjunct, thetyping constraints can be checked at compile time.

40 CHAPTER 3. THEORETICAL FOUNDATIONS3.5.3 Disjunctive Feature ValuesIn the YAP formalism it is possible to assign a disjunction of constant feature values to afeature if the feature bears an enumeration type. For e�ciency reasons, it is useful to retainthis restricted form of disjunctive representation in the feature structures rather than togenerate the disjunctive normal form of it.Therefore we de�ne a hierarchy over the set of possible values of each enumeration type.Each node of the hierarchy corresponds to a subset of the set of possible values and one nodedominates another node in this hierarchy, written d1 � d2, if and only if the correspondingset of values is a subset of the set of values of the other node. The least node in the hierarchycorresponds to the set of all possible values. The greatest node corresponds to the empty setand represents an inconsistent value. An example of such a hierarchy is shown in �gure 3.3.

{masc, fem, neut}

{fem, neut}

{neut}{masc} {fem}

{}

{masc,neut}{masc,fem}

Figure 3.3: A lattice over a set of valuesThe uni�cation of two disjunctive values d1 and d2 of the same type returns the least upperbound d = d1 t d2 of the two values in the hierarchy unless d = d1 t d2 = fg. If the leastupper bound is fg, then uni�cation fails. The way the hierarchy is constructed guaranteesthat the least upper bound always exists and is unique.Despite the changes in the feature logic, the de�nition of feature structures (de�nition 6)remains unchanged. The de�nition of subsumption (see de�nition 7), however, is replaced bythe following de�nition.De�nition 26: A feature structure F subsumes another feature structure F 0, written F � F 0,i� either� F = c and F 0 = c0, where c � c0 or� for all f 2 dom(F) it is the case that f 2 dom(F 0) and F (f) � F 0(f).The only di�erence to the old de�nition is that an atomic feature structure must subsumethe other feature structure rather than being equal to it. We also modify the de�nition ofconstraint satisfaction (cmp. de�nition 9).

3.5. EXTENSIONS 41De�nition 27: A feature structure F satis�es an equation p _= v i� either� v is a path q 2 Path, and F (p) and F (q) are de�ned, and F (p) = F (q) or� v is a constant c 2 C and F (p) is de�ned and c � F (p).A feature structure F satis�es a set of equations � i� � is consistent and F satis�es eachequation � 2 � of the form p _= v.Feature trees never violate type constraints because they fail to represent type information.It is not necessary to represent type information explicitly in the feature trees because it isdeducible from the type of the root node and the appropriateness speci�cations. We will latersee how the categorial information can be represented in the feature structure by means of aspecial feature Cat.Finally, we have to adapt the de�nition of tree models (cp. de�nition 13).De�nition 28: Feature structure F = tm(�), the tree model of a consistent set of acyclicconstraint equations �, is de�ned as follows:� F (p) = c with c 2 C i� � ` p _= c holds and � ` p _= c0 entails c � c0.� F (p) = ? i� � ` p _= p and � ` p � r _= v) r = hi ^ v =2 C� f 2 dom(F (p)) and F (p)(f) = F (p � hfi) i� � ` p � hfi _= p � hfi.3.5.4 Feature Structure ListsAn element of the YAP formalism which has no direct correspondence in the feature logicpresented so far is the prede�ned feature type FS LIST. Features of this type take a listof feature structures with category types as values. In order to integrate them into thefeature logic, we will emulate feature structure lists with feature trees (see �g. 3.4). A featurestructure list is then either an empty list or a non-empty list. If it is not empty, then it hastwo features which we name Head and Tail. The Tail feature has the type FS LIST, as well,whereas the value of the Head feature could be any feature structure of a categorial type.
Tail Tail Tail

HeadHead Head

NP NPPP

SubcatV

Figure 3.4: A feature structure list represented as a feature treeThere are two problems, however: The features Head and Tail are only appropriate for featurestructure lists which are not empty. So how is AppropF (Head; FS LIST) de�ned? We couldsplit FS LIST into two types ELIST and NELIST, so that Head and Tail are only de�ned for thetype NELIST. But then the value of AppropF(Tail,NELIST) could be either NELIST or ELIST.

42 CHAPTER 3. THEORETICAL FOUNDATIONSThe obvious solution to this problem would be to de�ne FS LIST as a supertype of ELIST andNELIST. Another problem is the type of the Head feature. It could be any categorial featuretype. So again, a super-type of these categorial types is needed for the Head feature.It seems that we are forced to switch to a feature logic with ordered types like the onedescribed in [Carpenter, 1992]. But there is another solution: the constraints which apply tofeature structure lists can be \hardwired" into the deduction rules of the feature logic in thefollowing way.In order to represent whether a feature structure list is empty or not (subtype ELIST vs.NELIST), we add a new feature Empty which holds this information and a new feature Datawhich stores the value of the feature structure list if it is not empty. Similarly, we add a newfeature Cat to store the category of an element of the feature structure list and a feature Datato store the element itself. The resulting representation of feature structure lists is slightlymore complex than the one depicted in �g. 3.4.The following inference rule schemes are added:p : FS LIST; p � hEmptyi _= false ` p � hDatai : LIST DATAp : FS LIST; p � hDatai _= p � hDatai ` p � hEmptyi _= falsep : CAT FS; p � hCati _=x ` p � hDatai _= �xp : CAT FS; p � hDatai _= � ` p � hCati _=x [where � = �x]The �rst two rule schemes make sure that the Data feature is de�ned if and only if the featurestructure list is not empty. The third and fourth rule ensure that the value of the Cat featureis x if and only if the value of the Data feature is a feature structure of the correspondingcategorial feature type �x.The following restrictions apply to the feature appropriateness function AppropF :AppropF (Empty; FS LIST) = BOOLEANAppropF (Head; LIST DATA) = CAT FSAppropF (Tail; LIST DATA) = FS LISTAppropF (Cat; CAT FS) = CAT8f2L;f =2fEmpty;DatagAppropF (f; FS LIST) = >8f2LAppropF (f;BOOLEAN) = >8f2L;f =2fHead;TailgAppropF (f; LIST DATA) = >8f2L;f =2fCat;DatagAppropF (f;CAT FS) = >8f2LAppropF (f;CAT) = >Note that AppropF (Data; FS LIST) and AppropF (Data;CAT FS) are not de�ned. Theabove inference rule schemes deduce whether these features are appropriate and what theirtypes are.The following restrictions apply to the value appropriateness function AppropV :AppropV (FS LIST) = NONEAppropV (BOOLEAN) = ftrue; falseg

3.5. EXTENSIONS 43AppropV (LIST DATA) = NONEAppropV (CAT FS) = NONEAppropV (CAT) = f: : : categories in grammar : : :g3.5.5 Function ValuesThe YAP formalism includes constraints of the form v _= cat(v1; v2) where v, v1, v2 are variablesand cat is a string concatenation operator. Using the variable elimination algorithm presentedin section 3.5.1, it is easy to convert these constraints to constraints of the form p _= cat(q; r).We add the following inference rule scheme to be able to draw the intended conclusions fromthese constraints: p _= cat(q; r) ` p : STRING; q : STRING; r : STRINGp _= cat(q; r); q _= c1; r _= c2 ` p _= c [where c is the concatenation of c1 and c2]The �rst rule makes sure that the arguments of cat are strings. The second rule deducesthe result of the cat-function. The result is only de�ned if constant values for both inputvariables are available. It is not possible to use such a constraint to deduce the value of anargument from the result and the other argument of the operation (as in the Prolog language).3.5.6 Parse ForestsThe algorithm has to deal with ambiguities in the input parse tree. In theory, it is possible tocompute the feature structures for each alternative parse independently with the presentedalgorithm. For e�ciency reasons, however, it is necessary to work with a more compact parseforest representation. The next chapter presents a parsing algorithm which operates directlyon parse forests.

44 CHAPTER 3. THEORETICAL FOUNDATIONS

Chapter 4
Parsing
4.1 Parsing StrategiesParsing strategies for feature-structure based grammar formalisms with a context-free back-bone can be divided into three classes. The interleaved strategy �rst applies the context-freepart of a rule to generate a new node and checks the associated feature constraints imme-diately afterwards. The non-interleaved strategy �rst builds complete parse trees coveringthe whole input string based on the context-free part of the grammar and checks the featureconstraints in a second step. The third strategy converts the constraints expressed in thecontext-free backbone into feature constraints and solves the constraint system as a whole.An advantage of the last strategy is the uniformity of the processing mechanism and theability to process grammars without a context-free backbone.Maxwell and Kaplan [Maxwell III and Kaplan, 1994] explore several variants of the �rst twostrategies in their LFG parser. They conclude \. . . that non-interleaved pruning is alwaysbetter than interleaved pruning." The reason probably is that the time spent on context-freeparsing is neglectable compared to the time spent on the feature constraint evaluation. Soit pays o� if some feature computations can be saved by doing context-free parsing �rst.Maxwell and Kaplan also con�rm a �nding by Nagata [Nagata, 1992] \. . . that a medium-grained phrase-structure grammar performs better than either a coarse-grained or a �ne-grained grammar." The reason might be that a coarse-grained context-free grammar is lessrestrictive than a medium-grained grammar and therefore saves fewer feature computations.Parsing with too �ne-grained context-free grammars on the other hand is ine�cient becausecontext-free parsing is slower with the larger grammar and might even take more time thanthe feature computations. Also the resulting context-free parse forests are larger due tounresolved ambigities which might further slow down the parser.Since the third strategy above is equivalent to parsing with an extremely coarse-grainedgrammar, the �rst strategy, non-interleaved parsing, seemed most promising and has beenchosen for YAP. 45

46 CHAPTER 4. PARSING4.2 Context-Free ParsingContext-free parsing is the �rst step of the parser. A bit-vector implementation of the Cocke-Kasami-Younger algorithm (BCKY) developed by Andreas Eisele, is used for this purpose.The conversion of the grammar to Chomsky normal form which is required by the CKYalgorithm is carried out automatically. Other context-free parsers which return the samepacked parse forest format1 can be used, as well.4.3 Computation of Feature StructuresAfter context-free parsing, the parser decorates the parse forest with feature structures. Thesefeature structures must satisfy the constraints of the grammar rules and lexicon entries whichwere used to build the parse forest. As long as the parse tree is unambiguous, the computationof the feature structures is simple. A standard uni�cation algorithm will satisfy all constraintsin one pass through the parse tree. Value sharing between features with an equality constraintguarantees that modi�cations to the value of one feature are propagated to the other feature.4.3.1 Dealing with Parse ForestsUsually the result of context-free parsing is highly ambiguous because the context-free gram-mar is less restrictive than the YAP grammar from which it is derived. Millions of parse treesare not uncommon for large sentences. This huge number of analyses makes it impossible toprocess each analysis independently using the simple method described before. The parserinstead has to operate directly on the compact representation of the parse trees { called parseforest { which is returned by the context-free parser. Parse forests can be represented asand/or graphs. For each and-node there is a corresponding grammar rule or { if it is a ter-minal node { a lexicon entry. Each non-terminal node corresponds to the left hand side of agrammar rule and its daughter nodes correspond to the right hand side. Or -nodes representambiguities in the parse forest. Each daughter node of an or -node is an and-node whichconstitutes one analysis of the or -node.The computation of feature structures in parse forests is complicated by the fact that valuesharing between feature structures in an and/or graph is not possible because one and thesame node may have several mother and-nodes belonging to distinct analyses. Value sharingwould in this case lead to cross-talk between di�erent analyses.It is possible to compute the feature structure of the root node in one bottom-up pass throughthe parse forest. In case of LFG and HPSG, the feature structure of the root node is theonly feature structure needed because it contains all relevant information. The YAP parser,however, has to compute the feature structures of all nodes. To this end, the parse forest hasto be traversed twice, �rst bottom-up and then top-down. The top-down step is necessary toupdate the feature structures of the non-root nodes.1See section 4.3.

4.3. COMPUTATION OF FEATURE STRUCTURES 474.3.2 Disjunctive Feature StructuresIn order to compute feature structures for the nodes in an and/or graph, the or -nodes haveto be dealt with appropriately. Since an or -node represents a set of alternatives, its featurestructure is de�ned as the disjunction of the feature structures of its daughter nodes. There areseveral possibilities to deal with such disjunctive feature structures. The simplest approachis to represent feature structures in disjunctive normal form (DNF), i.e. as a set of (non-disjunctive) feature structures, and to solve the feature constraints of each rule for all possiblecombinations of daughter node feature structures by means of standard uni�cation. Since thenumber of combinations is equal to the product of the numbers of feature structures at thenodes, it follows that this approach is only tractable if the number of alternative featurestructures is not too big.DNF computation involves some redundancy because computations pertaining to commonfeatures of alternative feature structures are repeated. It is possible to avoid this redundancywith a more compact representation of disjunctive feature structures which factors out thecommon constraints. Contexted constraints [Maxwell III and Kaplan, 1989] are particularlye�ective in factorizing feature constraints. However, as Maxwell and Kaplan note, a compu-tational overhead is associated with their technique which only pays o� if the (disjunctive)feature structures contain many independent ambiguities. This type of ambiguity is frequentin the LFG formalism which Maxwell and Kaplan considered. If the propagation of syntac-tically irrelevant information is avoided (see the discussion in section 2.6), such independentambiguities are far less frequent. Hence the simpler DNF approach has been chosen in theimplementation YAP.4.3.3 Feature Computation in YAPYAP employs the same iterative method to compute the feature structures as the algorithmpresented in section 3.4. After the context-free parse forest has been read, the feature struc-tures of the nodes are initialised according to the constraints imposed by the context-freeanalysis and the type system. In particular, the type of a feature structure is set according tothe category of the corresponding node and all features which are appropriate for this typeare initialised to their most general values. Each node has a set of ,,analyses" (called or -nodes in and/or -graph terminology). Each analysis contains pointers to the daughter nodesand to the rule which licensed the analysis. The feature structures are repeatedly modi�edin order to satisfy the local rule constraints. Feature computation is �nished when all lo-cal constraints are satis�ed. This method bears some resemblance to constraint relaxationtechniques [Montanari and Rossi, 1991].As noted earlier (see section 3.2), the result of the uni�cation of two feature trees is notguaranteed to satisfy all constraints satis�ed by the argument feature trees because featuretrees fail to represent equational constraints. Consider the following YAP grammar:enum TYPE { a, b }; % definition of an enumeration typecategory TOP {}; % definition of category TOPcategory X { TYPE F,G; }; % definition of category XTYPE v; % definition of variable 'v'

48 CHAPTER 4. PARSINGTOP {} -> `X {F=a;}; % feature F must have value 'a'"x": X {F=v;G=v;}; % features F and G must be equalParsing the input string \x" with the context-free part of the grammar results in a parse treeconsisting of two nodes, a root node of category TOP and a daughter node of category X (see�g. 4.1). The feature structure of the X node has two features F and G which are initialisedto their most general value which is the value `a or b'. The feature structure of the X nodemust satisfy the constraints of the lexicon entry for `x' and the constraints of the grammarrule. At the beginning, features F and G have the same value `a or b' and the constraints ofthe lexicon entry are satis�ed. In order to satisfy the constraints of the grammar rule, thevalue of feature F is modi�ed to `a'. However, this leads to a violation of the constraints in thelexicon entry which were previously satis�ed. The feature structure of X is modi�ed again,changing the value of feature G to `a'. Thereafter, all constraints are satis�ed and parsing is�nished.
 a

F

G

{a,b}

{a,b}

F

G {a,b}

 a
X

TOP

F

G

 aFigure 4.1: Feature computationComputation of the feature structures in a parse forest proceeds bottom-up and top-down inturn using the functions bottom up parse and top down parse presented below. The mainfunction is parse.The Feature Computation AlgorithmThe following data structures and functions are used by the algorithm:N: sentence lengthchart[i][k]: nodes covering the input string from position i to kold chart[i][k]: nodes covering the input from i to k as computed in the last passn.start: start position of node nn.end: end position of node nn.link: the set of new nodes linked to node nn.analyses: the set of alternative analyses of node nn.processed: ag indicating whether this node has been processedn.fs: feature structure of node na.number of daughters: number of daughter nodes in analysis aa.daughter[i]: the ith daughter node in analysis aa.rule: the grammar rule which licenses analysis ar.assignments[i]: set of assignments for node i

4.3. COMPUTATION OF FEATURE STRUCTURES 49�rst link(n): returns the �rst element from n.linknext link(n,n'): returns the next element after n' in n.linkis last link(n,n'): true if n' is the last element in n.link, otherwise falsevar value: array of feature valuesget value(f,hii�p): returns the value of feature structure f[i] at feature path preplace(f, p, v): replaces the value of feature structure f at feature path p with vread parse forest(): reads a parse forest and initialises the feature structuresA node n is characterised by its feature structure, its start and end position and its setof possible analyses. Each analysis a is characterised by the grammar rule and the set ofdaughter nodes.1 parse()23 read parse forest()4 �rst cycle true5 do6 old chart chart7 chart new chart()8 successful bottom up parse()9 if successful and (node changed or �rst cycle)10 �rst cycle false11 old chart chart12 chart new chart()13 successful top down parse()14 while node changed and successful15 return successful161718 bottom up parse()1920 node changed false;21 result false22 % for all nodes covering the whole sentence23 for all nodes n in old chart[0,N] do24 if bu parse node(n) = true then25 result true26 return result272829 bu parse node(n)3031 % check whether this node has already been processed32 if n.processed then33 if n.link = � then34 return false35 else return true

50 CHAPTER 4. PARSING36 % start processing of node n37 n.processed true38 result false39 for all analyses a 2 n.analyses do40 K a.number of daughters41 valid true % initialisation42 % call bu parse for all the daughter nodes43 for i 1 to K do44 if bu parse node(a.daughter[i]) = false then45 valid false46 i K % Skip processing of the remaining daughter nodes47 if valid = true then % Process all combinations of daughter nodes48 a' make copy(a) % create a new temporary analysis49 for i 1 to K do % with the �rst combination of new daughter nodes50 a'.daughter[i] �rst link(a.daughter[i])51 do % Loop over all combinations of daughter nodes52 if bu parse analysis(n, a') = true then53 result true54 for i 1 to K do % build the next combination of daughter nodes55 if is last link(a.daughter[i], a'.daughter[i]) = true then56 a'.daughter[i] �rst link(a.daughter[i])57 else58 a'.daughter[i] next link(a.daughter[i], a'.daughter[i])59 i K; % exit loop60 while is last link(a.daughter[K], a'.daughter[K]) = false61 return result626364 bu parse analysis(n, a)6566 f[0] n.fs % n.fs is old and will be recomputed67 for i 1 to a.number of daughters do68 f[i] a.daughter[i].fs % the daughter feature structures f[i] are new69 if compute variables(var value, f, a.rule) = false then70 return false71 newf build new fs(var value, n.fs, a.rule.assignments[0])72 if newf 6= n.fs then73 node changed true;74 n' insert node(n, newf)75 add link(n, n')76 % add new analysis to the list of analyses of n'77 n'.analyses n'.analyses [fag78 return true798081 top down parse()

4.3. COMPUTATION OF FEATURE STRUCTURES 518283 node changed false;84 result false85 % for all nodes covering the whole sentence86 for all nodes n in old chart[0,N] do87 n' insert node(n, n.fs) % root nodes are simply copied88 if td parse node(n, n') = true then89 result true90 return result919293 td parse node(n, n')9495 % check whether this node has already been processed96 if n' 2 n.link then97 if n'.analyses 6= � then98 return true99 else100 return false101 add link(n, n')102 result false103 for all analyses a 2 n.analyses do104 if a.number of daughters = 0 then105 % terminal node106 a' make copy(a)107 n'.analyses n'.analyses [fa'g108 result true109 else110 % nonterminal node111 if td parse analysis(n', a) = true then112 result true113 return result114115116 td parse analysis(n, a)117118 K a.number of daughters119 f[0] n.fs120 for i 1 to K do121 f[i] a.daughter[i].fs122 if compute variables(var value, f, a.rule) = false then123 return false124 a' make copy(a)125 for i 1 to K do126 newf build new fs(var value, f[i], a.rule.assignments[i])127 if newf 6= f[i] then

52 CHAPTER 4. PARSING128 node changed true;129 n' insert node(n, newf)130 if td parse node(n, n') = false then131 return false132 a'.daughter[i] n'133 n'.analyses n'.analyses [fa'g134 return true135136137 compute variables(var value, f, r)138139 for i 1 to r.number of variables do140 var value[i] ?141 for all equations of the form vi = � do142 if � is a feature path then143 v get value(f, �)144 else if � is of the form op(v1,v2,. . . ,vN) then145 v compute function(var value, �)146 else if � is a constant then147 v �148 var value[i] least upper bound(var value[i], v)149 if var value[i] = > then150 return false151 return true152153154 build new fs(var value, oldf, a)155 newf make copy(oldf)156 for all assignments of the form path:=v in a do157 replace(newf, path, var value[v])158 return newf159160161 insert node(n, fs)162163 for all nodes n' 2 chart[n.start, n.end] do164 if n'.fs = fs then165 return n'166 n' make copy(n)167 n'.fs fs168 chart[n.start, n.end] chart[n.start, n.end] [fn'g169 return n'170171172 add link(n, n')173

4.3. COMPUTATION OF FEATURE STRUCTURES 53174 if n' =2 n.link175 insert n' in n.link at �rst positionThe main function parse calls bottom up parse and top down parse in turn until eitherall nodes are unchanged or the whole parse forest is found to be inconsistent. At least onecomplete cycle consisting of a bottom-up and a top-down pass is necessary to guarantee thatall constraints are satis�ed. The parser uses two charts. One chart, called old chart, containsthe feature structures computed in the previous step. Each feature structure corresponds toa node in the chart. The other chart, called chart, is incrementally �lled with the featurestructures computed in the current pass. The nodes in the new chart are linked to the nodesin the old chart from which they originated.The bottom up parse function calls bu parse node with each node covering the whole inputsentence and bu parse node builds the new feature structures bottom-up. bu parse nodechecks �rst whether the current node has been processed before. If this is not the case,then it computes the new feature structures of the daughter nodes for each of its analyses.Each daughter node may be linked to more than one new feature structure. Therefore it isnecessary to check all possible combinations in order to compute the valid feature structuresfor the current node. bu parse analysis is called to actually compute a feature structure.Once a new feature structure has been build, insert node checks whether a node with thesame feature structure is already contained in the new chart. If this is not the case, then anew node is inserted. In either case, a new analysis with pointers to the daughter nodes isadded to the node and the new node itself is linked to the original node in the old chart.The top down parse function copies all nodes covering the whole sentence to the new chartand calls td parse node to recompute the feature structures of their subtrees. td parse nodechecks �rst whether the current node has been processed before. This is the case if it islinked to the old node. If a link exists, the function returns. Otherwise, the link is createdin the next step and the function td parse analysis is called for all analyses of the node.td parse analysis recomputes the feature structures of all daughter nodes, inserts them intothe new chart, adds the new analysis to the list of analyses of the mother node and callstop down parse to process the subtrees dominated by the daughter nodes.Cyclic Parse ForestsThe above algorithm is a simpli�cation which works only for acyclic parse forests. The YAPformalism, however, permits rules with a cyclic context-free backbone like the following:VBAR {Subcat=r;Slash=[np];} -> `VBAR {Subcat=[np|r];Slash=[];}NP* {}=np;The context-free backbone of this grammar rule is the rule VBAR -> VBAR. This rule adds acycle to each parse forest containing a VBAR node. In order to deal with cyclic parse forests,bu parse node has to be modi�ed: If a node n has a cyclic analysis, then this cyclic analysishas to be visited again if a new node is added to n:link after it was processed. Thereforethe loop over all analyses of the cyclic node is repeated until no new analysis can be addedanymore. Analyses which are not cyclic are removed once they have been processed. Each

54 CHAPTER 4. PARSINGcyclic analysis maintains a pointer first old in order to remember which analyses of thecyclic node have been considered, so far. The pseudo code of the new function is shownbelow. Modi�ed lines are marked with an asterisk (*).29 bu parse node(n)3031 % check whether this node has already been processed32 if n.processed then33 if n.link = � then34 return false35 else36 return true37 n.processed true38 result false38a* % initialisation of variables38b* rec ana exists false38c* analysis added false38d* for all analyses a 2 n.analyses do38e* a.�rst old = �38f* do39 for all analyses a 2 n.analyses do40 K a.number of daughters41 valid true41a* recursive false42 % process the daughter nodes43 for i 1 to K do43a* if a.daughter[i] = n then % recursive structure?43b* recursive true43c* rec ana exists true43d* if a.�rst old = n.link % nothing to be done43e* valid false43f* i K % Skip processing of remaining daughter nodes44* else if bu parse node(a.daughter[i]) = false then45 valid false46 i K % Skip processing of the remaining daughter nodes47 if valid = true then % Process all combinations of daughter nodes48 a' make copy(a)49 for i 1 to K do50 a'.daughter[i] �rst link(a.daughter[i])51 do52 if bu parse analysis(n, a') = true then53 result true53a* if rec ana exists = true then53b* % remember to process cyclic analyses again53c* analysis added true53d* is last combination true;54 for i 1 to K do % build the next combination of daughter nodes

4.4. GRAMMAR COMPILATION 5554a* a'.daughter[i] next link(a.daughter[i], a'.daughter[i])55* if a'.daughter[i] = � or % all links processed?55a* (a.daughter[i] = n and % cyclic analysis and55b* a'.daughter[i] = a.�rst old) % all links processed?55c* then56 a'.daughter[i] �rst link(a.daughter[i])57 else58* is last combination false;59 i K; % exit loop60* while is last combination = false60a* if recursive = false then60b* remove a from n.analyses % only cyclic analyses are processed again60c* while analysis added = true61 return resultCycles involving more than one node are possible if a cyclic set of chain rules exists, like e.g.X -> Y, Y -> X. Such derivations do not make much sense in NLP grammars, so they areignored by the parser.Processing of cyclic parse forests is guaranteed to terminate if the grammar is o�ine parsableas de�ned in [Shieber, 1992]. To make sure that the parser will terminate is considered thetask of the grammar designer, just as it is the task of a programmer to make sure that his/herprogram will terminate.4.4 Grammar CompilationA compiler is used to transform the text representation of the grammar into a form which iseasy to process for the parser. It attempts to reduce the number of computations requiredduring parsing and reports syntax errors in the input grammar.4.4.1 Grammar TransformationWhen processing a grammar rule, lexical rule or template de�nition, the compiler �rst trans-forms the rule constraints into a set of constraint equations. The left side of each equationis a variable. The right side is either a variable, a feature path, a constant or a functionvalue. The only functor in the YAP formalism is the string concatenation operator cat. Thistransformation includes the following actions:1. For each node speci�cation XP {...}, add a constraint cat=XP to the constraints of thisnode. This is also done for embedded nodes which are elements of feature structure listspeci�cations as in Subcat=[NP{}]2. Replace any constraint of the form p=c where c is not a variable with the two constraintequations v=p and v=c, where v is a new variable.3. Replace any constraint of the form p=v where v is a variable with v=p.

56 CHAPTER 4. PARSING4. Transform relative paths to absolute paths:(a) For each (potentially embedded) constraint equation of the form path =[C1fCS1g; C2fCS2g; :::; CnfCSng] where Ci is a category name and CSi is a set ofembedded constraints, add the constraints v = p and v = [] to the same constraintset where v is a new variable and p is of the form tail.tail...tail| {z }n times .(b) Replace constraints of the form path = [C1fCS1g; C2fCS2g; :::; CnfCSng] orpath = [C1fCS1g; C2fCS2g; :::; CnfCSngj�] where path is a feature path withthe constraint set SiCSi[hi ! path: tail:tail:::tail| {z }i times :head] where CSi[hi ! p] resultsfrom pre�xing p to all feature paths in the constraints of CSi.(c) Pre�x all feature paths with 0. in constraints of the mother node(d) Pre�x all feature paths with i. in constraints of the ith daughter nodeThis transformation is guaranteed to terminate because each individual transformation appliesonly for a �nite number of times and no transformation can be applied recursively on itsoutput.As an example, consider the following grammar:enum NUMBER {sg, pl};enum CASE {nom, gen, dat, acc};struct AGR { NUMBER Number; CASE Case; };category VP { FS_LIST Subcat; };category V { FS_LIST Subcat; };category NP { AGR Agr; };restrictor+ NP_R(NP) {Agr};NP_R np;FS_LIST r;VP {Subcat=[NP{Agr.Case=nom;}]=r;} ->`V {Subcat=[np|r];} NP {Agr.Case=acc;}=np;After the transformation, the following constraint set is obtained:v1 = 0.Subcatv1 = 1.Subcat.tailv2 = 0.Subcat.tailv2 = []v3 = 0.Subcat.head.catv3 = NPv4 = 0.Subcat.head.Agr.Case

4.4. GRAMMAR COMPILATION 57v4 = nomv5 = 1.Subcatv6 = 1.Subcat.head.catv6 = NPv7 = 1.Subcat.headv7 = 2v8 = 2.Agr.Casev8 = accNow, templates are expanded by adding the constraints contained in the de�nition of atemplate to the rule constraints. Since variable names are local to a rule or template, thecompiler replaces the template variables by new variables in order to avoid possible conictswith variable names used in the rule constraints.After template expansion the compiler adds constraints to implement feature inheritanceand to de�ne the values of automatic features. There are two automatic features, Phon andHeadLex. The HeadLex feature is properly de�ned by the feature inheritance mechanism andrequires no further action.The value of the Phon feature of a trace node is the empty string. The compiler therefore addstwo constraint equations p=i.Phon and p="", where p is a new variable and i is the positionof the daughter node in the list of daughter nodes. In order to de�ne the Phon feature of themother node of a grammar rule, the compiler adds the constraints p1=1.Phon, p2=2.Phon, . . . ,pN=N.Phon for the N daughter nodes and the constraints p0=0.Phon and p0=cat(p1,...,pN)to de�ne the Phon feature of the mother node. In case of lexicon entries, the compiler addstwo constraints p=0.Phon and p="word" if the lexicon entry has the form "word": X {...};.In our example, the following constraints are added at this point:v9 = 1.Phonv10 = 2.Phonv11 = 0.Phonv11 = cat(v9,v10)In order to determine the constraints required by the feature inheritance rule, the compiler�rst checks which features of the head daughter node are not assigned a value. These are thefeatures which never appear as a pre�x of the right hand side of a constraint equation. Ifthe compiler �nds such a feature, it checks whether a feature with the same name and typeis de�ned for the mother node. If this is the case, the compiler adds two equations v=0.fand v=i.f in order to unify the feature f of the mother node and the i-th daughter which isthe head daughter. Similarly, the compiler checks whether a feature of the mother node isunassigned and \inherits" its value from a feature with the same name and type of the headdaughter.In our example, the following constraints are added at this point:v12 = 0.HeadLexv12 = 1.HeadLex

58 CHAPTER 4. PARSINGIn the next step, constraints with variables of a restrictor type are replaced by a set ofequations according to the restrictor de�nition. In our example the two constraintsv7 = 1.Subcat.headv7 = 2are replaced by the following constraintsv7 = 1.Subcat.head.Agrv7 = 2.AgrSimilarly, the compiler replaces equations with variables of a structured feature type by a setof equations for the subfeatures. In our example, the equations for v7 are replaced by thesefour constraints:v13 = 1.Subcat.head.Agr.Numberv13 = 2.Agr.Numberv14 = 1.Subcat.head.Agr.Casev14 = 2.Agr.CaseIn the next step, feature structures are attened by replacing structured features with a set ofnew features, corresponding to the subfeatures of the structured feature. The above equationsare replaced with:v13 = 1.Subcat.head.AgrNumberv13 = 2.AgrNumberv14 = 1.Subcat.head.AgrCasev14 = 2.AgrCasewhere AgrCase and AgrNumber are new feature names. The attened feature structures areeasier to store and to process.The compiler simpli�es the resulting set of constraint equations and eliminates redundancies.To this end, it adds a constraint y=x for any pair of equations x=rhs and y=rhs with the samefeature path or function value on the right hand side. Then it eliminates variable renamingconstraints y=x and replaces all occurrences of variable y in other equations with x. Finallythe compiler eliminates duplicates and replaces any pair of equations x=c1 and x=c2 wherec1 and c2 are constants and c is the least upper bound of c1 and c2 by a new equation x=c.If the least upper bound is >, the compiler reports an error.Thereafter, the compiler uses the substitutivity rule to infer additional constraints. Considerthe following example:v2 = 0.Subcat.tailv1 = 0.Subcatv1 = 1.Subcat.tailv2 = []

4.4. GRAMMAR COMPILATION 59These constraints entail the additional constraint:v2 = 1.Subcat.tail.tailThese inferences are necessary in order to be able to compute the minimal extensions offeature structures in one pass as described in section 4.3.3.Finally, the compiler sorts the equations by the variables on the left side and generates as-signments. If the constraint set of a variable contains an equation v=c with an non-disjunctiveconstant on the right side, then it generates a �xed assignment p:=c for each equation v=pwhere p is a feature path, and deletes v=p. If v=c is the only remaining equation with variablev on the left side, it is deleted as well. After generating �xed assignments, the compiler gen-erates a variable assignment p:=v for each remaining path equation v=p. The correspondingpath equation is not deleted in this case.The compiler sorts the variables so that x follows y if variable x depends on y, i.e. if anequation x=op(...,y,...) exists. If a circular dependency is detected, the compiler reportsan error. The parser will later compute the values of the variables in this order. The compileralso sorts the assignments so that an assignment p:=v will precede any assignment p.q:=v'to an embedded feature.When the compilation of our sample rule is �nished, the following data is obtained:� context-free backboneVP -> V NP� List of equationsv0 = 1.Phonv1 = 2.Phonv2 = 1.Subcat.tailv2 = 0.Subcatv3 = 0.HeadLexv3 = 1.HeadLexv4 = 1.Subcat.head.Agr.Numberv4 = 2.Agr.Numberv5 = 0.Phonv5 = cat(v0,v1)� assignments at mother nodePhon := v5HeadLex := v3Subcat := v2Subcat.tail := []Subcat.head.cat := NPSubcat.head.Agr.Case := nom

60 CHAPTER 4. PARSING� assignments at daughter node 1HeadLex := v3Subcat.tail := v2Subcat.head.Agr.Number := v4Subcat.tail.tail := []Subcat.head.catSubcat.head.Agr.Case := accSubcat.tail.head.catSubcat.tail.head.Agr.Case := nom� assignments at daughter node 2Agr.Number := v4Agr.Case := accThis data structure is tailored to the requirements of the algorithm for the computationof minimal extensions (see section 4.3.3). The same information could also be representedwith a feature graph (with the exception of constraints involving operators like the stringconcatenation operator which have no equivalent).4.4.2 Generation of the Context-Free GrammarYAP allows the grammar designer to augment the context-free backbone of the grammar byincorporation of features. The compiler will generate the set of re�ned context-free rules whichare licensed by the grammar rules. The information obtained from the preceding compilationsteps facilitates this task.In order to generate the context-free rules which are consistent with a grammar rule, thecompiler �rst assigns an arbitrary order to the incorporated features of all the nodes in therules. Then it determines the set of possible values for each incorporated feature. If p is thefeature path corresponding to one of the incorporated features and if there are two equationsv=p and v=c, then the set of possible values is the set of non-disjunctive values subsumed bythe (possibly disjunctive) constant c. The preceding processing steps of the compiler ensurethat at most one such equation v=c exists. If no corresponding pair of equations is found, allvalues de�ned for the type of the feature are allowed.In the next step, the compiler �xes the value of the �rst incorporated feature to the �rstone of its possible values. Before the value of the next feature is �xed, the compiler checkswhether it is uni�ed with a preceding feature via two equations x=p and x=q where p pointsto the current feature and q to the preceding feature. If this is the case, then the value ofthe preceding feature is the only possible value of the current feature. Otherwise the �rstone of its possible values is chosen. The compiler continues until the value of the last featurehas been �xed. At this point, the compiler prints the obtained context-free rule. The otherconsistent rules are computed with backtracking.The algorithm for the generation of the context-free grammar uses the following data structureand functions:

4.4. GRAMMAR COMPILATION 61r.number of inc features: total number of incorporated featuresr.path[i]: path of the ith incorporated featurer.node[i]: number of the node to which the ith incorporated feature belongsValue[i]: current value of the ith incorporated featureinit(r): compute r.number of inc features, r.path, r.nodeprint cfg rule(r): print the next context-free ruleAnd here is the algorithm itself as pseudo code:1 generate cfg rules(r)23 init(r)4 enumerate cfg rules(r, 1)567 enumerate cfg rules(r, i)89 if i > r.number of inc features then10 % The value of all features is �xed10 print cfg rule(r)10 return10 % Check for uni�cation with a preceding feature11 p r.path[i]12 if two equations v = p and v = q exist s.t. q=r.path[j] for some j<i then14 vs fValue[j]g10 % Check for a constant feature constraint15 else if there are two equations v = p and v = c or an assignment p := c then16 vs c17 else18 vs all possible values(r.inc feature[i].type)19 for all values v in vs do20 Value[i] v21 enumerate cfg rules(r, i+1)Consider the following sample grammar:enum NUMBER {sg, pl};enum CASE {nom, gen, dat, acc};enum VFORM {fin,inf,ger,pap};struct AGR { NUMBER Number; CASE Case; };category VBAR { VFORM VForm; FS_LIST Subcat, Slash; };category NP { AGR Agr; };category N { AGR Agr; };category DT { AGR Agr; };

62 CHAPTER 4. PARSINGVBAR incorporates {VForm};NP incorporates {Agr.Number, Agr.Case};N incorporates {Agr.Number, Agr.Case};DT incorporates {Agr.Number, Agr.Case};restrictor- NP_R(NP) {};NP_R np;AGR a;FS_LIST r;VBAR {Subcat=r;Slash=[np];} -> `VBAR {Subcat=[np|r];Slash=[];} NP*{}=np;NP {Agr=a;} -> DT {Agr=a;} `N {Agr=a;};The compiler will generate the following context-free grammar for this grammar:VBAR/fin -> VBAR/finVBAR/ger -> VBAR/gerVBAR/inf -> VBAR/infVBAR/pap -> VBAR/papNP/sg/nom -> DT/sg/nom N/sg/nomNP/sg/gen -> DT/sg/gen N/sg/genNP/sg/dat -> DT/sg/dat N/sg/datNP/sg/acc -> DT/sg/acc N/sg/accNP/pl/nom -> DT/pl/nom N/pl/nomNP/pl/gen -> DT/pl/gen N/pl/genNP/pl/dat -> DT/pl/dat N/pl/datNP/pl/acc -> DT/pl/acc N/pl/accBecause cyclic feature constraints are not allowed, the parser must check whether a grammaris free of them. Cyclic constraints within a single rule are detected o�ine by the YAP compiler(see section 4.4). But cycles may also arise from the interaction of several rules. Consider thefollowing grammar:"xyz": X { F=[*|l]; G=l;};Y {} -> `X { G=[*|l]; F=l;};The grammar allows to rewrite "xyz" �rst to X and then to Y. The feature structure of theX node has to satisfy the constraints of both rules which together de�ne a cyclic list. Thistype of cyclicity is not detected by the compiler. A heuristic is used in YAP to detect andeliminate cycles at parse time. This heuristic limits the depth of feature structure to a �xedmaximal value, e.g. 10. If a feature structure exceeds this limit, the parser stops and reportsan error. The user may then have a look at the problematic feature structure and decidewhether the grammar is in fact cyclic and has to be modi�ed or whether the depth limit hasto be raised.

4.5. IMPLEMENTATIONAL DETAILS 634.5 Implementational DetailsIn order to make the parser e�cient with respect to runtime as well as space requirements,some optimization strategies have been used which are described in this section.4.5.1 Lexicon CompressionIn order to achieve high coverage, the lexicon of a parser has to be large. With a straight-forward encoding of the data, the space requirements for the compiled lexicon become veryhigh. Lexica usually contain a lot of redundancy, however. The compiler has to reduce thisredundancy in order to make the size of the lexicon tractable.The information of the rules is stored in the form of linked lists, i.e. each element is linkedto the next one by a pointer. Di�erent lists often have many elements in common. If thecommon elements of two lists are located at the end of the lists, it is su�cient to store thecommon tail of both lists only once. The compiler uses simple heuristics in order to moveelements which are unlikely to be shared with other lists towards the beginning of a list ifthe order of the elements is irrelevant. With this technique it was possible to compress alexicon with 300,000 entries to some 18 MBytes, which is about 63 bytes per entry. In asimple implementation of the lexicon, about a third of these 63 bytes would we used up tostore just the word form and the lemma.4.5.2 Avoiding FS RecomputationsSometimes it is known in advance that the recomputation of a feature structure will not lead toany changes. This is the case when the feature structures of the mother node and all daughternodes remained unchanged during the last recomputation. The bu parse analysis andtd parse analysis from section 4.3.3 have to be modi�ed in order to avoid recomputationin these cases. The modi�ed lines are markes with an asterisk.64 bu parse analysis(n, a)6565a* mod false66 f[0] n.fs66a* if n.modi�ed = true then66b* mod true67 for i 1 to a.number of daughters do68 f[i] a.daughter[i].fs68a* if a.daughter[i].modi�ed = true then68b* mod true68c* m false68d* if mod = true then69 if compute variables(var value, f, a.rule) = false then70 return false71 newf build new fs(var value, n.fs, a.rule)72 if newf 6= n.fs then73 node changed true;73a* m true

64 CHAPTER 4. PARSING73b* else73c* newf n.fs74 n' insert node(n, newf)74a* if m = true then74b* n'.modi�ed true75 add link(n, n')76 % add new analysis to the list of analyses of n'77 n'.analyses n'.analyses [fa'g78 return true798081 top down parse8283 node changed false;84 result false85 % for all nodes covering the whole sentence86 for all nodes n in old chart[0,N] do87 n' insert node(n, n.fs)87a* n'.modi�ed false88 if td parse node(n, n') = true then89 result true90 return result91 . . .115116 td parse analysis(n, a)117117a* mod false118 K a.number of daughters119 f[0] n.fs119a* if n.modi�ed then119b* mod true120 for i 1 to K do121 f[i] a.daughter[i].fs121a* if a.daughter[i].modi�ed then121b* mod true122* if mod = true and compute variables(var value, f, a.rule) = false then123 return false124 a' make copy(a)125 for i 1 to K do125a* m false125b* if mod = false then125c* newf f[i]125d* else126 newf build new fs(var value, f[i], a.rule)127 if newf 6= f[i] then128 node changed true;128a* m true129 n' insert node(n, newf)129a* if m = true then129b* n'.modi�ed true130 if td parse node(n, n') = false then131 return false132 a'.daughter[i] n'

4.5. IMPLEMENTATIONAL DETAILS 65133 n'.analyses n'.analyses [fa'g134 return true135 . . .160161 insert node(n, fs)162163 for all nodes n' 2 chart[n.start, n.end] do164 if n'.fs = fs then165 return n'166 n' make copy(n)167 n'.fs fs167a* n'.modi�ed false168 chart[n.start, n.end] chart[n.start, n.end] [fn'g169 return n'4.5.3 Lazy CopyingThe parser must copy the feature structures before it modi�es them because the old fea-ture structure might still be needed afterwards. Copying of complete feature structures isvery expensive, however. A lazy copying strategy [Karttunen and Kay, 1985, Emele, 1991] istherefore used to avoid unnecessary copying.Lazy copying copies a feature structure only when one of its features is actually modi�ed andit copies only the higher levels of the feature structure down to the modi�ed feature. Thelazy copying strategy is implemented in the function build new fs printed below.path.feature: �rst feature of pathpath.next: path minus its �rst featuref.feature[feat]: value of feature feat in feature structure ff.copied: ag indicating whether the root of feature structure f has been copied154 build new fs(var value, oldf, r)155156* for all assignments of the form path:=v do157* newf lazy copy assign(f, path, var value[v])158* newf clear copy marks(newf)159* return newf160 . . .176177* lazy copy assign(f, path, val)178* if path is empty then179* return val180* newfv lazy copy assign(f.feature[path.feature], path.next, val)181* if newfv 6= f.feature[path.feature] then182* if f.copied = false then183* f copy root(f)184* f.feature[path.feature] newfv185* return f

66 CHAPTER 4. PARSING186*187*188* clear copy marks(fs)189*190* if fs.copied = false then191* return fs192* for all features in fs do193* clear copy marks(fs.feature[f])194* fs.copied = false195* return fsThe lazy copying strategy is also used in the function least upper bound which uni�es itsargument feature structures non-destructively.4.5.4 Feature Structure RepresentativesThe presented parsing algorithm involves many feature structure equality checks. Equalityof feature trees is extensional, i.e. two feature structures are equal if and only if they arestructurally equal. It is possible to replace all structurally equivalent feature structures bya single representative. Comparison of feature structures then reduces to a comparison ofpointers. Whenever a new feature structure is created, it is checked whether the same featurestructure has been generated before. If this is the case, the old feature structure is returned,otherwise the new one is returned. The function clear copy marks from section 4.5.3 has tobe modi�ed as follows:188 clear copy marks(fs)189190 if fs.copied = false then191 return192 for all features in fs do193 clear copy marks(fs.feature[f])194 fs.copied = false194a* if fs' 2 fs table exists with fs'.feature[f] = fs.feature[f] for all features f then194b* return fs'194a* else194a* insert(fs, fs table)195 return fsIf fs table is organized as a hash table where the hash key is computed from the values ofthe features of a feature structure, then the insertion and lookup operations require constanttime on average.4.5.5 Chart InsertionThe insertion of new nodes into the chart is an expensive operation if the chart cells areorganized as lists because each insertion has to examine all members of the list in order to

4.5. IMPLEMENTATIONAL DETAILS 67�nd out whether the new element is already contained in the list. There is no �xed bound tothe length of these lists as in the case of context-free parsing because the number of featurestructures is at worst exponential in the length of the input string. In order to make chartinsertion an operation of constant runtime complexity, chart cells are organized as hash tables.Another data structure which is organized as a hash table rather than a list is n.link.4.5.6 Storing the Results of Expensive ComputationsDue to the redundancy of the representation of feature structures in disjunctive normal form,i.e. as a set of alternative feature structures (cp. section 4.3.2), it is possible that expensiveoperations like feature structure uni�cations are repeated. In order to avoid this, the parserstores the results of expensive computations in a hash table. Before such an operation isexecuted, it is checked whether the result is already available from the hash table. Twotypes of operations are hashed by the YAP parser: feature structure uni�cation and stringconcatenation.

