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Chapter 1

Introduction

Syntactic parsers belong to the most basic tools in natural language processing (NLP) and
most NLP applications use some form of parser. If an NLP application does without a
parser, the reason is often that no parser was available which was sufficiently fast, robust,
and/or accurate, and which provides linguistically adequate and unambiguous analyses. There
are parsers (e.g. parsers for feature-structure based grammar formalisms like HPSG and
LFG) which provide sophisticated analyses, but they are often slow and not robust wrt. ill-
formed input, and they either cover only a fragment of the language or their output is highly
ambiguous. There are other parser (e.g. finite-state parsers) which are very fast, robust
and which produce unambiguous output, but their analyses are incomplete and too simple
for many linguistic phenomena. Finally there are parsers (the statistical parsers) which are
highly robust, coping with all sorts of well-formed and ill-formed input, and which produce a
single analysis (or a small number of likely analyses). But again, the generated analyses are
too simplistic and some statistical parsers are also quite slow.

This thesis presents a new fast parsing algorithm for feature-structure based grammars, called
YAP, and discusses the question of what grammar writers can do to accelerate parsing. The
second part of the thesis describes an attempt to integrate statistical techniques into the YAP
system in order to be able to rank analyses and to select the most likely ones.

Parsers need formal grammatical descriptions of the languages which they analyse. These
descriptions are written in grammar formalisms such as Lexical Functional Grammar (LFG),
Head-Driven Phrase Structure Grammar (HPSG) or Definite Clause Grammar (DCG) to
name just a few. Many grammar formalisms including the formalisms just mentioned use
feature structures to represent the syntactic properties of grammatical units. Efficient parsing
with feature-structure based grammars is a difficult task, however. Parsing with LFGs, e.g.,
is undecidable in the general case, and even with suitable constraints such as the offline
parsability constraint [Kaplan and Bresnan, 1982], it is still NP-complete which means that
the parse time of any known algorithm grows exponentially with the length of the input in
the worst case.

Fortunately, the worst case is not typical when natural languages are parsed. Natural lan-
guages seem to be only slightly more complex than context-free languages. Hence there is
hope that an average parsing complexity not too far from the cubic complexity of context-free
grammars could be achieved with real-world grammars and data.
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The key to parsing efficiency is to avoid repeated computation of subproblems. To this end,
intermediate results of parsing are usually stored in a table called a chart. The number of cells
in the chart grows quadratically with the length n of the input sentence. In case of context-
free parsing, the number of items (categories in case of the Cocke-Younger-Kasami algorithm,
“dotted rules” in case of Earley’s algorithm) in a cell of the chart is limited by a constant
which depends only on the grammar. Each item can be built in at most n many ways, each
requiring constant time wrt. sentence length. The runtime complexity of context-free parsing
is therefore at worst cubic in the length of the input.t

In feature-structure based grammars, feature structures play the role of the category labels.
So, a chart parser for feature structure-based grammars inserts feature structures rather
than categories into the chart. Because the number of different feature structures is infinite,
however, there is no limit to the number of items in a chart cell, and the cubic runtime
complexity is lost.

Maxwell and Kaplan [Maxwell IIT and Kaplan, 1996] show that it is possible to circumvent
this problem if constituents with different feature structures but spanning the same input are
merged by pushing down the disjunction from the topmost level to the lowest possible level,
as long as the feature structures do not differ in their “relevant” parts. The relevant parts
of a feature structure are those which may later lead to a feature clash. If the “relevant”
substructures of the feature structures of a grammar form a finite set, the grammar can even
be parsed in cubic time.

The question arises, however, why syntactically irrelevant information is represented in the
grammar at all, if sophisticated algorithms are required to reduce their detrimental effects
on parse time. In the LFG formalism, the feature structure (called f-structure) of the top-
most node represents the function-argument structure of the whole sentence. The f-structure
is therefore a simple semantic representation. Because most local ambiguities are reflected
in the predicate-argument structure, they are propagated to the dominating nodes and their
feature structures. The problem disappears if the semantic representation is built in a separate
step.

The YAP formalism reflects these considerations. It is a feature-based grammar formalism
which is solely intended for syntactic analysis. It combines ideas from LFG, HPSG and
procedural programming languages. Similarly to LFG, the formalism uses grammar rules with
a context-free backbone and feature structure constraints. Like HPSG, it is a typed formalism,
but the type system resembles more that of a programming language. Subcategorization and
argument extraction are handled similarly as in HPSG, namely with argument cancelling from
Subcat lists and gap threading via Slash features. A particularity of the YAP formalism is
the possibility to compile features with finite value range into the context-free backbone of
the grammar to enhance efficiency.

The parser for this grammar formalism uses a novel iterative method for the computation
of the feature structures after the context-free backbone of the syntactic analysis has been
computed by a standard context-free parser. Feature structures are represented as trees
without reentrancies rather than graphs, and disjunctions are restricted to the atomic level.
The feature structures are computed by iteratively solving local feature constraints. The
parsing algorithm is guaranteed to terminate for cycle-free feature structures and is very

'A formal proof of this result is found e.g. in [Younger, 1967] and [Earley, 1970].



fast in practice. The simplicity of the data structures and operations facilitates an efficient
implementation of the parser.

Another important problem in parsing is disambiguation. Many sentences are syntactically
ambiguous. Some ambiguities may be solved with a simple rule preference mechanism which
favours e.g. analyses with fewer traces. Other ambiguities require some sort of semantic knowl-
edge to be resolved. Examples are PP attachment ambiguities as in the sentence I looked
at the moon through a telecope where through a telecope could —according to strictly
syntactic criteria — either modify the moon or the verb looked, and coordination ambigu-
itites as in They met with the finance ministers of France and the United States
where either France and the United States or the finance ministers of France and
the United States could coordinate.

Hindle and Rooth [Hindle and Rooth, 1993] presented a simple statistical algorithm which
correctly disambiguates most PP attachment problems. It compares how likely the preposi-
tional phrase is to attach to the different possible attachment sites and chooses the most likely
attachment. This approach is extended in this thesis to resolve other types of ambiguity as
well. The statistical parameters of the algorithm were determined from a 100 million word
corpus which was parsed and disambiguated with a parser for head-lexicalized context-free
grammars [Carroll and Rooth, 1998].

The chapters of this thesis are organized as follows. Chapter 2 presents the YAP grammar
formalism in detail. A feature logic for this formalism is developed in chapter 3. This chapter
also contains a proof for the correctness of the iterative method for the feature computation.
Chapter 4 describes the implementation of the parsing algorithm and chapter 5 shows results
of experiments with the parser. Chapter 6 presents the disambiguation method and and
reports on preliminary disambiguation results. Chapter 7 summarizes the main points of this
thesis and gives an outlook to future work.
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Chapter 2

Grammar Formalism

YAP is a symbolic parser for a feature-based grammar formalism. It assigns a set of parse
trees decorated with feature structures to sentences. Each parse tree represents one anal-
ysis of a sentence. Fig. 2.1 shows a sample parse tree which was printed with the Xmfed
program [Groenendijk, 1993]. The small boxes represent “imploded” feature structures. The
grammar formalism which is used to express the constraints which hold for well-formed parse
trees is based on phrase structure rules. It is somewhat similar to the PATR-II formalism
[Shieber, 1992], but in contrast to PATR-II the feature structures are typed [Carpenter, 1992].
The type of a feature structure determines its set of features.

Feature structure typing has several advantages. It allows for a more efficient representation
of feature structures because feature names do not have to be represented explicitly. Instead
of a list of feature-value pairs, we only store an array of feature values. Access to feature
values is faster because feature names are translated to indices into the feature value array.
No searching of lists is required.

Feature typing also facilitates grammar development. The compiler knows which features
and feature values are appropriate in any given context and is therefore able to detect many
errors at compile time, e.g. misspelled feature names or erroneous feature paths. Typing also
supports a more structured approach to grammar writing.

2.1 Declarations

A grammar description in the YAP formalism starts with a set of declarations which specify
the grammatical categories, the features and the feature types.

2.1.1 Category and Feature Declarations
A category declaration starts with the keyword category followed by the category name and
a list of feature declarations enclosed in braces. The declaration is terminated by a semicolon.

A feature declaration in turn consists of the feature value type followed by the feature name
and a semicolon. A feature declaration is local to a category declaration. It is possible to
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use the same feature name in different category declarations, and even with different feature
types.

Example:!

category NP {
STRING Phon;
NUMBER Number;
GENDER Gender;
CASE Case;
+;

The YAP categories are special feature value types (see the next section) which can never
appear in a feature declaration, i.e. no feature value will ever have a “category” type. The
only feature structures with a category type are the root nodes of feature structures and the
elements of feature structure lists (see below).

2.1.2 Feature Type Declarations

There are two predefined feature types: STRING and FS_LIST. Features of type STRING may
have any character string as value. FS_LIST features take a list of complete feature structures
(i.e. feature structures whose types are categories) as values.

Enumeration Types

Besides the predefined feature types, there are two classes of user-defined feature types: enu-
meration types and structured types. The definition of an enumeration feature type starts
with the keyword enum followed by the name of the feature type and the list of possible values
enclosed in braces. Again, the definition is terminated by a semicolon.

Enumeration types have two advantages over STRING types: They allow for a more efficient
representation of ambiguities and they provide information for error detection so that mis-
spelled feature values are detected at compile time. Therefore enumeration types should be
preferred whenever the limit of 32 possible feature values is not exceeded. Agreement feature
value types are typical examples of enumeration types:

enum NUMBER {sg, pl};
enum GENDER {masc, fem, neut};

Structured Types

Structured feature types are used to group a set of features. The definition of a structured
feature is analogous to that of a category, except for the new keyword struct.

'The following spelling conventions will be used throughout this book, although they are not enforced by
the grammar formalism. Categories and feature types are upper case. Feature names are capitalized. Feature
values and variables are lower case. Variables usually have one or two characters and feature values three or
more characters.
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struct AGR {
NUMBER Number;
GENDER Gender;
CASE Case;
};

The types of the features in such a definition must have been defined before. Therefore cyclic
feature definitions, where a feature has the same type as one of its subordinated features, are
excluded unless there is an intervening feature of type FS_LIST.

2.1.3 Variable Declarations

Variables create dependencies between features in grammar rules. A variable declaration
resembles a feature declaration: it consists of the type of the variable followed by the name
of the variable and a semicolon. Variable declarations are always global, i.e. there is always
exactly one declaration for a given variable name. Nevertheless, the value of a variable is
always defined locally to a rule. In other words, each rule uses its own copy of the variable. All
feature types (STRING, FS_LIST, enumeration types and structured types) and the restrictor
types introduced in the next section are valid variable types.

AGR a;
STRING p1;

Restrictor Types

Restrictor types are special variable types. They are used to exclude certain features from
being unified when two complete feature structures are unified. When the feature structures
of a trace node and its filler are unified, for instance, the Phon feature has to be excluded
because the Phon feature of a trace is always the empty string.

The declaration of a restrictor type starts with one of the keywords restrictor+ and
restrictor- followed by the name of the restrictor type, a category name enclosed in paren-
theses, a list of feature names enclosed in braces and a terminating semicolon. The list of
features has to be a subset of the set of features defined for the given category. The difference
between the two keywords is the following: restrictor+ instructs the compiler to unify all
features on the list, whereas restrictor- instructs the compiler to unify all features which
are not on the list.

The following statements define the restrictor types NP_R and NP_R2 and the variables np
and np2. Variable np might be used to unify the feature structure of an NP argument with
a feature structure on the Subcat list of the verb. Variable np2 might unify the feature
structure of an NP trace with the feature structure of its filler and variable np3 could check
agreement between a relative pronoun and the preceding noun. See the next section for two
sample rules.

restrictor- NP_R(NP) {3};
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restrictor- NP_R2(NP) {Phon};
restrictor+ NP_R3(NP) {Number, Gender};
NP_R np;

NP_R2 np2;

NP_R3 np3;

Remark: The restrictor types only make grammar development more convenient in contrast
to the restrictor functions in [Shieber, 1992] which are needed to guarantee termination of
the parsing process.

2.2 Grammar Rules

A grammar rule in the YAP formalism consists of a mother node specification, followed by an
arrow, a sequence of daughter node specifications and a semicolon. Each node specification in
turn consists of a category name and a set of feature constraint equations which are enclosed
in braces. One of the daughter nodes is marked as the head daughter with a backquote (‘) in
front of the category name.

NP {Phon=cat(pl,p2);Number=n;Gender=g;Case=c;} ->
DT {Phon=p1;Number=n;Gender=g;Case=c;}
‘N {Phon=p2;Number=n;Gender=g;Case=c;};

A constraint equation consists of a feature path, an equals sign (=), a feature value and a
terminating semicolon. Possible feature values are variables, constants, function terms and
feature structure lists. The only function currently defined is the string concatenation operator
cat. A function term therefore consists of the function name cat and a comma-separated
list of arguments which is enclosed in parentheses. Variables of type STRING are the only
accepted arguments. The type of such a function term is also STRING.

A Feature path is a sequence of feature names which are separated by dots (.). Each feature
must have been declared as a subfeature of the feature value type of the preceding feature in
the sequence. The first feature must have been declared as a feature of the current category.

If the list of feature names in a feature path is empty, the constraint equation has to move
behind the closing brace and the terminating semicolon is dropped. So, instead of NP{=np;},
we get NP {}=np.

A feature structure list consists of a set of comma-separated node specifications optionally
followed by a vertical bar (]) and a variable of type FS_LIST. It is enclosed in square brackets.
This notation is analogous to the notation in the Prolog programming language if we ignore
the fact that Prolog variables have to be capitalized. The type of a feature structure list is
FS_LIST.

The following grammar rule unifies the first element of the Subcat list with the feature
structure of the argument and propagates the remaining arguments to the parent node.

VP {Subcat=r;} -> ‘V {Subcat=[NP{}=nplr];} NP {}=np;
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If a node is marked with an asterisk (*) after the category name, then it is a trace node and
it generates an empty string.

The following rule generates an NP trace node whose feature structure is unified with the first
element of the Subcat list. Furthermore the NP feature structure minus the Phon feature is
unified with the element on the Slash list of the parent node. The next rule generates the
subject of the sentence and percolates the Slash feature. The last rule generates the filler and
unifies its feature structures with the feature structure on the Slash list. Fig. 2.2 shows the
parse tree for the clause “who Mary loves”.

VP {Subcat=r;Slash=[NP{}=np2];} ->

‘V {Subcat=[NP{}=nplr];Slash=[];}

NP*{}=np=np2;
S {Slash=r;} -> NP {}=np ‘VP {Subcat [NP{}=np];Slash=r;};
SBAR {} -> NP {}=np ‘S {Slash=[NP{}=npl;};

The feature path on the left side and the value on the right side of a constraint equation must
have the same type. If the feature path is empty, then the value must bear a restrictor type
for the category of the corresponding node. If the feature path is not empty, then the type
of the last feature in the path has to be identical to the type of the right side.

Structured features often simplify grammar rules. With a structured Agr feature as declared
above and an appropriate declaration of the NP category, it is possible to simplify the above
NP rule. A single constraint equation is now sufficient to enforce agreement in number, gender
and case.

category NP {
STRING Phon;
AGR Agr;
s

NP {Phon=cat(pl,p2);Agr=a;} —>

DT {Phon=pl;Agr=a;}
‘N {Phon=p2;Agr=a;};

2.3 Lexicon Entries

A lexicon entry in the YAP formalism consists of the word form enclosed in double quotes
(") followed by a colon (:), a node specification and a semicolon. If there is more than one
lexicon entry for a word form, the different entries constitute alternatives.

"him" : NP {Agr.Number=sg;Agr.Gender=masc;Agr.Case=acc;};
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2.4 Further Grammar Elements

So far, the essential parts of the YAP grammar formalism have been presented. The formalism
contains some additional features mainly to facilitate grammar development by reducing the
redundancy in grammar descriptions.

2.4.1 Templates

If a set of constraint equations is repeated in several rules, it is useful to define a template
for it. A template definition consists of the template name, a colon (:), a node specification
and a semicolon. Templates and lists of &-separated templates can replace category names in
node specifications.

NPsg: NP {Agr.Number=sg;};

NP3: NP {Agr.Person=3rd;l};
NPacc: NP {Agr.Case=acc;};

NPm: NP {Agr.Gender=masc;};
NPf: NP {Agr.Gender=fem;};

NP3sma: NPsg & NP3 & NPacc & NPm {};
NP3sfa: NPsg & NP3 & NPacc & NPf {};

"him": NP3sma {};
"her": NP3sfa {};

The compiler expands the templates by adding the constraints from the template definition
to the constraints of the current node. The scope of variables is always local to a template
definition, lexicon entry or grammar rule. In other words, the compiler renames the variables
used in a template before it is expanded.

2.4.2 Generic Entries

Some classes of words like numbers are difficult or even impossible to list exhaustively because
there are so many of them. Generic lexicon entries may be used to provide lexical information
for a predefined set of such word classes.

In a generic entry, the quoted word form is replaced by either <cardinal>, <ordinal>,
<propername> or <default>>, defining entries for cardinal numbers, ordinal numbers, proper
names and other unknown word forms, respectively.

Generic entries have low priority. They are only accessed if there is no regular lexicon entry
for a word. Among the generic entries, default entries have lower priority than the others.
They are only accessed if no other generic entry matches.
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2.4.3 Feature Inheritance

The mother node of a rule and its head daughter usually share a large set of features. In order
to relieve the grammar designer from the tedious task of writing all these constraints and to
keep the grammar more concise and easier to read, the YAP compiler automatically inserts a
constraint whenever a feature is undefined otherwise. The corresponding feature inheritance
rule states that

1. if the value of a feature of the head daughter is unspecified, and
2. a feature with the same name and type is declared for the mother node,

then add a constraint which unifies the values of both features.
A similar rule applies in the other direction:

1. If the value of a feature of the mother node is unspecified, and
2. a feature with the same name and type is declared for the daughter node,

then add a constraint which unifies the values of both features.

Sometimes, the default inheritance rule has undesired effects. Section 2.4.6 will show how it
is overridden.

2.4.4 Automatic Features

There are some features which are usually declared for all categories and which are always
computed in the same way. This is the case for the Phon feature which contains the portion
of the input string which is covered by a constituent.

The compiler will automatically insert declarations for the Phon feature and constraints for
the computation of its value if the grammar contains the command:

auto Phon;

Besides Phon there is another automatic feature called HeadLex which contains information
about the lexical head of a constituent. The value of the HeadLex feature is automatically
defined by the feature inheritance rule. In lexicon entries, however, the value of the HeadLex
feature has to be specified by the grammar writer.

"cats": N_pl {HeadLex="cat";};
Since the feature inheritance rule is a default rule which applies only if a feature is undefined
otherwise, it can be overridden. In the following rule for noun compounds, e.g., the value

of the HeadLex feature of the mother node is defined as the concatenation of the HeadLex
features of the daughter nodes.

N {HeadLex=cat(hl,h2);} -> N {HeadLex=hl;} ‘N {HeadLex=h2;};
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2.4.5 Disjunctive Values

Linguistic entities are often ambiguous. A good example is the German determiner die which
is either feminine singular or a plural form of any gender. Independently of this alternative,
the case of die is either nominative or accusative (cp. table 2.1).

masc sg fem sg neut sg | masc pl fem pl neut pl
nominative X X X X
genitive
dative
accusative X X X X

Table 2.1: Morphosyntactic features of the German determiner die

Four lexicon entries are needed for die:

"die" : DT {Gender=fem;Number=sg;Case=nom;};
"die" : DT {Gender=fem;Number=sg;Case=acc;l};
"die" : DT {Number=pl;Case=nom;};
"die" : DT {Number=pl;Case=acc;};

The third and the fourth entry each covers three possibilities since gender is unspecified.
Leaving the value of the case feature ambiguous between nominative and accusative would
further reduce the number of entries to two. To this end, disjunctive feature values are
introduced into the formalism. A disjunctive feature value is a list of comma-separated
constant values which is enclosed in parentheses.

"die" : DT {Gender=fem;Number=sg;Case=(nom,acc);};
"die" : DT {Number=pl;Case=(nom,acc);};

2.4.6 Dummy Values

Sometimes it is necessary to block the feature inheritance rule. In the NP-coordination rule
below, the Number and the Person feature of the coordinated NP are different from that of
the head daughter. Feature inheritance is inhibited by assigning a disjunction of all possible
values to the corresponding features of the daughter node.

NP {Number=pl;Person=3rd;} ->
NP {} CC {HeadLex="and";}
‘NP {Person=(1st,2nd,3rd) ;Number=(sg,pl);};

Enumerating the possible values takes a lot of space and is not always possible (e.g. not for
STRING features). The dummy value * can be used instead. It marks the respective feature
value as specified without restricting it in any form.
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NP {Number=pl;Person=3rd;} ->
NP {} CC {HeadLex="and";}
‘NP {Person=x*;Number=x;};

The dummy value is also used as a proxy for elements on feature structure lists. In the
following rule, the Subcat value of the VP node is a list with one element of an arbitrary
category.

VP {Subcat=r;Subcat=[*]1;} -> ‘V {Subcat=[NP{}=npl|r]l;} NP {}=np;

2.4.7 Abbreviations

An expression of the form XP{}=xp may be abbreviated as xp if it is embedded, i.e. if it is an
element of a feature structure list.

A set of constraint equations with the same left hand side like f=a; f=b; can be contracted
to one equation f=a=b;. A set of feature or variable declarations with the same type is also
contractable, e.g. FS_LIST Subcat,Slash; or STRING pl,p2;.

A shorter version of the above VP rule is:

VP {Subcat=[*]=r;} -> ‘V {Subcat=[npl|r]l;} NP {}=np;

2.5 Missing Features in the Formalism

Although the YAP formalism is a simple grammar formalism, it is nevertheless expressive
enough to allow for a linguistically motivated description of syntactic phenomena more or
less along the lines of HPSG theory [Pollard and Sag, 1994]. However, the descriptions are
sometimes less general in the YAP formalism because it is based on explicit phrase struc-
ture rules rather than on general principles about well-formedness. Some features which are
familiar from other grammar formalisms are missing in the YAP formalism. These will be
discussed now.

2.5.1 Semantic Representations

Feature structures are sometimes used to integrate phonological, syntactic, semantic and
other information in a single data structure. Since all the information is available at the same
time, constraints from different levels of linguistic analysis can be processed in parallel. It is
even possible that one and the same constraint refers to information from linguistic levels as
different as, say, phonology and pragmatics.

For several reasons, YAP does not follow this approach. First, it is contrary to the con-
cept of modularization, which is generally regarded as an important technique for keeping
large software projects manageable by splitting them into separate modules, which hide ir-
relevant information from each other. Large NLP development projects like the Verbmobil
project [Wahlster, 1993] consequently use modular systems with separate components for
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speech recognition, parsing, semantic construction, discourse analysis, transfer and genera-
tion, and specify well-defined interfaces.

Some experiments also indicate that modularization is advantageous with respect to process-
ing speed. Kasper and Krieger [Kasper and Krieger, 1996] report a speedup of their HPSG
parser resulting from delaying semantic construction to a second pass after parsing. A delay
mechanism was also implemented in the Alep grammar development system [Simpkins, 1994].

There is also reason to believe that different processing strategies are required for syntactic
analysis and semantic construction. During parsing it is important to eliminate invalid anal-
yses as quickly as possible. Few analyses usually remain after parsing, and for most of them,
a consistent semantic representation can be built. Therefore the size of the search space is a
problem in parsing but not in semantic construction. Of course, there is often a large search
space to be explored after the initial semantic representation has been built in order to find
e.g. antecedents for pronouns and information satisfying presuppositions. These tasks are
more or less orthogonal to the task of semantic construction, however, and are, again, best
accomplished in separate steps.

On the other hand, the size of the feature structures is more or less constant during parsing (if
the grammar is designed appropriately, s. section 2.6), whereas it grows about linearly with
the number of dominated nodes during semantic construction. The number of alternative
semantic representations for a constituent often grows exponentially with sentence length,
because the semantic representation of a node reflects syntactic ambiguities. Hence an efficient
representation of ambiguity in feature structures is essential for semantic construction, but
not so for parsing.

Since the requirements on syntactic parsing and semantic construction are so different, it
seems more promising to develop specialized processing strategies for both of them. Algo-
rithms for semantic construction have been presented in [Schiehlen, 1996] and [Doérre, 1997].

2.5.2 Type Hierarchies

Feature structures in the YAP formalism are typed, but in contrast to many other typed
grammar formalisms, the types are not ordered. In this respect, the features types of YAP
resemble data types of programming languages like Modula or C. Type checking is mostly
done at compile time and there is no need for type inference at runtime.

Feature types mainly serve two purposes in the YAP formalism: They extend the error detec-
tion capabilities of the compiler compared to untyped formalisms like the Lezical Functional
Grammar and they allow a more efficient representation of the feature structures.

Feature types mainly define the structure of feature structures. If the type of a feature
structure is known, it is possible to deduce the whole feature tree except for the values of
terminal nodes and the number and the categories of feature structure list elements. These
two define the informational content of the feature structure.

The typing system restricts the grammar designer with respect to the granularity of the
grammar rules. While it easy to make a grammar rule more specific by adding further feature
constraints, there is a limit to the level of abstraction because grammar rules cannot abstract
over categories. Therefore it is necessary e.g. to write a coordination rule for each category
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which might be coordinated instead of one general rule for all of them. Using a single category
X for all feature structures is not a practical solution to this problem because it would mean
that all feature structures have the same set of features. It follows that certain generalizations
which are desirable from a linguistic point of view cannot be expressed in the YAP formalism.

2.5.3 Head Movement

In contrast to argument movement, the YAP formalism provides no general mechanism for
head movement, though it is possible to generate a head trace together with a non-empty
constituent as e.g. in the following rule:

VP {Subcat=r2;Slash=[v_pl;} ->
‘V* {Aux=+;VForm=fin;Subcat=[vp_plr2];}=v_p
VP {Subcat=r2;Slash=[];}=vp_p;

It would be better to handle this type of movement more generally with a lexicon entry for
verb traces and a more general VP rule which is needed anyway:

VP {Subcat=r2;Slash=r;} ->
‘V {Aux=+;VForm=fin;Subcat=[vp_pl|r2];}
VP {Subcat=r2;Slash=r;}=vp_p;
"V {Aux=+;VForm=fin;Slash=[V{Aux=+;VForm=fin;Slash=[];}];};

Such a rule is problematic, however, because the context-free part of the grammar is weakened
to the point where it hardly constrains anything. Just assume that the grammar also contains
the following rules:

VP {...2 >V {...}; % intransitive verb
S{...} >0NPx {...} VP {...}; % Wh-movement of a subject
SBAR {...} > NPx {...} S {...}; % relative clause without relative
% pronoun, e.g. "the film I saw yesterday"

The context-free part of this grammar is able to generate vacuous V’s, VP’s, S’s and SBAR’s
at any position of the input string. Due to this problem, a general mechanism for head
movement has not been included in the YAP formalism.

2.5.4 Unrestricted Feature Structure List Elements

Feature structure lists (FS_LIST) are used to implement subcategorization lists and Slash
features. The elements of feature structure lists are restricted to be feature structures of a
category type. This contrasts with current HPSG theory where the elements of subcat lists
are synsem values rather than signs in order to enforce the linguistically motivated constraint
that a lexical item not refer to the phonology or constituent structure of its arguments. The
otherwise unmotivated union of syntactic and semantic features to the synsem feature is the
price paid for this.
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The YAP formalism is not intended to enforce linguistically motivated constraints. The re-
strictor types exclude the features which are not to be unified, allowing the grammar designer
to define flatter and more readable feature structures.

So far, there was no real need to allow other elements than categorial feature structures on
feature structure lists.

2.6 Grammar Design Considerations

The major advantages of the YAP formalism compared to other formalisms are extensive
error detection capabilities and ease of efficient implementation.

For maximal parsing efficiency, however, the grammar designer should adhere to the rule
that the feature structure of a node only contains information which is relevant to its syn-
tactic behaviour. Semantic representations have to be built by a separate module specifically
designed for this task as discussed in section 2.5.1. Explicit links to the feature structures
of daughter nodes (like the Daughters feature in HPSG) are to be avoided. They merely
replicate information already contained in the chart of the parser. Finally, information about
arguments should not be propagated upward in the parse tree once the argument has been
generated. HPSG-style Subcat lists, where elements are cancelled from the list as soon as
they are generated, are appropriate, whereas LFG-style argument slots are problematic be-
cause their information is propagated to the root node in order to build a simple semantic
representation.

These grammar design rules do not restrict the syntactic phenomena which the grammar
writer is able to describe, but merely the way they are described.
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Figure 2.1: A sample parse tree
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SEAR [ Rule 0
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Figure 2.2: Parse tree with feature structures illustrating the Slash percolation mechanism.



Chapter 3

Theoretical Foundations

In the previous chapter, the grammar formalism of YAP has been presented. In this chapter,
we will formally define a feature logic for the grammar constraints. Feature trees will be
introduced as models for the feature logic and an algorithm for the computation of the feature
trees will be presented and its correctness will be proved. Finally, it will be shown how YAP
constraints are converted to formulas of the feature logic.

As in Shieber’s dissertation, the presented feature logic is based on its own set of axioms
rather than on standard predicate logic. This seems a reasonable approach since we are
mainly interested in a proof of the correctness of the parsing method. All definitions and
proofs which do not directly relate to the parsing algorithm can be found in similar form in
[Shieber, 1992]. The purpose of this chapter is not to introduce a new feature logic but to
prove the correctness of the presented parsing method. Readers familiar with Shieber’s thesis
may skip sections 3.1 and 3.2.

The notation in this chapter is partially adopted from [Shieber, 1992]. If nothing else is
stated, p,p’,q,r will denote feature paths, ¢, will denote constants and v,v’ will denote
entities which are either constants or feature paths. ¢ and ¢ will denote single constraints
and ® and ¥ will denote sets of constraints. A set of feature constraints will be called a
formula of the feature logic.

3.1 The Feature Logic

The definition of the feature logic follows the definition in [Shieber, 1992].

Definition 1: A feature path is a finite sequence of labels from a finite set of feature labels
L. Path is the set of all feature paths.

A feature path will be written as a sequence of labels which is enclosed in angle brackets, e.g.
(fif2 ... fn). Concatenation of paths is notated with a the center dot (‘).

The length of a feature path p (written |p|) is defined in the obvious way.

Definition 2: A constraint equation is an equation of the form p=g¢ or the form p=c,
where p and g are feature paths and c is a constant from a set of constants C.

19
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The symbol = is used rather than = in order to avoid confusion with the equality symbol of
the meta-language.

We will now define what it means for a constraint set to be consistent. The definition formal-
izes the requirements that feature structures cannot be atomic and compound at the same
time (constant/compound clash), and that the label of an atomic feature structure is unique
(constant/constant clash).

Definition 3: A set of constraint equations is consistent iff it does not entail a pair of
constraints of either of the following two forms:

Constant/constant clash: p=c and p=c where ¢ # ¢ or
Constant/compound clash: p=cand p- (f) =v.

Entailment in the feature logic is defined by the inference rules:

Triviality: F (=)
Symmetry: p=q F q=p
Reflexivity: p-r=v kF p=p

Substitutivity: q=p, p-r=v F qg-r=v
® I ¢ means that ¢ is deducible from ® by means of the above inference rules.

Definition 4: A set of constraint equations @ is called cyclic if two feature paths p and ¢
exist such that ¢ # () and @+ p-g=p.

We will now prove that the length of the feature paths in all constraints which are deducible
from an acyclic set of feature constraints is limited by a constant. This lemma will help us
to prove that the feature computation algorithm to be presented in section 3.4 terminates.

Lemma 1: If @ is a finite, acyclic set of constraint equations, then there is an N € N such
that for all constraints ¢ = p=v which are deducible from ®, the length of path p is shorter
than N.

Proof: We prove this lemma with a pigeon hole argument and set N := 2+ > - 4 |p| +
gl =1+ 2= cen IPI-

We will first show that at most N — 1 many different feature paths are defined, i.e. there
are at most N — 1 many feature paths pi,po,...,pn—1 such that Vi<;«n[3,® F p; =v and

Vi<jen;izi® ¥ pi =pjl.

Each constraint equation p=gq € ® introduces two paths, namely p and q. Because of p=gq,
the constraint adds at most one new path to the set of different paths. Each constraint
equation p=c € ® also adds at most one new path to the set of different paths.

The Triviality inference rule adds at most one new path, namely the empty path () to the
set of different paths. The Symmetry rule does not add any new paths. The Reflexivity rule
adds for a rule of the form (fi fo... f,)=c at most n — 1 new paths to the set of different
paths. (The empty path has already been added by the Triviality rule and (fifs... f,) has
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been added as well.) Similarly, the Reflexivity rule adds at most |p| + |¢| —2 new nodes for a
constraint p=gq.

The Substitutivity rule g=p,p-r=v F ¢ - r=wv does not add any new paths to the set of
different paths because for any g-7’ with = r'-r" (including r = r'), it follows that g-r' =p-r'.
(Proof: g=p,p-r=vkp-r"=p-r'tq-r=p-1)

Therefore there are at most N —1=1+3% . ¢(|p|+lg| = 1) + 22, - .c |p| many different
paths. Now assume that ® + p=v for some p with |[p| > N, then ¢=gq follows by the
Reflexivity rule for all ¢ such that ¢q-r = p for some r. There are at least N many such gq.
Because there are less than N many different paths, it follows that ¢ = ¢ - r with r # () for
two prefixes ¢, q - r of p. Hence the set of constraints must be cyclic in contradiction to the
assumption that it is not. O

3.2 Feature Structure Models

In this section, we will define models for feature constraint sets. Stuart Shieber considers in
his dissertation [Shieber, 1992] a range of feature structure models and assesses them in terms
of denotational soundness, logical soundness, logical completeness, minimal model existence,
categoricity, finiteness of minimal models and computability of operations. These properties
of models are defined as follows:

Property 1: (DENOTATIONAL SOUNDNESS) For all formulas ® from a feature logic £,
if there is a model M in the set of models M such that M |= ®, then @ is consistent.

Denotational soundness implies that models exist only for consistent feature constraints.

Property 2: (LOGICAL COMPLETENESS) For all formulas ® and ®' of £, if all models
of @ are also models of @', then ® - @',

Logical completeness requires that logical inferences hold for all semantically entailed formu-
las.

Property 3: (DENOTATIONAL COMPLETENESS) For all formulas ® of L, if ® is con-
sistent, then there is a model M € M such that M |= ®.

There must be a model for each consistent set of formulas.

Property 4: (LOGICAL SOUNDNESS) For all formulas ® and ®' of £, if ® - @', then all
models of ® are also models of ®’.

Property 5: (CATEGORICITY) For any two distinct models M and M’ there exists a
formula @ such that either M |= ® and M’ [£ ® or vice versa.

Categoricity requires that any two models are distinguished by some formula. We now define
an ordering on models (called subsumption) such that a model subsumes another model if it
has less information, i.e. it satisfies fewer formulas.

Definition 5: A model M subsumes another model M’ (written M < M') iff for all formulas
® of L, M' = ® whenever M = ®.
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For computational purposes, it is useful to have a unique minimal model for each consistent
formula. All computations will be carried out on these minimal models.

Property 6: (MINIMAL MODELS) if ® is a consistent formula, then there is a model M
such that M = @ and for all M’ such that M’ }= @, it is the case that M < M'.

There is a class of models which has all the above properties, namely the feature graphs. Fea-
ture graphs are rooted, directed graphs with labelled arcs and labelled terminal nodes. They
form canonical models for the feature logic in the sense that two sets of feature constraints
are logically equivalent if and only if their minimal models are equivalent. Therefore it is
possible to replace operations on constraint sets by operations on the feature graphs which
model the constraint sets. In particular, it is possible to compute a model for the union of
two constraint sets by unifying their minimal feature graph models.

Graph models are well-suited models for the feature logic, but they are not the only possible
models. One alternative are finite trees. Finite trees are trees with labelled arcs and terminal
nodes. They are the simplest feature structure models that Shieber considers. He identifies
the following problems with finite tree models (feature trees):

e Feature trees are not denotationally complete because they fail to model cyclic feature
structures. There is no feature tree, e.g., which satisfies the constraint () =(f). (A
feature graph satisfying this constraint is shown in fig. 3.1)

e Feature trees are not logically complete (if the set of labels is finite). Each model for
the formula ® = {(fx)=al|f € {f1, fo},z € L} also models ¢ = (f1) = (f2). However,
® 4 ¢. This problem arises because feature equality in feature trees is extensional (two
features are equal if they have the same value) whereas equality in the feature logic is
intensional (two features p and ¢ are only equal if an explicit equality constraint p=gq
is entailed by the constraint set).

f

9

Figure 3.1: Cyclic feature structure

As Shieber notes, the denotational completeness of feature trees is recovered if cyclic con-
straints and infinite constraints are disallowed. Because neither of these types of constraints
seems useful as a syntactic constraint!, this restriction is acceptable for syntactical analysis.

Logical completeness of feature trees is recovered if feature trees contain additional informa-
tion about which features have been set equal. Shieber calls this type of model Eqtree. We
will not consider them here because they offer no advantages over feature graphs.

Although simple feature trees are not the ideal models for feature constraints from a theoret-
ical point of view, they are nevertheless useful to implement a parser because their represen-
tation and manipulation is very efficient. Using feature trees to represent feature structures
has some consequences, however:

!Cyclic constraints might be useful to encode the semantics of so called “liar” sentences like ¢‘This
sentence is false’’ [Barwise and Etchemendy, 1988]. But we are not concerned with semantics, here.
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e Constraints defining cyclic feature structures have to be disallowed. It is possible to
detect cyclic feature constraints within a single rule at compile time, but it is not clear
how this could be done for the grammar as a whole. A simple heuristic can be used in
practice to detect the other cases at runtime. This heuristic limits the depth of feature
structures to a fixed maximal value, e.g. 10. If a feature structure exceeds this limit,
the parser will stop and report an error. This heuristic is not applicaple, of course, if
the grammar is known to generate feature structures of arbitrary depth. But this is
unlikely for an appropriately designed grammar (comp. section 2.6).

e [t is not possible to distinguish whether two features values are incidentally the same
or because some constraint enforces agreement. Some syntactic theories make use of
this distinction in the analysis of reflexives. Here, it would be necessary to move the
application of the respective constraints to semantic construction.

e [t is not possible to compute a model for the union of two constraint sets simply by
unifying the feature trees which form minimal models for the two constraint sets.

e Since feature trees cannot represent equality constraints, a problem arises in case of
disjunctive feature values: If there are two features in a feature tree with the same
disjunctive value, then we are only allowed to choose the values from the disjunction
independently for both features if no equality constraint exists. However, since the
equality information is missing in feature trees, there is no way to decide which combi-
nations of feature values are valid.

The third point is related to the fact that feature trees are not logically complete. Feature
tree (a) in figure 3.2, for example, is a minimal model for ®; = {(f) =(¢g)} and feature tree
(b) is a minimal model for &3 = {(gf) = (gf)}. Feature tree (c) results from unifying (a) and
(b), but it is not a model for the union of constraints ® = ®; U ®9 because (c) violates the
constraint (f) = (g). The minimal feature tree model for ¢ is shown in figure 3.2 as (d).

A

(@ (b) (© (d)
Figure 3.2: Sample feature trees

The problem arises because feature tree (a) fails to represent the constraint that the values of
f and g have to be equal. Hence feature f is not updated together with g as it ought to be.
Note however, that (c) subsumes (d), the minimal model for ®. This is always true. If the tree
unification had failed, then ® would have been inconsistent. YAP exploits this property by
computing a sequence of increasingly larger feature trees which subsume the minimal model
for the constraints at a node and finally converge to this minimal model.
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Feature trees will now be formally defined as partial functions from the set of labels to the
set of feature structures. We follow the presentation in [Shieber, 1992]. From now on, the
terms “feature structure” and “feature tree” will be used interchangeably.

Definition 6: The set 77, ¢ of feature structures is defined as 77, c = Uizo T;, where To = C
is the set of atomic feature structures, and 7; is the set of all partial functions from L to
Uj<i 7j. L is the feature structure with dom(f) = 0.

F(f) is the value of feature f in feature structure F. This notation is extended to paths by
defining F((f1... fn)) == F(f1) ... (fn)-

L is the most general feature structure and contains no information.

Definition 7: A feature structure F' subsumes another feature structure F’, written F < F”,
iff either

e F=cand F' =¢, withce C or
i VfEdom(F) fEdom(F')/\F(f) SF,(f)

Shieber calls this the natural partial ordering. It does not exactly match the definition of
subsumption in definition 5 because there are feature trees F' and F’ such that F' < F’, but
F = ¢ and F' }£ ¢ for some constraint ¢. For example, feature tree (a) in figure 3.2 subsumes

feature tree (c), but feature tree (a) satisfies the constraint (f) = (g) whereas feature tree (c)
does not.

Definition 8: The unification of two feature trees F' and G (written F' U G) is defined as
follows:

e FUG=F,iftFeCand G F (Note that L < F according to def. 7.)
e FUG=G,ifGeC and F <G
e FFLUG =TT, if either

—FeCand G LF,or
—GeCand F LG, or
— F(f)UG(f) =T for some feature f € dom(F) U dom(G)

e otherwise, dom(F UG) = dom(F') Udom(G) and

—(FUG)(f) = F() if f ¢ dom(G)
— (FUG)(f) = G(f) if | ¢ dom(F)
- (FUG)(f)=F(f)UG(f)if f € dom(F)Udom(G)

A feature structure is a model for a set of constraints if it satisfies those constraints. We will
now define what it means when a feature structure is said to satisfy a constraint.

Definition 9: A feature structure F' satisfies an equation p=v (written F' |= p=wv) iff
either
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e v is a path ¢ € Path, and F(p) as well as F(q) are defined, and F(p) = F(q) or

e v is a constant ¢ € C and F(p) is defined and F(p) = c.

A feature structure F' satisfies a set of constraint equations @ iff it satisfies each equation
PP

Now, we define an operator which creates a new feature structure from a set of feature
structures by linking the feature structures as feature values to the root node of the new
feature structure.

Definition 10: The embedding | |;c; Fy\ f is the partial function F' with domain dom(F) = I
and F(f) = Fy for all f € 1.

If I contains only one element, the abbreviation Fy \ f will be used.

This complex embedding operator is defined directly rather than in terms of an elementary
embedding operator '\’ and a unification operator 'L’ to simplify some proofs.

Definition 11: A set of constraint equations ® will be called a description of a feature
structure F, written desc(F), if ® = {p=c| F(p) =c¢, c€ C}U{p=p | F(p) is defined}.

The description of a feature structure contains all constraints which are satisfied by the feature
structure except for equality constraints. It is a comprehensive description of the information
contained in the feature structure. (Remember that equality constraints are not represented
in feature trees.)

Definition 12: The size of a feature tree F', size(F'), is recursively defined as follows:

o 1 ifFeC
size(F) = 5 redom(r) Size(F(f)) + 1 otherwise

We will now show that the subsumption relation on feature trees is reflexive, antisymmetric
and transitive, and that it is therefore a partial order.

Lemma 2: (REFLEXIVITY) For all feature structures F' it is the case that F' < F.
Proof: This follows from definition 7. O

Lemma 3: (ANTISYMMETRY) Feature structure F' subsumes feature structure F’ and

F' subsumes F iff F = F'.
Proof:

‘<" F = F' entails F < F' and F' < F according to the definition of subsumption.

=" F < F'"and F' < F entails F' = F'.
Induction hypothesis: Lemma is valid for feature structures from (Ji*, 7; where m < n.

F €7y Fis an atom ¢ € C. From F € C and F' < F follows F' = ¢ according to the
definition of subsumption.
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F € T,: F is a partial function. From F < F’ follows according to the definition of sub-
sumption that Vicgomry f € dom(F') A F(f) < F'(f) holds. From F' < F follows
that Vicgom(ry f € dom(F) A F'(f) < F(f) holds. Therefore dom(F) = dom(F') and
Vtcdomm) F'(f) < F'(f) NF'(f) < F(f). With the induction hypothesis we can conclude that
Vicdom(r)F(f) = F'(f) and therefore F' = F". O

Lemma 4: (TRANSITIVITY) If F < F' and F' < F", then F < F".

Proof: There are two cases. If F'is a constant ¢ € C, then F' = F' and F' = F" by definition 7.
Otherwise, F(f) < F'(f) and F'(f) < F"(f) for all f € dom(F). F(f) < F"(f) follows by
induction over the length of the longest path in F' O

Now we prove some lemmata which will be needed later to prove the correctness of the parsing
algorithm.

Lemma 5: If feature structure F' subsumes feature structure F’ and F(p) with p € Path is
defined then F’(p) is defined and F(p) < F'(p).

Proof by induction over the length of path p.

Lemma 6: If feature structure F' does not subsume feature structure F’, then a constraint
equation p =wv exists with p € Path and v = p or v € C such that F = p=v and F' £ p=v.

Proof:
Induction hypothesis: Lemma is valid for feature structures from (Ji*, 7; where m < n.

F € Typ: We choose p := () and v := F with F' € C (remember Ty = C). F |= p=wv follows
because of F({)) = F = v (see def. of feature structures) and from F £ F’ follows that F' # v
and F' }£ () =v.

F € T,: F is a partial function from L to U?:_()l 7; and because of F' £ F' there is a feature
f € dom(F) with f ¢ dom(F')or F(f) £ F'(f). If f ¢ dom(F"), then (f)=(f) is a constraint
equation which is satisfied by F' but not by F’.

Otherwise F(f) £ F'(f) and since F(f) € U’y T, there is an equation p=v with p € Path
and v = p or v € C such that F(f) = p=v and F'(f) £ p=v (induction hypothesis).

If v = p, then F(f)(p) exists, but F'(f)(p) does not. Therefore F = (f) - p=(f) - p and
FUE(f) -p=(f)-p-

If v e C, then F(f)(p) =v and F |= (f) - p=v. Because of F'(f) £ p=v we conclude that
F'(f)(p) # v and therefore F' [~ (f) - p=w. O

Lemma 7: F subsumes F' iff F' = desc(F).
Proof:

‘=" If F subsumes F' then F' = desc(F)

Otherwise there are feature structures F, F’ with F < F’ and an equation p=v € desc(F)
such that F' £ p=v. According to the definition of desc, v is either equal to p or a constant
from C. Since p=v € desc(F), F must satisfy p=v and therefore F(p) must be defined.
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From F < F’ and lemma 5, it follows that F’(p) is defined as well. However, if v = p then
F' = p=wv in contrast to the above assumption. Therefore v must be a constant from C
and F(p) = v. However, since F' subsumes F' and F(p) = v, it follows that F'(p) = v and
therefore F' = p=wv, again in contrast to the above assumption.

‘< If F' |= desc(F) then F subsumes F'

Otherwise there are feature structures F, F’ such that F' |= desc(F) and F £ F'. From
F £ F' follows according to lemma 6 that a constraint p=v with v = p or v € C exists
such that F |= p=v and F' [£ p=v. However, it follows that p=v € desc(F') and therefore
F' B~ desc(F') in contrast to the initial assumption. O

Lemma 8: F(p) E @ iff F | ®[() — p| where ®[p — ¢| denotes the replacement of all
paths in @ of the form p-r with ¢ - r.

Proof: see [Shieber, 1992] page 89.