68 CHAPTER 4. PARSING

Chapter 5Experimental Results
5.1 The English GrammarAll experiments reported in this chapter were carried out with versions of the English YAPgrammar which is printed in appendix B. This grammar uses HPSG-style Slash and Subcatfeatures to check constraints on argument structure and constituent movement. Most cat-egory names were taken over from the Penn Treebank database [Marcus et al., 1993]. Thegrammar contains 250 rules plus 50 rules for handling quotation and commas plus 45 rulesfor coordination. The grammar covers a broad range of linguistic phenomena, among them� subcategorization� long distance dependencies� questions, imperatives, subjunctives and relative clauses� raising and control verbs� small clauses� extrapositions� coordination including some frequent cases of non-constituent coordinationThe lexicon is based on the COMLEX lexical database [Grishman et al., 1994] which containsalmost 40,000 base forms. It is supplemented by a hand-built lexicon which contains entries formost function words and some other words for which the Comlex entry was not appropriatefor some reason. It is also possible to create additional corpus-speci�c lexical entries forpart-of-speech tagged corpora.5.2 Parsing the Wall-Street-Journal CorpusThe Wall Street Journal corpus, which has been manually parsed by the Penn Treebankproject [Marcus et al., 1993], was reparsed with the English YAP grammar. Lexicon entries69

70 CHAPTER 5. EXPERIMENTAL RESULTSfor words which were not contained in the standard lexicon were derived from the part-of-speech tags in the Treebank corpus. The tags were not used during parsing itself, however.Quotation marks were ignored. More than 7 words per second were parsed on average on aSun Ultra-2 workstation with 500 MByte RAM. Three times the parser stopped prematurelydue to memory exhaustion. The computation of the feature structures was the most time-consuming part of parsing.For 80 percent of the sentences, the parser generated at least one analysis, and for 54 percentof the sentences, there was at least one analysis which was compatible with the Penn Treebankanalysis. The matching of the YAP analysis with the Treebank analysis will be described insection 5.4. The matching is not perfect, however. Sometimes, it fails to detect importantdi�erences between two analyses and sometimes two equivalent analyses are classi�ed asinconsistent merely because of di�erences in the way syntactic phenomena are described.Therefore 100 sentences were parsed and manually inspected to estimate how often the parserreally generated an acceptable analysis. For 57 of the inspected sentences, the parser had pro-duced a Treebank-compatible analysis, but for only 48 sentences was one of the analyses indeedcorrect. Interpolating these results, the portion of sentences with an acceptable analysis isprobably around 45 percent in the larger corpus.

0

5

10

15

20

25

10 15 20 25 30 35 40 45 50

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
s/

se
nt

en
ce

sentence lengthFigure 5.1: Empirical parsing complexityParsing of grammars with feature structures is known to be NP-complete in the worst caseeven if the grammar is o�ine parsable. This means that the worst-case runtime of the parser isexponential in the length of the input string (at least for all known algorithms). Fortunately,grammars used for parsing natural language usually do not show this worst-case runtimebehaviour. Therefore we are more interested in the runtime complexity which is observedwith real grammars and real data. Figure 5.1 shows how much time it took on average for theparser to parse sentences of length 10 to 55 from the Penn Treebank. The dots representing

5.3. COMPARISON WITH OTHER PARSERS 71the average parsing times are well approximated by a cubic function (the dashed line in thediagram)1. strategy 25 sentences 1 complex sent.all optimizations 65.9 180no hashing of uni�cations 67.4 193no hashing of string concatenations 79.3 244recomputing always 67.3 236Table 5.1: Parse times for 25 randomly selected sentences and a single complex sentenceAnother experiment was carried out to check the inuence of some of the optimization strate-gies described in section 4.5 on parsing time. A randomly selected set of 25 sentences wasparsed with di�erent variants of the parser in the �rst part of the experiment. In the secondpart of the experiment, a single complex sentence with many analyses was parsed. In eachvariant of the parser, one optimization was switched o�. Table 5.1 shows the results. Hashingof uni�cations showed minor e�ects on parsing speed. Hashing of string concatenation oper-ations was more e�ective. Presumably string concatenation operations are more likely to berepeated than feature structure uni�cations. Avoiding unnecessary recomputation of featurestructures had a larger inuence on the parsing of the complex sentence than on the parsingof the simpler sentences.The impact of the incorporation of features into the context-free grammar was examined,as well. In contrast to [Maxwell III and Kaplan, 1994], I only observed a small speedup of3 percent for the best combination of incorporated features compared to parsing withoutfeature incorporation. Incorporation of morpho-syntactic features like number, gender andcase made the parser very slow because the parse forest generated by the context-free parserbecame very big, slowing down both context-free parsing and the calculation of the featurestructures. Overall, a close relationship between the number of nodes in the context-freeparse forest and parsing time has been observed. In those cases where the incorporation offeatures considerably increased the size of the context-free parse forest, it proved useful toskip the initialisation of feature structures with the values of incorporated features, allowingmany nodes with di�erent values for the incorporated features but identical category to bemerged and thereby reducing the size of the parse forest. But still the grammar which didnot incorporate these features showed superior performance.5.3 Comparison With Other ParsersThe parser was compared to a state-of-the-art parser, the XLE system developed at theresearch laboratories of the Rank Xerox company which was available for the experiments.A corpus of 700 words, which both parsers were able to parse completely, was used in thisexperiment. The XLE system parsed this corpus in 110 seconds whereas the YAP parserneeded 123 seconds. The tests were run on comparable machines.1There is an outlier at (48, 36.7) which is not shown in the diagram.

72 CHAPTER 5. EXPERIMENTAL RESULTSIt is very di�cult to compare these parse times because the parsers are very di�erent wrt.the grammar formalisms, the information contained in the analyses, the degree of ambiguityof the resulting parse trees and other criteria. The YAP grammar tends to generate moreanalyses (making parsing more di�cult) but it de�nes smaller feature structures (makingparsing easier).In another experiment, the XLE system and YAP were compared on a small grammar forGerman subordinate clauses with relative clause extraposition. Due to PP attachment am-biguities, the number of attachment sites of the extraposed clause increased exponentiallywith the length of the sentence. In the YAP version of the grammar the extraposed sentencewas attached with Slash percolation. The LFG grammar2 attached the extraposed clausewith functional uncertainty. The resulting empirical runtime complexity for input of varying3length was about cubic for the YAP parser and exponential for the XLE system.

0.01

0.1

1

10

10

pr
oc

es
si

ng
 ti

m
e

[s
ec

]

words per sentence

exponential
standard LFG

polynomial (n**4)
LFG with SLASH

LFG, no attachment
polynomial (n**3)

YAP

Figure 5.2: Parsing complexity of the YAP grammar and di�erent versions of the XLE gram-marIn order to �nd out whether the di�erence in parsing complexity was due to di�erences inthe parsing algorithms or due to di�erences in the grammar formalisms, the XLE grammarwas modi�ed. First, functional uncertainty was replaced by Slash percolation. The resultingparsing complexity was better for large sentences but still exponential. The \Slash" grammar2All versions of the LFG grammar have been written by Jonas Kuhn who is an experienced XLE user.3The length of the input was increased by adding PPs in the matrix clause.

5.4. TREE MATCHING 73was further modi�ed so that the Slash feature contained only agreement information and nopointer to the PRED feature. As a result of this modi�cation, the parsing complexity droppedto about O(n6). In the last version of the LFG grammar, information about adjuncts wasremoved from the f-structure and the runtime complexity further dropped to about cubiccomplexity. But even this version of the XLE grammar was at least an order of magnitudeslower than the YAP grammar for all input lengths.This experiment con�rms how useful it is to avoid the evaluation of structure-building con-straints during parsing. It also indicates that the presented method for the computation ofthe feature structures is { at least for the grammar in this experiment { very e�cient.5.4 Tree MatchingThis section describes the function match which is used to match the parse forest with anunambiguous skeleton parse tree (see section 5.2). It eliminates analyses with crossing bracketsand performs some additional checks which are implemented in the function check nodes.Two analyses are said to have crossing brackets if the �rst analysis contains a constituentspanning from position i to j and the second contains a constituent spanning from k to l andeither i < k < j < l or k < i < l < j, i.e. the two intervals overlap and none is completelycovered by the other. An example for two analyses with crossing brackets in list notation isthe pair ((a b) c) and (a (b c)). Both of these are compatible with (a b (c)), however.F: a parse forestT: an unambiguous skeleton parse treeF.nodes set of all nodes in FF.roots the root nodes of FT.root the root node of Tn.processed: ag indicating whether node n has already been processedn.valid: ag indicating whether node n is part of the �ltered parse forestn.bu valid: ag indicating whether the matching of node n was successfulla.valid: ag indicating analysis a is part of the �ltered parse foresta.bu valid: ag indicating whether the matching of analysis a was successfulltrace node(n): checks whether n is a trace nodeterminal node(n): checks whether n is a terminal node1 match(F,T)23 for all nodes n 2 F.nodes do4 n.processed false5 n.valid false6 for all analyses a 2 n.analyses do7 a.valid false8 % do the matching9 for all nodes n 2 F.roots do10 match1(F.root, T.root, 0, T.root.number of daughters-1)11 % mark analyses which did not match

74 CHAPTER 5. EXPERIMENTAL RESULTS12 for all nodes n 2 F.roots do13 �lter(F.root)141516 match1(fn, tn, ts, tl)1718 % check whether the current node was matched before19 if fn.processed = true then20 return fn.bu valid21 % perform some additional checks like matching category names etc.22 if check nodes(fn, tn, ts, tl) = false then23 return false24 if terminal node(fn) = true and terminal node(tn) = true then25 for all analyses a 2 fn.analyses do26 a.bu valid true27 return true28 % skip over traces in the parse tree29 while ts < tl and trace node(tn.daughter[ts]) do30 ts ts + 131 if terminal node(fn) = true and terminal node(tn) = false then32 if terminal node(tn.daughter[ts]) = true then33 return match1(fn, tn.daughter[ts], 0, 0)34 else35 return match1(fn, tn.daughter[ts], 0, tn.daughter[ts].number of daughters-1))36 % fn is a nonterminal node37 fn.bu valid false % initialisation38 for all analyses a 2 fn.analyses do39 a.bu valid true40 f2 042 f1 041 t2 ts43 t1 ts44 % Matching of the daughter nodes45 while a.bu valid and t2 � tl do46 if a.daughter[f2].end < tn.daughter[t2].end then47 f2 f2 + 148 else if a.daughter[f2].end > tn.daughter[t2].end then49 t2 t2 + 150 else % end positions are identical51 % Does one parse forest node match one or more tree nodes?52 if a.daughter[f1].start = a.daughter[f2].start then53 if match1(a.daughter[f1], tn, t1, t2) = false then54 a.bu valid false55 % Does one tree node match several parse forest nodes?56 else if tn.daughter[t1].start = tn.daughter[t2].start then57 if match2(fn, a, f1, f2, tn.daughter[t2]) = false then

5.4. TREE MATCHING 7558 a.bu valid false59 else % crossing brackets60 a.bu valid false61 f2 f2 + 162 t2 t2 + 163 f1 f264 t1 t265 % end of while loop66 if a.bu valid = true then67 fn.bu valid true68 return fn.bu valid697071 match2(fn, a, tn, fs, fl)7273 % ignore trace nodes74 while fs < fl and trace node(a.daughter[fs]) do75 fs fs + 176 if terminal node(tn) then77 if match1(a.daughter[fs], tn, 0, 0) = true then78 return true79 else80 return false81 % tn is a nonterminal node82 valid true % initialisation83 f1 fs84 f2 fs85 t1 086 t2 087 % Matching of the daughter nodes88 while valid = true and f2 � fl do89 if a.daughter[f2].end < tn.daughter[t2].end then90 f2 f2 + 191 else if a.daughter[f2].end > tn.daughter[t2].end then92 t2 t2 + 193 else % both end positions are identical94 % Does one parse forest node match one or more tree nodes?95 if a.daughter[f1].start = a.daughter[f2].start then96 if match1(a.daughter[f2], tn, t1, t2) = false then97 valid false98 % Does one tree node match several parse forest nodes?99 else if tn.daughter[t1].start = tn.daughter[t2].start then100 if match2(fn, a, f1, f2, tn.daughter[t2]) = false then101 valid false102 else % crossing brackets103 valid false

76 CHAPTER 5. EXPERIMENTAL RESULTS104 f2 f2 + 1105 t2 t2 + 1106 f1 f2107 t1 t2108 % end of while loop109 return valid110111112 �lter(fn)113114 if fn.bu valid = true then115 fn.valid true116 for all analyses a 2 fn.analyses do117 if a.bu valid then118 a.valid true119 for i 1 to a.number of daughters do120 �lter(a.daughter[i])After initialising data structures, the function match processes all top nodes of the parse forest(i.e. each node covering the whole input string) by calling the function match1. Afterwards,the function filter is called for all top nodes to mark those nodes of the parse forest whichare not part of a compatible analysis.Function match1 takes four arguments, a parse forest node, a node from the treebank analysisand the number of the �rst daughter node and the last daughter node of the treebank node tobe matched with the parse forest node. The function checks �rst whether the current parseforest node has already been processed. If so, it returns the result4. Otherwise, it invokesthe function check nodes to perform some additional compatibility tests. If both the parseforest node and the treebank node are terminal nodes, then all analyses of the parse forestnode are marked as valid. Otherwise, the function skips over trace nodes in the parse treeand determines the next non-empty daughter node of the treebank node. If the parse forestnode is a terminal node, then match1 is called recursively to match the parse forest node withthe next parse tree daughter node. Otherwise, the parse forest node is a non-terminal nodeand the function has to check all possible analyses of the parse forest node.For each analysis, it determines whether the �rst non-empty daughter of the parse forestnode has the same span as one or more daughter nodes of the treebank node. If this is thecase, then match1 is called recursively to match this parse forest daughter with the treebankdaughters. Otherwise, the function checks whether the next daughter node of the treebankhas the same span as a subset of the daughter nodes of the parse forest node. If this is thecase, then the function match2 is called to match the subset with the next treebank daughter.If neither of the two cases applies, then crossing brackets have been detected and the currentanalysis is marked as incompatible. Otherwise, match1 continues and matches the remainingnodes.The function match2 takes �ve arguments: a parse forest node, an analysis of this node, atreebank node and the number of the �rst daughter node and the last daughter node of the4Because the parse tree is unambiguous, it is not possible that the same parse forest node is matched withtwo di�erent parts of the parse tree.

5.4. TREE MATCHING 77parse forest node to be matched with the treebank node. The function �rst determines thenext non-empty daughter node of the parse forest node. If the treebank node is a terminalnode, then match1 is called to match the treebank node with the next non-empty parse forestnode. Otherwise, the function checks whether the next parse forest node has the same span asa subset of the treebank daughters. If this is the case, then match1 is called to match the nextparse forest daughter with the treebank nodes. Otherwise, match2 checks whether the �rstnon-empty treebank daughter has the same span as a subset of the parse forest daughters. Ifthis is the case, then match2 is called recursively to match the treebank daughter with theparse forest daughters. If none of the two cases applies, then crossing brackets exist and thefunction returns false.The crossing brackets criterion is only a crude test of the compatibility of two syntacticanalyses. It fails to check the compatibility of the labels, it does not di�erentiate betweenarguments and adjuncts, and it can not detect the PP-attachment incompatibility of the twoanalyses (V NP PP) and (V (NP PP)) where the PP attaches to the verb in the �rst analysisand to the noun in the second. The function check nodes performs these and other checksin order to improve the matching of YAP analyses and Penn Treebank analyses.

78 CHAPTER 5. EXPERIMENTAL RESULTS

Chapter 6Parse Forest DisambiguationA major problem in syntactic analysis is ambiguity. It occurs that sentences have thousandsof parse trees. Most applications, however, are only interested in the most plausible analysesand cannot deal with thousands of di�erent analyses. Hence it is necessary to score theindividual parse trees and to extract the best ones e�ciently.Major sources of syntactic ambiguity in English are prepositional phrases, noun compounds,coordinations and combinations thereof as in the sentence ``The agency studied swingsin stock and stock-index prices'', which has seven di�erent analyses depending onwhere the prepositional phrase attaches, what the conjunction and coordinates, and whatthe noun compound headed by prices looks like. Resolution of these types of ambiguityrequires semantic information and/or world knowledge. One approach to disambiguation istherefore to eliminate a reading if a contradiction between the semantic content of this read-ing and background knowledge is derivable. This disambiguation method is used e.g. in theVerbmobil project, a German research project aiming at the development of a system for au-tomatic translation of appointment scheduling dialogs. It is di�cult to extend this techniqueto broader domains, however, because a huge amount of hand-coded background knowledgeis required and the search space for the derivation of contradictions is so big.Many disambiguation problems require no in-depth semantic analysis, however. Con-sider the sentences ``The account comprises trade in goods'' and ``Investors pourmoney into funds''. By examining a large text corpus, we �nd that trade in goods andpour ...something... into ...something... are frequent constructions. Based on thisfrequency information, it is possible to decide that nominal attachment of the prepositionalphrase is probably correct in the �rst sentence and verbal attachment in the second. Suchfrequency-based or statistical methods have the following advantages:� Statistical methods require little or no handcoded information. The relevant informationis automatically extracted from training corpora.� Processing is fast compared to the inferential methods and also compared to the timerequired for parsing. This is important for processing large corpora.� Analyses are ranked rather than divided into valid and invalid analyses. It is often thecase that several readings of a sentence are acceptable, but that some of them are moreplausible than the others. 79

80 CHAPTER 6. PARSE FOREST DISAMBIGUATION� Some statistical methods are trained on plain text. These methods require no manuallyparsed training corpora (treebanks) which are expensive to produce and of limited sizecompared to the amount of unparsed material available.6.1 Probabilistic GrammarsA probabilistic grammar is a grammar which assigns probabilities to parse trees, and a parserfor a probabilistic grammar disambiguates a sentence by selecting the parse tree with thehighest probability. Three types of probabilistic grammars will be discussed here: probabilis-tic context-free grammars, head-lexicalized probabilistic context-free grammars and feature-based probabilistic context-free grammars. Other types of probabilistic grammars havebeen presented e.g. in [Black et al., 1992], [Magerman, 1994], [Briscoe and Waegner, 1992],[Eisner, 1996], [Collins, 1996].6.1.1 Probabilistic Context-Free GrammarsA probabilistic context-free grammar is a context-free grammar which assigns a probabilityP (r) to each grammar rule r. The probabilities of all rules with the same left hand side mustsum to 1.The probability of a parse tree is de�ned as follows:P (T) = Yrule rP (r)F (r;T)F (r; T) is the number of times, rule r was used to generate T.The values of the parameters are learned automatically. When an unambiguously parsedtraining corpus, also called a treebank , is available, it is possible to estimate the probabil-ities directly from the observed rule frequencies. Otherwise, the Inside-Outside algorithm[Baker, 1982], an instance of the more general Expectation Maximization (EM) algorithm[Baum and Sell, 1968] can be applied to learn the parameter settings from unparsed corpora.The availability of e�cient training algorithms makes PCFGs very attractive, but they failto disambiguate some frequent syntactic ambiguities like coordination and PP-attachmentambiguities. Consider the context-free grammar in table 6.1. Any PP-attachment ambiguitywill be resolved in the same way in any probabilistic version of this grammar because thedecision depends only on the ratio P (V P ! V P PP) : P (NP ! NP PP). Thereforethe most probable parse tree for one of the two sentences ``The account comprises tradein goods'' (nominal attachment) and ``Investors pour money into funds'' (verbal at-tachment) is always incorrect. Furthermore both analyses of the noun phrase ``the saleof the company to the competitor'' always have the same probability because the samerules are applied in two di�erent orders.6.1.2 Head-Lexicalized Probabilistic Context-Free GrammarsHead-Lexicalized probabilistic context-free grammars (LPCFG) extend the PCFG approachby incorporating information about the lexical head of constituents into the probabilistic

6.1. PROBABILISTIC GRAMMARS 81S ! NP VPVP ! VP PPVP ! V NPPP ! P NPNP ! NP PPNP ! DT NDT ! the. . .Table 6.1: A context-free grammarmodel [Charniak, 1997, Carroll and Rooth, 1998]. An LPCFG rule looks like a PCFG rule,but one of the daughters is marked as the head. The rule probabilities Prule(C ! �) (orrather Prule(C ! �jC) because the probability of a rule is only non-zero if the constituentwhich is expanded has the appropriate category) are replaced by lexicalised rule probabilitiesPrule(C ! �jC; h) where h is the lexical head of the mother constituent C. In other words, inan LPCFG, the probability of a rule depends on the lexical head. Assume that our grammarhas two rules which expand VPs, namely VP ! V NP and VP ! V. Then the �rst rule shouldbe more likely if the lexical head is buy whereas the second rule should be more likely if thelexical had is the intransitive verb sleep.Once we have applied a lexicalised grammar rule, we need to know the lexical heads ofthe non-head daughters in the rule before we can further expand the daughter nodes.Therefore LPCFGs comprise another type of probabilities, the lexical choice probabili-ties Pchoice(hdjCd; Cm; hm), which tell us how likely it is that a given word hd is the lexicalhead of a constituent with category Cd when the mother node has category Cm and the lexicalhead hm. So, Pchoice(bookjNP; V P; buy) is the probability that the NP argument of the verbbuy is headed by book.Finally, an LPCFG comprises a probability distribution Pstart(h) which determines how likelythe word h is to be the lexical head of the root node of a parse tree. The probability of aparse tree T is de�ned as the product:P (T) = Pstart(head(root(T))) �Ynonterm n in T Prule(r j cat(n); head(n)) �Ynonroot n in T Pchoice(head(n) j cat(n); cat(parent(n)); head(parent(n)))where the function root(T) returns the root node of a parse tree T and cat(n) returns thecategory and head(n) the lexical head of a node n.A head-lexicalized version of the context-free grammar in table 6.1 is able to assignthe highest probability to the correct parse trees for both sentences, ``The accountcomprises trade in goods'' and ``Investors pour money into funds'' if the proba-bilities Pchoice(in jNP;PP; trade) and Pchoice(into jV P; PP; pour) are large compared to theprobabilities Pchoice(in jV P; PP; comprise) and Pchoice(into jNP;PP;money).

82 CHAPTER 6. PARSE FOREST DISAMBIGUATIONBecause head-lexicalized context-free grammars can be mapped to probabilistic context-freegrammars1, it is possible to use the Inside-Outside algorithm to estimate the parameters.The huge number of parameters, however, leads to serious data sparseness problems. Nomatter how big the training corpus is, some possible lexical choice events will not be ob-served in the corpus and their probability will therefore be estimated as 0, which is notacceptable because the probability of any parse tree containing such an event will be zero.The problem can be solved with smoothing techniques which distribute a small fractionof the probability mass of the observed events over unobserved events, either uniformly(see e.g. [Church and Gale, 1991]) or by interpolation [Jelinek and Mercer, 1980] or accord-ing to a backo� scheme [Katz, 1987] or based on the similarity of words e.g. in a taxonomy[Abney and Light, 1998] or according to some similarity metric [Dagan and Pereira, 1994].The data sparseness problem can also be tackled by reducing the number of parameters. Inthe latent semantic class (LSC) model of Mats Rooth [Rooth, 1994], the probability of a wordpair hw;w0i is de�ned as P�2T p(�)p1(wj�)p2(w0j�), where T is the set of semantic classes,p(�) is the apriori probability of class � , p1(wj�) is the probability of the �rst word of thepair given semantic class � , and p2(w0j�) is the probability of the second word of the pairgiven � . The number of semantic classes in the model is de�ned by the user. The numberof parameters of the LSC model grows linearly rather than quadratically with the number ofwords if the number of classes is �xed. The LSC parameters are automatically learned from atraining corpus using a variant of the EM algorithm. Latent semantic classes can be thoughtof as a set of prototypical semantic relationships. The latent semantic class model could alsoserve as one of the distributions in an interpolated model or a backo� model.6.1.3 Probabilistic Constraint-Based GrammarsProbabilistic versions of constraint-based grammars have been examined as well (see e.g.[Eisele, 1994, Brew, 1995, Abney, 1996, Riezler, 1999]). Andreas Eisele proposed a proba-bilistic extension of CUF, a constraint-logic programming language which is used to imple-ment constraint-based grammar formalism like HPSG. Eisele's method assigns probabilitiesto clauses of a constraint-logic program and the probability of an analysis is de�ned as theprobability of its proof tree rather than the probability of the parse tree as in PCFGs. Theproof tree probability is the product of the probabilities of all clauses in the proof tree. Eiselesuggests using the EM algorithm to estimate the probabilities of the clauses from unparsedtraining text. As Eisele points out, the probability model may assign non-zero probabilititesto proof trees which fail due to violations of feature constraints. The probabilities are there-fore renormalized in order to get a probability distribution in which the probabilities of allparse trees add up to 1. This does not completely solve the problem, however, because theobtained parameters may systematically converge to non-optimal results if the distributionof uni�cation failures is not random.We will illustrate the problem with a YAP grammar because it appears there in the sameform. Consider the following grammar:1In order to turn an LPCFG with a set of categories C and start symbol S 2 C and a set of lex-ical forms W into a PCFG, we replace each rule Cm ! Cd1 : : : C0dh : : : Cdn by a set of rules fCwm !CCm;wd1 : : : Cwdh : : : CCm;wdn jw 2 Wg with probabilities equal to the rule choice parameters of the LPCFG. Wefurther add a set of rules fCC0;w ! Cw0 jC;C0 2 C ^ w;w0 2 Wg and a set of rules fS ! Swjw 2 Wg withprobabilities equal to the lexical choice parameters of the LPCFG.

6.1. PROBABILISTIC GRAMMARS 83(R1) NP {} -> DT {Number=n;} `N {Number=n;};(R2) "this": DT {Number=sg;};(R3) "these": DT {Number=pl;};(R4) "man": N {Number=sg;};(R5) "men": N {Number=pl;};Assume that the training corpus consists of the two unambiguous phrases this man andthese men. The corresponding parse trees are shown in �gure 6.1.
 (a) (b)

N

this man

NP

DT N

NP

DT

mentheseFigure 6.1: Parse trees for the phrases this man and these menTraining the grammar on these two phrases will return the following probabilities:P(R1) = 1P(R2) = P(R3) = P(R4) = P(R5) = 0.5The sum of the probabilities of all parse trees generated by this grammar (these are the twotrees shown in �g 6.1) is 0.5. In order to renormalize the probabilities such that the sumof probabilities of all parse trees equals 1, we multiply the tree probabilities with 2. Theresulting tree probabilities are now identical to the relative frequencies of the sentences in thetraining corpus. This is the desired result because we want the probability model to reectthe distribution in the training corpus.Now assume that the training corpus contains this man twice and these men once. In thiscase, we get the following probability estimates:P(R1) = 1P(R2) = P(R4) = 2/3P(R3) = P(R5) = 1/3The renormalization factor is 9/5 and the probability of tree (a) is 4/5 and the probabilityof tree (b) is 1/5. These probabilities are quite di�erent from the relative frequencies in thetraining corpus which are 2/3 and 1/3. The likelihood of the training data for this model is0.128. If we choose the following parameters insteadP(R1) = 1P(R2) = P(R4) = 0.58P(R3) = P(R5) = 0.42and the normalisation constant 1.95, then we obtain a likelihood of about 0.148. This provesthat the above training procedure is not optimal since it fails to �nd the parameters which

84 CHAPTER 6. PARSE FOREST DISAMBIGUATIONmaximise the probability of the training data. The reason is that the application of rules 2,3 and 4, 5 is not statistically independent.Steven Abney [Abney, 1996] presented a method for the disambiguation of constraint-basedparses which is based on log-linear models. A log-linear model de�nes a set of features ffgwith weights �f and the probability of a parse tree is de�ned as:P (T) = 1Z ePf �fF (f;T)where F (f; T) is the frequency of feature f in T and Z is a normalisation constant which isde�ned as follows: Z =XT ePf �fF (f;T)PCFGs are a special case of log-linear models where Z is 1 and the features are the grammarrules and the weight of a feature is the logarithm of the probability of the grammar rule. Incontrast to PCFGs, however, log-linear models normally do not satisfy the constraint that theweights form a family of probability distributions and they cannot be interpreted as modelsof a generative process.Abney also presented an algorithm for the training of log-linear models on treebank bankdata which guarantees that the feature weights maximise the likelihood of the training dataeven when the features are not statistically independent. Abney's algorithm was extendedby Stefan Riezler [Riezler, 1999, Riezler, 1998] for unsupervised training on unparsed data.Recently, Riezler and Johnson [Johnson et al., 1999] successfully applied Abney's method ina small-scale experiment in which LFG analyses were disambiguated.The computation of the normalisation constant Z is a problem in Abney's and Riezler'salgorithm. This computation is only exact if the set of parses is �nite. Otherwise, Z hasto be estimated and there is no guarantee that the \probabilities" of all parses sum to 1.This problem is not relevant for syntactic disambiguation, however, because a change in theconstant Z has no inuence on the ranking of the parses of a sentence.6.2 Hybrid Disambiguation MethodsThe probabilistic methods presented so far compute scores for complete parse trees and disam-biguate the parse forest in one step. It is also possible to disambiguate a parse forest step bystep, starting with the most reliable disambiguation decision and removing all analyses whichare incompatible with this decision, then removing the analyses which are incompatible withthe second-best decision, and so on. This method has the advantage that arbitrary probabilis-tic and symbolic methods can be used to derive the individual decisions because there is noneed to combine scores for decisions numerically in order to get overall scores for whole parsetrees. Therefore it is possible to combine the disambiguation methods which have been de-veloped for PP-attachment disambiguation [Hindle and Rooth, 1993, Brill and Resnik, 1994],noun compound disambiguation [Lauer, 1995] and subject-object disambiguation in German[de Lima, 1997].

6.3. A DISAMBIGUATION METHOD FOR YAP 856.3 A Disambiguation Method for YAPBecause of the theoretical problems (see section 6.1.3) as well as practical problems withprobabilistic feature-based grammars (parsing of a large corpus like the British National Cor-pus (BNC) which contains 100 million words with YAP and the presented English grammarwould take more than half a year), a hybrid strategy was chosen to disambiguate the outputof the YAP parser with the English grammar.6.3.1 The Basic IdeaThe basic idea of this disambiguation method is to look for word pairs in the parse forestwhich stand in a head-argument or modi�er-head relation. These word pairs are ranked withrespect to the strength of the association between the words in the given relation. Startingwith the strongest association, all analyses not containing the respective word pair in thegiven relation are deleted. Then the second-best association in the remaining analyses of thesentence is selected to prune the parse forest, and so on until only one analysis is left or theset of word pairs is empty. If several word pairs have the same association score, all analysescontaining either one of them are retained. The association score used by the parser is thelog-likelihood ratio (see [Dunning, 1993, Daille, 1995]) which is de�ned as follows:L(C;w; r; C 0; w0) = 2(AlogA +BlogB + ClogC +DlogD�(A+B)log(A+B)� (A+ C)log(A +C)�(B +D)log(B +D)� (C +D)log(C +D)+(A+B + C +D)log(A+B + C +D))A = F (C;w; r; C 0; w0)B = "Xw0 F (C;w; r; C 0; w0)#�AC = "Xw F (C;w; r; C 0; w0)#�AD = 24Xw;w0 F (C;w; r; C 0; w0)35�ACompared to the mutual information statistics, the log-likelihood ratio assigns more adequatescores to rare events [Dunning, 1993].6.3.2 Computation of the ScoresThe word pair frequencies have been obtained by parsing 90 million words from the BNC withCarroll and Rooth's head-lexicalized context-free parser for English (see section 6.1.1). Theresult was a table of estimated lexical choice frequencies FhC;w;C0;w0i where C is the categoryof the mother node of a rule, C 0 is the category of a non-head constituent, w is the lexical

86 CHAPTER 6. PARSE FOREST DISAMBIGUATION
V arg N: VFC1 ! ... NC1 ...V arg PART: VFC1 ! ... PART C ...V arg P:P mod V: VFC1 ! ... PC1 ...P arg N: P C ! ... NC1 ...N arg V: NC1 ! ... VTOC1 ...N arg P:P mod N: NC1 ! ... PC1 ...ADJ arg V: ADJC1 ! ... VTOC1 ...ADJ arg P: ADJC1 ! ... PC1 ...ADJ mod N: NPL= ! ... ADJMOD ...NSG= ! ... ADJMOD ...NPL ! ... ADJC1 ...NSG ! ... ADJC1 ...NPL ! ... CD ...NSG ! ... CD ...ADV mod P: PREP ! ... ADV= ...ADV mod V: VFC1 ! ... ADV= ...VF= ! ... ADV= ...S C ! ... ADV= ...ADV mod ADJ: ADJ= ! ... ADV= ...CD ! ... ADV= ...ADV mod ADV: ADV ! ... ADV ...N mod N: NPL ! ... NPL ...NPL ! ... NSG ...NPL ! ... PN ...NSG ! ... NPL ...NSG ! ... NSG ...NSG ! ... PN ...PN ! ... NPL ...PN ! ... NSG ...PN ! ... PN ...Table 6.2: Mapping of lexical choice frequencies from the head-lexicalized grammar to lexicalassociation frequencies

6.3. A DISAMBIGUATION METHOD FOR YAP 87head of the mother node and w0 is the lexical head of the daughter node and f is the frequencyof occurrence.Frequencies for a set of lexical associations were derived from this frequency table. The leftcolumn in table 6.3.2 shows the di�erent types of word relations for which log-likelihood scoreshave been computed. The right column shows the lexical choice frequencies which have beenadded up to obtain frequencies for the respective relation. V arg N is the relation between averb and its nominal argument, ADV mod V is the relation between a verbal category and itsadverbial modi�er.Example:FhADV;purely;MOD;ADJ;aesthetici = FhADJ=;aesthetic;ADV=;purelyi + FhCD ;aesthetic;ADV=;purelyiLog-likelihood ratios have been computed for the word pairs of each relation type. Only wordpairs with a frequency of at least 1 and a log-likelihood ratio of at least 2 were used fordisambiguation.The LPCFG makes no distinction between arguments and adjuncts. Therefore the scores forthe V arg P relation and the P mod V relation have to be computed from the same lexicalchoice frequencies. To this end, the lexical choice frequencies are split into two sets. The�rst set contains of verb-preposition pairs where the verb subcategorizes for a prepositionalphrase headed by the preposition. The other set consists of the remaining pairs. The �rst setis used to compute scores for the V arg P relation and the second to compute scores for theP mod V relation. Scores for the N arg P relation and the P mod N relation are computed inthe same way.In order to get more signi�cant scores for numbers and names, the counts of all ordinalnumbers, all cardinal numbers and all proper names were merged.So far, we have only considered lexical association scores. Although this kind of informationseems to be most important, the parser also needs information about the probabilities ofgrammar rules and lexical entries. This is necessary to be able to penalize rare readings ofwords and rare syntactic constructions like e.g. extrapositions. To this end, the frequenciesof all word-tag-pairs have been counted in the tagged version of the BNC [Leech et al., 1994]and mapped to the lexical entries. Furthermore, about 1 million words from the Wall StreetJournal corpus have been parsed and matched to the treebank analysis (see section 5.4) inorder to extract rule frequencies from the �ltered parse forests. The score of a grammar ruleL(r) or a lexical entry L(C;w) was then de�ned as the logarithm of its frequency multipliedby 10. This heuristic score worked quite well.6.3.3 DisambiguationFor e�ciency reasons, disambiguation is carried out with a version of the Viterbi algorithmrather than with the stepwise disambiguation procedure described above. The score of anon-terminal node in a parse forest is computed by adding up the scores of the daughternodes and the score of the grammar rule. If a node has more than one analysis, then thehighest score is selected. The score of a terminal node is de�ned as the sum of the argumentscores L(C;w; arg; C 0; w0) plus the score of the lexical entry L(C;w) plus the modi�er scoreL(C;w;mode;C 00; w00) in case the maximal constituent headed by the current node modi�essome other node. Here, C/C 0/C 00 is either V, N, P, ADJ, ADV or PART depending on whether

88 CHAPTER 6. PARSE FOREST DISAMBIGUATIONthe node/its argument/the modi�ed constituent is verbal or nominal, etc. (table 6.3 showsthe mapping in detail); w/w0/w00 is the lexical head of the current node/the argument/themodi�ed constituent, respectively.V S, VP, VBAR, V, VN NP, NBAR, NADJ ADJP, ADJ, ADJADV ADVP, ADVP PP, PPART RPTable 6.3: Mapping of the categories of the English YAP grammar to the categories of theassociation table.The score of a terminal node of category P with lexical head in which subcategorizes foran NP argument with lexical head goods and modi�es an NP with lexical head trade isL(P; in; arg;N; goods) + L(P; in;mod;N; trade) + L(P; in).The English YAP grammar (see appendix B) generates all information required to computethe scores. The lexical head of a constituent is stored in the HeadLex feature. Arguments areaccessible at terminal nodes via the Subcat feature and { in case of prepositions { the Argfeature. Modi�ed constituents are accessible via the Mod Elem feature.In case of coordination, the lexical head is explicitly de�ned as the concatenation of thelexical heads of the coordinated constituents. We de�ne the score L(C;W; r; C 0;W 0), wherer 2 farg;modg and W and W 0 are lists of lexical heads, as Pw2W Pw02W 0 L(C;w; r; C 0; w0).Summing scores produced better results than averaging. Why this is the case can be explainedwith an example. Consider the sentence She met the prime ministers of France andItaly. Assume that L(P; of; arg;N; France) = 100 and L(P; of; arg;N; Italy) = 50 andthat these two are the only relevant scores. If the scores are added in case of coordination, weget a score of 150 for the analysis in which France and Italy are coordinated and a score of100 for the analysis in which the prime ministers of France and Italy are coordinated.In case of averaging, the respective scores are 75 and 100, so that in this case the analysiscontaining only one of the lexical associations is preferred.Experiments have shown that the di�erence between the results of the presented disambigua-tion method which is based on the Viterbi algorithm and the method which disambiguatesstep by step by removing all analyses without the respective lexical association is minimal.This justi�es the application of the more e�cient Viterbi algorithm.6.3.4 Disambiguation ResultsThe applicability of the presented disambiguation method was checked in a small-scale ex-periment in which 100 sentences from the BNC have been parsed, scored and manually dis-ambiguated. The sentences and the disambiguation results are shown in appendix D.The correct analysis had the highest score for 19 sentences, which had 235 analyses on average,and the unique highest score for 7 sentences with 7.1 analyses on average.

6.3. A DISAMBIGUATION METHOD FOR YAP 8925 percent of the analyses had a higher score on average than the correct analysis and 35percent had a score at least as good. We will now analyse some sentences where the highestscoring analysis was not the correct one.6.3.5 Error AnalysisRockwell said the agreement calls for it to supply 200 additional so-called shipsetsfor the planes.In this sentence, the noun-attachment score L(P; for;mod;N; call) (2551) is higher than theverb-attachment score L(V; call; arg; P; for) (2537), thus preferring analyses where calls isa noun which is modi�ed by a prepositional phrase headed by for.\Mr. Carlucci, 59 years old, served as defense secretary in the Reagan adminis-tration."In this sentence, the score L(P; in; arg;N; hnamei) (7663) is much higher thanL(P; in; arg;N; administration) (2.4). Therefore the parser prefers an analysis in whichserve is a transitive verb, administration is its argument and ``in the Reagan'' is a PPadjunct. The problem arises because person names and place names are not distinguished.\In January, he accepted the position of vice chairman of Carlyle Group, a mer-chant banking concern."In this sentence, the score L(P; of; arg;N; concern) (870) is higher than the scoreL(P; of; arg;N;Group) (857). Therefore concern is picked as the head of the NP ``CarlyleGroup, a merchant banking concern'' rather than Group. Another problem arises be-cause the grammar allows to analyse In January as an extraposed adjunct of the NP concern.This analysis is preferred because the score L(P; in;mod;N; concern) (92) is higher than thatof L(P; in;mod; V; accept) (0).\Thomas E. Meador, 42 years old, was named president and chief operating o�cerof Balcor Co., a Skokie, Ill., subsidiary of this New York investment banking�rm."In this sentence, there is a spurious ambiguity concerning the attachment point of the commaafter old. The comma could either attach to the preceding adjectical phrase or the nounphrase. Both analyses are semantically equivalent and have the same score.The complex noun phrase ``president and chief operating officer of Balcor Co.,a Skokie, Ill., subsidiary of this New York investment banking firm'' is highlyambiguous due to the large number of prepositional phrases and possible coordinationsand appositions contained in this phrase. The parser correctly coordinates president andchief operating officer. Unfortunately, it prefers to attach both "of"-PPs to this co-ordinated NP because the score L(P; of;mod;N; president) (3286) is higher than that ofL(P; of;mod;N; subsidiary) (261). There is no restriction in the grammar which would dis-allow this.\Balcor, which has interests in real estate, said the position is newly created."Here, the score L(V; say; arg;N; position) (89) is higher than L(V; say; arg; V; create) (0).Hence an obscure analysis in which ``has interests in real estate'' coordinates with

90 CHAPTER 6. PARSE FOREST DISAMBIGUATION``said the position'' wins over the correct one. Furthermore, ``real estate'' is ana-lysed as an adjective modifying a noun rather than as a compound, because real estate istagged with AJ0 NN1 in the BNC corpus.\In addition to his previous real-estate investment and asset-management duties,Mr. Meador takes responsibility for development and property management."The highest-scoring analysis of this sentence has a similar inverted word order asthe sentence ``Behind the silly posturing lies a real dispute.''. The subjectis the noun management, ``responsibility for development'' is coordinated withproperty and ``addition to his previous real-estate investment'' is coordinatedwith ``asset-management duties, Mr. Meador'' where Meador, which is mapped tohnamei, is the head of the second NP. The extraposed PP is a modi�er of the object ratherthan an argument of the verb. The high total score of this analysis compared to other analysesresults mainly from the scores L(P; in; arg;N; hnamei) (7663), L(P; in;mod;N; development)(458), L(P; in;mod;N; property) (106).\Those duties had been held by Van Pell, 44, who resigned as an executive vicepresident."In this sentence, Van is mapped to hnamei whereas Pell is not. Since the scoreL(P; by; arg;N; hnamei) (3963) is fairly high, an obscure analysis where ``duties hadbeen'' is analysed as a reduced relative clause and held is active voice and ``Pell, 44,who resigned as an executive vice president.'' is the object, wins over the otheranalyses.\Before the loan-loss addition, it said, it had operating pro�t of $10 million forthe quarter."For this sentence, the correct analysis also has the highest score and there is just one unre-solved ambiguity pertaining to whether quarter is singular or plural. The tag statistics arenot explicit enough to distinguish this.\The move followed a round of similar increases by other lenders against Arizonareal estate loans, reecting a continuing decline in that market."In this sentence, the score L(P; in;mod;N; increase) (18212) is much higher than thatof L(P; in;mod;N; decline) (3279). Hence the prepositional phrase ``in that market''is erroneously attached to increase. Due to a tagging error in the BNC corpus {real in real estate is tagged as an adjective rather than as a noun { the scoreL(ADJ; real;mod;N; estate) (334) is higher than L(N; real;mod;N; estate) (0).\Arbitragers weren't the only big losers in the collapse of UAL Corp. stock."In this sentence, the score L(prep; in;mod; V; be) (36694) was very high and the prepositionalphrase ``in the collapse of UAL Corp. stock'' was attached to be rather than loser.\Mr. Johnson succeeds Harry W. Sherman, who resigned to pursue other inter-ests, in both positions."Because of the large score L(P; in;mod;N; interest) (11580), the prepositional phrase ``inboth positions'' is attached to the noun interests rather than the verb succeeds.\Manville is a building and forest products concern."

6.3. A DISAMBIGUATION METHOD FOR YAP 91The parser preferred here to coordinate the nouns building and forest rather than buildingand forest products.\US Facilities Corp. said Robert J. Percival agreed to step down as vice chairmanof the insurance holding company."The parser here preferred an awkward analysis in which ``J. Percival agreed to stepdown'' is a reduced relative clause attached to Robert which is the object of say. The reasonis that the score L(V; say;N; hnamei) (48771) was high and that the head of Robert is hnameiwhereas the head of Percival is Percival. If the latter is changed to hnamei as well, thescore of the correct analysis increases, because of the score L(N; hnamei;mod;N; hnamei)(61552).Another problem remains, however: The score L(P; as;mod; V; say) (17) is higher than thatof L(P; as;mod; V; step) (0). The reason is that the statistics does not distinguish betweenthe verb step and the verb step down.\There was a di�erence of opinion as to the future direction of the company, aspokeswoman said."The score of L(V; say; arg;N; difference) (121) is higher than that of L(V; say; arg; V; be) (0).The high value of the former score might be the result of misanalysing sentential argumentsduring training in such a way that the true subject of the subordinated sentence becomes theobject of the main verb.\Mr. Percival declined to comment."According to the grammar, the phrase to comment is either an argument of the verbdecline, or an adjunct as in the (non-sense) sentence Mr. Percival declined in orderto comment. Both analyses get the same score because the score of the verb-argument re-lation is always 0 in case of verbal arguments (we haven't computed verb-arg-verb scoresbecause they rarely exceed the thresholds). By setting L(V; v; arg; V; v0) to some small pos-itive constant for all v and v0, the argument reading would be generally favoured and theresult would be usually correct.\In a statement, US Facilities said Mr. Percival's employment contract calls forhim to act as a consultant to the company for two years."Because of the large score L(V; be; arg; P; for) (95122), the parser prefers analyses where 'sis a clitic form of is.\Mr. Percival will be succeeded on an interim basis by George Kadonada, USFacilities chairman and president."The high score of L(P; by; arg;N;< name >) (3963) and the fact that Kadonda is not mappedto hnamei results in a preference for analyses where by George is a PP-adjunct of the verbsucceeded which is active voice. ``Percival will be'' is in this case analysed as a reducedrelative clause and ``Kadonada, US Facilities chairman and president'' is the object.\The buy-back represents about 3 % of the company's shares, based on the 3.7million shares outstanding as of Sept. 30."Sincethe score L(P; of; arg;N; company) (1235) is higher than the score L(P; of; arg;N; share)

92 CHAPTER 6. PARSE FOREST DISAMBIGUATION(511), the parser prefers an analysis which contains the PP ``of the company's'' (analo-gous to ``The legitimate son of his father's''. The rest of the sentence ``shares,based on the 3.7 million shares outstanding as of Sept. 30.'' is analysed as areduced relative clause.\In national over-the-counter trading yesterday, US Facilities closed at $ 3.625,unchanged."Here, the highest score is L(P; in; arg;N;US) (296). Therefore analyses where US isthe head of the noun phrase ``national over-the-counter trading yesterday, US''(analogous to ``the president of the United States, Bill Clinton'') are preferredby the parser. The score L(P; in; arg;N; over � the � counter) (6.4) is also higherthan L(P; in; arg;N; trading) (0), so that analyses containing the PP ``In nationalover-the-counter'' also score better than the correct analysis.6.3.6 ConclusionsBy disambiguating the output of a feature-based grammar with statistics from a probabilisticcontext-free parser, it is possible to combine the strengths of both approaches, namely thedescriptive power of the feature-based formalism and the trainability of the probabilisticcontext-free grammar. However, this approach also has some drawbacks.� There is no theoretical basis for how to combine the log-likelihood ratios. Although thepresented heuristic works quite well, it is not optimal.� The lexical choice frequencies which are used to compute the scores fail to captureall relevant relations. In particular, it would be useful to have information about thepreposition as well as the head of the nominal phrase in case of prepositional phrasearguments (cp. [Hindle and Rooth, 1993]). Sabine Schulte im Walde [im Walde, 1998]shows how this information can be extracted from Viterbi parses of the BNC corpus.� Complex arguments tend to get lower scores than simple arguments. Con-sider e.g. the sentence ``He was waiting for her to come''. The score ofhV;wait; arg; P; fori is much higher than the summed scores of hV;wait; arg; V; comeiand hV; come; subj;N; shei.� The lexical choice scores are sometimes incorrect. Among the 70 highest-scoring nominalarguments of "say" are the words problem and there. Probably, these words were the�rst words of sentential arguments. If such an argument fails to be parsed completely,the parser will attach as many potential arguments to the preceding verb as possibleand cover the rest of the sentence with robustness rules.� Names of persons, companies, organisations, countries, cities etc. are currently notdistinguished which sometimes leads to strange results.The foregoing error analysis suggests the following improvements to the presented disam-biguation method:

6.3. A DISAMBIGUATION METHOD FOR YAP 93� Traces should get a negative score in order to penalise complex analyses with movementoperations.� Sentential arguments and VP arguments of verbs should generally get a small positivescore to achieve preference over adjuncts.� The score of verbs should be computed at the preterminal level where the underlyingargument structure was mapped to a more surface-oriented structures, e.g. in case of averb which subcategorizes for a sentence of the form ``for ...NP... to ...VP...'',the Subcat list contains a VP and a subject NP at the terminal level, but a PP, a VPand a subject NP at the preterminal level.� The classi�cation of proper names has to be improved:{ At least, person names have to be distinguished from place names. Further dis-tinctions are probably also useful.{ All proper names have to be classi�ed accordingly.� Either the grammar or the disambiguation model should somehow capture the fact thattwo prepositional phrases which are headed by the same preposition are unlikely toattach to the same site.� The lexical scores of some critical verbs like say should be manually checked to elim-inate scores like L(V; say; arg;N; difference). Auxiliary verbs should be completelyeliminated from the statistics because they cause too many errors.� Verb forms with and without particles should be distinguished in the statistics.� Prepositional phrases headed by as, by and for in adjunct position should get lowscores if they compete with verbal arguments.� The grammar has to be improved to eliminate more invalid analyses.{ The NP grammar has to be improved, e.g. slash propagation has to be betterrestricted and a feature Person should be introduced to be able to restrict certainconstructions.{ Reduced relative clauses have to be better restricted.

94 CHAPTER 6. PARSE FOREST DISAMBIGUATION

Chapter 7Summary
A feature-based grammar formalism, a parser for this formalism, an English grammar anda disambiguation method have been presented. The grammar formalism combines elementsfrom other grammar formalisms and programming languages. YAP grammars have a context-free backbone like LFGs. Features are typed as in HPSGs. Subcat lists and the Slash perco-lation mechanism are also familiar from HPSG theory. The type system resembles the typesystem of programming languages. In contrast e.g. to HPSGs, feature typing only serves toenhance the compiler's ability to detect grammar errors and to make the representation offeature structures more e�cient. No information about a speci�c constituent is stored infeature types1. The design of the grammar formalism emphasises e�ciency considerations.Templates, default inheritance, restrictor types and automatic features increase the usabil-ity of the formalism. The detrimental e�ects of the propagation of syntactically irrelevantinformation on parsing e�ciency are discussed and an integration of parsing and semantic con-struction is argued against. Experiments with an LFG parser con�rmed that the eliminationof irrelevant feature information can speed up parsing dramatically.A compiler transforms YAP grammars into an e�cient internal representation and detectserrors in the grammar speci�cation. A subset of the features and the associated constraintsis compiled into the context-free backbone grammar. Experiments by Maxwell and Kaplan[Maxwell III and Kaplan, 1996] suggested that this could speed up parsing. This was notcon�rmed in the experiments with YAP, but feature incorporation turned out to be a usefultool for the development of purely context-free grammars.The parser consists of a standard context-free parser which generates a parse forest, and aconstraint-evaluation component which computes the feature structures. Feature structuresare represented as trees rather than graphs which simpli�es their storage, access and ma-nipulation. A novel iterative algorithm was presented which computes the feature structuresby stepwise approximation. The correctness of the algorithm was formally proved. Severaltechniques to improve the e�ciency of the parser have been presented. In an experiment ondata from the Wall Street Journal, the parser was able to process more than 7 tokens persecond on average. The runtime of the parser grew about cubically with sentence length onthis data.1with a minor exception discussed in section 2.5.2.95

96 CHAPTER 7. SUMMARYIn a comparison experiment with a state-of-the-art parser for broad-coverage grammars, thepresented parser was almost as fast as the state-of-the-art parser. The result of another exper-iment with two smaller but more comparable grammars indicates that the presented parsermight actually be much faster than the state-of-the-art parser if the parsers are compared onsimilar grammars.An English grammar was developed for the YAP formalism. It covers all major syntacticphenomena like subcategorisation, wh-extraction, extrapositions, long-distance dependencies,control and raising verbs, constituent coordination and some frequent forms of ellipsis andnon-constituent coordination. The grammar incorporates the COMLEX dictionary and isable to parse about 80 precent of the sentences in the Wall Street Journal corpus. About 50percent of the sentences received an analysis which was completely correct.Finally, a disambiguation method based on word association scores was presented. The scoreswere obtained from frequency information in a 90 million words subcorpus of the British Na-tional Corpus which had been parsed with the head-lexicalized context-free parser of Carrolland Rooth [Carroll and Rooth, 1998]. The best analysis of a sentence is extracted with theViterbi algorithm by summing the association scores. Preliminary results of this disambigua-tion method are very encouraging.

Bibliography[Abney, 1996] Abney, S. (1996). Stochastic attribute-value grammars. unpublishedmanuscript, electronically available at http://xxx.lanl.gov/abs/cmp-lg/9610003.[Abney and Light, 1998] Abney, S. and Light, M. (1998). Hiding a semantic class hierar-chy in a markov model. available from Marc Light's homepage at http://www.ims.uni-stuttgart.de/ light.[Baker, 1982] Baker, J. (1982). Trainable grammars for speech recognition. In Klatt, D.and Wolf, J., editors, Speech Communication Papers for the 97th Meeting of the AcousticalSociety of America, pages 547{550.[Barwise and Etchemendy, 1988] Barwise, J. and Etchemendy, J. (1988). The Liar: An Essayon Truth and Circularity. Oxford University Press.[Baum and Sell, 1968] Baum, L. E. and Sell, G. R. (1968). Growth transformations on func-tions on manifolds. Paci�c Journal of Mathematics, 27.[Black et al., 1992] Black, E., Jelinek, F., La�erty, J., Magerman, D. M., Mercer, R., andRoukos, S. (1992). Towards history-based grammars: Using richer models for probabilisticparsing. In Proceedings of the DARPA Speech and Natural Language Workshop, page 6.electronically available at http://xxx.lanl.gov/abs/cmp-lg/9405007.[Brew, 1995] Brew, C. (1995). Stochastic hpsg. In Proceedings of the 7th Conference of theEuropean Chapter of the Association for Computational Linguistics, Dublin.[Brill and Resnik, 1994] Brill, E. and Resnik, P. (1994). A rule-based approach to prepo-sitional phrase attachment disambiguation. In Proceedings of the 15th InternationalConference on Computational Linguistics, Kyoto, Japan. electronically available athttp://xxx.lanl.gov/abs/cmp-lg/9410026.[Briscoe and Waegner, 1992] Briscoe, T. and Waegner, N. (1992). Robust stochasticparsing using the inside-outside algorithm. In Proceedings of AAAI92 Workshop onProbabilistically-Based Natural Language Processing Techniques, pages 39{53, San Jose, Ca.an extended version is electronically available at http://xxx.lanl.gov/abs/cmp-lg/9412006.[Carpenter, 1992] Carpenter, B. (1992). The logic of typed feature structures. CambridgeTracts in Theoretical Computer Science. Cambridge University Press, Cambridge.97

98 BIBLIOGRAPHY[Carroll and Rooth, 1998] Carroll, G. and Rooth, M. (1998). Valence induction witha head-lexicalized PCFG. In Proceedings of Third Conference on Empirical Meth-ods in Natural Language Processing, Granada, Spain. electronically available athttp://xxx.lanl.gov/abs/cmp-lg/9805001.[Charniak, 1997] Charniak, E. (1997). Statistical parsing with a context-free grammar andword Statistics. In Proceedings of the 14th National Conference on Arti�cial Intelligence,Menlo Parc.[Church and Gale, 1991] Church, K. W. and Gale, W. A. (1991). A comparison of the en-hanced Good-Turing and deleted estimation methods for estimating probabilities of Englishbigrams. Computer Speech and Language, 5:19{54.[Collins, 1996] Collins, M. (1996). A new statistical parser based on bigram lexical depen-dencies. In Proceedings of the 34th Annual Meeting of the ACL, University of California,Santa Cruz, Cal. electronically available at http://xxx.lanl.gov/abs/cmp-lg/9605012.[Dagan and Pereira, 1994] Dagan, I. and Pereira, F. C. (1994). Similarity-based estimationof word cooccurrence probabilities. In Proceedings of the 32nd Annual Meeting of the ACL,New Mexico State University, Las Cruces, New Mexico. Also available electronically athttp://xxx.lanl.gov/abs/cmp-lg/9405001.[Daille, 1995] Daille, B. (1995). Combined approach for terminology extraction: lexical statis-tics and linguistic �ltering. Technical Report 5, UCREL, Lancaster University.[de Lima, 1997] de Lima, E. (1997). Assigning grammatical relations with a backo� model.In Proceedings of the Second Conference on Empirical Methods in Natural Language Pro-cessing. electronically available at http://xxx.lanl.gov/abs/cmp-lg/9706001.[D�orre, 1997] D�orre, J. (1997). E�cient construction of underspeci�ed semantics under mas-sive ambiguity. In Proceedings of the 35th Annual Meeting of the ACL, Madrid, Spain.[Dunning, 1993] Dunning, T. (1993). Accurate methods for the statistics of surprise andcoincidence. Computational Linguistics, 19(1):61{74.[Earley, 1970] Earley, J. (1970). An e�cient context-free parsing algorithm. Communicationsof the ACM, 13(2):94{102.[Eisele, 1994] Eisele, A. (1994). Towards probabilistic extensions of constraint-based gram-mars. In D�orre, J., editor, Computational Aspects of constraint-based linguistic DescriptionII, pages 3{21. Institute for Computational Linguistics (IMS-CL), Stuttgart. DYANA-2Deliverable R1.2.B.[Eisner, 1996] Eisner, J. (1996). Three new probabilistic models for dependency pars-ing: An exploration. In Proceedings of the 16th International Conference on Compu-tational Linguistics, pages 340{345, Copenhagen, Denmark. electronically available athttp://xxx.lanl.gov/abs/cmp-lg/9706003.[Emele, 1991] Emele, M. (1991). Uni�cation with lazy non-redundant copying. In Proceedingsof the 29th Annual Meeting of the ACL, University of California, pages 323{330, Berkeley,California.

BIBLIOGRAPHY 99[Grishman et al., 1994] Grishman, R., Macleod, C., and Meyers, A. (1994). Comlex syntax:Building a computational lexicon. In Proceedings of the 15th International Conference onComputational Linguistics, Kyoto, Japan.[Groenendijk, 1993] Groenendijk, M. (1993). Xmfed user guide. Technical report, Commisionof the European Community.[Hindle and Rooth, 1993] Hindle, D. M. and Rooth, M. (1993). Structural ambiguity andlexical relations. Computational Linguistics, 19(1).[im Walde, 1998] im Walde, S. S. (1998). Automatic semantic classi�cation of verbs accordingto their alternation behaviour. Master's thesis, Institute for Computational Linguistics(IMS-CL), University of Stuttgart, Stuttgart,Germany.[Jelinek and Mercer, 1980] Jelinek, F. and Mercer, R. L. (1980). Interpolated estimationof Markov source parameters from sparse data. In Workshop on Pattern Recognition inPractice, pages 381{397, Amsterdam.[Johnson et al., 1999] Johnson, M., Geman, S., Canon, S., Chi, C., and Riezler, S. (1999).Estimators for stochastic \uni�cation-based" grammars. In Proceedings of the 37th AnnualMeeting of the ACL, College Park, MD.[Kaplan and Bresnan, 1982] Kaplan, R. M. and Bresnan, J. (1982). Lexical-FunctionalGrammar : A formal system for grammatical representation. In Bresnan, J., editor, Themental representation of grammatical relations, chapter 4, pages 173{281. The MIT Press.[Karttunen and Kay, 1985] Karttunen, L. and Kay, M. (1985). Structure sharing with binarytrees. In Proceedings of the 23rd Annual Meeting of the ACL, University of Chicago, pages133{136, Chicago, Ill.[Kasper and Krieger, 1996] Kasper, W. and Krieger, H.-U. (1996). Modularizing codescrip-tive grammars for e�cient parsing. In Proceedings of the 16th International Conference onComputational Linguistics, pages 628{633, Copenhagen, Denmark.[Katz, 1987] Katz, S. (1987). Estimation of probabilities from sparse data for the languagemodel component of a speech recognizer. IEEE Transactions on ASSP, 34(3):400{401.[Lauer, 1995] Lauer, M. (1995). Corpus statistics meet the noun compound: Some em-pirical results. In Proceedings of the 33rd Annual Meeting of the ACL, MassachusettsInstitute of Technology, pages 47{54, Cambridge, Mass. electronically available athttp://xxx.lanl.gov/abs/cmp-lg/9504033.[Leech et al., 1994] Leech, G., Garside, R., and Bryant, M. (1994). Claws4: The taggingof the british national corpus. In Proceedings of the 15th International Conference onComputational Linguistics, pages 622{628, Kyoto, Japan.[Magerman, 1994] Magerman, D. M. (1994). Natural Language Processing as Statistical Pat-tern Recognition. PhD thesis, Stanford University.[Marcus et al., 1993] Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Build-ing a large annotated corpus of English: the Penn Treebank. Computational Linguistics,19(2):313{330.

100 BIBLIOGRAPHY[Maxwell III and Kaplan, 1989] Maxwell III, J. T. and Kaplan, R. M. (1989). An overviewof disjunctive constraint satisfaction. In Proceedings of the International Workshop onParsing Tec hnologies, pages 18{27, Pittsburgh. Carnegie Mellon University.[Maxwell III and Kaplan, 1994] Maxwell III, J. T. and Kaplan, R. M. (1994). The interfacebetween phrasal and functional constraints. Computational Linguistics, 19(4):571{589.[Maxwell III and Kaplan, 1996] Maxwell III, J. T. and Kaplan, R. M. (1996). Uni�cation-based parsers that automatically take advantage of context freeness. Draft.[Montanari and Rossi, 1991] Montanari, U. and Rossi, F. (1991). Constraint relaxation maybe perfect. Arti�cial Intelligence, 48(2):143{170.[Nagata, 1992] Nagata, M. (1992). An empirical study of rulegranularity and uni�cationinterleaving toward an e�cient uni�cation-based parsing system. In Proceedings of the 14thInternational Conference on Computational Linguistics, pages 177{183, Nantes, France.[Pollard and Sag, 1994] Pollard, C. and Sag, I. A. (1994). Head-Driven Phrase StructureGrammar. University of Chicago Press, Chicago, London.[Riezler, 1998] Riezler, S. (1998). Statistical inference and probabilistic modeling forconstraint-based NLP. In Proceedings of KONVENS 98, Bonn.[Riezler, 1999] Riezler, S. (1999). Probabilistic Constraint Logic Programming. PhD thesis,Seminar f�ur Sprachwissenschaft, Universit�at T�ubingen. AIMS Report, 5(1), IMS, Univer-sit�at Stuttgart.[Rooth, 1994] Rooth, M. (1994). Two-dimensional clusters in grammatical relations. unpub-lished manuscript.[Schiehlen, 1996] Schiehlen, M. (1996). Semantic construction from parse forests. In Pro-ceedings of the 16th International Conference on Computational Linguistics, Copenhagen,Denmark.[Shieber, 1992] Shieber, S. M. (1992). Constraint-Based Grammar Formalisms: Parsing andType Inference for Natural and Computer Language. The MIT Press, Cambridge, Ma.[Simpkins, 1994] Simpkins, N. K. (1994). ALEP-2 User Guide. CEU, Luxembourg. Thisdokument is online available at http://www.anite-systems.lu/alep/doc/index.html.[Wahlster, 1993] Wahlster, W. (1993). Verbmobil-Translation of Face-to-Face Dialogs. Tech-nical report, German Research Centre for Arti�cial Intelligence (DFKI). In Proceedings ofMT Summit IV,Kobe,Japan.[Younger, 1967] Younger, D. H. (1967). Recognition and parsing of context-free languages intime n3. Information and Control, 10:189{208.

Appendix ABNF Syntax of the YAP GrammarFormalism
/***//* Grammar Definition *//***/Grammar -> Grammar Declaration | Grammar Rule | Grammar Entry | ''/***//* Declarations *//***/Declaration -> 'auto' Name_List ';' |'category' Name '{' Feature_Decls '}' ';' |'struct' Name '{' Feature_Decls '}' ';' |'enum' Name '{' Name_List '}' ';' |'restrictor+' Name '(' Cat ')' '{' Feature_List '}' ';' |'restrictor-' Name '(' Cat ')' '{' Feature_List '}' ';' |'restrictor+' Name '(' Cat ')' '{' '}' ';' |'restrictor-' Name '(' Cat ')' '{' '}' ';' |FType Var_List ';' |Name ':' Cat_List Fe_Struc ';' |Cat 'incorporates' '{' Path_List '}' ';' |Feature_Decls -> Feature_Decls Feature_Decl | ''Feature_Decl -> FType Feature_List ';'/***//* Definition of Grammar Rules */101

102 APPENDIX A. BNF SYNTAX OF THE YAP GRAMMAR FORMALISM/***/Rule -> MNode '->' Node_List ';'MNode -> Cat_List Fe_StrucNode_List -> Node_List QRNode | ''QRNode -> '`' RNode | RNodeRNode -> Cat_List Fe_Struc | Cat_List '*' Fe_StrucFe_Struc -> '{' Feature_Eqns '}' | Fe_Struc '=' VarFeature_Eqns -> Feature_Eqns Feature_Eqn ';' | ''Feature_Eqn -> Path '=' RHS | Feature_Eqn '=' RHSRHS -> String | 'cat' '(' Var_List ')' |'(' Value_List ')' | Value |'[' ']' | '[' Car_List ']' | '[' Car_List '|' Var ']' |'[' Car_List '|' '*' ']' | Var/***//* Definition of Lexicon Entries *//***/Entry -> String ':' Cat_List Fe_Struc ';' |Special ':' Cat_List Fe_Struc ';'Special -> '<cardinal>' | '<ordinal>' | '<propername>' | '<default>'/***//* Some Further Definitions *//***/Feature_List -> Feature_List ',' Feature | FeatureValue_List -> Value_List ',' Value | ValueName_List -> Name_List ',' Name | NameVar_List -> Var_List ',' Var | VarCat_List -> Cat | Template_ListTemplate_List -> Template | Template_List '&' TemplatePath_List -> Path_List ',' Path | PathPath -> Path '.' Feature | FeatureCar_List -> Car_List ',' Car | CarCar -> Cat_List Fe_Struc | '*' | VarVar -> NameFeature -> NameValue -> NameCat -> NameTemplate -> NameName -> ([A-Za-z0-9'_$#/]|(\.))+

103String -> "([^"]|(\.))*"Characters with a special meaning like '�', '[', 'f' etc. have to be quoted in names with apreceding backslash 'n'. Also, the double quote '"' has to be quoted within strings.Include commands and comments can be inserted at any position. Comments start with apercent sign '%' and extend to the end of the line.Equations with identical left hand sides like ff=a;f=b;g may be abbreviated to ff=a=b;g.

104 APPENDIX A. BNF SYNTAX OF THE YAP GRAMMAR FORMALISM

Appendix BThe English YAP Grammar
%% %% File: declarations.yap %% Purpose: Declarations for my English YAP grammar %% Author: Helmut Schmid, IMS, Univ. of Stuttgart %% %%auto Phon, HeadLex;%% Feature Types %%enum PERSON {1st,2nd,3rd};enum NUMBER {sg,pl};enum CASE {nom,gen,acc};enum DEGREE {pos,comp,sup,as,too};enum VFORM {fin,inf,bse,prp,pap,pas};enum SFORM {decl,quest,imp,inv,subj,gerund};enum CFORM {quest,rel,arg,argw,argb,subj,adj,coord1,coord2,coord3,coord4,coord5};enum NFORM {noun,pronoun,propername,gerund};enum WHFORM {quest,rel,expl,-};enum ORDER {post,pre};enum COMMAS {lr,left,right,-};enum MOD {-,verb,noun,adj,adv,prep,sbar,clitic};enum NPLEVEL {0,1,2};enum BOOLEAN {+,-};enum POSITION {left,right};enum INFL {1s,3s,13s,2s_pl,bse,past,prp,pap,pas};%% Category Definitions %% 105

106 APPENDIX B. THE ENGLISH YAP GRAMMARcategory TOP {SFORM SForm;};category SM { %%% sentence punctuationSFORM SForm;};category SBAR {CFORM CForm;STRING Comp;COMMAS Commas;BOOLEAN Coord;FS_LIST Slash;};category C {CFORM CForm;};category S {SFORM SForm;BOOLEAN Coord;COMMAS Commas;FS_LIST Slash;};category VP {VFORM VForm;BOOLEAN Aux;BOOLEAN Coord;COMMAS Commas;FS_LIST Subcat;FS_LIST Slash;};category VBAR {VFORM VForm;FS_LIST Subcat;FS_LIST Slash;};category V {VFORM VForm;BOOLEAN Aux;BOOLEAN Coord;FS_LIST Subcat;};

107category _V1 {INFL Infl;FS_LIST Subcat;};category _V {INFL Infl;FS_LIST Subcat;STRING ComlexFrame;};category NP {NFORM NForm;WHFORM WhForm;CASE Case;NUMBER Number;PERSON Person;DEGREE Degree;BOOLEAN Elliptical;BOOLEAN Adjunctive;BOOLEAN Coord;NPLEVEL NPLevel;COMMAS Commas;FS_LIST Slash;};category NBAR {NFORM NForm;WHFORM WhForm;CASE Case;NUMBER Number;DEGREE Degree;BOOLEAN Elliptical;BOOLEAN Adjunctive;BOOLEAN Coord;FS_LIST Subcat;FS_LIST Slash;};category N {NFORM NForm;NUMBER Number;BOOLEAN Adjunctive;BOOLEAN Coord;BOOLEAN Compound;FS_LIST Subcat;FS_LIST Mod_Elem;};category DTP {WHFORM WhForm;

108 APPENDIX B. THE ENGLISH YAP GRAMMARNUMBER Number;};category DT {WHFORM WhForm;NUMBER Number;};category PDT {NUMBER Number;};category ADJP {WHFORM WhForm;BOOLEAN Pred;BOOLEAN Numerical;COMMAS Commas;BOOLEAN Coord;DEGREE Degree;FS_LIST Mod_Elem;};category ADJ {BOOLEAN Pred;ORDER Order;BOOLEAN Numerical;DEGREE Degree;BOOLEAN Coord;FS_LIST Subcat;FS_LIST Mod_Elem;};category _ADJ {BOOLEAN Pred;BOOLEAN Nominal;DEGREE Degree;FS_LIST Subcat;FS_LIST Mod_Elem;STRING ComlexFrame;};category CURR { %%% currency unitFS_LIST Subcat;};category M { %%% measure unit};%%% genitive markercategory GM {};category DEGP {DEGREE Degree;

109};category DEG {DEGREE Degree;};category COMP {DEGREE Degree;};category ADVP {WHFORM WhForm;BOOLEAN Not;DEGREE Degree;COMMAS Commas;BOOLEAN Coord;MOD Mod;FS_LIST Mod_Elem;};category ADV {WHFORM WhForm;BOOLEAN Not;DEGREE Degree;BOOLEAN Coord;MOD Mod;FS_LIST Mod_Elem;};category PP {WHFORM WhForm;ORDER Order;COMMAS Commas;BOOLEAN Coord;FS_LIST Arg;FS_LIST Slash;MOD Mod;FS_LIST Mod_Elem;};category P {ORDER Order;BOOLEAN Coord;FS_LIST Arg;MOD Mod;FS_LIST Mod_Elem;};category RP {};

110 APPENDIX B. THE ENGLISH YAP GRAMMARcategory CM { %%% comma punctuation};category Q { %%% quotation marksPOSITION Pos;};category FOR { %%% He was waiting for her to come};category THEP {COMMAS Commas;FS_LIST Arg;};category THE { %%% The more the cat eats the fatter it gets .};category MWLE { %%% element of a multi word lexeme};#include "incorporation.yap"%% Restrictor Definitions %%restrictor- NP_R(NP) {};restrictor- NP2_R(NP) {Phon,Commas};restrictor+ REL_R(NP) {HeadLex,Number,Person};restrictor- REL2_R(NP) {Slash};restrictor- REL3_R(NP) {Phon,Case,Commas};restrictor- PP_R(PP) {};restrictor- PP2_R(PP) {Phon,Commas};restrictor- ADJP_R(ADJP) {};restrictor- ADJP2_R(ADJP) {Phon,Commas};restrictor- ADVP_R(ADVP) {};restrictor- ADVP2_R(ADVP) {Phon,Commas};restrictor- V_R(V) {};restrictor- V2_R(V) {Phon};restrictor- VP_R(VP) {};restrictor- VP2_R(VP){Phon,Commas};restrictor- S_R(S) {};restrictor- S2_R(S) {Phon,Commas};restrictor- SBAR_R(SBAR) {};restrictor- SBAR2_R(SBAR) {Phon,Commas};restrictor- RP_P(RP) {Phon};restrictor- NBAR_R(NBAR) {};restrictor- VBAR_R(VBAR) {};restrictor- N_R(N) {};restrictor- ADJ_R(ADJ) {};restrictor- ADV_R(ADV) {};

111%% Variable Definitions %%NP_R np_p,np_p2,ag,np,pat,ben;NP2_R np2_p;REL_R rnp_p;REL2_R rnp2_p;REL3_R rnp3_p;PP_R pp_p,pp1,pp2;PP2_R pp2_p;ADJP_R adjp_p,adjp;ADJP2_R adjp2_p;ADVP_R advp_p,advp;ADVP2_R advp2_p;V_R v_p;V2_R v2_p;VP_R vp_p,vp;VP2_R vp2_p;S_R s_p,s;S2_R s2_p;SBAR_R sbar_p,sbar,sbar2;SBAR2_R sbar2_p;RP_P rp_p,rp;NBAR_R nbar_p;VBAR_R vbar_p;N_R n_p;ADJ_R adj_p;ADV_R adv_p;FS_LIST r,r2;NUMBER n;PERSON p;SFORM sf;WHFORM wf;BOOLEAN b;CFORM cf;STRING h,h1,h2;VFORM vf;CASE c;DEGREE deg;ORDER o;NFORM nf;MOD mod;%%% %% File: templates.yap %% Purpose: Templates for my English YAP grammar %% Author: Helmut Schmid, IMS, Univ. of Stuttgart %% %%%

112 APPENDIX B. THE ENGLISH YAP GRAMMAR
%% N %%N_ : N {NForm=(noun,propername);Coord=-;Adjunctive=-;Compound=-;};N_sg : N_ {Number=sg;};N_pl : N_ {Number=pl;};NN_ : N_ {NForm=noun;};NN_sg : N_sg {NForm=noun;};NN_pl : N_pl {NForm=noun;};PN_ : N_ {NForm=propername;Subcat=[];};PN_sg : PN_ {Number=sg;};PN_pl : PN_ {Number=pl;};AN_ : N {NForm=noun;Coord=-;Subcat=[];Compound=-;Adjunctive=+;};AN_sg : AN_ {Number=sg;};AN_pl : AN_ {Number=pl;};%% ADJ %%ADJ_ : ADJ {Numerical=-;Order=pre;Coord=-;};ADJ_pos : ADJ_ {Degree=pos;};ADJ_cmp : ADJ_ {Degree=comp;};ADJ_sup : ADJ_ {Degree=sup;};ADJ_post : ADJ {Numerical=-;Order=post;Pred=+;Degree=pos;Coord=-;Subcat=[];};ADJ_card : ADJ {Numerical=+;HeadLex="<cardinal>";Coord=-;Degree=pos;Subcat=[];Mod_Elem=[*];};ADJ_ord : ADJ {Numerical=+;HeadLex="<ordinal>";Order=pre;Coord=-;Degree=pos;Subcat=[];Mod_Elem=[*];};%% _ADJ %%_ADJ_pos : _ADJ {Degree=pos;};_ADJ_cmp : _ADJ {Degree=comp;};_ADJ_sup : _ADJ {Degree=sup;};_ADJ_attr : _ADJ {Pred=-;};_ADJ_pred : _ADJ {Pred=+;Nominal=-;};_ADJ_pos_pred : _ADJ_pos & _ADJ_pred {};_ADJ_cmp_pred : _ADJ_cmp & _ADJ_pred {};_ADJ_sup_pred : _ADJ_sup & _ADJ_pred {};

113_ADJ_pos_attr : _ADJ_pos & _ADJ_attr {};_ADJ_cmp_attr : _ADJ_cmp & _ADJ_attr {};_ADJ_sup_attr : _ADJ_sup & _ADJ_attr {};%% ADJP %%NADJP: ADJP {Commas=-;Coord=-;};%% ADV %%ADV_ : ADV {Coord=-;Not=-;};ADV_pos : ADV_ {Degree=pos;Mod=(-,verb,adj,adv);};ADV_cmp : ADV_ {Degree=comp;Mod=(-,verb);};ADV_sup : ADV_ {Degree=sup;Mod=(-,verb);};ADV_verb : ADV_ {Degree=pos;Mod=verb;};ADV_verb_prep : ADV_ {Degree=pos;Mod=(verb,prep);};ADV_noun : ADV_ {Degree=pos;Mod=noun;};ADV_noun_prep : ADV_ {Degree=pos;Mod=(noun,prep);};ADV_prep : ADV_ {Degree=pos;Mod=prep;};ADV_adj : ADV_ {Degree=pos;Mod=adj;};ADV_adv : ADV_ {Degree=pos;Mod=adv;};ADV_adj_adv : ADV_ {Degree=pos;Mod=(adj,adv);};ADV_nps : ADV_ {Degree=pos;Mod=(noun,prep,sbar);};%% ADVP %%NADVP : ADVP {Commas=-;Coord=-;};WHADVP : ADVP {WhForm=quest;Not=-;Degree=pos;Commas=-; Coord=-;};%% V %%V_ : V {Coord=-;Aux=-;};V_fin : V_{VForm=fin;};V_bse : V_{VForm=bse;};V_pas : V_{VForm=pas;};V_prp : V_{VForm=prp;};V_pap : V_{VForm=pap;};AUX : V {Coord=-;Aux=+;};AUX_fin : AUX {VForm=fin;};BE : AUX {HeadLex="be";};HAVE : AUX {HeadLex="have";};DO : AUX {HeadLex="do";};

114 APPENDIX B. THE ENGLISH YAP GRAMMARWILL : AUX {HeadLex="will";};CAN : AUX {HeadLex="can";};SHALL : AUX {HeadLex="shall";};GET : AUX {HeadLex="get";};%% DT %%DT_sg : DT {WhForm=-;Number=sg;};DT_pl : DT {WhForm=-;Number=pl;};%% P %%P_ : P {Order=pre;Arg=[*];Coord=-;};%% C %%C_ : C {CForm=adj;};NP_curr : NP {NForm=(pronoun,noun);WhForm=-;Case=acc;Slash=[];Adjunctive=-;Coord=-;Commas=-;NPLevel=0;};%% NBAR %%NBAR_: NBAR {Coord=-;};%% NP %%NP_ : NP {WhForm=(-,quest,rel);}; % not an expletive pronounNP_nom : NP_ {Case=nom;};NP_acc : NP_ {Case=acc;};NP_sg : NP_nom {Number=sg;};NP_pl : NP_nom {Number=pl;};NP_3 : NP_nom {Person=3rd;};NP_3s : NP_3 & NP_sg {};NP_12s : NP_sg {Person=(1st,2nd);};NPe_nom : NP {Case=nom;};NPe_sg : NPe_nom {Number=sg;};NPe_pl : NPe_nom {Number=pl;};

115NPe_3 : NPe_nom {Person=3rd;};NPe_3s : NPe_3 & NPe_sg {};NPe_n3s : NPe_sg {Person=(1st,2nd);};NPe_acc : NP {Case=acc;};NNP : NP {Case=(nom,acc);Commas=-;Coord=-;};DNP : NNP {Elliptical=-;Adjunctive=-;NPLevel=0;Degree=pos;Slash=[];};ENP : NNP {Case=acc;Number=sg;Person=3rd;};%%% NP-PRO %%%%%%%%%%%%%%%%%%%%%%%%%%%%RPRO : NP {NForm=pronoun;Elliptical=-;Adjunctive=-;Degree=pos;Coord=-;Commas=-;};PRO : RPRO {Slash=[];};PRO_ : PRO {WhForm=-;NPLevel=1;};PRO_sg : PRO_ {Number=sg;};PRO_pl : PRO_ {Number=pl;};PRO_2 : PRO_ {Case=(nom,acc);Person=2nd;};PRO_3s : PRO_sg {Case=(nom,acc);Person=3rd;};PRO_3p : PRO_pl {Case=(nom,acc);Person=3rd;};PRO0_ : PRO {WhForm=-;NPLevel=0;};PRO0_3s : PRO0_ {Case=(nom,acc);Number=sg;Person=3rd;};PRO0_3p : PRO0_ {Case=(nom,acc);Number=pl;Person=3rd;};PPRO_ : PRO {WhForm=-;NPLevel=2;};PPRO_sg : PPRO_ {Number=sg;};PPRO_pl : PPRO_ {Number=pl;};PPRO_1s : PPRO_sg {Case=(nom,acc);Person=1st;};PPRO_1p : PPRO_pl {Case=(nom,acc);Person=1st;};PPRO_2 : PPRO_ {Case=(nom,acc);Person=2nd;};PPRO_2s : PPRO_sg {Case=(nom,acc);Person=2nd;};PPRO_2p : PPRO_pl {Case=(nom,acc);Person=2nd;};PPRO_3s : PPRO_sg {Case=(nom,acc);Person=3rd;};PPRO_3p : PPRO_pl {Case=(nom,acc);Person=3rd;};EXPL : PRO {WhForm=expl;Case=nom;Person=3rd;NPLevel=2;};NP_it : EXPL {HeadLex="it";Number=sg;};NP_there: EXPL {HeadLex="there";};WHNP : PRO {WhForm=quest;Person=3rd;NPLevel=0;};RELNP : RPRO {WhForm=rel;Person=3rd;Number=n;HeadLex=h1;Slash=[NP{HeadLex=h1;WhForm=-;Person=3rd;Number=n;NPLevel=0;Slash=[];Commas=-;}];};%% PP %%PP_ : PP {Coord=-;Commas=-;};PP_arg : PP {Arg=[NP{}];Mod_Elem=[];};PP_arg0 : PP {Arg=[];Mod_Elem=[];};

116 APPENDIX B. THE ENGLISH YAP GRAMMARPP_by : PP {HeadLex="by";Arg=[NP{}];Mod_Elem=[];};PP_to : PP {HeadLex="to";Arg=[NP{}];Mod_Elem=[];};PP_as : PP {HeadLex="as";Arg=[NP{}];Mod_Elem=[];};PP_for : PP {HeadLex="for";Arg=[NP{}];Mod_Elem=[];};%%% PP-PRO %%%%%%%%%%%%%%%%%%%%%%%%%%%%WHPP : PP_ {WhForm=quest;Order=pre;Mod=(-,verb);Arg=[NP{}];Slash=[];};RELPP : PP_ {WhForm=rel;Order=pre;Arg=[NP{}];Slash=[NP{WhForm=-;Person=3rd;Slash=[];Commas=-;NPLevel=0;}];};PP0 : PP_ {WhForm=-;Order=pre;Arg=[NP{}];Slash=[];Mod=(-,noun,verb,prep,adj);};%% RP %%RP_to : RP {HeadLex="to";};%% VP %%VP_bse : VP {VForm=bse;};VP_inf : VP {VForm=inf;};VP_prp : VP {VForm=prp;};VP_pas : VP {VForm=pas;};VP_pap : VP {VForm=pap;};VP_prp_inf : VP {VForm=(prp,inf);};VP_prp_pas_inf : VP {VForm=(prp,pas,inf);};VP_ : VP {Commas=-;Coord=-;};%% SBAR %%SBAR_arg : SBAR {CForm=arg;};SBAR_argb : SBAR {CForm=argb;};SBAR_argw : SBAR {CForm=argw;};SBAR_argwb : SBAR {CForm=(argw,argb);};SBAR_argx : SBAR {CForm=(arg,argw,argb);};SBAR_that : SBAR_arg {Comp="that";};SBAR_subj : SBAR {CForm=subj;};SBAR_for : SBAR_arg {Comp="for";};SBAR_how : SBAR_argw {Comp="how";};SBARQ: SBAR {CForm=quest;Slash=[];Commas=-;Coord=-;};SARG: SBAR {CForm=(arg,argb,argw);Slash=[];Commas=-;Coord=-;};SARGW: SBAR {CForm=argw;Slash=[];Commas=-;Coord=-;};SARGB: SBAR {CForm=argb;Slash=[];Commas=-;Coord=-;};

117SADJ: SBAR {CForm=adj;Slash=[];Commas=-;Coord=-;};SREL: SBAR {CForm=rel;Commas=-;Coord=-;};SLDQ: SBAR {CForm=argw;Commas=-;Coord=-;};%% S %%S_ : S {Coord=-;Commas=-;};S_di : S_ {SForm=(decl,imp);};S_decl : S_ {SForm=decl;};S_imp : S_ {SForm=imp;};S_quest : S_ {SForm=quest;};S_subj : S_ {SForm=subj;};S_ger : S_ {SForm=gerund;};%% _V %%_V_1s : _V {Infl=1s;};_V_3s : _V {Infl=3s;};_V_13s : _V {Infl=13s;};_V_2s_pl: _V {Infl=2s_pl;};_V_bse : _V {Infl=bse;};_V_past : _V {Infl=past;};_V_prp : _V {Infl=prp;};_V_pap : _V {Infl=pap;};_V_pas : _V {Infl=pas;};_V_npas : _V {Infl=(1s,3s,13s,2s_pl,bse,past,prp,pap);};_V1_1s : _V1 {Infl=1s;};_V1_3s : _V1 {Infl=3s;};_V1_13s : _V1 {Infl=13s;};_V1_2s_pl: _V1 {Infl=2s_pl;};_V1_bse : _V1 {Infl=bse;};_V1_past: _V1 {Infl=past;};_V1_prp : _V1 {Infl=prp;};_V1_pap : _V1 {Infl=pap;};_V1_pas : _V1 {Infl=pas;};%%% %% File: grammar.yap %% Purpose: English grammar for the YAP parser %% Author: Helmut Schmid, IMS, Univ. of Stuttgart %% %%%#include "declarations.yap"#include "templates.yap"

118 APPENDIX B. THE ENGLISH YAP GRAMMAR%% TOP %%% declarative word order; type could be either decl, quest or impTOP {SForm=sf;} -> `S {SForm=decl;Slash=[];Commas=-;} SM {SForm=(decl,quest,imp)=sf;};%%% Wh-questionTOP {SForm=quest;} -> `SBAR {CForm=quest;Slash=[];Commas=-;} SM {SForm=quest;};%%% yes-no questionTOP {SForm=quest;} -> `S {SForm=quest;Slash=[];Commas=-;} SM {SForm=quest;};%%% imperative sentenceTOP {SForm=imp;} -> `S {SForm=imp;Slash=[];Commas=-;} SM {SForm=imp;};%%% for the parsing of manuals: Press the button.TOP {SForm=imp;} -> `S {SForm=imp;Slash=[];Commas=-;} SM {SForm=decl;};%%% But ...TOP {SForm=sf;} -> C {CForm=(coord1,coord2);}`S {SForm=sf;Slash=[];Commas=(-,left);}SM {SForm=sf=(decl,quest,imp);};%%% repair rule for cases where sentence marker and sentence type don't matchTOP {SForm=sf;} -> C {CForm=(coord1,coord2);}`S {SForm=sf=(quest,imp);Slash=[];Commas=(-,left);}SM {SForm=decl;};TOP {SForm=quest;} -> C {CForm=(coord1,coord2);}`SBAR {CForm=quest;Slash=[];Commas=(-,left);}SM {SForm=quest;};%%% This gap eventually closes , but slowly .TOP {SForm=sf;} ->`S {SForm=sf;Slash=[];Commas=right;}=s_pC {CForm=(coord1,coord2);}ADVP {Mod=verb;Mod_Elem=[s_p];}SM {SForm=sf=(decl,imp);}; %%% unused%%% Sentences with Elliptical VPs%%% He will VP*.TOP {SForm=sf;} -> `S {SForm=sf;Slash=[VP{}];Commas=-;}SM {SForm=(decl,quest,imp)=sf;};%%% But he will VP*.TOP {SForm=sf;} -> C {CForm=(coord1,coord2);}`S {SForm=sf;Slash=[VP{}];Commas=-;}SM {SForm=(decl,quest,imp)=sf;};%%% Remember the old days ?TOP {SForm=quest;} -> NP* {WhForm=-;Person=2nd;Slash=[];Slash=[];Adjunctive=-;}=np_p`VP_bse {Slash=[];Subcat=[np_p];Commas=-;}SM {SForm=quest;};%% SBAR(Q) %%

119%%% Whom did you meet ?SBARQ {Comp=h1;} -> NP {Phon=h1;WhForm=quest;Slash=[];Adjunctive=-;Commas=-;}=np_p`S {SForm=quest;Slash=[np_p];Coord=*;Commas=-;};SBARQ {Comp=h1;} -> PP {Phon=h1;WhForm=quest;Slash=[];Commas=-;}=pp_p`S {SForm=quest;Slash=[pp_p];Coord=*;Commas=-;};SBARQ {Comp=h1;} -> ADJP {Phon=h1;WhForm=quest;Pred=+;Commas=-;}=adjp_p`S {SForm=quest;Slash=[adjp_p];Coord=*;Commas=-;};SBARQ {Comp=h1;} -> ADVP {Phon=h1;WhForm=quest;Not=-;Commas=-;}=advp_p`S {SForm=quest;Slash=[advp_p];Coord=*;Commas=-;};%%% adjunct Wh-clausesSBARQ {Comp=h1;} -> PP {Phon=h1;WhForm=quest;Slash=[];Commas=-;Mod=verb;Mod_Elem=[s_p];}`S {SForm=quest;Slash=[];Coord=*;Commas=-;}=s_p;SBARQ {Comp=h1;} -> ADVP {Phon=h1;WhForm=quest;Not=-;Commas=-;Mod=verb;Mod_Elem=[s_p];}`S {SForm=quest;Slash=[];Coord=*;Commas=-;}=s_p;%%% If ..., who ...?SBARQ {} -> SBAR {CForm=adj;Slash=[];Commas=right;} `SBAR {Coord=*;Commas=-;};%%% So what did you do ?SBARQ {} -> ADVP {WhForm=-;Not=-;Commas=(-,right);Mod=verb;Mod_Elem=[sbar_p];}`SBAR {Coord=*;Commas=-;}=sbar_p;%% SBAR %%% indirect questions (WH-phrase is a moved argument)SARGW {Comp=h1;} -> NP {Phon=h1;WhForm=quest;Slash=[];Adjunctive=-;Commas=-;NPLevel=0;}=np_p`S {SForm=decl;Slash=[np_p];Coord=*;Commas=-;};SARGW {Comp=h1;} -> PP {Phon=h1;WhForm=quest;Slash=[];Commas=-;}=pp_p`S {SForm=decl;Slash=[pp_p];Coord=*;Commas=-;};SARGW {Comp=h1;} -> ADJP {Phon=h1;WhForm=quest;Pred=+;Commas=-;}=adjp_p`S {SForm=decl;Slash=[adjp_p];Coord=*;Commas=-;};%%% indirect questions (WH-phrase is an adjunct)SARGW {Comp=h1;} -> PP {Phon=h1;WhForm=quest;Slash=[];Commas=-;Mod=verb;Mod_Elem=[s_p];}`S {SForm=decl;Slash=[];Coord=*;Commas=-;}=s_p;SARGW {Comp=h1;} -> ADVP {Phon=h1;WhForm=quest;Not=-;Commas=-;Mod=verb;Mod_Elem=[s_p];}`S {SForm=decl;Slash=[];Coord=*;Commas=-;}=s_p;%%% infinitival indirect questions%%% He was uncertain whether to goSARGB {Comp=h1;} -> C {Phon=h1;CForm=argb;}`VP {VForm=inf;Slash=[];Coord=*;Commas=-;};%%% He asked what to doSARGW {Comp=h1;} -> NP {Phon=h1;WhForm=quest;Slash=[];Adjunctive=-;Commas=-;NPLevel=0;}=np_p`VP {VForm=inf;Slash=[np_p];Coord=*;Commas=-;};SARGW {Comp=h1;} -> PP {Phon=h1;WhForm=quest;Slash=[];Commas=-;}=pp_p`VP {VForm=inf;Slash=[pp_p];Coord=*;Commas=-;};SARGW {Comp=h1;} -> ADJP {Phon=h1;WhForm=quest;Pred=+;Commas=-;}=adjp_p`VP {VForm=inf;Slash=[adjp_p];Coord=*;Commas=-;};SARGW {Comp=h1;} -> PP {Phon=h1;WhForm=quest;Slash=[];Commas=-;Mod=verb;Mod_Elem=[vp_p];}`VP {VForm=inf;Slash=[];Coord=*;Commas=-;}=vp_p;SARGW {Comp=h1;} -> ADVP {Phon=h1;WhForm=quest;Not=-;Commas=-;Mod=verb;Mod_Elem=[vp_p];}`VP {VForm=inf;Slash=[];Coord=*;Commas=-;}=vp_p;