Lemma 9: F|=Qiff F\ f | Q[) — (f)]

Proof: Replacing F' with F'\ f and p with (f) in lemma 8, we get (£ \ f)((f)) F @ iff
F\ f E ®[() = (f)]- From the definition of embedding follows (F'\ f)({(f)) = F. O

Lemma 10: If feature structure F is defined, then a feature path p exists such that F(p) = v
with v € CU{L}.

Proof:
Induction hypothesis: Lemma is valid for feature structures from (Ji*, 7; where m < n.
F € Ty: In this case, F' = ¢ with ¢ € C' and we choose p := () so that F(p) = F({)) = F =c.

F € T,: Here F is a partial function from L to U?=) 7;. If dom(F) = (), then we choose
p = () so that F'(p) = F(()) = L holds. Otherwise, there is a feature f € dom(F) such that
F(f) is defined. According to the induction hypothesis, there is a feature path r such that
F(f)(r) = for some ¢ € CU{L}. In this case, F(p) = ¢ holds for p := (f)-r and c:=¢. 0O

Lemma 11: (LOGICAL SOUNDNESS) For all F € T ¢ and all sets of equations ®, if
F = ® and ® F ¢ then F |= ¢.

Proof: see [Shieber, 1992] page 90.

Lemma 12: The size of a feature structure F, size(F), is always finite.

Proof by induction over the depth of F.

Lemma 13: If feature structure F' subsumes feature structure F’, then size(F) < size(F").
Proof:
Induction hypothesis: Lemma holds for feature structures in (J;~, 7; where m < n.

F € Ty: In this case, F' = ¢ with ¢ € C and, according to the definition of subsumption F' = c.
So, size(F) =1 and size(F') = 1 and therefore size(F) < size(F").
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F' € Ty: In this case, size(F) = 3 jcgom(r) si2e(F(f)). Now F(f) < F'(f) holds for all

f € dom(F) by definition of subsumption, and because F(f) € U, T; it follows that
size(F(f)) < size(F'(f)) holds for all f € dom(F) (induction hypothesis). It follows
that size(F) < 3 rcgom(r) size(F'(f)) and because the size function is always non-negative

size(F) < 3 redom(rr) size(F' (f)) = size(F"). O

Definition 13: Feature structure F' = tm(®), the tree model of a finite and consistent set
of acyclic constraint equations @, is defined as follows:

1. Flp) =cwithce Ciff Fp=c
2. Fp)=Liff oFp=pand Vycpur®tFp-r=v = r=_)Av ¢ C

3. f €dom(F(p)) and F(p)(f) =F(p-(f)) it @Ep-(f)=p-(f).

Lemma 14: If F' = ¢tm(®) and F(p) is defined then ® F p=p.
Proof:

According to definition 13, there is a constraint ¢ of the form p=corp=porp-(f)=p-(f)
such that ® - ¢. ® - p=p follows immediately by the reflexivity rule. O

Because @ is a finite set of acyclic constraints and the number of feature labels is finite, it
follows that the tree models have finite size.

Proof:

For each node in F, there is a constraint ¢ of the form p=cor p=p or p- (f)=p- (f) such
that ® F ¢ ( definition 13). Because @ is acyclic, there is a constant N such that [p| < N for
all feature paths (lemma 1). Therefore, if F(p) is defined then |p| < N. O

Lemma 15: (DENOTATIONAL COMPLETENESS) For all sets of constraints ®, if ¢ is
consistent, then there is a F' € T ¢ such that F' = ®.

Proof: (Compare Shieber’s proof for the denotational completeness of infinite trees in
[Shieber, 1992], page 94.)

We prove that F' = tm(®) as defined in definition 13 is a feature tree and satisfies ®.

F' is a function: Suppose F' were not a function, that is F' assigned two distinct values G and
G' to asingle path p. If G,G' € C, then ® F p=G and ® } p=_G’, so ® is inconsistent, contra
assumption. If G € C and G' = L, then ® - p=G and ® ¥ p=_G, again a contradiction.

HGeCand G'¢ CU{L}, then ®Fp=G and @+ p-(f)=p- (f) for some feature f. But
then @ is inconsistent due to a constant/compound clash.

fG=_1and G ¢ CU{L}, then ® ¢ p-r=v for non-empty r and ® - p- (f)=p- (f), a
contradiction.
Finally, we have to consider the case where G ¢ C U {L} and G' ¢ C U{L}. When F(p)

is defined and F(p) ¢ C' U {L} then F(p) is a function whose range and feature values are
uniquely defined by the third point of def. 13. Hence, g and G' must be identical.

F' is prefix-closed: This follows from the definition of ¢m and the reflexivity rule.
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F satisfies ®: Any constraint equation ¢ € @ is of one of two forms. If ¢ = p=c, then
F(p) = ¢ by definition of tm and F |= ¢.

If $ = p=gq, we must show that F(p) and F(q) are defined and that F(p) = F(q).

1. If ® F p=c for some ¢ € C, then ® - g =c follows immediately and by definition of ¢tm,
F(p) and F(q) are defined and F(p) = F(q) = c.

2. From & - p=q follows ®Fp=pand PFqg=q. If (PFp-r=v)=(r={_)Av¢QC),
then (¢ F g-r=v) = (r = () Av ¢ C) holds because otherwise ® - p - r=v would
follow for some non-empty path r, a contradiction to the assumption that (¢ F p -
r=v) = (r=()Av ¢ C). Therefore F(p) and F(q) are defined by definition of ¢m and
F(p)=F(q) = L.

3. None of the previous cases applies. Then there must be a feature f and a feature path
r such that ® - p- (f) - r=wv (follows from def. 13). ® - p- (f)=p - (f) follows by
the reflexivity rule. From ® F p- (f)=p - (f) follows that F(p) is defined and that
f € dom(F(p)). The same follows for ¢q. So F(p) as well as F(q) is defined and their
domains are equal. Otherwise, there is a feature f which is in only one of the domains.
Without loss of generality we assume f € dom(F(p)). According to the def. of tm,
O p-(f)=p-(f) and by the substitutivity rule ® F ¢ - (f)=p - (f) and by the
reflexivity rule ® - ¢ - (f) =q - (f) follows. But then F(q)(f) is defined as well because
F = ®. We know that ® - p- (f) =¢- (f) holds. By induction over the height of the
feature trees, it is easy to prove that F(p- (f)) = F(q- (f)).

Lemma 16: (EXISTENCE OF MINIMAL MODELS) If ® is a finite, consistent, acyclic
set of constraints, then a feature structure F', called minimal model of ®, exists such that
F = @ and for all F' such that F' |= @, it is the case that F < F’.

Proof:
According to lemma 15, there is a feature structure F' = tm(®) such that F' = ®.

F is the unique minimal model of ®. Otherwise, another feature tree F’ existed such that
F'E®and F £ F'. From F £ F' follows according to lemma 6 that a constraint equation
p=v with v = p or v € C' must exist such that F = p=v and F' [~ p=v. Because F' = ®
and because feature trees are logically sound (lemma 11), it follows that ® }* p=wv.

However, if v € C, then F(p) = v follows by definition of constraint satisfaction and ® +p=wv
follows by definition of ¢m which is a contradiction to ® }f p=w.

Otherwise, if v = p holds, then F = p=p and F' }£ p=p and ® } p=p. It follows from
F = p=p and the definition of constraint satisfaction that F'(p) is defined. This entails by
definition of ¢tm that @ -p=cor ®Fp=por ® Fp- (f)=p- (f) for some feature f. In all
three cases, ® - p =p follows immediately, a contradiction to ® * p=p. Hence F' is indeed
the unique minimal model of ®. O

The minimal model of ® is written M M (®).

Lemma 17: Inconsistent constraints have no feature tree model.
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Proof:

Assume there is an inconsistent set of constraints ® and a feature structure £’ which models .
Because @ is inconsistent it is either possible to derive two constraints p =c and p = ¢’ where
¢, € C and ¢ # ¢ or two constraints p=c and p-r =v where ¢ € C and r a non-empty path.
In the first case, F(p) = ¢ and F(p) = ¢ follows from the definition of constraint satisfaction
which is impossible. In the latter case, F'(p) is a constant and a function at the same time,
which is impossible according to the definition of feature trees. O

Lemma 18: If /' and G are feature structures and if FUG # T, then FUG = M M (desc(F)U
desc(G)) holds.

Proof:

Looking at the definitions of unification (definition 8) and subsumption (definition 7), it is
obvious that ¥ < F UG and G < F UG hold. It follows with lemma 7 that FF UG =
desc(F') and F LI G |= desc(G). Because of the logical soundness of feature trees, F' LI G also
satisfies all formulas which are entailed by desc(F') Udesc(G). Therefore F'LIG is a model for
desc(F') Udesc(G).

If F UG were not the minimal model for desc(F) U desc(G), then another model F’ existed
such that F UG £ F'. In this case, a constraint p=v with p € Path and either v = p or
v € C exists, according to lemma 6, such that F UG = p=v and F' £ p=v. If v € C, then
(F UG)(p) = v and either F(p) = v or G(p) = v. in this case, p=wv € desc(F') Udesc(G) and
therefore F'(p) = v.

If v = p, then F UG |= p=p and therefore (¥ LI G)(p) is defined. From the definition of
unification follows that (F'LIG)(p) is only defined, if either F'(p) or G(p) is defined. Therefore
p=p € desc(F) Udesc(G) holds. We conclude that no such feature structure F’ exists and
that F'U G is the minimal model for desc(F) U desc(G). O

3.3 Parse Trees

After defining the feature structures, we will now formally define grammar rules and parse
trees.

Definition 14: A grammar rule is a pair (k, ®), where k is the arity of the rule and ® is
a set of constraint equations. All feature paths in @ start with a label [ € {0,1,...%} and
(1y=()edforall 0<i<k.

Definition 15: A lexical rule is a pair (w, ®), where w is a word and @ is a set of constraint
equations. All feature paths in @ start with the label 0 and (0) =(0) € ®.

Definition 16: A terminal parse tree node n is a triple (i, F,r), where 1 € N is an index, F
is a feature structure and r is a lexical rule.

7 is called the index of node n. F' is called the feature structure of n.
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Definition 17: A nonterminal parse tree node is a quadruple (i, F,r, D), where 1 € N is an
index, F' is a feature structure, r = (k, ®) is a grammar rule and D = (d; ...d}) is the list of
indices of the daughter nodes.

1 1s called the index of node n. F' is called the feature structure of n.

Definition 18: A parse tree node is either a terminal parse tree node or a nonterminal parse
tree node.

Definition 19: A parse tree node n immediately dominates another node n' iff n is a
nonterminal node (i, F, (k, ®), (d1,ds, ... ,d;)) and there is a j with 0 < j < k such that d; is
the index of n/.

Definition 20: A parse tree node n dominates another node n' iff n = n/ or there is a node
n” such that n immediately dominates n” and n” dominates n'.

Definition 21: A parse tree is a pair (PN, k), where PN is a set of parse tree nodes and
k € N is the index of a node n € PN called root node and PN is the set of nodes dominated
by n and n is not dominated by any node and any other node from NP is dominated by
exactly one node.

Definition 22: A walid parse tree is a parse tree (PN, k) in which

e for each terminal node (i, F, (w, ®)) € PN it is the case that F'\ 0 = ® and

e for each nonterminal node (i, Fy, (k, ®), (dy,...,d;)) € PN and its daughter nodes
(dj, Fj,...) € PN with 0 < j < k it is the case that | [ F; \ i = ®.

3.4 Feature Computation

We will now present an algorithm which computes the features trees when the context-free
parse tree is given. This algorithm is a simplification of the algorithm which is used in YAP
(see section 4.3.3). The following simplifications have been made:

1. unambiguous parse trees as input (rather than “parse forests”)
2. no feature typing
3. no disjunctive feature values

4. no feature operators (like string concatenation in the YAP formalism)

This algorithm will be used to prove that iterative computation of feature structures with a
tree representation indeed returns the correct result.
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3.4.1 The Algorithm

The algorithm is presented as a set of inference rules. It is assumed that the context-free
parse tree is given as a set of tuples of the form (i, (X — w, ®)) in case of terminal nodes and
the form (7, (X — Y7...Y,, ®),(dy,...,dx)) in case of nonterminal nodes, where i is a unique
index which identifies the node and (X — Yj...Yy, ®) is a grammar rule with a context-free
backbone X — Y7 ...Y; and a set of feature constraints ®, and d; through di are the indices
of the daughter nodes. (X — w, ®) is a lexicon entry with feature constraints. It is further
assumed that the root node of the parse tree has index 0.

The feature computation algorithm uses the following auxiliary definition.
Definition 23: The most general extension MGE(®,i,T1,...,T) of a feature tree Tj, 1

i < k with respect to a set of feature constraints ® and a set of other feature trees {7}|1
j # i <k} is defined as:

IAINA

=0

MGE(®,i, Ty, ..., T;) :{ fM(Uk desc(Ty)[() = ()] U @) (2) Lft}lz&el;/jv(i.s..e) exists

(3.1)

The most general extension operation extends a set of features structures (by adding new
features or by making feature values more specific) such that the local constraints of a rule
or lexical entry are satisfied.

Initialisation
(Z,(X—)U),(I)» (Z,(X—)Ylyk,q)>,<d1,,dk>> (3 2)
<0v (ivJ-v (qu)») (07 (i,J.,(k,@),(dl,..,,dk>>> ‘
Bottom-Up
(J, 6, T, (w, ®))) ,
G+ 1,6, MGE(®,0,T), (w, @)y 2 V" (3:3)
(s (6 To, (ky @), (s di)) (G4 1 {d, T ) oo (G4 Wiy Ty ) (3.4)
G+ 1,0, MGE(®,0, Ty, T1, - .., Tx), (k, @), (d1, .. -, dg))) J ‘
Top-Down
<ja <0’T7 (k’¢>7<d17---7dk>>> .
G+ 1, 0.7, (5 0) (dy, a2 04 (3:5)
<]+17<27T07<kaq)>7<d177dk>>> <j,<d1,T1,>> (.77 (dkaTk7>> ]Odd

(j+1,(d1, MGE(®,1, Ty, ..., Tk),...)) ... (7 + 1, {dk, MGE(®,k, T, ..., T),...))
(3.6)
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Termination Criterion

Failure:
3 6T, (w, ) (3.7
3; (.77 (ZvT’ <k,(1)>,<d1, adk>>> 3.8
Success:
vz' (.77 (ivT’ <’u),@>>> = (.7 + 17<i7T’ <’u),@>>> (39)

Vi (4,1, T,(k, @), (d1,...,dg))) = (7 +1,T,(k,®),(di,...,dg))) (3.10)

The initialisation step sets the feature structures to L and initialises the generation counters
to 0.

The bottom-up step updates the feature structures from bottom to top. The first rule applies
to terminal nodes where the constraints of the lexical entry have to be satisfied. The second
rule applies to non-terminal nodes whose feature structures are updated to reflect changes in
the daughter node feature structures. The MGE operation also computes new values for the
daughter node feature structures. But these are not retained.

The top-down step updates the feature structures from top to bottom. The feature structure
of the root node (index 0) is just copied. The other feature structures are updated to reflect
changes in the feature structures of the mother node and the sister nodes. The MGE operation
also computes a new feature structure for the mother node which is not retained.

The algorithm terminates if one of the constraints cannot be satisfied or if no feature structure
changed in the last iteration.

Note that the feature structure for a particular node and generation is not guaranteed to be
unique if the input structure is a graph rather than a tree. A slightly different algorithm ist
therefore needed to compute the feature structures of parse forests.

To show the correctness of the algorithm, we prove first that any valid solution to the parsing
problem is subsumed by all intermediate results of the algorithm.

Lemma 19: If ({n;}, k) is a valid parse tree with n; = (j, Fj,rj, D;) and if ({nﬁ},k)
with n§ = ( F ,7j,Dj) is the parse tree resulting after ¢ iterations of the algorithm, then

Proof:
Induction hypothesis: F;’ < F; for all i and s <t
t=0: F) =1 < F for all i

t > 0: Three cases have to be considered:

1. F! is the feature structure of the root node in a top-down pass and hence unchanged.
F! = FI™' < F; (induction hypothesis)

2. F! is the feature structure of a terminal node n! = (i, F}, (w,®)) resulting after a
bottom-up pass of the algorithm and F} = MM (desc(F!™)[() — (0)] U ®@)) (0).
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According to lemma 7, F/~' < F; (induction hypothesis) implies that F; |= desc(F} ™).
From lemma 9 it follows that F;\ 0 = desc(F} *[() — (0)]). From the definition of valid
parse trees follows that F; \ 0 | ®. From F; \ 0 |= desc(F/"'[() — (0)]) U ® follows
MM (desc(F7H() — (0)]) U @) < F; \ 0 and therefore F! < F; (lemma 5).

3. F! is the feature structure of some other node which was updated either during bottom-
up or during top-down parsing. In other words, there is a non-terminal node nfigl =
(dg,FéJl, (k,®),(d1,...,d)) and a set of daughter nodes nfijl = (dl,Féfl,...> with
0 <[ < k such that 1 = d; for some 7 in 0 < 57 < k. Fit_1 = Féj_l has been replaced
with Ff = MM (Ui desc(Fy, )[() — ()] U 2)) (5).

According to lemma 7, Ff1 < F; (induction hypothesis) implies that F; = desc(Fit*I)
and according to lemma 9 it follows that F; \ I = desc(F!"'[() — (I)]). From the
definition of multiple embedding follows that |j_y Fy, \ I |= desc(F; '[() — (m)]) for
all 0 < m < k. From the definition of valid parse trees further follows that |_|sz Fyg, \
| | ®. Therefore ||} (Fy \ 1 = Ufodesc(Fy)[() — (I)] U® holds which entails
MM (Uf—y desc(Fy)[() = ()] U @) < U Fy, \ I and therefore F} < F; (lemma 5). O

The local rule constraints which are associated with the nodes in a parse tree together form the
constraint system which the parser has to solve. We now define a translation of this system of
local constraints into an equivalent global constraint system W. The translation replaces the
relative indices (0 for the mother node, 1 for the first daughter etc.) in the constraint formulas
with the absolute indices of the respective feature structures. The translated constraint system
has the advantage that its satisfiability is defined without reference to the parse tree.

Lemma 20: Parse tree ({n;}, k) with n; = (¢, Fj,...) is a valid parse tree iff G = | |; F; \ ¢
satisfies the constraint set ¥ which is defined as follows:

1. For each terminal node n; = (i, Fj, (w, ®)) of the parse tree and for each ¢ € &, if
¢ = (0)-p=1(0)-q, then ¢' = (i)-p=(i)-q € Velseif p = (0)-p=c, then ¢’ = (i) p=c € V.
Label ¢ will be called the translation of label 0 at n;, written ¢ = itr;(0).

2. For each non-terminal node ng, = (do, Fy,, (k, ), (d1,...,d;)) with a set of daughter
nodes (dl,Féfl,...> with 0 < [ < k and for each ¢ € @, if ¢ = (i) - p=(k) - g, then
¢ ={d;) -p={dy)-q € U else if p = (i) - p=c, then ¢/ = (d;) - p=c € U. Label d; will
be called the translation of label [ at n;, written d; = itr;([).

¢' is called the translation of ¢ at n;, written ¢’ = tr;(¢). This notation is extended to
constraint sets by defining tr;(®) = {tr;(¢)|¢ € D}.

Proof:

Since the definition of G assigns a unique value F; to each feature i € dom(G) and since Fj is
well-defined, G is a well-defined function as well.

For each constraint ¢ in the parse tree, there is by definition of ¥ exactly one corresponding
constraint 1 in W.

'=": We prove that G satisfies ¢ if the parse tree satisfies ¢.
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For each non-terminal node (dy, Fg,, (k, ®), (d1 ...d)) in the parse tree with daughter nodes
(dj, F;,...) for 0 < j < K, it is the case that |_|";:0 Fy; \ j F . Similarly, it is for each
terminal node (dy, Fy,, (w, ®)) the case, that |_|sz Fy; \ j E @ where k = 0. In both cases,
an equation ¢ € @ is either of the form (j) - p=(l) - q or (j) -p=c.

If ¢ is of the first form, then | |*_ F; \m = (j)-p=(I) - ¢ because the parse tree satisfies ®.
Therefore Fy, (p) = Fy (¢q) and, according to the definition of G, G(d;)(p) = G(d;)(g). From
(7) -p={(l) - ¢ € ® follows according to the definition of ¥ that 1) = (d;) - p=(d;) - ¢ is the
corresponding equation of ¢ in ¥ and that G |= .

It is easy to prove with similar arguments that if ¢ is of the form (j) - p=c¢, then G |= ¢ for
the translated constraint ).

'«<=": We prove that the parse tree satisfies ¢ if G satisfies 1) = tr;(¢), the translation of ¢ at
some node n;.

According to the definition of ¢r;, there is either a terminal node (dy, Fy,, (w, ®)) or a non-
terminal node (do, Fy,, (k, ®)(d; ... dk)) such that for some ¢ € ®, 1 = tr;(¢).

Ify = (j)-p=(l)-q, then j = d,;, for some 0 < m < k and [ = d,, for some 0 < n < k. Hence
¢=(m)-p=(n)-q.

Since G |= 1, it is the case that G(j)(p) = G(I)(¢) and therefore Fy; (p) = Fy,(q) and
Ly Fa, \ s |= (m) - p=(n) - ¢. Therefore the parse tree satisfies ¢.

It is easy to prove with analogous arguments that if ¢ is of the form (j) - p =c then |_|’;Z0 Fy,\
s = ¢ for the corresponding ¢ with 1 = tr;(¢). O

Lemma 21: If ® - ¢ and tr;(®) and tr;(¢) are defined, then tr;(®) - tr;(¢).
Proof:

It is possible to put an order on the constraints which are deducible from @ such that ® 1 ¢

and @ U {¢1} k1 ¢2 and @ U {¢1, P2} F1 ¢35 and so on, where & - ¢ means that ¢ follows
from ® by application of a single deduction rule. We define ®,, = ®U {¢1,...,¢,} for n > 0.

Induction hypothesis: ¥ F ¢r(¢) holds for all ¢ € ®,, where tr(¢) is defined if m < n. ¢ is of
the form () = () or the form (i) - p=(j) - ¢ or the form (i) - p=c where c € C.

n=0: From ¢ € &y and &y = P, follows tr(¢) € tr(P) = ¥ and therefore U + tr(p).

n>0: If § € &, then either ¢ € ®,,_; and therefore ¥ I ¢tr(¢) by the induction hypothesis,
or ¢ follows from ®,,_; by one of the following inference rules:

1. Triviality: @ F () =().
Since tr(() =()) is undefined, there is nothing to prove. Furthermore, () = () cannot be
used to derive any new constraints. Hence we can ignore it.

2. Symmetry: (i) - p=(j) - q followed from (j) - ¢= (i) -p € Pp,_;1.

According to the induction hypothesis, ¥ = (d;) - ¢=(d;) - p holds if d; = itr(i) and
dj = itr(d;). It follows that U F (d;) - p=(d;) - ¢ and therefore ¥ - tr((i) - p=(j) - q).



36 CHAPTER 3. THEORETICAL FOUNDATIONS

3. Reflexivity: (i) - p= (i) - p followed from (i) -p-r=v € &,,_;.

According to the induction hypothesis, W  (d;) - p - » =’ holds where d; = itr(i) and
o' =vifveC, and v' = (d;) - q if v = (j) - ¢ and dj = itr(j). From ¥ (d;) - p-r=1
follows ¥ F (d;) - p=(d;) - p and therefore U \- tr((i) - p= (i) - p).

() = () follows from (i) -p-r=v € ®,_; as well, but we can ignore this case because the
resulting constraint is the same as that generated by the Triviality rule.

4. Substitutivity: From (i)-p-r=v € ®,,_; and (i) -p=(j)-q € ¢, followed (j)-¢-r=wv.

From (i) -p-r=v € ®,_4 follows ¥ I (d;) -p-r=0" with d; = itr(i) and v' = v ifv € C
and v' = (d;) - g if v = (I) - ¢ and d; = itr(l).

From (i) -p=(j)-q € @, follows ¥ - (d;) -p = (d;) - ¢ where d; = itr(i) and d; = itr(j).

From ¥ (d;) -p-r=v" and ¥ - (d;) - p = (d;) - ¢ follows ¥ I (d;) - ¢ - =" and therefore
Uk tr((j)-q-r=1'). O

Lemma 22: The algorithm terminates.
Proof:

Suppose that the algorithm does not terminate. We define ¥ as in lemma 20 and G' as
G' = || F} \ i. In each cycle of the algorithm, at least one feature structure Fit_1 is changed
because otherwise the algorithm terminates. Since the modified feature structure F} must
be subsumed by the original feature structure Fit_l, there are only three ways in which the
feature structure can be modified, namely by changing Fitfl(p) = 1 to F}(p) = c for some
p € Path and ¢ € C or by adding a feature f € L with f ¢ dom(F!~"(p)) to the domain of
F!(p) and defining F}(p)(f) = L or by combinations of these two elementary steps. In any of
these case, the size of the modified feature structure F} will be at least one bigger than that
of FI! and therefore size(G') > size(G'™1) + 1.

Since each substructure G¢(p) of G! is defined for at most |L| many features, it follows that
for any N, there is a path p and a t such that G'(p) is defined and the length of p is larger
than N. We will now prove that ¥ = p=p must hold and that the constraint system W is
therefore cyclic (lemma 1) in contradiction to the assumption that the grammar never gives
rise to cyclic constraints.

Induction hypothesis: ¥ I desc(F!)[() — (i)]

n=0: F? = 1, therefore desc(F?) = {{)=()}. There is either a terminal node n) =
(i, F?, (w,®)) or a non-terminal node nY = (i, F?, (k,®), D;) such that (0)=(0) € & by
definition of grammar rules and lexical rules. Therefore (i) = (i) € ¥ holds by definition of ¥
and therefore U I desc(FL)[() — (i)].

for t < n.

n>0: If ¢ is in desc(F}), then it is either of the form p=p or of the form p=c.

In the first case, it follows from ¢ € desc(F!) that F! | p=p. Two cases have to be
distinguished:

1. nt = (i, F},...) is the root node during top-down parsing. In this case, F} = Fitfl. By
the induction hypothesis, it follows immediately that U - desc(F})[() — (4)].
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2. Otherwise there is either a non-terminal node nj, = (do, Fy,, (k, ®), (d; ...dy)) with
daughter nodes (dj,Fjj,...) for 0 < j <k or a terminal node n%, = (do, Fj,, (w, ®))
and k = 0 such that i = d; for some 0 < I < k and F} = MM (US_q desc(F}")[() —
DU e)d).

If p=p € desc(F}), then F}! = p=p and therefore MM(U?ZO desc(F}_l)[() - (Hu
Q) = (I) - p={(l) -p (lemma 9). By lemma 14, it follows that U?:o desc(Ffﬁl)[() —
(i) JU@F (l) -p-r=ov for some r and therefore that U?:o desc(F;_l)[O — (HUdt+
(1) - p={(l) - p. By the induction hypothesis, ¥ desc(Fij_l)[O — (dj)] forall 0 <j <k
and by definition of ¥, tr(®) C .

By lemma 21, it follows from U§:0 desc(F}_l)[() = (HUud = (l)-p=() - p that
tr(UfZO desc(Ffﬁl)[O — (NU ) Ftr((l) -p=(l)-p). We already know that tr(®) C ¥
and that ¥ desc(Fé;l)[() — (d;)] for 0 < j < k. We conclude than ¥ F tr({l) -p=(I) -
p) holds, too.

The case p=c € desc(F!) is analogous to the case p=p € desc(F}). O

3.4.2 Completeness

The algorithm generates all valid solutions.

Proof

We know by lemma 22, that the algorithm terminates after a finite number of steps 1. We also
know by lemma 19 that any solution {F;} to the feature computation problem is subsumed
by all the intermediate results {F}, {F!},... of the algorithm and therefore also by {F{'}.

It remains to show that the algorithm signals success after stopping, if a solution {F;} does
exist. Suppose that this were not the case and that the algorithm signals failure.

In this case, there is either a non-terminal node nfo = (dyp, FdTO, (k,®),(dy ...dg)) with daugh-
ter nodes (dj,Fg;,...) for 0 < j < k or a terminal node ngo = (do,Fg;, (w,®)) and k = 0
such that MM(U?ZO desc(Fi)[() — (j)] U ®) does not exist. It follows (lemma 16) that
U;?:o desc(Fdj;)[() — (j)] U @ is inconsistent.

However, FI' < F; entails F; = desc(F}!') (lemma 7) and |_|";:0 Fy;\j F @ holds because {FIy}
is a solution. Therefore |_|";:0 Fy, \jFF U?:o desc(F@)[() — (j)] U @ holds, a contradiction to
the assumption that U?:[) desc(FZ)[() — (J)] U @ is inconsistent (according to lemma 17). O

3.4.3 Soundness

All solutions generated by the algorithm are valid.



38 CHAPTER 3. THEORETICAL FOUNDATIONS

Proof

Suppose that the algorithm stops, signals success and returns {F;}.

Then {F;} is a solution because otherwise there is either a non-terminal node ngo =

(do,F(};,(k,q)),(dl...dk)) with daughter nodes (dj,Fég,...) for 0 < 7 < k or a terminal

node ngo = (do, Fg;, (w, ®)) and k£ = 0 such that |_|";:0 Fy; \ j # @. In this case, there are two
possibilities:

1. There is an M with M = MM(L_J?Z0 desc(FZ)[() — (j)] U ®). M is not equal to
G = |_|§:0 F;\ j because M |= ® and G [~ ®.

Because dom(M) = dom(G), there must be a label I such that M (l) # M(G). If [ = 0,
then the algorithm would have replaced Fy, with M (0) in the last bottom-up pass. If
[ > 0, then the algorithm would have replaced Fy, with M ({) in the last top-down pass.
In both cases, the algorithm would have continued for another cycle in contrast to the
assumption that it has terminated.

2. MM(U?ZO desc(FjT)[() — (j)] U @) does not exist. Since the algorithm checks all nodes
in each cycle, it would have detected the inconsistency and would have signalled failure
in contrast to the assumption that it signalled success. O

3.5 Extensions

The feature logic which has been presented in this chapter has to be extended in several ways
in order to serve as the theoretical basis for the feature constraints in YAP.

3.5.1 Variables

In contrast to the presented feature logic, the YAP grammar formalism uses variables to
express path equality constraints. However, equations with variables are easily translated
into equations without variables (see e.g. [Carpenter, 1992]).

3.5.2 Typing

Feature structures are typed in the YAP formalism. The type of a feature structure defines
which features are appropriate for it and all appropriate features have to be present in the
feature structure. This corresponds to the notion of totally well-typed feature structures in
[Carpenter, 1992].

In contrast to grammar formalisms, like e.g. HPSG [Pollard and Sag, 1994], the feature struc-
ture types are unordered in the YAP formalism. All types are pairwise inconsistent and none
of them is a subtype of another. They resemble data types in programming languages like
Modula or C. The advantage of such a typing system is that proper typing can be checked at
compile time (with one exception which will be discussed in section 3.5.4).
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Feature appropriateness is formally defined as a function AppropF' : L x Type — TypeJ {T},
where L is the set of feature labels and T'ype is the set of types. AppropF(f,7) is the most
general type which is appropriate for feature f of a feature structure of type 7. Because feature
types are mutually disjoint, AppropF(f,7) is in fact the only type which is appropriate for
feature f. We define AppropF (f,7) = T if feature f is not appropriate for feature structures
of type 7. For each category X in a YAP grammar there is a corresponding feature structure
type T7x in Type.

Besides the appropriateness conditions on features, there are also appropriateness conditions
on atomic feature values. Feature value appropriateness is defined as a function AppropV :
Type — CU {NONE}. AppropV (7) is the most general feature value which is appropriate
for type 7. If some feature f is appropriate for 7, i.e. AppropF(f,7) # T, then no atomic
feature value is appropriate for 7 and AppropV () = NONE where NONE is such that for
allc € C, cU NONE is undefined. In other words, a feature structure with a constant value
has no features because a constant/compound clash would result, otherwise.

The set of constant feature values C differs from the one we having been considering so far.
Earlier, we have assumed that C is an unordered set of values. Now we assume that C is
ordered such that for each feature type 7, a most general value ¢; exists which subsumes all
possible values of features of type 7 (see section 3.5.3 for more details).

The feature logic presented in section 3.1 will now be extended to a typed feature logic. To
this end, we add type constraints to the feature logic.

Definition 24: A typed constraint equation is an equation of the form p = ¢ or the form p =c¢
or the form p : 7, where p and ¢ are feature paths and c is a constant from C'|J {NONE}
and 7 € TypeJ {T}.

We also need the following set of deduction rule schemes in addition to the schemes in sec-
tion 3.1 in order to be able to draw the intended conclusions from the type constraints.

p:7 F p-(f): 7 [if AppropF(f,7) =1"]
p:7 F p=p [if T #£ T]
p:T F p=c [if AppropV (1) = c]
p=c,p=c +F p=c" [if " = clU  exists] (see section 3.5.3)

The first deduction rule scheme ensures that features have the appropriate type. The second
scheme ensures that each appropriate feature is present. The third scheme ensures that
atomic features have appropriate values (see section 3.5.3) and the fourth scheme deduces the
conjunction of two constant feature values.

Definition 25: A set of typed constraints ® is called inconsistent if and only if it entails
two equations of the form

e p:7and p: 7" where 7 # 7/, (type clash) or
e p=c and p=c where ¢l ¢ does not exist. (constant/constant clash)

Because the grammar formalism guarantees that each feature structure is typed (with one
exception which is discussed in section 3.5.4) and because feature types are disjunct, the
typing constraints can be checked at compile time.
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3.5.3 Disjunctive Feature Values

In the YAP formalism it is possible to assign a disjunction of constant feature values to a
feature if the feature bears an enumeration type. For efficiency reasons, it is useful to retain
this restricted form of disjunctive representation in the feature structures rather than to
generate the disjunctive normal form of it.

Therefore we define a hierarchy over the set of possible values of each enumeration type.
Each node of the hierarchy corresponds to a subset of the set of possible values and one node
dominates another node in this hierarchy, written d; > do, if and only if the corresponding
set of values is a subset of the set of values of the other node. The least node in the hierarchy
corresponds to the set of all possible values. The greatest node corresponds to the empty set
and represents an inconsistent value. An example of such a hierarchy is shown in figure 3.3.

{}

{ masc} {fem} { neut}

{masc,fem} {fem, neut} { masc,neut}

{ masc, fem, neut}
Figure 3.3: A lattice over a set of values

The unification of two disjunctive values d; and do of the same type returns the least upper
bound d = d; U dy of the two values in the hierarchy unless d = dy U dy = {}. If the least
upper bound is {}, then unification fails. The way the hierarchy is constructed guarantees
that the least upper bound always exists and is unique.

Despite the changes in the feature logic, the definition of feature structures (definition 6)
remains unchanged. The definition of subsumption (see definition 7), however, is replaced by
the following definition.

Definition 26: A feature structure F' subsumes another feature structure F’, written F < F”,
iff either

e FF=cand F' =, where ¢ < ¢ or
e for all f € dom(F) it is the case that f € dom(F') and F(f) < F'(f).
The only difference to the old definition is that an atomic feature structure must subsume

the other feature structure rather than being equal to it. We also modify the definition of
constraint satisfaction (cmp. definition 9).
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Definition 27: A feature structure F' satisfies an equation p =wv iff either

e v is a path ¢ € Path, and F(p) and F(q) are defined, and F(p) = F(q) or

e v is a constant ¢ € C and F(p) is defined and ¢ < F(p).

A feature structure F' satisfies a set of equations @ iff ® is consistent and F' satisfies each
equation ¢ € @ of the form p=wv.

Feature trees never violate type constraints because they fail to represent type information.
It is not necessary to represent type information explicitly in the feature trees because it is
deducible from the type of the root node and the appropriateness specifications. We will later
see how the categorial information can be represented in the feature structure by means of a
special feature Cat.

Finally, we have to adapt the definition of tree models (cp. definition 13).

Definition 28: Feature structure F' = tm(®), the tree model of a consistent set of acyclic
constraint equations @, is defined as follows:

e F(p)=cwithce Cift ®F p=cholds and ® - p=¢ entails ¢ < ¢.

e Fp)=Liff Fp=pand ®Fp-r=v = r=)Av¢C

e [ €dom(F(p)) and F(p)(f) = F(p-(f)) iff @Ep-(f)=p-(f).

3.5.4 Feature Structure Lists

An element of the YAP formalism which has no direct correspondence in the feature logic
presented so far is the predefined feature type FS_LIST. Features of this type take a list
of feature structures with category types as values. In order to integrate them into the
feature logic, we will emulate feature structure lists with feature trees (see fig. 3.4). A feature
structure list is then either an empty list or a non-empty list. If it is not empty, then it has
two features which we name Head and Tail. The Tail feature has the type FS_LIST, as well,
whereas the value of the Head feature could be any feature structure of a categorial type.

v —Subcat,.
H H H

NP PP NP
Figure 3.4: A feature structure list represented as a feature tree

There are two problems, however: The features Head and Tail are only appropriate for feature
structure lists which are not empty. So how is AppropF (Head, F'S_LIST') defined? We could
split FS_LIST into two types ELIST and NELIST, so that Head and Tail are only defined for the
type NELIST. But then the value of AppropF(Tail ,NELIST) could be either NELIST or ELIST.
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The obvious solution to this problem would be to define FS_LIST as a supertype of ELIST and
NELIST. Another problem is the type of the Head feature. It could be any categorial feature
type. So again, a super-type of these categorial types is needed for the Head feature.

It seems that we are forced to switch to a feature logic with ordered types like the one
described in [Carpenter, 1992]. But there is another solution: the constraints which apply to
feature structure lists can be “hardwired” into the deduction rules of the feature logic in the
following way.

In order to represent whether a feature structure list is empty or not (subtype ELIST vs.
NELIST), we add a new feature Empty which holds this information and a new feature Data
which stores the value of the feature structure list if it is not empty. Similarly, we add a new
feature Cat to store the category of an element of the feature structure list and a feature Data
to store the element itself. The resulting representation of feature structure lists is slightly
more complex than the one depicted in fig. 3.4.

The following inference rule schemes are added:

p: FS_LIST,p - (Empty) = false
p: FS_LIST,p - (Data) =p - (Data)
p:CAT_FS,p-(Cat) =z

p: CAT_FS,p- (Data) =T

T T T T
ST S TS RS

-(Cat)=z [where T = 7]

The first two rule schemes make sure that the Data feature is defined if and only if the feature
structure list is not empty. The third and fourth rule ensure that the value of the Cat feature
is x if and only if the value of the Data feature is a feature structure of the corresponding
categorial feature type 7.

The following restrictions apply to the feature appropriateness function AppropF"

AppropF (Empty, FS_LIST) = BOOLEAN
AppropF(Head, LIST_DATA) = CAT_FS
AppropF (Tail, LIST_DATA) = FS_LIST
AppropF (Cat, CAT_FS) = CAT

Vfer,f¢{Empty,Data) AppropF (f, FS_LIST) = T
Ve AppropF(f, BOOLEAN) = T
Vier f¢{HeadTaiy AppropF (f, LIST_DATA) = T
Vicr,r¢{Cat,Datay AppropF (f,CAT FS) = T
VieLAppropF (f,CAT) = T

Note that AppropF(Data, FS_LIST) and AppropF(Data, CAT_FS) are not defined. The
above inference rule schemes deduce whether these features are appropriate and what their
types are.

The following restrictions apply to the value appropriateness function AppropV:

AppropV (FS_LIST) = NONE
AppropV (BOOLEAN) = {true, false}
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AppropV (LIST_DATA) = NONE
AppropV(CAT_FS) = NONE
AppropV (CAT) = {...categories in grammar...}

3.5.5 Function Values

The YAP formalism includes constraints of the form v = cat(vy, v2) where v, vy, vy are variables
and cat is a string concatenation operator. Using the variable elimination algorithm presented
in section 3.5.1, it is easy to convert these constraints to constraints of the form p = cat(q,r).
We add the following inference rule scheme to be able to draw the intended conclusions from
these constraints:

p=cat(q,r) F p:STRING, q: STRING, r: STRING

p=cat(q,r), g=c1, r=c2 F p=c [where cis the concatenation of ¢; and ¢;]

The first rule makes sure that the arguments of cat are strings. The second rule deduces
the result of the cat-function. The result is only defined if constant values for both input
variables are available. It is not possible to use such a constraint to deduce the value of an
argument from the result and the other argument of the operation (as in the Prolog language).

3.5.6 Parse Forests

The algorithm has to deal with ambiguities in the input parse tree. In theory, it is possible to
compute the feature structures for each alternative parse independently with the presented
algorithm. For efficiency reasons, however, it is necessary to work with a more compact parse
forest representation. The next chapter presents a parsing algorithm which operates directly
on parse forests.
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Chapter 4

Parsing

4.1 Parsing Strategies

Parsing strategies for feature-structure based grammar formalisms with a context-free back-
bone can be divided into three classes. The interleaved strategy first applies the context-free
part of a rule to generate a new node and checks the associated feature constraints imme-
diately afterwards. The non-interleaved strategy first builds complete parse trees covering
the whole input string based on the context-free part of the grammar and checks the feature
constraints in a second step. The third strategy converts the constraints expressed in the
context-free backbone into feature constraints and solves the constraint system as a whole.
An advantage of the last strategy is the uniformity of the processing mechanism and the
ability to process grammars without a context-free backbone.

Maxwell and Kaplan [Maxwell III and Kaplan, 1994] explore several variants of the first two
strategies in their LFG parser. They conclude “...that non-interleaved pruning is always
better than interleaved pruning.” The reason probably is that the time spent on context-free
parsing is neglectable compared to the time spent on the feature constraint evaluation. So
it pays off if some feature computations can be saved by doing context-free parsing first.
Maxwell and Kaplan also confirm a finding by Nagata [Nagata, 1992] “...that a medium-
grained phrase-structure grammar performs better than either a coarse-grained or a fine-
grained grammar.” The reason might be that a coarse-grained context-free grammar is less
restrictive than a medium-grained grammar and therefore saves fewer feature computations.
Parsing with too fine-grained context-free grammars on the other hand is inefficient because
context-free parsing is slower with the larger grammar and might even take more time than
the feature computations. Also the resulting context-free parse forests are larger due to
unresolved ambigities which might further slow down the parser.

Since the third strategy above is equivalent to parsing with an extremely coarse-grained
grammar, the first strategy, non-interleaved parsing, seemed most promising and has been

chosen for YAP.

45
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4.2 Context-Free Parsing

Context-free parsing is the first step of the parser. A bit-vector implementation of the Cocke-
Kasami-Younger algorithm (BCKY) developed by Andreas Eisele, is used for this purpose.
The conversion of the grammar to Chomsky normal form which is required by the CKY
algorithm is carried out automatically. Other context-free parsers which return the same
packed parse forest format! can be used, as well.

4.3 Computation of Feature Structures

After context-free parsing, the parser decorates the parse forest with feature structures. These
feature structures must satisfy the constraints of the grammar rules and lexicon entries which
were used to build the parse forest. As long as the parse tree is unambiguous, the computation
of the feature structures is simple. A standard unification algorithm will satisfy all constraints
in one pass through the parse tree. Value sharing between features with an equality constraint
guarantees that modifications to the value of one feature are propagated to the other feature.

4.3.1 Dealing with Parse Forests

Usually the result of context-free parsing is highly ambiguous because the context-free gram-
mar is less restrictive than the YAP grammar from which it is derived. Millions of parse trees
are not uncommon for large sentences. This huge number of analyses makes it impossible to
process each analysis independently using the simple method described before. The parser
instead has to operate directly on the compact representation of the parse trees — called parse
forest — which is returned by the context-free parser. Parse forests can be represented as
and/or graphs. For each and-node there is a corresponding grammar rule or — if it is a ter-
minal node — a lexicon entry. Each non-terminal node corresponds to the left hand side of a
grammar rule and its daughter nodes correspond to the right hand side. Or-nodes represent
ambiguities in the parse forest. Each daughter node of an or-node is an and-node which
constitutes one analysis of the or-node.

The computation of feature structures in parse forests is complicated by the fact that value
sharing between feature structures in an and/or graph is not possible because one and the
same node may have several mother and-nodes belonging to distinct analyses. Value sharing
would in this case lead to cross-talk between different analyses.

It is possible to compute the feature structure of the root node in one bottom-up pass through
the parse forest. In case of LFG and HPSG, the feature structure of the root node is the
only feature structure needed because it contains all relevant information. The YAP parser,
however, has to compute the feature structures of all nodes. To this end, the parse forest has
to be traversed twice, first bottom-up and then top-down. The top-down step is necessary to
update the feature structures of the non-root nodes.

1See section 4.3.



4.3. COMPUTATION OF FEATURE STRUCTURES 47

4.3.2 Disjunctive Feature Structures

In order to compute feature structures for the nodes in an and/or graph, the or-nodes have
to be dealt with appropriately. Since an or-node represents a set of alternatives, its feature
structure is defined as the disjunction of the feature structures of its daughter nodes. There are
several possibilities to deal with such disjunctive feature structures. The simplest approach
is to represent feature structures in disjunctive normal form (DNF), i.e. as a set of (non-
disjunctive) feature structures, and to solve the feature constraints of each rule for all possible
combinations of daughter node feature structures by means of standard unification. Since the
number of combinations is equal to the product of the numbers of feature structures at the
nodes, it follows that this approach is only tractable if the number of alternative feature
structures is not too big.

DNF computation involves some redundancy because computations pertaining to common
features of alternative feature structures are repeated. It is possible to avoid this redundancy
with a more compact representation of disjunctive feature structures which factors out the
common constraints. Contezted constraints [Maxwell III and Kaplan, 1989] are particularly
effective in factorizing feature constraints. However, as Maxwell and Kaplan note, a compu-
tational overhead is associated with their technique which only pays off if the (disjunctive)
feature structures contain many independent ambiguities. This type of ambiguity is frequent
in the LFG formalism which Maxwell and Kaplan considered. If the propagation of syntac-
tically irrelevant information is avoided (see the discussion in section 2.6), such independent
ambiguities are far less frequent. Hence the simpler DNF approach has been chosen in the
implementation YAP.

4.3.3 Feature Computation in YAP

YAP employs the same iterative method to compute the feature structures as the algorithm
presented in section 3.4. After the context-free parse forest has been read, the feature struc-
tures of the nodes are initialised according to the constraints imposed by the context-free
analysis and the type system. In particular, the type of a feature structure is set according to
the category of the corresponding node and all features which are appropriate for this type
are initialised to their most general values. Each node has a set of ,analyses” (called or-
nodes in and/or-graph terminology). Each analysis contains pointers to the daughter nodes
and to the rule which licensed the analysis. The feature structures are repeatedly modified
in order to satisfy the local rule constraints. Feature computation is finished when all lo-
cal constraints are satisfied. This method bears some resemblance to constraint relazation
techniques [Montanari and Rossi, 1991].