120 APPENDIX B. THE ENGLISH YAP GRAMMAR%%% indirect question, long distance dependencySLDQ {Comp=h1;Slash=[np_p]=[np2_p];} ->NP* {WhForm=quest;Commas=-;}=np2_p`S {SForm=decl;Slash=[NP{Phon=h1;}=np_p];Coord=*;Commas=-;};SLDQ {Comp=h1;Slash=[pp_p]=[pp2_p];} ->PP* {WhForm=quest;Commas=-;}=pp2_p`S {SForm=decl;Slash=[PP{Phon=h1;}=pp_p];Coord=*;Commas=-;};SLDQ {Comp=h1;Slash=[adjp_p]=[adjp2_p];} ->ADJP* {WhForm=quest;Pred=+;Commas=-;}=adjp2_p`S {SForm=decl;Slash=[ADJP{Phon=h1;}=adjp_p];Coord=*;Commas=-;};%%% adjunct Wh-clausesSLDQ {Comp=h1;Slash=[PP{Phon=h1;}=pp2_p];} ->PP* {WhForm=quest;Commas=-;Mod=verb;Mod_Elem=[s_p];}=pp2_p`S {SForm=decl;Slash=[];Coord=*;Commas=-;}=s_p;SLDQ {Comp=h1;Slash=[ADVP{Phon=h1;}=advp2_p];} ->ADVP* {WhForm=quest;Not=-;Mod=verb;Commas=-;Mod_Elem=[s_p];}=advp2_p`S {SForm=decl;Slash=[];Coord=*;Commas=-;}=s_p;%%% adjunct and 'that' clausesSBAR {Comp=h1;CForm=(adj,arg,argb)=cf;Slash=[];Commas=-;} ->C {Phon=h1;CForm=cf;} `S {SForm=decl;Slash=[];Coord=*;Commas=-;};%%% Elliptical sentencesSBAR {Comp=h1;CForm=(adj,arg,argb)=cf;Slash=[];Commas=-;} ->C {Phon=h1;CForm=cf;} `S {SForm=decl;Slash=[VP{}];Coord=*;Commas=-;};%%% subjunctive clausesSBAR {Comp=h1;CForm=subj;Commas=-;} ->C {Phon=h1;CForm=subj;} `S {SForm=subj;Slash=[];Coord=*;Commas=-;};%%% while making many more disgruntled%%% an option that , if exercised , would increase the valueSBAR {Comp=h1;CForm=adj;Commas=-;} ->C {Phon=h1;CForm=adj;}`VP {VForm=(prp,pas);Subcat=[NP{}];Slash=[];Coord=*;Commas=-;};%%% even though ...SBAR {} -> ADVP {Mod=sbar;Mod_Elem=[sbar_p];} `SBAR {}=sbar_p;%%% relative clause - np argumentSREL {Comp=h1;Slash=[rnp_p];} ->NP {Phon=h1;WhForm=rel;Slash=[rnp_p];Adjunctive=-;Commas=-;NPLevel=0;}=rnp2_p`S {SForm=decl;Slash=[rnp2_p];Coord=*;Commas=-;};%%% relative clause - pp argumentSREL {Comp=h1;Slash=[rnp_p];} ->PP {Phon=h1;WhForm=rel;Slash=[rnp_p];Commas=-;}=pp_p`S {SForm=decl;Slash=[pp_p];Coord=*;Commas=-;};%%% relative clause - pp adjunctSREL {Comp=h1;Slash=[rnp_p];} ->PP {Phon=h1;WhForm=rel;Slash=[rnp_p];Commas=-;Mod=verb;Mod_Elem=[s_p];}`S {SForm=decl;Slash=[];Coord=*;Commas=-;}=s_p;%%% rel. clause without relative pronoun%%% (NP (NP the movie) (SBAR WHNP-1* (S I saw yesterday NP-1*))SREL {Comp="";Slash=[rnp_p];} ->RELNP* {Case=acc;Slash=[rnp_p];}=rnp2_p

121`S {SForm=decl;Slash=[NP{Slash=[];}=rnp2_p];Slash=[rnp_p];Coord=*;Commas=-;};%%% 'that' relative clauseSREL {Comp=h1;Slash=[rnp_p];} -> C {Phon=h1="that";CForm=rel;}`S {SForm=decl;Slash=[rnp_p];Coord=*;Commas=-;};SBAR {CForm=arg;Comp="for";Commas=-;Coord=-;} ->FOR {}NP {WhForm=-;Case=acc;Slash=[];Adjunctive=-;Commas=-;}=np_p`VP {VForm=inf;Subcat=[np_p];Coord=*;Commas=-;};%% S %%% adjuncts, no inversionS_decl {} -> SBAR {CForm=adj;Slash=[];Commas=(-,right);}`S {Coord=*;Commas=-;Slash=[];};S_di {} -> ADVP {WhForm=-;Not=-;Commas=(-,right);Mod=verb;Mod_Elem=[s_p];}`S {Coord=-;Commas=-;Slash=[];}=s_p;S_decl {} -> PP {WhForm=-;Commas=(-,right,lr);Slash=[];Mod=verb;Mod_Elem=[s_p];}`S {Coord=-;Commas=-;Slash=[];}=s_p;S_decl {} -> NP {WhForm=-;Adjunctive=+;Case=acc;Slash=[];Commas=(-,right,lr);NPLevel=0;}`S {Coord=-;Commas=-;Slash=[];};S_decl {} -> VP {VForm=(inf,prp,pas);Subcat=[NP{}];Slash=[];Commas=(-,right);}`S {Coord=-;Commas=-;Slash=[];Slash=[];};%%% had it existed then , Cray Computer would have incurred lossS_decl {} -> S {SForm=quest;Slash=[];Coord=*;Commas=right;}`S {Coord=*;Commas=-;Slash=[];Slash=[];};%%% extrapositionsS_decl {Slash=r;} -> PP {WhForm=-;Commas=(-,right);Slash=[];}=pp_p`S {SForm=(decl,inv);Coord=*;Commas=-;Slash=[pp_p|r];};S_decl {Slash=r;} -> NP {WhForm=-;Slash=[];Commas=right;Case=acc;}=np_p`S {Coord=*;Commas=-;Slash=[np_p|r];};S_decl {Slash=r;} -> S {SForm=(imp,decl);Slash=[];Commas=right;}=s_p`S {SForm=(decl,inv);Coord=*;Commas=-;Slash=[s_p|r];};S_decl {Slash=r;} -> ADVP {WhForm=-;Not=-;Commas=-;}=advp_p`S {Coord=*;Commas=-;Slash=[advp_p|r];};%% inverted word order%%% Never have I seen such a placeS_decl {SForm=decl;Slash=[];} -> ADVP {WhForm=-;Not=-;Commas=-;Mod=verb;Mod_Elem=[s_p];}`S {SForm=quest;Slash=[];Coord=*;Commas=-;}=s_p;S_decl {SForm=decl;Slash=[];} -> ADVP {WhForm=-;Not=-;Commas=-;}=advp_p`S {SForm=quest;Slash=[advp_p];Coord=*;Commas=-;};S_decl {SForm=decl;Slash=[];} -> PP {WhForm=-;Mod=verb;Slash=[];Commas=-;Mod_Elem=[s_p];}`S {SForm=quest;Slash=[];Coord=*;Commas=-;}=s_p;S_decl {SForm=decl;Slash=[];} -> PP {WhForm=-;Mod=-;Slash=[];Commas=-;}=pp_p`S {SForm=quest;Slash=[pp_p];Coord=*;Commas=-;};%%% basic S-ruleS_decl {} -> NP {WhForm=(-,expl);Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p`VP {VForm=fin;Subcat=[np_p];Coord=*;Commas=-;};S_decl {} -> SBAR {CForm=(arg,argw,argb,subj);Slash=[];Commas=-;}=sbar_p

122 APPENDIX B. THE ENGLISH YAP GRAMMAR`VP {VForm=fin;Subcat=[sbar_p];Coord=*;Commas=-;};S_decl {} -> VP {VForm=(prp,inf);Subcat=[*];Slash=[];Commas=-;}=vp_p`VP {VForm=fin;Subcat=[vp_p];Coord=*;Commas=-;};%%% They worried about (S him (VP drinking))S_ger {} -> NP {WhForm=(-,expl);Case=acc;Slash=[];Adjunctive=-;Commas=-;}=np_p`VP {VForm=prp;Subcat=[np_p];Coord=*;Commas=-;};%%% imperativeS_imp {Slash=[];} -> NP* {WhForm=-;Person=2nd;Slash=[];Slash=[];Adjunctive=-;}=np_p`VP {Subcat=[np_p];VForm=bse;Coord=*;Commas=-;};S_imp {Slash=[NP{Number=n;HeadLex=h1;}];} ->NP* {Number=n;HeadLex=h1;WhForm=-;Person=2nd;Slash=[];}=np_p`VP {Subcat=[np_p];VForm=bse;Slash=[];Coord=*;Commas=-;};%%% Imperalist , go home!S_imp {Slash=[];} -> NP {WhForm=-;Slash=[];Commas=right;Adjunctive=-;NPLevel=0;}=np_p`S {Slash=[np_p];Coord=*;Commas=-;};%%% Go home, imperalists!S_imp {Slash=[];} -> `S {Slash=[np_p];Coord=*;Commas=-;}NP {WhForm=-;Slash=[];Commas=left;Adjunctive=-;NPLevel=0;}=np_p;%%% relative clause with nominative rel. pronoun%%% The NP to which the relative clause adjoins is put on the Subcat listS_decl {Slash=[np_p];} -> NP* {Case=nom;Commas=-;Slash=[];}=np2_p`VP {Subcat=[np_p];Subcat=[np2_p];VForm=fin;Slash=[];Coord=*;Commas=-;};%%% subjunctive clausesS_subj {Slash=[];} -> NP {WhForm=(-,expl);Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p`VP {VForm=bse;Subcat=[np_p];Coord=*;Commas=-;};%%% the ... the ... clausesADJP {Degree=pos;Pred=+;} -> `ADJP {WhForm=-;Degree=comp;Coord=*;Commas=-;}THEP {Arg=[S{}];};S_decl {Slash=[];Commas=-;} -> THEP {} `THEP {Arg=[S{}];};S_decl {Slash=[];Commas=-;} -> `THEP {Arg=[S{}];} THEP {Arg=[ADJP{}];};S_decl {Slash=[];Commas=-;} -> `THEP {Arg=[S{}];} THEP {Arg=[NP{}];};%%% clausal adjunctsS_decl {} -> `S {SForm=decl;Coord=*;Commas=-;Slash=[];}S {SForm=decl;Slash=[];Commas=left;};%%% (" Nothing has been agreed to " ,) said Donald DionS {SForm=inv;Slash=[S{}]=r;Coord=-;Commas=(-,right);} ->`VP {VForm=fin;Subcat=[np_p];Coord=*;Commas=-;Slash=r;}NP {WhForm=-;Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p;%%% Behind the silly posturing lies a real dispute .S {SForm=inv;Slash=[PP{}]=r;Coord=-;Commas=-;} ->`VP {VForm=fin;Subcat=[np_p];Coord=*;Commas=-;Slash=r;}NP {WhForm=-;Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p;%% THEP %

123%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%THEP {Arg=[s_p];Commas=-;} -> `THE {}NP{WhForm=-;Degree=comp;Slash=[];Adjunctive=-;Commas=-;}=np_pS {SForm=decl;Slash=[np_p];Commas=-;}=s_p;THEP {Arg=[s_p];Commas=-;} -> `THE {}ADVP {WhForm=-;Degree=comp;Not=-;Commas=-;}=advp_pS {SForm=decl;Slash=[advp_p];Commas=-;}=s_p;THEP {Arg=[s_p];Commas=-;} -> `THE {}ADJP {WhForm=-;Degree=comp;Commas=-;}=adjp_pS {SForm=decl;Slash=[adjp_p];Commas=-;}=s_p;THEP {Arg=[s_p];Commas=-;} -> `THE {}ADVP {WhForm=-;Degree=comp;Not=-;Commas=-;Mod=verb;Mod_Elem=[s_p];}S {SForm=decl;Slash=[];Commas=-;}=s_p;%%% the longer the rhetoric hangs in the air , the more the divisions .THEP {Arg=[np_p];Commas=-;} -> `THE {}ADJP {WhForm=-;Degree=comp;Commas=-;Pred=+;Mod_Elem=[np_p];}NP {WhForm=-;Slash=[];Adjunctive=-;Commas=-;}=np_p;THEP {Arg=[np_p];Commas=-;} -> `THE {}NP {WhForm=-;Degree=comp;Slash=[];Adjunctive=-;Commas=-;}=np_p;THEP {Arg=[adjp_p];Commas=-;} -> `THE {}ADJP {WhForm=-;Degree=comp;Pred=+;Commas=-;Mod_Elem=[NP{}];}=adjp_p;%% SQ %%% (SQ Did Casey (VP throw the ball))%%% (SBARQ (WHNP-1 What) (SQ did Casey (VP throw NP-1*)))S {SForm=quest;Slash=r;} -> V {Aux=+;VForm=fin;}=v_p`S {SForm=decl;Slash=[v_p|r];Coord=*;Commas=-;};%%% (SBARQ (WHNP-1 Who) (SQ NP-1* (VP threw the ball)))S {SForm=quest;Slash=[np2_p]=[np_p];} ->NP* {Case=nom;WhForm=quest;Commas=-;Slash=[];}=np2_p`VP {VForm=fin;Subcat=[np_p];Slash=[];Coord=*;Commas=-;};%% be-SQ %%% inverted word order with "be"%%% Problem: Movement out of an empty VP%%% How big (SQ is John)S_quest {Slash=[];} ->`V {VForm=fin;HeadLex="be";Subcat=[adjp_p,np_p];}NP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_pADJP {WhForm=-;Commas=-;}=adjp_p;S_quest {Slash=[];} ->`V {VForm=fin;HeadLex="be";Subcat=[sbar_p,np_p];}NP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_pSBAR {CForm=quest;}=sbar_p;

124 APPENDIX B. THE ENGLISH YAP GRAMMARS_quest {Slash=[];} ->`V {VForm=fin;HeadLex="be";Subcat=[np2_p,np_p];}NP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_pNP {WhForm=-;Case=acc;Slash=[];Adjunctive=-;Commas=-;}=np2_p;%%% WHADJS_quest {Slash=[adjp2_p];} ->`V {VForm=fin;HeadLex="be";Subcat=[adjp_p,np_p];}ADJP* {WhForm=quest;Commas=-;}=adjp2_p=adjp_pNP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p;S_quest {Slash=[adjp_p]=[adjp2_p];} ->`V {VForm=fin;HeadLex="be";Subcat=[adjp_p,np_p];}=v_pADJP* {WhForm=quest;Commas=-;}=adjp2_p=adjp_pNP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_pADVP {WhForm=-;Not=-;Commas=-;Mod=verb;Mod_Elem=[v_p];};S_quest {Slash=[adjp2_p];}=s_p ->`V {VForm=fin;HeadLex="be";Subcat=[adjp_p,np_p];}ADJP* {WhForm=quest;Commas=-;}=adjp2_p=adjp_pNP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_pPP {Slash=[];Mod=verb;Mod_Elem=[s_p];};%%% WHPPS_quest {Slash=[pp2_p];} ->`V {VForm=fin;HeadLex="be";Subcat=[pp_p,np_p];}PP* {WhForm=(-,quest);Commas=-;Mod=-;}=pp2_p=pp_pNP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p;S_quest {Slash=[pp2_p];} ->`V {VForm=fin;HeadLex="be";Subcat=[pp_p,np_p];}=v_pPP* {WhForm=(-,quest);Commas=-;Mod=-;}=pp2_p=pp_pNP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_pADVP {WhForm=-;Not=-;Commas=-;Mod=verb;Mod_Elem=[v_p];};S_quest {Slash=[pp2_p];}=s_p ->`V {VForm=fin;HeadLex="be";Subcat=[pp_p,np_p];}PP* {WhForm=(-,quest);Commas=-;Mod=-;}=pp2_p=pp_pNP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_pPP {Slash=[];Mod=verb;Mod_Elem=[s_p];};%%% inverted word order with "do"S_quest {Slash=[advp2_p];} ->`V {VForm=fin;HeadLex="do";Subcat=[advp_p,np_p];}ADVP* {Not=-;Commas=-;Mod=-;Mod_Elem=[];}=advp_p=advp2_pNP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p;%% VP %%% VBAR to VP raising ruleVP_ {Aux=-;} -> `VBAR {Subcat=[*];};%%% auxiliary verbs have VP complementsVP_ {Subcat=r2;Slash=r;HeadLex=h1;} ->`V {Aux=+;Subcat=[vp_p|r2];Coord=*;HeadLex=*;}VP {Subcat=r2;Slash=r;Commas=-;HeadLex=h1;}=vp_p;%%% Elliptical VPsVP {Subcat=r2;Slash=[vp2_p];HeadLex=h1;Commas=-;Coord=-;} ->

125`V {Aux=+;Subcat=[vp_p|r2];Coord=*;HeadLex=*;}VP* {Subcat=[NP{}]=r2;Slash=[];HeadLex=h1;}=vp_p=vp2_p;%%% country funds are or soon will be listed in New York or London .VP {Slash=r;Coord=-;} ->`VP {Aux=+;Slash=[vp_p|r];Commas=-;Coord=+;}VP {Slash=r;Commas=-;}=vp_p;%%% auxiliary trace: Will Peter (V* hire) ?VP_ {Subcat=r2;Slash=[v2_p];HeadLex=h1;} ->`V* {Aux=+;VForm=fin;Subcat=[vp_p|r2];Coord=*;HeadLex=*;}=v2_pVP {VForm=(bse,prp,pap,pas);Subcat=r2;Slash=[];Commas=-;HeadLex=h1;}=vp_p;VP_ {Subcat=r2;Slash=[v2_p|r];HeadLex=h1;} ->`V* {Aux=+;VForm=fin;Subcat=[vp_p|r2];Coord=*;HeadLex=*;}=v2_pVP {VForm=(bse,prp,pap,pas);Subcat=r2;Slash=[*]=r;Commas=-;HeadLex=h1;}=vp_p;%%% preceding VP adjunctsVP_ {} -> ADVP {WhForm=-;Not=-;Commas=(-,lr);Mod=verb;Mod_Elem=[vp_p];}`VP {Coord=*;Commas=-;}=vp_p;VP_ {} -> NP {WhForm=-;Adjunctive=+;Case=acc;Slash=[];Commas=(-,lr);NPLevel=0;}`VP {VForm=(fin,bse,prp,pap,pas);Coord=*;Commas=-;};VP_ {} -> PP {WhForm=-;Slash=[];Mod=verb;Commas=(-,right,lr);Mod_Elem=[vp_p];}`VP {VForm=(fin,bse,prp,pap,pas);Coord=*;Commas=-;}=vp_p;VP_ {} -> VP {VForm=pas;Subcat=[NP{}]=r;Slash=[];Commas=lr;}`VP {VForm=(fin,bse,prp,pap,pas);Subcat=r;Coord=*;Commas=-;};VP_ {} -> SBAR {CForm=adj;Slash=[];Commas=lr;}`VP {VForm=(fin,bse,prp,pap,pas);Coord=*;Commas=-;};VP_ {} -> NP {NForm=pronoun;Number=pl;Person=3rd;HeadLex="both";}`VP {VForm=(fin,bse,prp,pap,pas);Coord=*;Commas=-;Subcat=[NP{Coord=+;}];};%%% negation: always in front of a non finite VPVP_ {} -> ADVP {Not=+;Commas=-;Mod=verb;Mod_Elem=[vp_p];}`VP {VForm=(inf,bse,prp,pap,pas);Coord=*;Commas=-;}=vp_p;%%% ...is currently waiving management fees , which boosts its yield.VP_ {Aux=-;} -> `VP {Coord=*;Commas=-;}SBAR {CForm=rel;Comp="which";Slash=[NP{Number=sg;Person=3rd;}];Commas=left;};VP_ {Aux=-;} -> `VP {Coord=*;Commas=-;}NP {WhForm=-;NForm=(pronoun,noun);Case=acc;Slash=[];Adjunctive=-;Commas=left;};VP_ {Aux=-;} -> `VP {Subcat=[np_p];Coord=*;Commas=-;}ADJP {WhForm=-;Pred=+;Numerical=-;Commas=(-,left);Mod_Elem=[np_p];};%% VBAR %%% Verb argumentsVBAR {Subcat=r;} ->`VBAR {Subcat=[np_p|r];}NP {Case=acc;WhForm=-;Slash=[];Adjunctive=-;Commas=-;}=np_p;VBAR {Subcat=r;} -> `VBAR {Subcat=[pp_p|r];}PP {WhForm=-;Slash=[];Mod=-;Commas=-;}=pp_p;VBAR {Subcat=r;} -> `VBAR {Subcat=[adjp_p|r];}ADJP {Pred=+;Commas=-;}=adjp_p;VBAR {Subcat=r;} -> `VBAR {Subcat=[advp_p|r];}

126 APPENDIX B. THE ENGLISH YAP GRAMMARADVP {WhForm=-;Not=-;Commas=-;Mod=-;}=advp_p;VBAR {Subcat=r;} -> `VBAR {Subcat=[rp_p|r];}RP {}=rp_p;VBAR {Subcat=r;} -> `VBAR {Subcat=[vp_p|r];}VP {VForm=(bse,inf,prp,pas);Subcat=[*];Slash=[];Commas=-;}=vp_p;VBAR {Subcat=r;Slash=r2;} -> `VBAR {Subcat=[vp_p|r];Slash=[];}VP {VForm=inf;Subcat=[*];Slash=[*]=r2;Commas=-;}=vp_p;VBAR {Subcat=r;} -> `VBAR {Subcat=[s_p|r];}S {SForm=(decl,imp);Slash=[];Commas=(-,left,lr);}=s_p;VBAR {Subcat=r;} -> `VBAR {Subcat=[sbar_p|r];}SBAR {CForm=(arg,argw,argb,subj);Slash=[];Commas=(-,left,lr);}=sbar_p;%%% The race was easy for her to win *VBAR {Subcat=r;} -> `VBAR {Subcat=[sbar_p|r];}SBAR_for {Slash=[NP_{}];Commas=-;}=sbar_p;%%% The race was easy to win *VBAR {Subcat=r;} -> `VBAR {Subcat=[vp_p|r];}VP_inf {Subcat=[NP{NForm=noun;}];Slash=[NP_{}];Commas=-;}=vp_p;%%% stranded prepositionsVBAR {Subcat=r;Slash=[*]=r2;} -> `VBAR {Subcat=[pp_p|r];Slash=[];}PP {Slash=r2;Mod=-;Commas=-;Mod_Elem=[];}=pp_p;%%% of which he appointed the president PP*VBAR {Subcat=r;Slash=[*]=r2;} -> `VBAR {Subcat=[np_p|r];Slash=[];}NP {Case=acc;WhForm=-;NForm=(noun,pronoun,propername);Slash=r2;Adjunctive=-;Commas=-;}=np_p;%%% "be" arguments%%% VP adjuncts between argumentsVBAR {} -> `VBAR {Subcat=[*,*|*];}=vbar_pPP {WhForm=-;Slash=[];Mod=verb;Commas=(-,left,lr);Mod_Elem=[vbar_p];};VBAR {} -> `VBAR {Subcat=[*,*|*];} NP {WhForm=-;Case=acc;Slash=[];Adjunctive=+;Commas=-;};VBAR {} -> `VBAR {Subcat=[*,*|*];}=vbar_pADVP {WhForm=-;Not=-;Commas=(-,left,lr);Mod=verb;Mod_Elem=[vbar_p];};%%% following VP adjunctsVBAR {} -> `VBAR {Subcat=[*];}=vbar_pPP {WhForm=-;Slash=[];Mod=verb;Commas=(-,left,lr);Mod_Elem=[vbar_p];};VBAR {} -> `VBAR {Subcat=[*];} NP {WhForm=-;Case=acc;Slash=[];Adjunctive=+;Commas=-;};VBAR {} -> `VBAR {Subcat=[*];}=vbar_pADVP {WhForm=-;Not=-;Commas=(-,left,lr);Mod=verb;Mod_Elem=[vbar_p];};VBAR {} -> `VBAR {Subcat=[*];} SBAR {CForm=adj;Slash=[];Commas=(-,left,lr);};%%% I bought the cheap one to save money%%% I bought the cheap one saving money%%% I bought the cheap one convinced by Peter's recommendationVBAR {} -> `VBAR {VForm=(fin,inf,bse,prp,pap);Subcat=[NP_{}]=r;}VP {VForm=(inf,prp,pas);Subcat=r;Slash=[];Commas=(-,lr,left);};VBAR {} -> `VBAR {VForm=pas;Subcat=[*];}VP {VForm=(inf,prp);Subcat=[NP{}];Slash=[];Commas=(-,lr,left);};%%% Trace verb argumentsVBAR {Slash=[np2_p];Subcat=r;} ->`VBAR {Slash=[];Subcat=[np_p|r];}NP* {Case=acc;NForm=(pronoun,propername,noun);Slash=[];Adjunctive=-;Commas=-;}=np_p=np2_p;VBAR {Slash=[pp2_p];Subcat=r;} ->`VBAR {Slash=[];Subcat=[pp_p|r];}PP* {Slash=[];Mod=-;Commas=-;}=pp_p=pp2_p;

127VBAR {Slash=[sbar2_p];Subcat=r;} ->`VBAR {Slash=[];Subcat=[sbar_p|r];}SBAR* {CForm=(arg,argw,argb);Slash=[];Commas=-;}=sbar_p=sbar2_p;VBAR {Slash=[s2_p];Subcat=r;} ->`VBAR {Slash=[];Subcat=[s_p|r];}S* {SForm=(decl,imp);Slash=[];}=s_p=s2_p;VBAR {Slash=[adjp2_p];Subcat=r;} ->`VBAR {Slash=[];Subcat=[adjp_p|r];}ADJP* {Pred=+;Commas=-;}=adjp_p=adjp2_p;VBAR {Slash=[advp2_p];Subcat=r;} ->`VBAR {Slash=[];Subcat=[advp_p|r];}ADVP* {Not=-;Commas=-;Mod=-;Mod_Elem=[];}=advp_p=advp2_p;%%% long distance dependenciesVBAR {Subcat=r2;Slash=[*]=r;}-> `VBAR {Subcat=[sbar_p|r2];Slash=[];}SBAR {CForm=(arg,argw,argb);Slash=r;Commas=-;}=sbar_p;VBAR {Subcat=r2;Slash=[*]=r;} -> `VBAR {Subcat=[s_p|r2];Slash=[];}S {SForm=decl;Slash=r;Commas=-;}=s_p;%%% V to VBAR raising ruleVBAR {Slash=[];} -> `V {Aux=-;};%%% negation cliticsV {} -> `V {Aux=+;}=v_pADVP {Not=+;Commas=-;Mod=clitic;Mod_Elem=[v_p];};V {} -> `V {HeadLex="have";Aux=-;}=v_pADVP {Not=+;Commas=-;Mod_Elem=[v_p];};V {} -> `V {HeadLex="be";Aux=-;}=v_pADVP {Not=+;Commas=-;Mod_Elem=[v_p];};%% NP %%% PPs are always adjoinedNNP {WhForm=wf;NForm=(noun,pronoun,propername);NPLevel=1;} ->`NP {WhForm=-;Coord=*;Commas=-;NPLevel=(0,1);}=np_pPP {WhForm=wf;Slash=[];Mod=noun;Commas=(-,left,lr);Mod_Elem=[np_p];};NNP {WhForm=quest;NForm=(noun,pronoun,propername);NPLevel=2;} ->`NP {WhForm=quest;Coord=*;Commas=-;NPLevel=0;}=np_pPP {WhForm=-;Slash=[];Mod=noun;Commas=-;Mod_Elem=[np_p];};%%% after a 5 % increase the last yearNNP {NForm=noun;NPLevel=1;} ->`NP {WhForm=-;Coord=*;Commas=-;NPLevel=(0,1);Elliptical=-;}NP {WhForm=-;Adjunctive=+;Case=acc;Slash=[];Commas=-;NPLevel=0;};%%% of which he appointed the presidentNNP {WhForm=-;NForm=noun;Slash=[pp2_p];NPLevel=2;} ->`NP {Coord=*;Commas=-;NPLevel=0;Slash=[];}=np_pPP* {WhForm=(quest,rel);Mod=noun;Commas=-;Mod_Elem=[np_p];}=pp2_p;%%% which he appointed the president ofNNP {WhForm=-;NForm=noun;Slash=[*]=r;NPLevel=2;} ->

128 APPENDIX B. THE ENGLISH YAP GRAMMAR`NP {Coord=*;Commas=-;NPLevel=0;Slash=[];}=np_pPP {Mod=noun;Slash=r;Mod_Elem=[np_p];};%%% Apposition%%% Bill Clinton , the president of the US ,NNP {NPLevel=1;NForm=(noun,propername);Case=c;} ->`NP {WhForm=-;Case=c;Elliptical=-;Coord=*;Commas=-;NPLevel=(0,1);}NP {WhForm=-;Case=c;NForm=noun;WhForm=-;Commas=(lr,left);Slash=[];Adjunctive=-;};%%% Bill Clinton himself, the question itself (reflexive pronoun)NNP {NPLevel=1;NForm=(pronoun,noun,propername);Case=c;} ->`NP {WhForm=-;Number=n;Person=p;Case=c;Elliptical=-;Coord=*;Commas=-;NPLevel=(0,1);}PPRO_3s {HeadLex="<refpro>";Number=n;Person=p;};%%% Pierre Vinken, 65 years old,NNP {NForm=(noun,propername);NPLevel=1;} ->`NP {WhForm=-;Elliptical=-;Coord=*;Commas=-;NPLevel=(0,1);}=np_pADJP{WhForm=-;Pred=+;Numerical=-;Commas=(lr,left);Mod_Elem=[np_p];};%%% the president designate, December 1985, Act 2, Louis XIVNNP {NForm=(noun,propername);} ->`NP {Elliptical=-;Coord=*;Commas=-;NPLevel=0;}=np_pADJ {Order=post;Pred=+;Coord=-;Mod_Elem=[np_p];};%%% nothing elseNNP {NForm=pronoun;} ->`NP {Elliptical=-;Coord=*;Commas=-;NPLevel=0;}=np_pADJ {Order=post;Pred=+;Coord=-;Mod_Elem=[np_p];};%%% nothing radicalNNP {NForm=pronoun;NPLevel=2;} ->`NP {WhForm=-;Degree=pos;Elliptical=-;Coord=-;NPLevel=0;}=np_pADJP {Pred=+;Coord=-;Numerical=-;Mod_Elem=[np_p];};%%% the British premier minister John MajorNNP {NForm=noun;Case=c;NPLevel=2;} ->`NP {WhForm=-;Case=c;Elliptical=-;Coord=*;Commas=-;NPLevel=(0,1);}NP {WhForm=-;NForm=propername;Case=c;Elliptical=-;Commas=(-,lr);Slash=[];Adjunctive=-;NPLevel=0;};%%% Westborough , Mass. ,NNP {NPLevel=1;NForm=propername;Case=c;} ->`NP {WhForm=-;Case=c;Elliptical=-;Coord=*;Commas=-;NPLevel=(0,1);}NP {WhForm=-;Case=c;NForm=propername;WhForm=-;Commas=(lr,left);Slash=[];Adjunctive=-;Elliptical=-;};%%% genitive NPsNP {Case=gen;NForm=(noun,propername);Commas=-;Coord=-;NPLevel=2;} ->`NP {WhForm=-;Case=(nom,acc);Coord=*;Commas=-;NPLevel=(0,1);}GM {};%%% relative clausesNNP {NForm=(noun,pronoun,propername);NPLevel=2;} ->`NP {Coord=*;Commas=-;NPLevel=(0,1);}=np_pSBAR {CForm=rel;Slash=[np_p];Commas=(-,left,lr);};% reduced relative cl.: remarks concerning the caseNNP {NForm=(noun,propername);NPLevel=2;} -> `NP {Coord=*;Commas=-;NPLevel=(0,1);}=rnp3_pVP {VForm=(prp,pas);Subcat=[rnp3_p];Slash=[];Commas=(-,left,lr);};%%% next element to be removedNNP {NForm=noun;NPLevel=2;} -> `NP {Coord=*;Commas=-;NPLevel=(0,1);}=rnp3_pVP {VForm=inf;Subcat=[rnp3_p];Slash=[];Commas=(-,left,lr);};%%% an odd thing to put on the list

129NNP {NForm=noun;NPLevel=2;} -> `NP {Coord=*;Commas=-;NPLevel=(0,1);}=rnp3_pVP {VForm=inf;Slash=[rnp3_p];Subcat=[NP{}];Commas=-;};%%% basic NP rule%%% the pictures, the pictures of whomNNP {Person=3rd;Slash=[];NPLevel=0;} ->DTP {WhForm=-;Number=n;} `NBAR {Number=n;Subcat=[];Coord=*;};%%% pictures, how many pictures, pictures of whomNNP {Person=3rd;Slash=[];NPLevel=0;} -> %%% DTP* {WhForm=-;Number=n;}`NBAR {Elliptical=-;Subcat=[];Coord=-;};%%% at Harper'sNNP {Person=3rd;NPLevel=2;} ->NP {NForm=(noun,propername);WhForm=-;Case=gen;Slash=[];Adjunctive=-;Commas=-;}`NBAR*{WhForm=-;NForm=noun;Elliptical=+;Slash=[];Subcat=[];HeadLex="@location@";Number=sg;Degree=pos;};%%% which pictureNNP {Person=3rd;WhForm=quest;Slash=[];NPLevel=0;} ->DTP {WhForm=quest;Number=n;} `NBAR {WhForm=-;Number=n;Subcat=[];Coord=*;};%%% almost the whole countryNNP {NForm=(pronoun,noun);WhForm=wf;} ->ADVP {WhForm=wf;Commas=-;Mod=noun;Mod_Elem=[np_p];}`NP {WhForm=-;NPLevel=0;Coord=*;Commas=-;}=np_p;%%% derived nouns%%% They discussed his writing novelsDNP {NForm=gerund;Person=3rd;Number=sg;WhForm=-;} ->NP {Case=gen;}=np_p`VP {VForm=prp;Subcat=[np_p];Coord=*;Commas=-;};%%% a million dollarsNNP {Person=3rd;Slash=[];NPLevel=0;} ->DTP {WhForm=-;Number=n;} M {} `NBAR {Number=n;Subcat=[];Coord=*;};%%% a millionDNP {Person=3rd;Slash=[];NPLevel=0;Number=pl;} ->DTP {WhForm=-;Number=sg;} `M {};%%% a further 48,000 roomsNNP {Person=3rd;Slash=[];NPLevel=0;} ->DTP {WhForm=-;Number=sg;HeadLex="a";}ADJP {WhForm=-;Pred=-;Degree=pos;Commas=-;Mod_Elem=[nbar_p];}`NBAR {Subcat=[];Degree=pos;Number=pl;Coord=*;}=nbar_p;%% NBAR %%% adjectival adjunctsNBAR_{} -> ADJP {WhForm=-;Pred=-;Degree=pos;Commas=-;Mod_Elem=[nbar_p];}`NBAR {Subcat=[];Coord=*;}=nbar_p;NBAR {Degree=deg;} ->ADJP {WhForm=-;Pred=-;Degree=(comp,sup,as)=deg;Commas=-;Mod_Elem=[nbar_p];}`NBAR {Subcat=[];Degree=pos;Coord=*;}=nbar_p;

130 APPENDIX B. THE ENGLISH YAP GRAMMAR%%% its LaSalle I nuclear plantNBAR_{} -> NP {WhForm=-;NForm=propername;Case=acc;Commas=-;Slash=[];NPLevel=(0,1);}`NBAR {NForm=noun;Subcat=[];Coord=*;};%%% how many picturesNBAR_{WhForm=quest;} -> ADJP {WhForm=quest;Pred=-;Commas=-;Mod_Elem=[nbar_p];}`NBAR {WhForm=-;Subcat=[];Coord=*;}=nbar_p;%%% Noun arguments%%% belief (SBAR that the world is flat)NBAR_{Subcat=r;} -> `NBAR {Subcat=[sbar_p|r];} SBAR {CForm=arg;}=sbar_p;NBAR_{Subcat=r;} -> `NBAR {Subcat=[s_p|r];} S {SForm=decl;Commas=-;Slash=[];}=s_p;NBAR_{Subcat=r;} -> `NBAR {Subcat=[vp_p|r];}VP {Slash=[];VForm=inf;Subcat=[*];Commas=-;}=vp_p;NBAR_{Subcat=r;} -> `NBAR {Subcat=[pp_p|r];} PP {Slash=[];Mod=-;Mod_Elem=[];}=pp_p;%%% three times the expected numberNBAR_{Subcat=r;} -> `NBAR {Subcat=[np_p|r];}NP {NForm=(noun,pronoun,propername);WhForm=-;Slash=[];Adjunctive=-;Commas=-;}=np_p;%%% the largestNBAR_{HeadLex=h1;WhForm=wf;Case=(nom,acc);Degree=deg;} ->ADJP {HeadLex=h1;WhForm=wf;Pred=-;Commas=-;Degree=deg;Numerical=-;Mod_Elem=[nbar_p];}`NBAR* {NForm=noun;HeadLex="@entity@";WhForm=-;Elliptical=+;Slash=[];Subcat=[];Adjunctive=-;Coord=*;}=nbar_p;%%% numerals: There were 500NBAR_{NForm=noun;WhForm=-;Case=(nom,acc);Degree=pos;Elliptical=-;Number=pl;Adjunctive=-;Slash=[];Subcat=[];} ->`ADJP {Numerical=+;Pred=+;Coord=*;Commas=-;Mod_Elem=[NP{}];};%%% currency numerals: $ 5 billionNBAR_{NForm=noun;WhForm=-;Case=(nom,acc);Degree=pos;Elliptical=-;Number=pl;Adjunctive=-;Slash=[];Subcat=[];} ->`CURR {HeadLex=h1;} ADJP {Pred=-;Numerical=+;Mod_Elem=[NBAR{HeadLex=h1;}];};%%% the almost $ 5 billionNBAR_{NForm=noun;WhForm=-;Case=(nom,acc);Degree=pos;Elliptical=-;Adjunctive=-;Slash=[];Subcat=[];} ->ADVP {WhForm=-;Commas=-;Mod=noun;Mod_Elem=[];}`CURR {HeadLex=h1;} ADJP {Pred=-;Numerical=+;Mod_Elem=[NBAR{HeadLex=h1;}];};%%% N to NBAR raising ruleNBAR_{Elliptical=-;Slash=[];WhForm=-;Case=(nom,acc);Degree=pos;} ->`N {Coord=*;Mod_Elem=[];};%%% compoundsN {Compound=+;} ->N {NForm=propername;Compound=-;Mod_Elem=[];}`N {NForm=propername;HeadLex=*;Coord=-;Compound=*;};N {Compound=+;} ->N {NForm=noun;Subcat=[];Mod_Elem=[n_p];}`N {NForm=noun;Coord=-;Compound=*;}=n_p;%% DTP %

131%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%DTP {} -> `DT {};DTP {} -> PDT {Number=n;} `DT {Number=n;};DTP {Number=*;} -> `NP {Case=gen;Commas=-;Number=*;};DTP {Number=pl;} -> PDT {HeadLex="all";Number=pl;}`NP {Number=*;Case=gen;NForm=pronoun;Commas=-;};%% ADJP %%% argumentsADJ {Order=*;Pred=+;Subcat=r;} ->`ADJ {Order=pre;Subcat=[pp_p|r];}PP{WhForm=-;Slash=[];Mod=-;Mod_Elem=[];}=pp_p;ADJ {Order=*;Pred=+;Subcat=[];} ->`ADJ {Order=pre;Subcat=[np_p];}NP{WhForm=-;Slash=[];Adjunctive=+;Commas=-;}=np_p;ADJ {Order=*;Pred=+;Subcat=[];} ->`ADJ {Order=pre;Subcat=[vp_p];}VP {VForm=inf;Slash=[];Subcat=[*];}=vp_p;ADJ {Order=*;Pred=+;Subcat=[];} ->`ADJ {Order=pre;Subcat=[sbar_p];}SBAR {CForm=(arg,argw,argb,subj);Slash=[];Commas=-;}=sbar_p;%%% They were certain he would winADJ {Pred=+;Subcat=[];} ->`ADJ {Order=pre;Subcat=[s_p];}S {SForm=decl;Slash=[];Commas=-;}=s_p;%%% (ADJ (N New) (ADJP York-based))ADJ {Subcat=[];} ->N {NForm=propername;Mod_Elem=[];}=n_p`ADJ {Order=pre;Subcat=[n_p];};ADJ {Subcat=[];} ->N {NForm=propername;}=n_p CM {}`ADJ {Order=pre;Subcat=[n_p];};%%% The race was easy to win .ADJ {Pred=+;Subcat=[];Mod_Elem=[rnp3_p];} ->`ADJ {Pred=+;Order=pre;Mod_Elem=[vp_p];}VP {VForm=inf;Slash=[rnp3_p];Subcat=[*];}=vp_p;%%% The race was easy for her to win .ADJ {Pred=+;Subcat=[];Mod_Elem=[rnp3_p];} ->`ADJ {Pred=+;Order=pre;Mod_Elem=[sbar_p];}SBAR {CForm=arg;Slash=[rnp3_p];Commas=-;}=sbar_p;%%% (how) much bigger, 65 years old, three more applesNADJP {WhForm=wf;} ->NP {WhForm=wf;NForm=(noun,pronoun);Case=acc;Adjunctive=-;Commas=-;NPLevel=0;Slash=[];}=np_p`ADJ {Order=pre;Subcat=[np_p];};%%% adverbial adjunct

132 APPENDIX B. THE ENGLISH YAP GRAMMARNADJP {WhForm=wf;} -> ADVP {WhForm=(quest,-)=wf;Commas=-;Mod=adj;Mod_Elem=[adjp_p];}`ADJP {WhForm=-;Coord=*;Commas=-;}=adjp_p;%%% It was too early to make concessionsNADJP {Degree=pos;} ->`ADJP {Degree=too;Pred=+;Coord=*;}VP {VForm=inf;Slash=[];Subcat=[*];};%%% ADJ to ADJP raising ruleNADJP {WhForm=-;} -> `ADJ {Order=pre;Subcat=[];Coord=-;};%%% more important, as important, very importantNADJP {WhForm=-;Degree=deg;} ->DEGP {Degree=deg;} `ADJ {Order=pre;Subcat=[];Degree=pos;Coord=-;};%%% 5 billionNADJP {WhForm=-;} -> `ADJ {Order=pre;Numerical=+;} M {};%%% 10 3/4 (Penn Treebank)NADJP {WhForm=-;} -> `ADJ {Order=pre;Numerical=+;} ADJ {Order=pre;Numerical=+;} M {};%%% between 1000 and 1500 peopleADJP {Commas=-;Coord=+;} -> C {HeadLex=h1;CForm=coord4;}ADJP {WhForm=wf;Degree=deg;Coord=-;}C {HeadLex=h1;CForm=coord5;}`ADJP {WhForm=wf;Degree=deg;Coord=-;};%%% 55 years old and former chairman of ...ADJP {Pred=+;Commas=-;Coord=+;} ->NP {WhForm=-;Degree=pos;Case=acc;Adjunctive=-;Coord=-;Slash=[];NPLevel=(0,1);}C {CForm=coord1;}`ADJP {Pred=+;WhForm=-;Degree=pos;Coord=-;};ADJP {Pred=+;Commas=-;Coord=+;} ->`ADJP {WhForm=-;Degree=pos;Coord=-;Coord=*;Commas=*;}C {CForm=coord1;}NP {WhForm=-;Degree=pos;Case=acc;Adjunctive=-;Coord=-;Slash=[];NPLevel=(0,1);Commas=-;};%% M %%M {HeadLex=h1;Phon=h1;} -> `M {HeadLex=*;} M {};%% PP %%% basic PP rule, prepositionPP_ {WhForm=wf;Slash=r;} -> `P {Order=pre;Arg=[np_p];Coord=*;}NP {Commas=-;Case=acc;WhForm=wf;Slash=r;Adjunctive=-;}=np_p;%%% He thought about whether he wanted to goPP_ {WhForm=-;Slash=[];} -> `P {Mod=-;Order=pre;Arg=[sbar_p];Coord=*;}SBAR_argwb {Commas=-;Slash=[];}=sbar_p;%%% They worried about him drinking

133%%% with interest rates risingPP_ {WhForm=-;Slash=[];} -> `P {Mod=(-,verb);Order=pre;Arg=[s_p];Coord=*;}S {SForm=gerund;Commas=-;Slash=[];}=s_p;%%% I prevented her (PP from (VP leaving the room))PP_ {WhForm=-;Slash=[];} -> `P {Mod=(noun,-,verb);Order=pre;Arg=[vp_p];Coord=*;}VP {VForm=prp;Commas=-;Slash=[];}=vp_p;%%% from a year earlier, from outside the roomPP_ {WhForm=wf;Slash=[];} -> `P {Order=pre;Arg=[pp_p];Coord=*;}PP {WhForm=wf;Slash=[];Commas=-;Mod_Elem=[];}=pp_p;%%% for long, for as long as six daysPP_ {WhForm=-;Slash=[];} ->`P {HeadLex="for";Order=pre;Arg=[adjp_p];Coord=-;}ADJP {HeadLex="long";Degree=(pos,as);WhForm=-;Pred=+;Commas=-;Mod_Elem=[NP{}];}=adjp_p;%%% stranded prepositionPP_ {WhForm=-;Slash=[np2_p];} -> `P {Order=pre;Arg=[np_p];Coord=*;}ENP*{Case=acc;Adjunctive=-;Elliptical=-;Slash=[];Commas=-;}=np_p=np2_p;%%% Where is he going toPP_ {WhForm=-;Slash=[PP{WhForm=quest;HeadLex="where";}];} ->`P {Order=pre;Arg=[np_p];Coord=*;}ENP* {NForm=pronoun;HeadLex="where";WhForm=quest;}=np_p;%%% The place where he is going toPP_ {WhForm=-;Slash=[PP_{WhForm=rel;HeadLex="where";Slash=[NP{HeadLex=h1;}];}];} ->`P {Order=pre;Arg=[np_p];Coord=*;}ENP*{NForm=pronoun;HeadLex=h1;WhForm=rel;}=np_p;%%% PostpositionPP_ {WhForm=wf;Slash=r;} ->NP {NForm=(noun,propername,pronoun);Commas=-;Case=acc;WhForm=wf;Slash=r;NPLevel=0;Adjunctive=-;}=np_p`P {Order=post;Arg=[np_p];Coord=*;};%%% Adverbial modifiersPP_ {} -> ADVP {WhForm=-;Not=-;Degree=(pos,comp,sup);Commas=-;Coord=-;Mod=prep;Mod_Elem=[pp_p];}`PP {}=pp_p;%%% from New York to Los AngelesPP_ {HeadLex="from_to";} ->`PP {HeadLex="from";Slash=[];}PP {HeadLex="to";Mod_Elem=[];Slash=[];};%%% from New York to Los Angeles to San FranciscoPP_ {HeadLex="from_to";} ->`PP {HeadLex="from_to";Slash=[];}PP {HeadLex="to";Mod_Elem=[];Slash=[];};%%% to Los Angeles from New YorkPP_ {HeadLex="from_to";} ->PP {HeadLex="to";Mod_Elem=[];Slash=[];}`PP {HeadLex="from";Slash=[];};%% ADVP %%

134 APPENDIX B. THE ENGLISH YAP GRAMMAR%%% ADV TO ADVP raising ruleNADVP {WhForm=-;} -> `ADV {Coord=*;};NADVP {WhForm=wf;} ->ADVP {WhForm=wf;Commas=-;Mod=adv;Mod_Elem=[adv_p];}`ADV {Coord=*;}=adv_p;%%% as soonNADVP {WhForm=-;Degree=deg;} -> DEGP {Degree=deg;} `ADV {Degree=pos;Coord=*;};%% no matter what they pay%% Comparisons %%% bigger than JohnNADJP {Degree=pos;} -> `ADJP {Degree=comp;Coord=*;Commas=-;Pred=+;}COMP {Degree=comp;} NP {WhForm=-;Adjunctive=-;Slash=[];Commas=-;};NADJP {WhForm=quest;Degree=pos;} -> `ADJP {WhForm=-;Degree=comp;Coord=*;Commas=-;Pred=+;}COMP {Degree=comp;} NP {WhForm=quest;Adjunctive=-;Slash=[];Commas=-;};%%% bigger than John isNADJP {Degree=pos;} ->`ADJP {Degree=deg;HeadLex=h1;Coord=*;Commas=-;Pred=+;}COMP {Degree=(comp,as)=deg;}S {SForm=decl;Slash=[ADJP{Degree=pos;HeadLex=h1;Pred=+;WhForm=-;}];Commas=-;};%%% bigger than in the pastNADJP {Degree=pos;} ->`ADJP {Degree=deg;Coord=*;Commas=-;Pred=+;}COMP {Degree=(comp,as)=deg;}PP {WhForm=-;Slash=[];Commas=-;Mod=-;Mod_Elem=[];};%%% more men than womenNP {Degree=pos;NForm=(noun,pronoun,propername);Commas=-;} ->`NP {Degree=deg;Coord=*;Commas=*;}COMP {Degree=deg;} NP {WhForm=-;Adjunctive=-;Slash=[];Commas=-;};%%% more men than there were womenNP {Degree=pos;NForm=(noun,pronoun,propername);Commas=-;} ->`NP {Degree=deg;Coord=*;Commas=*;}COMP {Degree=deg;} S {SForm=decl;Slash=[];Commas=-;};%%% a bigger impact than in the pastNP {Degree=pos;NForm=(noun,pronoun,propername);Commas=-;} ->`NP {Degree=deg;Coord=*;Commas=*;}COMP {Degree=deg;} PP {WhForm=-;Slash=[];Commas=-;Mod=-;Mod_Elem=[];};%%% (as) big as JohnNADJP {Degree=pos;} -> `ADJP {Degree=(pos,as);Coord=*;Commas=-;Pred=+;}COMP {Degree=as;} NP {WhForm=-;Adjunctive=-;Slash=[];Commas=-;};%%% (as) big as in Japan, (as) big as beforeNADJP {Degree=pos;} -> `ADJP {Degree=(pos,as);Coord=*;Commas=-;Pred=+;}COMP {Degree=as;} PP {WhForm=-;Slash=[];Commas=-;Mod=-;Mod_Elem=[];};%%% as big as possible, higher than expectedNADJP {Degree=pos;} -> `ADJP {Degree=deg;Coord=*;Commas=-;Pred=+;}COMP {Degree=deg;} ADJP {WhForm=-;Degree=pos;};%%% big as John is

135NADJP {Degree=pos;} -> `ADJP {Degree=(pos,as);HeadLex=h1;Coord=*;Commas=-;Pred=+;}COMP {Degree=as;}S {SForm=decl;Slash=[ADJP{Degree=pos;HeadLex=h1;Pred=+;WhForm=-;}];Commas=-;};%%% as big as which man was John?NADJP {WhForm=quest;Degree=pos;} -> `ADJP {WhForm=-;Degree=(pos,as);Coord=*;Commas=-;Pred=+;}COMP {Degree=as;} NP {WhForm=quest;Adjunctive=-;Slash=[];Commas=-;};%%% as soon as possibleADVP {Degree=pos;Coord=-;} -> `ADVP {Not=-;Degree=(pos,as);Coord=*;Commas=-;}COMP {Degree=as;} ADJP {WhForm=-;Degree=pos;};ADVP {Degree=pos;} -> `ADVP {Not=-;Degree=as;Coord=*;Commas=-;}COMP {Degree=as;} NP {WhForm=-;Adjunctive=-;Slash=[];Commas=-;};ADVP {Degree=pos;Coord=-;} -> `ADVP {Not=-;Degree=(pos,as);Coord=*;Commas=-;}COMP {Degree=as;} PP {WhForm=-;Slash=[];Commas=-;Mod=-;Mod_Elem=[];};ADVP {Degree=pos;Coord=-;} -> `ADVP {Not=-;Degree=comp;Coord=*;Commas=-;}COMP {Degree=comp;} NP {WhForm=-;Adjunctive=-;Slash=[];Commas=-;};%%% big as John isNADJP {Degree=pos;} -> `ADJP {Degree=(pos,as);HeadLex=h1;Coord=*;Commas=-;Pred=+;}COMP {Degree=as;}S {SForm=decl;Slash=[ADJP{Degree=pos;HeadLex=h1;Pred=+;WhForm=-;}];Commas=-;};%%% sales more than doubledVBAR {Slash=[];} -> DEGP {Degree=comp;} COMP {Degree=comp;} `V {Aux=-;};%% DEGP %%DEGP {} -> `DEG {};DEGP {} -> NP {Slash=[];Adjunctive=-;WhForm=-;NForm=(noun,pronoun);Commas=-;NPLevel=0;}`DEG {Degree=comp;};%% Commas %%SBAR {Commas=lr;} -> CM {HeadLex=h1;} `SBAR {Commas=-;} CM {HeadLex=h1;};SBAR {Commas=right;} -> `SBAR {Commas=-;} CM {};SBAR {Commas=left;} -> CM {} `SBAR {Commas=-;};S {Commas=lr;} -> CM {HeadLex=h1;} `S {Commas=-;} CM {HeadLex=h1;};S {Commas=right;} -> `S {Commas=-;} CM {};S {Commas=left;} -> CM {} `S {Commas=-;};VP {Commas=lr;} -> CM {HeadLex=h1;} `VP {Commas=-;Subcat=[*];} CM {HeadLex=h1;};VP {Commas=right;} -> `VP {Commas=-;Subcat=[*];} CM {};VP {Commas=left;} -> CM {} `VP {Commas=-;Subcat=[*];};ADVP {Commas=lr;} -> CM {HeadLex=h1;} `ADVP {Commas=-;} CM {HeadLex=h1;};ADVP {Commas=right;} -> `ADVP {Commas=-;} CM {};ADVP {Commas=left;} -> CM {} `ADVP {Commas=-;};

136 APPENDIX B. THE ENGLISH YAP GRAMMARADJP {Commas=lr;} -> CM {HeadLex=h1;} `ADJP {Commas=-;} CM {HeadLex=h1;};ADJP {Commas=right;} -> `ADJP {Commas=-;} CM {};ADJP {Commas=left;} -> CM {} `ADJP {Commas=-;};PP {Commas=lr;} -> CM {HeadLex=h1;} `PP {Commas=-;} CM {HeadLex=h1;};PP {Commas=right;} -> `PP {Commas=-;} CM {};PP {Commas=left;} -> CM {} `PP {Commas=-;};NP {Commas=lr;} -> CM {HeadLex=h1;} `NP {Commas=-;} CM {HeadLex=h1;};NP {Commas=right;} -> `NP {Commas=-;} CM {};NP {Commas=left;} -> CM {} `NP {Commas=-;};THEP {Commas=lr;} -> CM {HeadLex=h1;} `THEP {Commas=-;} CM {HeadLex=h1;};THEP {Commas=right;} -> `THEP {Commas=-;} CM {};THEP {Commas=left;} -> CM {} `THEP {Commas=-;};%% Quotation %%TOP {} -> Q {HeadLex=h1;Pos=left;} `TOP {} Q {HeadLex=h1;Pos=right;};SBAR {Commas=(-,lr);} -> Q {HeadLex=h1;Pos=left;} `SBAR {Commas=-;} Q {HeadLex=h1;Pos=right;};S {Commas=(-,lr);} -> Q {HeadLex=h1;Pos=left;} `S {Commas=-;} Q {HeadLex=h1;Pos=right;};NP {Commas=(-,lr);} -> Q {HeadLex=h1;Pos=left;} `NP {Commas=-;} Q {HeadLex=h1;Pos=right;};NBAR {} -> Q {HeadLex=h1;Pos=left;} `NBAR {} Q {HeadLex=h1;Pos=right;};N {} -> Q {HeadLex=h1;Pos=left;} `N {} Q {HeadLex=h1;Pos=right;};PP {Commas=(-,lr);} -> Q {HeadLex=h1;Pos=left;} `PP {Commas=-;} Q {HeadLex=h1;Pos=right;};P {} -> Q {HeadLex=h1;Pos=left;} `P {} Q {HeadLex=h1;Pos=right;};ADVP {Commas=(-,lr);} -> Q {HeadLex=h1;Pos=left;} `ADVP {Commas=-;} Q {HeadLex=h1;Pos=right;};ADV {} -> Q {HeadLex=h1;Pos=left;} `ADV {} Q {HeadLex=h1;Pos=right;};VP {Commas=(-,lr);} -> Q {HeadLex=h1;Pos=left;} `VP {Commas=-;} Q {HeadLex=h1;Pos=right;};VBAR {} -> Q {HeadLex=h1;Pos=left;} `VBAR {} Q {HeadLex=h1;Pos=right;};V {} -> Q {HeadLex=h1;Pos=left;} `V {} Q {HeadLex=h1;Pos=right;};ADJP {Commas=(-,lr);} -> Q {HeadLex=h1;Pos=left;} `ADJP {Commas=-;} Q {HeadLex=h1;Pos=right;};ADJ {} -> Q {HeadLex=h1;Pos=left;} `ADJ {} Q {HeadLex=h1;Pos=right;};DTP {} -> Q {HeadLex=h1;Pos=left;} `DTP {} Q {HeadLex=h1;Pos=right;};DT {} -> Q {HeadLex=h1;Pos=left;} `DT {} Q {HeadLex=h1;Pos=right;};PDT {} -> Q {HeadLex=h1;Pos=left;} `PDT {} Q {HeadLex=h1;Pos=right;};M {} -> Q {HeadLex=h1;Pos=left;} `M {} Q {HeadLex=h1;Pos=right;};THEP {Commas=(-,lr);} -> Q {HeadLex=h1;Pos=left;} `THEP {Commas=-;} Q {HeadLex=h1;Pos=right;};THE {} -> Q {HeadLex=h1;Pos=left;} `THE {} Q {HeadLex=h1;Pos=right;};RP {} -> Q {HeadLex=h1;Pos=left;} `RP {} Q {HeadLex=h1;Pos=right;};C {} -> Q {HeadLex=h1;Pos=left;} `C {} Q {HeadLex=h1;Pos=right;};DEG {} -> Q {HeadLex=h1;Pos=left;} `DEG {} Q {HeadLex=h1;Pos=right;};COMP {} -> Q {HeadLex=h1;Pos=left;} `COMP {} Q {HeadLex=h1;Pos=right;};%% Coordination %%% He was uncertain (SBAR whether to go or not)

137SBAR {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->`SBAR {CForm=argb;Slash=[];Coord=-;HeadLex=h1;}C {CForm=coord1;}ADVP {Not=+;Mod=verb;HeadLex=h2;};SBAR {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->SBAR {CForm=cf;Slash=r;Coord=-;Commas=(-,right);HeadLex=h1;}C {CForm=coord1;}`SBAR {CForm=cf;Slash=r;Coord=*;Commas=-;HeadLex=h2;};SBAR {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->SBAR {CForm=cf;Slash=r;Coord=-;Commas=(-,right);HeadLex=h1;}C {CForm=coord2;}`SBAR {CForm=cf;Slash=r;Coord=-;HeadLex=h2;};SBAR {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->SBAR {CForm=cf;Slash=r;Coord=-;Commas=-;HeadLex=h1;}C {CForm=coord3;}`SBAR {CForm=cf;Slash=r;Coord=*;Commas=-;HeadLex=h2;};SBAR {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->C {HeadLex=h;CForm=coord4;}SBAR {CForm=cf;Slash=r;Coord=-;Commas=-;HeadLex=h1;}C {HeadLex=h;CForm=coord5;}`SBAR {CForm=cf;Slash=r;Coord=*;Commas=-;HeadLex=h2;};S {HeadLex=cat(h1,h2);Commas=-;Coord=+;} ->S {SForm=sf;Slash=[];Coord=-;Commas=(-,right);HeadLex=h1;}C {CForm=coord1;}`S {SForm=sf;Slash=[];Coord=*;Commas=-;HeadLex=h2;};S {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->S {SForm=sf;Slash=[];Coord=-;HeadLex=h1;}C {CForm=coord2;}`S {SForm=sf;Slash=[];Coord=-;HeadLex=h2;};S {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->S {SForm=sf;Slash=[];Coord=-;HeadLex=h1;}C {CForm=coord3;}`S {SForm=sf;Slash=[];Coord=*;Commas=-;HeadLex=h2;};S {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->C {HeadLex=h;CForm=coord4;}S {SForm=sf;Slash=[];Coord=-;HeadLex=h1;}C {HeadLex=h;CForm=coord5;}`S {SForm=sf;Slash=[];Coord=*;Commas=-;HeadLex=h2;};VP {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->VP {VForm=vf;Subcat=r;Slash=r2;Coord=-;HeadLex=h1;}C {CForm=coord1;}`VP {VForm=vf;Subcat=r;Slash=r2;Coord=*;Commas=-;HeadLex=h2;};VP {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->VP {VForm=vf;Subcat=r;Slash=r2;Coord=-;HeadLex=h1;}C {CForm=coord2;}`VP {VForm=vf;Subcat=r;Slash=r2;Coord=-;HeadLex=h2;};VP {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->VP {VForm=vf;Subcat=r;Slash=r2;Coord=-;HeadLex=h1;}C {CForm=coord3;}`VP {VForm=vf;Subcat=r;Slash=r2;Coord=+;HeadLex=h2;};VP {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->C {HeadLex=h;CForm=coord4;}VP {VForm=vf;Subcat=r;Slash=r2;Coord=-;HeadLex=h1;}C {HeadLex=h;CForm=coord5;}

138 APPENDIX B. THE ENGLISH YAP GRAMMAR`VP {VForm=vf;Subcat=r;Slash=r2;Coord=*;Commas=-;HeadLex=h2;};V {Coord=+;HeadLex=cat(h1,h2);} ->V {VForm=vf;Aux=b;Subcat=r;Coord=-;HeadLex=h1;}C {CForm=coord1;}`V {VForm=vf;Aux=b;Subcat=r;Coord=*;HeadLex=h2;};V {Coord=+;HeadLex=cat(h1,h2);} ->V {VForm=vf;Aux=b;Subcat=r;Coord=-;HeadLex=h1;}C {CForm=coord2;}`V {VForm=vf;Aux=b;Subcat=r;Coord=-;HeadLex=h2;};V {Coord=+;HeadLex=cat(h1,h2);} ->V {VForm=vf;Aux=b;Subcat=r;Coord=-;HeadLex=h1;}C {CForm=coord3;}`V {VForm=vf;Aux=b;Subcat=r;Coord=+;HeadLex=h2;};V {Coord=+;HeadLex=cat(h1,h2);} ->C {HeadLex=h;CForm=coord4;}V {VForm=vf;Aux=b;Subcat=r;Coord=-;HeadLex=h1;}C {HeadLex=h;CForm=coord5;}`V {VForm=vf;Aux=b;Subcat=r;Coord=*;HeadLex=h2;};NP {Commas=-;Coord=+;Person=3rd;HeadLex=cat(h1,h2);} ->NP {WhForm=wf;Case=c;Coord=-;Slash=[];Commas=(-,right);HeadLex=h1;}C {HeadLex="or";CForm=coord1;}`NP {WhForm=wf;Case=c;Person=*;Elliptical=-;Coord=*;Commas=-;Slash=[];HeadLex=h2;};NP {Commas=-;Number=pl;Coord=+;Person=3rd;HeadLex=cat(h1,h2);} ->NP {WhForm=wf;Case=c;Slash=[];Coord=-;Slash=[];Commas=(-,right);HeadLex=h1;}C {HeadLex="and";CForm=coord1;}`NP {WhForm=wf;Case=c;Number=*;Person=*;Elliptical=-;Coord=*;Commas=-;Slash=[];HeadLex=h2;};NP {Commas=-;Coord=+;Person=3rd;HeadLex=cat(h1,h2);} ->NP {WhForm=wf;Case=c;Coord=-;Slash=[];HeadLex=h1;}C {CForm=coord2;}`NP {WhForm=wf;Case=c;Person=*;Elliptical=-;Coord=-;Slash=[];HeadLex=h2;};NP {Commas=-;Coord=+;Person=3rd;HeadLex=cat(h1,h2);} ->NP {WhForm=wf;Case=c;Coord=-;Slash=[];HeadLex=h1;}C {CForm=coord3;}`NP {WhForm=wf;Case=c;Person=*;Elliptical=-;Coord=+;Slash=[];HeadLex=h2;};NP {Commas=-;Coord=+;Person=3rd;HeadLex=cat(h1,h2);} ->C {HeadLex=h;CForm=coord4;}NP {WhForm=wf;Case=c;Coord=-;Slash=[];HeadLex=h1;}C {HeadLex=h;CForm=coord5;}`NP {WhForm=wf;Case=c;Person=*;Elliptical=-;Coord=*;Commas=-;Slash=[];HeadLex=h2;};NP {Commas=-;Coord=+;Number=pl;Person=3rd;HeadLex=cat(h1,h2);} ->C {HeadLex="both_and";CForm=coord4;}NP {WhForm=wf;Case=c;Coord=-;Slash=[];HeadLex=h1;}C {HeadLex="both_and";CForm=coord5;}`NP {WhForm=wf;Number=*;Case=c;Person=*;Elliptical=-;Coord=*;Commas=-;Slash=[];HeadLex=h2;};NBAR {Coord=+;HeadLex=cat(h1,h2);} ->NBAR {WhForm=wf;Case=c;Number=n;Degree=deg;Elliptical=-;Coord=-;Slash=[];Subcat=r;HeadLex=h1;}C {CForm=coord1;}`NBAR {WhForm=wf;Case=c;Number=n;Degree=deg;Coord=*;Slash=[];Subcat=r;HeadLex=h2;};NBAR {Coord=+;HeadLex=cat(h1,h2);} ->NBAR {WhForm=wf;Case=c;Number=n;Degree=deg;Elliptical=-;

139Coord=-;Slash=[];Subcat=r;HeadLex=h1;}C {CForm=coord2;}`NBAR {WhForm=wf;Case=c;Number=n;Degree=deg;Coord=-;Slash=[];Subcat=r;HeadLex=h2;};NBAR {Coord=+;HeadLex=cat(h1,h2);} ->NBAR {WhForm=wf;Case=c;Number=n;Degree=deg;Elliptical=-;Coord=-;Slash=[];Subcat=r;HeadLex=h1;}C {CForm=coord3;}`NBAR {WhForm=wf;Case=c;Number=n;Degree=deg;Coord=+;Slash=[];Subcat=r;HeadLex=h2;};N {Coord=+;HeadLex=cat(h1,h2);} ->N {Subcat=[];Coord=-;Mod_Elem=r;HeadLex=h1;}C {CForm=coord1;HeadLex="and";}`N {Subcat=[];Coord=-;Mod_Elem=r;HeadLex=h2;};N {Coord=+;HeadLex=cat(h1,h2);} ->N {Subcat=[];Coord=-;Mod_Elem=r;HeadLex=h1;}C {CForm=coord1;HeadLex="&";}`N {Subcat=[];Coord=-;Mod_Elem=r;HeadLex=h2;};N {Coord=+;HeadLex=cat(h1,h2);} ->N {Subcat=[];Coord=-;Mod_Elem=r;HeadLex=h1;}C {CForm=coord2;}`N {Subcat=[];Coord=-;Mod_Elem=r;HeadLex=h2;};N {Coord=+;HeadLex=cat(h1,h2);} ->N {Subcat=[];Coord=-;Mod_Elem=r;HeadLex=h1;}C {CForm=coord3;}`N {Subcat=[];Coord=+;Mod_Elem=r;HeadLex=h2;};PP {Coord=+;HeadLex=cat(h1,h2);} ->PP {Mod=mod;Mod_Elem=r2;Coord=-;Order=o;Slash=r;HeadLex=h1;}C {CForm=coord1;}`PP {Mod=mod;Mod_Elem=r2;Coord=*;Commas=-;Order=o;Slash=r;HeadLex=h2;};PP {Coord=+;HeadLex=cat(h1,h2);} ->PP {Mod=mod;Mod_Elem=r2;Coord=-;Order=o;Slash=r;HeadLex=h1;}C {CForm=coord2;}`PP {Mod=mod;Mod_Elem=r2;Coord=-;Order=o;Slash=r;HeadLex=h2;};PP {Coord=+;HeadLex=cat(h1,h2);} ->PP {Mod=mod;Mod_Elem=r2;Coord=-;Order=o;Slash=r;HeadLex=h1;}C {CForm=coord3;}`PP {Mod=mod;Mod_Elem=r2;Coord=+;Order=o;Slash=r;HeadLex=h2;};PP {Coord=+;HeadLex=cat(h1,h2);} ->C {HeadLex=h;CForm=coord4;}PP {Mod=mod;Mod_Elem=r2;Coord=-;Order=o;Slash=r;HeadLex=h1;}C {HeadLex=h;CForm=coord5;}`PP {Mod=mod;Mod_Elem=r2;Order=o;Coord=*;Commas=-;Slash=r;HeadLex=h2;};ADVP {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->ADVP {Mod=mod;Coord=-;Mod_Elem=r;HeadLex=h1;}C {CForm=coord1;}`ADVP {Mod=mod;Coord=*;Commas=-;Mod_Elem=r;HeadLex=h2;};ADVP {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->ADVP {Mod=mod;Coord=-;Mod_Elem=r;HeadLex=h1;}C {CForm=coord2;}`ADVP {Mod=mod;Coord=-;Mod_Elem=r;HeadLex=h2;};ADVP {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->ADVP {Mod=mod;Coord=-;Mod_Elem=r;HeadLex=h1;}

140 APPENDIX B. THE ENGLISH YAP GRAMMARC {CForm=coord3;}`ADVP {Mod=mod;Coord=+;Mod_Elem=r;HeadLex=h2;};ADVP {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->C {HeadLex=h;CForm=coord4;}ADVP {Mod=mod;Coord=-;Mod_Elem=r;HeadLex=h1;}C {HeadLex=h;CForm=coord5;}`ADVP {Mod=mod;Coord=*;Commas=-;Mod_Elem=r;HeadLex=h2;};ADJP {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->ADJP {WhForm=wf;Pred=b;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h1;}C {CForm=coord1;}`ADJP {WhForm=wf;Pred=b;Degree=deg;Coord=*;Commas=-;Mod_Elem=r;HeadLex=h2;};ADJP {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->ADJP {WhForm=wf;Pred=b;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h1;}C {CForm=coord2;}`ADJP {WhForm=wf;Pred=b;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h2;};ADJP {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->ADJP {WhForm=wf;Pred=b;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h1;}C {CForm=coord3;}`ADJP {WhForm=wf;Pred=b;Degree=deg;Coord=*;Commas=-;Mod_Elem=r;HeadLex=h2;};ADJP {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->C {HeadLex=h;CForm=coord4;}ADJP {WhForm=wf;Pred=+;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h1;}C {HeadLex=h;CForm=coord5;}`ADJP {WhForm=wf;Pred=+;Degree=deg;Coord=*;Commas=-;Mod_Elem=r;HeadLex=h2;};ADJ {Order=pre;Coord=+;HeadLex=cat(h1,h2);} ->ADJ {Order=pre;Pred=b;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h1;}C {CForm=coord1;}`ADJ {Pred=b;Degree=deg;Subcat=[];Coord=*;Mod_Elem=r;HeadLex=h2;};ADJ {Order=pre;Coord=+;HeadLex=cat(h1,h2);} ->ADJ {Order=pre;Pred=b;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h1;}C {CForm=coord2;}`ADJ {Pred=b;Degree=deg;Subcat=[];Coord=-;Mod_Elem=r;HeadLex=h2;};ADJ {Order=pre;Coord=+;HeadLex=cat(h1,h2);} ->ADJ {Order=pre;Pred=b;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h1;}C {CForm=coord3;}`ADJ {Pred=b;Degree=deg;Subcat=[];Coord=+;Mod_Elem=r;HeadLex=h2;};#include "verb-rules.yap"#include "adjective-rules.yap"#include "lexicon.yap"%%% %% File: verb-rules.yap %% Purpose: lexical transformation rules for the %% English grammar for the YAP parser %% Author: Helmut Schmid, IMS, Univ. of Stuttgart %% %%%

141V_fin {Coord=-;Subcat=[NP{Number=sg;Person=3rd;}];} -> `_V1_3s {};V_fin {Coord=-;Subcat=[*,NP{Number=sg;Person=3rd;}];} -> `_V1_3s {};V_fin {Coord=-;Subcat=[*,*,NP{Number=sg;Person=3rd;}];} -> `_V1_3s {};V_fin {Coord=-;Subcat=[*,*,*,NP{Number=sg;Person=3rd;}];} -> `_V1_3s {};V_fin {Coord=-;Subcat=[SBAR{}];} -> `_V1_3s {};V_fin {Coord=-;Subcat=[*,SBAR{}];} -> `_V1_3s {};V_fin {Coord=-;Subcat=[*,*,SBAR{}];} -> `_V1_3s {};V_fin {Coord=-;Subcat=[VP{}];} -> `_V1_3s {};V_fin {Coord=-;Subcat=[*,VP{}];} -> `_V1_3s {};V_fin {Coord=-;Subcat=[*,*,VP{}];} -> `_V1_3s {};V_fin {Coord=-;Subcat=[NP{Number=sg;Person=(1st,2nd);}];} -> `_V1_bse {};V_fin {Coord=-;Subcat=[*,NP{Number=sg;Person=(1st,2nd);}];} -> `_V1_bse {};V_fin {Coord=-;Subcat=[*,*,NP{Number=sg;Person=(1st,2nd);}];} -> `_V1_bse {};V_fin {Coord=-;Subcat=[*,*,*,NP{Number=sg;Person=(1st,2nd);}];} -> `_V1_bse {};V_fin {Coord=-;Subcat=[NP{Number=pl;}];} -> `_V1_bse {};V_fin {Coord=-;Subcat=[*,NP{Number=pl;}];} -> `_V1_bse {};V_fin {Coord=-;Subcat=[*,*,NP{Number=pl;}];} -> `_V1_bse {};V_fin {Coord=-;Subcat=[*,*,*,NP{Number=pl;}];} -> `_V1_bse {};V_fin {Coord=-;Subcat=[NP{Number=sg;Person=1st;}];} -> `_V1_1s {};V_fin {Coord=-;Subcat=[*,NP{Number=sg;Person=1st;}];} -> `_V1_1s {};V_fin {Coord=-;Subcat=[*,*,NP{Number=sg;Person=1st;}];} -> `_V1_1s {};V_fin {Coord=-;Subcat=[*,*,*,NP{Number=sg;Person=1st;}];} -> `_V1_1s {};V_fin {Coord=-;Subcat=[NP{Number=sg;Person=(1st,3rd);}];} -> `_V1_13s {};V_fin {Coord=-;Subcat=[*,NP{Number=sg;Person=(1st,3rd);}];} -> `_V1_13s {};V_fin {Coord=-;Subcat=[*,*,NP{Number=sg;Person=(1st,3rd);}];} -> `_V1_13s {};V_fin {Coord=-;Subcat=[*,*,*,NP{Number=sg;Person=(1st,3rd);}];} -> `_V1_13s {};V_fin {Coord=-;Subcat=[SBAR{}];} -> `_V1_13s {};V_fin {Coord=-;Subcat=[*,SBAR{}];} -> `_V1_13s {};V_fin {Coord=-;Subcat=[*,*,SBAR{}];} -> `_V1_13s {};V_fin {Coord=-;Subcat=[VP{}];} -> `_V1_13s {};V_fin {Coord=-;Subcat=[*,VP{}];} -> `_V1_13s {};V_fin {Coord=-;Subcat=[*,*,VP{}];} -> `_V1_13s {};V_fin {Coord=-;Subcat=[NP{Number=sg;Person=2nd;}];} -> `_V1_2s_pl {};V_fin {Coord=-;Subcat=[*,NP{Number=sg;Person=2nd;}];} -> `_V1_2s_pl {};V_fin {Coord=-;Subcat=[*,*,NP{Number=sg;Person=2nd;}];} -> `_V1_2s_pl {};V_fin {Coord=-;Subcat=[*,*,*,NP{Number=sg;Person=2nd;}];} -> `_V1_2s_pl {};V_fin {Coord=-;Subcat=[NP{Number=pl;}];} -> `_V1_2s_pl {};V_fin {Coord=-;Subcat=[*,NP{Number=pl;}];} -> `_V1_2s_pl {};V_fin {Coord=-;Subcat=[*,*,NP{Number=pl;}];} -> `_V1_2s_pl {};V_fin {Coord=-;Subcat=[*,*,*,NP{Number=pl;}];} -> `_V1_2s_pl {};V_bse {Coord=-;} -> `_V1_bse {};V_fin {Coord=-;} -> `_V1_past{};V_prp {Coord=-;} -> `_V1_prp {};V_pap {Coord=-;} -> `_V1_pap {};V_pas {Coord=-;} -> `_V1_pas {};

142 APPENDIX B. THE ENGLISH YAP GRAMMAR
%%%%%%%%%%%%%%%%%%%%%%%%%% DEFAULT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%_V {ComlexFrame="INTRANS";} -> `_V {ComlexFrame="Default";};_V {ComlexFrame="NP";} -> `_V {ComlexFrame="Default";};_V {ComlexFrame="PP";} -> `_V {ComlexFrame="Default";};_V {ComlexFrame="NP-PP";} -> `_V {ComlexFrame="Default";};%%%%%%%%%%%%%%%%%%%%%%%%%% INTRANS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He went._V1 {Subcat=[NP_{}=ag];} ->`_V_npas {ComlexFrame="INTRANS";Subcat=[ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I bought the book_V1 {Subcat=[pat,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP";Subcat=[pat,ag];};% The book was bought_V1 {Subcat=[NP_{}=pat];} ->`_V_pas {ComlexFrame="NP";Subcat=[pat,*];};% The book was bought by Peter_V1 {Subcat=[PP_by{Arg=[ag];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP";Subcat=[pat,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-TO-NP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Peter gives Mary a book_V1 {Subcat=[ben,pat,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-TO-NP";Subcat=[ben,pat,ag];};% Peter gives a book to Mary_V1 {Subcat=[pat,PP_to{Arg=[ben];},NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-TO-NP";Subcat=[ben,pat,ag];};% Peter gives to Mary a book he had read a long time ago_V1 {Subcat=[PP_to{Arg=[ben];},pat,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-TO-NP";Subcat=[ben,pat,ag];};% A book was given to Mary_V1 {Subcat=[PP_to{Arg=[ben];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-TO-NP";Subcat=[ben,pat,*];};% A book was given to Mary by Peter_V1 {Subcat=[PP_to{Arg=[ben];},PP_by{Arg=[ag];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-TO-NP";Subcat=[ben,pat,ag];};% Mary was given a book_V1 {Subcat=[pat,ben];} ->`_V_pas {ComlexFrame="NP-TO-NP";Subcat=[ben,pat,*];};% Mary was given a book by Peter_V1 {Subcat=[pat,PP_by{Arg=[ag];},ben];} ->`_V_pas {ComlexFrame="NP-TO-NP";Subcat=[ben,pat,ag];};

143%%%%%%%%%%%%%%%%%%%%%%%%%% NP-FOR-NP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Peter bought Mary a book_V1 {Subcat=[ben,pat,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-FOR-NP";Subcat=[ben,pat,ag];};% Peter bought a book for Mary_V1 {Subcat=[pat,PP_for{Arg=[ben];},NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-FOR-NP";Subcat=[ben,pat,ag];};% Peter bought for Mary a book he had read a long time ago_V1 {Subcat=[PP_for{Arg=[ben];},pat,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-FOR-NP";Subcat=[ben,pat,ag];};% A book was bought for Mary_V1 {Subcat=[ben,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-FOR-NP";Subcat=[ben,pat,*];};% A book was bought for Mary by Peter_V1 {Subcat=[ben,PP_by{Arg=[ag];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-FOR-NP";Subcat=[ben,pat,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-NP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% She asked him his name_V1 {Subcat=[ben,pat,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-NP";Subcat=[ben,pat,ag];};% He was asked his name_V1 {Subcat=[pat,ben];} ->`_V_pas {ComlexFrame="NP-NP";Subcat=[ben,pat,*];};% He was asked his name by Mary_V1 {Subcat=[pat,PP_by{Arg=[ag];},ben];} ->`_V_pas {ComlexFrame="NP-NP";Subcat=[ben,pat,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% INTRANS-RECIP %%%%%%%%%%%%%%%%%%%%%%%%%% They met_V1 {Subcat=[NP{Number=pl;}=ag];} ->`_V_npas {ComlexFrame="INTRANS-RECIP";Subcat=[ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% PP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% They accounted for the drop in sales_V1 {Subcat=[PP_arg{}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="PP";Subcat=[pp1,ag];};% The drop in sales was accounted for_V1 {Subcat=[RP{Phon=h1;HeadLex=h1;},NP{Phon=h2;WhForm=wf;}=np];} ->`_V_pas {ComlexFrame="PP";Subcat=[PP{Phon=cat(h1,h2);WhForm=wf;Order=pre;Commas=-;Coord=-;Slash=[];Mod=-;Mod_Elem=[];HeadLex=h1;Arg=[np];},*];};% The drop in sales was accounted for by the company_V1 {Subcat=[RP{HeadLex=h1;},PP_by{Arg=[ag];},np];} ->`_V_pas {ComlexFrame="PP";Subcat=[PP{HeadLex=h1;Arg=[np];},ag];};

144 APPENDIX B. THE ENGLISH YAP GRAMMAR% He got there_V1 {Subcat=[PP_arg0{}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="PP";Subcat=[pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% PP-PP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% They flew from London to Rome_V1 {Subcat=[PP_arg{}=pp1,PP_arg{}=pp2,NP_{}=ag];} ->`_V_npas {ComlexFrame="PP-PP";Subcat=[pp1,pp2,ag];};% They flew there from London_V1 {Subcat=[PP_arg0{}=pp1,PP_arg{}=pp2,NP_{}=ag];} ->`_V_npas {ComlexFrame="PP-PP";Subcat=[pp1,pp2,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-PP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% She added the flowers to the bouquet_V1 {Subcat=[pat,PP_arg{}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-PP";Subcat=[pat,pp1,ag];};% She added to the bouquet the flowers she had picked yesterday_V1 {Subcat=[PP_arg{}=pp1,pat,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-PP";Subcat=[pat,pp1,ag];};% Flowers were added to the bouquet_V1 {Subcat=[PP_arg{}=pp1,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-PP";Subcat=[pat,pp1,*];};% Flowers were added to the bouquet by Mary_V1 {Subcat=[PP_arg{}=pp1,PP_by{Arg=[ag];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-PP";Subcat=[pat,pp1,ag];};% She drop the flowers there_V1 {Subcat=[pat,PP_arg0{}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-PP";Subcat=[pat,pp1,ag];};% She dropped there the flowers she had picked yesterday_V1 {Subcat=[PP_arg0{}=pp1,pat,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-PP";Subcat=[pat,pp1,ag];};% Flowers were dropped there_V1 {Subcat=[PP_arg0{}=pp1,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-PP";Subcat=[pat,pp1,*];};% Flowers were dropped there by Mary_V1 {Subcat=[PP_arg0{}=pp1,PP_by{Arg=[ag];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-PP";Subcat=[pat,pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% S %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% They thought he was always late_V1 {Subcat=[s,NP_{}=ag];} ->`_V_npas {ComlexFrame="S";Subcat=[s,ag];};% They thought that he was always late_V1 {Subcat=[SBAR_that{}=sbar,NP_{}=ag];} ->`_V_npas {ComlexFrame="S";Subcat=[sbar,ag];};

145% That he was late was anticipated_V1 {Subcat=[SBAR_that{}=sbar];} ->`_V_pas {ComlexFrame="S";Subcat=[sbar,*];};% That he was late was anticipated by Peter_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_that{}=sbar];} ->`_V_pas {ComlexFrame="S";Subcat=[sbar,ag];};% It was anticipated that he was late_V1 {Subcat=[SBAR_that{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="S";Subcat=[sbar,*];};% It was anticipated by Mary that he was late_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_that{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="S";Subcat=[sbar,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% THAT-S %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He complained that they were coming_V1 {Subcat=[SBAR_that{}=sbar,NP_{}=ag];} ->`_V_npas {ComlexFrame="THAT-S";Subcat=[sbar,ag];};% That they were coming was accepted_V1 {Subcat=[SBAR_that{}=sbar];} ->`_V_pas {ComlexFrame="THAT-S";Subcat=[sbar,*];};% That they were coming was accepted by Peter_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_that{}=sbar];} ->`_V_pas {ComlexFrame="THAT-S";Subcat=[sbar,ag];};% It was accepted that they were coming_V1 {Subcat=[SBAR_that{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="THAT-S";Subcat=[sbar,*];};% It was accepted by Peter that they were coming_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_that{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="THAT-S";Subcat=[sbar,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% TO-INF-SC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I wanted to come_V1 {Subcat=[VP_inf{Slash=[];Subcat=[ag];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="TO-INF-SC";Subcat=[vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% TO-INF-AC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He helped to save the child_V1 {Subcat=[VP_inf{Slash=[];Subcat=[ag];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="TO-INF-AC";Subcat=[vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% TO-INF-RS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He seemed to wilt_V1 {Subcat=[VP_inf{Slash=[];Subcat=[np];}=vp,np];} ->`_V_npas {ComlexFrame="TO-INF-RS";Subcat=[vp];};%%%%%%%%%%%%%%%%%%%%%%%%%% WH-S %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

146 APPENDIX B. THE ENGLISH YAP GRAMMAR% He asked whether he should come_V1 {Subcat=[SBAR_argwb{}=sbar,NP_{}=ag];} ->`_V_npas {ComlexFrame="WH-S";Subcat=[sbar,ag];};% Whether he should come was asked_V1 {Subcat=[SBAR_argwb{}=sbar];} ->`_V_pas {ComlexFrame="WH-S";Subcat=[sbar,*];};% Whether he should come was asked by Peter_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_argwb{}=sbar];} ->`_V_pas {ComlexFrame="WH-S";Subcat=[sbar,ag];};% It was asked whether he should come_V1 {Subcat=[SBAR_argwb{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="WH-S";Subcat=[sbar,*];};% It was asked by Peter whether he should come_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_argwb{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="WH-S";Subcat=[sbar,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% HOW-S %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He explained how she did it_V1 {Subcat=[SBAR_how{}=sbar,NP_{}=ag];} ->`_V_npas {ComlexFrame="HOW-S";Subcat=[sbar,ag];};% How she did it was explained_V1 {Subcat=[SBAR_how{}=sbar];} ->`_V_pas {ComlexFrame="HOW-S";Subcat=[sbar,*];};% How she did it was explained by Peter_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_how{}=sbar];} ->`_V_pas {ComlexFrame="HOW-S";Subcat=[sbar,ag];};% It was explained how she did it_V1 {Subcat=[SBAR_how{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="HOW-S";Subcat=[sbar,*];};% It was explained by Peter how she did it_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_how{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="HOW-S";Subcat=[sbar,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% PP-HOW-TO-INF %%%%%%%%%%%%%%%%%%%%%%%%%% He explained how she did it_V1 {Subcat=[SBAR_how{}=sbar,NP_{}=ag];} ->`_V_npas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,*,ag];};% He explained to them how she did it_V1 {Subcat=[PP_arg{}=pp1,SBAR_how{}=sbar,NP_{}=ag];} ->`_V_npas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,pp1,ag];};% How she did it was later explained_V1 {Subcat=[SBAR_how{}=sbar];} ->`_V_pas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,*,*];};% How she did it was explained by Peter_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_how{}=sbar];} ->`_V_pas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,*,ag];};% It was explained how she did it_V1 {Subcat=[SBAR_how{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,*,*];};

147% It was explained by Peter how she did it_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_how{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,*,ag];};% How she did it was later explained to them_V1 {Subcat=[PP_arg{}=pp1,SBAR_how{}=sbar];} ->`_V_pas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,pp1,*];};% How she did it was explained to them by Peter_V1 {Subcat=[PP_arg{}=pp1,PP_by{Arg=[ag];},SBAR_how{}=sbar];} ->`_V_pas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,pp1,ag];};% It was explained to them how she did it_V1 {Subcat=[PP_arg{}=pp1,SBAR_how{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,pp1,*];};%%%%%%%%%%%%%%%%%%%%%%%%%% ING-SC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% She abandoned drinking_V1 {Subcat=[VP_prp{Slash=[];Subcat=[ag];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="ING-SC";Subcat=[vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% BE-ING-SC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% She began drinking_V1 {Subcat=[VP_prp{Slash=[];Subcat=[ag];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="BE-ING-SC";Subcat=[vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% POSSING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He discussed writing novels_V1 {Subcat=[VP_prp{Slash=[];Subcat=[ag];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="POSSING";Subcat=[vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% ING-NP-OMIT %%%%%%%%%%%%%%%%%%%%%%%%%%%% His hair needs combing_V1 {Subcat=[VP_prp{Slash=[rnp3_p];}=vp,NP_{}=rnp3_p=ag];} ->`_V_npas {ComlexFrame="ING-NP-OMIT";Subcat=[vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% S-SUBJUNCT %%%%%%%%%%%%%%%%%%%%%%%%%%%%% She demanded that he leave immediately_V1 {Subcat=[SBAR_subj{}=sbar,NP_{}=ag];} ->`_V_npas {ComlexFrame="S-SUBJUNCT";Subcat=[sbar,ag];};% That he leave immediately was demanded_V1 {Subcat=[SBAR_subj{}=sbar];} ->`_V_pas {ComlexFrame="S-SUBJUNCT";Subcat=[sbar,*];};% It was demanded that he leave immediately_V1 {Subcat=[SBAR_subj{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="S-SUBJUNCT";Subcat=[sbar,*];};% That he leave immediately was demanded by Peter

148 APPENDIX B. THE ENGLISH YAP GRAMMAR_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_subj{}=sbar];} ->`_V_pas {ComlexFrame="S-SUBJUNCT";Subcat=[sbar,ag];};% It was demanded by Peter that he leave immediately_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_subj{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="S-SUBJUNCT";Subcat=[sbar,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-ING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I kept them laughing_V1 {Subcat=[np,VP_prp{Slash=[];Subcat=[np];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-ING";Subcat=[vp,ag];};% They were kept laughing_V1 {Subcat=[VP_prp{Slash=[];Subcat=[np];}=vp,np];} ->`_V_pas {ComlexFrame="NP-ING";Subcat=[vp,*];};% They were kept laughing by him_V1 {Subcat=[VP_prp{Slash=[];Subcat=[np];}=vp,PP_by{Arg=[ag];},np];} ->`_V_pas {ComlexFrame="NP-ING";Subcat=[vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-ING-OC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I caught him stealing_V1 {Subcat=[pat,VP_prp{Slash=[];Subcat=[pat];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-ING-OC";Subcat=[pat,vp,ag];};% He was caught stealing_V1 {Subcat=[VP_prp{Slash=[];Subcat=[pat];}=vp,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-ING-OC";Subcat=[pat,vp,*];};% He was caught stealing by Peter_V1 {Subcat=[VP_prp{Slash=[];Subcat=[pat];}=vp,PP_by{Arg=[ag];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-ING-OC";Subcat=[pat,vp,ag];};% He was caught by Peter stealing a book_V1 {Subcat=[PP_by{Arg=[ag];},VP_prp{Slash=[];Subcat=[pat];}=vp,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-ING-OC";Subcat=[pat,vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-ING-SC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He combed the woods looking for her_V1 {Subcat=[pat,VP_prp{Slash=[];Subcat=[ag];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-ING-SC";Subcat=[pat,vp,ag];};% The woods were combed looking for her_V1 {Subcat=[VP_prp{Slash=[];Subcat=[ag];}=vp,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-ING-SC";Subcat=[pat,vp,ag];};% The woods were combed by Peter looking for her_V1 {Subcat=[PP_by{Arg=[ag];},VP_prp{Slash=[];Subcat=[ag];}=vp,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-ING-SC";Subcat=[pat,vp,ag];};% The woods were combed looking for her by Peter_V1 {Subcat=[VP_prp{Slash=[];Subcat=[ag];}=vp,PP_by{Arg=[ag];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-ING-SC";Subcat=[pat,vp,ag];};