As noted earlier (see section 3.2), the result of the unification of two feature trees is not
guaranteed to satisfy all constraints satisfied by the argument feature trees because feature
trees fail to represent equational constraints. Consider the following YAP grammar:

enum TYPE { a, b }; % definition of an enumeration type
category TOP {}; % definition of category TOP
category X { TYPE F,G; }; % definition of category X

TYPE v; % definition of variable ’v’
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TOP {} -> ‘X {F=a;}; % feature F must have value ’a’
"x": X {F=v;G=v;}; % features F and G must be equal

Parsing the input string “x” with the context-free part of the grammar results in a parse tree
consisting of two nodes, a root node of category TOP and a daughter node of category X (see
fig. 4.1). The feature structure of the X node has two features F and G which are initialised
to their most general value which is the value ‘a or b’. The feature structure of the X node
must satisfy the constraints of the lexicon entry for ‘x” and the constraints of the grammar
rule. At the beginning, features F and G have the same value ‘a or b’ and the constraints of
the lexicon entry are satisfied. In order to satisfy the constraints of the grammar rule, the
value of feature F is modified to ‘a’. However, this leads to a violation of the constraints in the
lexicon entry which were previously satisfied. The feature structure of X is modified again,
changing the value of feature G to ‘a’. Thereafter, all constraints are satisfied and parsing is

finished.
|: :|
[ ]

F {ab} F a F a
G {ab} l': G {ab} l': G a
Figure 4.1: Feature computation
Computation of the feature structures in a parse forest proceeds bottom-up and top-down in

turn using the functions bottom up_parse and top_down_parse presented below. The main
function is parse.

The Feature Computation Algorithm

The following data structures and functions are used by the algorithm:

N: sentence length

chart[i][k]: nodes covering the input string from position i to k
old_chart[i][k]: nodes covering the input from i to k as computed in the last pass
n.start: start position of node n

n.end: end position of node n

n.link: the set of new nodes linked to node n

n.analyses: the set of alternative analyses of node n

n.processed: flag indicating whether this node has been processed
n.fs: feature structure of node n

a.number_of_daughters: number of daughter nodes in analysis a
a.daughterli]: the ith daughter node in analysis a

a.rule: the grammar rule which licenses analysis a

r.assignments|i|: set of assignments for node i
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first_link(n): returns the first element from n.link

next_link(n,n’): returns the next element after n’ in n.link

islast link(n,n’):  true if n’ is the last element in n.link, otherwise false

var_value: array of feature values

get_value(f,(i)-p):  returns the value of feature structure f[i] at feature path p
replace(f, p, v): replaces the value of feature structure f at feature path p with v

read_parse_forest(): reads a parse forest and initialises the feature structures

A node n is characterised by its feature structure, its start and end position and its set
of possible analyses. Each analysis a is characterised by the grammar rule and the set of
daughter nodes.

1 parse()

2

3 read_parse_forest()

4 first_cycle < true

5 do

6 old_chart < chart

7 chart < new_chart()

8 successful < bottom_up_parse()
9 if successful and (node_changed or first_cycle)
10 first_cycle < false

11 old_chart < chart

12 chart < new_chart()

13 successful < top_down_parse()
14 while node_changed and successful
15 return successful

16

17

18 bottom_up_parse()

19

20 node_changed < false;

21 result < false

22 % for all nodes covering the whole sentence
23 for all nodes n in old_chart[0,N] do
24 if bu_parse_node(n) = true then
25 result < true

26 return result

27

28

29 bu_parse_node(n)

30

31 % check whether this node has already been processed
32 if n.processed then

33 if n.link = € then

34 return false

35 else return true
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36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
92
93
54
95
o6
o7
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
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% start processing of node n
n.processed <— true
result < false
for all analyses a € n.analyses do
K < a.number_of_daughters
valid < true % initialisation
% call bu_parse for all the daughter nodes
fori <+ 1to K do
if bu_parse_node(a.daughter[i]) = false then
valid < false
i< K % Skip processing of the remaining daughter nodes
if valid = true then % Process all combinations of daughter nodes
a’ < make_copy(a) % create a new temporary analysis
fori« 1toKdo % with the first combination of new daughter nodes
a’.daughter[i] < first_link(a.daughter]i])
do % Loop over all combinations of daughter nodes
if bu_parse_analysis(n, a’) = true then
result < true
fori<« 1toKdo % build the next combination of daughter nodes
if is_last_link(a.daughter[i], a’.daughter[i]) = true then
a’.daughter|i] < first_link(a.daughter|i])
else
a’.daughter|i] < next_link(a.daughter[i], a’.daughter][i])
i< K; % exit loop
while is_last_link(a.daughter[K], a’.daughter[K]) = false
return result

bu_parse_analysis(n, a)

fl0] <~ n.fs % n.fs is old and will be recomputed
for i < 1 to a.number_of_daughters do
fli] «+ a.daughter[i].fs % the daughter feature structures f[i] are new
if compute_variables(var_value, f, a.rule) = false then
return false
newf < build_new_fs(var_value, n.fs, a.rule.assignments|0])
if newf # n.fs then
node_changed < true;
n’ < insert_node(n, newf)
add_link(n, n’)
% add new analysis to the list of analyses of n’
n’.analyses <— n’.analyses U {a}
return true

top_down_parse()
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82

83 node_changed < false;

84 result < false

85 % for all nodes covering the whole sentence

86 for all nodes n in old_chart[0,N] do

87 n’ + insert_node(n, n.fs) % root nodes are simply copied
88 if td_parse_node(n, n’) = true then

89 result < true

90 return result

91

92

93 td_parse_node(n, n’)

94

95 % check whether this node has already been processed
96 if n’ € n.link then

97 if n’.analyses # € then

98 return true

99 else

100 return false

101 add_link(n, n’)
102 result + false

103 for all analyses a € n.analyses do

104 if a.number_of_daughters = 0 then
105 % terminal node

106 a’ < make_copy(a)

107 n’.analyses < n’.analyses U {a’}
108 result < true

109 else

110 % mnonterminal node

111 if td_parse_analysis(n’, a) = true then
112 result < true

113 return result

114

115

116 td_parse_analysis(n, a)

117

118 K + a.number_of_daughters
119 {[0] « n.fs
120 fori <+ 1to K do

121 fli] + a.daughter]i].fs
122 if compute_variables(var_value, f, a.rule) = false then
123 return false

124 a’ < make_copy(a)

125 for i< 1to K do

126 newf < build_new_fs(var_value, {[i], a.rule.assignmentsi|)
127 if newf # {[i] then

o1
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128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

node_changed < true;
n’ < insert_node(n, newf)
if td_parse_node(n, n’) = false then
return false
a’.daughter[i] - n’
n’.analyses < n’.analyses U {a’}
return true

compute_variables(var_value, f, r)

for i <~ 1 to r.number_of_variables do
var_value[i] < L
for all equations of the form v; = a do
if « is a feature path then
v + get_value(f, a)
else if « is of the form op(v1,v2,...,vN) then
v < compute_function(var_value, «)
else if « is a constant then
V4«
var_value[i] < least_upper_bound(var_valueli], v)
if var_value[i] = T then
return false
return true

build_new_fs(var_value, oldf, a)
newf < make_copy(oldf)
for all assignments of the form path:=v in a do
replace(newf, path, var_value[v])
return newf

insert_node(n, fs)

for all nodes n’ € chart[n.start, n.end] do
if n’.fs = fs then
return n’
n’ < make_copy(n)
n’.fs < fs
chart[n.start, n.end] < chart[n.start, n.end] U {n’}
return n’

add_ link(n, n’)

CHAPTER 4. PARSING
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174  ifn’ ¢ nlink
175 insert n’ in n.link at first position

The main function parse calls bottom up_parse and top_down parse in turn until either
all nodes are unchanged or the whole parse forest is found to be inconsistent. At least one
complete cycle consisting of a bottom-up and a top-down pass is necessary to guarantee that
all constraints are satisfied. The parser uses two charts. One chart, called 01d_chart, contains
the feature structures computed in the previous step. Each feature structure corresponds to
a node in the chart. The other chart, called chart, is incrementally filled with the feature
structures computed in the current pass. The nodes in the new chart are linked to the nodes
in the old chart from which they originated.

The bottom up_parse function calls bu_parse node with each node covering the whole input
sentence and bu_parse.node builds the new feature structures bottom-up. bu_parse_node
checks first whether the current node has been processed before. If this is not the case,
then it computes the new feature structures of the daughter nodes for each of its analyses.
Each daughter node may be linked to more than one new feature structure. Therefore it is
necessary to check all possible combinations in order to compute the valid feature structures
for the current node. bu_parse_analysis is called to actually compute a feature structure.
Once a new feature structure has been build, insert_node checks whether a node with the
same feature structure is already contained in the new chart. If this is not the case, then a
new node is inserted. In either case, a new analysis with pointers to the daughter nodes is
added to the node and the new node itself is linked to the original node in the old chart.

The top_down_parse function copies all nodes covering the whole sentence to the new chart
and calls td_parse_node to recompute the feature structures of their subtrees. td_parse_node
checks first whether the current node has been processed before. This is the case if it is
linked to the old node. If a link exists, the function returns. Otherwise, the link is created
in the next step and the function td_parse_analysis is called for all analyses of the node.
td_parse_analysis recomputes the feature structures of all daughter nodes, inserts them into
the new chart, adds the new analysis to the list of analyses of the mother node and calls
top_down_parse to process the subtrees dominated by the daughter nodes.

Cyclic Parse Forests

The above algorithm is a simplification which works only for acyclic parse forests. The YAP
formalism, however, permits rules with a cyclic context-free backbone like the following:

VBAR {Subcat=r;Slash=[np]l;} -> ‘VBAR {Subcat=[nplr];Slash=[];}
NP* {}=np;

The context-free backbone of this grammar rule is the rule VBAR -> VBAR. This rule adds a
cycle to each parse forest containing a VBAR node. In order to deal with cyclic parse forests,
bu_parse node has to be modified: If a node n has a cyclic analysis, then this cyclic analysis
has to be visited again if a new node is added to n.link after it was processed. Therefore
the loop over all analyses of the cyclic node is repeated until no new analysis can be added
anymore. Analyses which are not cyclic are removed once they have been processed. Each
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cyclic analysis maintains a pointer first_old in order to remember which analyses of the
cyclic node have been considered, so far. The pseudo code of the new function is shown
below. Modified lines are marked with an asterisk (*).

29 bu_parse_node(n)

30

31 % check whether this node has already been processed
32 if n.processed then

33 if n.link = € then

34 return false

35 else

36 return true

37 n.processed < true

38 result < false

38a* % initialisation of variables

38b*  rec_ana_exists < false

38c*  analysis_added « false

38d*  for all analyses a € n.analyses do

38e* a.first_old = ¢

38f*  do

39 for all analyses a € n.analyses do

40 K < a.number_of_daughters

41 valid < true

41a* recursive < false

42 % process the daughter nodes

43 fori <+ 1to K do

43a* if a.daughter[i] = n then % recursive structure?

43b* recursive — true

43c* rec_ana_exists < true

43d* if a.first_old = n.link % nothing to be done

43e* valid + false

43f* i+~ K % Skip processing of remaining daughter nodes
44* else if bu_parse_node(a.daughter[i]) = false then

45 valid <« false

46 i« K % Skip processing of the remaining daughter nodes
47 if valid = true then % Process all combinations of daughter nodes
48 a’ < make_copy(a)

49 fori<+ 1to K do

50 a’.daughter|i] < first_link(a.daughter|i])

o1 do

52 if bu_parse_analysis(n, a’) = true then

93 result < true

53a* if rec_ana_exists = true then

53b* % remember to process cyclic analyses again

53c* analysis_added <« true

53d* is_last_combination < true;

o4 fori< 1to Kdo % build the next combination of daughter nodes
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54a* a’.daughter|i] <— next_link(a.daughter[i], a’.daughter|i])
55* if a’.daughter[i] = e or % all links processed?

bha* (a.daughter[i] = n and % cyclic analysis and
55b* a’.daughter[i] = a.first_old) % all links processed?
55¢c* then

56 a’.daughter|i] < first_link(a.daughter|i])

o7 else

58%* is_last_combination <« false;

59 i+ K; % exit loop

60* while is_last_combination = false

60a* if recursive = false then

60b* remove a from n.analyses % only cyclic analyses are processed again
60c*  while analysis_added = true

61 return result

Cycles involving more than one node are possible if a cyclic set of chain rules exists, like e.g.
X -> Y, Y -> X. Such derivations do not make much sense in NLP grammars, so they are
ignored by the parser.

Processing of cyclic parse forests is guaranteed to terminate if the grammar is offline parsable
as defined in [Shieber, 1992]. To make sure that the parser will terminate is considered the
task of the grammar designer, just as it is the task of a programmer to make sure that his/her
program will terminate.

4.4 Grammar Compilation

A compiler is used to transform the text representation of the grammar into a form which is
easy to process for the parser. It attempts to reduce the number of computations required
during parsing and reports syntax errors in the input grammar.

4.4.1 Grammar Transformation

When processing a grammar rule, lexical rule or template definition, the compiler first trans-
forms the rule constraints into a set of constraint equations. The left side of each equation
is a variable. The right side is either a variable, a feature path, a constant or a function
value. The only functor in the YAP formalism is the string concatenation operator cat. This
transformation includes the following actions:

1. For each node specification XP {. ..}, add a constraint cat=XP to the constraints of this
node. This is also done for embedded nodes which are elements of feature structure list
specifications as in Subcat=[NP{}]

2. Replace any constraint of the form p=c where c is not a variable with the two constraint
equations v=p and v=c, where v is a new variable.

3. Replace any constraint of the form p=v where v is a variable with v=p.
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4. Transform relative paths to absolute paths:

(a) For each (potentially embedded) constraint equation of the form path =
[C1{CS:},C2{CSs}, ..., Cr,{CS,}] where C; is a category name and C'S; is a set of
embedded constraints, add the constraints v = p and v = [] to the same constraint
set where v is a new variable and p is of the form tail.tail...tail.

N—_— ———
n times

(b) Replace constraints of the form path = [Ci{CS:}, Co{CSs},...,Cr{CS,}] or
path = [C1{CS1},Ca{CSs},...,Cr{CS,}|*] where path is a feature path with
the constraint set | J; CS;[() — path. tail.tail...tail .head] where C'S;[() — p] results
from prefixing p to all feature paths in tzlfémgénstraints of CS;.

(c) Prefix all feature paths with 0. in constraints of the mother node

(d) Prefix all feature paths with i. in constraints of the ith daughter node

This transformation is guaranteed to terminate because each individual transformation applies
only for a finite number of times and no transformation can be applied recursively on its
output.

As an example, consider the following grammar:

enum NUMBER {sg, pl};
enum CASE  {nom, gen, dat, acc};

struct AGR { NUMBER Number; CASE Case; };
category VP { FS_LIST Subcat; };

category V { FS_LIST Subcat; 1};

category NP { AGR Agr; };

restrictor+ NP_R(NP) {Agr};

NP_R np;
FS_LIST r;

VP {Subcat=[NP{Agr.Case=nom;}]=r;} —>
‘V {Subcat=[nplr];} NP {Agr.Case=acc;}=np;

After the transformation, the following constraint set is obtained:

vl = 0.Subcat

vl = 1.Subcat.tail

v2 = 0.Subcat.tail

v2 = []

v3 = 0.Subcat.head.cat

v3 = NP

v4 = 0.Subcat.head.Agr.Case
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v4 = nom

vb = 1.Subcat

v6 = 1.Subcat.head.cat
v6 = NP

v7 = 1.Subcat.head

vl = 2

v8 = 2.Agr.Case

v8 = acc

Now, templates are expanded by adding the constraints contained in the definition of a
template to the rule constraints. Since variable names are local to a rule or template, the
compiler replaces the template variables by new variables in order to avoid possible conflicts
with variable names used in the rule constraints.

After template expansion the compiler adds constraints to implement feature inheritance
and to define the values of automatic features. There are two automatic features, Phon and
HeadLex. The HeadLex feature is properly defined by the feature inheritance mechanism and
requires no further action.

The value of the Phon feature of a trace node is the empty string. The compiler therefore adds
two constraint equations p=i.Phon and p="", where p is a new variable and i is the position
of the daughter node in the list of daughter nodes. In order to define the Phon feature of the
mother node of a grammar rule, the compiler adds the constraints p1=1.Phon, p2=2.Phon, ...,
pN=N.Phon for the N daughter nodes and the constraints p0=0.Phon and pO=cat(p1,...,pN)
to define the Phon feature of the mother node. In case of lexicon entries, the compiler adds
two constraints p=0.Phon and p="word" if the lexicon entry has the form "word": X {...};.

In our example, the following constraints are added at this point:

v9 = 1.Phon
v10 = 2.Phon
vil = 0.Phon
vil = cat(v9,v10)

In order to determine the constraints required by the feature inheritance rule, the compiler
first checks which features of the head daughter node are not assigned a value. These are the
features which never appear as a prefix of the right hand side of a constraint equation. If
the compiler finds such a feature, it checks whether a feature with the same name and type
is defined for the mother node. If this is the case, the compiler adds two equations v=0.f
and v=i.f in order to unify the feature f of the mother node and the i-th daughter which is
the head daughter. Similarly, the compiler checks whether a feature of the mother node is
unassigned and “inherits” its value from a feature with the same name and type of the head
daughter.

In our example, the following constraints are added at this point:

vi2
vi2

0.HeadLex
1 .HeadLex
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In the next step, constraints with variables of a restrictor type are replaced by a set of
equations according to the restrictor definition. In our example the two constraints

v7 1.Subcat.head
v7 = 2

are replaced by the following constraints

v7
v7

1.Subcat.head.Agr
2.Agr

Similarly, the compiler replaces equations with variables of a structured feature type by a set
of equations for the subfeatures. In our example, the equations for v7 are replaced by these
four constraints:

v1l3 = 1.Subcat.head.Agr.Number
v13 = 2.Agr.Number

vl4 = 1.Subcat.head.Agr.Case
vli4 = 2.Agr.Case

In the next step, feature structures are flattened by replacing structured features with a set of
new features, corresponding to the subfeatures of the structured feature. The above equations
are replaced with:

v13 = 1.Subcat.head.AgrNumber
v13 = 2.AgrNumber

vl4 = 1.Subcat.head.AgrCase
vli4d = 2.AgrCase

where AgrCase and AgrNumber are new feature names. The flattened feature structures are
easier to store and to process.

The compiler simplifies the resulting set of constraint equations and eliminates redundancies.
To this end, it adds a constraint y=x for any pair of equations x=rhs and y=rhs with the same
feature path or function value on the right hand side. Then it eliminates variable renaming
constraints y=x and replaces all occurrences of variable y in other equations with x. Finally
the compiler eliminates duplicates and replaces any pair of equations x=c1 and x=c2 where
cl and c2 are constants and c is the least upper bound of ¢1 and ¢2 by a new equation x=c.
If the least upper bound is T, the compiler reports an error.

Thereafter, the compiler uses the substitutivity rule to infer additional constraints. Consider
the following example:

v2 = 0.Subcat.tail
vl = 0.Subcat
vl = 1.Subcat.tail

v2 = []
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These constraints entail the additional constraint:
v2 = 1.Subcat.tail.tail

These inferences are necessary in order to be able to compute the minimal extensions of
feature structures in one pass as described in section 4.3.3.

Finally, the compiler sorts the equations by the variables on the left side and generates as-
signments. If the constraint set of a variable contains an equation v=c¢ with an non-disjunctive
constant on the right side, then it generates a fized assignment p:=c for each equation v=p
where p is a feature path, and deletes v=p. If v=c is the only remaining equation with variable
v on the left side, it is deleted as well. After generating fixed assignments, the compiler gen-
erates a variable assignment p:=v for each remaining path equation v=p. The corresponding
path equation is not deleted in this case.

The compiler sorts the variables so that x follows y if variable x depends on y, i.e. if an
equation x=op(...,y,...) exists. If a circular dependency is detected, the compiler reports
an error. The parser will later compute the values of the variables in this order. The compiler
also sorts the assignments so that an assignment p:=v will precede any assignment p.q:=v’
to an embedded feature.

When the compilation of our sample rule is finished, the following data is obtained:
e context-free backbone
VP -> V NP

e List of equations

vO = 1.Phon

vl = 2.Phon

v2 = 1.Subcat.tail

v2 = 0.Subcat

v3 = 0.HeadLex

v3 = 1.HeadLex

v4 = 1.Subcat.head.Agr.Number
v4 = 2.Agr.Number

vb = 0.Phon

v5 = cat(v0,vl)
e assignments at mother node

Phon := vb

HeadlLex := v3

Subcat := v2

Subcat.tail := []
Subcat.head.cat := NP
Subcat.head.Agr.Case := nom
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e assignments at daughter node 1

HeadlLex := v3

Subcat.tail := v2
Subcat.head.Agr.Number := v4
Subcat.tail.tail := []
Subcat.head.cat

Subcat.head.Agr.Case := acc
Subcat.tail.head.cat
Subcat.tail.head.Agr.Case := nom

e assignments at daughter node 2

Agr .Number := v4
Agr.Case := acc

This data structure is tailored to the requirements of the algorithm for the computation
of minimal extensions (see section 4.3.3). The same information could also be represented
with a feature graph (with the exception of constraints involving operators like the string
concatenation operator which have no equivalent).

4.4.2 Generation of the Context-Free Grammar

YAP allows the grammar designer to augment the context-free backbone of the grammar by
incorporation of features. The compiler will generate the set of refined context-free rules which
are licensed by the grammar rules. The information obtained from the preceding compilation
steps facilitates this task.

In order to generate the context-free rules which are consistent with a grammar rule, the
compiler first assigns an arbitrary order to the incorporated features of all the nodes in the
rules. Then it determines the set of possible values for each incorporated feature. If p is the
feature path corresponding to one of the incorporated features and if there are two equations
v=p and v=c, then the set of possible values is the set of non-disjunctive values subsumed by
the (possibly disjunctive) constant c¢. The preceding processing steps of the compiler ensure
that at most one such equation v=c exists. If no corresponding pair of equations is found, all
values defined for the type of the feature are allowed.

In the next step, the compiler fixes the value of the first incorporated feature to the first
one of its possible values. Before the value of the next feature is fixed, the compiler checks
whether it is unified with a preceding feature via two equations x=p and x=q where p points
to the current feature and q to the preceding feature. If this is the case, then the value of
the preceding feature is the only possible value of the current feature. Otherwise the first
one of its possible values is chosen. The compiler continues until the value of the last feature
has been fixed. At this point, the compiler prints the obtained context-free rule. The other
consistent rules are computed with backtracking.

The algorithm for the generation of the context-free grammar uses the following data structure
and functions:
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r.number_of_inc_features: total number of incorporated features

r.pathli]: path of the ith incorporated feature

r.nodel[i]: number of the node to which the ith incorporated feature belongs
Value[i]: current value of the ith incorporated feature

init(r): compute r.number_of_inc_features, r.path, r.node

print_cfg_rule(r): print the next context-free rule

And here is the algorithm itself as pseudo code:

1 generate_cfg_rules(r)

2

3 init(r)

4 enumerate_cfg_rules(r, 1)

5

6

7 enumerate_cfg_rules(r, i)

8

9 if i > r.number_of_inc_features then
10 % The value of all features is fized
10 print_cfg_rule(r)

10 return

10 % Check for unification with a preceding feature
11 p « r.path[j]
12 if two equations v = p and v = ¢ exist s.t. g=r.path[j] for some j<i then

14 vs < {Value[j]}

10 % Check for a constant feature constraint

15 else if there are two equations v = p and v = ¢ or an assignment p := ¢ then
16 VS ¢ C

17 else

18 vs < all_possible_values(r.inc_feature[i].type)

19 for all values v in vs do

20 Valueli] < v

21 enumerate_cfg_rules(r, i+1)

Consider the following sample grammar:

enum NUMBER {sg, pl};
enum CASE  {nom, gen, dat, acc};
enum VFORM {fin,inf,ger,pap};

struct AGR { NUMBER Number; CASE Case; };

category VBAR { VFORM VForm; FS_LIST Subcat, Slash; };
category NP { AGR Agr; };
category N { AGR Agr; };
category DT { AGR Agr; };
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VBAR incorporates {VForm};

NP incorporates {Agr.Number, Agr.Case};
N incorporates {Agr.Number, Agr.Case};
DT incorporates {Agr.Number, Agr.Casel};

restrictor- NP_R(NP) {};

NP_R np;
AGR a;
FS_LIST r;

VBAR {Subcat=r;Slash=[np];} -> ‘VBAR {Subcat=[nplr];Slash=[];} NP*{}=np;

NP {Agr=a;} -> DT {Agr=a;} ‘N {Agr=a;};
The compiler will generate the following context-free grammar for this grammar:

VBAR/fin -> VBAR/fin
VBAR/ger -> VBAR/ger
VBAR/inf -> VBAR/inf
VBAR/pap -> VBAR/pap

NP/sg/nom -> DT/sg/nom N/sg/nom
NP/sg/gen -> DT/sg/gen N/sg/gen
NP/sg/dat -> DT/sg/dat N/sg/dat
NP/sg/acc -> DT/sg/acc N/sg/acc
NP/pl/nom -> DT/pl/nom N/pl/nom
NP/pl/gen -> DT/pl/gen N/pl/gen
NP/pl/dat -> DT/pl/dat N/pl/dat
NP/pl/acc -> DT/pl/acc N/pl/acc

Because cyclic feature constraints are not allowed, the parser must check whether a grammar
is free of them. Cyclic constraints within a single rule are detected offline by the YAP compiler
(see section 4.4). But cycles may also arise from the interaction of several rules. Consider the
following grammar:

"xyz": X { F=[x|1]; G=1;};
Y {} > X { G=[*|1]; F=1;};

The grammar allows to rewrite "xyz" first to X and then to Y. The feature structure of the
X node has to satisfy the constraints of both rules which together define a cyclic list. This
type of cyclicity is not detected by the compiler. A heuristic is used in YAP to detect and
eliminate cycles at parse time. This heuristic limits the depth of feature structure to a fixed
maximal value, e.g. 10. If a feature structure exceeds this limit, the parser stops and reports
an error. The user may then have a look at the problematic feature structure and decide
whether the grammar is in fact cyclic and has to be modified or whether the depth limit has
to be raised.
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4.5 Implementational Details

In order to make the parser efficient with respect to runtime as well as space requirements,
some optimization strategies have been used which are described in this section.

4.5.1 Lexicon Compression

In order to achieve high coverage, the lexicon of a parser has to be large. With a straight-
forward encoding of the data, the space requirements for the compiled lexicon become very
high. Lexica usually contain a lot of redundancy, however. The compiler has to reduce this
redundancy in order to make the size of the lexicon tractable.

The information of the rules is stored in the form of linked lists, i.e. each element is linked
to the next one by a pointer. Different lists often have many elements in common. If the
common elements of two lists are located at the end of the lists, it is sufficient to store the
common tail of both lists only once. The compiler uses simple heuristics in order to move
elements which are unlikely to be shared with other lists towards the beginning of a list if
the order of the elements is irrelevant. With this technique it was possible to compress a
lexicon with 300,000 entries to some 18 MBytes, which is about 63 bytes per entry. In a
simple implementation of the lexicon, about a third of these 63 bytes would we used up to
store just the word form and the lemma.

4.5.2 Avoiding FS Recomputations

Sometimes it is known in advance that the recomputation of a feature structure will not lead to
any changes. This is the case when the feature structures of the mother node and all daughter
nodes remained unchanged during the last recomputation. The bu parse_analysis and
td_parse_analysis from section 4.3.3 have to be modified in order to avoid recomputation
in these cases. The modified lines are markes with an asterisk.

64 bu_parse_analysis(n, a)

65

65a* mod <« false

66 fl0] ¢+ n.fs

66a*  if n.modified = true then

66b* mod ¢ true

67 for i « 1 to a.number_of_daughters do
68 fli] + a.daughter|[i].fs

68a* if a.daughter[i].modified = true then
68b* mod < true

68c* m ¢« false
68d* if mod = true then

69 if compute_variables(var_value, f, a.rule) = false then
70 return false

71 newf < build_new_fs(var_value, n.fs, a.rule)

72 if newf # n.fs then

73 node_changed <« true;

73a* m < true
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73b*
73c*
74
T4a*
74b*
75
76
77
78
79
80
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else
newf < n.fs
n’ < insert_node(n, newf)
if m = true then
n’.modified < true
addlink(n, n’)
% add new analysis to the list of analyses of n’
n’.analyses < n’.analyses U {a’}
return true

81 top_down_parse

82
83
84
85
86
87
87a*
88
89
90
91
115

node_changed < false;
result « false

% for all nodes covering the whole sentence
for all nodes n in old_chart[0,N] do

n’ « insert_node(n, n.fs)

n’.modified < false

if td_parse_node(n, n’) = true then

result < true

return result

116 td_parse_analysis(n, a)

117
117a*
118
119
119a*
119b*
120
121
121a*
121b*
122*
123
124
125
125a*
125b*
125¢*
125d*
126
127
128
128a*
129
129a*
129b*
130
131
132

mod < false
K « a.number_of_daughters
fl0] ¢+ n.fs
if n.modified then
mod < true
fori < 1to K do
fli] < a.daughter[i].fs
if a.daughter[i].modified then
mod < true
if mod = true and compute_variables(var_value, f, a.rule) = false then
return false
a’ < make_copy(a)
fori < 1to K do
m < false
if mod = false then
newf « f[i]
else
newf < build_new_fs(var_value, {[i], a.rule)
if newt # {[i] then
node_changed < true;
m < true
n’ + insert_node(n, newf)
if m = true then
n’.modified < true
if td_parse_node(n, n’) = false then
return false
a’.daughter[i] + n’
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133 n’.analyses « n’.analyses U {a’}
134 return true

135 ...

160

161 insert_node(n, fs)

162

163 for all nodes n’ € chart[n.start, n.end] do
164 if n’.fs = fs then

165 return n’

166  n’ < make_copy(n)

167 n’fs «+ fs

167a* n’.modified « false

168  chart[n.start, n.end] < chart[n.start, n.end] U {n’}
169 return n’

4.5.3 Lazy Copying

The parser must copy the feature structures before it modifies them because the old fea-
ture structure might still be needed afterwards. Copying of complete feature structures is
very expensive, however. A lazy copying strategy [Karttunen and Kay, 1985, Emele, 1991] is
therefore used to avoid unnecessary copying.

Lazy copying copies a feature structure only when one of its features is actually modified and
it copies only the higher levels of the feature structure down to the modified feature. The
lazy copying strategy is implemented in the function build new_fs printed below.

path.feature: first feature of path

path.next: path minus its first feature
f.feature[feat]: value of feature feat in feature structure f
f.copied: flag indicating whether the root of feature structure f has been copied

154  build_new_fs(var_value, oldf, r)

155

156%* for all assignments of the form path:=v do

157* newf < lazy_copy_assign(f, path, var_value|v])
158*  newf < clear_copy_marks(newf)

159* return newf

160

176

177* lazy_copy_assign(f, path, val)

178* if path is empty then

179* return val

180%* newfv < lazy_copy_assign(f.feature[path.feature], path.next, val)
181*  if newfv # f.feature[path.feature] then

182%* if f.copied = false then
183* f «— copy_root(f)
184* f.feature[path.feature] < newfv

185* return f
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186*

187*

188* clear_copy-marks(fs)

189*

190* if fs.copied = false then

191%* return fs

192* for all features in fs do

193* clear_copy_marks(fs.feature[f])

194* fs.copied = false
195* return fs

The lazy copying strategy is also used in the function least_upper_bound which unifies its
argument feature structures non-destructively.

4.5.4 Feature Structure Representatives

The presented parsing algorithm involves many feature structure equality checks. Equality
of feature trees is extensional, i.e. two feature structures are equal if and only if they are
structurally equal. It is possible to replace all structurally equivalent feature structures by
a single representative. Comparison of feature structures then reduces to a comparison of
pointers. Whenever a new feature structure is created, it is checked whether the same feature
structure has been generated before. If this is the case, the old feature structure is returned,
otherwise the new one is returned. The function clear_copy-marks from section 4.5.3 has to
be modified as follows:

188 clear_copy_marks(fs)

189

190 if fs.copied = false then

191 return

192 for all features in fs do

193 clear_copy_marks(fs.feature[f])

194 fs.copied = false

194a* if fs” € fs_table exists with fs’.feature[f] = fs.feature[f] for all features f then
194b* return fs’

194a* else

194a* insert(fs, fs_table)

195 return fs

If £s_table is organized as a hash table where the hash key is computed from the values of

the features of a feature structure, then the insertion and lookup operations require constant
time on average.

4.5.5 Chart Insertion

The insertion of new nodes into the chart is an expensive operation if the chart cells are
organized as lists because each insertion has to examine all members of the list in order to
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find out whether the new element is already contained in the list. There is no fixed bound to
the length of these lists as in the case of context-free parsing because the number of feature
structures is at worst exponential in the length of the input string. In order to make chart
insertion an operation of constant runtime complexity, chart cells are organized as hash tables.
Another data structure which is organized as a hash table rather than a list is n.link.

4.5.6 Storing the Results of Expensive Computations

Due to the redundancy of the representation of feature structures in disjunctive normal form,
i.e. as a set of alternative feature structures (cp. section 4.3.2), it is possible that expensive
operations like feature structure unifications are repeated. In order to avoid this, the parser
stores the results of expensive computations in a hash table. Before such an operation is
executed, it is checked whether the result is already available from the hash table. Two
types of operations are hashed by the YAP parser: feature structure unification and string
concatenation.



68

CHAPTER 4. PARSING



Chapter 5

Experimental Results

5.1 The English Grammar

All experiments reported in this chapter were carried out with versions of the English YAP
grammar which is printed in appendix B. This grammar uses HPSG-style Slash and Subcat
features to check constraints on argument structure and constituent movement. Most cat-
egory names were taken over from the Penn Treebank database [Marcus et al., 1993]. The
grammar contains 250 rules plus 50 rules for handling quotation and commas plus 45 rules
for coordination. The grammar covers a broad range of linguistic phenomena, among them

e subcategorization

long distance dependencies

e questions, imperatives, subjunctives and relative clauses

raising and control verbs

small clauses

e extrapositions

e coordination including some frequent cases of non-constituent coordination

The lexicon is based on the COMLEX lexical database [Grishman et al., 1994] which contains
almost 40,000 base forms. It is supplemented by a hand-built lexicon which contains entries for
most function words and some other words for which the Comlex entry was not appropriate
for some reason. It is also possible to create additional corpus-specific lexical entries for
part-of-speech tagged corpora.

5.2 Parsing the Wall-Street-Journal Corpus

The Wall Street Journal corpus, which has been manually parsed by the Penn Treebank
project [Marcus et al., 1993], was reparsed with the English YAP grammar. Lexicon entries

69
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for words which were not contained in the standard lexicon were derived from the part-of-
speech tags in the Treebank corpus. The tags were not used during parsing itself, however.
Quotation marks were ignored. More than 7 words per second were parsed on average on a
Sun Ultra-2 workstation with 500 MByte RAM. Three times the parser stopped prematurely
due to memory exhaustion. The computation of the feature structures was the most time-
consuming part of parsing.

For 80 percent of the sentences, the parser generated at least one analysis, and for 54 percent
of the sentences, there was at least one analysis which was compatible with the Penn Treebank
analysis. The matching of the YAP analysis with the Treebank analysis will be described in
section 5.4. The matching is not perfect, however. Sometimes, it fails to detect important
differences between two analyses and sometimes two equivalent analyses are classified as
inconsistent merely because of differences in the way syntactic phenomena are described.

Therefore 100 sentences were parsed and manually inspected to estimate how often the parser
really generated an acceptable analysis. For 57 of the inspected sentences, the parser had pro-
duced a Treebank-compatible analysis, but for only 48 sentences was one of the analyses indeed
correct. Interpolating these results, the portion of sentences with an acceptable analysis is
probably around 45 percent in the larger corpus.

25 T T T T T T T T

20 ¢ K

/
/
,
s
/
- , .
7
/
;

processing time in secs/sentence

000 O
00000 ©

o
o 00004 I I

10 15 20 25 30 35 40 45 50
sentence length

Figure 5.1: Empirical parsing complexity

Parsing of grammars with feature structures is known to be NP-complete in the worst case
even if the grammar is offline parsable. This means that the worst-case runtime of the parser is
exponential in the length of the input string (at least for all known algorithms). Fortunately,
grammars used for parsing natural language usually do not show this worst-case runtime
behaviour. Therefore we are more interested in the runtime complexity which is observed
with real grammars and real data. Figure 5.1 shows how much time it took on average for the
parser to parse sentences of length 10 to 55 from the Penn Treebank. The dots representing
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the average parsing times are well approximated by a cubic function (the dashed line in the
diagram)®.

strategy 25 sentences | 1 complex sent.
all optimizations 65.9 180
no hashing of unifications 67.4 193
no hashing of string concatenations 79.3 244
recomputing always 67.3 236

Table 5.1: Parse times for 25 randomly selected sentences and a single complex sentence

Another experiment was carried out to check the influence of some of the optimization strate-
gies described in section 4.5 on parsing time. A randomly selected set of 25 sentences was
parsed with different variants of the parser in the first part of the experiment. In the second
part of the experiment, a single complex sentence with many analyses was parsed. In each
variant of the parser, one optimization was switched off. Table 5.1 shows the results. Hashing
of unifications showed minor effects on parsing speed. Hashing of string concatenation oper-
ations was more effective. Presumably string concatenation operations are more likely to be
repeated than feature structure unifications. Avoiding unnecessary recomputation of feature
structures had a larger influence on the parsing of the complex sentence than on the parsing
of the simpler sentences.

The impact of the incorporation of features into the context-free grammar was examined,
as well. In contrast to [Maxwell IIT and Kaplan, 1994], T only observed a small speedup of
3 percent for the best combination of incorporated features compared to parsing without
feature incorporation. Incorporation of morpho-syntactic features like number, gender and
case made the parser very slow because the parse forest generated by the context-free parser
became very big, slowing down both context-free parsing and the calculation of the feature
structures. Overall, a close relationship between the number of nodes in the context-free
parse forest and parsing time has been observed. In those cases where the incorporation of
features considerably increased the size of the context-free parse forest, it proved useful to
skip the initialisation of feature structures with the values of incorporated features, allowing
many nodes with different values for the incorporated features but identical category to be
merged and thereby reducing the size of the parse forest. But still the grammar which did
not incorporate these features showed superior performance.

5.3 Comparison With Other Parsers

The parser was compared to a state-of-the-art parser, the XLE system developed at the
research laboratories of the Rank Xerox company which was available for the experiments.
A corpus of 700 words, which both parsers were able to parse completely, was used in this
experiment. The XLE system parsed this corpus in 110 seconds whereas the YAP parser
needed 123 seconds. The tests were run on comparable machines.

!There is an outlier at (48, 36.7) which is not shown in the diagram.
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It is very difficult to compare these parse times because the parsers are very different wrt.
the grammar formalisms, the information contained in the analyses, the degree of ambiguity
of the resulting parse trees and other criteria. The YAP grammar tends to generate more
analyses (making parsing more difficult) but it defines smaller feature structures (making
parsing easier).

In another experiment, the XLE system and YAP were compared on a small grammar for
German subordinate clauses with relative clause extraposition. Due to PP attachment am-
biguities, the number of attachment sites of the extraposed clause increased exponentially
with the length of the sentence. In the YAP version of the grammar the extraposed sentence
was attached with Slash percolation. The LFG grammar? attached the extraposed clause
with functional uncertainty. The resulting empirical runtime complexity for input of varying®
length was about cubic for the YAP parser and exponential for the XLE system.

T
exponential —
standard LFG -¢---
polynomial (n**4) -----
LFG with SLASH -+
10 b LFG, no attachment =~
polynomial (n**3) -----
YAP -x---

processing time [sec]

01F —

001 k-

words per sentence

Figure 5.2: Parsing complexity of the YAP grammar and different versions of the XLE gram-
mar

In order to find out whether the difference in parsing complexity was due to differences in
the parsing algorithms or due to differences in the grammar formalisms, the XLE grammar
was modified. First, functional uncertainty was replaced by Slash percolation. The resulting
parsing complexity was better for large sentences but still exponential. The “Slash” grammar

2All versions of the LFG grammar have been written by Jonas Kuhn who is an experienced XLE user.
3The length of the input was increased by adding PPs in the matrix clause.
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was further modified so that the Slash feature contained only agreement information and no
pointer to the PRED feature. As a result of this modification, the parsing complexity dropped
to about O(n%). In the last version of the LFG grammar, information about adjuncts was
removed from the f-structure and the runtime complexity further dropped to about cubic
complexity. But even this version of the XLE grammar was at least an order of magnitude
slower than the YAP grammar for all input lengths.

This experiment confirms how useful it is to avoid the evaluation of structure-building con-
straints during parsing. It also indicates that the presented method for the computation of
the feature structures is — at least for the grammar in this experiment — very efficient.

5.4 Tree Matching

This section describes the function match which is used to match the parse forest with an
unambiguous skeleton parse tree (see section 5.2). It eliminates analyses with crossing brackets
and performs some additional checks which are implemented in the function check_nodes.

Two analyses are said to have crossing brackets if the first analysis contains a constituent
spanning from position ¢ to j and the second contains a constituent spanning from £ to [ and
either 1 < k < j <lork <1<l <y, ie. the two intervals overlap and none is completely
covered by the other. An example for two analyses with crossing brackets in list notation is
the pair ((a b) ¢) and (a (b ¢)). Both of these are compatible with (a b (c)), however.

F: a parse forest

T: an unambiguous skeleton parse tree

F.nodes set of all nodes in F

F.roots the root nodes of F

T.root the root node of T

n.processed: flag indicating whether node n has already been processed
n.valid: flag indicating whether node n is part of the filtered parse forest
n.bu_valid: flag indicating whether the matching of node n was successfull
a.valid: flag indicating analysis a is part of the filtered parse forest
a.bu_valid: flag indicating whether the matching of analysis a was successfull
trace_node(n): checks whether n is a trace node

terminal node(n): checks whether n is a terminal node
match(F,T)

1

2

3 for all nodes n € F.nodes do

4 n.processed < false

5 n.valid < false

6 for all analyses a € n.analyses do

7 a.valid < false

8 % do the matching

9 for all nodes n € F.roots do

10 matchl(F.root, T.root, 0, T.root.number_of_daughters-1)
11 % mark analyses which did not match
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for all nodes n € F.roots do
filter(F.root)

matchl( fn, tn, ts, t1)

% check whether the current node was matched before
if fn.processed = true then
return fn.bu_valid
% perform some additional checks like matching category names etc.
if check_nodes(fn, tn, ts, tl) = false then
return false
if terminal node(fn) = true and terminal node(tn) = true then
for all analyses a € fn.analyses do
a.bu_valid ¢ true
return true
% skip over traces in the parse tree
while ts < tl and trace_node(tn.daughter[ts]) do
ts <~ ts + 1
if terminal node(fn) = true and terminal node(tn) = false then
if terminal node(tn.daughter|ts]) = true then
return matchl(fn, tn.daughter[ts|, 0, 0)
else
return matchl(fn, tn.daughter[ts], 0, tn.daughter[ts].number_of_daughters-1))
% fn is a nonterminal node
fn.bu_valid «+ false % initialisation
for all analyses a € fn.analyses do
a.bu_valid < true
20
fl «0
t2 + ts
tl « ts
% Matching of the daughter nodes
while a.bu_valid and t2 < tl do
if a.daughter[f2].end < tn.daughter[t2].end then
2 f2+1
else if a.daughter[f2].end > tn.daughter[t2].end then
2+ t2+1
else % end positions are identical
% Does one parse forest node match one or more tree nodes?
if a.daughter[f1].start = a.daughter[f2].start then
if matchl(a.daughter[f1], tn, t1, t2) = false then
a.bu_valid + false
% Does one tree node match several parse forest nodes?
else if tn.daughter[t1].start = tn.daughter[t2].start then
if match2(fn, a, f1, £2, tn.daughter[t2]) = false then



5.4. TREE MATCHING

58 a.bu_valid < false

59 else % crossing brackets
60 a.bu_valid < false

61 2 f2+1

62 t2—t241

63 fl «+ 2

64 t1 < t2

65 % end of while loop

66 if a.bu_valid = true then

67 fn.bu_valid < true

68 return fn.bu_valid

69

70

71  match2( fn, a, tn, fs, fl)

72

73 % ignore trace nodes

74 while fs < fl and trace_node(a.daughter[fs]) do
75 fs«fs+1

76 if terminal node(tn) then

7 if matchl(a.daughter[fs], tn, 0, 0) = true then
78 return true

79 else

80 return false

81 % tn is a nonterminal node

82 valid < true % initialisation
83 fl + fs

84 2 « fs

85 t1 <0

86 t2 <0

87 % Matching of the daughter nodes
88 while valid = true and 2 < fl do

89 if a.daughter[f2].end < tn.daughter[t2].end then

90 2 f2+1

91 else if a.daughter[f2].end > tn.daughter[t2].end then

92 t2 —t2+1

93 else % both end positions are identical

94 % Does one parse forest node match one or more tree nodes?
95 if a.daughter[fl].start = a.daughter[f2].start then

96 if matchl(a.daughter[f2], tn, t1, t2) = false then

97 valid « false

98 % Does one tree node match several parse forest nodes?
99 else if tn.daughter[tl].start = tn.daughter[t2].start then
100 if match2(fn, a, fl1, 2, tn.daughter[t2]) = false then
101 valid <« false

102 else % crossing brackets

103 valid < false
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104 2+« 12+1

105 t2 12 + 1

106 fl «+ 12

107 t1 ¢ t2

108 % end of while loop
109  return valid

110

111

112 filter(fn)

113

114  if fn.bu_valid = true then
115 fn.valid « true

116  for all analyses a € fn.analyses do
117 if a.bu_valid then

118 a.valid ¢ true
119 for i < 1 to a.number_of_daughters do
120 filter(a.daughter]i])

After initialising data structures, the function match processes all top nodes of the parse forest
(i.e. each node covering the whole input string) by calling the function matchl. Afterwards,
the function filter is called for all top nodes to mark those nodes of the parse forest which
are not part of a compatible analysis.

Function matchl takes four arguments, a parse forest node, a node from the treebank analysis
and the number of the first daughter node and the last daughter node of the treebank node to
be matched with the parse forest node. The function checks first whether the current parse
forest node has already been processed. If so, it returns the result*. Otherwise, it invokes
the function check nodes to perform some additional compatibility tests. If both the parse
forest node and the treebank node are terminal nodes, then all analyses of the parse forest
node are marked as valid. Otherwise, the function skips over trace nodes in the parse tree
and determines the next non-empty daughter node of the treebank node. If the parse forest
node is a terminal node, then match1i is called recursively to match the parse forest node with
the next parse tree daughter node. Otherwise, the parse forest node is a non-terminal node
and the function has to check all possible analyses of the parse forest node.

For each analysis, it determines whether the first non-empty daughter of the parse forest
node has the same span as one or more daughter nodes of the treebank node. If this is the
case, then matchl is called recursively to match this parse forest daughter with the treebank
daughters. Otherwise, the function checks whether the next daughter node of the treebank
has the same span as a subset of the daughter nodes of the parse forest node. If this is the
case, then the function match?2 is called to match the subset with the next treebank daughter.
If neither of the two cases applies, then crossing brackets have been detected and the current
analysis is marked as incompatible. Otherwise, matchl continues and matches the remaining
nodes.

The function match2 takes five arguments: a parse forest node, an analysis of this node, a
treebank node and the number of the first daughter node and the last daughter node of the

“Because the parse tree is unambiguous, it is not possible that the same parse forest node is matched with
two different parts of the parse tree.
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parse forest node to be matched with the treebank node. The function first determines the
next non-empty daughter node of the parse forest node. If the treebank node is a terminal
node, then matchl is called to match the treebank node with the next non-empty parse forest
node. Otherwise, the function checks whether the next parse forest node has the same span as
a subset of the treebank daughters. If this is the case, then match1 is called to match the next
parse forest daughter with the treebank nodes. Otherwise, match2 checks whether the first
non-empty treebank daughter has the same span as a subset of the parse forest daughters. If
this is the case, then match?2 is called recursively to match the treebank daughter with the
parse forest daughters. If none of the two cases applies, then crossing brackets exist and the
function returns false.