149%%%%%%%%%%%%%%%%%%%%%%%%%% NP-P-ING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I prevented her from leaving_V1 {Subcat=[np,PP{Arg=[VP_prp{Slash=[];Subcat=[np];}];Mod_Elem=[];}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-P-ING";Subcat=[pp1,ag];};% She was prevented from leaving_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[np];}];Mod_Elem=[];}=pp1,np];} ->`_V_pas {ComlexFrame="NP-P-ING";Subcat=[pp1,*];};% She was prevented from leaving by this_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[np];}];Mod_Elem=[];}=pp1,PP_by{Arg=[ag];},np];} ->`_V_pas {ComlexFrame="NP-P-ING";Subcat=[pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-P-ING-OC %%%%%%%%%%%%%%%%%%%%%%%%%%%% I accused her of murdering her husband_V1 {Subcat=[pat,PP{Arg=[VP_prp{Slash=[];Subcat=[pat];}];Mod_Elem=[];}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-P-ING-OC";Subcat=[pat,pp1,ag];};% She was accused of murdering her husband_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[pat];}];Mod_Elem=[];}=pp1,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-P-ING-OC";Subcat=[pat,pp1,*];};% She was accused by the jury of murdering her husband_V1 {Subcat=[PP_by{Arg=[ag];},PP{Arg=[VP_prp{Slash=[];Subcat=[pat];}];Mod_Elem=[];}=pp1,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-P-ING-OC";Subcat=[pat,pp1,ag];};% She was accused of murdering by the jury_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[pat];}];Mod_Elem=[];}=pp1,PP_by{Arg=[ag];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-P-ING-OC";Subcat=[pat,pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-P-ING-SC %%%%%%%%%%%%%%%%%%%%%%%%%%%% He wasted time on fuzzing with his hair_V1 {Subcat=[pat,PP{Arg=[VP_prp{Slash=[];Subcat=[ag];}];Mod_Elem=[];}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-P-ING-SC";Subcat=[pat,pp1,ag];};% Time was wasted on fuzzing with ones hair_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[ag];}];Mod_Elem=[];}=pp1,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-P-ING-SC";Subcat=[pat,pp1,ag];};% Time was wasted by him on fuzzing with his hair_V1 {Subcat=[PP_by{Arg=[ag];},PP{Arg=[VP_prp{Slash=[];Subcat=[ag];}];Mod_Elem=[];}=pp1,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-P-ING-SC";Subcat=[pat,pp1,ag];};% Time was wasted on fuzzing by him_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[ag];}];Mod_Elem=[];}=pp1,PP_by{Arg=[ag];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-P-ING-SC";Subcat=[pat,pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% FOR-TO-INF %%%%%%%%%%%%%%%%%%%%%%%%%%%%% I prefer for her to do it_V1 {Subcat=[PP_for{Arg=[np];},VP_inf{Slash=[];Subcat=[np];}=vp,NP_{}=ag];} ->

150 APPENDIX B. THE ENGLISH YAP GRAMMAR`_V_npas {ComlexFrame="FOR-TO-INF";Subcat=[vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-TO-INF %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I want John to go_V1 {Subcat=[np,VP_inf{Slash=[];Subcat=[np];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-TO-INF";Subcat=[vp,ag];};% John was allowed to go_V1 {Subcat=[VP_inf{Slash=[];Subcat=[np];}=vp,np];} ->`_V_pas {ComlexFrame="NP-TO-INF";Subcat=[vp,*];};% John was allowed by Peter to go_V1 {Subcat=[PP_by{Arg=[ag];},VP_inf{Slash=[];Subcat=[np];}=vp,np];} ->`_V_pas {ComlexFrame="NP-TO-INF";Subcat=[vp,ag];};% John was allowed to go by Peter_V1 {Subcat=[VP_inf{Slash=[];Subcat=[np];}=vp,PP_by{Arg=[ag];},np];} ->`_V_pas {ComlexFrame="NP-TO-INF";Subcat=[vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-TO-INF-OC %%%%%%%%%%%%%%%%%%%%%%%%%%% I advised Mary to go_V1 {Subcat=[pat,VP_inf{Slash=[];Subcat=[pat];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-TO-INF-OC";Subcat=[pat,vp,ag];};% Mary was advised to go_V1 {Subcat=[VP_inf{Slash=[];Subcat=[np];}=vp,np];} ->`_V_pas {ComlexFrame="NP-TO-INF-OC";Subcat=[vp,*];};% Mary was advised by Peter to go_V1 {Subcat=[PP_by{Arg=[ag];},VP_inf{Slash=[];Subcat=[np];}=vp,np];} ->`_V_pas {ComlexFrame="NP-TO-INF-OC";Subcat=[vp,ag];};% Mary was advised to go by Peter_V1 {Subcat=[VP_inf{Slash=[];Subcat=[np];}=vp,PP_by{Arg=[ag];},np];} ->`_V_pas {ComlexFrame="NP-TO-INF-OC";Subcat=[vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-TO-INF-SC %%%%%%%%%%%%%%%%%%%%%%%%%%% John promised Mary to resign_V1 {Subcat=[pat,VP_inf{Slash=[];Subcat=[ag];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-TO-INF-SC";Subcat=[pat,vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-TO-INF-VC %%%%%%%%%%%%%%%%%%%%%%%%%%% They badgered him to go_V1 {Subcat=[pat,VP_inf{Slash=[];Subcat=[pat];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-TO-INF-VC";Subcat=[pat,vp,ag];};% He was badgered to go_V1 {Subcat=[VP_inf{Slash=[];Subcat=[pat];}=vp,pat];} ->`_V_pas {ComlexFrame="NP-TO-INF-VC";Subcat=[pat,vp,*];};% He was badgered by her to go_V1 {Subcat=[PP_by{Arg=[ag];},VP_inf{Slash=[];Subcat=[pat];}=vp,pat];} ->`_V_pas {ComlexFrame="NP-TO-INF-VC";Subcat=[pat,vp,ag];};% He was badgered to go by her

151_V1 {Subcat=[VP_inf{Slash=[];Subcat=[pat];}=vp,PP_by{Arg=[ag];},pat];} ->`_V_pas {ComlexFrame="NP-TO-INF-VC";Subcat=[pat,vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-TOBE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I found him to be a good doctor_V1 {Subcat=[pat,VP_inf{Slash=[];HeadLex="be";Subcat=[pat];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-TOBE";Subcat=[pat,vp,ag];};% He was found to be a good doctor_V1 {Subcat=[VP_inf{Slash=[];HeadLex="be";Subcat=[pat];}=vp,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-TOBE";Subcat=[pat,vp,*];};% He was found by her to be a good doctor_V1 {Subcat=[PP_by{Arg=[ag];},VP_inf{Slash=[];HeadLex="be";Subcat=[pat];}=vp,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-TOBE";Subcat=[pat,vp,ag];};% I found him to have a good voice_V1 {Subcat=[pat,VP_inf{Slash=[];HeadLex="have";Subcat=[pat];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-TOBE";Subcat=[pat,vp,ag];};% He was found to have a good voice_V1 {Subcat=[VP_inf{Slash=[];HeadLex="have";Subcat=[pat];}=vp,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-TOBE";Subcat=[pat,vp,*];};% He was found by her to have a good voice_V1 {Subcat=[PP_by{Arg=[ag];},VP_inf{Slash=[];HeadLex="have";Subcat=[pat];}=vp,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-TOBE";Subcat=[pat,vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-INF %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He had her sing_V1 {Subcat=[np,VP_bse{Slash=[];Subcat=[np];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-INF";Subcat=[vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-INF-OC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He helped her bake the cake_V1 {Subcat=[pat,VP_bse{Slash=[];Subcat=[pat];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-INF-OC";Subcat=[pat,vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% INF-AC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He helped bake the cake_V1 {Subcat=[VP_bse{Slash=[];Subcat=[ag];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="INF-AC";Subcat=[vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-S %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He told the audience he was leaving_V1 {Subcat=[pat,s,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-S";Subcat=[pat,s,ag];};

152 APPENDIX B. THE ENGLISH YAP GRAMMAR% He told the audience that he was leaving_V1 {Subcat=[ben,sbar,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-S";Subcat=[ben,sbar,ag];};% The audience was told that he was leaving_V1 {Subcat=[sbar,ben];} ->`_V_pas {ComlexFrame="NP-S";Subcat=[ben,sbar,*];};% The audience was told by the conductor that he was leaving_V1 {Subcat=[PP_by{Arg=[ag];},sbar,ben];} ->`_V_pas {ComlexFrame="NP-S";Subcat=[ben,sbar,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-WH-S %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% They asked him whether he was going_V1 {Subcat=[pat,SBAR_argwb{}=sbar,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-WH-S";Subcat=[pat,sbar,ag];};% He was asked whether he was going_V1 {Subcat=[SBAR_argwb{}=sbar,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-WH-S";Subcat=[pat,sbar,*];};% He was asked by her whether he was going_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_argwb{}=sbar,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-WH-S";Subcat=[pat,sbar,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-TO-INF-NP-OMIT %%%%%%%%%%%%%%%%%%%%%% He has good things to eat.% He is the man to beat_V1 {Subcat=[rnp3_p,VP_inf{Slash=[rnp3_p];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-TO-INF-NP-OMIT";Subcat=[vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% P-ING-SC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% They failed in attempting the climb_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[ag];}];Mod_Elem=[];}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="P-ING-SC";Subcat=[pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% P-ING-PRED %%%%%%%%%%%%%%%%%%%%%%%%%%%%% It is for banning bullets_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[NP_{}];}];Mod_Elem=[];}=pp1|r];} ->`_V_npas {ComlexFrame="P-ING-PRED";Subcat=[pp1,*]=[*|r];};%%%%%%%%%%%%%%%%%%%%%%%%%% P-POSSING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He disapproved of killing the peasants_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];}];Mod_Elem=[];}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="P-POSSING";Subcat=[pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% P-NP-ING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

153% They worried about him drinking_V1 {Subcat=[PP{Arg=[S_ger{}];Mod_Elem=[];}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="P-NP-ING";Subcat=[pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% P-WH-S %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He thought about whether/how he wanted to go_V1 {Subcat=[PP{Arg=[SBAR_argwb{}];Mod_Elem=[];}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="P-WH-S";Subcat=[pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% P-NP-TO-INF-OC %%%%%%%%%%%%%%%%%%%%%%%%% He beckoned to him to come_V1 {Subcat=[PP{Arg=[np];Mod_Elem=[];}=pp1,VP_inf{Slash=[];Subcat=[np];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="P-NP-TO-INF-OC";Subcat=[pp1,vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% P-NP-TO-INF %%%%%%%%%%%%%%%%%%%%%%%%%%%% He counted on him to come_V1 {Subcat=[PP{Arg=[np];Mod_Elem=[];}=pp1,VP_inf{Slash=[];Subcat=[np];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="P-NP-TO-INF";Subcat=[pp1,vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% P-NP-TO-INF-VC %%%%%%%%%%%%%%%%%%%%%%%%% She appealed to him to go_V1 {Subcat=[PP{Arg=[np];Mod_Elem=[];}=pp1,VP_inf{Slash=[];Subcat=[np];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="P-NP-TO-INF-VC";Subcat=[pp1,vp,ag];};% object control ignored (less frequent): She appealed to him to be freed%%%%%%%%%%%%%%%%%%%%%%%%%% POSSING-PP %%%%%%%%%%%%%%%%%%%%%%%%%%%%% They limited smoking a pipe to the lounge_V1 {Subcat=[VP_prp{Slash=[];}=vp,PP_arg{}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="POSSING-PP";Subcat=[vp,pp1,ag];};% They limited to the lounge smoking a pipe_V1 {Subcat=[PP_arg{}=pp1,VP_prp{Slash=[];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="POSSING-PP";Subcat=[vp,pp1,ag];};% Smoking a pipe was limited to the lounge_V1 {Subcat=[PP_arg{}=pp1,VP_prp{Slash=[];}=vp];} ->`_V_pas {ComlexFrame="POSSING-PP";Subcat=[vp,pp1,*];};% Smoking a pipe was limited to the lounge by the management_V1 {Subcat=[PP_arg{}=pp1,PP_by{Arg=[ag];},VP_prp{Slash=[];}=vp];} ->`_V_pas {ComlexFrame="POSSING-PP";Subcat=[vp,pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% PP-THAT-S %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% They admitted to the authorities that they had entered illegally_V1 {Subcat=[PP_arg{}=pp1,SBAR_that{}=sbar,NP_{}=ag];} ->`_V_npas {ComlexFrame="PP-THAT-S";Subcat=[pp1,sbar,ag];};

154 APPENDIX B. THE ENGLISH YAP GRAMMAR% They admitted to the authorities they had entered illegally_V1 {Subcat=[PP_arg{}=pp1,s,NP_{}=ag];} ->`_V_npas {ComlexFrame="PP-THAT-S";Subcat=[pp1,s,ag];};% That they had entered illegally was admitted to the authorities_V1 {Subcat=[PP_arg{}=pp1,SBAR_that{}=sbar];} ->`_V_pas {ComlexFrame="PP-THAT-S";Subcat=[pp1,sbar,*];};% It was admitted to the authorities that they had entered illegally_V1 {Subcat=[PP_arg{}=pp1,SBAR_that{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="PP-THAT-S";Subcat=[pp1,sbar,*];};% That they had entered illegally was admitted by them to the authorities_V1 {Subcat=[PP_by{Arg=[ag];},PP_arg{}=pp1,SBAR_that{}=sbar];} ->`_V_pas {ComlexFrame="PP-THAT-S";Subcat=[pp1,sbar,ag];};% It was admitted by them to the authorities that they had entered illegally_V1 {Subcat=[PP_by{Arg=[ag];},PP_arg{}=pp1,SBAR_that{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="PP-THAT-S";Subcat=[pp1,sbar,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% PP-WH-S %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% They asked of everybody whether they had enrolled_V1 {Subcat=[PP_arg{}=pp1,SBAR_argwb{}=sbar,NP_{}=ag];} ->`_V_npas {ComlexFrame="PP-WH-S";Subcat=[pp1,sbar,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% PP-P-WH-S %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I agreed with him about whether he should kill the peasants_V1 {Subcat=[PP_arg{}=pp1,PP{Arg=[SBAR_argwb{}];Mod_Elem=[];}=pp2,NP_{}=ag];} ->`_V_npas {ComlexFrame="PP-P-WH-S";Subcat=[pp1,pp2,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% PP-THAT-S-SUBJUNCT %%%%%%%%%%%%%%%%%%%%% They suggested to him that he go_V1 {Subcat=[PP_arg{}=pp1,SBAR_subj{}=sbar,NP_{}=ag];} ->`_V_npas {ComlexFrame="PP-THAT-S-SUBJUNCT";Subcat=[pp1,sbar,ag];};% It was suggested to him that he go_V1 {Subcat=[PP_arg{}=pp1,SBAR_subj{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="PP-THAT-S-SUBJUNCT";Subcat=[pp1,sbar,*];};% It was suggested to him by Peter that he go_V1 {Subcat=[PP_arg{}=pp1,PP_by{Arg=[ag];},SBAR_subj{}=sbar,NP_it{}];} ->`_V_pas {ComlexFrame="PP-THAT-S-SUBJUNCT";Subcat=[pp1,sbar,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% PP-TO-INF-RS %%%%%%%%%%%%%%%%%%%%%%%%%%% He appeared to her to be ill_V1 {Subcat=[PP_arg{}=pp1,VP_inf{Slash=[];Subcat=[np];}=vp,np];} ->`_V_npas {ComlexFrame="PP-TO-INF-RS";Subcat=[pp1,vp];};%%%%%%%%%%%%%%%%%%%%%%%%%% PP-FOR-TO-INF %%%%%%%%%%%%%%%%%%%%%%%%%% They contracted with him for the man to go

155_V1 {Subcat=[PP_arg{}=pp1,SBAR_for{}=sbar,NP_{}=ag];} ->`_V_npas {ComlexFrame="PP-FOR-TO-INF";Subcat=[pp1,sbar,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-P-WH-S %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% They made a great fuss about whether they should participate_V1 {Subcat=[pat,PP{Arg=[SBAR_argwb{}];Mod_Elem=[];}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-P-WH-S";Subcat=[pat,pp1,ag];};% A great fuss was made about whether they should participate_V1 {Subcat=[PP{Arg=[SBAR_argwb{}];Mod_Elem=[];}=pp1,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-P-WH-S";Subcat=[pat,pp1,*];};% A great fuss was made by him about whether they should participate_V1 {Subcat=[PP_by{Arg=[ag];},PP{Arg=[SBAR_argwb{}];Mod_Elem=[];}=pp1,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-P-WH-S";Subcat=[pat,pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-P-POSSING %%%%%%%%%%%%%%%%%%%%%%%%%%% She told him about climbing Everest_V1 {Subcat=[pat,PP{Arg=[VP_prp{Slash=[];}];Mod_Elem=[];}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-P-POSSING";Subcat=[pat,pp1,ag];};% He was told about climbing Everest_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];}];Mod_Elem=[];}=pp1,pat];} ->`_V_pas {ComlexFrame="NP-P-POSSING";Subcat=[pat,pp1,*];};% He was told by her about climbing Everest_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];}];Mod_Elem=[];}=pp1,PP_by{Arg=[ag];},pat];} ->`_V_pas {ComlexFrame="NP-P-POSSING";Subcat=[pat,pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-P-NP-ING %%%%%%%%%%%%%%%%%%%%%%%%%%%% He attributed his failure to noone buying his books_V1 {Subcat=[pat,PP{Arg=[S_ger{}];Mod_Elem=[];}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-P-NP-ING";Subcat=[pat,pp1,ag];};% His failure was attributed to noone buying his books_V1 {Subcat=[PP{Arg=[S_ger{}];Mod_Elem=[];}=pp1,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-P-NP-ING";Subcat=[pat,pp1,*];};% His failure was attributed by him to noone buying his books_V1 {Subcat=[PP_by{Arg=[ag];},PP{Arg=[S_ger{}];Mod_Elem=[];}=pp1,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-P-NP-ING";Subcat=[pat,pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% PART %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% She gave up_V1 {Subcat=[rp,NP_{}=ag];} ->`_V_npas {ComlexFrame="PART";Subcat=[rp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% PART-ING-SC %%%%%%%%%%%%%%%%%%%%%%%%%%%% He rules out paying her debts_V1 {Subcat=[rp,VP_prp{Slash=[];Subcat=[ag];}=vp,NP_{}=ag];} ->

156 APPENDIX B. THE ENGLISH YAP GRAMMAR`_V_npas {ComlexFrame="PART-ING-SC";Subcat=[rp,vp,ag];};% Paying her debts was ruled out_V1 {Subcat=[rp,VP_prp{Slash=[];Subcat=[ag];}=vp];} ->`_V_pas {ComlexFrame="PART-ING-SC";Subcat=[rp,vp,ag];};% Paying her debts was ruled out by her_V1 {Subcat=[rp,PP_by{Arg=[ag];},VP_prp{Slash=[];Subcat=[ag];}=vp];} ->`_V_pas {ComlexFrame="PART-ING-SC";Subcat=[rp,vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% PART-NP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I looked up the entry_V1 {Subcat=[rp,pat,NP_{}=ag];} ->`_V_npas {ComlexFrame="PART-NP";Subcat=[rp,pat,ag];};% I looked the entry up_V1 {Subcat=[pat,rp,NP_{}=ag];} ->`_V_npas {ComlexFrame="PART-NP";Subcat=[rp,pat,ag];};% The entry was looked up_V1 {Subcat=[rp,NP_{}=pat];} ->`_V_pas {ComlexFrame="PART-NP";Subcat=[rp,pat,*];};% The entry was looked up by the program_V1 {Subcat=[rp,PP_by{Arg=[ag];},NP_{}=pat];} ->`_V_pas {ComlexFrame="PART-NP";Subcat=[rp,pat,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% PART-PP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% She looked in on her friend_V1 {Subcat=[rp,PP_arg{}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="PART-PP";Subcat=[rp,pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% PART-NP-PP %%%%%%%%%%%%%%%%%%%%%%%%%%%%% I separated out the three boys from the crowd_V1 {Subcat=[rp,pat,PP_arg{}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="PART-NP-PP";Subcat=[rp,pat,pp1,ag];};% I separated the three boys out from the crowd_V1 {Subcat=[pat,rp,PP_arg{}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="PART-NP-PP";Subcat=[rp,pat,pp1,ag];};% The three boys were separated out from the crowd_V1 {Subcat=[rp,PP_arg{}=pp1,NP_{}=pat];} ->`_V_pas {ComlexFrame="PART-NP-PP";Subcat=[rp,pat,pp1,*];};% The three boys were separated out from the crowd by the teacher_V1 {Subcat=[rp,PP_arg{}=pp1,PP_by{Arg=[ag];},NP_{}=pat];} ->`_V_pas {ComlexFrame="PART-NP-PP";Subcat=[rp,pat,pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% PART-THAT-S %%%%%%%%%%%%%%%%%%%%%%%%%%%% They figured out that she had n't done her job_V1 {Subcat=[rp,SBAR_argx{}=sbar,NP_{}=ag];} ->`_V_npas {ComlexFrame="PART-THAT-S";Subcat=[rp,sbar,ag];};% They figured out she had n't done her job

157_V1 {Subcat=[rp,S{}=s,NP_{}=ag];} ->`_V_npas {ComlexFrame="PART-THAT-S";Subcat=[rp,s,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-NP-PRED %%%%%%%%%%%%%%%%%%%%%%%%%%%%% They appointed him professor_V1 {Subcat=[pat,np,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-NP-PRED";Subcat=[pat,np,ag];};% He was appointed professor_V1 {Subcat=[np,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-NP-PRED";Subcat=[pat,np,*];};% He was appointed professor by the committee_V1 {Subcat=[np,PP_by{Arg=[ag];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-NP-PRED";Subcat=[pat,np,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-ADJP-PRED %%%%%%%%%%%%%%%%%%%%%%%%%%% She considered him foolish_V1 {Subcat=[np,ADJP{Mod_Elem=[np];}=adjp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-ADJP-PRED";Subcat=[adjp,ag];};% He was considered foolish_V1 {Subcat=[ADJP{Mod_Elem=[np];}=adjp,NP_{}=np];} ->`_V_pas {ComlexFrame="NP-ADJP-PRED";Subcat=[adjp,*];};% He was considered foolish by Mary_V1 {Subcat=[ADJP{Mod_Elem=[np];}=adjp,PP_by{Arg=[ag];},NP_{}=np];} ->`_V_pas {ComlexFrame="NP-ADJP-PRED";Subcat=[adjp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-ADVP-PRED %%%%%%%%%%%%%%%%%%%%%%%%%%% They mistakenly thought him here_V1 {Subcat=[np,ADVP{Mod_Elem=[np];}=advp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-ADVP-PRED";Subcat=[advp,ag];};% He was mistakenly thought here_V1 {Subcat=[ADVP{Mod_Elem=[np];}=advp,NP_{}=np];} ->`_V_pas {ComlexFrame="NP-ADVP-PRED";Subcat=[advp,*];};% He was mistakenly thought here by them_V1 {Subcat=[ADVP{Mod_Elem=[np];}=advp,PP_by{Arg=[ag];},NP_{}=np];} ->`_V_pas {ComlexFrame="NP-ADVP-PRED";Subcat=[advp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-PP-PRED %%%%%%%%%%%%%%%%%%%%%%%%%%%%% I considered that problem of little concern_V1 {Subcat=[np,PP{Arg=[NP{}];Mod_Elem=[np];}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-PP-PRED";Subcat=[pp1,ag];};_V1 {Subcat=[np,PP{Arg=[];Mod_Elem=[np];}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-PP-PRED";Subcat=[pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-VEN-NP-OMIT %%%%%%%%%%%%%%%%%%%%%%%%

158 APPENDIX B. THE ENGLISH YAP GRAMMAR% We wanted the children found_V1 {Subcat=[rnp3_p,VP_pas{Slash=[];Subcat=[rnp3_p];}=vp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-VEN-NP-OMIT";Subcat=[vp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-ADJP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He painted the car black_V1 {Subcat=[pat,ADJP{Mod_Elem=[pat];}=adjp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-ADJP";Subcat=[pat,adjp,ag];};% He scrubbed clean that old pot he had bought at the auction_V1 {Subcat=[ADJP{Mod_Elem=[pat];}=adjp,pat,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-ADJP";Subcat=[pat,adjp,ag];};% The car was painted black_V1 {Subcat=[ADJP{Mod_Elem=[pat];}=adjp,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-ADJP";Subcat=[pat,adjp,*];};% The car was painted black by John_V1 {Subcat=[ADJP{Mod_Elem=[pat];}=adjp,PP_by{Arg=[ag];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-ADJP";Subcat=[pat,adjp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-ADVP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He put it there_V1 {Subcat=[pat,ADVP{Mod_Elem=[pat];}=advp,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-ADVP";Subcat=[pat,advp,ag];};% It has been put there_V1 {Subcat=[ADVP{Mod_Elem=[pat];}=advp,NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-ADVP";Subcat=[pat,advp,*];};% It has been put there by Peter_V1 {Subcat=[ADVP{Mod_Elem=[pat];}=advp,PP_by{Arg=[ag];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-ADVP";Subcat=[pat,advp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% ADJP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% His reputation sank low_V1 {Subcat=[ADJP{Numerical=-;Mod_Elem=[ag];}=adjp,NP_{}=ag];} ->`_V_npas {ComlexFrame="ADJP";Subcat=[adjp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% ADVP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% She meant well_V1 {Subcat=[ADVP{Mod_Elem=[];}=advp,NP_{}=ag];} ->`_V_npas {ComlexFrame="ADVP";Subcat=[advp,ag];};% It was meant well_V1 {Subcat=[ADVP{Mod_Elem=[];}=advp,NP_it{}];} ->`_V_pas {ComlexFrame="ADVP";Subcat=[advp,*];};% It was meant well by Mary_V1 {Subcat=[ADVP{Mod_Elem=[];}=advp,PP_by{Arg=[ag];},NP_it{}];} ->`_V_pas {ComlexFrame="ADVP";Subcat=[advp,ag];};

159%%%%%%%%%%%%%%%%%%%%%%%%%% NP-PRED %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He became a secretary_V1 {Subcat=[np,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-PRED";Subcat=[np,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% ADJP-PRED %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He became clever_V1 {Subcat=[ADJP{Mod_Elem=[ag];}=adjp,NP_{}=ag];} ->`_V_npas {ComlexFrame="ADJP-PRED";Subcat=[adjp,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% PP-PRED %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He acted out of dispair_V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[ag];}=pp1,NP_{}=ag];} ->`_V_npas {ComlexFrame="PP-PRED";Subcat=[pp1,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-PRED-RS %%%%%%%%%%%%%%%%%%%%%%%%%%%%% He seemed a fool_V1 {Subcat=[NP_{NForm=(noun,pronoun,propername);}=np,NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-PRED-RS";Subcat=[np,ag];};% What it did there is the question_V1 {Subcat=[NP_{NForm=(noun,pronoun,propername);}=np,SBAR_argx{Slash=[];}=sbar];} ->`_V_npas {ComlexFrame="NP-PRED-RS";Subcat=[np,sbar];};% To do it is a necessity_V1 {Subcat=[NP_{NForm=(noun,pronoun,propername);}=np,VP_inf{Slash=[];}=vp];} ->`_V_npas {ComlexFrame="NP-PRED-RS";Subcat=[np,vp];};%%%%%%%%%%%%%%%%%%%%%%%%%% ADJP-PRED-RS %%%%%%%%%%%%%%%%%%%%%%%%%%% He appears crazy% Defining combat aircraft is even tougher ._V1 {Subcat=[ADJP{Mod_Elem=[*]=r;}=adjp|r];} ->`_V_npas {ComlexFrame="ADJP-PRED-RS";Subcat=[adjp];};% It is uncertain whether he will come_V1 {Subcat=[ADJP{Mod_Elem=[sbar];}=adjp,sbar,NP_it{}];} ->`_V_npas {ComlexFrame="ADJP-PRED-RS";Subcat=[adjp];};%%%%%%%%%%%%%%%%%%%%%%%%%% PP-PRED-RS %%%%%%%%%%%%%%%%%%%%%%%%%%%%% The situation seems out of control_V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[np];}=pp1,NP_{}=np];} ->`_V_npas {ComlexFrame="PP-PRED-RS";Subcat=[pp1];};% That he was there is out of question_V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[sbar];}=pp1,sbar];} ->`_V_npas {ComlexFrame="PP-PRED-RS";Subcat=[pp1];};%% To go there is out of question_V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[vp];}=pp1,vp];} ->`_V_npas {ComlexFrame="PP-PRED-RS";Subcat=[pp1];};

160 APPENDIX B. THE ENGLISH YAP GRAMMAR%%%%%%%%%%%%%%%%%%%%%%%%%% AS-NP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I worked as an apprentice cook_V1 {Subcat=[PP_as{Arg=[np];},NP_{}=ag];} ->`_V_npas {ComlexFrame="AS-NP";Subcat=[np,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-AS-NP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I sent him as a messenger_V1 {Subcat=[pat,PP_as{Arg=[np];},NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-AS-NP";Subcat=[pat,np,ag];};% He was sent as a messenger_V1 {Subcat=[PP_as{Arg=[np];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-AS-NP";Subcat=[pat,np,*];};% He was sent as a messenger by the king_V1 {Subcat=[PP_as{Arg=[np];},PP_by{Arg=[ag];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-AS-NP";Subcat=[pat,np,ag];};% He was sent by the king as a messenger_V1 {Subcat=[PP_by{Arg=[ag];},PP_as{Arg=[np];},NP_{}=pat];} ->`_V_pas {ComlexFrame="NP-AS-NP";Subcat=[pat,np,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% NP-AS-NP-SC %%%%%%%%%%%%%%%%%%%%%%%%%%%% She served the firm as a researcher_V1 {Subcat=[ben,PP_as{Arg=[np];},NP_{}=ag];} ->`_V_npas {ComlexFrame="NP-AS-NP-SC";Subcat=[ben,np,ag];};%%%%%%%%%%%%%%%%%%%%%%%%%% EXTRAP-NP-S %%%%%%%%%%%%%%%%%%%%%%%%%%%% It annoys them that she left_V1 {Subcat=[pat,SBAR_that{}=sbar,NP_it{}];} ->`_V_npas {ComlexFrame="EXTRAP-NP-S";Subcat=[pat,sbar];};% That she left annoys them_V1 {Subcat=[pat,SBAR_that{}=sbar];} ->`_V_npas {ComlexFrame="EXTRAP-NP-S";Subcat=[pat,sbar];};% It pleases them to read_V1 {Subcat=[pat,VP_inf{Slash=[];Subcat=[pat];}=vp,NP_it{}];} ->`_V_npas {ComlexFrame="EXTRAP-NP-S";Subcat=[pat,vp];};% To read pleases them_V1 {Subcat=[pat,VP_inf{Slash=[];Subcat=[pat];}=vp];} ->`_V_npas {ComlexFrame="EXTRAP-NP-S";Subcat=[pat,vp];};%%%%%%%%%%%%%%%%%%%%%%%%%% EXTRAP-TO-NP-S %%%%%%%%%%%%%%%%%%%%%%%%% It matters to them that she left_V1 {Subcat=[PP_to{Arg=[np];},SBAR_that{}=sbar,NP_it{}];} ->`_V_npas {ComlexFrame="EXTRAP-TO-NP-S";Subcat=[np,sbar];};

161% that she left matters to them_V1 {Subcat=[PP_to{Arg=[np];},SBAR_that{}=sbar];} ->`_V_npas {ComlexFrame="EXTRAP-TO-NP-S";Subcat=[np,sbar];};% It occured to them to watch tv_V1 {Subcat=[PP_to{Arg=[np];},VP_inf{Slash=[];Subcat=[np];}=vp,NP_it{}];} ->`_V_npas {ComlexFrame="EXTRAP-TO-NP-S";Subcat=[np,vp];};% To come in first mattered to them_V1 {Subcat=[PP_to{Arg=[np];},VP_inf{Slash=[];Subcat=[np];}=vp];} ->`_V_npas {ComlexFrame="EXTRAP-TO-NP-S";Subcat=[np,vp];};%%%%%%%%%%%%%%%%%%%%%%%%%% SEEM-S %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% It seems that they left_V1 {Subcat=[SBAR_that{}=sbar,NP_it{}];} ->`_V_npas {ComlexFrame="SEEM-S";Subcat=[sbar];};% It seems they left_V1 {Subcat=[s,NP_it{}];} ->`_V_npas {ComlexFrame="SEEM-S";Subcat=[s];};%%%%%%%%%%%%%%%%%%%%%%%%%% SEEM-TO-NP-S %%%%%%%%%%%%%%%%%%%%%%%%%%% It seems to her that they left_V1 {Subcat=[PP_to{Arg=[ben];},SBAR_that{}=sbar,NP_it{}];} ->`_V_npas {ComlexFrame="SEEM-TO-NP-S";Subcat=[ben,sbar];};% It seems to her they left_V1 {Subcat=[PP_to{Arg=[ben];},s,NP_it{}];} ->`_V_npas {ComlexFrame="SEEM-TO-NP-S";Subcat=[ben,s];};%%%%%%%%%%%%%%%%%%%%%%%%%% EXTRAP-TO-INF %%%%%%%%%%%%%%%%%%%%%%%%%% It remains to find the cure_V1 {Subcat=[VP_inf{Slash=[];}=vp,NP_it{}];} ->`_V_npas {ComlexFrame="EXTRAP-TO-INF";Subcat=[vp];};% It remains for us to find the cure_V1 {Subcat=[SBAR_for{}=sbar,NP_it{}];} ->`_V_npas {ComlexFrame="EXTRAP-TO-INF";Subcat=[sbar];};%%%%%%%%%%%%%%%%%%%%%%%%%% S-SUBJ-S-OBJ %%%%%%%%%%%%%%%%%%%%%%%%%%% For him to report the theft indicates that he wasn't guilty_V1 {Subcat=[SBAR_argx{}=sbar,SBAR_argx{}=sbar2];} ->`_V_npas {ComlexFrame="S-SUBJ-S-OBJ";Subcat=[sbar,sbar2];};%%%%%%%%%%%%%%%%%%%%%%%%%% TO-INF-NP-OMIT %%%%%%%%%%%%%%%%%%%%%%%%%%% He is to blame NP*

162 APPENDIX B. THE ENGLISH YAP GRAMMAR_V1 {Subcat=[VP_inf{Slash=[rnp3_p];}=vp,NP_{}=rnp3_p];} ->`_V_npas {ComlexFrame="TO-INF-NP-OMIT";Subcat=[vp];};%%%%%%%%%%%%%%%%%%%%%%%%%% THERE-NP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% There are three men_V1 {Subcat=[NP_{}=np,NP_there{}];} ->`_V_npas {ComlexFrame="THERE-NP";Subcat=[np];};%%%%%%%%%%%%%%%%%%%%%%%%%% THERE-NP-PP-PRED %%%%%%%%%%%%%%%%%%%%%%%%%%%% There appeared in their lives an oppressive mischance_V1 {Subcat=[NP_{}=np,PP{Arg=[NP{}];Mod_Elem=[np];}=pp1,NP_there{}];} ->`_V_npas {ComlexFrame="THERE-NP-PP-PRED";Subcat=[pp1];};%%% There is/appeared a unicorn in the garden_V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[np];}=pp1,NP_{}=np,NP_there{}];} ->`_V_npas {ComlexFrame="THERE-NP-PP-PRED";Subcat=[pp1];};%%%%%%%%%%%%%%%%%%%%%%%%%% THERE-NP-ING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% There is a unicorn grazing in the garden_V1 {Subcat=[NP_{}=np,VP_prp{Subcat=[np];Slash=[];}=vp,NP_there{}];} ->`_V_npas {ComlexFrame="THERE-NP-ING";Subcat=[vp];};%%%%%%%%%%%%%%%%%%%%%%%%%% IT-ADJP-RS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% It is good that he came ._V1 {Subcat=[ADJP{Mod_Elem=[sbar];}=adjp,SBAR_arg{Slash=[];}=sbar,NP_it{}];} ->`_V_npas {ComlexFrame="IT-ADJP-RS";Subcat=[adjp];};%%% It is good he came ._V1 {Subcat=[ADJP{Mod_Elem=[s];}=adjp,S{Slash=[];}=s,NP_it{}];} ->`_V_npas {ComlexFrame="IT-ADJP-RS";Subcat=[adjp];};%%% It is good to come home ._V1 {Subcat=[ADJP{Mod_Elem=[vp];}=adjp,VP_inf{Slash=[];}=vp,NP_it{}];} ->`_V_npas {ComlexFrame="IT-ADJP-RS";Subcat=[adjp];};%%%%%%%%%%%%%%%%%%%%%%%%%% IT-NP-RS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% It is a problem that he left ._V1 {Subcat=[np,SBAR_arg{Slash=[];}=sbar,NP_it{}];} ->`_V_npas {ComlexFrame="IT-NP-RS";Subcat=[np,sbar];};%%% It is a problem he left ._V1 {Subcat=[np,S{Slash=[];}=s,NP_it{}];} ->`_V_npas {ComlexFrame="IT-NP-RS";Subcat=[np,s];};%%% It is a problem to pass the test ._V1 {Subcat=[np,VP_inf{Slash=[];}=vp,NP_it{}];} ->`_V_npas {ComlexFrame="IT-NP-RS";Subcat=[np,vp];};%%%%%%%%%%%%%%%%%%%%%%%%%% IT-PP-RS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

163%%% It is out of question that he left ._V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[sbar];}=pp1,SBAR_arg{Slash=[];}=sbar,NP_it{}];} ->`_V_npas {ComlexFrame="IT-PP-RS";Subcat=[pp1];};%%% It is out of question he left ._V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[s];}=pp1,S{Slash=[];}=s,NP_it{}];} ->`_V_npas {ComlexFrame="IT-PP-RS";Subcat=[pp1];};%%% It is out of question not to pass the test ._V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[vp];}=pp1,VP_inf{Slash=[];}=vp,NP_it{}];} ->`_V_npas {ComlexFrame="IT-PP-RS";Subcat=[pp1];};%%%%%%%%%%%%%%%%%%%%%%%%%% IT-INTRANS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% It rains_V1 {Subcat=[NP_it{}];} ->`_V_npas {ComlexFrame="IT-INTRANS";Subcat=[];};%%%%%%%%%%%%%%%%%%%%%%%%%% IT-NP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% It rains cats and dogs_V1 {Subcat=[pat,NP_it{}];} ->`_V_npas {ComlexFrame="IT-NP";Subcat=[pat];};%%%%%%%%%%%%%%%%%%%%%%%%%% IT-ADVP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% It rains heavily_V1 {Subcat=[ADVP{Mod_Elem=[];}=advp,NP_it{}];} ->`_V_npas {ComlexFrame="IT-ADVP";Subcat=[advp];};%%% %% File: adjective-rules.yap %% Purpose: lexical transformation rules for the %% English grammar for the YAP parser %% Author: Helmut Schmid, IMS, Univ. of Stuttgart %% %%% PREDICATIVE %%%%%%%%%%%%%%%%%%%%%%%%%% The sea is blue .ADJ_ {Subcat=[];Mod_Elem=[NP_{}];} ->`_ADJ_pred {ComlexFrame="";};% 10 points higherADJ_ {Subcat=[NP{}];Mod_Elem=[NP_{}];} ->`_ADJ_pred {Degree=comp;ComlexFrame="";};%%%%%%%%%%%%%%%%%% ATTRIBUTIVE %%%%%%%%%%%%%%%%%%%%%%%%%% The old man laughsADJ_ {Subcat=[];Mod_Elem=[NBAR{Elliptical=-;}];} ->

164 APPENDIX B. THE ENGLISH YAP GRAMMAR`_ADJ_attr {ComlexFrame="";Nominal=-;};% The rich and the beautifulADJ_ {Subcat=[];Mod_Elem=[NBAR{Elliptical=+;}];} ->`_ADJ_attr {ComlexFrame="";Nominal=+;};%%%%%%%%%%%%%%%%%% EXTRAP-ADJ-S %%%%%%%%%%%%%%%%%%%%%%%%% It is probable he left .ADJ_ {Subcat=[];Mod_Elem=[S{}];} ->`_ADJ_pred {ComlexFrame="EXTRAP-ADJ-S";};% It is probable that he left .% That he left is probable .ADJ_ {Subcat=[];Mod_Elem=[SBAR_that{}];} ->`_ADJ_pred {ComlexFrame="EXTRAP-ADJ-S";};%%%%%%%%%%%%%%%%%% EXTRAP-ADJ-THAT-S %%%%%%%%%%%%%%%%%%%% It is curious that he left .% That he left is curious .ADJ_ {Subcat=[];Mod_Elem=[SBAR_that{}];} ->`_ADJ_pred {ComlexFrame="EXTRAP-ADJ-THAT-S";};%%%%%%%%%%%%%%%%%% EXTRAP-ADJ-S-SUBJUNCT %%%%%%%%%%%%%%%% It is imperative that they leave% That they leave is imperativeADJ_ {Subcat=[];Mod_Elem=[SBAR_subj{}];} ->`_ADJ_pred {ComlexFrame="EXTRAP-ADJ-S-SUBJUNCT";};%%%%%%%%%%%%%%%%%% EXTRAP-ADJ-WH-S %%%%%%%%%%%%%%%%%%%%%% It is uncertain whether he will come% Whether he will come is uncertainADJ_ {Subcat=[];Mod_Elem=[SBAR_argwb{}];} ->`_ADJ_pred {ComlexFrame="EXTRAP-ADJ-WH-S";};%%%%%%%%%%%%%%%%%% EXTRAP-ADJ-FOR-TO-INF %%%%%%%%%%%%%%%% It is practical for Evans to go to school% For Evans to go to school is practicalADJ_ {Subcat=[];Mod_Elem=[SBAR_for{Slash=[];}];} ->`_ADJ_pred {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF";};% It is practical to go to school% To go to school is practicalADJ_ {Subcat=[];Mod_Elem=[VP_inf{Slash=[];}];} ->`_ADJ_pred {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF";};%%%%%%%%%%%%%%%%%% EXTRAP-ADJ-FOR-TO-INF-NP-OMIT %%%%%%%

165% The race was easy for her to win .ADJ_ {Subcat=[];Mod_Elem=[SBAR_for{Slash=[NP_{}];}];} ->`_ADJ {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-NP-OMIT";};% The race was easy to win .ADJ_ {Subcat=[];Mod_Elem=[VP_inf{Slash=[NP_{}];}];} ->`_ADJ {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-NP-OMIT";};% For her to win the race was easy .ADJ_ {Subcat=[];Mod_Elem=[SBAR_for{Slash=[];}];} ->`_ADJ_pred {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-NP-OMIT";};% To win the race was easy .ADJ_ {Subcat=[];Mod_Elem=[VP_inf{Slash=[];}];} ->`_ADJ_pred {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-NP-OMIT";};% Defining combat aircraft is even tougher .ADJ_ {Subcat=[];Mod_Elem=[VP_prp{Subcat=[NP_{}];}];} ->`_ADJ {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-NP-OMIT";};%%%%%%%%%%%%%%%%%% EXTRAP-ADJ-FOR-TO-INF-RS %%%%%%%%%%%%% For Joan to invite me was kind .ADJ_ {Subcat=[];Mod_Elem=[SBAR_for{Slash=[];}];} ->`_ADJ_pred {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-RS";};% To invite me was kind .ADJ_ {Subcat=[];Mod_Elem=[VP_inf{Slash=[];}];} ->`_ADJ_pred {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-RS";};% Joan was kind to invite me .ADJ_ {Subcat=[VP_inf{Subcat=[np];Slash=[];}];Mod_Elem=[NP_{}=np];} ->`_ADJ_pred {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-RS";};%%%%%%%%%%%%%%%%%% S-ADJ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% They were certain the team would lose .ADJ_ {Subcat=[S{}];Mod_Elem=[NP_{}];} ->`_ADJ_pred {ComlexFrame="S-ADJ";};% They were certain that the team would lose .ADJ_ {Subcat=[SBAR_that{}];Mod_Elem=[NP_{}];} ->`_ADJ_pred {ComlexFrame="S-ADJ";};%%%%%%%%%%%%%%%%%% THAT-S-ADJ %%%%%%%%%%%%%%%%%%%%%%%%%%% They were aware that he was sick .ADJ_ {Subcat=[SBAR_that{}];Mod_Elem=[NP_{}];} ->`_ADJ_pred {ComlexFrame="THAT-S-ADJ";};%%%%%%%%%%%%%%%%%% FOR-TO-ADJ %%%%%%%%%%%%%%%%%%%%%%%%%%

166 APPENDIX B. THE ENGLISH YAP GRAMMAR% He was anxious for her to succeed .ADJ_ {Subcat=[SBAR_for{Slash=[];}];} ->`_ADJ_pred {ComlexFrame="FOR-TO-ADJ";};% He was anxious to succeed .ADJ_ {Subcat=[VP_inf{Subcat=[np];Slash=[];}];Mod_Elem=[np];} ->`_ADJ_pred {ComlexFrame="FOR-TO-ADJ";};%%%%%%%%%%%%%%%%%% S-SUBJUNCT-ADJ %%%%%%%%%%%%%%%%%%%%%%% I am insistent that he study .ADJ_ {Subcat=[SBAR_subj{}];Mod_Elem=[NP_{}];} ->`_ADJ_pred {ComlexFrame="S-SUBJUNCT-ADJ";};%%%%%%%%%%%%%%%%%% S-WH-ADJ %%%%%%%%%%%%%%%%%%%%%%%%%%%%% They were uncertain if it would work .ADJ_ {Subcat=[SBAR_argb{}];Mod_Elem=[NP_{}];} ->`_ADJ_pred {ComlexFrame="S-WH-ADJ";};%%%%%%%%%%%%%%%%%% ADJ-TO-INF %%%%%%%%%%%%%%%%%%%%%%%%%%% She was able to climb the mountain .ADJ_ {Subcat=[VP_inf{Subcat=[np];Slash=[];}];Mod_Elem=[NP_{}=np];} ->`_ADJ_pred {ComlexFrame="ADJ-TO-INF";};%%%%%%%%%%%%%%%%%% ADJ-PP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He was happy for her .ADJ_ {Subcat=[PP{}];Mod_Elem=[NP_{}];} ->`_ADJ_pred {ComlexFrame="ADJ-PP";};%%%%%%%%%%%%%%%%%% NP-ADJ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% He was ten years oldADJ_ {Subcat=[NP_acc{}];Mod_Elem=[NP_{}];} ->`_ADJ_pred {ComlexFrame="NP-ADJ";};%%%%%%%%%%%%%%%%%% NP-ADJ-PP %%%%%%%%%%%%%%%%%%%%%%%%%%%% He was miles ahead of the othersADJ_ {Subcat=[PP{},NP_acc{}];Mod_Elem=[NP_{}];} ->`_ADJ_pred {ComlexFrame="NP-ADJ-PP";};%%%%%%%%%%%%%%%%%% ADJ-NP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% payable October 1stADJ_ {Subcat=[NP_{Adjunctive=+;}];Mod_Elem=[NP_{}];} ->`_ADJ_pred {ComlexFrame="NP-ADJ";};