The crossing brackets criterion is only a crude test of the compatibility of two syntactic
analyses. It fails to check the compatibility of the labels, it does not differentiate between
arguments and adjuncts, and it can not detect the PP-attachment incompatibility of the two
analyses (V NP PP) and (V (NP PP)) where the PP attaches to the verb in the first analysis
and to the noun in the second. The function check nodes performs these and other checks
in order to improve the matching of YAP analyses and Penn Treebank analyses.



78

CHAPTER 5. EXPERIMENTAL RESULTS



Chapter 6

Parse Forest Disambiguation

A major problem in syntactic analysis is ambiguity. It occurs that sentences have thousands
of parse trees. Most applications, however, are only interested in the most plausible analyses
and cannot deal with thousands of different analyses. Hence it is necessary to score the
individual parse trees and to extract the best ones efficiently.

Major sources of syntactic ambiguity in English are prepositional phrases, noun compounds,
coordinations and combinations thereof as in the sentence ‘‘The agency studied swings
in stock and stock-index prices’’, which has seven different analyses depending on
where the prepositional phrase attaches, what the conjunction and coordinates, and what
the noun compound headed by prices looks like. Resolution of these types of ambiguity
requires semantic information and/or world knowledge. One approach to disambiguation is
therefore to eliminate a reading if a contradiction between the semantic content of this read-
ing and background knowledge is derivable. This disambiguation method is used e.g. in the
Verbmobil project, a German research project aiming at the development of a system for au-
tomatic translation of appointment scheduling dialogs. It is difficult to extend this technique
to broader domains, however, because a huge amount of hand-coded background knowledge
is required and the search space for the derivation of contradictions is so big.

Many disambiguation problems require no in-depth semantic analysis, however. Con-
sider the sentences ¢ ‘The account comprises trade in goods’’ and ‘‘Investors pour
money into funds’’. By examining a large text corpus, we find that trade in goods and
pour ...something... into ...something... are frequent constructions. Based on this
frequency information, it is possible to decide that nominal attachment of the prepositional
phrase is probably correct in the first sentence and verbal attachment in the second. Such
frequency-based or statistical methods have the following advantages:

e Statistical methods require little or no handcoded information. The relevant information
is automatically extracted from training corpora.

e Processing is fast compared to the inferential methods and also compared to the time
required for parsing. This is important for processing large corpora.

e Analyses are ranked rather than divided into valid and invalid analyses. It is often the
case that several readings of a sentence are acceptable, but that some of them are more
plausible than the others.

79



80 CHAPTER 6. PARSE FOREST DISAMBIGUATION

e Some statistical methods are trained on plain text. These methods require no manually
parsed training corpora (treebanks) which are expensive to produce and of limited size
compared to the amount of unparsed material available.

6.1 Probabilistic Grammars

A probabilistic grammar is a grammar which assigns probabilities to parse trees, and a parser
for a probabilistic grammar disambiguates a sentence by selecting the parse tree with the
highest probability. Three types of probabilistic grammars will be discussed here: probabilis-
tic context-free grammars, head-lexicalized probabilistic context-free grammars and feature-
based probabilistic context-free grammars. Other types of probabilistic grammars have
been presented e.g. in [Black et al., 1992], [Magerman, 1994], [Briscoe and Waegner, 1992],
[Eisner, 1996], [Collins, 1996].

6.1.1 Probabilistic Context-Free Grammars

A probabilistic context-free grammar is a context-free grammar which assigns a probability
P(r) to each grammar rule r. The probabilities of all rules with the same left hand side must
sum to 1.

The probability of a parse tree is defined as follows:
pr) = [ P

rule r
F(r,T) is the number of times, rule r was used to generate T.

The values of the parameters are learned automatically. When an unambiguously parsed
training corpus, also called a treebank, is available, it is possible to estimate the probabil-
ities directly from the observed rule frequencies. Otherwise, the Inside-Outside algorithm
[Baker, 1982], an instance of the more general Ezpectation Mazimization (EM) algorithm
[Baum and Sell, 1968] can be applied to learn the parameter settings from unparsed corpora.

The availability of efficient training algorithms makes PCFGs very attractive, but they fail
to disambiguate some frequent syntactic ambiguities like coordination and PP-attachment
ambiguities. Consider the context-free grammar in table 6.1. Any PP-attachment ambiguity
will be resolved in the same way in any probabilistic version of this grammar because the
decision depends only on the ratio P(VP — VP PP) : P(NP — NP PP). Therefore
the most probable parse tree for one of the two sentences ‘ ‘The account comprises trade
in goods’’ (nominal attachment) and ‘ ‘Investors pour money into funds’’ (verbal at-
tachment) is always incorrect. Furthermore both analyses of the noun phrase ¢ ‘the sale
of the company to the competitor’’ always have the same probability because the same
rules are applied in two different orders.

6.1.2 Head-Lexicalized Probabilistic Context-Free Grammars

Head-Lezicalized probabilistic context-free grammars (LPCFG) extend the PCFG approach
by incorporating information about the lexical head of constituents into the probabilistic
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S - NP VP
VP — VP PP
VP —» V NP
PP — P NP
NP — NP PP
NP — DT N
DT — the

Table 6.1: A context-free grammar

model [Charniak, 1997, Carroll and Rooth, 1998]. An LPCFG rule looks like a PCFG rule,
but one of the daughters is marked as the head. The rule probabilities P.,.(C — «) (or
rather P,,.(C — «|C) because the probability of a rule is only non-zero if the constituent
which is expanded has the appropriate category) are replaced by lexicalised rule probabilities
Pry1e(C — a|C, h) where h is the lexical head of the mother constituent C. In other words, in
an LPCFG, the probability of a rule depends on the lexical head. Assume that our grammar
has two rules which expand VPs, namely VP — V NP and VP — V. Then the first rule should
be more likely if the lexical head is buy whereas the second rule should be more likely if the
lexical had is the intransitive verb sleep.

Once we have applied a lexicalised grammar rule, we need to know the lexical heads of
the non-head daughters in the rule before we can further expand the daughter nodes.
Therefore LPCFGs comprise another type of probabilities, the lexical choice probabili-
ties Pepoice(hd|Cay Cmy him), which tell us how likely it is that a given word hy is the lexical
head of a constituent with category Cy when the mother node has category C,, and the lexical
head hy,. S0, Pepoice(book|N P,V P,buy) is the probability that the NP argument of the verb
buy is headed by book.

Finally, an LPCFG comprises a probability distribution Ps;q,¢(h) which determines how likely
the word h is to be the lexical head of the root node of a parse tree. The probability of a
parse tree T' is defined as the product:

P(T) = Psgri(head(root(T))) x*
H Pryie(r | cat(n), head(n))

nonterm n in T

H Pepoice(head(n) | cat(n), cat(parent(n)), head(parent(n)))

nonroot n in T’

where the function root (T) returns the root node of a parse tree T and cat (n) returns the
category and head(n) the lexical head of a node n.

A head-lexicalized version of the context-free grammar in table 6.1 is able to assign
the highest probability to the correct parse trees for both sentences, ¢‘The account
comprises trade in goods’’ and ¢ ‘Investors pour money into funds’’ if the proba-
bilities Pppoice(in | NP, PP, trade) and Pppeice(into |V P, PP, pour) are large compared to the
probabilities P.jyjce(in |V P, PP, comprise) and Pepice(into| NP, PP, money).
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Because head-lexicalized context-free grammars can be mapped to probabilistic context-free
grammars', it is possible to use the Inside-Outside algorithm to estimate the parameters.
The huge number of parameters, however, leads to serious data sparseness problems. No
matter how big the training corpus is, some possible lexical choice events will not be ob-
served in the corpus and their probability will therefore be estimated as 0, which is not
acceptable because the probability of any parse tree containing such an event will be zero.
The problem can be solved with smoothing techniques which distribute a small fraction
of the probability mass of the observed events over unobserved events, either uniformly
(see e.g. [Church and Gale, 1991]) or by interpolation [Jelinek and Mercer, 1980] or accord-
ing to a backoff scheme [Katz, 1987] or based on the similarity of words e.g. in a taxonomy
[Abney and Light, 1998] or according to some similarity metric [Dagan and Pereira, 1994].

The data sparseness problem can also be tackled by reducing the number of parameters. In
the latent semantic class (LSC) model of Mats Rooth [Rooth, 1994], the probability of a word
pair (w,w’) is defined as Y 7 p(7)p1(w|7)p2(w'|7), where T is the set of semantic classes,
p(7) is the apriori probability of class 7, p;(w|7) is the probability of the first word of the
pair given semantic class 7, and py(w'|7) is the probability of the second word of the pair
given 7. The number of semantic classes in the model is defined by the user. The number
of parameters of the LSC model grows linearly rather than quadratically with the number of
words if the number of classes is fixed. The LSC parameters are automatically learned from a
training corpus using a variant of the EM algorithm. Latent semantic classes can be thought
of as a set of prototypical semantic relationships. The latent semantic class model could also
serve as one of the distributions in an interpolated model or a backoff model.

6.1.3 Probabilistic Constraint-Based Grammars

Probabilistic versions of constraint-based grammars have been examined as well (see e.g.
[Eisele, 1994, Brew, 1995, Abney, 1996, Riezler, 1999]). Andreas Eisele proposed a proba-
bilistic extension of CUF, a constraint-logic programming language which is used to imple-
ment constraint-based grammar formalism like HPSG. Eisele’s method assigns probabilities
to clauses of a constraint-logic program and the probability of an analysis is defined as the
probability of its proof tree rather than the probability of the parse tree as in PCFGs. The
proof tree probability is the product of the probabilities of all clauses in the proof tree. Eisele
suggests using the EM algorithm to estimate the probabilities of the clauses from unparsed
training text. As Eisele points out, the probability model may assign non-zero probabilitites
to proof trees which fail due to violations of feature constraints. The probabilities are there-
fore renormalized in order to get a probability distribution in which the probabilities of all
parse trees add up to 1. This does not completely solve the problem, however, because the
obtained parameters may systematically converge to non-optimal results if the distribution
of unification failures is not random.

We will illustrate the problem with a YAP grammar because it appears there in the same
form. Consider the following grammar:

In order to turn an LPCFG with a set of categories C and start symbol S € C and a set of lex-
ical forms W into a PCFG, we replace each rule C,, — Cy, ...C{ih ...Cq, by a set of rules {C}, —

Cg’lm’w .. Cg, ...Cg:”’w|w € W} with probabilities equal to the rule choice parameters of the LPCFG. We

further add a set of rules {C°* — C*'|C,C" € C Aw,w' € W} and a set of rules {S — S“|w € W} with
probabilities equal to the lexical choice parameters of the LPCFG.
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(R1) NP {} -> DT {Number=n;} ‘N {Number=n;};
(R2) "this": DT {Number=sg;};
(R3) "these": DT {Number=pl;};
(R4) "man": N {Number=sg;};
(R5) "men": N {Number=pl;};

Assume that the training corpus consists of the two unambiguous phrases this man and
these men. The corresponding parse trees are shown in figure 6.1.

NP NP
DT N DT N
this man these men
@ (b)

Figure 6.1: Parse trees for the phrases this man and these men

Training the grammar on these two phrases will return the following probabilities:

P(R1) =1

P(R2) = P(R3) = P(R4) = P(R5) = 0.5

The sum of the probabilities of all parse trees generated by this grammar (these are the two
trees shown in fig 6.1) is 0.5. In order to renormalize the probabilities such that the sum
of probabilities of all parse trees equals 1, we multiply the tree probabilities with 2. The
resulting tree probabilities are now identical to the relative frequencies of the sentences in the

training corpus. This is the desired result because we want the probability model to reflect
the distribution in the training corpus.

Now assume that the training corpus contains this man twice and these men once. In this
case, we get the following probability estimates:

P(R1) = 1
P(R2) = P(R4) = 2/3
P(R3) = P(R5) = 1/3

The renormalization factor is 9/5 and the probability of tree (a) is 4/5 and the probability
of tree (b) is 1/5. These probabilities are quite different from the relative frequencies in the
training corpus which are 2/3 and 1/3. The likelihood of the training data for this model is
0.128. If we choose the following parameters instead

P(R1) =1
P(R2) = P(R4) = 0.58
P(R3) = P(R5) = 0.42

and the normalisation constant 1.95, then we obtain a likelihood of about 0.148. This proves
that the above training procedure is not optimal since it fails to find the parameters which
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maximise the probability of the training data. The reason is that the application of rules 2,
3 and 4, 5 is not statistically independent.

Steven Abney [Abney, 1996] presented a method for the disambiguation of constraint-based
parses which is based on log-linear models. A log-linear model defines a set of features {f}
with weights Ay and the probability of a parse tree is defined as:
1
Py = L Erum

where F'(f,T) is the frequency of feature f in 7" and Z is a normalisation constant which is
defined as follows:

Zzzezf)‘fF(frT)
T

PCFGs are a special case of log-linear models where Z is 1 and the features are the grammar
rules and the weight of a feature is the logarithm of the probability of the grammar rule. In
contrast to PCFGs, however, log-linear models normally do not satisfy the constraint that the
weights form a family of probability distributions and they cannot be interpreted as models
of a generative process.

Abney also presented an algorithm for the training of log-linear models on treebank bank
data which guarantees that the feature weights maximise the likelihood of the training data
even when the features are not statistically independent. Abney’s algorithm was extended
by Stefan Riezler [Riezler, 1999, Riezler, 1998] for unsupervised training on unparsed data.
Recently, Riezler and Johnson [Johnson et al., 1999] successfully applied Abney’s method in
a small-scale experiment in which LFG analyses were disambiguated.

The computation of the normalisation constant Z is a problem in Abney’s and Riezler’s
algorithm. This computation is only exact if the set of parses is finite. Otherwise, Z has
to be estimated and there is no guarantee that the “probabilities” of all parses sum to 1.
This problem is not relevant for syntactic disambiguation, however, because a change in the
constant Z has no influence on the ranking of the parses of a sentence.

6.2 Hybrid Disambiguation Methods

The probabilistic methods presented so far compute scores for complete parse trees and disam-
biguate the parse forest in one step. It is also possible to disambiguate a parse forest step by
step, starting with the most reliable disambiguation decision and removing all analyses which
are incompatible with this decision, then removing the analyses which are incompatible with
the second-best decision, and so on. This method has the advantage that arbitrary probabilis-
tic and symbolic methods can be used to derive the individual decisions because there is no
need to combine scores for decisions numerically in order to get overall scores for whole parse
trees. Therefore it is possible to combine the disambiguation methods which have been de-
veloped for PP-attachment disambiguation [Hindle and Rooth, 1993, Brill and Resnik, 1994],
noun compound disambiguation [Lauer, 1995] and subject-object disambiguation in German
[de Lima, 1997].
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6.3 A Disambiguation Method for YAP

Because of the theoretical problems (see section 6.1.3) as well as practical problems with
probabilistic feature-based grammars (parsing of a large corpus like the British National Cor-
pus (BNC) which contains 100 million words with YAP and the presented English grammar
would take more than half a year), a hybrid strategy was chosen to disambiguate the output
of the YAP parser with the English grammar.

6.3.1 The Basic Idea

The basic idea of this disambiguation method is to look for word pairs in the parse forest
which stand in a head-argument or modifier-head relation. These word pairs are ranked with
respect to the strength of the association between the words in the given relation. Starting
with the strongest association, all analyses not containing the respective word pair in the
given relation are deleted. Then the second-best association in the remaining analyses of the
sentence is selected to prune the parse forest, and so on until only one analysis is left or the
set of word pairs is empty. If several word pairs have the same association score, all analyses
containing either one of them are retained. The association score used by the parser is the
log-likelihood ratio (see [Dunning, 1993, Daille, 1995]) which is defined as follows:

L(C,w,r,C" w') = 2(AlogA + BlogB + ClogC + DlogD
—(A+ B)log(A+ B) — (A+ C)log(A+ C)
—(B + D)log(B + D) — (C + D)log(C + D)
+(A+ B+ C+ D)log(A+ B+ C+ D))
A = F(Cw,rC )

B = ZF(C,U),T,C',U}')] —A
C = ZF(C,w,T,C',w')] —A
D = Z F(Cyw,r, C',w')} —A

Compared to the mutual information statistics, the log-likelihood ratio assigns more adequate
scores to rare events [Dunning, 1993].

6.3.2 Computation of the Scores

The word pair frequencies have been obtained by parsing 90 million words from the BNC with
Carroll and Rooth’s head-lexicalized context-free parser for English (see section 6.1.1). The
result was a table of estimated lexical choice frequencies Fi¢c ., cr vy Where C is the category
of the mother node of a rule, C’ is the category of a non-head constituent, w is the lexical
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V arg N: VFC1 — ... NC1 ...

V arg PART: VFC1 — ... PART C ...

V arg P:

P mod V: VFC1 - ... PCl..

P arg N: P.C — ... NC1 ...

N arg V: NC1 —+ ... VTOC1 ...

N arg P:

P mod N: NC1 - ... PCl..

ADJ arg V: ADJC1 — .. VTOCLI ...

ADJ arg P: ADJC1 — .. PCl ..

ADJ mod N: NPL= — .. ADJMOD ...
NSG= — .. ADJMOD ...
NPL_ — ... ADJC1 ...
NSG_ — ... ADJCI ...
NPL_ - ... CD_..
NSG_ — ... CD_..

ADV mod P: PREP. — .. ADV= ..

ADV mod V: VFC1 — ... ADV= ...
VF= — ... ADV= ..
S_.C — ... ADV= ..

ADV mod ADJ: | ADJ= — .. ADV= ..
CD_ — ... ADV= ..

ADV mod ADV: | ADV. — ... ADV_ ..

N mod N: NPL_ — ... NPL_ ...
NPL_ —+ ... NSG._ ...
NPL_ — ... PN_..
NSG_ — ... NPL_ ...
NSG_ —+ ... NSG._ ...
NSG_ — ... PN_..
PN_ — ... NPL_ ...
PN_ — ... NSG._ ...
PN_ — ... PN_..

Table 6.2: Mapping of lexical choice frequencies from the head-lexicalized grammar to lexical
association frequencies
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head of the mother node and w’ is the lexical head of the daughter node and f is the frequency
of occurrence.

Frequencies for a set of lexical associations were derived from this frequency table. The left
column in table 6.3.2 shows the different types of word relations for which log-likelihood scores
have been computed. The right column shows the lexical choice frequencies which have been
added up to obtain frequencies for the respective relation. V arg N is the relation between a
verb and its nominal argument, ADV mod V is the relation between a verbal category and its
adverbial modifier.

Example:
F(ADV,purely,MOD,ADJ,aesthetic) = F(ADJ:,aesthetic,ADV:,purely) + F(CD_,aesthetic,ADV:,purely)

Log-likelihood ratios have been computed for the word pairs of each relation type. Only word
pairs with a frequency of at least 1 and a log-likelihood ratio of at least 2 were used for
disambiguation.

The LPCFG makes no distinction between arguments and adjuncts. Therefore the scores for
the V arg P relation and the P mod V relation have to be computed from the same lexical
choice frequencies. To this end, the lexical choice frequencies are split into two sets. The
first set contains of verb-preposition pairs where the verb subcategorizes for a prepositional
phrase headed by the preposition. The other set consists of the remaining pairs. The first set
is used to compute scores for the V arg P relation and the second to compute scores for the
P mod V relation. Scores for the N arg P relation and the P mod N relation are computed in
the same way.

In order to get more significant scores for numbers and names, the counts of all ordinal
numbers, all cardinal numbers and all proper names were merged.

So far, we have only considered lexical association scores. Although this kind of information
seems to be most important, the parser also needs information about the probabilities of
grammar rules and lexical entries. This is necessary to be able to penalize rare readings of
words and rare syntactic constructions like e.g. extrapositions. To this end, the frequencies
of all word-tag-pairs have been counted in the tagged version of the BNC [Leech et al., 1994]
and mapped to the lexical entries. Furthermore, about 1 million words from the Wall Street
Journal corpus have been parsed and matched to the treebank analysis (see section 5.4) in
order to extract rule frequencies from the filtered parse forests. The score of a grammar rule
L(r) or a lexical entry L(C,w) was then defined as the logarithm of its frequency multiplied
by 10. This heuristic score worked quite well.

6.3.3 Disambiguation

For efficiency reasons, disambiguation is carried out with a version of the Viterbi algorithm
rather than with the stepwise disambiguation procedure described above. The score of a
non-terminal node in a parse forest is computed by adding up the scores of the daughter
nodes and the score of the grammar rule. If a node has more than one analysis, then the
highest score is selected. The score of a terminal node is defined as the sum of the argument
scores L(C,w,arg,C’',w'") plus the score of the lexical entry L(C,w) plus the modifier score
L(C,w,mode, C" ,w") in case the maximal constituent headed by the current node modifies
some other node. Here, C/C'/C" is either V, N, P, ADJ, ADV or PART depending on whether
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the node/its argument/the modified constituent is verbal or nominal, etc. (table 6.3 shows
the mapping in detail); w/w'/w" is the lexical head of the current node/the argument/the
modified constituent, respectively.

\% « S, VP, VBAR, V, .V
N « NP, NBAR, N
ADJ «+ ADJP, ADJ, _ADJ
ADV  + ADVP, ADV

P «~ PP,P

PART + RP

Table 6.3: Mapping of the categories of the English YAP grammar to the categories of the
association table.

The score of a terminal node of category P with lexical head in which subcategorizes for
an NP argument with lexical head goods and modifies an NP with lexical head trade is
L(P,in,arg, N, goods) + L(P,in,mod, N,trade) + L(P,in).

The English YAP grammar (see appendix B) generates all information required to compute
the scores. The lexical head of a constituent is stored in the HeadLex feature. Arguments are
accessible at terminal nodes via the Subcat feature and — in case of prepositions — the Arg
feature. Modified constituents are accessible via the Mod_Elem feature.

In case of coordination, the lexical head is explicitly defined as the concatenation of the
lexical heads of the coordinated constituents. We define the score L(C, W,r, C',W'), where
r € {arg,mod} and W and W' are lists of lexical heads, as -, cw Ywew: L(C,w,r,C',w').
Summing scores produced better results than averaging. Why this is the case can be explained
with an example. Consider the sentence She met the prime ministers of France and
Italy. Assume that L(P,of,arg, N, France) = 100 and L(P,of,arg, N, Italy) = 50 and
that these two are the only relevant scores. If the scores are added in case of coordination, we
get a score of 150 for the analysis in which France and Italy are coordinated and a score of
100 for the analysis in which the prime ministers of France and Italy are coordinated.
In case of averaging, the respective scores are 75 and 100, so that in this case the analysis
containing only one of the lexical associations is preferred.

Experiments have shown that the difference between the results of the presented disambigua-
tion method which is based on the Viterbi algorithm and the method which disambiguates
step by step by removing all analyses without the respective lexical association is minimal.
This justifies the application of the more efficient Viterbi algorithm.

6.3.4 Disambiguation Results

The applicability of the presented disambiguation method was checked in a small-scale ex-
periment in which 100 sentences from the BNC have been parsed, scored and manually dis-
ambiguated. The sentences and the disambiguation results are shown in appendix D.

The correct analysis had the highest score for 19 sentences, which had 235 analyses on average,
and the unique highest score for 7 sentences with 7.1 analyses on average.
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25 percent of the analyses had a higher score on average than the correct analysis and 35
percent had a score at least as good. We will now analyse some sentences where the highest
scoring analysis was not the correct one.

6.3.5 Error Analysis

Rockwell said the agreement calls for it to supply 200 additional so-called shipsets
for the planes.

In this sentence, the noun-attachment score L(P, for,mod, N, call) (2551) is higher than the
verb-attachment score L(V, call,arg, P, for) (2537), thus preferring analyses where calls is
a noun which is modified by a prepositional phrase headed by for.

“Mr. Carlucci, 59 years old, served as defense secretary in the Reagan adminis-
tration.”

In this sentence, the score L(P,in,arg, N,(name)) (7663) is much higher than
L(P,in,arg, N,administration) (2.4). Therefore the parser prefers an analysis in which
serve is a transitive verb, administration is its argument and ¢ ‘in the Reagan’’ is a PP
adjunct. The problem arises because person names and place names are not distinguished.

“In January, he accepted the position of vice chairman of Carlyle Group, a mer-
chant banking concern.”

In this sentence, the score L(P,of,arg, N,concern) (870) is higher than the score
L(P,of,arg, N,Group) (857). Therefore concern is picked as the head of the NP ¢ ‘Carlyle
Group, a merchant banking concern’’ rather than Group. Another problem arises be-
cause the grammar allows to analyse In January as an extraposed adjunct of the NP concern.
This analysis is preferred because the score L(P,in,mod, N, concern) (92) is higher than that
of L(P,in, mod,V,accept) (0).

“Thomas E. Meador, 42 years old, was named president and chief operating officer
of Balcor Co., a Skokie, Ill., subsidiary of this New York investment banking
firm.”

In this sentence, there is a spurious ambiguity concerning the attachment point of the comma,
after 01d. The comma could either attach to the preceding adjectical phrase or the noun
phrase. Both analyses are semantically equivalent and have the same score.

The complex noun phrase ‘‘president and chief operating officer of Balcor Co.,

a Skokie, Ill., subsidiary of this New York investment banking firm’’ is highly
ambiguous due to the large number of prepositional phrases and possible coordinations
and appositions contained in this phrase. The parser correctly coordinates president and
chief operating officer. Unfortunately, it prefers to attach both "of”-PPs to this co-
ordinated NP because the score L(P,of,mod, N,president) (3286) is higher than that of
L(P,of, mod, N, subsidiary) (261). There is no restriction in the grammar which would dis-
allow this.

“Balcor, which has interests in real estate, said the position is newly created.”

Here, the score L(V,say,arg, N,position) (89) is higher than L(V,say,arg,V,create) (0).
Hence an obscure analysis in which ‘ ‘has interests in real estate’’ coordinates with
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‘‘said the position’’ wins over the correct one. Furthermore, ¢ ‘real estate’’ is ana-
lysed as an adjective modifying a noun rather than as a compound, because real estate is
tagged with AJO NN1 in the BNC corpus.

“In addition to his previous real-estate investment and asset-management duties,
Mr. Meador takes responsibility for development and property management.”

The highest-scoring analysis of this sentence has a similar inverted word order as
the sentence °‘Behind the silly posturing lies a real dispute.’’. The subject
is the noun management, °‘responsibility for development’’ is coordinated with
property and ‘‘addition to his previous real-estate investment’’ is coordinated
with ¢ ‘asset-management duties, Mr. Meador’’ where Meador, which is mapped to
(name), is the head of the second NP. The extraposed PP is a modifier of the object rather
than an argument of the verb. The high total score of this analysis compared to other analyses
results mainly from the scores L(P,in,arg, N, (name)) (7663), L(P,in, mod, N, development)
(458), L(P,in,mod, N,property) (106).

“Those duties had been held by Van Pell, 44, who resigned as an executive vice
president.”

In this sentence, Van is mapped to (name) whereas Pell is not. Since the score
L(P,by,arg, N, (name)) (3963) is fairly high, an obscure analysis where ‘‘duties had
been’’ is analysed as a reduced relative clause and held is active voice and ‘ ‘Pell, 44,
who resigned as an executive vice president.’’ is the object, wins over the other
analyses.

“Before the loan-loss addition, it said, it had operating profit of $10 million for
the quarter.”

For this sentence, the correct analysis also has the highest score and there is just one unre-
solved ambiguity pertaining to whether quarter is singular or plural. The tag statistics are
not explicit enough to distinguish this.

“The move followed a round of similar increases by other lenders against Arizona
real estate loans, reflecting a continuing decline in that market.”

In this sentence, the score L(P,in,mod, N,increase) (18212) is much higher than that
of L(P,in,mod, N,decline) (3279). Hence the prepositional phrase ¢‘in that market’’
is erroneously attached to increase. Due to a tagging error in the BNC corpus —
real in real estate is tagged as an adjective rather than as a noun — the score
L(ADJ, real, mod, N, estate) (334) is higher than L(N,real, mod, N, estate) (0).

“Arbitragers weren’t the only big losers in the collapse of UAL Corp. stock.”
In this sentence, the score L(prep,in, mod,V,be) (36694) was very high and the prepositional

phrase ‘ ‘in the collapse of UAL Corp. stock’’ was attached to be rather than loser.

“Mr. Johnson succeeds Harry W. Sherman, who resigned to pursue other inter-

ests, in both positions.”

(3K

Because of the large score L(P,in,mod, N,interest) (11580), the prepositional phrase ‘in
both positions’’ is attached to the noun interests rather than the verb succeeds.

“Manville is a building and forest products concern.”
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The parser preferred here to coordinate the nouns building and forest rather than building
and forest products.

“US Facilities Corp. said Robert J. Percival agreed to step down as vice chairman
of the insurance holding company.”

The parser here preferred an awkward analysis in which ‘“J. Percival agreed to step
down’’ is a reduced relative clause attached to Robert which is the object of say. The reason
is that the score L(V, say, N, (name)) (48771) was high and that the head of Robert is (name)
whereas the head of Percival is Percival. If the latter is changed to (name) as well, the
score of the correct analysis increases, because of the score L(N,(name), mod, N, (name))
(61552).

Another problem remains, however: The score L(P,as,mod,V,say) (17) is higher than that
of L(P,as,mod,V, step) (0). The reason is that the statistics does not distinguish between
the verb step and the verb step down.

“There was a difference of opinion as to the future direction of the company, a
spokeswoman said.”

The score of L(V, say, arg, N, dif ference) (121) is higher than that of L(V, say, arg, V, be) (0).
The high value of the former score might be the result of misanalysing sentential arguments
during training in such a way that the true subject of the subordinated sentence becomes the
object of the main verb.

“Mr. Percival declined to comment.”

According to the grammar, the phrase to comment is either an argument of the verb
decline, or an adjunct as in the (non-sense) sentence Mr. Percival declined in order
to comment. Both analyses get the same score because the score of the verb-argument re-
lation is always 0 in case of verbal arguments (we haven’t computed verb-arg-verb scores
because they rarely exceed the thresholds). By setting L(V,v,arg,V,v') to some small pos-
itive constant for all v and v’, the argument reading would be generally favoured and the
result would be usually correct.

“In a statement, US Facilities said Mr. Percival’s employment contract calls for
him to act as a consultant to the company for two years.”

Because of the large score L(V, be,arg, P, for) (95122), the parser prefers analyses where ’s
is a clitic form of is.

“Mr. Percival will be succeeded on an interim basis by George Kadonada, US
Facilities chairman and president.”

The high score of L(P,by,arg, N,< name >) (3963) and the fact that Kadonda is not mapped
to (name) results in a preference for analyses where by George is a PP-adjunct of the verb
succeeded which is active voice. ¢ ‘Percival will be’’ is in this case analysed as a reduced
relative clause and ¢ ‘Kadonada, US Facilities chairman and president’’ is the object.

“The buy-back represents about 3 % of the company’s shares, based on the 3.7
million shares outstanding as of Sept. 30.”

Since
the score L(P,of,arg, N,company) (1235) is higher than the score L(P,of,arg, N, share)
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(511), the parser prefers an analysis which contains the PP ¢ ‘of the company’s’’ (analo-
gous to ¢ ‘The legitimate son of his father’s’’. The rest of the sentence ¢‘shares,
based on the 3.7 million shares outstanding as of Sept. 30.’’ is analysed as a
reduced relative clause.

“In national over-the-counter trading yesterday, US Facilities closed at $ 3.625,
unchanged.”

Here, the highest score is L(P,in,arg, N,US) (296). Therefore analyses where US is
the head of the noun phrase ‘‘national over-the-counter trading yesterday, US’’
(analogous to ‘‘the president of the United States, Bill Clinton’’) are preferred
by the parser. The score L(P,in,arg, N,over — the — counter) (6.4) is also higher
than L(P,in,arg, N,trading) (0), so that analyses containing the PP ¢‘In national
over—the-counter’’ also score better than the correct analysis.

6.3.6 Conclusions

By disambiguating the output of a feature-based grammar with statistics from a probabilistic
context-free parser, it is possible to combine the strengths of both approaches, namely the
descriptive power of the feature-based formalism and the trainability of the probabilistic
context-free grammar. However, this approach also has some drawbacks.

e There is no theoretical basis for how to combine the log-likelihood ratios. Although the
presented heuristic works quite well, it is not optimal.

e The lexical choice frequencies which are used to compute the scores fail to capture
all relevant relations. In particular, it would be useful to have information about the
preposition as well as the head of the nominal phrase in case of prepositional phrase
arguments (cp. [Hindle and Rooth, 1993]). Sabine Schulte im Walde [im Walde, 1998]
shows how this information can be extracted from Viterbi parses of the BNC corpus.

e Complex arguments tend to get lower scores than simple arguments. Con-
sider e.g. the sentence °‘He was waiting for her to come’’. The score of
(V,wait,arg, P, for) is much higher than the summed scores of (V, wait, arg, V, come)
and (V, come, subj, N, she).

e The lexical choice scores are sometimes incorrect. Among the 70 highest-scoring nominal
arguments of ”say” are the words problem and there. Probably, these words were the
first words of sentential arguments. If such an argument fails to be parsed completely,
the parser will attach as many potential arguments to the preceding verb as possible
and cover the rest of the sentence with robustness rules.

e Names of persons, companies, organisations, countries, cities etc. are currently not
distinguished which sometimes leads to strange results.

The foregoing error analysis suggests the following improvements to the presented disam-
biguation method:
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e Traces should get a negative score in order to penalise complex analyses with movement
operations.

e Sentential arguments and VP arguments of verbs should generally get a small positive
score to achieve preference over adjuncts.

e The score of verbs should be computed at the preterminal level where the underlying
argument structure was mapped to a more surface-oriented structures, e.g. in case of a
verb which subcategorizes for a sentence of the form ¢ ‘for ...NP... to ...VP...’’,
the Subcat list contains a VP and a subject NP at the terminal level but a PP, a VP
and a subject NP at the preterminal level.

e The classification of proper names has to be improved:
— At least, person names have to be distinguished from place names. Further dis-
tinctions are probably also useful.
— All proper names have to be classified accordingly.
e Either the grammar or the disambiguation model should somehow capture the fact that

two prepositional phrases which are headed by the same preposition are unlikely to
attach to the same site.

e The lexical scores of some critical verbs like say should be manually checked to elim-
inate scores like L(V,say,arg, N,dif ference). Auxiliary verbs should be completely
eliminated from the statistics because they cause too many errors.

e Verb forms with and without particles should be distinguished in the statistics.

e Prepositional phrases headed by as, by and for in adjunct position should get low
scores if they compete with verbal arguments.

e The grammar has to be improved to eliminate more invalid analyses.

— The NP grammar has to be improved, e.g. slash propagation has to be better
restricted and a feature Person should be introduced to be able to restrict certain
constructions.

— Reduced relative clauses have to be better restricted.
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Chapter 7

Summary

A feature-based grammar formalism, a parser for this formalism, an English grammar and
a disambiguation method have been presented. The grammar formalism combines elements
from other grammar formalisms and programming languages. YAP grammars have a context-
free backbone like LFGs. Features are typed as in HPSGs. Subcat lists and the Slash perco-
lation mechanism are also familiar from HPSG theory. The type system resembles the type
system of programming languages. In contrast e.g. to HPSGs, feature typing only serves to
enhance the compiler’s ability to detect grammar errors and to make the representation of
feature structures more efficient. No information about a specific constituent is stored in
feature types'. The design of the grammar formalism emphasises efficiency considerations.
Templates, default inheritance, restrictor types and automatic features increase the usabil-
ity of the formalism. The detrimental effects of the propagation of syntactically irrelevant
information on parsing efficiency are discussed and an integration of parsing and semantic con-
struction is argued against. Experiments with an LFG parser confirmed that the elimination
of irrelevant feature information can speed up parsing dramatically.

A compiler transforms YAP grammars into an efficient internal representation and detects
errors in the grammar specification. A subset of the features and the associated constraints
is compiled into the context-free backbone grammar. Experiments by Maxwell and Kaplan
[Maxwell III and Kaplan, 1996] suggested that this could speed up parsing. This was not
confirmed in the experiments with YAP, but feature incorporation turned out to be a useful
tool for the development of purely context-free grammars.

The parser consists of a standard context-free parser which generates a parse forest, and a
constraint-evaluation component which computes the feature structures. Feature structures
are represented as trees rather than graphs which simplifies their storage, access and ma-
nipulation. A novel iterative algorithm was presented which computes the feature structures
by stepwise approximation. The correctness of the algorithm was formally proved. Several
techniques to improve the efficiency of the parser have been presented. In an experiment on
data from the Wall Street Journal, the parser was able to process more than 7 tokens per
second on average. The runtime of the parser grew about cubically with sentence length on
this data.

'with a minor exception discussed in section 2.5.2.
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In a comparison experiment with a state-of-the-art parser for broad-coverage grammars, the
presented parser was almost as fast as the state-of-the-art parser. The result of another exper-
iment with two smaller but more comparable grammars indicates that the presented parser
might actually be much faster than the state-of-the-art parser if the parsers are compared on
similar grammars.

An English grammar was developed for the YAP formalism. It covers all major syntactic
phenomena like subcategorisation, wh-extraction, extrapositions, long-distance dependencies,
control and raising verbs, constituent coordination and some frequent forms of ellipsis and
non-constituent coordination. The grammar incorporates the COMLEX dictionary and is
able to parse about 80 precent of the sentences in the Wall Street Journal corpus. About 50
percent of the sentences received an analysis which was completely correct.

Finally, a disambiguation method based on word association scores was presented. The scores
were obtained from frequency information in a 90 million words subcorpus of the British Na-
tional Corpus which had been parsed with the head-lexicalized context-free parser of Carroll
and Rooth [Carroll and Rooth, 1998]. The best analysis of a sentence is extracted with the
Viterbi algorithm by summing the association scores. Preliminary results of this disambigua-
tion method are very encouraging.
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Appendix A

BNF Syntax of the YAP Grammar
Formalism

/*****************************************************/

/* Grammar Definition x/
/*****************************************************/

Grammar -> Grammar Declaration | Grammar Rule | Grammar Entry | ’?

/*****************************************************/

/* Declarations x/
/s ks ok sk ok sk ok sk ks ok sk ok ok ok ok sk ok sk ok sk ks sk sk sk sk sk sk ok sk sk ke sk ok sk sk sk sk ok ok /

Declaration -> ’auto’ Name_List ’;’ |
’category’ Name ’{’ Feature_Decls ’}’ ’;’ |
’struct’ Name ’{’ Feature_Decls ’}’ ’;’ |
'enum’ Name ’{’ Name_List ’}’ ’;’ |
‘restrictor+’ Name ’(° Cat ’)’ ’{’ Feature_List ’}’ ’;’ |
’restrictor-’ Name ’(’ Cat ’)’ ’{’ Feature_List ’}’ ’;’ |
‘restrictor+’ Name ’(° Cat ’)’ ’{’> ’}’ ’;’> |
‘restrictor-’ Name ’(’ Cat ’)’ ’{’ ’}’ 7;’ |
FType Var_List ’;’ |
Name ’:’ Cat_List Fe_Struc ’;’ |
Cat ’incorporates’ ’{’ Path_List ’}’ ’;’

Feature_Decls -> Feature_Decls Feature_Decl | ’’
Feature_Decl -> FType Feature_List ’;’
/% ok ok ke ok sk ok ok ke ok ok ok ok ok ok ok K sk ok sk ok ok s ok sk ok 3k ok ok 3 ok ok 3 ok 3k ok 3k sk ok 3k ok ok s ok sk ok ok ok /

/* Definition of Grammar Rules x/
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/*****************************************************/

Rule -> MNode ’->’ Node_List ’;’
MNode -> Cat_List Fe_Struc
Node_List -> Node_List QRNode | ?°
QRNode -> ¢ RNode | RNode
RNode -> Cat_List Fe_Struc | Cat_List ’*’ Fe_Struc
Fe_Struc -> ’{’ Feature_Eqns ’}’ | Fe_Struc ’=’ Var
Feature_Eqns -> Feature_Eqns Feature Eqn ’;’ | *?
Feature_Egqn -> Path ’=’ RHS | Feature_Eqn ’=’ RHS
RHS -> String | ’cat’ ’(’ Var_List ’)’
>(? Value_List ’)’ | Value |
»[> 17 | °[’ Car_List ’]’ | ’[’ Car_List ’|’ Var ’]1’° |
;[; Car_List ;|; )% ;]; | Var

/*****************************************************/

/* Definition of Lexicon Entries x/
[/ skokok ok o ok ok sk sk ok ok o o ok ok sk sk ok ok o ok sk sk sk o o o ok sk ok o o ok sk ok o o ok sk sk ok o ok sk ok ok /

Entry -> String ’:’ Cat_List Fe_Struc ’;’
Special ’:’ Cat_List Fe_Struc ’;’

Special -> ’<cardinal>’ | ’<ordinal>’ | ’<propername>’ | ’<default>’
/s sk ok ok sk sk sk sk s ok ok ok sk sk sk sk s ke sk sk sk s ok ok ok sk sk ok ok sk sk s sk ke ok sk sk sk ke ke k sk sk ok /
/* Some Further Definitions x/

/*****************************************************/

Feature_List —-> Feature_List ’,’ Feature | Feature

Value_List -> Value_List ’,’ Value | Value
Name_List -> Name_List ’,’ Name | Name
Var_List -> Var_List ’,’ Var | Var
Cat_List -> Cat | Template_List
Template_List -> Template | Template_List ’&’ Template
Path_List -> Path_List ’,’ Path | Path
Path -> Path ’.’ Feature | Feature
Car_List -> Car_List ’,’ Car | Car

Car -> Cat_List Fe_Struc | ’*’ | Var
Var -> Name

Feature -> Name

Value -> Name

Cat -> Name

Template -> Name

Name -> ([A-Za-z0-9’ _$#/11(\.))+
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String  -> "([""T1(\.))x*"

Characters with a special meaning like ’«’, ’[’, ’{’ etc. have to be quoted in names with a
preceding backslash ’\’. Also, the double quote "’ has to be quoted within strings.

Include commands and comments can be inserted at any position. Comments start with a
percent sign %’ and extend to the end of the line.

Equations with identical left hand sides like {f=a;f=b;} may be abbreviated to {f=a=b; }.
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Appendix B

The English YAP Grammar

WLl oo oo totoToToToToToTo ToTo ToToTo To ToTo T To T To T T T o o o T o o o o o o o
h h
% File: declarations.yap %
% Purpose: Declarations for my English YAP grammar %
% Author: Helmut Schmid, IMS, Univ. of Stuttgart 7
h h
WLl b to oo totoToToToToTo 1o ToTo ToToTo To To T T To T To T T T o o o T o o T o o o o

auto Phon, HeadLex;

WDl o toToto oo oo oo o e o ToTo o o o oo To T T
% Feature Types A
hhh YA NN YANA hh

YAAAA bbb hh b

enum PERSON {1st,2nd,3rd};

enum NUMBER {sg,pl};

enum CASE {nom,gen,acc};

enum DEGREE {pos,comp,sup,as,too};

enum VFORM {fin,inf,bse,prp,pap,pas};

enum SFORM {decl,quest,imp,inv,subj,gerund};

enum CFORM {quest,rel,arg,argw,argb,subj,adj,coordl,coord2,coord3,coord4,coord5};
enum NFORM {noun,pronoun, propername,gerund};

enum WHFORM {quest,rel,expl,-};

enum ORDER  {post,pre};

enum COMMAS {lr,left,right,-};

enum MOD {-,verb,noun,adj,adv,prep,sbar,clitic};
enum NPLEVEL {0,1,2};

enum BOOLEAN {+,-};

enum POSITION {left,right};

enum INFL {1s,3s,13s,2s_pl,bse,past,prp,pap,pasl};

WRRRRRRRRRRRRLDDIDDDIBDIDT KT hh
% Category Definitions h
WD BBIDT DT ToToToloToToToToToToToToTo T To o T T o

Wk AN
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106 APPENDIX B. THE ENGLISH YAP GRAMMAR

category TOP {
SFORM SForm;
3

category SM {  %//% sentence punctuation
SFORM SForm;
s

category SBAR {
CFORM CForm;
STRING Comp;
COMMAS Commas;
BOOLEAN Coord;
FS_LIST Slash;
1

category C {
CFORM CForm;
s

category S {
SFORM SForm;
BOOLEAN Coord;
COMMAS Commas;
FS_LIST Slash;
};

category VP {
VFORM VForm;
BOOLEAN Aux;
BOOLEAN Coord;
COMMAS Commas;
FS_LIST Subcat;
FS_LIST Slash;

};

category VBAR {

VFORM VForm;
FS_LIST Subcat;
FS_LIST Slash;
1

category V {
VFORM VForm;
BOOLEAN Aux;
BOOLEAN Coord;
FS_LIST Subcat;
}
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category _V1 {
INFL Infl;
FS_LIST Subcat;
s

category _V {
INFL Infl;
FS_LIST Subcat;
STRING ComlexFrame;
}

category NP {
NFORM NForm;
WHFORM WhForm;
CASE Case;
NUMBER Number;
PERSON Person;
DEGREE Degree;
BOOLEAN Elliptical;
BOOLEAN Adjunctive;
BOOLEAN Coord;
NPLEVEL NPLevel;
COMMAS Commas;
FS_LIST Slash;

1

category NBAR {
NFORM NForm;
WHFORM WhForm;
CASE Case;
NUMBER Number;
DEGREE Degree;
BOOLEAN Elliptical;
BOOLEAN Adjunctive;
BOOLEAN Coord;
FS_LIST Subcat;
FS_LIST Slash;

1

category N {
NFORM NForm;
NUMBER Number;
BOOLEAN Adjunctive;
BOOLEAN Coord;
BOOLEAN Compound;
FS_LIST Subcat;
FS_LIST Mod_Elem;

}

category DTP {
WHFORM WhForm;
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NUMBER Number;
};

category DT {
WHFORM WhForm;
NUMBER Number;
}

category PDT {
NUMBER Number;
};

category ADJP {
WHFORM WhForm;
BOOLEAN Pred;
BOOLEAN Numerical;
COMMAS Commas;
BOOLEAN Coord;
DEGREE Degree;
FS_LIST Mod_Elem;

}

category ADJ {
BOOLEAN Pred;
ORDER Order;
BOOLEAN Numerical;
DEGREE Degree;
BOOLEAN Coord;
FS_LIST Subcat;
FS_LIST Mod_Elem;

}

category _ADJ {
BOOLEAN Pred;
BOOLEAN Nominal;
DEGREE Degree;
FS_LIST Subcat;
FS_LIST Mod_Elem;
STRING ComlexFrame;

1

category CURR { V%) currency unit
FS_LIST Subcat;
I

category M { %% measure unit

};

%h% genitive marker
category GM {
}

category DEGP {
DEGREE Degree;

APPENDIX B. THE ENGLISH YAP GRAMMAR



};

category DEG {
DEGREE Degree;
s

category COMP {
DEGREE Degree;
s

category ADVP {
WHFORM WhForm;
BOOLEAN Not;
DEGREE Degree;
COMMAS Commas;
BOOLEAN Coord;
MOD Mod;
FS_LIST Mod_Elem;

1

category ADV {
WHFORM WhForm;
BOOLEAN Not;
DEGREE Degree;
BOOLEAN Coord;
MOD Mod;
FS_LIST Mod_Elem;

}

category PP {
WHFORM WhForm;
ORDER Order;
COMMAS Commas;
BOOLEAN Coord;
FS_LIST Arg;
FS_LIST Slash;
MOD Mod;
FS_LIST Mod_Elem;

};

category P {
ORDER Order;
BOOLEAN Coord;
FS_LIST Arg;
MOD Mod;
FS_LIST Mod_Elem;
}

category RP {
I
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category CM {  %/i% comma punctuation

};

category Q { %A% quotation marks
POSITION Pos;
};

category FOR { %%/ He was waiting for her to come

};

category THEP {
COMMAS Commas;
FS_LIST Arg;

3

category THE { /% The more the cat eats the fatter it gets .
3

category MWLE { %%/ element of a multi word lexeme
3

#include "incorporation.yap"

I b b o ts o to o oo oo e T o o T o o To o To o T s
Restrictor Definitions %

Y A

restrictor- NP_R(NP) {3};

restrictor- NP2_R(NP) {Phon,Commas};
restrictor+ REL_R(NP) {HeadLex,Number,Person};
restrictor- REL2_R(NP) {Slash};
restrictor- REL3_R(NP) {Phon,Case,Commas};
restrictor- PP_R(PP) {};

restrictor- PP2_R(PP) {Phon,Commas};
restrictor- ADJP_R(ADJP) {};

restrictor- ADJP2_R(ADJP) {Phon,Commas};
restrictor- ADVP_R(ADVP) {};

restrictor- ADVP2_R(ADVP) {Phon,Commas};
restrictor- V_R(V) {};

restrictor- V2_R(V) {Phon};

restrictor- VP_R(VP) {3};

restrictor- VP2_R(VP){Phon,Commas};
restrictor- S_R(S) {};

restrictor- S2_R(S) {Phon,Commas};
restrictor- SBAR_R(SBAR) {};

restrictor- SBAR2_R(SBAR) {Phon,Commas};
restrictor- RP_P(RP) {Phon};

restrictor- NBAR_R(NBAR) {};

restrictor- VBAR_R(VBAR) {};

restrictor- N_R(N) {};

restrictor- ADJ_R(ADJ) {3};

restrictor- ADV_R(ADV) {3};
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Wbl b o to o to o oo oo o to e To s To o oo T o o o oo o T o
% Variable Definitions %

WLl stotsToloToToToToToToToTo 1o To T To To T T o o

NP_R np_p,np_p2,ag,np,pat,ben;
NP2_R  np2_p;

REL_R  rnp_p;

REL2_R rnp2_p;
REL3_R rnp3_p;

PP_.R  pp_p,ppl,pp2;
PP2_R  pp2_p;

ADJP_R adjp_p,adjp;
ADJP2_R adjp2_p;
ADVP_R advp_p,advp;
ADVP2_R advp2_p;

V_R vV_p;

V2_R v2_p;

VP_R VP_P,VpP;
VP2_R vp2_p;

S_R S_PpP,S;

S2_R s2_p;

SBAR_R sbar_p,sbar,sbar2;
SBAR2_R sbar2_p;

RP_P rp_p,rp;
NBAR_R nbar_p;
VBAR_R vbar_p;

N_R n_p;

ADJ_R  adj_p;

ADV_R  adv_p;

FS_LIST r,r2;

NUMBER n;
PERSON p;
SFORM sf;
WHFORM wf;
BOOLEAN b;
CFORM cf;
STRING h,h1,h2;
VFORM vf;
CASE c;
DEGREE deg;
ORDER 0;
NFORM  nf;
MOD mod ;

TR DRI IIIIIIID I Tototototototototolototo o totototo oo toto oo o

h h
% File: templates.yap A
% Purpose: Templates for my English YAP grammar h
% Author: Helmut Schmid, IMS, Univ. of Stuttgart %
h h

WL DRIIIIIIIIID I Totolototototototototototototototo o tototo oo
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TR IIIIDT DT ToToToToToToToToToToToToTo T T o T o
h N h
WLl tsTototoloToToToToToToToTo 1o To T To T To T o o

N_ : N {NForm=(noun,propername) ; Coord=-;Adjunctive=-;Compound=-;};
N_sg : N_ {Number=sg;};

N_pl : N_ {Number=pl;};

NN_ : N_ {NForm=noun;};

NN_sg : N_sg {NForm=noun;};

NN_pl : N_pl {NForm=noun;};

PN_ : N_ {NForm=propername;Subcat=[];};

PN_sg : PN_ {Number=sg;};

PN_pl : PN_ {Number=pl;};

AN_ : N {NForm=noun;Coord=-;Subcat=[]; Compound=-;Adjunctive=+;};
AN_sg : AN_  {Number=sg;};

AN_pl : AN_  {Number=pl;};

WLl To s TotololoToToToToToTo ToTo 1o To T To T To T o o
% ADJ h
TR IBIIDT DT T ToToloToToToToToToTo T To T To o T T o

ADJ_ : ADJ {Numerical=-;0rder=pre;Coord=-;};

ADJ_pos : ADJ_ {Degree=pos;};

ADJ_cmp : ADJ_ {Degree=comp;};

ADJ_sup : ADJ_ {Degree=sup;};

ADJ_post : ADJ {Numerical=-;0rder=post;Pred=+;Degree=pos;Coord=-;Subcat=[];};

ADJ_card : ADJ {Numerical=+;HeadLex="<cardinal>";Coord=-;
Degree=pos;Subcat=[];Mod_Elem=[*];};

ADJ_ord : ADJ {Numerical=+;HeadLex="<ordinal>";Order=pre;Coord=-;

Degree=pos;Subcat=[];Mod_Elem=[*];};

VYNNI hh
% ADJ h
It T T T T o T T s T o o T T s T T o T T o T o o T T o T o e

YNNI

_ADJ_pos : _ADJ {Degree=pos;};
_ADJ_cmp : _ADJ {Degree=comp;l};
_ADJ_sup : _ADJ {Degree=sup;};
_ADJ_attr : _ADJ {Pred=-;};

_ADJ_pred : _ADJ {Pred=+;Nominal=-;};
_ADJ_pos_pred : _ADJ_pos & _ADJ_pred {};
_ADJ_cmp_pred : _ADJ_cmp & _ADJ_pred {};

_ADJ_sup_pred : _ADJ_sup & _ADJ_pred {};



_ADJ_pos_attr
_ADJ_cmp_attr
_ADJ_sup_attr

: _ADJ_pos & _ADJ_attr {};
: _ADJ_cmp & _ADJ_attr {};
: _ADJ_sup & _ADJ_attr {};

WLl To s tototoloToToToToToTo ToTo To To T To To T T o o

% ADJP

h

WLl tstototoloToToToToToTo ToTo To To T To T To T o o

NADJP: ADJP {Commas=-;Coord=-;};

Wk
h
'/.l/.'/.l'l'l'l'l'l

ADV_

ADV_pos
ADV_cmp
ADV_sup
ADV_verb
ADV_verb_prep
ADV_noun
ADV_noun_prep
ADV_prep
ADV_adj
ADV_adv
ADV_adj_adv
ADV_nps

Whh YAANA
% ADVP
VYA YN

Wb bbb o toh

NADVP : ADVP {Co!

WHADVP : ADVP {WhForm=quest;Not=-;Degree=pos;Commas=-; Coord=-;};

VYNNI AYN NN A
% v
VYA YA AN AA
V_
V_£fin
V_bse
V_pas
V_prp
V_pap

AUX
AUX_fin

BE
HAVE
DO

: ADV {Coord=-;Not=-;};

: ADV_ {Degree=pos;Mod=(-,verb,adj,adv);};
: ADV_ {Degree=comp;Mod=(-,verb) ;};

: ADV_ {Degree=sup;Mod=(-,verb);};

: ADV_ {Degree=pos;Mod=verb;};

: ADV_ {Degree=pos;Mod=(verb,prep);};

: ADV_ {Degree=pos;Mod=noun;};

: ADV_ {Degree=pos;Mod=(noun,prep);};

: ADV_ {Degree=pos;Mod=prep;l};

: ADV_ {Degree=pos;Mod=adj;};

: ADV_ {Degree=pos;Mod=adv;};

: ADV_ {Degree=pos;Mod=(adj,adv) ;};

: ADV_ {Degree=pos;Mod=(noun,prep,sbar) ;};

YN YY)

h
Il e

mmas=-;Coord=-;};

YN YY)
h
Il Tl e

: V {Coord=-;Aux=-;};
: V_{VForm=fin;};
: V_{VForm=bse;};
: V_{VForm=pas;};
: V_{VForm=prp;};
: V_{VForm=pap;};

: V. {Coord=-;Aux=+;};
: AUX {VForm=fin;};

: AUX {HeadLex="be";};
: AUX {HeadLex='"have'";};
: AUX {HeadLex="do";};
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WILL : AUX {HeadLex="will";};
CAN : AUX {HeadLex='"can'";};
SHALL : AUX {HeadLex="shall";};
GET : AUX {HeadLex="get";};

Tttty Tt T T T o o T T T o o T T T o o e T T e T T o o T T s oo
yA DT h
Tt T T T T T s o T T T o T T T o o T T o s T T o o T e o e o

DT_sg : DT {WhForm=-;Number=sg;};
DT_pl : DT {WhForm=-;Number=pl;};

WLl TotstoloToToToToToToTo o 1o To o T To T T o o
h P h
WD BBIDT DT ToToToloToToToToToToToToTo T To o T T o

P : P {Order=pre;Arg=[*];Coord=-;};

WD BBIDT DT ToToToloToToToToToToToToTo T To o T T o

% C A
Wl e b o to o to o oo oo o to e To s To o oo T o o o o o o T o o
C_ : C {CForm=adj;};

NP_curr : NP {NForm=(pronoun,noun) ;WhForm=-;Case=acc;Slash=[];
Adjunctive=—;Coord=—;Commas=—;NPLeve1=0;};

Tt Tt ot st oo T T o T To s T T o T T o T o o T o o T o o
YA NBAR
Whh YANANA

YA AAANA WD IIIIIIIIIIDIDH

NBAR_: NBAR {Coord=-;};
It T T Tt o T T s T o o T T o T T o T T o T o o T o o T o o e

YA NP h
Tt e T oo T T T s o T T T oo T T To o o T T T e T T o o T o s oo

NP_ : NP {WhForm=(-,quest,rel);}; % not an expletive pronoun
NP_nom : NP_ {Case=nom;};

NP_acc : NP_ {Case=acc;};

NP_sg : NP_nom {Number=sg;};

NP_pl : NP_nom {Number=pl;};

NP_3 : NP_nom {Person=3rd;};

NP_3s : NP_3 & NP_sg {};

NP_12s : NP_sg {Person=(1st,2nd);};

NPe_nom : NP {Case=nom;};
NPe_sg : NPe_nom {Number=sg;};
NPe_pl : NPe_nom {Number=pl;};



115

NPe_3 : NPe_nom {Person=3rd;};
NPe_3s : NPe_3 & NPe_sg {};
NPe_n3s : NPe_sg {Person=(1st,2nd);};

NPe_acc : NP {Case=acc;};

NNP : NP {Case=(nom,acc) ;Commas=-;Coord=-;};

DNP : NNP {Elliptical=-;Adjunctive=-;NPLevel=0;Degree=pos;Slash=[];};
ENP : NNP {Case=acc;Number=sg;Person=3rd;};

Wl NP=PRO Lhhhhhhhhhhhbhhhhhhthtolslolslololotols

RPRO : NP {NForm=pronoun;Elliptical=-;Adjunctive=-;Degree=pos;
Coord=-;Commas=-;};

PRD : RPRO {Slash=[1;};

PRO_ : PR0O {WhForm=-;NPLevel=1;};

PRO_sg : PRO_ {Number=sg;};

PRO_pl : PRO_ {Number=pl;};

PRO_2 : PRO_ {Case=(nom,acc) ;Person=2nd;};
PRO_3s : PRO_sg {Case=(nom,acc) ;Person=3rd;};
PRO_3p : PRO_pl {Case=(nom,acc);Person=3rd;};

PROO_ : PRO {WhForm=-;NPLevel=0;};
PRO0_3s : PROO_ {Case=(nom,acc) ;Number=sg;Person=3rd;};
PROO_3p : PROO_ {Case=(nom,acc) ;Number=pl;Person=3rd;};

PPRO_ : PRO {WhForm=-;NPLevel=2;};

PPRO_sg : PPRO_ {Number=sg;};

PPRO_pl : PPRO_ {Number=pl;};

PPRO_1s : PPRO_sg {Case=(nom,acc);Person=1st;};
PPRO_1p : PPRO_pl {Case=(nom,acc);Person=1st;};
PPRO_2 : PPRO_ {Case=(nom,acc) ;Person=2nd;};
PPRO_2s : PPRO_sg {Case=(nom,acc);Person=2nd;};
PPRO_2p : PPRO_pl {Case=(nom,acc);Person=2nd;};
PPRO_3s : PPRO_sg {Case=(nom,acc) ;Person=3rd;};
PPRO_3p : PPRO_pl {Case=(nom,acc);Person=3rd;};

EXPL : PRO {WhForm=expl;Case=nom;Person=3rd;NPLevel=2;};
NP_it : EXPL {HeadLex="it";Number=sg;};
NP_there: EXPL {HeadLex="there";};

WHNP : PRO {WhForm=quest;Person=3rd;NPLevel=0;};

RELNP : RPRO {WhForm=rel;Person=3rd;Number=n;HeadLex=h1;
Slash=[NP{HeadLex=h1;WhForm=-;Person=3rd; Number=n;NPLevel=0;
Slash=[];Commas=-;}];};

bbb ol
PP
bbb ol

PP_ : PP {Coord=-;Commas=-;};

PP_arg : PP {Arg=[NP{}];Mod_Elem=[];};
PP_arg0 : PP {Arg=[];Mod_Elem=[];};
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PP_by : PP {HeadLex="by";Arg=[NP{}];Mod_Elem=[];};
PP_to : PP {HeadLex="to";Arg=[NP{}];Mod_Elem=[];};
PP_as : PP {HeadLex="as";Arg=[NP{}];Mod_Elem=[];};

PP_for : PP {HeadLex="for";Arg=[NP{}];Mod_Elem=[];};

Wl PP=PRO Wb hhhhhhhhhhhhhhhh st lolestels

WHPP : PP_ {WhForm=quest;0rder=pre;Mod=(-,verb) ; Arg=[NP{}];Slash=[];};

RELPP : PP_ {WhForm=rel;0Order=pre;Arg=[NP{}];

Slash=[NP{WhForm=-;Person=3rd;Slash=[];Commas=-;NPLevel=0;}];};

PPO : PP_ {WhForm=-;0rder=pre;Arg=[NP{}];Slash=[];Mod=(-,noun,verb,prep,adj);};
VAN

%

./../../....'.'.....

RP_to : RP {HeadLex="to";};

WRRRRRRLRRRIIIDIDTD T T T ToloToToToToToToToToTo T To o o T o

h VP h
DWWl TotoToloToToToToToToToTo 1o To T To T To T o o
VP_bse : VP {VForm=bse;};
VP_inf : VP {VForm=inf;};
VP_prp : VP {VForm=prp;};
VP_pas : VP {VForm=pas;};
VP_pap : VP {VForm=pap;};
VP_prp_inf : VP {VForm=(prp,inf);};

VP_prp_pas_inf : VP {VForm=(prp,pas,inf);};

VP_ : VP {Commas=-;Coord=—;};

WRRRRRRRRRRIIIDIDTDT T T ToloToToToToToToToToTo T To o o T o

YA SBAR h
Tl b o to o to o o o oo o to e To s To o Yoo To o o o Vo o o T o o
SBAR_arg : SBAR {CForm=arg;};
SBAR_argb : SBAR {CForm=argb;};
SBAR_argw : SBAR {CForm=argw;};
SBAR_argwb : SBAR {CForm=(argw,argb);};
SBAR_argx : SBAR {CForm=(arg,argw,argb);};
SBAR_that : SBAR_arg {Comp="that";};
SBAR_subj : SBAR {CForm=subj;};
SBAR_for : SBAR_arg {Comp="for";};
SBAR_how : SBAR_argw {Comp="how";};

SBARQ: SBAR {CForm=quest;Slash=[];Commas=-;Coord=-;};
SARG: SBAR {CForm=(arg,argb,argw) ;Slash=[];Commas=-;Coord=-;};
SARGW: SBAR {CForm=argw;Slash=[];Commas=-;Coord=-;};
SARGB: SBAR {CForm=argb;Slash=[];Commas=-;Coord=-;};



SADJ: SBAR {CForm=adj;Slash=[];Commas=-;Coord=-;};
SREL: SBAR {CForm=rel;Commas=-;Coord=-;};
SLDQ: SBAR {CForm=argw;Commas=-;Coord=-;};

WLl tsTototoloToToToToToToToTo 1o To T To T To T o o
h S h
WLl TotoToloToToToToToToTo o ToTo T To To T o o o

S_ S {Coord=-;Commas=-;};
S_di S_ {SForm=(decl,imp);};
S_decl S_ {SForm=decl;};
S_imp : S_ {SForm=imp;1};
S_quest : S_ {SForm=quest;};
S_subj S_ {SForm=subj;};

S

{SForm=gerund;};
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_V_1s _V {Infl=1s;};
_V_3s _V {Infl=3s;};
_V_13s _V {Infl=13s;};
_V_2s_pl: _V {Infl=2s_pl;};
_V_bse _V {Infl=bse;};
_V_past : _V {Infl=past;};
_V_prp _V {Infl=prp;};
_V_pap _V {Infl=pap;};
_V_pas _V {Infl=pas;};
_V_npas : _V {Infl=(1s,3s,13s,2s_pl,bse,past,prp,pap);};
_Vi_1s : _V1 {Infl=1s;};
_V1_3s : _V1 {Infl=3s;};

_V1_13s : _V1 {Infl=13s;};
_V1_2s_pl: _V1 {Infl=2s_pl;};
_Vi_bse : _V1 {Infl=bse;};
_Vi_past: _V1 {Infl=past;};
_Vi_prp : _V1 {Infl=prp;};
_Vi_pap : _V1 {Infl=pap;};
_Vi_pas : _V1 {Infl=pas;};

WLl to oo totololololototototototototototoototo toto o too o to o to o o o o o

h

% File: grammar.yap

% Purpose: English grammar for the YAP parser
% Author: Helmut Schmid, IMS, Univ. of Stuttgart

h

WDl b to oo totololololototototototototototo o toto to oo To o o to o to o o o o o

#include "declarations.yap"
#include "templates.yap"
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%kt declarative word order; type could be either decl, quest or imp
TOP {SForm=sf;} -> ‘S {SForm=decl;Slash=[];Commas=-;} SM {SForm=(decl,quest,imp)=sf;};

%h% Wh-question
TOP {SForm=quest;} -> ‘SBAR {CForm=quest;Slash=[];Commas=-;} SM {SForm=quest;};

%h% yes-no question
TOP {SForm=quest;} -> ‘S {SForm=quest;Slash=[];Commas=-;} SM {SForm=quest;};

%% imperative sentence

TOP {SForm=imp;} -> ‘S {SForm=imp;Slash=[];Commas=-;} SM {SForm=imp;};
%% for the parsing of manuals: Press the button.

TOP {SForm=imp;} -> ‘S {SForm=imp;Slash=[];Commas=-;} SM {SForm=decl;};

%h% But ...
TOP {SForm=sf;} -> C {CForm=(coordl,coord?);}
‘S {SForm=sf;Slash=[];Commas=(-,left);}
SM {SForm=sf=(decl,quest,imp);};
%hh repair rule for cases where sentence marker and sentence type don’t match
TOP {SForm=sf;} -> C {CForm=(coordl,coord2);}
‘S {SForm=sf=(quest,imp) ;Slash=[];Commas=(-,left);}
SM {SForm=decl;};
TOP {SForm=quest;} -> C {CForm=(coordl,coord2);}
‘SBAR {CForm=quest;Slash=[];Commas=(-,left);}
SM {SForm=quest;};
%%% This gap eventually closes , but slowly .
TOP {SForm=sf;} ->¢S {SForm=sf;Slash=[];Commas=right;}=s_p
C {CForm=(coordl,coord2);}
ADVP {Mod=verb;Mod_Elem=[s_p];}
SM {SForm=sf=(decl,imp);}; %/k% unused

%%% Sentences with Elliptical VPs
%h%h He will VPx.
TOP {SForm=sf;} -> ‘S {SForm=sf;Slash=[VP{}];Commas=-;}
SM {SForm=(decl,quest,imp)=sf;};
%%h% But he will VP*.
TOP {SForm=sf;} -> C {CForm=(coordl,coord2);}
‘S {SForm=sf;Slash=[VP{}];Commas=-;}
SM {SForm=(decl,quest,imp)=sf;};

%%% Remember the old days 7
TOP {SForm=quest;} -> NP* {WhForm=-;Person=2nd;Slash=[];Slash=[];Adjunctive=-;}=np_p
‘VP_bse {Slash=[];Subcat=[np_p];Commas=-;}
SM {SForm=quest;};

Wk YYNYAYAYAA hh
h SBAR(Q) h
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%% Whom did you meet ?
SBARQ {Comp=h1;} -> NP {Phon=hl;WhForm=quest;Slash=[];Adjunctive=-;Commas=-;}=np_p
‘S {SForm=quest;Slash=[np_p];Coord=*;Commas=-;1};
SBARQ {Comp=h1;} -> PP {Phon=hl;WhForm=quest;Slash=[];Commas=-;}=pp_p
‘S {SForm=quest;Slash=[pp_pl;Coord=*;Commas=-;1};
SBARQ {Comp=h1;} -> ADJP {Phon=hl;WhForm=quest;Pred=+;Commas=-;}=adjp_p
‘S {SForm=quest ;Slash=[adjp_p];Coord=+;Commas=-;};
SBARQ {Comp=h1;} -> ADVP {Phon=hl;WhForm=quest;Not=-;Commas=-;}=advp_p
‘S {SForm=quest;Slash=[advp_p];Coord=*;Commas=-;};
Wh%h adjunct Wh-clauses
SBARQ {Comp=h1;} -> PP {Phon=hl;WhForm=quest;Slash=[];Commas=-;Mod=verb;Mod_Elem=[s_p];}
‘S {SForm=quest;Slash=[];Coord=+*;Commas=-;}=s_p;
SBARQ {Comp=h1;} -> ADVP {Phon=h1l;WhForm=quest;Not=-;Commas=-;Mod=verb;Mod_Elem=[s_p];}
‘S {SForm=quest;Slash=[];Coord=+;Commas=-;}=s_p;

%hth If ..., who ...7
SBARQ {} -> SBAR {CForm=adj;Slash=[];Commas=right;} ‘SBAR {Coord=*;Commas=-;};

%% So what did you do 7
SBARQ {} -> ADVP {WhForm=-;Not=-;Commas=(-,right) ;Mod=verb;Mod_Elem=[sbar_p];}
‘SBAR {Coord=*;Commas=-;}=sbar_p;

AN
SBAR
AN

%% indirect questions (WH-phrase is a moved argument)
SARGW {Comp=h1;} -> NP {Phon=hl;WhForm=quest;Slash=[];Adjunctive=-;Commas=-;NPLevel=0;}=np_p
‘S {SForm=decl;Slash=[np_p];Coord=*;Commas=-;};
SARGW {Comp=h1;} -> PP {Phon=hl;WhForm=quest;Slash=[];Commas=-;}=pp_p
‘S {SForm=decl;Slash=[pp_p];Coord=*;Commas=-;};
SARGW {Comp=h1;} -> ADJP {Phon=h1l;WhForm=quest;Pred=+;Commas=-;}=adjp_p
‘S {SForm=decl;Slash=[adjp_p];Coord=+;Commas=-;};

%% indirect questions (WH-phrase is an adjunct)
SARGW {Comp=h1;} -> PP {Phon=hl;WhForm=quest;Slash=[];Commas=-;Mod=verb;Mod_Elem=[s_p];}
‘S {SForm=decl;Slash=[];Coord=*;Commas=-;}=s_p;
SARGW {Comp=h1;} -> ADVP {Phon=h1l;WhForm=quest;Not=-;Commas=-;Mod=verb;Mod_Elem=[s_p];}
‘S {SForm=decl;Slash=[];Coord=+*;Commas=-;}=s_p;

%% infinitival indirect questiomns
%% He was uncertain whether to go
SARGB {Comp=h1;} -> C {Phon=h1;CForm=argb;}
‘VP {VForm=inf;Slash=[];Coord=*;Commas=—;};
%%% He asked what to do
SARGW {Comp=h1;} -> NP {Phon=h1l;WhForm=quest;Slash=[];Adjunctive=-;Commas=-;NPLevel=0;}=np_p
‘VP {VForm=inf ;Slash=[np_p];Coord=*;Commas=-;};
SARGW {Comp=h1;} -> PP {Phon=hl;WhForm=quest;Slash=[];Commas=-;}=pp_p
‘VP {VForm=inf ;Slash=[pp_p];Coord=*;Commas=-;};
SARGW {Comp=h1;} -> ADJP {Phon=hl;WhForm=quest;Pred=+;Commas=-;}=adjp_p
‘VP {VForm=inf;Slash=[adjp_p];Coord=*;Commas=-;};
SARGW {Comp=h1;} -> PP {Phon=h1l;WhForm=quest;Slash=[];Commas=-;Mod=verb;Mod_Elem=[vp_p]l;}
‘VP {VForm=inf;Slash=[];Coord=*;Commas=-;}=vp_p;
SARGW {Comp=h1;} -> ADVP {Phon=hl;WhForm=quest;Not=-;Commas=-;Mod=verb;Mod_Elem=[vp_p];}
‘VP {VForm=inf;Slash=[];Coord=+*;Commas=-;}=vp_p;
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SLDQ

SLDQ

SLDQ

SLDQ

SLDQ

SBAR

SBAR

SBAR

SBAR

SBAR

SREL

SREL

SREL

SREL
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%% indirect question, long distance dependency
{Comp=h1;Slash=[np_pl=[np2_pl;} ->

NP* {WhForm=quest;Commas=-;}=np2_p

‘S {SForm=decl;Slash=[NP{Phon=h1;}=np_p];Coord=*;Commas=-;};
{Comp=h1;Slash=[pp_pl=[pp2_pl;} ->

PP* {WhForm=quest;Commas=-;}=pp2_p

‘S {SForm=decl;Slash=[PP{Phon=h1;}=pp_p];Coord=*;Commas=-;};
{Comp=h1;Slash=[adjp_pl=[adjp2_pl;} ->

ADJP* {WhForm=quest ;Pred=+;Commas=-;}=adjp2_p

‘S {SForm=decl;Slash=[ADJP{Phon=hl;}=adjp_p];Coord=*;Commas=-;};

%%% adjunct Wh-clauses
{Comp=h1;Slash=[PP{Phon=h1;}=pp2_pl;} ->
PP* {WhForm=quest;Commas=-;Mod=verb;Mod_Elem=[s_p];}=pp2_p
‘S {SForm=decl;Slash=[];Coord=*;Commas=-;}=s_p;
{Comp=h1;Slash=[ADVP{Phon=h1;}=advp2_pl;} ->
ADVP* {WhForm=quest;Not=-;Mod=verb;Commas=-;Mod_Elem=[s_p];}=advp2_p
‘S {SForm=decl;Slash=[];Coord=+*;Commas=-;}=s_p;

%% adjunct and ’that’ clauses
{Comp=h1;CForm=(adj,arg,argb)=cf;Slash=[];Commas=-;} ->
C {Phon=h1;CForm=cf;} ¢S {SForm=decl;Slash=[];Coord=%*;Commas=-;};
%%% Elliptical sentences
{Comp=h1;CForm=(adj,arg,argb)=cf;Slash=[];Commas=-;} ->
C {Phon=h1;CForm=cf;} ‘S {SForm=decl;Slash=[VP{}];Coord=*;Commas=-;};
%% subjunctive clauses
{Comp=h1;CForm=subj;Commas=-;} ->
C {Phon=h1;CForm=subj;} ‘S {SForm=subj;Slash=[];Coord=*;Commas=-;};
%% while making many more disgruntled
%% an option that , if exercised , would increase the value
{Comp=h1;CForm=adj;Commas=-;} ->
C {Phon=h1;CForm=adj;}
‘VP {VForm=(prp,pas) ;Subcat=[NP{}];Slash=[];Coord=*;Commas=-;};
%h#h even though ...
{} -> ADVP {Mod=sbar;Mod_Elem=[sbar_p]l;} ‘SBAR {}=sbar_p;

k% relative clause - np argument
{Comp=h1;Slash=[rnp_pl;} ->
NP {Phon=h1;WhForm=rel;Slash=[rnp_p];Adjunctive=-;Commas=-;NPLevel=0;}=rnp2_p
‘S {SForm=decl;Slash=[rnp2_p];Coord=*;Commas=-;};
Whh relative clause - pp argument
{Comp=h1;Slash=[rnp_pl;} ->
PP {Phon=h1;WhForm=rel;Slash=[rnp_p];Commas=-;}=pp_p
‘S {SForm=decl;Slash=[pp_p];Coord=*;Commas=-;};
k% relative clause - pp adjunct
{Comp=h1;Slash=[rnp_pl;} ->
PP {Phon=h1;WhForm=rel;Slash=[rnp_p];Commas=-;Mod=verb;Mod_Elem=[s_p];}
‘S {SForm=decl;Slash=[];Coord=+;Commas=-;}=s_p;

Whh rel. clause without relative pronoun

%ht (NP (NP the movie) (SBAR WHNP-1% (S I saw yesterday NP-1x%))
{Comp="";Slash=[rnp_pl;} ->

RELNP* {Case=acc;Slash=[rnp_p];}=rnp2_p



121

‘S {SForm=decl;Slash=[NP{Slash=[];}=rnp2_p];Slash=[rnp_p];Coord=+;Commas=-;};

%hh ’that’ relative clause
SREL {Comp=h1;Slash=[rnp_pl;} -> C {Phon=h1="that";CForm=rel;}
‘S {SForm=decl;Slash=[rnp_p];Coord=*;Commas=-;};

SBAR {CForm=arg;Comp="for";Commas=-;Coord=-;} ->
FOR {2}
NP {WhForm=-;Case=acc;Slash=[];Adjunctive=-;Commas=-;}=np_p
‘VP {VForm=inf ;Subcat=[np_p];Coord=+;Commas=-;};

hhhhhhhh
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%%4% adjuncts, no inversion
S_decl {} -> SBAR {CForm=adj;Slash=[];Commas=(-,right);}
‘S {Coord=*;Commas=-;Slash=[];};
S_di {} -> ADVP {WhForm=-;Not=-;Commas=(-,right);Mod=verb;Mod_Elem=[s_p];}
¢S {Coord=-;Commas=-;Slash=[];}=s_p;
S_decl {} -> PP {WhForm=-;Commas=(-,right,1lr) ;Slash=[];Mod=verb;Mod_Elem=[s_p];}
‘S {Coord=-;Commas=-;Slash=[];}=s_p;
S_decl {} -> NP {WhForm=-;Adjunctive=+;Case=acc;Slash=[];Commas=(-,right,1lr) ;NPLevel=0;}
‘S {Coord=-;Commas=-;Slash=[];};
S_decl {} -> VP {VForm=(inf,prp,pas);Subcat=[NP{}];Slash=[];Commas=(-,right);}
‘S {Coord=-;Commas=-;Slash=[];Slash=[];};
%h% had it existed then , Cray Computer would have incurred loss
S_decl {} —> S {SForm=quest;Slash=[];Coord=+;Commas=right;}
‘S {Coord=*;Commas=-;Slash=[];Slash=[];};

%h% extrapositions

S_decl {Slash=r;} -> PP {WhForm=-;Commas=(-,right) ;Slash=[];}=pp_p

‘S {SForm=(decl,inv) ;Coord=+;Commas=-;Slash=[pp_plr];};
S_decl {Slash=r;} -> NP {WhForm=-;Slash=[];Commas=right ;Case=acc;}=np_p

‘S {Coord=+;Commas=-;Slash=[np_plr];};
S_decl {Slash=r;} -> S {SForm=(imp,decl);Slash=[];Commas=right;}=s_p

‘S {SForm=(decl,inv) ; Coord=*;Commas=-;Slash=[s_plr];};
S_decl {Slash=r;} -> ADVP {WhForm=-;Not=-;Commas=-;}=advp_p

‘S {Coord=*;Commas=-;Slash=[advp_plr];};

%% inverted word order
%h% Never have I seen such a place
S_decl {SForm=decl;Slash=[];} -> ADVP {WhForm=-;Not=-;Commas=-;Mod=verb;Mod_Elem=[s_p];}
‘S {SForm=quest;Slash=[];Coord=+;Commas=-;}=s_p;
S_decl {SForm=decl;Slash=[];} -> ADVP {WhForm=-;Not=-;Commas=-;}=advp_p
‘S {SForm=quest;Slash=[advp_p];Coord=+;Commas=-;};
S_decl {SForm=decl;Slash=[];} -> PP {WhForm=-;Mod=verb;Slash=[];Commas=-;Mod_Elem=[s_p];}
‘S {SForm=quest;Slash=[];Coord=+*;Commas=-;}=s_p;
S_decl {SForm=decl;Slash=[];} -> PP {WhForm=-;Mod=-;Slash=[];Commas=-;}=pp_p
‘S {SForm=quest;Slash=[pp_p];Coord=*;Commas=-;};

%h% basic S-rule
S_decl {} -> NP {WhForm=(-,expl) ;Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p
‘VP {VForm=fin;Subcat=[np_p];Coord=+;Commas=-;};
S_decl {} -> SBAR {CForm=(arg,argw,argb,subj);Slash=[];Commas=-;2}=sbar_p
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‘VP {VForm=fin;Subcat=[sbar_p];Coord=+*;Commas=-;};
S_decl {} -> VP {VForm=(prp,inf);Subcat=[*];Slash=[];Commas=-;}=vp_p
‘VP {VForm=fin;Subcat=[vp_p];Coord=*;Commas=-;};
%% They worried about (S him (VP drinking))
S_ger {} -> NP {WhForm=(-,expl);Case=acc;Slash=[];Adjunctive=-;Commas=-;}=np_p
‘VP {VForm=prp;Subcat=[np_p];Coord=+;Commas=-;};

%% imperative
S_imp {Slash=[];} -> NP* {WhForm=-;Person=2nd;Slash=[];Slash=[];Adjunctive=-;2}=np_p
‘VP {Subcat=[np_p];VForm=bse;Coord=+*;Commas=-;};
S_imp {Slash=[NP{Number=n;HeadLex=h1;}];} ->
NP* {Number=n;HeadLex=hl;WhForm=-;Person=2nd;Slash=[];}=np_p
‘VP {Subcat=[np_p];VForm=bse;Slash=[];Coord=*;Commas=-;};
%%% Imperalist , go home!
S_imp {Slash=[];} -> NP {WhForm=-;Slash=[];Commas=right;Adjunctive=-;NPLevel=0;}=np_p
¢S {Slash=[np_p];Coord=*;Commas=-;};
%%% Go home, imperalists!
S_imp {Slash=[];} -> ‘S {Slash=[np_p];Coord=*;Commas=-;}
NP {WhForm=-;Slash=[];Commas=left;Adjunctive=-;NPLevel=0;2}=np_p;

%% relative clause with nominative rel. pronoun

%h% The NP to which the relative clause adjoins is put on the Subcat list
S_decl {Slash=[np_pl;} -> NP* {Case=nom;Commas=-;Slash=[];}=np2_p

‘VP {Subcat=[np_p];Subcat=[np2_p];VForm=fin;Slash=[];Coord=*;Commas=-;};

%% subjunctive clauses
S_subj {Slash=[];} -> NP {WhForm=(-,expl);Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p
‘VP {VForm=bse;Subcat=[np_p];Coord=+*;Commas=-;};

%hh the ... the ... clauses
ADJP {Degree=pos;Pred=+;} -> ‘ADJP {WhForm=-;Degree=comp;Coord=*;Commas=-;}
THEP {Arg=[S{}]1;};

S_decl {Slash=[];Commas=-;} -> THEP {} ‘THEP {Arg=[S{}1;};
S_decl {Slash=[];Commas=-;} -> ‘THEP {Arg=[S{}1;} THEP {Arg=[ADJP{}];};
S_decl {Slash=[];Commas=-;} -> ‘THEP {Arg=[S{}1;} THEP {Arg=[NP{}];};

%% clausal adjuncts
S_decl {} -> ‘S {SForm=decl;Coord=*;Commas=-;Slash=[];}
S {SForm=decl;Slash=[];Commas=left;};

%% (" Nothing has been agreed to " ,) said Donald Dion
S {SForm=inv;Slash=[S{}]=r;Coord=-;Commas=(-,right);} ->
‘VP {VForm=fin;Subcat=[np_p];Coord=*;Commas=-;Slash=r;}
NP {WhForm=-;Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p;
%%% Behind the silly posturing lies a real dispute .
S {SForm=inv;Slash=[PP{}]=r;Coord=-;Commas=-;} ->
‘VP {VForm=fin;Subcat=[np_p];Coord=*;Commas=-;Slash=r;}
NP {WhForm=-;Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p;

b hh b
% THEP h
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THEP {Arg=[s_pl;Commas=-;} -> ‘THE {}
NP{WhForm=-;Degree=comp; Slash=[];Adjunctive=-;Commas=-;}=np_p
S {SForm=decl;Slash=[np_p];Commas=-;}=s_p;
THEP {Arg=[s_pl;Commas=-;} -> ‘THE {}
ADVP {WhForm=-;Degree=comp;Not=-;Commas=-;}=advp_p
S {SForm=decl;Slash=[advp_p];Commas=-;}=s_p;
THEP {Arg=[s_pl;Commas=-;} -> ‘THE {}
ADJP {WhForm=-;Degree=comp;Commas=-;}=adjp_p
S {SForm=decl;Slash=[adjp_p];Commas=-;}=s_p;
THEP {Arg=[s_pl;Commas=-;} -> ‘THE {}
ADVP {WhForm=-;Degree=comp;Not=-;Commas=-;Mod=verb;Mod_Elem=[s_p];}
S {SForm=decl;Slash=[];Commas=-;}=s_p;
%%% the longer the rhetoric hangs in the air , the more the divisiomns .
THEP {Arg=[np_p];Commas=-;} -> ‘THE {}
ADJP {WhForm=-;Degree=comp;Commas=-;Pred=+;Mod_Elem=[np_p];}
NP {WhForm=-;Slash=[];Adjunctive=-;Commas=-;}=np_p;

THEP {Arg=[np_pl;Commas=-;} -> ‘THE {}
NP {WhForm=-;Degree=comp;Slash=[];Adjunctive=-;Commas=-;}=np_p;
THEP {Arg=[adjp_p];Commas=-;} -> ‘THE {}
ADJP {WhForm=-;Degree=comp;Pred=+;Commas=-;Mod_Elem=[NP{}];}=adjp_p;

Wk YYNNAY hh
h sQ h
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%h% (SQ Did Casey (VP throw the ball))
%A% (SBARQ (WHNP-1 What) (SQ did Casey (VP throw NP-1%)))
S {SForm=quest;Slash=r;} -> V {Aux=+;VForm=fin;}=v_p
‘S {SForm=decl;Slash=[v_p|r];Coord=*;Commas=-;};

%%% (SBARQ (WHNP-1 Who) (SQ NP-1% (VP threw the ball)))
S {SForm=quest;Slash=[np2_pl=[np_pl;} —->

NP* {Case=nom;WhForm=quest;Commas=-;Slash=[];}=np2_p

‘VP {VForm=fin;Subcat=[np_p];Slash=[];Coord=*;Commas=-;};

VAN YANYAYANA W
% be-SQ %
WD T I h ot o to e to s oo oo oo oo oo T T o

Wbk YA YA

%%h%h inverted word order with "be"
%% Problem: Movement out of an empty VP
%% How big (SQ is John)
S_quest {Slash=[1;} ->
‘V {VForm=fin;HeadLex="be";Subcat=[adjp_p,np_pl;}
NP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p
ADJP {WhForm=-;Commas=-;}=adjp_p;
S_quest {Slash=[];} ->
‘V {VForm=fin;HeadLex="be";Subcat=[sbar_p,np_pl;}
NP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p
SBAR {CForm=quest;}=sbar_p;
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S_quest {Slash=[];} ->
‘V {VForm=fin;HeadLex="be";Subcat=[np2_p,np_pl;}
NP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p
NP {WhForm=-;Case=acc;Slash=[];Adjunctive=-;Commas=-;}=np2_p;
%ht WHADJ
S_quest {Slash=[adjp2_pl;} ->
‘V {VForm=fin;HeadLex="be";Subcat=[adjp_p,np_pl;}
ADJP* {WhForm=quest;Commas=-;}=adjp2_p=adjp_p
NP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p;
S_quest {Slash=[adjp_pl=[adjp2_pl;} ->
‘V {VForm=fin;HeadLex="be";Subcat=[adjp_p,np_pl;}=v_p
ADJP* {WhForm=quest;Commas=-;}=adjp2_p=adjp_p
NP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p
ADVP {WhForm=-;Not=-;Commas=-;Mod=verb;Mod_Elem=[v_p];};
S_quest {Slash=[adjp2_pl;}=s_p ->
‘V {VForm=fin;HeadLex="be";Subcat=[adjp_p,np_pl;}
ADJP* {WhForm=quest;Commas=-;}=adjp2_p=adjp_p
NP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p
PP {Slash=[];Mod=verb;Mod_Elem=[s_p];};

%% WHPP
S_quest {Slash=[pp2_pl;} ->
‘V {VForm=fin;HeadLex="be";Subcat=[pp_p,np_p]l;}
PP* {WhForm=(-,quest) ; Commas=-;Mod=-; }=pp2_p=pp_p
NP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p;
S_quest {Slash=[pp2_pl;} ->
‘V {VForm=fin;HeadLex="be";Subcat=[pp_p,np_pl;}=v_p
PP* {WhForm=(-,quest) ; Commas=-;Mod=-;}=pp2_p=pp_p
NP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p
ADVP {WhForm=-;Not=-;Commas=-;Mod=verb;Mod_Elem=[v_p];};
S_quest {Slash=[pp2_pl;}=s_p ->
‘V {VForm=fin;HeadLex="be";Subcat=[pp_p,np_p]l;}
PP* {WhForm=(-,quest) ; Commas=-;Mod=-; }=pp2_p=pp_p
NP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p
PP {Slash=[];Mod=verb;Mod_Elem=[s_p];};

%h% inverted word order with '"do"
S_quest {Slash=[advp2_pl;} ->
‘V {VForm=fin;HeadLex="do";Subcat=[advp_p,np_pl;}
ADVP* {Not=-;Commas=-;Mod=-;Mod_Elem=[] ;}=advp_p=advp2_p
NP {Case=nom;Slash=[];Adjunctive=-;Commas=-;}=np_p;

hhih
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%%% VBAR to VP raising rule
VP_ {Aux=-;} -> ‘VBAR {Subcat=[*];};

k% auxiliary verbs have VP complements
VP_ {Subcat=r2;Slash=r;HeadlLex=hl;} ->
‘V {Aux=+;Subcat=[vp_p|r2] ;Coord=*;HeadLex=+;}
VP {Subcat=r2;Slash=r;Commas=-;HeadLex=hl;}=vp_p;
%%h% Elliptical VPs
VP {Subcat=r2;Slash=[vp2_p];HeadLex=h1;Commas=-;Coord=-;} ->



‘V {Aux=+;Subcat=[vp_p|r2] ;Coord=*;HeadLex=+;}
VP* {Subcat=[NP{}]=r2;Slash=[];HeadLex=hl;}=vp_p=vp2_p;
%h% country funds are or soon will be listed in New York or London .