167%%% %% File: lexicon.yap %% Purpose: Lexical rules for my English YAP grammar %% Author: Helmut Schmid, IMS, Univ. of Stuttgart %% %%% Default Entries %%<default> : N_ {HeadLex=h1;Phon=h1;Subcat=[];};<default> : ADJ_ {HeadLex=h1;Phon=h1;Subcat=[];Degree=(pos,comp,sup);Subcat=[];};<default> : ADV_pos {HeadLex=h1;Phon=h1;};<default> : _V {HeadLex=h1;Phon=h1;};<propername> : N_ {NForm=propername;HeadLex=h1;Phon=h1;Subcat=[];};<ordinal> : ADJ_ord {};<cardinal> : ADJ_card {};"for" : FOR {HeadLex="for";};"the" : THE {HeadLex="the";};"than" : COMP {HeadLex="than";Degree=comp;};"as" : COMP {HeadLex="as";Degree=as;};"like" : COMP {HeadLex="like";Degree=pos;};%% PDT %%"all" : PDT {HeadLex="all";};"both" : PDT {HeadLex="both";Number=pl;};"half" : PDT {HeadLex="half";Number=sg;};"quite" : PDT {HeadLex="quite";};"such" : PDT {HeadLex="such";Number=sg;};"yet" : PDT {HeadLex="yet";Number=sg;};%% DT %%"a" : DT_sg {HeadLex="a";};"an" : DT_sg {HeadLex="a";};"another" : DT_sg {HeadLex="another";};"each" : DT_sg {HeadLex="each";};"each" : DT_pl {HeadLex="each";}; % for each 100 shares owned"either" : DT_sg {HeadLex="either";};"every" : DT_sg {HeadLex="every";};

168 APPENDIX B. THE ENGLISH YAP GRAMMAR"neither" : DT_sg {HeadLex="neither";};"that" : DT_sg {HeadLex="that";};"this" : DT_sg {HeadLex="this";};"these" : DT_pl {HeadLex="this";};"those" : DT_pl {HeadLex="that";};"all" : DT_pl {HeadLex="all";};"both" : DT_pl {HeadLex="both";};"any" : DT {HeadLex="any"; WhForm=-;};"no" : DT {HeadLex="no"; WhForm=-;};"some" : DT {HeadLex="some";WhForm=-;};"the" : DT {HeadLex="the"; WhForm=-;};"which" : DT {HeadLex="which";WhForm=quest;};"what" : DT {HeadLex="what"; WhForm=quest;};%% PRO %%% Null-head determiners"more" : NP {HeadLex="more";NForm=pronoun;WhForm=-;Elliptical=-;Adjunctive=-;Degree=comp;Coord=-;Commas=-;NPLevel=0;Slash=[];Person=3rd;Case=(nom,acc);};"most" : NP {HeadLex="most";NForm=pronoun;WhForm=-;Elliptical=-;Adjunctive=-;Degree=sup;Coord=-;Commas=-;NPLevel=0;Slash=[];Person=3rd;Case=(nom,acc);};"less" : NP {HeadLex="less";NForm=pronoun;WhForm=-;Elliptical=-;Adjunctive=-;Degree=comp;Coord=-;Commas=-;NPLevel=0;Slash=[];Person=3rd;Case=(nom,acc);};"fewer" : NP {HeadLex="fewer";NForm=pronoun;WhForm=-;Elliptical=-;Adjunctive=-;Degree=comp;Coord=-;Commas=-;NPLevel=0;Slash=[];Person=3rd;Case=(nom,acc);};"few" : PRO_3p {HeadLex="few";};"many" : PRO_3p {HeadLex="many";};"little" : PRO_3s {HeadLex="little";};"much" : PRO_3s {HeadLex="much";};"all" : PRO_3p {HeadLex="all";};"both" : PRO_3p {HeadLex="both";};"certain" : PRO_3p {HeadLex="certain";};"several" : PRO_3p {HeadLex="several";};"some" : PRO_3p {HeadLex="some";};"another" : PRO_3s {HeadLex="another";};"any" : PRO_3s {HeadLex="any";};"each" : PRO_3s {HeadLex="each";};"either" : PRO_3s {HeadLex="either";};"neither" : PRO_3s {HeadLex="neither";};"such" : PRO_3s {HeadLex="such";};"anybody" : PRO0_3s {HeadLex="anybody";};

169"anyone" : PRO0_3s {HeadLex="anyone";};"anything" : PRO0_3s {HeadLex="anything";};"everybody" : PRO0_3s {HeadLex="everybody";};"everyone" : PRO0_3s {HeadLex="everyone";};"everything" : PRO0_3s {HeadLex="everything";};"nobody" : PRO0_3s {HeadLex="nobody";};"none" : PRO0_3s {HeadLex="none";};"noone" : PRO0_3s {HeadLex="noone";};"nothing" : PRO0_3s {HeadLex="nothing";};"somebody" : PRO0_3s {HeadLex="somebody";};"someone" : PRO0_3s {HeadLex="someone";};"something" : PRO0_3s {HeadLex="something";};%%% Demonstratives"that" : PRO {HeadLex="that";NPLevel=2;WhForm=-;Number=sg;Person=3rd;Case=(nom,acc);};"these" : PRO_3p {HeadLex="this";};"this" : PRO_3s {HeadLex="this";};"those" : PRO_3p {HeadLex="that";};%% Personal pronouns"he" : PPRO_3s {HeadLex="he";Case=nom;};"her" : PPRO_3s {HeadLex="she";Case=acc;};"him" : PPRO_3s {HeadLex="he";Case=acc;};"I" : PPRO_sg {HeadLex="I";Case=nom;Person=1st;};"it" : PPRO_3s {HeadLex="it";};"me" : PPRO_sg {HeadLex="I";Case=acc;Person=1st;};"one" : PPRO_3s {HeadLex="one";}; %%% One can do ..."she" : PPRO_3s {HeadLex="she";Case=nom;};"them" : PPRO_3p {HeadLex="they";Case=acc;};"'em" : PPRO_3p {HeadLex="they";Case=acc;};"they" : PPRO_3p {HeadLex="they";Case=nom;};"us" : PPRO_pl {HeadLex="we";Case=acc;Person=1st;};"'s" : PPRO_pl {HeadLex="we";Case=acc;Person=1st;};"we" : PPRO_pl {HeadLex="we";Case=nom;Person=1st;};"you" : PPRO_2 {HeadLex="you";};"ya" : PPRO_2 {HeadLex="you";};%%% Possessive pronouns"her" : PPRO_sg {HeadLex="her"; Case=gen;Person=3rd;};"his" : PPRO_sg {HeadLex="his"; Case=gen;Person=3rd;};"its" : PPRO_sg {HeadLex="its"; Case=gen;Person=3rd;};"my" : PPRO_sg {HeadLex="my"; Case=gen;Person=3rd;};"our" : PPRO_pl {HeadLex="our"; Case=gen;Person=3rd;};"their" : PPRO_pl {HeadLex="their";Case=gen;Person=3rd;};"ones" : PPRO_sg {HeadLex="ones"; Case=gen;Person=3rd;};"your" : PPRO_ {HeadLex="your"; Case=gen;Person=2nd;};%%% Reflexive Pronouns"herself" : PPRO_3s {HeadLex="<refpro>";};"himself" : PPRO_3s {HeadLex="<refpro>";};

170 APPENDIX B. THE ENGLISH YAP GRAMMAR"itself" : PPRO_3s {HeadLex="<refpro>";};"oneself" : PPRO_3s {HeadLex="<refpro>";};"myself" : PPRO_1s {HeadLex="<refpro>";};"ourselves" : PPRO_1p {HeadLex="<refpro>";};"themselves" : PPRO_3p {HeadLex="<refpro>";};"thyself" : PPRO_2s {HeadLex="<refpro>";};"yourself" : PPRO_2s {HeadLex="<refpro>";};"yourselves" : PPRO_2p {HeadLex="<refpro>";};%%% expletive pronouns"it" : NP_it {};"there" : NP_there {};%%%%%%%%%%% WHPRO %%%%%%%%%%%%%%%%%%%%%%"what" : WHNP {HeadLex="what";Case=(nom,acc);Number=sg;};"which" : WHNP {HeadLex="which";Case=(nom,acc);Number=sg;};"who" : WHNP {HeadLex="who";Case=(nom,acc);Number=sg;};"whom" : WHNP {HeadLex="who";Case=acc;Number=sg;};"whose" : WHNP {HeadLex="who";Case=gen;Number=sg;};"when" : WHPP {HeadLex="when";};"where" : WHPP {HeadLex="where";};%%%%%%%%%%% RELPRO %%%%%%%%%%%%%%%%%%%%%%"who" : RELNP {Case=(nom,acc);};"whom" : RELNP {Case=acc;};"whose" : RELNP {Case=gen;};"which" : RELNP {Case=(nom,acc);};"whereby" : RELPP {HeadLex="by";};"wherein" : RELPP {HeadLex="in";};"where" : RELPP {HeadLex="where";};"when" : RELPP {HeadLex="when";};%%%%%%%%%%% LOCPRO %%%%%%%%%%%%%%%%%%%%%%"around" : PP0 {HeadLex="around";Mod=(noun,verb);};"now" : PP0 {HeadLex="now";Mod=(noun,verb);};"then" : PP0 {HeadLex="then";Mod=(noun,verb);};"today" : PP0 {HeadLex="today";Mod=(noun,verb);};"tomorrow" : PP0 {HeadLex="tomorrow";Mod=(noun,verb);};"yesterday" : PP0 {HeadLex="yesterday";Mod=(noun,verb);};"here" : PP0 {HeadLex="here";};"there" : PP0 {HeadLex="there";};"ahead" : PP0 {HeadLex="ahead";};"afterward" : PP0 {HeadLex="afterward";};"afterwards" : PP0 {HeadLex="afterwards";};"backward" : PP0 {HeadLex="backward";};"before" : PP0 {HeadLex="before";};

171"downward" : PP0 {HeadLex="downward";};"downtown" : PP0 {HeadLex="downtown";};"eastward" : PP0 {HeadLex="eastward";};"elsewhere" : PP0 {HeadLex="elsewhere";};"forward" : PP0 {HeadLex="forward";};"heavenward" : PP0 {HeadLex="heavenward";};"henceforward" : PP0 {HeadLex="henceforward";};"homeward" : PP0 {HeadLex="homeward";};"inward" : PP0 {HeadLex="inward";};"landward" : PP0 {HeadLex="landward";};"leeward" : PP0 {HeadLex="leeward";};"onward" : PP0 {HeadLex="onward";};"out" : PP0 {HeadLex="out";Mod=-;};"outward" : PP0 {HeadLex="outward";};"oversea" : PP0 {HeadLex="oversea";};"overseas" : PP0 {HeadLex="overseas";};"skyward" : PP0 {HeadLex="skyward";};"somewhere" : PP0 {HeadLex="somewhere";};"southward" : PP0 {HeadLex="southward";};"thenceforward" : PP0 {HeadLex="thenceforward";};"upward" : PP0 {HeadLex="upward";};"westward" : PP0 {HeadLex="westward";};%%%%%%%%%%% P %%%%%%%%%%%%%%%%%%%%%%%%"after" : P {HeadLex="after";Arg=[*];};"before" : P {HeadLex="before";Arg=[*];};"notwithstanding" : P {HeadLex="notwithstanding";Arg=[*];};"ago" : P {HeadLex="ago";Order=post;Arg=[*];Mod=(verb,noun);};"away" : P {HeadLex="away";Order=post;Arg=[*];Mod=(verb,noun);};"earlier" : P {HeadLex="earlier";Order=*;Arg=[*];Mod=(verb,noun);};"later" : P {HeadLex="later";Order=(pre,post);Arg=[*];Mod=(verb,noun);};"about" : P_ {HeadLex="about";Mod=(-,noun);};"against" : P_ {HeadLex="against";};"as" : P_ {HeadLex="as";Mod=(verb,noun,\-);};"at" : P_ {HeadLex="at";};"besides" : P_ {HeadLex="besides";};"between" : P_ {HeadLex="between";};"beyond" : P_ {HeadLex="beyond";};"by" : P_ {HeadLex="by";Mod=(verb,-);};"by" : P_ {HeadLex="by";Mod_Elem=[NP{NForm=noun;}];Mod=noun;};"despite" : P_ {HeadLex="despite";};"during" : P_ {HeadLex="during";};"except" : P_ {HeadLex="except";};"for" : P_ {HeadLex="for";};"from" : P_ {HeadLex="from";};"in" : P_ {HeadLex="in";};"into" : P_ {HeadLex="into";};"like" : P_ {HeadLex="like";Mod=(verb,-);};"of" : P_ {HeadLex="of";Mod=(noun,\-);};"off" : P_ {HeadLex="off";};"on" : P_ {HeadLex="on";};"over" : P_ {HeadLex="over";};"since" : P_ {HeadLex="since";};

172 APPENDIX B. THE ENGLISH YAP GRAMMAR"to" : P_ {HeadLex="to";Mod=(noun,-);};"through" : P_ {HeadLex="through";};"toward" : P_ {HeadLex="toward";};"towards" : P_ {HeadLex="towards";};"under" : P_ {HeadLex="under";};"unlike" : P_ {HeadLex="unlike";};"until" : P_ {HeadLex="until";};"'til" : P_ {HeadLex="until";};"upon" : P_ {HeadLex="upon";};"with" : P_ {HeadLex="with";};"within" : P_ {HeadLex="within";};"without" : P_ {HeadLex="without";};"worth" : P_ {HeadLex="worth";Mod=-;};"aboard" : P_ {HeadLex="aboard";Mod=(noun,verb);Arg=[NP{}];};"above" : P_ {HeadLex="above";Mod=(noun,verb,-);Arg=[NP{}];};"across" : P_ {HeadLex="across";Mod=(noun,verb,-);Arg=[NP{}];};"along" : P_ {HeadLex="along";Mod=(noun,verb,-);Arg=[NP{}];};"alongside" : P_ {HeadLex="alongside";Mod=(noun,verb,-);Arg=[NP{}];};"amid" : P_ {HeadLex="amid";Mod=(noun,verb,-);Arg=[NP{}];};"amidst" : P_ {HeadLex="amidst";Mod=(noun,verb,-);Arg=[NP{}];};"among" : P_ {HeadLex="among";Mod=(noun,verb,-);Arg=[NP{}];};"amongst" : P_ {HeadLex="amongst";Mod=(noun,verb,-);Arg=[NP{}];};"around" : P_ {HeadLex="around";Mod=(noun,verb,-);Arg=[NP{}];};"astride" : P_ {HeadLex="astride";Mod=(noun,verb);Arg=[NP{}];};"atop" : P_ {HeadLex="atop";Mod=(noun,verb,-);Arg=[NP{}];};"behind" : P_ {HeadLex="behind";Mod=(noun,verb,-);Arg=[NP{}];};"below" : P_ {HeadLex="below";Mod=(noun,verb,-);Arg=[NP{}];};"beneath" : P_ {HeadLex="beneath";Mod=(noun,verb,-);Arg=[NP{}];};"beside" : P_ {HeadLex="beside";Mod=(noun,verb,-);Arg=[NP{}];};"down" : P_ {HeadLex="down";Mod=(noun,verb,-);Arg=[NP{}];};"inside" : P_ {HeadLex="inside";Mod=(noun,verb,-);Arg=[NP{}];};"less" : P_ {HeadLex="less";Mod=noun;Arg=[NP{}];};"minus" : P_ {HeadLex="minus";Mod=noun;Arg=[NP{}];};"near" : P_ {HeadLex="near";Mod=(noun,verb,-);Arg=[NP{}];};"nearer" : P_ {HeadLex="nearer";Mod=(noun,verb,-);Arg=[NP{}];};"nearest" : P_ {HeadLex="nearest";Mod=(noun,verb,-);Arg=[NP{}];};"onto" : P_ {HeadLex="onto";Mod=(noun,verb,-);Arg=[NP{}];};"opposite" : P_ {HeadLex="opposite";Mod=(noun,verb,-);Arg=[NP{}];};"outside" : P_ {HeadLex="outside";Mod=(noun,verb,-);Arg=[NP{}];};"past" : P_ {HeadLex="past";Mod=(noun,verb,-);Arg=[NP{}];};"pending" : P_ {HeadLex="pending";Mod=verb;Arg=[NP{}];};"per" : P_ {HeadLex="per";Mod=(noun,verb);Arg=[NP{}];};"plus" : P_ {HeadLex="plus";Mod=noun;Arg=[NP{}];};"round" : P_ {HeadLex="round";Mod=(noun,verb,-);Arg=[NP{}];};"throughout" : P_ {HeadLex="throughout";Mod=(noun,verb);Arg=[NP{}];};"till" : P_ {HeadLex="till";Mod=(noun,verb,-);Arg=[NP{}];};"times" : P_ {HeadLex="times";Mod=noun;Arg=[NP{}];};"underneath" : P_ {HeadLex="underneath";Mod=(noun,verb,-);Arg=[NP{}];};"unto" : P_ {HeadLex="unto";Mod=(noun,verb,-);Arg=[NP{}];};"up" : P_ {HeadLex="up";Mod=(noun,verb,-);Arg=[NP{}];};"v." : P_ {HeadLex="versus";Mod=noun;Arg=[NP{}];};"versus" : P_ {HeadLex="versus";Mod=noun;Arg=[NP{}];};"via" : P_ {HeadLex="via";Mod=noun;Arg=[NP{}];};"vs." : P_ {HeadLex="versus";Mod=noun;Arg=[NP{}];};"within" : P_ {HeadLex="within";Mod=(noun,verb,-);Arg=[NP{}];};

173%%%%%%%%%%% CS %%%%%%%%%%%%%%%%%%%%%%%%"that" : C {HeadLex="that";CForm=(rel,arg,subj);};"if" : C {HeadLex="if";CForm=(argb,adj);};"whether" : C {HeadLex="whether";CForm=argb;};"after" : C_ {HeadLex="after";};"although" : C_ {HeadLex="although";};"as" : C_ {HeadLex="as";};"because" : C_ {HeadLex="because";};"before" : C_ {HeadLex="before";};"except" : C_ {HeadLex="except";};"for" : C_ {HeadLex="for";};"however" : C_ {HeadLex="however";};"lest" : C_ {HeadLex="lest";};"once" : C_ {HeadLex="once";};"since" : C_ {HeadLex="since";};"so" : C_ {HeadLex="so";};"though" : C_ {HeadLex="though";};"till" : C_ {HeadLex="till";};"unless" : C_ {HeadLex="unless";};"until" : C_ {HeadLex="until";};"when" : C_ {HeadLex="when";};"whenever" : C_ {HeadLex="whenever";};"whereas" : C_ {HeadLex="whereas";};"whereupon" : C_ {HeadLex="whereupon";};"wherever" : C_ {HeadLex="wherever";};"while" : C_ {HeadLex="while";};"whilst" : C_ {HeadLex="whilst";};%%%%%%%%%%% CC %%%%%%%%%%%%%%%%%%%%%%%%"and" : C {HeadLex="and";CForm=coord1;};"or" : C {HeadLex="or";CForm=coord1;};"&" : C {HeadLex="&";CForm=coord1;};"but" : C {HeadLex="but";CForm=coord2;};"yet" : C {HeadLex="yet";CForm=coord2;};";" : C {HeadLex=";";CForm=coord3;};"," : C {HeadLex=",";CForm=coord3;};"either" : C {HeadLex="either_or";CForm=coord4;};"both" : C {HeadLex="both_and";CForm=coord4;};"neither" : C {HeadLex="neither_nor";CForm=coord4;};"between" : C {HeadLex="between_and";CForm=coord4;};"and" : C {HeadLex="between_and";CForm=coord5;};"and" : C {HeadLex="both_and";CForm=coord5;};"nor" : C {HeadLex="neither_nor";CForm=coord5;};"or" : C {HeadLex="either_or";CForm=coord5;};%%%%%%%%%%% SM %%%%%%%%%%%%%%%%%%%%%%%%

174 APPENDIX B. THE ENGLISH YAP GRAMMAR"." : SM {HeadLex=".";SForm=decl;};"..." : SM {HeadLex="...";SForm=decl;};":" : SM {HeadLex=":";SForm=decl;};"!" : SM {HeadLex="!";SForm=imp;};"?" : SM {HeadLex="?";SForm=quest;};%%%%%%%%%%% CM %%%%%%%%%%%%%%%%%%%%%%%%"," : CM {HeadLex=",";};"-" : CM {HeadLex="-";};"--" : CM {HeadLex="-";};%%%%%%%%%%% Q %%%%%%%%%%%%%%%%%%%%%%%%"\"" : Q {HeadLex="\"";};"``" : Q {HeadLex="``";Pos=left;};"''" : Q {HeadLex="``";Pos=right;};"(" : Q {HeadLex="(";Pos=left;};")" : Q {HeadLex="(";Pos=right;};"[" : Q {HeadLex="[";Pos=left;};"]" : Q {HeadLex="[";Pos=right;};"'" : Q {HeadLex="'";};%%%%%%%%%%% GM %%%%%%%%%%%%%%%%%%%%%%%%"'s" : GM {HeadLex="'s";};"'" : GM {HeadLex="'s";};%%%%%%%%%%% CURR %%%%%%%%%%%%%%%%%%%%%%"$" : CURR {HeadLex="$";Subcat=[];};"US$" : CURR {HeadLex="US$";Subcat=[];};"CAN$" : CURR {HeadLex="CAN$";Subcat=[];};"DM" : CURR {HeadLex="DM";Subcat=[];};"#" : CURR {HeadLex="#";Subcat=[];};"$" : CURR {HeadLex="$";Subcat=[NP_curr{}];};"US$" : CURR {HeadLex="US$";Subcat=[NP_curr{}];};"CAN$" : CURR {HeadLex="CAN$";Subcat=[NP_curr{}];};"DM" : CURR {HeadLex="DM";Subcat=[NP_curr{}];};"#" : CURR {HeadLex="#";Subcat=[NP_curr{}];};%%%%%%%%%%% ADV %%%%%%%%%%%%%%%%%%%%%%%"how" : WHADVP {HeadLex="how";};"why" : WHADVP {HeadLex="why";Mod=verb;};"not" : ADV {HeadLex="not";Not=+;Degree=pos;Mod=(verb,adv,adj,noun,sbar);};"n't" : ADV {HeadLex="not";Not=+;Degree=pos;Mod=clitic;};"no" : ADV {HeadLex="no";Not=+;Degree=pos;Mod=adv;};"no" : ADV {HeadLex="no";Not=+;Degree=pos;Mod=adj;Mod_Elem=[ADJP{Pred=+;}];};"about" : ADV_pos {HeadLex="about";Mod=adj;Mod_Elem=[ADJP{Numerical=+;}];};"over" : ADV_pos {HeadLex="over";Mod=adj;Mod_Elem=[ADJP{Numerical=+;}];};

175"some" : ADV_pos {HeadLex="some";Mod=adj;Mod_Elem=[ADJP{Numerical=+;}];};"too" : ADV_verb {HeadLex="too";};%%%%%%%%%%% DEG %%%%%%%%%%%%%%%%%%%%%%%"more" : DEG {HeadLex="more";Degree=comp;};"less" : DEG {HeadLex="less";Degree=comp;};"most" : DEG {HeadLex="most";Degree=sup;};"as" : DEG {HeadLex="as";Degree=as;};"too" : DEG {HeadLex="too";Degree=too;};"very" : DEG {HeadLex="very";Degree=pos;};"pretty" : DEG {HeadLex="pretty";Degree=pos;};"rather" : DEG {HeadLex="rather";Degree=pos;};"real" : DEG {HeadLex="real";Degree=pos;};%%%%%%%%%%% ADJ %%%%%%%%%%%%%%%%%%%%%%%"many" : _ADJ_pos {HeadLex="many";ComlexFrame="";Nominal=-;};"much" : _ADJ_pos {HeadLex="much";ComlexFrame="";Nominal=-;};"more" : _ADJ_cmp {HeadLex="more";ComlexFrame="";Nominal=-;};"more" : _ADJ_cmp {HeadLex="more";ComlexFrame="NP-ADJ";};"less" : _ADJ_cmp {HeadLex="less";ComlexFrame="";Nominal=-;};"less" : _ADJ_cmp {HeadLex="less";ComlexFrame="NP-ADJ";};"most" : _ADJ_sup {HeadLex="most";ComlexFrame="";};"old" : _ADJ_pos {HeadLex="old";ComlexFrame="NP-ADJ";};"on" : _ADJ_pos {HeadLex="on";Pred=+;ComlexFrame="";};"over" : _ADJ_pos {HeadLex="over";Pred=+;ComlexFrame="";};"only" : _ADJ_pos {HeadLex="only";Pred=-;ComlexFrame="";};"other" : _ADJ_pos {HeadLex="other";Pred=-;ComlexFrame="";};"several" : _ADJ_pos {HeadLex="several";ComlexFrame="";Nominal=-;};"such" : _ADJ_pos {HeadLex="such";ComlexFrame="";Nominal=-;};"ahead" : _ADJ_pos {HeadLex="ahead";ComlexFrame="NP-ADJ";};"ahead" : _ADJ_pos {HeadLex="ahead";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="of";}];};"ahead" : _ADJ_pos {HeadLex="ahead";ComlexFrame="NP-ADJ-PP";Subcat=[PP{HeadLex="of";},NP{}];};"away" : _ADJ_pos {HeadLex="away";ComlexFrame="";};"away" : _ADJ_pos {HeadLex="away";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="of";}];};"away" : _ADJ_pos {HeadLex="away";ComlexFrame="NP-ADJ-PP";Subcat=[PP{HeadLex="from";},NP{}];};"effective" : ADJ_pos {HeadLex="effective";Subcat=[NP_{HeadLex="<cardinal>";}];};"inevitable": _ADJ_pos {HeadLex="inevitable";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="for";}];};"full" : _ADJ_pos {HeadLex="full";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="of";}];};"payable" : _ADJ_pos {HeadLex="payable";ComlexFrame="ADJ-NP";};"payable" : _ADJ_pos {HeadLex="payable";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="in";}];};"related" : _ADJ_pos {HeadLex="related";ComlexFrame="NP-ADJ";};"up" : _ADJ_pos_pred {HeadLex="up";ComlexFrame="";};"up" : _ADJ_pos_pred {HeadLex="up";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="from";}];};"up" : _ADJ_pos_pred {HeadLex="up";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="to";}];};"down" : _ADJ_pos_pred {HeadLex="down";ComlexFrame="";};

176 APPENDIX B. THE ENGLISH YAP GRAMMAR"down" : _ADJ_pos_pred {HeadLex="down";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="from";}];};"down" : _ADJ_pos_pred {HeadLex="down";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="to";}];};"junior" : ADJ_post {HeadLex="junior";Mod_Elem=[NP{WhForm=-;NForm=(propername,noun);}];};"senior" : ADJ_post {HeadLex="senior";Mod_Elem=[NP{WhForm=-;NForm=(propername,noun);}];};"designate" : ADJ_post {HeadLex="designate";Mod_Elem=[NP{WhForm=-;NForm=noun;}];};"outstanding": ADJ_post {HeadLex="outstanding";Mod_Elem=[NP{WhForm=-;NForm=noun;}];};"emeritus" : ADJ_post {HeadLex="emeritus";Mod_Elem=[NP{WhForm=-;NForm=noun;}];};"else" : ADJ_post {HeadLex="else";Mod_Elem=[NP{NForm=pronoun;}];};"a.m." : ADJ_post {HeadLex="a.m.";Mod_Elem=[NP{WhForm=-;NForm=noun;}];};"p.m." : ADJ_post {HeadLex="p.m.";Mod_Elem=[NP{WhForm=-;NForm=noun;}];};%%%%%%%%%%% M %%%%%%%%%%%%%%%%%%%%%%%"dozen" : M {HeadLex="dozen";};"hundred" : M {HeadLex="hundred";};"thousand" : M {HeadLex="thousand";};"million" : M {HeadLex="million";};"billion" : M {HeadLex="billion";};"trillion" : M {HeadLex="trillion";};"percent" : M {HeadLex="percent";};"%" : M {HeadLex="percent";};%%%%%%%%%%% N %%%%%%%%%%%%%%%%%%%%%%%%%%%% I bought the cheap one to save money"ones" : NN_pl {HeadLex="one";Subcat=[];};"one" : NN_sg {HeadLex="one";Subcat=[];};%%% Three times the expected number"time" : NN_sg {HeadLex="time";Subcat=[NP_acc{}];};"times" : NN_pl {HeadLex="time";Subcat=[NP_acc{}];};"matter" : N {HeadLex="matter";NForm=noun;Subcat=[SBAR_argw{}];Number=sg;Coord=-;Compound=-;};%%% ... in common with ..."common" : NN_sg {HeadLex="common";Subcat=[PP{HeadLex="with";}];};%%%%%%%%%%% RP %%%%%%%%%%%%%%%%%%%%%%%%%"about" : RP {HeadLex="about";};"across" : RP {HeadLex="across";};"along" : RP {HeadLex="along";};"apart" : RP {HeadLex="apart";};"around" : RP {HeadLex="around";};"aside" : RP {HeadLex="aside";};"away" : RP {HeadLex="away";};"back" : RP {HeadLex="back";};"behind" : RP {HeadLex="behind";};"by" : RP {HeadLex="by";};"down" : RP {HeadLex="down";};"for" : RP {HeadLex="for";};"forth" : RP {HeadLex="forth";};

177"forward" : RP {HeadLex="forward";};"in" : RP {HeadLex="in";};"off" : RP {HeadLex="off";};"on" : RP {HeadLex="on";};"open" : RP {HeadLex="open";};"out" : RP {HeadLex="out";};"over" : RP {HeadLex="over";};"through" : RP {HeadLex="through";};"to" : RP {HeadLex="to";};"together" : RP {HeadLex="together";};"up" : RP {HeadLex="up";};"upon" : RP {HeadLex="upon";};%%%%%%%%%%% V %%%%%%%%%%%%%%%%%%%%%%%%%"am" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},NP_sg{Person=1st;}];};"'m" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},NP_sg{Person=1st;}];};"are" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},NP_sg{Person=2nd;}];};"'re" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},NP_sg{Person=2nd;}];};"is" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_3s{}];};"is" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},SBAR{}];};"is" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},VP{}];};"'s" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_3s{}];};"'s" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},SBAR{}];};"'s" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},VP{}];};"ai" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_3s{}];};"ai" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},SBAR{}];};"ai" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},VP{}];};"are" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_pl{}];};"'re" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_pl{}];};"was" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_sg{Person=(1st,3rd);}];};"was" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},SBAR{}];};"was" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},VP{}];};"were" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_sg{Person=2nd;}];};"were" : BE {VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_pl{}];};"be" : BE {VForm=bse;Subcat=[VP_prp_pas_inf{},*];};"being" : BE {VForm=prp;Subcat=[VP_prp_pas_inf{},*];};"been" : BE {VForm=pap;Subcat=[VP_prp_pas_inf{},*];};"has" : HAVE {VForm=fin;Subcat=[VP_pap{},NPe_3s{}];};"'s" : HAVE {VForm=fin;Subcat=[VP_pap{},NPe_3s{}];};"have" : HAVE {VForm=fin;Subcat=[VP_pap{},NPe_n3s{}];};"have" : HAVE {VForm=fin;Subcat=[VP_pap{},NPe_pl{}];};"'ve" : HAVE {VForm=fin;Subcat=[VP_pap{},NPe_n3s{}];};"'ve" : HAVE {VForm=fin;Subcat=[VP_pap{},NPe_pl{}];};"had" : HAVE {VForm=fin;Subcat=[VP_pap{},NPe_nom{}];};"'d" : HAVE {VForm=fin;Subcat=[VP_pap{},NPe_nom{}];};"have" : HAVE {VForm=bse;Subcat=[VP_pap{},NP{}];};"having" : HAVE {VForm=prp;Subcat=[VP_pap{},NP{}];};"does" : DO {VForm=fin;Subcat=[VP_bse{},NPe_3s{}];};"do" : DO {VForm=fin;Subcat=[VP_bse{},NPe_n3s{}];};"do" : DO {VForm=fin;Subcat=[VP_bse{},NPe_pl{}];};"did" : DO {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};

178 APPENDIX B. THE ENGLISH YAP GRAMMAR"do" : DO {VForm=bse;Subcat=[VP_bse{},NP_nom{Person=2nd;}];};"shall" : WILL {VForm=fin;Subcat=[VP_bse{},NP_nom{Person=1st;}];};"will" : WILL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};"'ll" : WILL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};"wo" : WILL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};"would" : WILL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};"'d" : WILL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};"will" : WILL {VForm=fin;Subcat=[VP_bse{},SBAR_argx{}];};"'ll" : WILL {VForm=fin;Subcat=[VP_bse{},SBAR_argx{}];};"wo" : WILL {VForm=fin;Subcat=[VP_bse{},SBAR_argx{}];};"would" : WILL {VForm=fin;Subcat=[VP_bse{},SBAR_argx{}];};"'d" : WILL {VForm=fin;Subcat=[VP_bse{},SBAR_argx{}];};"will" : WILL {VForm=fin;Subcat=[VP_bse{},VP_prp_inf{}];};"'ll" : WILL {VForm=fin;Subcat=[VP_bse{},VP_prp_inf{}];};"wo" : WILL {VForm=fin;Subcat=[VP_bse{},VP_prp_inf{}];};"would" : WILL {VForm=fin;Subcat=[VP_bse{},VP_prp_inf{}];};"'d" : WILL {VForm=fin;Subcat=[VP_bse{},VP_prp_inf{}];};"can" : CAN {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};"cannot" : CAN {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};"ca" : CAN {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};"could" : CAN {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};"shall" : SHALL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};"sha" : SHALL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};"should" : SHALL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};"may" : AUX_fin {HeadLex="may";Subcat=[VP_bse{},NPe_nom{}];};"might" : AUX_fin {HeadLex="may";Subcat=[VP_bse{},NPe_nom{}];};"must" : AUX_fin {HeadLex="must";Subcat=[VP_bse{},NPe_nom{}];};"ought" : AUX_fin {HeadLex="ought";Subcat=[VP_inf{},NPe_nom{}];};"used" : AUX_fin {HeadLex="use";Subcat=[VP_inf{},NPe_nom{}];};"to" : AUX {HeadLex="to";VForm=inf;Subcat=[VP_bse{},NP{}];};"na" : AUX {HeadLex="to";VForm=inf;Subcat=[VP_bse{},NP{}];};"going" : AUX {HeadLex="go";VForm=prp;Subcat=[VP_inf{},*];};"gon" : AUX {HeadLex="go";VForm=prp;Subcat=[VP_inf{},*];};"gets" : GET {VForm=fin;Subcat=[VP_pas{},NPe_3s{}];};"get" : GET {VForm=fin;Subcat=[VP_pas{},NPe_n3s{}];};"get" : GET {VForm=fin;Subcat=[VP_pas{},NPe_pl{}];};"got" : GET {VForm=fin;Subcat=[VP_pas{},NPe_nom{}];};"get" : GET {VForm=bse;Subcat=[VP_pas{},NP{}];};"getting" : GET {VForm=prp;Subcat=[VP_pas{},NP{}];};%%%%%%%%%%% Multi Word Units %%%%%%%%%%%%%%%%%%%%%%%%category MWL1 {};category MWL2 {};

179category MWL3 {};category MWL4 {};category MWL5 {};category MWL6 {};category MWL7 {};category MWL8 {};category MWL9 {};category MWL10 {};category MWL11 {};category MWL12 {};category MWL13 {};category MWL14 {};category MWL15 {};category MWL16 {};category MWL17 {};category MWL18 {};category MWL19 {};category MWL20 {};category MWL21 {};category MWL22 {};category MWL23 {};category MWL24 {};category MWL25 {};category MWL26 {};category MWL27 {};category MWL28 {};category MWL29 {};category MWL30 {};category MWL31 {};category MWL32 {};category MWL33 {};category MWL34 {};category MWL35 {};category MWL36 {};category MWL37 {};category MWL38 {};category MWL39 {};"a" : MWL20 {HeadLex="a";};"according" : MWL22 {HeadLex="according";};"along" : MWL1 {HeadLex="along";};"as" : MWL25 {HeadLex="as";};"at" : MWL18 {HeadLex="at";};"because" : MWL3 {HeadLex="because";};"between" : MWL38 {HeadLex="between";};"course" : MWL37 {HeadLex="course";};"except" : MWL5 {HeadLex="except";};"few" : MWL21 {HeadLex="few";};"for" : MWL6 {HeadLex="for";};"if" : MWL28 {HeadLex="if";};"in" : MWL7 {HeadLex="in";};"inside" : MWL12 {HeadLex="inside";};"instead" : MWL30 {HeadLex="instead";};"just" : MWL33 {HeadLex="just";};"least" : MWL19 {HeadLex="least";};"lieu" : MWL8 {HeadLex="lieu";};"long" : MWL36 {HeadLex="long";};

180 APPENDIX B. THE ENGLISH YAP GRAMMAR"matter" : MWL35 {HeadLex="matter";};"next" : MWL13 {HeadLex="next";};"no" : MWL34 {HeadLex="no";};"not" : MWL29 {HeadLex="not";};"of" : MWL4 {HeadLex="of";};"one" : MWL39 {HeadLex="one";};"order" : MWL10 {HeadLex="order";};"out" : MWL14 {HeadLex="out";};"outside" : MWL15 {HeadLex="outside";};"per" : MWL16 {HeadLex="per";};"rather" : MWL31 {HeadLex="rather";};"se" : MWL17 {HeadLex="se";};"so" : MWL23 {HeadLex="so";};"spite" : MWL9 {HeadLex="spite";};"such" : MWL27 {HeadLex="such";};"than" : MWL32 {HeadLex="than";};"that" : MWL24 {HeadLex="that";};"to" : MWL11 {HeadLex="to";};"well" : MWL26 {HeadLex="well";};"with" : MWL2 {HeadLex="with";};P_{HeadLex="along_with";} -> MWL1 {} `MWL2 {HeadLex=*;};P_{HeadLex="according_to";}-> MWL22{} `MWL11 {HeadLex=*;};P_{HeadLex="because_of";} -> MWL3 {} `MWL4 {HeadLex=*;};P_{HeadLex="except_for";} -> MWL5 {} `MWL6 {HeadLex=*;};P_{HeadLex="in_lieu_of";} -> MWL7 {} MWL8 {} `MWL4 {HeadLex=*;};P_{HeadLex="in_order_to";} -> MWL7 {} MWL10 {} `MWL11 {HeadLex=*;};P_{HeadLex="in_spite_of";} -> MWL7 {} MWL9 {} `MWL4 {HeadLex=*;};P_{HeadLex="inside_of";} -> MWL12 {} `MWL4 {HeadLex=*;};P_{HeadLex="next_to";} -> MWL13 {} `MWL11 {HeadLex=*;};P_{HeadLex="out_of";} -> MWL14 {} `MWL4 {HeadLex=*;};P_{HeadLex="outside_of";} -> MWL15 {} `MWL4 {HeadLex=*;};ADV_ {Degree=pos;HeadLex="at_least";Mod=(noun,verb,prep,adj,adv);} ->MWL18 {} `MWL19 {HeadLex=*;};ADV_verb {HeadLex="per_se";} -> MWL16 {} `MWL17 {HeadLex=*;};ADV_verb {HeadLex="of_course";} -> MWL4 {} `MWL37 {HeadLex=*;};DT {HeadLex="a_few";WhForm=-;Number=pl;} -> MWL20 {} `MWL21 {HeadLex=*;};PRO_3s {HeadLex="noone";} ->MWL34{} `MWL39 {HeadLex=*;};C {HeadLex="along_with";CForm=coord2;} -> MWL1{} `MWL2 {HeadLex=*;};C {HeadLex="as_well_as";CForm=coord2;} -> MWL25{} `MWL26 {HeadLex=*;} MWL25{};C {HeadLex="if_not";CForm=coord2;} -> MWL28{} `MWL29 {HeadLex=*;};C {HeadLex="instead_of";CForm=coord2;} -> MWL30{} `MWL4 {HeadLex=*;};C {HeadLex="rather_than";CForm=coord2;} -> MWL31{} `MWL32 {HeadLex=*;};C {HeadLex="not_just";CForm=coord2;} -> MWL29{} `MWL33 {HeadLex=*;};C {HeadLex="so_that";CForm=adj;} -> MWL23{} `MWL24 {HeadLex=*;};C {HeadLex="as_long_as";CForm=adj;} -> MWL25{} MWL36 {} `MWL25{HeadLex=*;};P_ {HeadLex="such_as";} -> MWL27{} `MWL25 {HeadLex=*;};

181ADVP {WhForm=-;Not=-;Mod=verb;Degree=pos;} ->MWL34{} `MWL35 {HeadLex=*;} SBAR {CForm=quest;Slash=[];Commas=-;};PP0 {HeadLex="in_between";Mod=(noun,verb,-);} ->`MWL7 {HeadLex=*;} MWL38 {};#include "sub-lexicon" % other, more regular lexical entries

182 APPENDIX B. THE ENGLISH YAP GRAMMAR

Appendix CThe English LPCF GrammarADJ= -> ADJ_'ADJ= -> ADV= ADJ_'ADJ= -> DEG_ ADJ_'ADJC1 -> ADJC1 COM_ ADJC1CONJ_ ADJC1'ADJC1 -> ADJC1 COM_ ADJC1'ADJC1 -> ADJC1 CONJ_ ADJC1'ADJC1 -> ADJC1' PUN=ADJC1 -> ADJ_C'ADJC1 -> ADJ_C' PC1ADJC1 -> ADJ_C' THATC1ADJC1 -> ADJ_C' VTOC1ADJC1 -> PCONJ_ ADJC1 COM_ ADJC1CONJ_ ADJC1'ADJC1 -> PCONJ_ ADJC1 CONJ_ ADJC1'ADJC1 -> PUNL_ ADJC1' PUNR_ADJMOD -> ADJ_C'ADJMOD -> ORD_'ADJMOD -> VN_C'ADJMOD -> VPASS_C'ADJR_ -> ADJR'ADJR_ -> ADV= ADJR'ADJS_ -> ADJS'ADJ_ -> ADJ'ADJ_ -> ADJR_'ADJ_ -> ADJS_'ADJ_ -> ORD_'ADJ_C -> ADJ= ADJ='ADJ_C -> ADJ='ADJ_C -> ADJ_C CONJ_ ADJ_C'ADJ_C -> NC1 CONJ_ ADJ_C'ADV= -> ADV= CONJ_ ADV='ADV= -> ADV_'ADV_ -> ADV'ADV_ -> ADV_ ADV'ADV_ -> DEG_ ADV'ADV_C -> ADV='ADV_C -> ADV=' PUN=ADV_C -> DEG_'

ADV_C -> PUNL_ ADV=' PUNR_ADV_C -> WHA_C'AS_C -> AS' ADJC1AS_C -> AS' NC1AS_C -> AS' VGC1AUX-ADV -> ADV='AUX-ADV -> PC1'CD_ -> ADV= CD_'CD_ -> CD'CD_ -> CD_ CD'CD_ -> CD_ CONJ_ CD_'CD_ -> DEG_ THAN_ CD_'CD_ -> DEG_ THAN_ DETPL_'COM_ -> COM'CONJ_ -> CONJ'CONJ_C -> CONJ'CONJ_C -> CONJ' PUN=DEG_ -> ADV= DEG'DEG_ -> DEG'DEG_ -> DEG_ DEG'DETPL= -> DETPL_ CONJ_ DETPL_'DETPL= -> DETPL_'DETPL= -> DETPL_' ADV=DETPL= -> S_ADV_ DETPL_'DETPL_ -> ADV=' POS_DETPL_ -> CD_ PREP_ CD_'DETPL_ -> CD_'DETPL_ -> DETPL'DETPL_ -> DETPL' CD_DETPL_ -> DETPL' NPL_ POS_DETPL_ -> DETPL_ OF_ DETPL_'DETPL_ -> DETPL_ OF_ N_C POS'DETPL_ -> DETPL_ OF_ PRO$'DETPL_ -> NC1 POS'DETPL_ -> N_C POS'DETPL_ -> PDET_ DETPL_'DETPL_ -> PN= POS'DETPL_ -> PRO$_'DETSG= -> DETSG_ CONJ_ DETSG_'183

184 APPENDIX C. THE ENGLISH LPCF GRAMMARDETSG= -> DETSG_'DETSG= -> DETSG_' ADV=DETSG= -> S_ADV_ DETSG_'DETSG_ -> ADV'DETSG_ -> ADV=' POS_DETSG_ -> DETSG'DETSG_ -> DETSG' NPL_ POS_DETSG_ -> DETSG' NSG_ POS_DETSG_ -> DETSG_' CD_DETSG_ -> NC1 POS'DETSG_ -> N_C POS'DETSG_ -> PDET_ DETSG_'DETSG_ -> PN= POS'DETSG_ -> PRO$_'IART_ -> IART'ITJ= -> ITJ'ITJ= -> ITJ= ITJ'ITJ= -> ITJ= PUN= ITJ'ITJ_C -> ITJ='ITJ_C -> ITJ=' PUN=ITJ_C -> PUNL_ ITJ=' PUNR_M= -> ADV= M='M= -> IART_ MSG_'MD= -> MD_'MD= -> MD_' AUX-ADVMD_ -> ADV= MD'MD_ -> MD'MD_ -> VDF='MSG_ -> ADJC1 MSG'MSG_ -> MSG'N-CHAIN -> N-CHAIN NPL='N-CHAIN -> N-CHAIN NSG='N-CHAIN -> N-CHAIN PN='N-CHAIN -> NPL='N-CHAIN -> NSG='N-CHAIN -> PN='NC1 -> ADJC1 CONJ_ NC1'NC1 -> DETPL= PUNL_ NC1' PUNR_NC1 -> DETSG= PUNL_ NC1' PUNR_NC1 -> DETSG= VGC1'NC1 -> DETSG= VGPC1'NC1 -> NC1 COM_ NC1 COM_ CONJ_ NC1'NC1 -> NC1 COM_ NC1 CONJ_ NC1'NC1 -> NC1 CONJ_ NC1'NC1 -> NC1' PUN=NC1 -> NC1' VGC1NC1 -> NC1' VPASSC1NC1 -> N_C'NC1 -> N_C' PC1NC1 -> N_C' PC1 PC1NC1 -> N_C' PC1 VTOC1NC1 -> N_C' PC1 VTOPC1NC1 -> N_C' RELC1