VP {Slash=r;Coord=-;} ->

VP_

VP_

VP_

VP_

VP_

VP_

VP_

VP_

VP_

VP_

VP_

VP_

‘VP {Aux=+;Slash=[vp_pl|r];Commas=-;Coord=+;}
VP {Slash=r;Commas=-;}=vp_p;

%h% auxiliary trace: Will Peter (V* hire) 7
{Subcat=r2;Slash=[v2_p] ;HeadLex=h1;} ->

‘V* {Aux=+;VForm=fin;Subcat=[vp_p|r2];Coord=*;HeadLex=*;}=v2_p

VP {VForm=(bse,prp,pap,pas) ;Subcat=r2;Slash=[];Commas=-;HeadLex=hl;}=vp_p;
{Subcat=r2;Slash=[v2_p|r];HeadLex=h1;} ->

‘V* {Aux=+;VForm=fin;Subcat=[vp_p|r2];Coord=*;HeadLex=%;}=v2_p

VP {VForm=(bse,prp,pap,pas);Subcat=r2;Slash=[*]=r;Commas=-;HeadLex=hl;}=vp_p;

4% preceding VP adjuncts
{} -> ADVP {WhForm=-;Not=-;Commas=(-,1r) ;Mod=verb;Mod_Elem=[vp_p];}
‘VP {Coord=*;Commas=-;}=vp_p;
{} -> NP {WhForm=-;Adjunctive=+;Case=acc;Slash=[];Commas=(-,1r) ;NPLevel=0;}
‘VP {VForm=(fin,bse,prp,pap,pas);Coord=*;Commas=-;};
{} -> PP {WhForm=-;Slash=[];Mod=verb;Commas=(-,right,1lr);Mod_Elem=[vp_p];}
‘VP {VForm=(fin,bse,prp,pap,pas) ; Coord=+;Commas=-;}=vp_p;
{} -> VP {VForm=pas;Subcat=[NP{}]=r;Slash=[];Commas=1r;}
‘VP {VForm=(fin,bse,prp,pap,pas) ;Subcat=r;Coord=*;Commas=-;};
{} -> SBAR {CForm=adj;Slash=[];Commas=1r;}
‘VP {VForm=(fin,bse,prp,pap,pas);Coord=*;Commas=-;};
{} -> NP {NForm=pronoun;Number=pl;Person=3rd;HeadLex="both";}
‘VP {VForm=(fin,bse,prp,pap,pas) ; Coord=+;Commas=-;Subcat=[NP{Coord=+;3}];};
%% negation: always in front of a non finite VP
{} -> ADVP {Not=+;Commas=-;Mod=verb;Mod_Elem=[vp_p];}
‘VP {VForm=(inf,bse,prp,pap,pas) ; Coord=+;Commas=-;}=vp_p;

Whh ...is currently waiving management fees , which boosts its yield.
{Aux=-;} -> ‘VP {Coord=*;Commas=-;}

SBAR {CForm=rel;Comp="which";Slash=[NP{Number=sg;Person=3rd;}];Commas=left;};
{Aux=-;} -> ‘VP {Coord=*;Commas=-;}

NP {WhForm=-;NForm=(pronoun,noun) ;Case=acc;Slash=[];Adjunctive=-;Commas=left;};
{Aux=-;} -> ‘VP {Subcat=[np_p];Coord=*;Commas=-;}

ADJP {WhForm=-;Pred=+;Numerical=-;Commas=(-,left);Mod_Elem=[np_p];};
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Whh Verb arguments

VBAR {Subcat=r;} ->

‘VBAR {Subcat=[np_plr];}
NP {Case=acc;WhForm=-;Slash=[];Adjunctive=-;Commas=-;}=np_p;

VBAR {Subcat=r;} -> ‘VBAR {Subcat=[pp_plr]l;}

PP {WhForm=-;Slash=[];Mod=-;Commas=-;}=pp_p;

VBAR {Subcat=r;} -> ‘VBAR {Subcat=[adjp_plr]l;}

ADJP {Pred=+;Commas=-;}=adjp_p;

VBAR {Subcat=r;} -> ‘VBAR {Subcat=[advp_plr]l;}

125
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ADVP {WhForm=-;Not=-;Commas=-;Mod=-;}=advp_p;
VBAR {Subcat=r;} -> ‘VBAR {Subcat=[rp_plr]l;}
RP {}=rp_p;
VBAR {Subcat=r;} -> ‘VBAR {Subcat=[vp_plr];}
VP {VForm=(bse,inf,prp,pas);Subcat=[*];Slash=[];Commas=-;}=vp_p;
VBAR {Subcat=r;Slash=r2;} -> ‘VBAR {Subcat=[vp_plr];Slash=[];}
VP {VForm=inf ;Subcat=[*];Slash=[*]=r2;Commas=-;}=vp_p;
VBAR {Subcat=r;} -> ‘VBAR {Subcat=[s_plr];}
S {SForm=(decl,imp) ;Slash=[];Commas=(-,left,1lr);}=s_p;
VBAR {Subcat=r;} -> ‘VBAR {Subcat=[sbar_plr];}
SBAR {CForm=(arg,argw,argb,subj);Slash=[];Commas=(-,left,lr);}=sbar_p;
%h% The race was easy for her to win *
VBAR {Subcat=r;} -> ‘VBAR {Subcat=[sbar_plr];}
SBAR_for {Slash=[NP_{}];Commas=-;}=sbar_p;
#%% The race was easy to win *
VBAR {Subcat=r;} -> ‘VBAR {Subcat=[vp_plr];}
VP_inf {Subcat=[NP{NForm=noun;}];Slash=[NP_{}];Commas=-;}=vp_p;
%A% stranded prepositions
VBAR {Subcat=r;Slash=[*]=r2;} -> ‘VBAR {Subcat=[pp_plr];Slash=[];}
PP {Slash=r2;Mod=-;Commas=-;Mod_Elem=[];}=pp_p;
%% of which he appointed the president PPx
VBAR {Subcat=r;Slash=[*]=r2;} -> ‘VBAR {Subcat=[np_plr];Slash=[];}
NP {Case=acc;WhForm=-;NForm=(noun,pronoun,propername) ;
Slash=r2;Adjunctive=-;Commas=-;}=np_p;

Whh "be" arguments

%%% VP adjuncts between arguments
VBAR {} -> ‘VBAR {Subcat=[*,*|*];}=vbar_p
PP {WhForm=-;Slash=[];Mod=verb;Commas=(-,left,1lr);Mod_Elem=[vbar_p];};
VBAR {} -> ‘VBAR {Subcat=[*,*|*];} NP {WhForm=-;Case=acc;Slash=[];Adjunctive=+;Commas=-;};
VBAR {} -> ‘VBAR {Subcat=[*,*|*];}=vbar_p
ADVP {WhForm=-;Not=-;Commas=(-,left,lr) ;Mod=verb;Mod_Elem=[vbar_p];};

%% following VP adjuncts

VBAR {} -> ‘VBAR {Subcat=[*];}=vbar_p
PP {WhForm=-;Slash=[];Mod=verb;Commas=(-,left,lr);Mod_Elem=[vbar_p];};
VBAR {} -> ‘VBAR {Subcat=[*];} NP {WhForm=-;Case=acc;Slash=[];Adjunctive=+;Commas=-;};
VBAR {} -> ‘VBAR {Subcat=[*];}=vbar_p
ADVP {WhForm=-;Not=-;Commas=(-,left,lr) ;Mod=verb;Mod_Elem=[vbar_p];};

VBAR {} -> ‘VBAR {Subcat=[#];} SBAR {CForm=adj;Slash=[];Commas=(-,left,lr);};

%%% I bought the cheap one to save money

%%% I bought the cheap one saving money

%%% I bought the cheap one convinced by Peter’s recommendation
VBAR {} -> ‘VBAR {VForm=(fin,inf,bse,prp,pap);Subcat=[NP_{}]=r;}

VP {VForm=(inf,prp,pas) ;Subcat=r;Slash=[];Commas=(-,1r,left);};
VBAR {} -> ‘VBAR {VForm=pas;Subcat=[*];}

VP {VForm=(inf,prp) ;Subcat=[NP{}];Slash=[];Commas=(-,1r,left);};

%A% Trace verb arguments
VBAR {Slash=[np2_p];Subcat=r;} ->
‘VBAR {Slash=[];Subcat=[np_plrl;}
NP* {Case=acc;NForm=(pronoun,propername,noun) ;
Slash=[];Adjunctive=-;Commas=-;}=np_p=np2_p;
VBAR {Slash=[pp2_p];Subcat=r;} ->
‘VBAR {Slash=[];Subcat=[pp_plr]l;}
PP* {Slash=[];Mod=-;Commas=-;}=pp_p=pp2_p;
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VBAR {Slash=[sbar2_p];Subcat=r;} ->

‘VBAR {Slash=[];Subcat=[sbar_plr]l;}

SBAR* {CForm=(arg,argw,argb) ;Slash=[];Commas=-;}=sbar_p=sbar2_p;
VBAR {Slash=[s2_p];Subcat=r;} ->

‘VBAR {Slash=[];Subcat=[s_plr];}

S* {SForm=(decl,imp) ;Slash=[];}=s_p=s2_p;

VBAR {Slash=[adjp2_p];Subcat=r;} ->

‘VBAR {Slash=[];Subcat=[adjp_plr]l;}

ADJP* {Pred=+;Commas=-;}=adjp_p=adjp2_p;
VBAR {Slash=[advp2_p];Subcat=r;} ->

‘VBAR {Slash=[];Subcat=[advp_plr]l;}

ADVP* {Not=-;Commas=-;Mod=-;Mod_Elem=[] ;}=advp_p=advp2_p;

%% long distance dependencies
VBAR {Subcat=r2;Slash=[*]=r;}-> ‘VBAR {Subcat=[sbar_p|r2];Slash=[];}
SBAR {CForm=(arg,argw,argb) ;Slash=r;Commas=-;}=sbar_p;
VBAR {Subcat=r2;Slash=[*]=r;} -> ‘VBAR {Subcat=[s_pl|r2];Slash=[];}
S {SForm=decl;Slash=r;Commas=-;}=s_p;

%%% V to VBAR raising rule
VBAR {Slash=[1;} -> ‘V {Aux=-;};

%% negation clitics
v {} > ‘V {Aux=+;}=v_p

ADVP {Not=+;Commas=-;Mod=clitic;Mod_Elem=[v_p];};
v { > ‘V {HeadLex="have";Aux=-;}=v_p

ADVP {Not=+;Commas=-;Mod_Elem=[v_p];};
v { > ‘V {HeadLex="be";Aux=-;}=v_p

ADVP {Not=+;Commas=-;Mod_Elem=[v_pl;};
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%A% PPs are always adjoined
NNP {WhForm=wf ; NForm=(noun,pronoun,propername) ; NPLevel=1;} ->

‘NP {WhForm=-;Coord=*;Commas=-;NPLevel=(0,1) ;}=np_p

PP {WhForm=wf ;Slash=[];Mod=noun;Commas=(-,left,1lr);Mod_Elem=[np_pl;};
NNP {WhForm=quest;NForm=(noun,pronoun,propername) ;NPLevel=2;} ->

‘NP {WhForm=quest;Coord=*;Commas=-;NPLevel=0;}=np_p

PP {WhForm=-;Slash=[];Mod=noun;Commas=-;Mod_Elem=[np_p];};

%hts after a 5 J, increase the last year
NNP {NForm=noun;NPLevel=1;} ->

‘NP {WhForm=-;Coord=+*;Commas=-;NPLevel=(0,1);Elliptical=-;}

NP {WhForm=-;Adjunctive=+;Case=acc;Slash=[];Commas=-;NPLevel=0;};

%h% of which he appointed the president
NNP {WhForm=-;NForm=noun;Slash=[pp2_p];NPLevel=2;} ->
‘NP {Coord=*;Commas=-;NPLevel=0;Slash=[];}=np_p
PP* {WhForm=(quest,rel) ;Mod=noun;Commas=-;Mod_Elem=[np_p];}=pp2_p;
%h% which he appointed the president of
NNP {WhForm=-;NForm=noun;Slash=[*]=r;NPLevel=2;} ->



128 APPENDIX B. THE ENGLISH YAP GRAMMAR

‘NP {Coord=*;Commas=-;NPLevel=0;Slash=[];}=np_p
PP {Mod=noun;Slash=r;Mod_Elem=[np_p];};

Wh% Apposition
%%% Bill Clinton , the president of the US ,
NNP {NPLevel=1;NForm=(noun,propername) ;Case=c;} ->
‘NP {WhForm=-;Case=c;Elliptical=-;Coord=*;Commas=-;NPLevel=(0,1);}
NP {WhForm=-;Case=c;NForm=noun;WhForm=-;Commas=(lr,left) ;
Slash=[];Adjunctive=-;};
%%% Bill Clinton himself, the question itself (reflexive pronoun)
NNP {NPLevel=1;NForm=(pronoun,noun,propername);Case=c;} ->
‘NP {WhForm=-;Number=n;Person=p;Case=c;Elliptical=-;
Coord=+*;Commas=-;NPLevel=(0,1);}
PPRO_3s {HeadLex="<refpro>";Number=n;Person=p;};
%% Pierre Vinken, 65 years old,
NNP {NForm=(noun,propername) ;NPLevel=1;} ->
‘NP {WhForm=-;Elliptical=-;Coord=*;Commas=-;NPLevel=(0,1) ;}=np_p
ADJP{WhForm=-;Pred=+;Numerical=-;Commas=(1lr,left) ;Mod_Elem=[np_p];};
%% the president designate, December 1985, Act 2, Louis XIV
NNP {NForm=(noun,propername);} ->
‘NP {Elliptical=-;Coord=+*;Commas=-;NPLevel=0;}=np_p
ADJ {Order=post;Pred=+;Coord=-;Mod_Elem=[np_pl;};
%A% nothing else
NNP {NForm=pronoun;} ->
‘NP {Elliptical=-;Coord=+*;Commas=-;NPLevel=0;}=np_p
ADJ {0rder=post;Pred=+;Coord=-;Mod_Elem=[np_pl;};
%%% nothing radical
NNP {NForm=pronoun;NPLevel=2;} ->
‘NP {WhForm=-;Degree=pos;Elliptical=-;Coord=-;NPLevel=0;}=np_p
ADJP {Pred=+;Coord=-;Numerical=-;Mod_Elem=[np_p];};
%%4% the British premier minister John Major
NNP {NForm=noun;Case=c;NPLevel=2;} ->
‘NP {WhForm=-;Case=c;Elliptical=-;Coord=*;Commas=-;NPLevel=(0,1);}
NP {WhForm=-;NForm=propername;Case=c;Elliptical=-;Commas=(-,1r);
Slash=[];Adjunctive=-;NPLevel=0;};
%% Westborough , Mass. ,
NNP {NPLevel=1;NForm=propername;Case=c;} ->
‘NP {WhForm=-;Case=c;Elliptical=-;Coord=*;Commas=-;NPLevel=(0,1);}
NP {WhForm=-;Case=c;NForm=propername;WhForm=-;Commas=(1lr,left) ;
Slash=[];Adjunctive=-;Elliptical=-;};

%h% genitive NPs

NP {Case=gen;NForm=(noun,propername) ; Commas=-;Coord=-;NPLevel=2;} ->
‘NP {WhForm=-;Case=(nom,acc) ;Coord=#;Commas=-;NPLevel=(0,1);}
GM {};

%hh relative clauses
NNP {NForm=(noun,pronoun,propername) ;NPLevel=2;} ->
‘NP {Coord=*;Commas=-;NPLevel=(0,1);}=np_p
SBAR {CForm=rel;Slash=[np_p];Commas=(-,left,1lr);};
% reduced relative cl.: remarks concerning the case
NNP {NForm=(noun,propername) ;NPLevel=2;} -> ‘NP {Coord=+;Commas=-;NPLevel=(0,1);}=rnp3_p
VP {VForm=(prp,pas) ;Subcat=[rnp3_p];Slash=[];Commas=(-,left,1lr);};
%%%h next element to be removed
NNP {NForm=noun;NPLevel=2;} -> ‘NP {Coord=x*;Commas=-;NPLevel=(0,1);}=rnp3_p
VP {VForm=inf;Subcat=[rnp3_p];Slash=[];Commas=(-,left,lr);};
%%% an odd thing to put on the list
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{NForm=noun;NPLevel=2;} -> ‘NP {Coord=*;Commas=-;NPLevel=(0,1);}=rnp3_p
VP {VForm=inf;Slash=[rnp3_p];Subcat=[NP{}];Commas=-;};

%%% basic NP rule
%h% the pictures, the pictures of whom
{Person=3rd;Slash=[];NPLevel=0;} ->
DTP {WhForm=-;Number=n;} ‘NBAR {Number=n;Subcat=[];Coord=*;};
%h% pictures, how many pictures, pictures of whom
{Person=3rd;Slash=[];NPLevel=0;} -> %%% DTP* {WhForm=-;Number=n;}
‘NBAR {Elliptical=-;Subcat=[];Coord=-;};
%h#% at Harper’s
{Person=3rd;NPLevel=2;} ->
NP {NForm=(noun,propername) ; WhForm=-;Case=gen;Slash=[];
Adjunctive=-;Commas=-;}
‘NBAR*{WhForm=-;NForm=noun;Elliptical=+;Slash=[];Subcat=[];HeadLex="@location@";
Number=sg;Degree=pos;};

%%4% which picture
{Person=3rd;WhForm=quest;Slash=[] ;NPLevel=0;} ->
DTP {WhForm=quest;Number=n;} ‘NBAR {WhForm=-;Number=n;Subcat=[];Coord=*;};

%% almost the whole country
{NForm=(pronoun,noun) ; WhForm=wf;} ->

ADVP {WhForm=wf ; Commas=-;Mod=noun;Mod_Elem=[np_p];}

‘NP {WhForm=-;NPLevel=0;Coord=*;Commas=-;}=np_p;

%%% derived nouns

%% They discussed his writing novels
{NForm=gerund;Person=3rd ; Number=sg;WhForm=-;} ->

NP {Case=gen;}=np_p

‘VP {VForm=prp;Subcat=[np_p];Coord=+;Commas=-;};

%%% a million dollars
{Person=3rd;Slash=[];NPLevel=0;} ->
DTP {WhForm=-;Number=n;} M {} ‘NBAR {Number=n;Subcat=[];Coord=x*;};
%h% a million
{Person=3rd;Slash=[] ;NPLevel=0;Number=pl;} ->
DTP {WhForm=-;Number=sg;} ‘M {};
%%% a further 48,000 rooms
{Person=3rd;Slash=[];NPLevel=0;} ->
DTP {WhForm=-;Number=sg;HeadLex="a";}
ADJP {WhForm=-;Pred=-;Degree=pos;Commas=-;Mod_Elem=[nbar_p];}
‘NBAR {Subcat=[];Degree=pos;Number=pl;Coord=*;}=nbar_p;
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%A% adjectival adjuncts

NBAR_{} -> ADJP {WhForm=-;Pred=-;Degree=pos;Commas=-;Mod_Elem=[nbar_p];}

‘NBAR {Subcat=[];Coord=*;}=nbar_p;

NBAR {Degree=deg;} ->
ADJP {WhForm=-;Pred=-;Degree=(comp,sup,as)=deg;Commas=-;Mod_Elem=[nbar_p];}

‘NBAR {Subcat=[];Degree=pos;Coord=*;}=nbar_p;
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%h% its LaSalle I nuclear plant
NBAR_{} -> NP {WhForm=-;NForm=propername;Case=acc;Commas=-;Slash=[];NPLevel=(0,1);}
‘NBAR {NForm=noun;Subcat=[];Coord=*;};
%% how many pictures
NBAR_{WhForm=quest;} -> ADJP {WhForm=quest;Pred=-;Commas=-;Mod_Elem=[nbar_p];}
‘NBAR {WhForm=-;Subcat=[];Coord=*;}=nbar_p;

%A% Noun arguments
%%hh belief (SBAR that the world is flat)
NBAR_{Subcat=r;} -> ‘NBAR {Subcat=[sbar_p|r];} SBAR {CForm=arg;}=sbar_p;
NBAR_{Subcat=r;} -> ‘NBAR {Subcat=[s_plr];} S {SForm=decl;Commas=-;Slash=[];}=s_p;
NBAR_{Subcat=r;} -> ‘NBAR {Subcat=[vp_plr]l;}
VP {Slash=[];VForm=inf ;Subcat=[*];Commas=-;}=vp_p;
NBAR_{Subcat=r;} -> ‘NBAR {Subcat=[pp_plrl;} PP {Slash=[];Mod=-;Mod_Elem=[];}=pp_p;
%% three times the expected number
NBAR_{Subcat=r;} -> ‘NBAR {Subcat=[np_plr];}
NP {NForm=(noun,pronoun,propername) ; WhForm=-;Slash=[];
Adjunctive=-;Commas=-;}=np_p;

Wh% the largest
NBAR_{HeadLex=h1;WhForm=wf ; Case=(nom,acc) ;Degree=deg;} ->
ADJP {HeadLex=h1;WhForm=wf;Pred=-;Commas=-;
Degree=deg;Numerical=-;Mod_Elem=[nbar_p];}
‘NBAR* {NForm=noun;HeadLex="Qentity@";WhForm=-;Elliptical=+;Slash=[];Subcat=[];
Adjunctive=-;Coord=x*;}=nbar_p;
%%%h numerals: There were 500
NBAR_{NForm=noun;WhForm=-;Case=(nom,acc) ;Degree=pos;Elliptical=-;
Number=pl;Adjunctive=-;Slash=[];Subcat=[];} ->
‘ADJP {Numerical=+;Pred=+;Coord=*;Commas=-;Mod_Elem=[NP{}];};

Wh% currency numerals: $ 5 billion
NBAR_{NForm=noun;WhForm=-;Case=(nom,acc) ;Degree=pos;Elliptical=-;Number=pl;
Adjunctive=-;Slash=[];Subcat=[]1;} ->
‘CURR {HeadLex=h1;} ADJP {Pred=-;Numerical=+;Mod_Elem=[NBAR{HeadLex=h1;}];};
%h% the almost $ 5 billion
NBAR_{NForm=noun;WhForm=-;Case=(nom,acc) ;Degree=pos;Elliptical=-;
Adjunctive=-;Slash=[];Subcat=[]1;} ->
ADVP {WhForm=-;Commas=-;Mod=noun;Mod_Elem=[];}
‘CURR {HeadLex=h1;} ADJP {Pred=-;Numerical=+;Mod_Elem=[NBAR{HeadLex=h1;}];};

%%% N to NBAR raising rule
NBAR_{Elliptical=-;Slash=[] ;WhForm=-;Case=(nom,acc) ;Degree=pos;} ->
‘N {Coord=#;Mod_Elem=[];};

k% compounds
N {Compound=+;} ->

N {NForm=propername;Compound=-;Mod_Elem=[];}

‘N {NForm=propername;HeadLex=*;Coord=—;Compound=*;};
N {Compound=+;} ->

N {NForm=noun;Subcat=[];Mod_Elem=[n_p];}

‘N {NForm=noun;Coord=-;Compound=+;}=n_p;

bbb bk
h DTP h
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DTP {} -> ‘DT {};
DTP {} -> PDT {Number=n;} ‘DT {Number=n;};

DTP {Number=*;} -> ‘NP {Case=gen;Commas=-;Number=x*;};

DTP {Number=pl;} -> PDT {HeadLex="all";Number=pl;}
‘NP {Number=#;Case=gen;NForm=pronoun;Commas=-;};

hhih
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k% arguments
ADJ {0Order=*;Pred=+;Subcat=r;} ->
‘ADJ {Order=pre;Subcat=[pp_plrl;}
PP{WhForm=-;Slash=[];Mod=-;Mod_Elem=[]; }=pp_p;
ADJ {Order=*;Pred=+;Subcat=[]1;} ->
‘ADJ {Order=pre;Subcat=[np_p];}
NP{WhForm=-;Slash=[];Adjunctive=+;Commas=-;}=np_p;
ADJ {Order=*;Pred=+;Subcat=[]1;} ->
‘ADJ {Order=pre;Subcat=[vp_p];}
VP {VForm=inf;Slash=[];Subcat=[*];}=vp_p;
ADJ {Order=*;Pred=+;Subcat=[]1;} ->
‘ADJ {Order=pre;Subcat=[sbar_p];}
SBAR {CForm=(arg,argw,argb,subj) ;Slash=[];Commas=-;}=sbar_p;
%% They were certain he would win
ADJ {Pred=+;Subcat=[];} ->
‘ADJ {Order=pre;Subcat=[s_p];}
S {SForm=decl;Slash=[];Commas=-;}=s_p;
%% (ADJ (N New) (ADJP York-based))
ADJ {Subcat=[];} ->
N {NForm=propername;Mod_Elem=[];}=n_p
‘ADJ {0Order=pre;Subcat=[n_p];};
ADJ {Subcat=[];} ->
N {NForm=propername;}=n_p CM {}
‘ADJ {0Order=pre;Subcat=[n_p];};

%% The race was easy to win .
ADJ {Pred=+;Subcat=[];Mod_Elem=[rnp3_pl;} ->
‘ADJ {Pred=+;0rder=pre;Mod_Elem=[vp_p];}
VP {VForm=inf;Slash=[rnp3_pl;Subcat=[*];}=vp_p;
%%% The race was easy for her to win .
ADJ {Pred=+;Subcat=[];Mod_Elem=[rnp3_p]l;} ->
‘ADJ {Pred=+;0rder=pre;Mod_Elem=[sbar_p];}
SBAR {CForm=arg;Slash=[rnp3_p];Commas=-;}=sbar_p;

%4% (how) much bigger, 65 years old, three more apples
NADJP {WhForm=wf;} ->
NP {WhForm=wf ;NForm=(noun,pronoun) ;Case=acc;Adjunctive=-;
Commas=-;NPLevel=0;Slash=[];}=np_p
‘ADJ {Order=pre;Subcat=[np_pl;};

%h% adverbial adjunct



132 APPENDIX B. THE ENGLISH YAP GRAMMAR

NADJP {WhForm=wf;} -> ADVP {WhForm=(quest,-)=wf;Commas=-;Mod=adj;Mod_Elem=[adjp_p];}
‘ADJP {WhForm=-;Coord=+;Commas=-;}=adjp_p;
%h# It was too early to make concessions
NADJP {Degree=pos;} ->
‘ADJP {Degree=too;Pred=+;Coord=x*;}
VP {VForm=inf;Slash=[];Subcat=[*];};

%% ADJ to ADJP raising rule
NADJP {WhForm=-;} -> ‘ADJ {Order=pre;Subcat=[];Coord=-;};

%%% more important, as important, very important
NADJP {WhForm=-;Degree=deg;} ->
DEGP {Degree=deg;} ‘ADJ {Order=pre;Subcat=[];Degree=pos;Coord=-;};

%h% 5 billion
NADJP {WhForm=-;} -> ‘ADJ {Order=pre;Numerical=+;} M {};
%%h 10 3/4 (Penn Treebank)
NADJP {WhForm=-;} -> ‘ADJ {Order=pre;Numerical=+;} ADJ {Order=pre;Numerical=+;} M {};

%W%% between 1000 and 1500 people
ADJP {Commas=-;Coord=+;} -> C {HeadLex=h1;CForm=coord4;}
ADJP {WhForm=wf ;Degree=deg;Coord=-;}
C {HeadLex=h1;CForm=coord5;}
‘ADJP {WhForm=wf ;Degree=deg;Coord=-;};
%h% 55 years old and former chairman of ...
ADJP {Pred=+;Commas=-;Coord=+;} ->
NP {WhForm=-;Degree=pos;Case=acc;Adjunctive=-;Coord=-;Slash=[];
NPLevel=(0,1);}
C {CForm=coordi;}
‘ADJP {Pred=+;WhForm=-;Degree=pos;Coord=-;};
ADJP {Pred=+;Commas=-;Coord=+;} ->
‘ADJP {WhForm=-;Degree=pos;Coord=-;Coord=+;Commas=%;}
C {CForm=coordi;}
NP {WhForm=-;Degree=pos;Case=acc;Adjunctive=-;Coord=-;Slash=[];
NPLevel=(0,1) ; Commas=-;};

Tt T T o T T T s o T T T o o T e T o o T T o s T T o o T o o e o
M h
Wb YAANYAYYAA

M {HeadLex=h1l;Phon=hl;} -> ‘M {HeadLex=*;} M {};

YA AYAANA Db hhh
PP h
AN YA YANYANAA

%% basic PP rule, preposition
PP_ {WhForm=wf;Slash=r;} -> ‘P {Order=pre;Arg=[np_p];Coord=*;}
NP {Commas=-;Case=acc;WhForm=wf;Slash=r;Adjunctive=-;}=np_p;
%%% He thought about whether he wanted to go
PP_ {WhForm=-;Slash=[];} -> ‘P {Mod=-;0rder=pre;Arg=[sbar_p];Coord=*;}
SBAR_argwb {Commas=-;Slash=[];}=sbar_p;
%% They worried about him drinking
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%% with interest rates rising
PP_ {WhForm=-;Slash=[];} -> ‘P {Mod=(-,verb);0rder=pre;Arg=[s_p];Coord=*;}
S {SForm=gerund;Commas=-;Slash=[];}=s_p;
Whh I prevented her (PP from (VP leaving the room))
PP_ {WhForm=-;Slash=[];} -> ‘P {Mod=(noun,-,verb) ;Order=pre;Arg=[vp_p];Coord=*;}
VP {VForm=prp;Commas=-;Slash=[];}=vp_p;
Wh%h from a year earlier, from outside the room
PP_ {WhForm=wf;Slash=[];} -> ‘P {Order=pre;Arg=[pp_pl;Coord=*;}
PP {WhForm=wf;Slash=[];Commas=-;Mod_Elem=[];}=pp_p;
Whh for long, for as long as six days
PP_ {WhForm=-;Slash=[];} —->
‘P {HeadLex="for";Order=pre;Arg=[adjp_p];Coord=-;}
ADJP {HeadLex="long";Degree=(pos,as) ;WhForm=-;Pred=+;
Commas=-;Mod_Elem=[NP{}];}=adjp_p;

%% stranded preposition

PP_ {WhForm=-;Slash=[np2_pl;} -> ‘P {Order=pre;Arg=[np_p];Coord=*;}
ENP*{Case=acc;Adjunctive=-;Elliptical=-;Slash=[];Commas=-;}=np_p=np2_p;
%Ak Where is he going to

PP_ {WhForm=-;Slash=[PP{WhForm=quest;HeadLex="where";}];} ->

‘P {Order=pre;Arg=[np_p];Coord=x*;}

ENP* {NForm=pronoun;HeadLex="where";WhForm=quest;}=np_p;
%hh The place where he is going to

PP_ {WhForm=-;Slash=[PP_{WhForm=rel ;HeadLex="where";Slash=[NP{HeadLex=h1;}]1;}1;} ->
‘P {Order=pre;Arg=[np_pl;Coord=*;}
ENP*{NForm=pronoun;HeadLex=h1l;WhForm=rel; }=np_p;

%A% Postposition
PP_ {WhForm=wf;Slash=r;} ->
NP {NForm=(noun,propername,pronoun) ; Commas=-;Case=acc;WhForm=vf;Slash=r;
NPLevel=0;Adjunctive=-;}=np_p
‘P {Order=post;Arg=[np_p];Coord=*;};

%%% Adverbial modifiers
PP_ {} -> ADVP {WhForm=-;Not=-;Degree=(pos,comp,sup);
Commas=-; Coord=-;Mod=prep;Mod_Elem=[pp_pl;}
‘PP {}=pp_p;

Wh% from New York to Los Angeles
PP_ {HeadLex="from_to";} ->

‘PP {HeadLex="from";Slash=[];}

PP {HeadLex="to";Mod_Elem=[];Slash=[];};
%%4% from New York to Los Angeles to San Francisco
PP_ {HeadLex="from_to";} ->

‘PP {HeadLex="from_to";Slash=[];}

PP {HeadLex="to";Mod_Elem=[];Slash=[];};
%%h% to Los Angeles from New York
PP_ {HeadLex="from_to";} ->

PP {HeadLex="to";Mod_Elem=[];Slash=[];}

‘PP {HeadLex="from";Slash=[];};

hhhhhhh Wbt
h ADVP h
It T T T T o o T T o T T o T T s T T o T T o T o o T o o T o o e
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%%% ADV TO ADVP raising rule

NADVP {WhForm=-;} -> ‘ADV {Coord=x*;};

NADVP {WhForm=wf;} ->
ADVP {WhForm=wf ; Commas=-;Mod=adv;Mod_Elem=[adv_p];}
‘ADV {Coord=x*;}=adv_p;

%hh as soon
NADVP {WhForm=-;Degree=deg;} -> DEGP {Degree=deg;} ‘ADV {Degree=pos;Coord=*;};

%% no matter what they pay

Wk Wl ToToToTo o To o To o o
% Comparisons %
Wk YA AAAAA

%h% bigger than John
NADJP {Degree=pos;} -> ‘ADJP {Degree=comp;Coord=+*;Commas=-;Pred=+;}
COMP {Degree=comp;} NP {WhForm=-;Adjunctive=-;Slash=[];Commas=-;};
NADJP {WhForm=quest;Degree=pos;} -> ‘ADJP {WhForm=-;Degree=comp;Coord=*;Commas=-;Pred=+;}
COMP {Degree=comp;} NP {WhForm=quest;Adjunctive=-;Slash=[];Commas=-;};
%% bigger than John is
NADJP {Degree=pos;} ->
‘ADJP {Degree=deg;HeadLex=h1;Coord=+*;Commas=-;Pred=+;}
COMP {Degree=(comp,as)=deg;}
S {SForm=decl;Slash=[ADJP{Degree=pos;HeadLex=h1;Pred=+;WhForm=-;}] ;Commas=-;};
%% bigger than in the past
NADJP {Degree=pos;} ->
‘ADJP {Degree=deg;Coord=+;Commas=-;Pred=+;}
COMP {Degree=(comp,as)=deg;}
PP {WhForm=-;Slash=[];Commas=-;Mod=-;Mod_Elem=[];};

%%% more men than women
NP {Degree=pos;NForm=(noun,pronoun,propername) ; Commas=-;} ->
‘NP {Degree=deg;Coord=+;Commas=%;}
COMP {Degree=deg;} NP {WhForm=-;Adjunctive=-;Slash=[];Commas=-;};
%%/ more men than there were women
NP {Degree=pos;NForm=(noun,pronoun,propername) ; Commas=-;} ->
‘NP {Degree=deg;Coord=+*;Commas=%;}
COMP {Degree=deg;} S {SForm=decl;Slash=[];Commas=-;};
%h%h a bigger impact than in the past
NP {Degree=pos;NForm=(noun,pronoun,propername) ; Commas=-;} ->
‘NP {Degree=deg;Coord=+*;Commas=%;}
COMP {Degree=deg;} PP {WhForm=-;Slash=[];Commas=-;Mod=-;Mod_Elem=[];};

%h% (as) big as John
NADJP {Degree=pos;} -> ‘ADJP {Degree=(pos,as);Coord=+;Commas=-;Pred=+;}
COMP {Degree=as;} NP {WhForm=-;Adjunctive=-;Slash=[];Commas=-;};
Wh% (as) big as in Japan, (as) big as before
NADJP {Degree=pos;} -> ‘ADJP {Degree=(pos,as);Coord=+*;Commas=-;Pred=+;}
COMP {Degree=as;} PP {WhForm=-;Slash=[];Commas=-;Mod=-;Mod_Elem=[];};
#h%h as big as possible, higher than expected
NADJP {Degree=pos;} -> ‘ADJP {Degree=deg;Coord=+;Commas=-;Pred=+;}
COMP {Degree=deg;} ADJP {WhForm=-;Degree=pos;};
%%% big as John is
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NADJP {Degree=pos;} -> ‘ADJP {Degree=(pos,as);HeadLex=hl;Coord=+*;Commas=-;Pred=+;}
COMP {Degree=as;}
S {SForm=decl;Slash=[ADJP{Degree=pos;HeadLex=hl;Pred=+;WhForm=-;}];Commas=-;};
%% as big as which man was John?
NADJP {WhForm=quest;Degree=pos;} -> ‘ADJP {WhForm=-;Degree=(pos,as);Coord=*;Commas=-;Pred=+;}
COMP {Degree=as;} NP {WhForm=quest;Adjunctive=-;Slash=[];Commas=-;};

%h% as soon as possible
ADVP {Degree=pos;Coord=-;} -> ‘ADVP {Not=-;Degree=(pos,as);Coord=+;Commas=-;}
COMP {Degree=as;} ADJP {WhForm=-;Degree=pos;};
ADVP {Degree=pos;} -> ‘ADVP {Not=-;Degree=as;Coord=*;Commas=-;}
COMP {Degree=as;} NP {WhForm=-;Adjunctive=-;Slash=[];Commas=-;};
ADVP {Degree=pos;Coord=-;} -> ‘ADVP {Not=-;Degree=(pos,as) ;Coord=+;Commas=-;}
COMP {Degree=as;} PP {WhForm=-;Slash=[];Commas=-;Mod=-;Mod_Elem=[];};
ADVP {Degree=pos;Coord=-;} -> ‘ADVP {Not=-;Degree=comp;Coord=+;Commas=-;}
COMP {Degree=comp;} NP {WhForm=-;Adjunctive=-;Slash=[];Commas=-;};

%%% big as John is

NADJP {Degree=pos;} -> ‘ADJP {Degree=(pos,as);HeadLex=hl;Coord=+*;Commas=-;Pred=+;}
COMP {Degree=as;}
S {SForm=decl;Slash=[ADJP{Degree=pos;HeadLex=h1;Pred=+;WhForm=-;}] ;Commas=-;};

%h% sales more than doubled
VBAR {Slash=[];} -> DEGP {Degree=comp;} COMP {Degree=comp;} ‘V {Aux=-;};

YANANAN YYAYYAAA
DEGP h
It T T T T o o T T o T T o T T s T T o T T o T o o T o o T o o e

hhhh

DEGP {} —> ‘DEG {};
DEGP {} -> NP {Slash=[];Adjunctive=-;WhForm=-;NForm=(noun,pronoun) ; Commas=-;NPLevel=0;}
‘DEG {Degree=comp;};

Commas

Wb bbb o tolh

YA

Wbl thtote
h
Wb bk

SBAR {Commas=1r;} -> CM {HeadLex=h1;} ‘SBAR {Commas=-;} CM {HeadLex=h1;};
SBAR {Commas=right;} -> ‘SBAR {Commas=-;} CM {};

SBAR {Commas=left;} -> CM {} ‘SBAR {Commas=-;};

S {Commas=1lr;} -> CM {HeadLex=h1l;} ‘S {Commas=-;} CM {HeadLex=hl;};

S {Commas=right;} -> ‘S {Commas=-;} CM {};

S {Commas=left;} -> CM {} ‘S {Commas=-;};

VP {Commas=1r;} -> CM {HeadLex=h1;} ‘VP {Commas=-;Subcat=[*];} CM {HeadLex=h1l;};
VP {Commas=right;} -> ‘VP {Commas=-;Subcat=[*];} CM {};

VP {Commas=left;} -> CM {} ‘VP {Commas=-;Subcat=[*];};

ADVP {Commas=1r;} -> CM {HeadLex=h1;} ‘ADVP {Commas=-;} CM {HeadLex=hl;};
ADVP {Commas=right;} -> ‘ADVP {Commas=-;} CM {};

ADVP {Commas=left;} -> CM {} ‘ADVP {Commas=-;};
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ADJP {Commas=1r;} ->
ADJP {Commas=right;} ->

ADJP {Commas=left;} ->
PP {Commas=1r;} ->
PP {Commas=right;} ->
PP {Commas=left;} ->
NP {Commas=1r;} ->
NP {Commas=right;} ->
NP {Commas=left;} ->
THEP {Commas=1r;} ->

THEP {Commas=right;} ->
THEP {Commas=left;} ->

CM

CM

CM

CM

CM

CM

CM

CM

APPENDIX B. THE ENGLISH YAP GRAMMAR

{HeadLex=h1;} ‘ADJP {Commas=-;} CM {HeadLex=h1l;};
‘ADJP {Commas=-;} CM {};
{} ‘ADJP {Commas=-;};

{HeadLex=h1;} ‘PP {Commas=-;} CM {HeadLex=h1;};
‘PP {Commas=-;} CM {};
{} ‘PP {Commas=-;};

{HeadLex=h1;} ‘NP {Commas=-;} CM {HeadLex=h1;};
‘NP {Commas=-;} CM {};
{} ‘NP {Commas=-;};

{HeadLex=h1;} ‘THEP {Commas=-;} CM {HeadLex=h1l;};
‘THEP {Commas=-;} CM {};
{} ‘THEP {Commas=-;};

WLl T tstotsloloToToToToToToToTo To To T To T To o o o

% Quotation

h

TR RRLRRIRIIIDIDTD T T ToToloToToToToToToToToTo T To o o T o

TOP {} -> Q {HeadLex=hl;Pos=left;} ‘TOP {} Q {HeadLex=hl;Pos=right;};
SBAR {Commas=(-,1lr);} -> Q {HeadLex=hl;Pos=left;} ‘SBAR {Commas=-;} Q {HeadLex=hl;Pos=right;};
S {Commas=(-,1r);} -> Q {HeadLex=h1l;Pos=left;} ‘S {Commas=-;} Q {HeadLex=h1;Pos=right;};
NP {Commas=(-,1r);} -> Q {HeadLex=hl;Pos=left;} ‘NP {Commas=-;} Q {HeadLex=h1l;Pos=right;};
NBAR {} -> Q {HeadLex=hl;Pos=left;} ‘NBAR {} Q {HeadLex=hl;Pos=right;};
N {} -> Q {HeadLex=h1;Pos=left;} ‘N {} Q {HeadLex=h1;Pos=right;};
PP {Commas=(-,1r);} -> Q {HeadLex=hl;Pos=left;} ‘PP {Commas=-;} Q {HeadLex=h1;Pos=right;};
P {} -> Q {HeadLex=h1l;Pos=left;} ‘P {} Q {HeadLex=h1l;Pos=right;};
ADVP {Commas=(-,1r);} -> Q {HeadLex=h1;Pos=left;} ‘ADVP {Commas=-;} Q {HeadLex=h1l;Pos=right;};
ADV {} -> Q {HeadLex=h1;Pos=left;} ‘ADV {} Q {HeadLex=h1;Pos=right;};
VP {Commas=(-,1r);} -> Q {HeadLex=hl;Pos=left;} ‘VP {Commas=-;} Q {HeadLex=hl;Pos=right;};
VBAR {} —> Q {HeadLex=hl;Pos=left;} ‘VBAR {} Q {HeadLex=hl;Pos=right;};
v {} > Q {HeadLex=h1l;Pos=left;} ‘V {} Q {HeadLex=h1;Pos=right;};
ADJP {Commas=(-,1r);} -> Q {HeadLex=hl;Pos=left;} ‘ADJP {Commas=-;} Q {HeadLex=hl;Pos=right;};
ADJ {} -> Q {HeadLex=hl;Pos=left;} ‘ADJ {} Q {HeadLex=hl;Pos=right;};
DTP {} -> Q {HeadLex=h1;Pos=left;} ‘DTP {} Q {HeadLex=h1l;Pos=right;};
DT {} -> Q {HeadLex=h1;Pos=left;} ‘DT {} Q {HeadLex=h1l;Pos=right;};
PDT {} -> Q {HeadLex=h1l;Pos=left;} ‘PDT {} Q {HeadLex=h1l;Pos=right;};
M {} -> Q {HeadLex=h1l;Pos=left;} ‘M {} Q {HeadLex=h1;Pos=right;};
THEP {Commas=(-,1lr);} -> Q {HeadLex=hl;Pos=left;} ‘THEP {Commas=-;} Q {HeadLex=hl;Pos=right;};
THE {} -> Q {HeadLex=hl;Pos=left;} ‘THE {} Q {HeadLex=hl;Pos=right;};
RP {} -> Q {HeadLex=h1;Pos=left;} ‘RP {} Q {HeadLex=h1;Pos=right;};
C {} -> Q {HeadLex=h1l;Pos=left;} ‘C {} Q {HeadLex=h1l;Pos=right;};
DEG {} —> Q {HeadLex=hl;Pos=left;} ‘DEG {} Q {HeadLex=hl;Pos=right;};
COMP {} -> Q {HeadLex=h1l;Pos=left;} ‘COMP {} Q {HeadLex=hl;Pos=right;};

WLl TotsToloToToToTo ToTo ToTo 1o To T To T To T o o

% Coordination

h

WLl TotsloloToToToToToTo ToTo 1o To T To To To o o o

%% He was uncertain (SBAR whether to go or not)
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SBAR {Commas=-;Coord=+;HeadLex=cat(hl,h2);} ->
‘SBAR {CForm=argb;Slash=[];Coord=-;HeadLex=h1;}
C {CForm=coordl;}
ADVP {Not=+;Mod=verb;HeadLex=h2;};

SBAR {Commas=-;Coord=+;HeadLex=cat(hl,h2);} —>
SBAR {CForm=cf ;Slash=r;Coord=-;Commas=(-,right) ;HeadLex=h1;}
C {CForm=coordl;}
‘SBAR {CForm=cf;Slash=r;Coord=*;Commas=-;HeadLex=h2;};
SBAR {Commas=-;Coord=+;HeadLex=cat(hl1,h2);} ->
SBAR {CForm=cf ;Slash=r;Coord=-;Commas=(-,right) ;HeadLex=h1;}
C {CForm=coord?2;}
‘SBAR {CForm=cf;Slash=r;Coord=-;HeadlLex=h2;};
SBAR {Commas=-;Coord=+;HeadLex=cat(hl,h2);} —>
SBAR {CForm=cf;Slash=r;Coord=-;Commas=-;HeadLex=h1;}
C {CForm=coord3;}
‘SBAR {CForm=cf;Slash=r;Coord=*;Commas=-;HeadLex=h2;};
SBAR {Commas=-;Coord=+;HeadLex=cat(hl,h2);} ->
C {HeadLex=h;CForm=coord4;}
SBAR {CForm=cf;Slash=r;Coord=-;Commas=-;HeadLex=h1;}
C {HeadLex=h;CForm=coord5;}
‘SBAR {CForm=cf;Slash=r;Coord=+*;Commas=-;HeadlLex=h2;};

S {HeadLex=cat (h1,h2) ;Commas=-;Coord=+;} ->

S {SForm=sf;Slash=[];Coord=-;Commas=(-,right) ;HeadLex=h1;}

C {CForm=coordl;}

‘S {SForm=sf;Slash=[];Coord=*;Commas=-;HeadlLex=h2;};
S {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->

S {SForm=sf;Slash=[];Coord=-;HeadLex=h1;}

C {CForm=coord2;}

‘S {SForm=sf;Slash=[];Coord=-;HeadLex=h2;};
S {Commas=-;Coord=+;HeadLex=cat(hl,h2);} —>

S {SForm=sf;Slash=[];Coord=-;HeadLex=h1;}

C {CForm=coord3;}

‘S {SForm=sf;Slash=[];Coord=*;Commas=-;HeadLex=h2;};
S {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->

C {HeadLex=h;CForm=coord4;}

S {SForm=sf;Slash=[];Coord=-;HeadLex=h1;}

C {HeadLex=h;CForm=coord5;}

‘S {SForm=sf;Slash=[];Coord=*;Commas=-;HeadlLex=h2;};

VP {Commas=-;Coord=+;HeadLex=cat (h1,h2);} ->
VP {VForm=vf;Subcat=r;Slash=r2;Coord=-;HeadlLex=h1;}
C {CForm=coordi;}
‘VP {VForm=vf;Subcat=r;Slash=r2;Coord=+*;Commas=-;HeadLex=h2;};
VP {Commas=-;Coord=+;HeadLex=cat (h1,h2);} ->
VP {VForm=vf;Subcat=r;Slash=r2;Coord=-;HeadLex=h1;}
C {CForm=coord2;}
‘VP {VForm=vf;Subcat=r;Slash=r2;Coord=-;HeadlLex=h2;};
VP {Commas=-;Coord=+;HeadLex=cat (hl,h2);} ->
VP {VForm=vf;Subcat=r;Slash=r2;Coord=-;HeadlLex=h1;}
C {CForm=coord3;}
‘VP {VForm=vf;Subcat=r;Slash=r2;Coord=+;HeadLex=h2;};
VP {Commas=-;Coord=+;HeadLex=cat (hl,h2);} ->
C {HeadLex=h;CForm=coord4;}
VP {VForm=vf;Subcat=r;Slash=r2;Coord=-;HeadLex=h1;}
C {HeadLex=h;CForm=coord5;}
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‘VP {VForm=vf;Subcat=r;Slash=r2;Coord=+*;Commas=-;HeadLex=h2;};

V {Coord=+;HeadLex=cat(hl,h2);} ->

V {VForm=vf;Aux=b;Subcat=r;Coord=-;HeadLex=h1;}
C {CForm=coordl;}
‘V {VForm=vf ;Aux=b;Subcat=r;Coord=+;HeadLex=h2;};

V {Coord=+;HeadLex=cat(hl,h2);} ->

V {VForm=vf;Aux=b;Subcat=r;Coord=-;HeadLex=h1;}
C {CForm=coord?2;}
‘V {VForm=vf;Aux=b;Subcat=r;Coord=-;HeadLex=h2;};

V {Coord=+;HeadLex=cat(hl,h2);} ->

V {VForm=vf;Aux=b;Subcat=r;Coord=-;HeadLex=h1;}
C {CForm=coord3;}
‘V {VForm=vf ;Aux=b;Subcat=r;Coord=+;HeadLex=h2;};

V {Coord=+;HeadLex=cat (hl,h2);} ->

NP

NP

NP

NP

NP

NP

C {HeadLex=h;CForm=coord4;}
V {VForm=vf;Aux=b;Subcat=r;Coord=-;HeadLex=h1;}
C {HeadLex=h;CForm=coord5;}
‘V {VForm=vf;Aux=b;Subcat=r;Coord=*;HeadLex=h2;};

{Commas=-;Coord=+;Person=3rd;HeadLex=cat (h1,h2);} ->
NP {WhForm=wf ;Case=c;Coord=-;Slash=[];Commas=(-,right) ;HeadLex=h1;}
C {HeadLex="or";CForm=coordl;}
‘NP {WhForm=wf ;Case=c;Person=*;Elliptical=-;Coord=+*;Commas=-;Slash=[];HeadLex=h2;};
{Commas=-;Number=pl;Coord=+;Person=3rd;HeadLex=cat (h1,h2) ;} ->
NP {WhForm=wf ;Case=c;Slash=[];Coord=-;Slash=[];Commas=(-,right) ;HeadLex=h1;}
C {HeadLex="and";CForm=coordl;}
‘NP {WhForm=wf ;Case=c;Number=*;Person=*;Elliptical=-;
Coord=*;Commas=-;Slash=[] ;HeadLex=h2;};
{Commas=-;Coord=+;Person=3rd;HeadLex=cat (h1,h2);} ->
NP {WhForm=wf;Case=c;Coord=—;Slash=[];HeadLex=h1;}
C {CForm=coord?2;}
‘NP {WhForm=wf ;Case=c;Person=%;Elliptical=-;Coord=-;Slash=[];HeadLex=h2;};
{Commas=-;Coord=+;Person=3rd;HeadLex=cat (h1,h2);} ->
NP {WhForm=wf;Case=c;Coord=-;Slash=[];HeadLex=h1;}
C {CForm=coord3;}
‘NP {WhForm=wf ;Case=c;Person=*;Elliptical=-;Coord=+;Slash=[];HeadLex=h2;};
{Commas=-;Coord=+;Person=3rd;HeadlLex=cat (hl,h2);} ->
C {HeadLex=h;CForm=coord4;}
NP {WhForm=wf;Case=c;Coord=—;Slash=[];HeadLex=h1;}
C {HeadLex=h;CForm=coord5;}
‘NP {WhForm=wf ;Case=c;Person=*;Elliptical=-;Coord=+*;Commas=-;Slash=[];HeadLex=h2;};
{Commas=-; Coord=+;Number=pl;Person=3rd;HeadLex=cat (h1,h2) ;} ->
C {HeadLex="both_and";CForm=coord4;}
NP {WhForm=wf;Case=c;Coord=—;Slash=[];HeadLex=h1;}
C {HeadLex="both_and" ;CForm=coord5;}
‘NP {WhForm=wf ; Number=x*;Case=c;Person=+;Elliptical=-;
Coord=%*;Commas=-;Slash=[] ;HeadLex=h2;};

NBAR {Coord=+;HeadLex=cat(h1,h2);} ->

NBAR {WhForm=wf ;Case=c;Number=n;Degree=deg;Elliptical=-;
Coord=-;Slash=[] ;Subcat=r;HeadLex=h1;}
C {CForm=coordi;}
‘NBAR {WhForm=wf ;Case=c;Number=n;Degree=deg;Coord=+*;Slash=[];Subcat=r;HeadLex=h2;};

NBAR {Coord=+;HeadLex=cat (hl,h2);} ->

NBAR {WhForm=wf ;Case=c;Number=n;Degree=deg;Elliptical=-;
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Coord=-;Slash=[];Subcat=r;HeadLex=h1;}
C {CForm=coord?2;}
‘NBAR {WhForm=wf ;Case=c;Number=n;Degree=deg;Coord=-;Slash=[];Subcat=r;HeadLex=h2;};
NBAR {Coord=+;HeadLex=cat(hl,h2);} ->
NBAR {WhForm=wf ;Case=c;Number=n;Degree=deg;Elliptical=-;
Coord=-;Slash=[] ;Subcat=r;HeadLex=h1;}
C {CForm=coord3;}
‘NBAR {WhForm=wf ;Case=c;Number=n;Degree=deg;Coord=+;Slash=[];Subcat=r;HeadLex=h2;};

N {Coord=+;HeadLex=cat(hl,h2);} ->

N {Subcat=[];Coord=-;Mod_Elem=r;HeadLex=hl;}

C {CForm=coordl;HeadLex="and";}

‘N {Subcat=[];Coord=-;Mod_Elem=r;HeadLex=h2;};
N {Coord=+;HeadLex=cat(hl,h2);} ->

N {Subcat=[];Coord=-;Mod_Elem=r;HeadLex=h1;}

C {CForm=coordl;HeadLex="&";}

‘N {Subcat=[];Coord=-;Mod_Elem=r;HeadLex=h2;};
N {Coord=+;HeadLex=cat(h1,h2);} ->

N {Subcat=[];Coord=-;Mod_Elem=r;HeadLex=hl;}

C {CForm=coord2;}

‘N {Subcat=[];Coord=-;Mod_Elem=r;HeadLex=h2;};
N {Coord=+;HeadLex=cat(hl,h2);} ->

N {Subcat=[];Coord=-;Mod_Elem=r;HeadLex=h1;}

C {CForm=coord3;}

‘N {Subcat=[];Coord=+;Mod_Elem=r;HeadLex=h2;};

PP {Coord=+;HeadLex=cat (hl,h2);} ->
PP {Mod=mod;Mod_Elem=r2;Coord=-;0rder=o;Slash=r;HeadLex=h1;}
C {CForm=coordi;}
‘PP {Mod=mod;Mod_Elem=r2;Coord=#;Commas=-;0rder=o;Slash=r;HeadlLex=h2;};
PP {Coord=+;HeadLex=cat(h1,h2);} ->
PP {Mod=mod;Mod_Elem=r2;Coord=-;0rder=o0;Slash=r;HeadLex=h1;}
C {CForm=coord?2;}
‘PP {Mod=mod;Mod_Elem=r2;Coord=-;0rder=o;Slash=r;HeadLex=h2;};
PP {Coord=+;HeadLex=cat(h1,h2);} ->
PP {Mod=mod;Mod_Elem=r2;Coord=-;0rder=o;Slash=r;HeadLex=h1;}
C {CForm=coord3;}
‘PP {Mod=mod;Mod_Elem=r2;Coord=+;0rder=o0;Slash=r;HeadLex=h2;};
PP {Coord=+;HeadLex=cat (hl,h2);} ->
C {HeadLex=h;CForm=coord4;}
PP {Mod=mod;Mod_Elem=r2;Coord=-;0rder=o0;Slash=r;HeadLex=h1;}
C {HeadLex=h;CForm=coord5;}
‘PP {Mod=mod ;Mod_Elem=r2;0rder=o;Coord=+*; Commas=-;Slash=r;HeadlLex=h2;};

ADVP {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->
ADVP {Mod=mod;Coord=-;Mod_Elem=r;HeadLex=h1;}
C {CForm=coordl;}
‘ADVP {Mod=mod ;Coord=*;Commas=-;Mod_Elem=r;HeadLex=h2;};
ADVP {Commas=-;Coord=+;HeadLex=cat(hl,h2);} ->
ADVP {Mod=mod;Coord=-;Mod_Elem=r;HeadLex=h1;}
C {CForm=coord2;}
¢‘ADVP {Mod=mod;Coord=-;Mod_Elem=r;HeadLex=h2;};
ADVP {Commas=-;Coord=+;HeadLex=cat(hl,h2);} ->
ADVP {Mod=mod;Coord=-;Mod_Elem=r;HeadLex=h1;}
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C {CForm=coord3;}
‘ADVP {Mod=mod;Coord=+;Mod_Elem=r;HeadLex=h2;};
ADVP {Commas=-;Coord=+;HeadLex=cat(hl,h2);} ->
C {HeadLex=h;CForm=coord4;}
ADVP {Mod=mod;Coord=-;Mod_Elem=r;HeadLex=h1;}
C {HeadLex=h;CForm=coord5;}

THE ENGLISH YAP GRAMMAR

‘ADVP {Mod=mod;Coord=*;Commas=-;Mod_Elem=r;HeadLex=h2;};

ADJP {Commas=-;Coord=+;HeadLex=cat(hl1,h2);} ->

ADJP {WhForm=wf ;Pred=b;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h1;}

C {CForm=coordl;}

‘ADJP {WhForm=wf ;Pred=b;Degree=deg;Coord=+;Commas=-;Mod_Elem=r;HeadLex=h2;};

ADJP {Commas=-;Coord=+;HeadLex=cat(hl,h2);} ->

ADJP {WhForm=wf ;Pred=b;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h1;}

C {CForm=coord2;}

‘ADJP {WhForm=wf ;Pred=b;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h2;};

ADJP {Commas=-;Coord=+;HeadLex=cat(h1,h2);} ->

ADJP {WhForm=wf ;Pred=b;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h1;}

C {CForm=coord3;}

‘ADJP {WhForm=wf ;Pred=b;Degree=deg;Coord=+;Commas=-;Mod_Elem=r;HeadLex=h2;};

ADJP {Commas=-;Coord=+;HeadLex=cat(hl1,h2);} ->
C {HeadLex=h;CForm=coord4;}

ADJP {WhForm=wf ;Pred=+;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h1;}

C {HeadLex=h;CForm=coord5;}

‘ADJP {WhForm=wf ;Pred=+;Degree=deg;Coord=+;Commas=-;Mod_Elem=r;HeadLex=h2;};

ADJ {Order=pre;Coord=+;HeadLex=cat(hl,h2);} ->

ADJ {Order=pre;Pred=b;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h1;}

C {CForm=coordi;}

‘ADJ {Pred=b;Degree=deg;Subcat=[];Coord=*;Mod_Elem=r;HeadLex=h2;};

ADJ {Order=pre;Coord=+;HeadLex=cat(h1,h2);} ->

ADJ {Order=pre;Pred=b;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h1;}

C {CForm=coord?2;}

‘ADJ {Pred=b;Degree=deg;Subcat=[];Coord=-;Mod_Elem=r;HeadLex=h2;};

ADJ {Order=pre;Coord=+;HeadLex=cat(h1,h2);} ->

ADJ {0Order=pre;Pred=b;Degree=deg;Coord=-;Mod_Elem=r;HeadLex=h1;}

C {CForm=coord3;}

‘ADJ {Pred=b;Degree=deg;Subcat=[];Coord=+;Mod_Elem=r;HeadLex=h2;};

#include "verb-rules.yap"
#include "adjective-rules.yap"
#include "lexicon.yap"

DWW IIII T Tt ToToToTo !
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h h
% File: verb-rules.yap %
% Purpose: lexical transformation rules for the %
% English grammar for the YAP parser %
% Author: Helmut Schmid, IMS, Univ. of Stuttgart %
h h
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V_fin
V_fin
V_£fin
V_£fin

V_£fin
V_£fin
V_£fin

V_fin
V_£fin
V_£fin

V_£fin
V_£fin
V_fin
V_£fin

V_£fin
V_£fin
V_£fin
V_£fin

V_£fin
V_fin
V_£fin
V_£fin

V_£fin
V_£fin
V_fin
V_£fin

V_fin
V_£fin
V_£fin

V_£fin
V_£fin
V_fin

V_£fin
V_fin
V_£fin
V_£fin

V_£fin
V_£fin
V_fin
V_£fin

V_bse
V_£fin
V_prp
V_pap
V_pas

{Coord=-;Subcat=[NP{Number=sg;Person=3rd;}];} -> ‘_V1_3s {};
{Coord=-;Subcat=[*,NP{Number=sg;Person=3rd;}];} -> ‘_V1_3s {};
{Coord=-;Subcat=[*,*,NP{Number=sg;Person=3rd;}]1;} -> ‘_Vi_3s {};
{Coord=-;Subcat=[*,*,*,NP{Number=sg;Person=3rd;}];} -> ‘_V1_3s {};

{Coord=-;Subcat=[SBAR{}];} -> ‘_Vi1_3s {};
{Coord=-;Subcat=[*,SBAR{}];} -> ‘_V1_3s {};
{Coord=-;Subcat=[*,*,SBAR{}];} -> ‘_V1_3s {};

{Coord=-;Subcat=[VP{}];} -> ‘_V1_3s {};
{Coord=-;Subcat=[*,VP{}];} -> ‘_Vi_3s {};
{Coord=-;Subcat=[*,*,VP{}];} -> “_Vi_3s {};

{Coord=-;Subcat=[NP{Number=sg;Person=(1st,2nd) ;}]1;} -> ‘_Vi_bse {};
{Coord=-;Subcat=[*,NP{Number=sg;Person=(1st,2nd) ;}1;} -> ‘_Vi_bse {};
{Coord=-;Subcat=[*,*,NP{Number=sg;Person=(1st,2nd) ;}1;} -> ‘_Vi_bse {};
{Coord=-;Subcat=[*,*,* ,NP{Number=sg;Person=(1st,2nd) ; }];} -> ‘_Vi_bse {};

{Coord=-;Subcat=[NP{Number=pl;}];} -> ‘_Vi_bse {};
{Coord=-;Subcat=[*,NP{Number=pl;}];} -> ‘_Vi_bse {};
{Coord=-;Subcat=[*,*,NP{Number=pl;}];} -> ‘_Vi_bse {};
{Coord=-;Subcat=[*,*,* ,NP{Number=pl;}]1;} -> ‘_Vi_bse {};

{Coord=-;Subcat=[NP{Number=sg;Person=1st;}]1;} -> ‘_Vi_1s {};
{Coord=-;Subcat=[*,NP{Number=sg;Person=1st;}];} -> ‘_Vi_1s {};
{Coord=-;Subcat=[*,*,NP{Number=sg;Person=1st;}]1;} -> ‘_Vi_1s {};
{Coord=-;Subcat=[*,*,* ,NP{Number=sg;Person=1st;}];} -> ‘_Vi_1s {};

{Coord=-;Subcat=[NP{Number=sg;Person=(1st,3rd) ;}]1;} -> ‘_V1_13s {};
{Coord=-;Subcat=[*,NP{Number=sg;Person=(1st,3rd) ; }1;} -> ‘_V1_13s {};
{Coord=-;Subcat=[*,*,NP{Number=sg;Person=(1st,3rd) ;}1;} -> ‘_V1_13s {};
{Coord=-;Subcat=[*,*,* ,NP{Number=sg;Person=(1st,3rd) ; }]1;} -> ‘_V1_13s {};

{Coord=-;Subcat=[SBAR{}];} -> ‘_V1_13s {};
{Coord=-;Subcat=[*,SBAR{}];} -> ‘_Vi_13s {};
{Coord=-;Subcat=[*,*,SBAR{}]1;} -> ‘_V1_13s {3};

{Coord=-;Subcat=[VP{}];} -> ‘_Vi_13s {};
{Coord=-;Subcat=[*,VP{}]1;} -> ‘_Vi_13s {};
{Coord=-;Subcat=[*,*,VP{}];} -> ‘_V1_13s {};

{Coord=-;Subcat=[NP{Number=sg;Person=2nd;}];} -> ‘_V1_2s_pl {};
{Coord=-;Subcat=[*,NP{Number=sg;Person=2nd;}];} -> ‘_V1_2s_pl {};
{Coord=-;Subcat=[*,* ,NP{Number=sg;Person=2nd;}];} -> ‘_Vi_2s_pl {};
{Coord=-;Subcat=[*,*,* ,NP{Number=sg;Person=2nd;}];} -> ‘_Vi_2s_pl {};

{Coord=-;Subcat=[NP{Number=pl;}];} -> ‘_Vi_2s_pl {};
{Coord=-;Subcat=[*,NP{Number=pl;}];} -> ‘_Vi_2s_pl {};
{Coord=-;Subcat=[*,* ,NP{Number=pl;}];} -> ‘_Vi_2s_pl {};
{Coord=-;Subcat=[*,*,* ,NP{Number=pl;}];} -> ‘_Vi_2s_pl {};

{Coord=-;} -> ‘_Vi_bse {};
{Coord=-;} -> ‘_V1_past{};
{Coord=-;} -> ‘_Vi_prp {};
{Coord=-;} -> ‘_Vi_pap {};
{Coord=-;} -> ‘_Vi_pas {};
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WD RDKHS DEFAULT  %h%hlotstote ool Tl T e b b el ol o i

_V {ComlexFrame="INTRANS";} -> ¢
_V {ComlexFrame="NP";} -> ¢
_V {ComlexFrame="PP";} -> ¢
_V {ComlexFrame="NP-PP";} -> ¢

V {ComlexFrame="Default";};
V {ComlexFrame="Default";};
V {ComlexFrame="Default";};
V {ComlexFrame="Default";};

WRRRRRRRRIRRRRRDRRDDDADADNAY INTRANS  BABAAA DD Dl Tl Tl Tl el el e b e o o e

% He went.
_V1 {Subcat=[NP_{}=agl;} ->
¢_V_npas {ComlexFrame="INTRANS";Subcat=[ag];};

WRRRRRRRRRRRRRRIRIBIIITHTNT NP BRII Tl oo o o b b b b b o o o e o o e

% I bought the book
_V1 {Subcat=[pat,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP";Subcat=[pat,ag];};

% The book was bought
_V1 {Subcat=[NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP";Subcat=[pat,*];};
% The book was bought by Peter
_V1 {Subcat=[PP_by{Arg=[agl;},NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP";Subcat=[pat,ag];};

WD RDDKHKS NP=TO=NP %A% %%l fofo Tl Tl T T e el o i

% Peter gives Mary a book
_V1 {Subcat=[ben,pat,NP_{}=agl;} ->

¢_V_npas {ComlexFrame="NP-TO-NP";Subcat=[ben,pat,agl;};
% Peter gives a book to Mary
_V1 {Subcat=[pat,PP_to{Arg=[ben];},NP_{}=agl;} —>

¢_V_npas {ComlexFrame="NP-TO-NP";Subcat=[ben,pat,agl;};
% Peter gives to Mary a book he had read a long time ago
_V1 {Subcat=[PP_to{Arg=[ben];},pat,NP_{}=agl;} ->

¢_V_npas {ComlexFrame="NP-TO-NP";Subcat=[ben,pat,agl;};

% A book was given to Mary
_V1 {Subcat=[PP_to{Arg=[ben];},NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-TO-NP";Subcat=[ben,pat,*];};
% A book was given to Mary by Peter
_V1 {Subcat=[PP_to{Arg=[ben];},PP_by{Arg=[ag]l;},NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-TO-NP";Subcat=[ben,pat,agl;};
% Mary was given a book
_V1 {Subcat=[pat,ben];} ->
¢_V_pas {ComlexFrame="NP-TO-NP";Subcat=[ben,pat,*];};
% Mary was given a book by Peter
_V1 {Subcat=[pat,PP_by{Arg=[agl;},ben];} —->
¢_V_pas {ComlexFrame="NP-TO-NP";Subcat=[ben,pat,agl;};



Wb bbb bbb hlh s ts NP=FOR=NP ol hotslo ol lofe lo e oo et ol ol o o o

% Peter bought Mary a book
_V1 {Subcat=[ben,pat,NP_{}=agl;} ->

¢_V_npas {ComlexFrame="NP-FOR-NP";Subcat=[ben,pat,agl;};
% Peter bought a book for Mary
_V1 {Subcat=[pat,PP_for{Arg=[ben];} ,NP_{}=agl;} ->

¢_V_npas {ComlexFrame="NP-FOR-NP";Subcat=[ben,pat,agl;};
% Peter bought for Mary a book he had read a long time ago
_V1 {Subcat=[PP_for{Arg=[ben];},pat ,NP_{}=agl;} ->

¢_V_npas {ComlexFrame="NP-FOR-NP";Subcat=[ben,pat,agl;};

% A book was bought for Mary
_V1 {Subcat=[ben,NP_{}=pat];} ->
¢_V_pas {ComlexFrame="NP-FOR-NP";Subcat=[ben,pat,*];};
% A book was bought for Mary by Peter
_V1 {Subcat=[ben,PP_by{Arg=[ag];},NP_{}=patl;} —>
¢_V_pas {ComlexFrame="NP-FOR-NP";Subcat=[ben,pat,agl;};

WRRBBBDIRIRRADBBID DI RADDDD DD NP=NP hhADDD bbbl hh ot Tl b oo ot Do e e

% She asked him his name
_V1 {Subcat=[ben,pat,NP_{}=agl;} ->
‘_V_npas {ComlexFrame="NP-NP";Subcat=[ben,pat,agl;};

% He was asked his name
_V1 {Subcat=[pat,ben];} ->
¢_V_pas {ComlexFrame="NP-NP";Subcat=[ben,pat,*];};
% He was asked his name by Mary
_V1 {Subcat=[pat,PP_by{Arg=[agl;},ben];} —>
¢_V_pas {ComlexFrame="NP-NP";Subcat=[ben,pat,agl;};

DRI DRI DI DIRDIK DL Dh LA h S INTRANS-RECIP Ahhhhhhhhhhhhhh bt hhhhhhhh
% They met
_V1 {Subcat=[NP{Number=pl;}=agl;} ->

¢_V_npas {ComlexFrame="INTRANS-RECIP";Subcat=[ag];};
WRBBIBBIDDDDDDDIDII DD PP Lh bbb A DA AAbI bl h DDA IADI b Dl DD NNk
% They accounted for the drop in sales
_V1 {Subcat=[PP_arg{}=ppl,NP_{}=agl;} ->

¢_V_npas {ComlexFrame="PP";Subcat=[ppl,agl;};

% The drop in sales was accounted for
_V1 {Subcat=[RP{Phon=hl;HeadLex=h1;} ,NP{Phon=h2;WhForm=wf;}=npl;} ->

¢_V_pas {ComlexFrame="PP";Subcat=[PP{Phon=cat(hl,h2) ;WhForm=wf ;0rder=pre;
Commas=-;Coord=-;Slash=[];Mod=-;Mod_Elem=[] ;HeadLex=h1;Arg=[npl;},*];};

% The drop in sales was accounted for by the company
_V1 {Subcat=[RP{HeadLex=h1;},PP_by{Arg=[agl;},npl;} ->

¢_V_pas {ComlexFrame="PP";Subcat=[PP{HeadLex=h1;Arg=[npl;},agl;};
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% He got there
_V1 {Subcat=[PP_argO{}=ppl,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="PP";Subcat=[ppl,agl;};

WD DI DDl hh bl ekt PP=PP Lkl lelelohhtotoloTololo b oo To o To o b o o 1o o T o o o

% They flew from London to Rome
_V1 {Subcat=[PP_arg{}=ppl,PP_arg{}=pp2,NP_{}=agl;} ->
¢ _V_npas {ComlexFrame="PP-PP";Subcat=[ppl,pp2,agl;};

% They flew there from London
_V1 {Subcat=[PP_arg0{}=ppl,PP_arg{}=pp2,NP_{}=agl;} ->
‘_V_npas {ComlexFrame="PP-PP";Subcat=[ppl,pp2,agl;};

WRBBDD DI BN DDl h Tl Dl ekt NP=PP Lkl Il lohotototoTololo b oo to o To oo o o 1o o T o o o

% She added the flowers to the bouquet
_V1 {Subcat=[pat,PP_arg{}=ppl,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-PP";Subcat=[pat,ppl,agl;};
% She added to the bouquet the flowers she had picked yesterday
_V1 {Subcat=[PP_arg{}=ppl,pat,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-PP";Subcat=[pat,ppl,agl;};

% Flowers were added to the bouquet
_V1 {Subcat=[PP_arg{}=pp1,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-PP";Subcat=[pat,ppl,*];};
% Flowers were added to the bouquet by Mary
_V1 {Subcat=[PP_arg{}=pp1,PP_by{Arg=[ag];} ,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-PP";Subcat=[pat,ppl,agl;};

% She drop the flowers there
_V1 {Subcat=[pat,PP_arg0{}=ppl,NP_{}=agl;} ->

¢_V_npas {ComlexFrame="NP-PP";Subcat=[pat,ppl,agl;};
% She dropped there the flowers she had picked yesterday
_V1 {Subcat=[PP_arg0{}=ppl,pat,NP_{}=agl;} ->

¢_V_npas {ComlexFrame="NP-PP";Subcat=[pat,ppl,agl;};

% Flowers were dropped there
_V1 {Subcat=[PP_arg0{}=pp1,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-PP";Subcat=[pat,ppl,*];};
% Flowers were dropped there by Mary
_V1 {Subcat=[PP_argO{}=ppl,PP_by{Arg=[agl;},NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-PP";Subcat=[pat,ppl,agl;};

WRBRRRLLLDLLLIIIBITHToHTolels S TololaTolslolo oo olo st o o e e b oo o o o o o o o o o o

% They thought he was always late
_V1 {Subcat=[s,NP_{}=agl;} ->
¢ _V_npas {ComlexFrame="S";Subcat=[s,ag];};
% They thought that he was always late
_V1 {Subcat=[SBAR_that{}=sbar,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="S";Subcat=[sbar,ag];};



% That he was late was anticipated
_V1 {Subcat=[SBAR_that{}=sbar];} ->
¢_V_pas {ComlexFrame="S";Subcat=[sbar,*];};
% That he was late was anticipated by Peter
_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_that{}=sbar];} ->
¢ _V_pas {ComlexFrame="S";Subcat=[sbar,ag];};
% It was anticipated that he was late
_V1 {Subcat=[SBAR_that{}=sbar,NP_it{}];} ->
¢_V_pas {ComlexFrame="S";Subcat=[sbar,*];};
% It was anticipated by Mary that he was late
_V1 {Subcat=[PP_by{Arg=[agl;},SBAR_that{}=sbar,NP_it{}];} —>
¢ _V_pas {ComlexFrame="S";Subcat=[sbar,ag];};

WRRRRRRRRRRRRRRIBIIh TN Totte THAT=S KRNI h Ikl lol ool oo b b bk b oo o e

% He complained that they were coming
_V1 {Subcat=[SBAR_that{}=sbar ,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="THAT-S";Subcat=[sbar,ag]l;};

% That they were coming was accepted
_V1 {Subcat=[SBAR_that{}=sbar];} ->
¢_V_pas {ComlexFrame="THAT-S";Subcat=[sbar,*];};
% That they were coming was accepted by Peter
_V1 {Subcat=[PP_by{Arg=[agl;},SBAR_that{}=sbar]l;} ->
¢_V_pas {ComlexFrame="THAT-S";Subcat=[sbar,agl;};
% It was accepted that they were coming
_V1 {Subcat=[SBAR_that{}=sbar,NP_it{}];} ->
¢_V_pas {ComlexFrame="THAT-S";Subcat=[sbar,*];};
% It was accepted by Peter that they were coming
_V1 {Subcat=[PP_by{Arg=[agl;},SBAR_that{}=sbar,NP_it{}];} —>
¢ _V_pas {ComlexFrame="THAT-S";Subcat=[sbar,agl;};

T bl Al Tl T Al hhhhhhtels TO=INF=SC hhlh ot toh b to e to o toto o to oot to To fo e

% I wanted to come

_V1 {Subcat=[VP_inf{Slash=[];Subcat=[ag];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="TO-INF-SC";Subcat=[vp,ag];};

It Bl R IR N DDA A DA% TO-INF—=AC hhhhhtehh ot b bt o h s oo o he e

% He helped to save the child

_V1 {Subcat=[VP_inf{Slash=[];Subcat=[ag];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="TO-INF-AC";Subcat=[vp,agl;};

Il b Il bl b oot o hototels TO—=INF—=RS Yot oot to ot o oo to oot to oo To e ho o To o Fo o T e

% He seemed to wilt

_V1 {Subcat=[VP_inf{Slash=[];Subcat=[np];}=vp,npl;} ->
¢_V_npas {ComlexFrame="TO-INF-RS";Subcat=[vp];};

WRRRRRRRRRRRRRRRIBIIITH TNt WH=S Bl lolo ool e b b b b b b o o o o o o
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% He asked whether he should come
_V1 {Subcat=[SBAR_argwb{}=sbar,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="WH-S";Subcat=[sbar,ag];};

% Whether he should come was asked
_V1 {Subcat=[SBAR_arguwb{}=sbar];} ->
¢_V_pas {ComlexFrame="WH-S";Subcat=[sbar,*];};
% Whether he should come was asked by Peter
_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_argwb{}=sbar];} ->
¢_V_pas {ComlexFrame="WH-S";Subcat=[sbar,ag];};
% It was asked whether he should come
_V1 {Subcat=[SBAR_arguwb{}=sbar,NP_it{}];} ->
¢_V_pas {ComlexFrame="WH-S";Subcat=[sbar,*];};
% It was asked by Peter whether he should come

THE ENGLISH YAP GRAMMAR

_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_argwub{}=sbar,NP_it{}];} ->

¢_V_pas {ComlexFrame="WH-S";Subcat=[sbar,ag];};

WRRRRLLLLRLIII ot totstototolole HOW=SBh Tl lolsloloolo ot oo o e e e e b o o o o o 1o o o o

% He explained how she did it
_V1 {Subcat=[SBAR_how{}=sbar,NP_{}=agl;} —>
¢_V_npas {ComlexFrame="HOW-S";Subcat=[sbar,agl;};

% How she did it was explained
_V1 {Subcat=[SBAR_how{}=sbar];} ->
¢_V_pas {ComlexFrame="HOW-S";Subcat=[sbar,*];};
% How she did it was explained by Peter
_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_how{}=sbar];} ->
¢_V_pas {ComlexFrame="HOW-S";Subcat=[sbar,ag];};
% It was explained how she did it
_V1 {Subcat=[SBAR_how{}=sbar ,NP_it{}];} ->
¢_V_pas {ComlexFrame="HOW-S";Subcat=[sbar,*];};
% It was explained by Peter how she did it

_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_how{}=sbar,NP_it{}];} ->

¢_V_pas {ComlexFrame="HOW-S";Subcat=[sbar,ag];};

WRDRRRRLRRRRRRRRRRRRAAAAYG PP=HOW=TO~INF AUAAAAA ISl Il h el bbb hh ol

% He explained how she did it
_V1 {Subcat=[SBAR_how{}=sbar,NP_{}=agl;} ->

¢_V_npas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,*,ag];};

% He explained to them how she did it
_V1 {Subcat=[PP_arg{}=ppl,SBAR_how{}=sbar ,NP_{}=agl;} ->

¢_V_npas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,ppl,agl;};

% How she did it was later explained
_V1 {Subcat=[SBAR_how{}=sbar];} ->

¢ _V_pas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,*,*];};

% How she did it was explained by Peter
_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_how{}=sbar];} ->

¢_V_pas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,*,agl;};

% It was explained how she did it
_V1 {Subcat=[SBAR_how{}=sbar,NP_it{}];} ->

¢ _V_pas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,*,*];};



% It was explained by Peter how she did it
_V1 {Subcat=[PP_by{Arg=[ag];},SBAR_how{}=sbar,NP_it{}];} ->
¢_V_pas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,*,agl;};

% How she did it was later explained to them
_V1 {Subcat=[PP_arg{}=ppl,SBAR_how{}=sbar];} ->

¢ _V_pas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,ppl,*];};
% How she did it was explained to them by Peter
_V1 {Subcat=[PP_arg{}=ppl,PP_by{Arg=[ag];},SBAR_how{}=sbar];} ->

¢ _V_pas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,ppl,agl;};
% It was explained to them how she did it
_V1 {Subcat=[PP_arg{}=ppl,SBAR_how{}=sbar ,NP_it{}];} ->

¢ _V_pas {ComlexFrame="PP-HOW-TO-INF";Subcat=[sbar,ppl,*];};

WRRRRRRRRRRRRRRRIBIII TSNt TNG=SC Bhhlolslolslos ool o e e bl bl b o ol

% She abandoned drinking
_V1 {Subcat=[VP_prp{Slash=[];Subcat=[ag];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="ING-SC";Subcat=[vp,agl;};

bbb bbb hhhhhhhhhthhts BE=ING=SC hhthlo ot loelo e lo s o s o et et bl oo o i

% She began drinking
_V1 {Subcat=[VP_prp{Slash=[];Subcat=[ag];}=vp,NP_{}=agl;} ->
¢ _V_npas {ComlexFrame="BE-ING-SC";Subcat=[vp,ag];};

WD DB DRDKNKT POSSING %A%t tatote oo oot Tl T e b ol o i

% He discussed writing novels
_V1 {Subcat=[VP_prp{Slash=[];Subcat=[ag];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="POSSING";Subcat=[vp,agl;};

WARDRRRRLRRRRRRRRRRRRAADAY ING-NP—OMIT AUUAA NS I hhlelole ol o fe e b o ol

% His hair needs combing
_V1 {Subcat=[VP_prp{Slash=[rnp3_p];}=vp,NP_{}=rnp3_p=agl;} ->
¢_V_npas {ComlexFrame="ING-NP-OMIT";Subcat=[vp,agl;};

Wb bbb bbb hhhhhhhhhTlhts S=SUBIUNCT %% letstos et fol ot fofofo e fo s e oo e o

% She demanded that he leave immediately
_V1 {Subcat=[SBAR_subj{}=sbar,NP_{}=agl;} ->
¢ _V_npas {ComlexFrame="S-SUBJUNCT";Subcat=[sbar,ag];};

% That he leave immediately was demanded
_V1 {Subcat=[SBAR_subj{}=sbar];} ->
¢_V_pas {ComlexFrame="S-SUBJUNCT";Subcat=[sbar,*];};
% It was demanded that he leave immediately
_V1 {Subcat=[SBAR_subj{}=sbar ,NP_it{}];} ->
¢ _V_pas {ComlexFrame="S-SUBJUNCT";Subcat=[sbar,*];};

% That he leave immediately was demanded by Peter

147
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_V1 {Subcat=[PP_by{Arg=[agl;},SBAR_subj{}=sbarl;} ->
¢_V_pas {ComlexFrame="S-SUBJUNCT";Subcat=[sbar,agl;};
% It was demanded by Peter that he leave immediately
_V1 {Subcat=[PP_by{Arg=[agl;},SBAR_subj{}=sbar ,NP_it{}]1;} ->
¢_V_pas {ComlexFrame="S-SUBJUNCT";Subcat=[sbar,agl;};

WRBBDD DI DD b bl Dkt NP=ING %kl lolelohhlotolololelo b b o to o To o loh oo 1o o To o o ol

% I kept them laughing
_V1 {Subcat=[np,VP_prp{Slash=[];Subcat=[np];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-ING";Subcat=[vp,agl;};

% They were kept laughing

_V1 {Subcat=[VP_prp{Slash=[];Subcat=[np];}=vp,npl;} ->
¢_V_pas {ComlexFrame="NP-ING";Subcat=[vp,*];};

% They were kept laughing by him

_V1 {Subcat=[VP_prp{Slash=[];Subcat=[np];}=vp,PP_by{Arg=[agl;},npl;} ->
¢ _V_pas {ComlexFrame="NP-ING";Subcat=[vp,agl;};

WRRRRRRRRRRRRRI DIl h Tt tete NP=ING=0C hhhshotelolelelole oo bl bk bbb bbb b oo b oo

% I caught him stealing
_V1 {Subcat=[pat,VP_prp{Slash=[];Subcat=[pat];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-ING-0C";Subcat=[pat,vp,agl;};

% He was caught stealing
_V1 {Subcat=[VP_prp{Slash=[];Subcat=[pat];}=vp,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-ING-0C";Subcat=[pat,vp,*];};

% He was caught stealing by Peter

_V1 {Subcat=[VP_prp{Slash=[];Subcat=[pat];}=vp,PP_by{Arg=[ag]l;} ,NP_{}=patl];} ->
¢_V_pas {ComlexFrame="NP-ING-0C";Subcat=[pat,vp,agl;};

% He was caught by Peter stealing a book

_V1 {Subcat=[PP_by{Arg=[agl;},VP_prp{Slash=[];Subcat=[pat];}=vp,NP_{}=pat]l;} ->
¢ _V_pas {ComlexFrame="NP-ING-0C";Subcat=[pat,vp,agl;};

WD BRI RDADNDSs NP=ING=SC %A% lot ot oo fo e Tofs e e e b el bl o i

% He combed the woods looking for her
_V1 {Subcat=[pat,VP_prp{Slash=[];Subcat=[ag];}=vp,NP_{}=agl;} —->
¢_V_npas {ComlexFrame="NP-ING-SC";Subcat=[pat,vp,agl;};

% The woods were combed looking for her
_V1 {Subcat=[VP_prp{Slash=[];Subcat=[ag];}=vp,NP_{}=pat];} ->
¢ _V_pas {ComlexFrame="NP-ING-SC";Subcat=[pat,vp,agl;};

% The woods were combed by Peter looking for her

_V1 {Subcat=[PP_by{Arg=[agl;},VP_prp{Slash=[];Subcat=[ag]l;}=vp,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-ING-SC";Subcat=[pat,vp,agl;};

% The woods were combed looking for her by Peter

_V1 {Subcat=[VP_prp{Slash=[];Subcat=[ag];}=vp,PP_by{Arg=[ag];},NP_{}=pat]l;} ->
¢_V_pas {ComlexFrame="NP-ING-SC";Subcat=[pat,vp,agl;};
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WD RRDDNRS NP=P=ING %A% %l fo o fofoTofs T e e b bl o i

% I prevented her from leaving
_V1 {Subcat=[np,PP{Arg=[VP_prp{Slash=[];Subcat=[np];}];Mod_Elem=[];}=ppl,NP_{}=agl;} —->
¢_V_npas {ComlexFrame="NP-P-ING";Subcat=[ppl,agl;};

% She was prevented from leaving

_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[np];}];Mod_Elem=[];2}=ppl,npl;} ->
¢ _V_pas {ComlexFrame="NP-P-ING";Subcat=[ppl,*];};

% She was prevented from leaving by this

_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[np];}];Mod_Elem=[];2}=ppl,PP_by{Arg=[agl;},npl;} ->
¢_V_pas {ComlexFrame="NP-P-ING";Subcat=[ppl,agl;};

WARDRRRRLRRRRRRRRRRRRDADAS NP=P~ING=0C Ahhhhhhhlshole ol ol e fe e e b e o ol

% I accused her of murdering her husband
_V1 {Subcat=[pat,PP{Arg=[VP_prp{Slash=[];Subcat=[pat];}];Mod_Elem=[];}=ppl,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-P-ING-0C";Subcat=[pat,ppl,agl;};

% She was accused of murdering her husband
_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[pat];}];Mod_Elem=[];}=ppl,NP_{}=pat]l;} ->
¢ _V_pas {ComlexFrame="NP-P-ING-0C";Subcat=[pat,ppl,*];};

% She was accused by the jury of murdering her husband
_V1 {Subcat=[PP_by{Arg=[agl;},PP{Arg=[VP_prp{Slash=[];Subcat=[pat];}];
Mod_Elem=[];}=ppl,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-P-ING-0C";Subcat=[pat,ppl,agl;};
% She was accused of murdering by the jury
_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[pat];}];
Mod_Elem=[];}=ppl,PP_by{Arg=[ag];},NP_{}=pat]l;} ->
¢_V_pas {ComlexFrame="NP-P-ING-0C";Subcat=[pat,ppl,agl;};

Wb bbb bbb bbb hhlhts NP=P=ING=SC hhhhh st tolslolslol oo fofe o s e otk il

% He wasted time on fuzzing with his hair
_V1 {Subcat=[pat,PP{Arg=[VP_prp{Slash=[];Subcat=[ag];}];Mod_Elem=[];}=ppl,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-P-ING-SC";Subcat=[pat,ppl,agl;};

% Time was wasted on fuzzing with ones hair
_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[agl;}];Mod_Elem=[];}=ppl,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-P-ING-SC";Subcat=[pat,ppl,agl;};
% Time was wasted by him on fuzzing with his hair
_V1 {Subcat=[PP_by{Arg=[agl;},PP{Arg=[VP_prp{Slash=[];Subcat=[agl;}];
Mod_Elem=[];}=ppl,NP_{}=pat]l;} ->
¢_V_pas {ComlexFrame="NP-P-ING-SC";Subcat=[pat,ppl,agl;};
% Time was wasted on fuzzing by him
_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[agl;}];
Mod_Elem=[];}=ppl,PP_by{Arg=[agl;},NP_{}=pat];} ->
¢_V_pas {ComlexFrame="NP-P-ING-SC";Subcat=[pat,ppl,agl;};

WRDRRRRLRRRRRRRRRRDRAADAS FOR=TO-INF AUUhAAAA IS Il Tl ol o e e e o o o

% I prefer for her to do it
_V1 {Subcat=[PP_for{Arg=[np]l;},VP_inf{Slash=[];Subcat=[np];}=vp,NP_{}=agl;} ->
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¢_V_npas {ComlexFrame="FOR-TO-INF";Subcat=[vp,agl;};

WA RAKNKS NP=TO=INF  %h%h %l fofefofe T fs e e e e bl o i

% I want John to go
_V1 {Subcat=[np,VP_inf{Slash=[];Subcat=[np];}=vp ,NP_{}=agl;} ->
‘_V_npas {ComlexFrame="NP-TO-INF";Subcat=[vp,agl;};

% John was allowed to go

_V1 {Subcat=[VP_inf{Slash=[];Subcat=[np];}=vp,npl;} ->
¢_V_pas {ComlexFrame="NP-TO-INF";Subcat=[vp,*];};

% John was allowed by Peter to go

_V1 {Subcat=[PP_by{Arg=[agl;},VP_inf{Slash=[];Subcat=[np];}=vp,npl;} ->
¢_V_pas {ComlexFrame="NP-TO-INF";Subcat=[vp,agl;};

% John was allowed to go by Peter

_V1 {Subcat=[VP_inf{Slash=[];Subcat=[np];}=vp,PP_by{Arg=[agl;},npl;} ->
¢ _V_pas {ComlexFrame="NP-TO-INF";Subcat=[vp,ag];};

WARDRRRRLRRRRRRRRRRRRAADAS NP=TO~INF=0C Ahhhhhhhhole ol ol o he el o ol

% I advised Mary to go
_V1 {Subcat=[pat,VP_inf{Slash=[];Subcat=[pat];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-TO-INF-0C";Subcat=[pat,vp,agl;};

% Mary was advised to go

_V1 {Subcat=[VP_inf{Slash=[];Subcat=[np];}=vp,npl;} ->
¢ _V_pas {ComlexFrame="NP-TO-INF-0C";Subcat=[vp,*];};

% Mary was advised by Peter to go

_V1 {Subcat=[PP_by{Arg=[agl;},VP_inf{Slash=[];Subcat=[np];}=vp,npl;} ->
¢_V_pas {ComlexFrame="NP-T0-INF-0C";Subcat=[vp,agl;};

% Mary was advised to go by Peter

_V1 {Subcat=[VP_inf{Slash=[];Subcat=[np];}=vp,PP_by{Arg=[agl;},npl;} ->
¢_V_pas {ComlexFrame="NP-TO-INF-0C";Subcat=[vp,agl;};

Wb bbb hhhh bbbt hhts NP=TO=INF=SC hhhhletslolslolslollofofofs o e o otk il

% John promised Mary to resign
_V1 {Subcat=[pat,VP_inf{Slash=[];Subcat=[ag];}=vp,NP_{}=agl;} —>
¢_V_npas {ComlexFrame="NP-TO-INF-SC";Subcat=[pat,vp,agl;};

WD h LR RRAKNKS NP=TO=INF=VC "hhhhhlotslolslole oo fofs o fe s b hih il

% They badgered him to go
_V1 {Subcat=[pat,VP_inf{Slash=[];Subcat=[pat];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-TO-INF-VC";Subcat=[pat,vp,agl;};

% He was badgered to go

_V1 {Subcat=[VP_inf{Slash=[];Subcat=[pat];}=vp,pat]l;} ->
¢_V_pas {ComlexFrame="NP-TO-INF-VC";Subcat=[pat,vp,*];};

% He was badgered by her to go

_V1 {Subcat=[PP_by{Arg=[agl;},VP_inf{Slash=[];Subcat=[pat];}=vp,pat]l;} ->
¢_V_pas {ComlexFrame="NP-TO-INF-VC";Subcat=[pat,vp,agl;};

% He was badgered to go by her
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_V1 {Subcat=[VP_inf{Slash=[];Subcat=[pat];}=vp,PP_by{Arg=[ag];},pat]l;} ->
¢_V_pas {ComlexFrame="NP-TO-INF-VC";Subcat=[pat,vp,agl;};

WRRRRRRRRRRIRRRRRRDRDADADAS NP—TOBE  WAANAAA AN bl llelelole el el bl bl ool o ol

% I found him to be a good doctor
_V1 {Subcat=[pat,VP_inf{Slash=[];HeadLex="be";Subcat=[pat];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-TOBE";Subcat=[pat,vp,agl;};

% He was found to be a good doctor

_V1 {Subcat=[VP_inf{Slash=[];HeadLex="be";Subcat=[pat];}=vp,NP_{}=pat];} ->
¢_V_pas {ComlexFrame="NP-TOBE";Subcat=[pat,vp,*];};

% He was found by her to be a good doctor

_V1 {Subcat=[PP_by{Arg=[ag]l;},VP_inf{Slash=[] ;HeadLex="be";Subcat=[pat];}=vp,NP_{}=pat];} ->
¢_V_pas {ComlexFrame="NP-TOBE";Subcat=[pat,vp,agl;};

% I found him to have a good voice
_V1 {Subcat=[pat,VP_inf{Slash=[];HeadLex="have";Subcat=[pat];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-TOBE";Subcat=[pat,vp,agl;};

% He was found to have a good voice

_V1 {Subcat=[VP_inf{Slash=[];HeadLex="have";Subcat=[pat];}=vp,NP_{}=pat];} ->
¢_V_pas {ComlexFrame="NP-TOBE";Subcat=[pat,vp,*];};

% He was found by her to have a good voice

_V1 {Subcat=[PP_by{Arg=[agl;},VP_inf{Slash=[];HeadLex="have";Subcat=[pat];}=vp,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-TOBE";Subcat=[pat,vp,agl;};

DRI LII DI DID DDA D DD D DDkl NP=INF hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

% He had her sing

_V1 {Subcat=[np,VP_bse{Slash=[];Subcat=[np];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-INF";Subcat=[vp,agl;};

WD TN AR IR DA DRSS NP=INF=0C hhdh sttt ot ol to o hhto o to T s o fo o T

% He helped her bake the cake

_V1 {Subcat=[pat,VP_bse{Slash=[];Subcat=[pat];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-INF-0C";Subcat=[pat,vp,agl;};

WDII DRI DI DIB DAL II DRI G INF=AC hhhhhh bbb bbb bbb oo b oo oo e oo e

% He helped bake the cake

_V1 {Subcat=[VP_bse{Slash=[];Subcat=[ag];}=vp,NP_{}=agl;} ->
‘_V_npas {ComlexFrame="INF-AC";Subcat=[vp,agl;};

W DILIID DI DID DDA DDA D DD KD NP=S Kb hhhhhhhhlhhhhhhhhhhhhhhhhhhhhhhh

% He told the audience he was leaving

_V1 {Subcat=[pat,s,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-S";Subcat=[pat,s,agl;};
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% He told the audience that he was leaving
_V1 {Subcat=[ben,sbar,NP_{}=agl;} —>
‘_V_npas {ComlexFrame="NP-S";Subcat=[ben,sbar,agl;};

% The audience was told that he was leaving
_V1 {Subcat=[sbar,ben];} ->
¢_V_pas {ComlexFrame="NP-S";Subcat=[ben,sbar,*];};
% The audience was told by the conductor that he was leaving
_V1 {Subcat=[PP_by{Arg=[agl;},sbar,ben]l;} ->
¢_V_pas {ComlexFrame="NP-S";Subcat=[ben,sbar,ag];};

WD RDDDDT NP=WH=S %A% It lofo oo Tt T T T e e o o i

% They asked him whether he was going
_V1 {Subcat=[pat,SBAR_argwb{}=sbar,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-WH-S";Subcat=[pat,sbar,agl];};

% He was asked whether he was going

_V1 {Subcat=[SBAR_argwb{}=sbar,NP_{}=pat]l;} ->
¢_V_pas {ComlexFrame="NP-WH-S";Subcat=[pat,sbar,*];};

% He was asked by her whether he was going

_V1 {Subcat=[PP_by{Arg=[agl;},SBAR_argwb{}=sbar ,NP_{}=pat]l;} ->
¢ _V_pas {ComlexFrame="NP-WH-S";Subcat=[pat,sbar,agl;};

WDII DRI DI DI DIK L DL L LA AL NP-TO-INF-NP-OMIT %Ahhhhhhhhhhhhhhhhhhh

% He has good things to eat.