NC1 -> N_C' THATC1NC1 -> N_C' VTOC1NC1 -> N_C' VTOPC1NC1 -> PCONJ_ NC1 CONJ_ NC1'NC1 -> PN='NC1 -> PN_ CD_'NC1 -> POS= VGC1'NC1 -> PROPL_'NC1 -> PROSG_'NC1 -> PUNL_ NC1' PUNR_NC1 -> VGC1'NC1 -> VGPC1'NPL= -> ADJMOD ADJMOD NPL_'NPL= -> ADJMOD COM_ ADJMOD NPL_'NPL= -> ADJMOD CONJ_ ADJMOD NPL_'NPL= -> ADJMOD NPL_'NPL= -> NPL_'NPL= -> PUNL_ NPL=' PUNR_NPL_ -> ADJC1 NPL_'NPL_ -> CD_ NPL_'NPL_ -> N-CHAIN NPL'NPL_ -> NPL'NPL_ -> NPL_ NPL_'NPL_ -> NSG_ NPL_'NPL_ -> PN_ NPL_'NPL_ -> VPASS_ NPL_'NSG= -> ADJMOD ADJMOD NSG_'NSG= -> ADJMOD COM_ ADJMOD NSG_'NSG= -> ADJMOD CONJ_ ADJMOD NSG_'NSG= -> ADJMOD NSG_'NSG= -> NSG_'NSG= -> PUNL_ NSG=' PUNR_NSG_ -> ADJC1 NSG_'NSG_ -> CD_ NSG_'NSG_ -> CD_'NSG_ -> N-CHAIN NSG_'NSG_ -> NPL_ NSG_'NSG_ -> NSG'NSG_ -> NSG_ NSG_'NSG_ -> PN_ NSG_'NSG_ -> VPASS_ NSG_'N_C -> ADJC1 CONJ_ N_C'N_C -> CD_'N_C -> DETPL= ADJC1'N_C -> DETPL= ADJS_'N_C -> DETPL= NPL='N_C -> DETPL= OF_ PROPL'N_C -> DETPL= PN='N_C -> DETPL= PROPL_'N_C -> DETSG= ADJC1'N_C -> DETSG= ADJS_'N_C -> DETSG= CD_'N_C -> DETSG= NSG='

185N_C -> DETSG= ORD_'N_C -> DETSG= PN='N_C -> DETSG= PROSG_'N_C -> M= NPL='N_C -> M= OF_ NPL='N_C -> M= OF_ NSG='N_C -> NPL='N_C -> NSG='N_C -> N_C COM_ N_C COM_ CONJ_ N_C'N_C -> N_C COM_ N_C CONJ_ N_C'N_C -> N_C CONJ_ N_C'N_C -> N_C POS_'N_C -> N_C' PUN=N_C -> PCONJ_ N_C CONJ_ N_C'N_C -> PUNL_ N_C' PUNR_N_C -> WHN_C'OF_ -> OF'ORD_ -> ORD'PART_C -> ADV= PART'PART_C -> PART'PART_C -> PART_C CONJ_ PART_C'PART_C -> PART_C PART_C'PART_C -> PART_C' PUN=PC1 -> PC1 COM_ PC1 COM_ CONJ_ PC1'PC1 -> PC1 COM_ PC1 CONJ_ PC1'PC1 -> PC1 CONJ_ PC1'PC1 -> PC1' PUN=PC1 -> PCONJ_ PC1 CONJ_ PC1'PC1 -> PCONJ_ P_ST_C CONJ_ PC1'PC1 -> PUNL_ PC1' PUNR_PC1 -> P_C'PC1 -> P_ST_C CONJ_ PC1'PCONJ_ -> PCONJ'PDET_ -> ADV= PDET'PDET_ -> ADV= PDET_'PDET_ -> PDET'PER_C -> PER'PN= -> ADJC1 PN_'PN= -> PN_'PN= -> PN_' COM_ PN_PN= -> VN= PN_'PN_ -> ADJC1 PN_'PN_ -> CD_ PN_'PN_ -> NPL_ PN_'PN_ -> NSG_ PN_'PN_ -> PN'PN_ -> PN' CD_PN_ -> PN_ PN'PN_ -> VPASS_ PN_'POS= -> N_C POS_'POS_ -> POS'PREP_ -> ADV= PREP'PREP_ -> PREP'

PRO$_ -> PRO$'PRO$_ -> PRO$' DETPL_PRO$_ -> PRO$' DETSG_PROPL_ -> PROPL'PROSG_ -> ADV= PROSG'PROSG_ -> PROSG'PUN= -> LB'PUN= -> PUN_'PUN= -> RB'PUNL_ -> LB'PUNL_ -> PUN_ PUNL_'PUNL_ -> PUN_'PUNR_ -> COM_ PUNR_'PUNR_ -> PUN_'PUNR_ -> RB'PUN_ -> COM_'PUN_ -> PUN'P_C -> PREP_ CONJ_ PREP_' NC1P_C -> PREP_' ADV=P_C -> PREP_' NC1P_C -> PREP_' P_CP_C -> P_ST_C' COM_P_ST_C -> PREP_'P_ST_C -> P_ST_C' PUN=RELC1 -> PUNL_ RELC1' PUNR_RELC1 -> RELC1 CONJ_ RELC1'RELC1 -> RELC1' PUN=RELC1 -> THAT_C NC1 VFC1'RELC1 -> THAT_C NC1 VFPC1'RELC1 -> THAT_C VFC1'RELC1 -> THAT_C VFPC1'RELC1 -> WHA_C NC1 VFC1'RELC1 -> WHA_C NC1 VFPC1'RELC1 -> WHN_C NC1 VFC1'RELC1 -> WHN_C NC1 VFPC1'RELC1 -> WHN_C VFC1'RELC1 -> WHN_C VFPC1'RELC1 -> WHP_C NC1 VFC1'RELC1 -> WHP_C NC1 VFPC1'RELC1 -> WHP_C VFC1'RELC1 -> WHP_C VFPC1'S -> ADJC1' PER_CS -> ADV_C' PER_CS -> ITJ_C' PER_CS -> NC1' PER_CS -> PC1' PER_CS -> RELC1' PER_CS -> SMAJ' PER_CS -> SUBC1' PER_CS -> VFC1' PER_CSMAJ -> CONJ_ S_C'SMAJ -> PCONJ_ S_C CONJ_ S_C'SMAJ -> PUN= S_C'

186 APPENDIX C. THE ENGLISH LPCF GRAMMARSMAJ -> PUNL_ S_C' PUN= PUNR_SMAJ -> PUNL_ S_C' PUNR_SMAJ -> S_C CONJ_C S_C'SMAJ -> S_C'SMAJ -> S_C' PUN=SUBC1 -> PUNL_ SUBC1' PUNR_SUBC1 -> SUBC1' PUN=SUBC1 -> SUB_C' SMAJSUBC1 -> SUB_C' VBASEC1SUBC1 -> SUB_C' VGC1SUBC1 -> SUB_C' VPASSC1SUB_C -> ADV= SUB'SUB_C -> SUB'SUB_C -> SUB' ADV=S_ADV_ -> ADV'S_C -> ADV= NC1 VFC1'S_C -> ADV= NC1 VFPC1'S_C -> NC1 RELC1 VFC1'S_C -> NC1 RELC1 VFPC1'S_C -> NC1 VFC1'S_C -> NC1 VFPC1'S_C -> NC1 VPASSC1 VFC1'S_C -> NC1 VPASSC1 VFPC1'S_C -> PC1 NC1 RELC1 VFC1'S_C -> PC1 NC1 VFC1'S_C -> PC1 NC1 VFPC1'S_C -> PC1 NC1 VPASSC1 VFC1'S_C -> PC1 NC1 VPASSC1 VFPC1'S_C -> SUBC1 NC1 RELC1 VFC1'S_C -> SUBC1 NC1 VFC1'S_C -> SUBC1 NC1 VFPC1'S_C -> WHN_C VFC1'S_C -> WHN_C VFPC1'THAN_ -> THAN'THATC1 -> THATC1' PUN=THATC1 -> THAT_C'THATC1 -> THAT_C' SMAJTHAT_C -> THAT'TO= -> ADV= TO_'TO= -> TO_'TO_ -> TO'VBASE= -> ADV= VBASE_'VBASE= -> VBASE_'VBASEC1 -> PUNL_ VBASEC1' PUNR_VBASEC1 -> VBASEC1 CONJ_ VBASEC1'VBASEC1 -> VBASEC1 CONJ_ VBASEC1' ADV=VBASEC1 -> VBASEC1' PUN=VBASEC1 -> VBASEC1' PUN= ADV=VBASEC1 -> VBASE_C'VBASEC1 -> VBASE_C' ADJC1VBASEC1 -> VBASE_C' ADJC1 ADV=VBASEC1 -> VBASE_C' ADJC1 PC1VBASEC1 -> VBASE_C' ADJC1 PC1 ADV=

VBASEC1 -> VBASE_C' ADV=VBASEC1 -> VBASE_C' ADV= NC1VBASEC1 -> VBASE_C' ADV= PC1VBASEC1 -> VBASE_C' ITJ_CVBASEC1 -> VBASE_C' NC1VBASEC1 -> VBASE_C' NC1 ADJC1VBASEC1 -> VBASE_C' NC1 ADV=VBASEC1 -> VBASE_C' NC1 AS_CVBASEC1 -> VBASE_C' NC1 NC1VBASEC1 -> VBASE_C' NC1 NC1 ADV=VBASEC1 -> VBASE_C' NC1 PART_CVBASEC1 -> VBASE_C' NC1 PART_C ADV=VBASEC1 -> VBASE_C' NC1 PART_C PC1VBASEC1 -> VBASE_C' NC1 PC1VBASEC1 -> VBASE_C' NC1 PC1 ADV=VBASEC1 -> VBASE_C' NC1 VBASEC1VBASEC1 -> VBASE_C' NC1 VGC1VBASEC1 -> VBASE_C' NC1 VTOC1VBASEC1 -> VBASE_C' PART_CVBASEC1 -> VBASE_C' PART_C ADV=VBASEC1 -> VBASE_C' PART_C NC1VBASEC1 -> VBASE_C' PART_C NC1 PC1VBASEC1 -> VBASE_C' PART_C PC1VBASEC1 -> VBASE_C' PART_C PC1 ADV=VBASEC1 -> VBASE_C' PC1VBASEC1 -> VBASE_C' PC1 ADV=VBASEC1 -> VBASE_C' PC1 PC1VBASEC1 -> VBASE_C' PC1 SMAJVBASEC1 -> VBASE_C' PC1 VGC1VBASEC1 -> VBASE_C' PC1 VTOC1VBASEC1 -> VBASE_C' SMAJVBASEC1 -> VBASE_C' SMAJ ADV=VBASEC1 -> VBASE_C' THATC1VBASEC1 -> VBASE_C' THATC1 ADV=VBASEC1 -> VBASE_C' VGC1VBASEC1 -> VBASE_C' VTOC1VBASEC1 -> VBASE_C' VTOC1 ADV=VBASEC1 -> VBASE_C' VTOC1 VTOC1VBASEPC1 -> VBASEPC1' PUN=VBASEPC1 -> VBASEP_C'VBASEPC1 -> VBASEP_C' ADJC1VBASEPC1 -> VBASEP_C' ADV=VBASEPC1 -> VBASEP_C' ADV= NC1VBASEPC1 -> VBASEP_C' ADV= PC1VBASEPC1 -> VBASEP_C' AS_CVBASEPC1 -> VBASEP_C' NC1VBASEPC1 -> VBASEP_C' NC1 PC1VBASEPC1 -> VBASEP_C' PART_CVBASEPC1 -> VBASEP_C' PART_C ADV=VBASEPC1 -> VBASEP_C' PART_C PC1VBASEPC1 -> VBASEP_C' PC1VBASEPC1 -> VBASEP_C' PC1 ADV=VBASEPC1 -> VBASEP_C' PC1 PC1

187VBASEPC1 -> VBASEP_C' PC1 SMAJVBASEPC1 -> VBASEP_C' PC1 THATC1VBASEPC1 -> VBASEP_C' PC1 VTOC1VBASEPC1 -> VBASEP_C' SUBC1VBASEPC1 -> VBASEP_C' THATC1VBASEPC1 -> VBASEP_C' VTOC1VBASEP_C -> VBASEP|'VBASEP| -> VBBASE= VPASS='VBASE_ -> VBASE'VBASE_C -> VBASE|'VBASE| -> VBASE= CONJ_C VBASE='VBASE| -> VBASE='VBASE| -> VBBASE= VG|'VBASE| -> VBBASE='VBASE| -> VHBASE= VN|'VBBASE= -> VBBASE_'VBBASE= -> VBBASE_' ADV=VBBASE_ -> ADV= VBBASE'VBBASE_ -> VBBASE'VBBASE| -> VBBASE='VBBASE| -> VHBASE= VBN='VBF= -> MD= VBBASE|'VBF= -> VBF_ VBG='VBF= -> VBF_'VBF= -> VBF_' AUX-ADVVBF= -> VHF= VBN='VBF_ -> ADV= VBF'VBF_ -> VBF'VBG= -> VBG_'VBG_ -> ADV= VBG'VBG_ -> VBG'VBN= -> VBN_'VBN= -> VBN_' ADV=VBN= -> VBN_' ADV= VBG=VBN= -> VBN_' VBG=VBN_ -> ADV= VBN'VBN_ -> VBN'VDF= -> VDF_'VDF= -> VDF_' AUX-ADVVDF_ -> ADV= VDF'VDF_ -> VDF'VF= -> ADV= VF_'VF= -> VF_'VFC1 -> PUNL_ VFC1' PUNR_VFC1 -> VBF=' PART_C VTOC1VFC1 -> VBF=' PART_C VTOPC1VFC1 -> VFC1 COM_ VFC1 COM_CONJ_ VFC1'VFC1 -> VFC1 COM_ VFC1 CONJ_ VFC1'VFC1 -> VFC1 CONJ_ VFC1'VFC1 -> VFC1' PUN=VFC1 -> VF_C'VFC1 -> VF_C' ADJC1

VFC1 -> VF_C' ADJC1 ADV=VFC1 -> VF_C' ADJC1 PC1VFC1 -> VF_C' ADJC1 PC1 ADV=VFC1 -> VF_C' ADJC1 THATC1VFC1 -> VF_C' ADJC1 THATC1 ADV=VFC1 -> VF_C' ADJC1 VTOC1VFC1 -> VF_C' ADJC1 VTOC1 ADV=VFC1 -> VF_C' ADJC1 VTOPC1VFC1 -> VF_C' ADJC1 VTOPC1 ADV=VFC1 -> VF_C' ADV=VFC1 -> VF_C' ADV= NC1VFC1 -> VF_C' ADV= PC1VFC1 -> VF_C' NC1VFC1 -> VF_C' NC1 ADJC1VFC1 -> VF_C' NC1 ADJC1 ADV=VFC1 -> VF_C' NC1 ADV=VFC1 -> VF_C' NC1 AS_CVFC1 -> VF_C' NC1 NC1VFC1 -> VF_C' NC1 NC1 ADV=VFC1 -> VF_C' NC1 NC1 PC1VFC1 -> VF_C' NC1 NC1 PC1 ADV=VFC1 -> VF_C' NC1 PART_CVFC1 -> VF_C' NC1 PART_C ADV=VFC1 -> VF_C' NC1 PART_C PC1VFC1 -> VF_C' NC1 PART_C PC1 ADV=VFC1 -> VF_C' NC1 PC1VFC1 -> VF_C' NC1 PC1 ADV=VFC1 -> VF_C' NC1 PC1 NC1VFC1 -> VF_C' NC1 PC1 NC1 ADV=VFC1 -> VF_C' NC1 PC1 PC1VFC1 -> VF_C' NC1 THATC1VFC1 -> VF_C' NC1 VBASEC1VFC1 -> VF_C' NC1 VBASEC1 ADV=VFC1 -> VF_C' NC1 VGC1VFC1 -> VF_C' NC1 VGC1 ADV=VFC1 -> VF_C' NC1 VGPC1VFC1 -> VF_C' NC1 VTOC1VFC1 -> VF_C' NC1 VTOC1 ADV=VFC1 -> VF_C' NC1 VTOPC1VFC1 -> VF_C' NC1 VTOPC1 ADV=VFC1 -> VF_C' PART_CVFC1 -> VF_C' PART_C ADV=VFC1 -> VF_C' PART_C NC1VFC1 -> VF_C' PART_C NC1 ADV=VFC1 -> VF_C' PART_C NC1 PC1VFC1 -> VF_C' PART_C NC1 PC1 ADV=VFC1 -> VF_C' PART_C PC1VFC1 -> VF_C' PART_C PC1 ADV=VFC1 -> VF_C' PART_C PC1 THATC1VFC1 -> VF_C' PART_C SMAJVFC1 -> VF_C' PART_C THATC1VFC1 -> VF_C' PC1VFC1 -> VF_C' PC1 ADV=

188 APPENDIX C. THE ENGLISH LPCF GRAMMARVFC1 -> VF_C' PC1 NC1VFC1 -> VF_C' PC1 NC1 NC1VFC1 -> VF_C' PC1 NC1 NC1 ADV=VFC1 -> VF_C' PC1 PC1VFC1 -> VF_C' PC1 PC1 ADV=VFC1 -> VF_C' PC1 SMAJVFC1 -> VF_C' PC1 SMAJ ADV=VFC1 -> VF_C' PC1 THATC1VFC1 -> VF_C' PC1 VGC1VFC1 -> VF_C' PC1 VGC1 ADV=VFC1 -> VF_C' PC1 VTOC1VFC1 -> VF_C' PC1 VTOC1 ADV=VFC1 -> VF_C' PC1 VTOPC1VFC1 -> VF_C' PC1 VTOPC1 ADV=VFC1 -> VF_C' P_ST_CVFC1 -> VF_C' P_ST_C ADV=VFC1 -> VF_C' SMAJVFC1 -> VF_C' SMAJ ADV=VFC1 -> VF_C' SUBC1VFC1 -> VF_C' SUBC1 ADV=VFC1 -> VF_C' THATC1VFC1 -> VF_C' THATC1 ADV=VFC1 -> VF_C' VBASEC1VFC1 -> VF_C' VBASEC1 ADV=VFC1 -> VF_C' VGC1VFC1 -> VF_C' VGC1 ADV=VFC1 -> VF_C' VTOC1VFC1 -> VF_C' VTOC1 ADV=VFC1 -> VF_C' VTOC1 VTOC1VFC1 -> VF_C' VTOC1 VTOPC1VFC1 -> VF_C' VTOPC1VFC1 -> VF_C' VTOPC1 ADV=VFC1 -> VF_C' VTOPC1 VTOC1VFC1 -> VF_C' VTOPC1 VTOPC1VFPC1 -> PUNL_ VFPC1' PUNR_VFPC1 -> VFPC1' PUN=VFPC1 -> VFPC1' PUN= ADV=VFPC1 -> VFP_C'VFPC1 -> VFP_C' ADJC1VFPC1 -> VFP_C' ADV=VFPC1 -> VFP_C' ADV= NC1VFPC1 -> VFP_C' ADV= PC1VFPC1 -> VFP_C' AS_CVFPC1 -> VFP_C' NC1VFPC1 -> VFP_C' NC1 ADV=VFPC1 -> VFP_C' NC1 NC1VFPC1 -> VFP_C' NC1 NC1 ADV=VFPC1 -> VFP_C' NC1 PC1VFPC1 -> VFP_C' NC1 PC1 ADV=VFPC1 -> VFP_C' NC1 PC1 PC1VFPC1 -> VFP_C' PART_CVFPC1 -> VFP_C' PART_C ADV=VFPC1 -> VFP_C' PART_C PC1

VFPC1 -> VFP_C' PART_C PC1 ADV=VFPC1 -> VFP_C' PART_C SMAJVFPC1 -> VFP_C' PC1VFPC1 -> VFP_C' PC1 ADV=VFPC1 -> VFP_C' PC1 PC1VFPC1 -> VFP_C' PC1 PC1 ADV=VFPC1 -> VFP_C' PC1 SMAJVFPC1 -> VFP_C' PC1 THATC1VFPC1 -> VFP_C' PC1 THATC1 ADV=VFPC1 -> VFP_C' PC1 VGC1VFPC1 -> VFP_C' PC1 VGC1 ADV=VFPC1 -> VFP_C' PC1 VTOC1VFPC1 -> VFP_C' P_ST_CVFPC1 -> VFP_C' SMAJVFPC1 -> VFP_C' SMAJ ADV=VFPC1 -> VFP_C' SUBC1VFPC1 -> VFP_C' SUBC1 ADV=VFPC1 -> VFP_C' THATC1VFPC1 -> VFP_C' THATC1 ADV=VFPC1 -> VFP_C' VTOC1VFPC1 -> VFP_C' VTOC1 ADV=VFP_C -> VBF= VPASS='VFP_C -> VHF= VNP='VF_ -> VF'VF_C -> MD= VBASE|'VF_C -> MD='VF_C -> VBF= VG|'VF_C -> VBF='VF_C -> VDF= VBASE|'VF_C -> VDF='VF_C -> VF='VF_C -> VF_C CONJ_ VF_C'VF_C -> VHF= VN|'VF_C -> VHF='VG= -> ADV= VG_'VG= -> VG_'VGC1 -> PUNL_ VGC1' PUNR_VGC1 -> VGC1 COM_ VGC1 COM_ CONJ_ VGC1'VGC1 -> VGC1 COM_ VGC1 CONJ_ VGC1'VGC1 -> VGC1 CONJ_ VGC1'VGC1 -> VGC1' PUN=VGC1 -> VG_C'VGC1 -> VG_C' ADJC1VGC1 -> VG_C' ADJC1 THATC1VGC1 -> VG_C' ADJC1 VTOC1VGC1 -> VG_C' NC1VGC1 -> VG_C' NC1 ADJC1VGC1 -> VG_C' NC1 AS_CVGC1 -> VG_C' NC1 NC1VGC1 -> VG_C' NC1 PART_CVGC1 -> VG_C' NC1 PART_C PC1VGC1 -> VG_C' NC1 PC1VGC1 -> VG_C' NC1 PC1 PC1

189VGC1 -> VG_C' NC1 VBASEC1VGC1 -> VG_C' NC1 VGC1VGC1 -> VG_C' NC1 VTOC1VGC1 -> VG_C' PART_CVGC1 -> VG_C' PART_C NC1VGC1 -> VG_C' PART_C NC1 PC1VGC1 -> VG_C' PART_C PC1VGC1 -> VG_C' PART_C SMAJVGC1 -> VG_C' PART_C THATC1VGC1 -> VG_C' PC1VGC1 -> VG_C' PC1 PC1VGC1 -> VG_C' PC1 SMAJVGC1 -> VG_C' PC1 THATC1VGC1 -> VG_C' PC1 VGC1VGC1 -> VG_C' PC1 VTOC1VGC1 -> VG_C' SMAJVGC1 -> VG_C' THATC1VGC1 -> VG_C' VTOC1VGC1 -> VG_C' VTOC1 VTOC1VGPC1 -> VGPC1' PUN=VGPC1 -> VGP_C'VGPC1 -> VGP_C' AS_CVGPC1 -> VGP_C' PC1VGP_C -> VBG= VPASS_C'VG_ -> VG'VG_C -> VBG= VPASS='VG_C -> VBG='VG_C -> VG='VG_C -> VG_C COM_ VG_C CONJ_ VG_C'VG_C -> VG_C CONJ_ VG_C'VG_C -> VHG=' VN|VG| -> VBG='VG| -> VG='VHBASE= -> VHBASE_'VHBASE_ -> ADV= VHBASE'VHBASE_ -> VHBASE'VHF= -> MD= VHBASE_'VHF= -> VBF= VHG='VHF= -> VHF= VHN='VHF= -> VHF_'VHF= -> VHF_' AUX-ADVVHF_ -> ADV= VHF'VHF_ -> VHF'VHG= -> VHG_'VHG_ -> VHG'VHN= -> ADV= VHN_'VHN= -> VHN_'VHN_ -> VHN'VN= -> ADV= VN_'VN= -> VN_'VNP= -> VBN= VPASS='VN_ -> VN'VN_C -> VN_C CONJ_ VN_C'

VN_C -> VN|'VN| -> VBN= VG|'VN| -> VBN='VN| -> VN='VPASS= -> ADV= VPASS_'VPASS= -> VPASS_'VPASSC1 -> PUNL_ VPASSC1' PUNR_VPASSC1 -> VPASSC1 CONJ_ VPASSC1'VPASSC1 -> VPASSC1' PUN=VPASSC1 -> VPASS_C'VPASSC1 -> VPASS_C' ADJC1VPASSC1 -> VPASS_C' AS_CVPASSC1 -> VPASS_C' NC1VPASSC1 -> VPASS_C' NC1 ADJC1VPASSC1 -> VPASS_C' NC1 NC1VPASSC1 -> VPASS_C' NC1 PART_CVPASSC1 -> VPASS_C' NC1 PC1VPASSC1 -> VPASS_C' NC1 VGC1VPASSC1 -> VPASS_C' NC1 VTOC1VPASSC1 -> VPASS_C' PART_CVPASSC1 -> VPASS_C' PART_C NC1VPASSC1 -> VPASS_C' PART_C PC1VPASSC1 -> VPASS_C' PC1VPASSC1 -> VPASS_C' PC1 PC1VPASSC1 -> VPASS_C' PC1 VGC1VPASSC1 -> VPASS_C' PC1 VTOC1VPASSC1 -> VPASS_C' SMAJVPASSC1 -> VPASS_C' THATC1VPASSC1 -> VPASS_C' VGC1VPASSC1 -> VPASS_C' VTOC1VPASS_ -> ADV= VPASS'VPASS_ -> VPASS'VPASS_C -> VBN= VPASS_'VPASS_C -> VPASS_'VPASS_C -> VPASS_C CONJ_ VPASS_C'VTOC1 -> PUNL_ VTOC1' PUNR_VTOC1 -> VTOC1 CONJ_ VTOC1'VTOC1 -> VTOC1 CONJ_ VTOC1' ADV=VTOC1 -> VTOC1' PUN=VTOC1 -> VTOC1' PUN= ADV=VTOC1 -> VTO_C'VTOC1 -> VTO_C' ADJC1VTOC1 -> VTO_C' ADJC1 ADV=VTOC1 -> VTO_C' ADJC1 PC1VTOC1 -> VTO_C' ADJC1 VTOC1VTOC1 -> VTO_C' ADJC1 VTOC1 ADV=VTOC1 -> VTO_C' ADV=VTOC1 -> VTO_C' ADV= NC1VTOC1 -> VTO_C' ADV= PC1VTOC1 -> VTO_C' ITJ_CVTOC1 -> VTO_C' NC1VTOC1 -> VTO_C' NC1 ADJC1VTOC1 -> VTO_C' NC1 ADV=

190 APPENDIX C. THE ENGLISH LPCF GRAMMARVTOC1 -> VTO_C' NC1 AS_CVTOC1 -> VTO_C' NC1 NC1VTOC1 -> VTO_C' NC1 NC1 ADV=VTOC1 -> VTO_C' NC1 PART_CVTOC1 -> VTO_C' NC1 PART_C ADV=VTOC1 -> VTO_C' NC1 PART_C PC1VTOC1 -> VTO_C' NC1 PC1VTOC1 -> VTO_C' NC1 PC1 ADV=VTOC1 -> VTO_C' NC1 PC1 PC1VTOC1 -> VTO_C' NC1 VBASEC1VTOC1 -> VTO_C' NC1 VGC1VTOC1 -> VTO_C' NC1 VGC1 ADV=VTOC1 -> VTO_C' NC1 VTOC1VTOC1 -> VTO_C' NC1 VTOC1 ADV=VTOC1 -> VTO_C' PART_CVTOC1 -> VTO_C' PART_C ADV=VTOC1 -> VTO_C' PART_C NC1VTOC1 -> VTO_C' PART_C NC1 PC1VTOC1 -> VTO_C' PART_C PC1VTOC1 -> VTO_C' PART_C PC1 ADV=VTOC1 -> VTO_C' PART_C SMAJVTOC1 -> VTO_C' PART_C THATC1VTOC1 -> VTO_C' PC1VTOC1 -> VTO_C' PC1 ADV=VTOC1 -> VTO_C' PC1 PC1VTOC1 -> VTO_C' PC1 PC1 ADV=VTOC1 -> VTO_C' PC1 SMAJVTOC1 -> VTO_C' PC1 THATC1VTOC1 -> VTO_C' PC1 VGC1VTOC1 -> VTO_C' PC1 VGC1 ADV=VTOC1 -> VTO_C' PC1 VTOC1VTOC1 -> VTO_C' SMAJVTOC1 -> VTO_C' SMAJ ADV=VTOC1 -> VTO_C' SUBC1VTOC1 -> VTO_C' SUBC1 ADV=VTOC1 -> VTO_C' THATC1VTOC1 -> VTO_C' THATC1 ADV=VTOC1 -> VTO_C' VGC1VTOC1 -> VTO_C' VGC1 ADV=VTOC1 -> VTO_C' VTOC1VTOC1 -> VTO_C' VTOC1 ADV=VTOPC1 -> VTOPC1' PUN=VTOPC1 -> VTOPC1' PUN= ADV=VTOPC1 -> VTOP_C'VTOPC1 -> VTOP_C' ADJC1VTOPC1 -> VTOP_C' ADV=VTOPC1 -> VTOP_C' ADV= NC1VTOPC1 -> VTOP_C' ADV= PC1VTOPC1 -> VTOP_C' AS_CVTOPC1 -> VTOP_C' NC1VTOPC1 -> VTOP_C' NC1 ADV=VTOPC1 -> VTOP_C' NC1 PC1VTOPC1 -> VTOP_C' NC1 PC1 PC1

VTOPC1 -> VTOP_C' PART_CVTOPC1 -> VTOP_C' PART_C ADV=VTOPC1 -> VTOP_C' PART_C PC1VTOPC1 -> VTOP_C' PC1VTOPC1 -> VTOP_C' PC1 ADV=VTOPC1 -> VTOP_C' PC1 PC1VTOPC1 -> VTOP_C' PC1 SMAJVTOPC1 -> VTOP_C' SUBC1VTOPC1 -> VTOP_C' SUBC1 ADV=VTOPC1 -> VTOP_C' THATC1VTOPC1 -> VTOP_C' VTOC1VTOP_C -> TO= VBASEP|'VTO_C -> TO= VBASE|'VTO_C -> TO= VBBASE='VTO_C -> TO='WHA_C -> ADV= WHADV'WHA_C -> WHADV'WHA_C -> WHA_C CONJ_ WHA_C'WHA_C -> WHDEG_ ADJC1'WHA_C -> WHDEG_ ADV='WHDEG_ -> WHDEG'WHDET_ -> WHDET'WHDET_ -> WHPRO$'WHN_C -> WHDET_ NPL='WHN_C -> WHDET_ NPL_'WHN_C -> WHDET_ NSG='WHN_C -> WHDET_ PN='WHN_C -> WHDET_ PROPL_'WHN_C -> WHDET_ PROSG_'WHN_C -> WHN_C' PUN=WHN_C -> WHPRO_'WHPRO_ -> ADV= WHPRO'WHPRO_ -> WHPRO'WHP_C -> PREP_' WHN_CWHP_C -> PUNL_ WHP_C' PUNR_WHP_C -> WHP_C' PUN=

Appendix DDisambiguation
D.1 Test SentencesThese are the 100 sentences which have been used in the disambiguation experiment reportedin section 6.3.4.Rockwell said the agreement calls for it to supply 200 additional so-called shipsets for the planes.Rockwell, based in El Segundo, Calif., is an aerospace, electronics, automotive and graphics concern.Mr. Carlucci, 59 years old, served as defense secretary in the Reagan administration.In January, he accepted the position of vice chairman of Carlyle Group, a merchant banking concern.Thomas E. Meador, 42 years old, was named president and chief operating o�cer of Balcor Co., aSkokie, Ill., subsidiary of this New York investment banking �rm.Balcor, which has interests in real estate, said the position is newly created.Mr. Meador had been executive vice president of Balcor.In addition to his previous real-estate investment and asset-management duties, Mr. Meador takesresponsibility for development and property management.Those duties had been held by Van Pell, 44, who resigned as an executive vice president.Before the loan-loss addition, it said, it had operating pro�t of $ 10 million for the quarter.The move followed a round of similar increases by other lenders against Arizona real estate loans,reecting a continuing decline in that market.Arbitragers were n't the only big losers in the collapse of UAL Corp. stock.When bank �nancing for the buy-out collapsed last week, so did UAL's stock.By yesterday's close of trading, it was good for a paltry $ 43.5 million.Mr. Johnson succeeds Harry W. Sherman, who resigned to pursue other interests, in both positions.Manville is a building and forest products concern.US Facilities Corp. said Robert J. Percival agreed to step down as vice chairman of the insuranceholding company. 191

192 APPENDIX D. DISAMBIGUATIONThere was a di�erence of opinion as to the future direction of the company, a spokeswoman said.Mr. Percival declined to comment.In a statement, US Facilities said Mr. Percival's employment contract calls for him to act as a con-sultant to the company for two years.Mr. Percival will be succeeded on an interim basis by George Kadonada, US Facilities chairman andpresident.In the same statement, US Facilities also said it had bought back 112,000 of its common shares in aprivate transaction.The buy-back represents about 3 % of the company's shares, based on the 3.7 million shares outstandingas of Sept. 30.In national over-the-counter trading yesterday, US Facilities closed at $ 3.625, unchanged.Merck & Co. reported a 25 % increase in earnings; Warner-Lambert Co.'s pro�t rose 22 % and EliLilly & Co.'s net income rose 24 %.The results were in line with analysts' expectations.Merck, Rahway, N.J., continued to lead the industry with a strong sales performance in the humanand animal health-products segment.International sales accounted for 47 % of total company sales for the nine months, compared with 50% a year earlier.Sales for the quarter rose to $ 1.63 billion from $ 1.47 billion.Intense competition, however, led to unit sales declines for a group of Merck's established human andanimal-health products, including Aldomet and Indocin.In New York Stock Exchange composite trading yesterday, Merck shares closed at $ 75.25, up 50 cents.Sales for the quarter rose to $ 1.11 billion from $ 1.03 billion.World-wide sales of Warner-Lambert's non-prescription health-care products, such as Halls coughtablets, Rolaids antacid, and Lubriderm skin lotion, increased 3 % to $ 362 million in the third quarter;U.S. sales rose 5 %.Confectionery products sales also had strong growth in the quarter.Third-quarter sales of the Indianapolis, Ind., company rose 11 % to $ 1.045 billion from $ 940.6million.Nine-month sales grew 12 % to $ 3.39 billion from $ 3.03 billion a year earlier.Sales of Prozac, an anti-depressant, led drug-sales increases.Higher sales of pesticides and other plant-science products more than o�set a slight decline in the salesof animal-health products to fuel the increase in world-wide agricultural product sales, Lilly said.Advanced Cardiovascular Systems Inc. and Cardiac Pacemakers Inc. units led growth in the medical-instrument systems division.Lilly shares closed yesterday in composite trading on the Big Board at $ 62.25, down 12.5 cents.Analysts estimate Colgate's world-wide third-quarter sales rose about 8 % to $ 1.29 billion.Mr. Mark attributed the earnings growth to strong sales in Latin America, Asia and Europe.Results were also bolstered by a very meaningful increase in operating pro�t by Colgate's U.S. business,Mr. Mark said.

D.1. TEST SENTENCES 193Operating pro�t at Colgate's U.S. household products and personal-care businesses jumped 25 % in thequarter, Mr. Mark added.He said the improvement was a result of cost savings achieved by consolidating manufacturing opera-tions, blending two sales organizations and focusing more carefully the company's promotional activi-ties.The estimated improvement in Colgate's U.S. operations took some analysts by surprise.Colgate's household products business, which includes such brands as Fab laundry detergent and Ajaxcleanser, has been a weak performer.Analysts estimate Colgate's sales of household products in the U.S. were at for the quarter, and theyestimated operating margins at only 1 % to 3 %.But it's not mediocre, it's a real problem.To focus on its global consumer-products business, Colgate sold its Kendall health-care business in1988.H. Anthony Ittleson was elected a director of this company, which primarily has interests in radio andtelevision stations, increasing the number of seats to �ve.Osborn also operates Muzak franchises, entertainment properties and small cable-television systems.Mr. Ittleson is executive, special projects, at CIT Group Holdings Inc., which is controlled by Manu-facturers Hanover Corp.The Boston Globe says its newly redesigned pages have a crisper look with revamped �xtures aimed atmaking the paper more consistent and easier to read.By late last night, Globe Managing Editor Thomas Mulvoy, bending to the will of his troops, scrappedthe new drawings.Trouble was, nobody thought they looked right.Lynn Staley, the Globe's assistant managing editor for design, acknowledges that the visages were onthe low end of the likeness spectrum.Is such a view justi�ed?About 20,000 years ago the last ice age ended.Enormous ice sheets retreated from the face of North America, northern Europe and Asia.This global warming must have been entirely natural { nobody would blame it on a few hundred thousandhunter-gatherers hunting mammoths and scratching around in caves.Furthermore, no bell has yet rung to announce the end of this immense episode of natural globalwarming.The Internal Revenue Service plans to restructure itself more like a private corporation.The IRS also said that it would create the position of chief �nancial o�cer, who will be hired fromwithin the agency.The IRS hopes to �ll the new positions soon.Although the jobs will probably pay between $ 70,000 and $ 80,000 a year, IRS o�cials are con�dentthat they can attract top-notch candidates from the private sector.When Maj. Moises Giroldi, the leader of the abortive coup in Panama, was buried, his body bore severalgunshot wounds, a cracked skull and broken legs and ribs.They were the signature of his adversary, Panamanian leader Manuel Antonio Noriega.

194 APPENDIX D. DISAMBIGUATIONThe rebel o�cer's slow and painful death, at the headquarters of Panama's Battalion-2000 squad, waspersonally supervised by Gen. Noriega, says a U.S. o�cial with access to intelligence reports.And he is collecting the names of those who telephoned the coup-makers to congratulate them duringtheir brief time in control of his headquarters.In the two weeks since the rebellion, which the U.S. hesitantly backed, Mr. Noriega has been at hismost brutal - and e�cient - in maintaining power.America's war on the dictator over the past two years, following his indictment on drug charges inFebruary 1988, is the legacy of that relationship.Before American foreign policy set out to destroy Noriega, it helped create him out of the crucible ofPanama's long history of conspirators and pirates.For most of the past 30 years, the marriage was one of convenience.The woman had nearly died.Mr. Noriega's tips on emerging leftists at his school were deemed more important to U.S. interests.The 55-year-old Mr. Noriega is n't as smooth as the shah of Iran, as well-born as Nicaragua's AnastasioSomoza, as imperial as Ferdinand Marcos of the Philippines or as bloody as Haiti's Baby Doc Duvalier.Yet he has proved more resilient than any of them.In keeping with America's long history of propping up Mr. Noriega, recent U.S. actions have extendedrather than shortened his survival.If the U.S. had sat back and done nothing, he might not have made it through 1988, Mr. Moss contends.One Colombian drug boss, upon hearing in 1987 that Gen. Noriega was negotiating with the U.S. toabandon his command for a comfortable exile, sent him a hand-sized mahogany co�n engraved withhis name.He is cornered, says the Rev. Fernando Guardia, who has led Catholic Church opposition againstNoriega.It is easy to �ght when you do n't have any other option.Mr. Noriega often tells friends that patience is the best weapon against the gringos, who have a shortattention span and little stomach for lasting confrontation.The U.S. discovered the young Tony Noriega in late 1959, when he was in his second year at theChorrillos Military Academy in Lima, according to former U.S. intelligence o�cials.Tony was four years older than most of his fellow cadets, and gained admission to the academy becausehis brother had falsi�ed his birth certi�cate.He had an elegant uniform with gold buttons in a country where there was a cult of militarism, whereo�cers were the elite with special privileges, recalls Darien Ayala, a fellow student in Peru and alifelong friend.Mr. Noriega's relationship to American intelligence agencies became contractual in either 1966 or1967, intelligence o�cials say.United Fruit was one of the two largest contributors to Panama's national income.Mr. Noriega's initial retainer was only $ 50 to $ 100 a month, plus occasional gifts of liquor or groceriesfrom the American PX, a former intelligence o�cial says.It was modest pay by American standards, but a healthy boost to his small military salary, which fellowo�cers remember as having been $ 300 to $ 400 monthly.

D.2. RESULTS 195He did it very well, recalls Boris Martinez, a former Panamanian colonel who managed Mr. Noriegaand his operation.He started building the �les that helped him gain power.A National Guard job assumed by Capt. Noriega in 1964 { as chief of the transit police in David City,capital of the Chiriqui Province { was tailor-made for an aspiring super-spy.By pressuring taxi and bus drivers who needed licenses, he gained a ready cache of information.He knew which local luminaries had been caught driving drunk, which had been found with their mis-tresses.Mr. Noriega had learned that a local union leader was sleeping with the wife of his deputy.So he splashed the information on handbills that he distributed throughout the banana-exporting cityof Puerto Armuelles, which was ruled by United Fruit Co.It was like a play on Broadway, recalls Mr. Martinez.Noriega was an expert at bribing and blackmailing people.D.2 ResultsThe following table shows the results of the disambiguation experiment. The contents of thecolumns are as follows:No.: number of the sentenceMaxScore: highest score for this sentenceScore: score of the correct analysisAnalyses: number of analyses for this sentenceAsGood: number of analyses with a score as high as or higher than the correct one%AsGood: the same value expressed in percent of all analysesBetter: number of analyses with a score higher than the correct one%Better: the same value expressed in percent of all analysesNo. MaxScore Score Analyses AsGood %AsGood Better %Better1 44635 42015 37 24 64.86 23 62.162 860 860 675 404 59.85 184 27.263 38972 36086 40 24 60.00 16 40.004 9833 9739 129 8 6.20 4 3.105 114340 111295 17997650 27540 0.15 27416 0.156 13079 12556 50 22 44.00 12 24.007 4126 4126 3 1 33.33 0 0.008 19318 13440 11013 951 8.64 947 8.609 7795 3832 411 76 18.49 68 16.5510 27449 27449 356 2 0.56 0 0.0011 24284 8907 3700 396 10.70 387 10.4612 39188 2530 27 6 22.22 4 14.8113 9705 2470 198 124 62.63 122 61.6214 96717 2343 193 45 23.32 44 22.8015 79086 67506 18 8 44.44 5 27.78

196 APPENDIX D. DISAMBIGUATIONFile MaxScore Score Analyses AsGood %AsGood Better %Better16 465 435 13 2 15.38 1 7.6917 64420 15229 912 178 19.52 166 18.2018 13560 11121 624 180 28.85 168 26.9219 141 141 2 2 100.00 0 0.0020 159921 62645 57372 5008 8.73 5004 8.7221 34415 30394 1010 576 57.03 562 55.6422 9498 5676 11327 4271 37.71 4267 37.6723 25419 24714 142 39 27.46 34 23.9424 1208 897 460 340 73.91 268 58.2625 83457 83225 954 22 2.31 21 2.2026 37814 1265 7 6 85.71 5 71.4327 1958 1525 3179 500 15.73 485 15.2628 55768 48377 42854 1800 4.20 1790 4.1829 5940 5940 32 2 6.25 0 0.0030 43242 42846 121358 119 0.10 114 0.0931 82513 1975 10136 5228 51.58 5204 51.3432 5940 5940 32 2 6.25 0 0.0033 12546 7190 298414 250316 83.88 249958 83.7634 4094 3828 8 8 100.00 4 50.0035 10777 6362 48 28 58.33 26 54.1736 6422 726 81 81 100.00 74 91.3637 1661 1599 19 5 26.32 1 5.2638 87267 70250 137996 16870 12.22 16862 12.2239 2901 2901 1204 36 2.99 0 0.0040 26260 2497 1500 164 10.93 160 10.6741 26853 24222 138 41 29.71 40 28.9942 9747 9741 39 6 15.38 3 7.6943 91091 61268 79622 17956 22.55 17954 22.5544 51896 5374 22460 6482 28.86 6452 28.7345 50329 47339 536122 66528 12.41 66498 12.4046 37967 4303 70 28 40.00 24 34.2947 1137 965 1262 952 75.44 940 74.4848 152439 15841 37356 21236 56.85 21234 56.8449 1646 1646 6 6 100.00 0 0.0050 113515 113347 576 86 14.93 78 13.5451 77953 75778 11910 924 7.76 916 7.6952 1225 1225 6 3 50.00 0 0.0053 6572 1079 3208 864 26.93 848 26.4354 47153 2380 5602 1142 20.39 1140 20.3555 10522 5957 576 107 18.58 104 18.0656 655 655 8 1 12.50 0 0.0057 104923 95802 971 302 31.10 298 30.6958 169 158 2 2 100.00 1 50.0059 50687 50687 19 1 5.26 0 0.0060 3533 3489 46 15 32.61 14 30.43

D.2. RESULTS 197File MaxScore Score Analyses AsGood %AsGood Better %Better61 7172 7172 1939 2 0.10 0 0.0062 72423 40585 11 5 45.45 4 36.3663 2094 2094 54 2 3.70 0 0.0064 5844 5755 10 3 30.00 1 10.0065 492 492 8 1 12.50 0 0.0066 12835 12092 1026 828 80.70 812 79.1467 41714 5259 3789 862 22.75 854 22.5468 124033 124027 39 4 10.26 2 5.1369 68869 31726 492472 307182 62.38 307166 62.3770 42105 7129 900 108 12.00 82 9.1171 185068 179057 1580 250 15.82 246 15.5772 120484 64602 65647 6875 10.47 6869 10.4673 19686 14412 25504 5046 19.79 5034 19.7474 151520 56311 100 25 25.00 24 24.0075 626 626 3 1 33.33 0 0.0076 24440 7731 1166 1004 86.11 992 85.0877 66702 62716 22721 19865 87.43 19491 85.7878 1045 1045 2 1 50.00 0 0.0079 46614 9152 23513 9128 38.82 9125 38.8180 12596 12476 1352 17 1.26 13 0.9681 238430 107755 4445800 239774 5.39 239758 5.3982 1287 1287 10 2 20.00 0 0.0083 38723 35974 40 28 70.00 24 60.0084 100576 5481 4216 288 6.83 282 6.6985 261525 179775 395281 194604 49.23 194598 49.2386 36189 36189 100 3 3.00 0 0.0087 53369 14769 5751994 1243308 21.62 1243270 21.6188 249781 211575 1528 566 37.04 564 36.9189 15445 14166 54 10 18.52 9 16.6790 6086 2920 559180 138883 24.84 138849 24.8391 8271 5917 21444 7984 37.23 7956 37.1092 70550 70304 168 4 2.38 2 1.1993 1037 1037 7 1 14.29 0 0.0094 193909 115087 3300316 1797396 54.46 1797348 54.4695 9018 8982 23 5 21.74 4 17.3996 2894 1652 2913 1529 52.49 1521 52.2197 4247 4067 90 8 8.89 7 7.7898 11908 2828 1595 1199 75.17 1180 73.9899 13678 1204 32 21 65.62 20 62.50100 6971 548 14 14 100.00 13 92.86