% He is the man to beat

_V1 {Subcat=[rnp3_p,VP_inf{Slash=[rnp3_p]l;}=vp,NP_{}=agl;} ->
¢ _V_npas {ComlexFrame="NP-TO-INF-NP-OMIT";Subcat=[vp,ag];};

Wb bbb b s b oo ool P=ING=SC  %hhtothtots o loto s oo o lo oo o to o e Yoo e o o o T s e

% They failed in attempting the climb

_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[ag]l;}];Mod_Elem=[];}=ppl,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="P-ING-SC";Subcat=[ppl,agl;};

BRI DRI DI DIKDIR DKL hAh D P=ING-PRED AhAhhhhhhhhhhhhhhh bt hhhhhhhh

% It is for banning bullets

_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];Subcat=[NP_{}];}];Mod_Elem=[];}=ppllzr]l;} ->
¢_V_npas {ComlexFrame="P-ING-PRED";Subcat=[ppl,*]=[*|r];};

WD RI DRI DI DIKDIK L IK LKA P=POSSING hhhhhthhhthh bt bl oo h oo h oo o e

% He disapproved of killing the peasants

_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];}];Mod_Elem=[];}=ppl,NP_{}=agl;} —>
¢_V_npas {ComlexFrame="P-POSSING";Subcat=[ppl,agl;};

WD bbb bbb RDDIHTs P=NP=ING %h%h%h T oo e fofe Tofs T oo e e il o o i
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% They worried about him drinking
_V1 {Subcat=[PP{Arg=[S_ger{}];Mod_Elem=[];}=ppl,NP_{}=agl;} ->
¢ _V_npas {ComlexFrame="P-NP-ING";Subcat=[ppl,agl;};

WO BBDD DI DD DD bl h Dl ekt P=WH=S Kl llelohhtotololololo b oo To o To o b o o 1o o T o o o

% He thought about whether/how he wanted to go
_V1 {Subcat=[PP{Arg=[SBAR_argwb{}];Mod_Elem=[];}=ppl,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="P-WH-S";Subcat=[ppl,agl;};

WARDRRLRLRRRRRRRRRADADANANA%G P-NP~TO-INF-OC AAAAAAA LA DADAAA AR AL LA

% He beckoned to him to come
_V1 {Subcat=[PP{Arg=[np];Mod_Elem=[];}=ppl,VP_inf{Slash=[];Subcat=[np];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="P-NP-TO-INF-0C";Subcat=[ppl,vp,agl;};

Wb bbb bbb hhhhhhhhhhhts P=NP=TO=INF %hhhh % lslslolslolelo e lole o s o oth il

% He counted on him to come
_V1 {Subcat=[PP{Arg=[np];Mod_Elem=[];}=ppl,VP_inf{Slash=[];Subcat=[np];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="P-NP-TO-INF";Subcat=[ppl,vp,agl;};

WARDRRLRRRRRRRRRRDRDAAANINAS P-NP~TO-INF-VC AAAAAAL DDA DAAA AR AL DA%

% She appealed to him to go
_V1 {Subcat=[PP{Arg=[np];Mod_Elem=[];2}=ppl,VP_inf{Slash=[];Subcat=[np];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="P-NP-TO-INF-VC";Subcat=[ppl,vp,agl;};

% object control ignored (less frequent): She appealed to him to be freed

WRDRRRRL LR DADAS POSSING=PP  AUUAAA ST I Tl Tl Tl T e T e b e o

% They limited smoking a pipe to the lounge

_V1 {Subcat=[VP_prp{Slash=[];}=vp,PP_arg{}=ppl,NP_{}=agl;} —->
¢_V_npas {ComlexFrame="POSSING-PP";Subcat=[vp,ppl,agl;};

% They limited to the lounge smoking a pipe

_V1 {Subcat=[PP_arg{}=ppl,VP_prp{Slash=[];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="POSSING-PP";Subcat=[vp,ppl,agl;};

% Smoking a pipe was limited to the lounge

_V1 {Subcat=[PP_arg{}=ppl,VP_prp{Slash=[1;}=vpl;} ->
¢_V_pas {ComlexFrame="POSSING-PP";Subcat=[vp,ppl,*];};

% Smoking a pipe was limited to the lounge by the management

_V1 {Subcat=[PP_arg{}=ppl,PP_by{Arg=[agl;},VP_prp{Slash=[1;}=vpl;} —->
¢_V_pas {ComlexFrame="POSSING-PP";Subcat=[vp,ppl,agl;};

bbb bbb bbb hhhhhhhhhhts PP=THAT=S %Al totalote oo lofo To s e e h et el o o o
% They admitted to the authorities that they had entered illegally

_V1 {Subcat=[PP_arg{}=ppl,SBAR_that{}=sbar,NP_{}=agl;} —>
¢ _V_npas {ComlexFrame="PP-THAT-S";Subcat=[ppl,sbar,ag];};
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% They admitted to the authorities they had entered illegally
_V1 {Subcat=[PP_arg{}=ppl,s,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="PP-THAT-S";Subcat=[ppl,s,agl;};

% That they had entered illegally was admitted to the authorities
_V1 {Subcat=[PP_arg{}=ppl,SBAR_that{}=sbar];} ->

¢_V_pas {ComlexFrame="PP-THAT-S";Subcat=[ppl,sbar,*];};
% It was admitted to the authorities that they had entered illegally
_V1 {Subcat=[PP_arg{}=ppl,SBAR_that{}=sbar ,NP_it{}];} ->

¢_V_pas {ComlexFrame="PP-THAT-S";Subcat=[ppl,sbar,*];};

% That they had entered illegally was admitted by them to the authorities
_V1 {Subcat=[PP_by{Arg=[agl;},PP_arg{}=ppl,SBAR_that{}=sbar];} ->
¢_V_pas {ComlexFrame="PP-THAT-S";Subcat=[ppl,sbar,agl;};
% It was admitted by them to the authorities that they had entered illegally
_V1 {Subcat=[PP_by{Arg=[agl;},PP_arg{}=ppl,SBAR_that{}=sbar ,NP_it{}];} ->
¢_V_pas {ComlexFrame="PP-THAT-S";Subcat=[ppl,sbar,agl;};

WRBBDDDI DT DDl hh el okt PP=WH=S Khhhhhhlstelslolelohhtotololole oo oo totoTo o oe

% They asked of everybody whether they had enrolled
_V1 {Subcat=[PP_arg{}=ppl,SBAR_argwb{}=sbar,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="PP-WH-S";Subcat=[ppl,sbar,agl;};

DDA RDDHDS PP=P=WH=S AA%h % Tofsfofe Tl Tl T T e el i

% I agreed with him about whether he should kill the peasants
_V1 {Subcat=[PP_arg{}=ppl,PP{Arg=[SBAR_argwb{}];Mod_Elem=[];}=pp2,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="PP-P-WH-S";Subcat=[ppl,pp2,agl;};

WARDRRL LR DADAANA%G PP~THAT-S~SUBJUNCT AAAAAAAAAAAALAL LA

% They suggested to him that he go
_V1 {Subcat=[PP_arg{}=ppl,SBAR_subj{}=sbar,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="PP-THAT-S-SUBJUNCT";Subcat=[ppl,sbar,ag];};

% It was suggested to him that he go
_V1 {Subcat=[PP_arg{}=ppl,SBAR_subj{}=sbar,NP_it{}1;} ->
¢_V_pas {ComlexFrame="PP-THAT-S-SUBJUNCT";Subcat=[pp1l,sbar,*];};
% It was suggested to him by Peter that he go
_V1 {Subcat=[PP_arg{}=ppl,PP_by{Arg=[agl;},SBAR_subj{}=sbar,NP_it{}];} ->
¢ _V_pas {ComlexFrame="PP-THAT-S-SUBJUNCT";Subcat=[ppl,sbar,ag];};

WD II DI DL DK DI DI D Db hhhhhls PP=TO=INF=RS Ahhhhhhhhhhhthlhhhhhhhthhhhh

% He appeared to her to be ill

_V1 {Subcat=[PP_arg{}=ppl,VP_inf{Slash=[1;Subcat=[np];}=vp,npl;} ->
¢_V_npas {ComlexFrame="PP-TO-INF-RS";Subcat=[ppl,vp]l;};

WDl Dl bbb bbbt hhhtotshhtehhtetsls PP=FOR=TO=INF %h%hhhhhtslotshotetslotslotslotstotststotots

% They contracted with him for the man to go
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_V1 {Subcat=[PP_arg{}=ppl,SBAR_for{}=sbar,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="PP-FOR-TO-INF";Subcat=[ppl,sbar,agl;};

bbb bbb bbb bR hhlhts NP=P=WH=S %A%kl lolfololofe Tofs e s e e el o o i

% They made a great fuss about whether they should participate
_V1 {Subcat=[pat,PP{Arg=[SBAR_argwb{}];Mod_Elem=[];}=ppl,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-P-WH-S";Subcat=[pat,ppl,agl;};

% A great fuss was made about whether they should participate

_V1 {Subcat=[PP{Arg=[SBAR_argwb{}];Mod_Elem=[];}=ppl,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-P-WH-S";Subcat=[pat,ppl,*];};

% A great fuss was made by him about whether they should participate

_V1 {Subcat=[PP_by{Arg=[agl;},PP{Arg=[SBAR_argwb{}];Mod_Elem=[];}=ppl,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-P-WH-S";Subcat=[pat,ppl,agl;};

WARDRRRRLRRRRRRRRRRRRDADAYG NP~P~POSSING Ah%hAhAhhhhle ol ol e he el ol

% She told him about climbing Everest
_V1 {Subcat=[pat,PP{Arg=[VP_prp{Slash=[];}];Mod_Elem=[];}=ppl,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-P-POSSING";Subcat=[pat,ppl,agl;};

% He was told about climbing Everest

_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[];}];Mod_Elem=[];}=ppl,patl;} ->
¢ _V_pas {ComlexFrame="NP-P-POSSING";Subcat=[pat,ppl,*];};

% He was told by her about climbing Everest

_V1 {Subcat=[PP{Arg=[VP_prp{Slash=[1;}];Mod_Elem=[];}=ppl,PP_by{Arg=[agl;},patl;} ->
¢_V_pas {ComlexFrame="NP-P-POSSING";Subcat=[pat,ppl,agl;};

WD h DR RRDKNKS NP=P=NP=ING %h%h%h % lo oot oo fo s fofs e th i il

% He attributed his failure to noone buying his books
_V1 {Subcat=[pat,PP{Arg=[S_ger{}];Mod_Elem=[];}=ppl,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-P-NP-ING";Subcat=[pat,ppl,agl;};

% His failure was attributed to noone buying his books

_V1 {Subcat=[PP{Arg=[S_ger{}];Mod_Elem=[1;}=pp1,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-P-NP-ING";Subcat=[pat,ppl,*];};

% His failure was attributed by him to noone buying his books

_V1 {Subcat=[PP_by{Arg=[agl;},PP{Arg=[S_ger{}];Mod_Elem=[];}=ppl,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-P-NP-ING";Subcat=[pat,ppl,agl;};

WD B bl b tototstotelotelolale PART Kbl lele b oo tototo oo o lo o o To o To to 1o o o o T To T T o o
% She gave up

_V1 {Subcat=[rp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="PART";Subcat=[rp,agl;};

WARDRRRRLRRRRRRRRRRRRDADAS PART=ING=SC Uhhhhhhlols ol ol ol e e e e e h o o

% He rules out paying her debts
_V1 {Subcat=[rp,VP_prp{Slash=[];Subcat=[ag];}=vp,NP_{}=agl;} ->
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¢ _V_npas {ComlexFrame="PART-ING-SC";Subcat=[rp,vp,agl;};

% Paying her debts was ruled out

_V1 {Subcat=[rp,VP_prp{Slash=[];Subcat=[ag];}=vpl;} ->
¢_V_pas {ComlexFrame="PART-ING-SC";Subcat=[rp,vp,agl;};

% Paying her debts was ruled out by her

_V1 {Subcat=[rp,PP_by{Arg=[ag];},VP_prp{Slash=[];Subcat=[agl;}=vpl;} ->
¢_V_pas {ComlexFrame="PART-ING-SC";Subcat=[rp,vp,agl;};

WRRRRRRRRIRRIRRRDRRDRDADADNDT PART=NP  BABAAA DDl Tl lole Tl el el e o o e

% I looked up the entry
_V1 {Subcat=[rp,pat,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="PART-NP";Subcat=[rp,pat,agl;};
% I looked the entry up
_V1 {Subcat=[pat,rp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="PART-NP";Subcat=[rp,pat,agl;};

% The entry was looked up
_V1 {Subcat=[rp,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="PART-NP";Subcat=[rp,pat,*];};
% The entry was looked up by the program
_V1 {Subcat=[rp,PP_by{Arg=[ag];},NP_{}=pat];} ->
¢_V_pas {ComlexFrame="PART-NP";Subcat=[rp,pat,agl;};

WD RDDDHDS PART=PP  AAGhh It Totsto oo Tl Tl T T el o

% She looked in on her friend
_V1 {Subcat=[rp,PP_arg{}=ppl,NP_{}=agl;} —>
¢_V_npas {ComlexFrame="PART-PP";Subcat=[rp,ppl,agl;};

bbb bbb hhhh bbbt hts PART=NP=PP  AUhhhh It Tolstolelo o foTofs T s T oo e o

% I separated out the three boys from the crowd
_V1 {Subcat=[rp,pat,PP_arg{}=ppl,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="PART-NP-PP";Subcat=[rp,pat,ppl,agl;};
% I separated the three boys out from the crowd
_V1 {Subcat=[pat,rp,PP_arg{}=ppl,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="PART-NP-PP";Subcat=[rp,pat,ppl,agl;};

% The three boys were separated out from the crowd
_V1 {Subcat=[rp,PP_arg{}=ppl,NP_{}=pat]l;} ->
¢_V_pas {ComlexFrame="PART-NP-PP";Subcat=[rp,pat,ppl,*];};
% The three boys were separated out from the crowd by the teacher
_V1 {Subcat=[rp,PP_arg{}=ppl,PP_by{Arg=[agl;},NP_{}=pat];} —>
¢_V_pas {ComlexFrame="PART-NP-PP";Subcat=[rp,pat,ppl,agl;};

bbb bbb bbb bbbttt thnts PART=THAT =S %hhhhlttelslolelolefofofofe o fe o et ol

% They figured out that she had n’t done her job
_V1 {Subcat=[rp,SBAR_argx{}=sbar,NP_{}=agl;} ->

‘_V_npas {ComlexFrame="PART-THAT-S";Subcat=[rp,sbar,agl;};
% They figured out she had n’t done her job
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_V1 {Subcat=[rp,S{}=s,NP_{}=agl;} >
¢_V_npas {ComlexFrame="PART-THAT-S";Subcat=[rp,s,agl;};

Wb bbb bbb hhhhhhhhh Tkt NP=NP=PRED Ah%hhhh %% Tt Tolslo o fofofe fofs e oo e o

% They appointed him professor
_V1 {Subcat=[pat,np,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-NP-PRED";Subcat=[pat,np,agl;};

% He was appointed professor
_V1 {Subcat=[np,NP_{}=patl;} ->
¢ _V_pas {ComlexFrame="NP-NP-PRED";Subcat=[pat,np,*];};
% He was appointed professor by the committee
_V1 {Subcat=[np,PP_by{Arg=[agl;},NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-NP-PRED";Subcat=[pat,np,agl;};

WARDRRRRLRRRRRRRRRRRRDAKAYG NP~ADIP—PRED  AAUAAA IS Il lole ol e fe e b o ol

% She considered him foolish
_V1 {Subcat=[np,ADJP{Mod_Elem=[np];}=adjp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-ADJP-PRED";Subcat=[adjp,agl;};

% He was considered foolish

_V1 {Subcat=[ADJP{Mod_Elem=[np];}=adjp,NP_{}=npl;} ->
¢ _V_pas {ComlexFrame="NP-ADJP-PRED";Subcat=[adjp,*];};

% He was considered foolish by Mary

_V1 {Subcat=[ADJP{Mod_Elem=[np];}=adjp,PP_by{Arg=[agl;},NP_{}=npl;} ->
¢_V_pas {ComlexFrame="NP-ADJP-PRED";Subcat=[adjp,agl;};

WRDRRRRL LR RRAAKAY NP~ADVP~PRED  AUUAAA Il Iole Tl o fe e e o ol

% They mistakenly thought him here
_V1 {Subcat=[np,ADVP{Mod_Elem=[np] ;}=advp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-ADVP-PRED";Subcat=[advp,ag];};

% He was mistakenly thought here

_V1 {Subcat=[ADVP{Mod_Elem=[np];}=advp,NP_{}=npl;} ->
¢_V_pas {ComlexFrame="NP-ADVP-PRED";Subcat=[advp,*];};

% He was mistakenly thought here by them

_V1 {Subcat=[ADVP{Mod_Elem=[np];}=advp,PP_by{Arg=[agl;},NP_{}=npl;} ->
¢_V_pas {ComlexFrame="NP-ADVP-PRED";Subcat=[advp,ag];};

bbb bbb hhhhhhhhhthhts NP=PP=PRED  %h%hhhh %t tststolslol oo fo e To s o et et ol

% I considered that problem of little concern

_V1 {Subcat=[np,PP{Arg=[NP{}];Mod_Elem=[np];}=ppl,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-PP-PRED";Subcat=[ppl,agl;};

_V1 {Subcat=[np,PP{Arg=[];Mod_Elem=[np];}=ppl,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-PP-PRED";Subcat=[ppl,agl;};

WRDRRRRRRRRRRRRRDADA DD %A% NP=VEN-NP-OMIT AAAAAAA LA LA DA AR AL DL LA A%
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% We wanted the children found
_V1 {Subcat=[rnp3_p,VP_pas{Slash=[];Subcat=[rnp3_p];}=vp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-VEN-NP-OMIT";Subcat=[vp,agl;};

WRRRRRRRRIRRRRRDRRDDDADADNDT NP=ADIP  BADANA DDl Tl Tl Tl Tl T b e e e e o e

% He painted the car black

_V1 {Subcat=[pat,ADJP{Mod_Elem=[pat];}=adjp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-ADJP";Subcat=[pat,adjp,agl;};

% He scrubbed clean that old pot he had bought at the auction

_V1 {Subcat=[ADJP{Mod_Elem=[pat];}=adjp,pat,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-ADJP";Subcat=[pat,adjp,agl;};

% The car was painted black

_V1 {Subcat=[ADJP{Mod_Elem=[pat];}=adjp,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-ADJP";Subcat=[pat,adjp,*];};

% The car was painted black by John

_V1 {Subcat=[ADJP{Mod_Elem=[pat];}=adjp,PP_by{Arg=[agl;} ,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-ADJP";Subcat=[pat,adjp,agl;};

WRRRRRRRRIRRIRRRDDIRDIDADADNDT NP=ADVP  BARRADA Dl Dl Tl lole Tl Tl T e b e e o o e

% He put it there
_V1 {Subcat=[pat,ADVP{Mod_Elem=[pat];}=advp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-ADVP";Subcat=[pat,advp,agl;};

% It has been put there

_V1 {Subcat=[ADVP{Mod_Elem=[pat];}=advp,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-ADVP";Subcat=[pat,advp,*];};

% It has been put there by Peter

_V1 {Subcat=[ADVP{Mod_Elem=[pat];}=advp,PP_by{Arg=[agl;} ,NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-ADVP";Subcat=[pat,advp,agl;};

WRRRRRRRRRRRRRIRIBIIHTHTotT ADIP Bl lolo oo oo e b e b b b b o o o o o o

% His reputation sank low
_V1 {Subcat=[ADJP{Numerical=-;Mod_Elem=[ag];}=adjp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="ADJP";Subcat=[adjp,agl;};

DWWl otstotstotetolels ADVP Tl lolooto oo o s o e e o o o o o o o o o o o

% She meant well
_V1 {Subcat=[ADVP{Mod_Elem=[];}=advp,NP_{}=agl;} —>
¢ _V_npas {ComlexFrame="ADVP";Subcat=[advp,ag];};

% It was meant well

_V1 {Subcat=[ADVP{Mod_Elem=[];}=advp,NP_it{}1;} —>
¢_V_pas {ComlexFrame="ADVP";Subcat=[advp,*];};

% It was meant well by Mary

_V1 {Subcat=[ADVP{Mod_Elem=[];}=advp,PP_by{Arg=[ag];},NP_it{}]1;} —>
¢_V_pas {ComlexFrame="ADVP";Subcat=[advp,agl;};



I b b bt to oot NP=PRED ol toato e to o tos To s o to ot e To o T o T o T T T o T o o
% He became a secretary
_V1 {Subcat=[np,NP_{}=agl;} —->
¢_V_npas {ComlexFrame="NP-PRED";Subcat=[np,agl;};
T o o oo o o to o to o foto foto %o~ ADIP=PRED Yt e to o tos too oo loto o T o T o o o Y T o o o o o
% He became clever
_V1 {Subcat=[ADJP{Mod_Elem=[ag];}=adjp,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="ADJP-PRED";Subcat=[adjp,agl;};
T bbb to oot PP=PRED ot th o to e to o too Too o to oo o T o T o T o fe T T o T o o
% He acted out of dispair
_V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[ag];}=ppl,NP_{}=agl;} —->
¢_V_npas {ComlexFrame="PP-PRED";Subcat=[ppl,agl;};
Tl b bl b to o to ot ot oo tolote NP=PRED=RS  %hhtothtotototofotoloto tos to o to loto o oo fo to oo Yoo

% He seemed a fool

_V1 {Subcat=[NP_{NForm=(noun,pronoun,propername) ; }=np,NP_{}=agl;} ->

¢_V_npas {ComlexFrame="NP-PRED-RS";Subcat=[np,agl;};
% What it did there is the question

_V1 {Subcat=[NP_{NForm=(noun,pronoun,propername) ; }=np,SBAR_argx{Slash=[];}=sbar];} ->

¢_V_npas {ComlexFrame="NP-PRED-RS";Subcat=[np,sbar];};
% To do it is a necessity

_V1 {Subcat=[NP_{NForm=(noun,pronoun,propername) ; }=np,VP_inf{Slash=[];}=vpl;} ->

¢_V_npas {ComlexFrame="NP-PRED-RS";Subcat=[np,vp]l;};

Wb bbb hhhhhhhhhhh %kt ADIP=PRED=RS  %hhhhhletslolslolelolofofe o s ot ot etk il

% He appears crazy
% Defining combat aircraft is even tougher .
_V1 {Subcat=[ADJP{Mod_Elem=[*]=r;}=adjplr]l;} ->
¢_V_npas {ComlexFrame="ADJP-PRED-RS";Subcat=[adjpl;};

% It is uncertain whether he will come
_V1 {Subcat=[ADJP{Mod_Elem=[sbar];}=adjp,sbar,NP_it{}];} ->
¢_V_npas {ComlexFrame="ADJP-PRED-RS";Subcat=[adjp]l;};

Wb bbb bbb hhhhhhhhhhhts PP=PRED=RS  %hhhhhltstotstolslot oo fofs o e o ot eth il

% The situation seems out of control

_V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[np];}=ppl,NP_{}=npl;} ->
¢_V_npas {ComlexFrame="PP-PRED-RS";Subcat=[ppil];};

% That he was there is out of question

_V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[sbar];}=ppl,sbar];} ->
¢_V_npas {ComlexFrame="PP-PRED-RS";Subcat=[pp1];};%

% To go there is out of question

_V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[vp];}=ppl,vpl;} ->
¢_V_npas {ComlexFrame="PP-PRED-RS";Subcat=[ppl];};

159
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WRBBDD DD DDl DD Dkt AS=NP Lkt loleloh b oo loTolo lo b oo 1o o To o oo oo 1o T o o oo

% I worked as an apprentice cook
_V1 {Subcat=[PP_as{Arg=[npl;},NP_{}=agl;} ->
¢ _V_npas {ComlexFrame="AS-NP";Subcat=[np,agl;};

WD RDDHKT NP=BAS=NP %A% %%l tofafofo Tl Tl T T e e e o

% I sent him as a messenger
_V1 {Subcat=[pat,PP_as{Arg=[npl;} ,NP_{}=agl;} ->
¢_V_npas {ComlexFrame="NP-AS-NP";Subcat=[pat,np,agl;};

% He was sent as a messenger

_V1 {Subcat=[PP_as{Arg=[np];},NP_{}=pat];} ->
¢ _V_pas {ComlexFrame="NP-AS-NP";Subcat=[pat,np,*];};

% He was sent as a messenger by the king

_V1 {Subcat=[PP_as{Arg=[npl;},PP_by{Arg=[agl;},NP_{}=patl;} ->
¢_V_pas {ComlexFrame="NP-AS-NP";Subcat=[pat,np,agl;};

% He was sent by the king as a messenger

_V1 {Subcat=[PP_by{Arg=[agl;},PP_as{Arg=[np]l;},NP_{}=pat];} ->
¢_V_pas {ComlexFrame="NP-AS-NP";Subcat=[pat,np,agl;};

WARDRRRRLRRRRRRRRRRDRDADAS NP=AS=NP=SC Uhhhhhhlals o lelofe ol e fe e b e o o

% She served the firm as a researcher
_V1 {Subcat=[ben,PP_as{Arg=[npl;} ,NP_{}=agl;} ->
¢ _V_npas {ComlexFrame="NP-AS-NP-SC";Subcat=[ben,np,ag];};

WD RRDKHS EXTRAP=NP=S  Ahhhhhhlotstolstotefofofo s Tofe s e i i

% It annoys them that she left
_V1 {Subcat=[pat,SBAR_that{}=sbar ,NP_it{}];} ->
¢_V_npas {ComlexFrame="EXTRAP-NP-S";Subcat=[pat,sbar];};

% That she left annoys them
_V1 {Subcat=[pat,SBAR_that{}=sbar];} ->
¢_V_npas {ComlexFrame="EXTRAP-NP-S";Subcat=[pat,sbar];};

% It pleases them to read
_V1 {Subcat=[pat,VP_inf{Slash=[];Subcat=[pat];}=vp,NP_it{}];} ->
¢_V_npas {ComlexFrame="EXTRAP-NP-S";Subcat=[pat,vp]l;};

% To read pleases them
_V1 {Subcat=[pat,VP_inf{Slash=[];Subcat=[pat];}=vpl;} ->
¢_V_npas {ComlexFrame="EXTRAP-NP-S";Subcat=[pat,vpl;};

Dl h o to oottt to oo hoteth EXTRAP—=TO-NP=S %htstetototototstlotototo ot o s oo toto oo
% It matters to them that she left

_V1 {Subcat=[PP_to{Arg=[np];},SBAR_that{}=sbar ,NP_it{}];} ->
¢_V_npas {ComlexFrame="EXTRAP-TO-NP-S";Subcat=[np,sbar];};
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% that she left matters to them
_V1 {Subcat=[PP_to{Arg=[np];},SBAR_that{}=sbar];} ->
¢_V_npas {ComlexFrame="EXTRAP-TO-NP-S";Subcat=[np,sbar];};

% It occured to them to watch tv
_V1 {Subcat=[PP_to{Arg=[np];},VP_inf{Slash=[];Subcat=[np];}=vp,NP_it{}];} ->
¢_V_npas {ComlexFrame="EXTRAP-TO-NP-S";Subcat=[np,vpl;};

% To come in first mattered to them
_V1 {Subcat=[PP_to{Arg=[np];},VP_inf{Slash=[];Subcat=[np];}=vpl;} ->
¢_V_npas {ComlexFrame="EXTRAP-TO-NP-S";Subcat=[np,vpl;};

WRRRRRRRRRRRRRIIIID DTt Totots SEEM=S BAh Nkl lole oo b b hh bbb bbb b o oo 1o

% It seems that they left
_V1 {Subcat=[SBAR_that{}=sbar,NP_it{}];} ->
¢_V_npas {ComlexFrame="SEEM-S";Subcat=[sbar];};

% It seems they left
_V1 {Subcat=[s,NP_it{}1;} ->
¢_V_npas {ComlexFrame="SEEM-S";Subcat=[s];};

Il e ol ot o tololo ot o to oo fotte  SEEM—=TO=NP=S  Yhhhtotelototottoto oo ot tototo s ot toto To o fo e
% It seems to her that they left
_V1 {Subcat=[PP_to{Arg=[ben];},SBAR_that{}=sbar,NP_it{}];} ->

¢ _V_npas {ComlexFrame="SEEM-TO-NP-S";Subcat=[ben,sbar];};
% It seems to her they left
_V1 {Subcat=[PP_to{Arg=[ben];},s,NP_it{}]1;} ->

¢_V_npas {ComlexFrame="SEEM-TO-NP-S";Subcat=[ben,s];};
Tl bl A b TRl DAl hhhhhhthls EXTRAP=TO=INFE Lhhhhhhhhhhhhhhhhhhhhhhhh
% It remains to find the cure
_V1 {Subcat=[VP_inf{Slash=[];}=vp,NP_it{}]1;} ->

¢_V_npas {ComlexFrame="EXTRAP-TO-INF";Subcat=[vp];};
% It remains for us to find the cure
_V1 {Subcat=[SBAR_for{}=sbar,NP_it{}];} ->

¢_V_npas {ComlexFrame="EXTRAP-TO-INF";Subcat=[sbar];};
Tl bl Al Bl DAl hhhhhhtels S=SUBI=S=0BJI %t to i tohdhtotohd oo to o to e o
% For him to report the theft indicates that he wasn’t guilty
_V1 {Subcat=[SBAR_argx{}=sbar,SBAR_argx{}=sbar2];} ->

¢_V_npas {ComlexFrame="S-SUBJ-S-0BJ";Subcat=[sbar,sbar2];};
Tl b oo o oo ol o to ot to o oo tofo o tole - TO—=INF=NP=OMIT %htetotelotstotelototo o totolofe Yot lototo e

%% He is to blame NP*
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_V1 {Subcat=[VP_inf{Slash=[rnp3_p];}=vp,NP_{}=rnp3_pl;} ->
¢_V_npas {ComlexFrame="T0-INF-NP-OMIT";Subcat=[vp];};

WRRRRRRRRIRRRRRDDDDADADADNAY THERE=NP  RAAAA DAl l el ool bl bl bl b oo o ool o

%h% There are three men
_V1 {Subcat=[NP_{}=np,NP_there{}];} ->
¢_V_npas {ComlexFrame="THERE-NP";Subcat=[np];};

Wb bbb bbb hhhhhhhhhhhte THERE=NP=PP=PRED %%h%h%h% %% % Tt Tolofofe fo s oo e th e il

%h% There appeared in their lives an oppressive mischance
_V1 {Subcat=[NP_{}=np,PP{Arg=[NP{}];Mod_Elem=[np];}=ppl,NP_there{}];} ->
¢_V_npas {ComlexFrame="THERE-NP-PP-PRED";Subcat=[pp1];};

%% There is/appeared a unicorn in the garden
_V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[np];}=ppl,NP_{}=np,NP_there{}1;} ->
¢_V_npas {ComlexFrame="THERE-NP-PP-PRED";Subcat=[ppl];};

Wb bbb hhhhhhh it hnte THERE=NP=ING %h%%%h ol fofofo s lo s o e bl bl b o

%%% There is a unicorn grazing in the garden
_V1 {Subcat=[NP_{}=np,VP_prp{Subcat=[np];Slash=[];}=vp,NP_there{}];} ->
¢ _V_npas {ComlexFrame="THERE-NP-ING";Subcat=[vp];};

DDA DDKIIHS TT=ADIP=RS  hhhthtotfo oo fofo Tl e e h e ol

Whh It is good that he came .

_V1 {Subcat=[ADJP{Mod_Elem=[sbar] ;}=adjp,SBAR_arg{Slash=[];}=sbar ,NP_it{}];} ->
¢ _V_npas {ComlexFrame="IT-ADJP-RS";Subcat=[adjp];};
Whh It is good he came .

_V1 {Subcat=[ADJP{Mod_Elem=[s];}=adjp,S{Slash=[];}=s,NP_it{}]1;} ->
¢ _V_npas {ComlexFrame="IT-ADJP-RS";Subcat=[adjp];};
Wh%h It is good to come home .

_V1 {Subcat=[ADJP{Mod_Elem=[vp];}=adjp,VP_inf{Slash=[];}=vp,NP_it{}]1;} ->
¢_V_npas {ComlexFrame="IT-ADJP-RS";Subcat=[adjp];};

WRRBRBDRIRDABBRD DDA DDRL DD TT-NP-RS KALLL DDA L DD DDl D DDl Db b

%%%h It is a problem that he left .

_V1 {Subcat=[np,SBAR_arg{Slash=[];}=sbar,NP_it{}];} ->
¢_V_npas {ComlexFrame="IT-NP-RS";Subcat=[np,sbar];};
%%% It is a problem he left .

_V1 {Subcat=[np,S{Slash=[];}=s,NP_it{}];} ->
¢_V_npas {ComlexFrame="IT-NP-RS";Subcat=[np,s];};
%%%h It is a problem to pass the test .

_V1 {Subcat=[np,VP_inf{Slash=[];}=vp,NP_it{}]1;} ->
¢_V_npas {ComlexFrame="IT-NP-RS";Subcat=[np,vp];};

WRRRRRRRRRRRRRDRRDRDADADASD TT=PP=RS  WAAAA Al ol el lele el el e ol bl ol ol
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Wh%h It is out of question that he left .

_V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[sbar];}=ppl,SBAR_arg{Slash=[];}=sbar,NP_it{}];} ->
¢_V_npas {ComlexFrame="IT-PP-RS";Subcat=[ppl];};
%h%h It is out of question he left .

_V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[s];}=ppl,S{Slash=[];}=s,NP_it{}]1;} ->
¢_V_npas {ComlexFrame="IT-PP-RS";Subcat=[ppl];};
%%%h It is out of question not to pass the test .

_V1 {Subcat=[PP{Arg=[NP{}];Mod_Elem=[vp];}=ppl,VP_inf{Slash=[];}=vp,NP_it{}];} —->
¢_V_npas {ComlexFrame="IT-PP-RS";Subcat=[ppl];};

Il b Il bl bl bt o o hototels TT=INTRANS Yot hototo o hots oot to oo o o oo To o o to T fe o o ho o Yo e
% It rains
_V1 {Subcat=[NP_it{}];} ->

¢ _V_npas {ComlexFrame="IT-INTRANS";Subcat=[];};
WD II DI D DD DI DDA DI DK DIl TT=NP Ll bbbt tots ot bt to o to oo to o to fo to s Yoo oo Yo to T o
% It rains cats and dogs
_V1 {Subcat=[pat,NP_it{}1;} —>

¢_V_npas {ComlexFrame="IT-NP";Subcat=[pat];};
bl IR B Il Dl R I AR h%h TT=BDVP  hh st et to ol oo o e e o o o o to e
% It rains heavily

_V1 {Subcat=[ADVP{Mod_Elem=[];}=advp,NP_it{}];} ->
¢_V_npas {ComlexFrame="IT-ADVP";Subcat=[advp];};

WLl b to oo totololotolototototototototototoototo totoToTo o to o toto o o o o o

% %
% File: adjective-rules.yap %
% Purpose: lexical transformation rules for the %
% English grammar for the YAP parser YA
% Author: Helmut Schmid, IMS, Univ. of Stuttgart %
h h

TR RR LRI IIIIIDIDDIDT T oo oo lo oo oo oo tototo oo o to oo o o e

WRRRRRRRRRA AR AR A% PREDICATIVE RARAAAA AL AL DDA

% The sea is blue .
ADJ_ {Subcat=[];Mod_Elem=[NP_{}];} ->
‘_ADJ_pred {ComlexFrame="";};

% 10 points higher
ADJ_ {Subcat=[NP{}];Mod_Elem=[NP_{}1;} ->

¢_ADJ_pred {Degree=comp;ComlexFrame="";};
WDII LRI DI D IA LAY ATTRIBUTIVE hhhhhhhhth bbb hhhhhhhhhhhh

% The old man laughs
ADJ_ {Subcat=[];Mod_Elem=[NBAR{Elliptical=-;}]1;} ->
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‘_ADJ_attr {ComlexFrame="";Nominal=-;};

% The rich and the beautiful
ADJ_ {Subcat=[];Mod_Elem=[NBAR{Elliptical=+;}]1;} ->
‘_ADJ_attr {ComlexFrame="";Nominal=+;};

WRRRRRRRRRRRR KKK A% EXTRAP-ADI=S WAAAAA LA LA ALl L LA h k%

% It is probable he left .
ADJ_ {Subcat=[];Mod_Elem=[S{}];} ->
¢_ADJ_pred {ComlexFrame="EXTRAP-ADJ-S";};

% It is probable that he left .

% That he left is probable .

ADJ_ {Subcat=[];Mod_Elem=[SBAR_that{}];} ->
¢_ADJ_pred {ComlexFrame="EXTRAP-ADJ-S";};

WORDRRLRLLhLhhhAh% EXTRAP-ADI-THAT=S hhhhhhhhhhhhhhhhhhh

% It is curious that he left .

% That he left is curious .

ADJ_ {Subcat=[];Mod_Elem=[SBAR_that{}];} ->
¢_ADJ_pred {ComlexFrame="EXTRAP-ADJ-THAT-S";};

WARRRRLRRRRRA A A% EXTRAP-ADI-S-SUBJUNCT AALAAAAAAAAALA,

% It is imperative that they leave
% That they leave is imperative
ADJ_ {Subcat=[];Mod_Elem=[SBAR_subj{}]1;} ->
¢_ADJ_pred {ComlexFrame="EXTRAP-ADJ-S-SUBJUNCT";};

WARRRRLRRRRRRAR A R% EXTRAP-ADI-WH-S AAAAAAAAAAAAARRL LA,

% It is uncertain whether he will come

% Whether he will come is uncertain

ADJ_ {Subcat=[];Mod_Elem=[SBAR_argwb{}];} ->
¢_ADJ_pred {ComlexFrame="EXTRAP-ADJ-WH-S";};

WARIIIK DDA DA A %A A% EXTRAP-ADI-FOR-TO-INF %hhAhhhhhhhhhhl

% It is practical for Evans to go to school

% For Evans to go to school is practical

ADJ_ {Subcat=[];Mod_Elem=[SBAR_for{Slash=[]1;}1;} ->
‘_ADJ_pred {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF";};

% It is practical to go to school

% To go to school is practical

ADJ_ {Subcat=[];Mod_Elem=[VP_inf{Slash=[1;}1;} ->
‘_ADJ_pred {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF";};

Wb RSN hhh%h EXTRAP-ADJ-FOR-TO-INF-NP-OMIT %%%%%%%



165

% The race was easy for her to win .
ADJ_ {Subcat=[];Mod_Elem=[SBAR_for{Slash=[NP_{}]1;}1;} ->
¢_ADJ {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-NP-OMIT";};

% The race was easy to win .
ADJ_ {Subcat=[];Mod_Elem=[VP_inf{Slash=[NP_{}1;}1;} ->
¢ _ADJ {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-NP-OMIT";};

% For her to win the race was easy .
ADJ_ {Subcat=[];Mod_Elem=[SBAR_for{Slash=[];}1;} ->
¢_ADJ_pred {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-NP-OMIT";};

% To win the race was easy .
ADJ_ {Subcat=[];Mod_Elem=[VP_inf{Slash=[1;}1;} ->
¢_ADJ_pred {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-NP-OMIT";};

% Defining combat aircraft is even tougher .

ADJ_ {Subcat=[];Mod_Elem=[VP_prp{Subcat=[NP_{}1;}]1;} ->
¢ _ADJ {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-NP-OMIT";};

hh

4%%% EXTRAP-ADJ-FOR-TO-INF-RS %A%l

% For Joan to invite me was kind .
ADJ_ {Subcat=[];Mod_Elem=[SBAR_for{Slash=[];}1;} ->
¢_ADJ_pred {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-RS";};

% To invite me was kind .
ADJ_ {Subcat=[];Mod_Elem=[VP_inf{Slash=[1;}1;} ->
¢_ADJ_pred {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-RS";};

% Joan was kind to invite me .

ADJ_ {Subcat=[VP_inf{Subcat=[np];Slash=[];}];Mod_Elem=[NP_{}=npl;} ->
¢_ADJ_pred {ComlexFrame="EXTRAP-ADJ-FOR-TO-INF-RS";};

hh

Whhh S—=ADJI %k

i

% They were certain the team would lose .
ADJ_ {Subcat=[S{}];Mod_Elem=[NP_{}1;} ->
¢_ADJ_pred {ComlexFrame="S-ADJ";};

% They were certain that the team would lose .
ADJ_ {Subcat=[SBAR_that{}];Mod Elem=[NP_{}1;} ->
¢_ADJ_pred {ComlexFrame="S-ADJ";};

hhih

hhh

hlhh
% They were aware that he was sick .

ADJ_ {Subcat=[SBAR_that{}];Mod_Elem=[NP_{}1;} ->
¢_ADJ_pred {ComlexFrame="THAT-S-ADJ";};

WRRRRRRRRRRRRR KKK ) FOR=TO-ADT WAAAAA DALl hllle el bl bl ko'l
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% He was anxious for her to succeed .
ADJ_ {Subcat=[SBAR_for{Slash=[]1;}1;} >
¢_ADJ_pred {ComlexFrame="FOR-T0-ADJ";};

% He was anxious to succeed .
ADJ_ {Subcat=[VP_inf{Subcat=[np];Slash=[];}];Mod_Elem=[np];} ->
¢_ADJ_pred {ComlexFrame="FOR-T0-ADJ";};

WARRRRRRRRRRRRRAR) S—SUBIJUNCT-ADT  AALAAAALAAAAAAA AL LA,

% I am insistent that he study .
ADJ_ {Subcat=[SBAR_subj{}];Mod_Elem=[NP_{}1;} ->
‘_ADJ_pred {ComlexFrame="S-SUBJUNCT-ADJ";};

WRRRRRRRRRRRRRADARS S—WH=ADI  BALAL Dl el el el e bl bl bl b oo e

% They were uncertain if it would work .
ADJ_ {Subcat=[SBAR_argb{}];Mod_Elem=[NP_{}];} ->
¢_ADJ_pred {ComlexFrame="S-WH-ADJ";};

WRRDRRRRRRRRRRhAAD ADI=TO=INF  AA%hh %kl losfo et Tl e e e b il il

% She was able to climb the mountain .
ADJ_ {Subcat=[VP_inf{Subcat=[np];Slash=[];}];Mod_Elem=[NP_{}=npl;} ->
¢_ADJ_pred {ComlexFrame="ADJ-TO-INF";};

WRRRRRRRRRRRRRKHHKY ADI=PP R h Dl ool ool e b b bbb oo o e

% He was happy for her .
ADJ_ {Subcat=[PP{}];Mod_Elem=[NP_{}1;} ->
‘_ADJ_pred {ComlexFrame="ADJ-PP";};

WDRIDIIL DI D IR DD NP=BDI Kb hhb bbb bbb bbb o e o oo o
% He was ten years old
ADJ_ {Subcat=[NP_acc{}];Mod_Elem=[NP_{}];} ->
‘_ADJ_pred {ComlexFrame="NP-ADJ";};
WLIILIIL DI D IR DAY NP=ADI=PP  Ahhhhhhhh bt bbb bbbl hh ool s
% He was miles ahead of the others
ADJ_ {Subcat=[PP{},NP_acc{}];Mod_Elem=[NP_{}];} ->
¢_ADJ_pred {ComlexFrame="NP-ADJ-PP";};
WDRIDIILRIGDIK DS ADI=NP  Ahh Wb bbb bbb o h o oo e o oo o
% payable October 1st

ADJ_ {Subcat=[NP_{Adjunctive=+;}];Mod_Elem=[NP_{}]1;} ->
‘_ADJ_pred {ComlexFrame="NP-ADJ";};



WLl oo tolololololololototololototototototototooToto o to o Toto o to o o o

h

% File: lexicon.yap

% Purpose: Lexical rules for my English YAP grammar %
% Author: Helmut Schmid, IMS, Univ. of Stuttgart %

h

WDl h oo tototolololotoTotototoTo oo Totototo o To o ToTo o To o To T o 1o o o o

Wbl b ot o to o oo Toto o to o To o To o To o T o Fo o o o o T o o
% Default Entries %
Wbl b ot o to o oo Toto o to o To o To o To o T o Fo o o o o T o o

<default> : N_ {HeadLex=h1;Phon=h1;Subcat=[];};

<default> : ADJ_ {HeadLex=h1;Phon=h1;Subcat=[];Degree=(pos,comp,sup) ;Subcat=[];};
<default> : ADV_pos {HeadLex=h1;Phon=h1;};

<default> v {HeadLex=h1;Phon=h1;};

<propername> : N_ {NForm=propername ;HeadLex=h1;Phon=h1;Subcat=[];};
<ordinal> : ADJ_ord {};

<cardinal> : ADJ_card {};

"for" : FOR {HeadLex="for";};

"the" : THE {HeadLex="the";};

"than" : COMP {HeadLex="than";Degree=comp;};

"ag" : COMP {HeadLex="as";Degree=as;};

"like" : COMP {HeadLex="like";Degree=pos;};

I Tt T T T T o T T s T T o T T s T T o T T o T T o T o o T o e
yA PDT YA
I Tt T T Tt o T T s T T o T T s T T o T T o T o o T o o T o e

"all" : PDT {HeadLex="all";};

"both" : PDT {HeadLex="both";Number=pl;};
"half" : PDT {HeadLex="half";Number=sg;};
"quite" : PDT {HeadLex="quite";};

"such" : PDT {HeadLex="such";Number=sg;};
"yet" : PDT {HeadLex="yet";Number=sg;};

TR IIBDIDTD T T T ToloToToToToToToTo T To T To o o T o

% for each 100 shares

h DT h
WD BT DIt o oo s oo o to oo Tt o

"a : DT_sg {HeadLex="a";};

"an" : DT_sg {HeadLex="a";};
"another" : DT_sg {HeadLex="another";};
"each" : DT_sg {HeadLex="each";};
"each" : DT_pl {HeadLex="each";};
"either" : DT_sg {HeadLex="either";};

"every" : DT_sg {HeadLex="every

"}

owned
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"neither"
Ilthatll
Ilthis n

"these"
"those"
Ilall n
Ilbothll

"any"
Ilnoll
n Some"

"the"

"which"
"wvhat"

Wb

h

TR bk

APPENDIX B. THE ENGLISH YAP GRAMMAR

: DT_sg {HeadLex="neither";};
: DT_sg {HeadLex="that";};
: DT_sg {HeadLex="this";};

: DT_pl {HeadLex="this";};
: DT_pl {HeadLex="that";};
: DT_pl {HeadLex="all";};

: DT_pl {HeadLex="both";};

: DT {HeadLex="any"; WhForm=-;};
: DT {HeadLex="no'"; WhForm=-;};
: DT {HeadLex="some";WhForm=-;};
: DT {HeadLex="the"; WhForm=-;};

: DT {HeadLex="which";WhForm=quest;};
: DT {HeadLex="what"; WhForm=quest;};

%%%h Null-head determiners

Ilmorell

Ilmost n

Illessll

"fewer"

"fayw"
"many"
"little"
"much"

Ilall n
Ilbothll
"certain"
"several"
n some n

"another"
Ilanyll
Ileachll
"either"
"neither"
Ilsuchll

"anybody"

: NP {HeadLex="more";NForm=pronoun;WhForm=-;Elliptical=-;Adjunctive=-;

Degree=comp; Coord=-; Commas=-; NPLevel=0;Slash=[];
Person=3rd;Case=(nom,acc) ;};

: NP {HeadLex="most";NForm=pronoun;WhForm=-;Elliptical=-;Adjunctive=-;

Degree=sup; Coord=-;Commas=-;NPLevel=0;Slash=[];
Person=3rd;Case=(nom,acc) ;};

: NP {HeadLex="less";NForm=pronoun;WhForm=-;Elliptical=-;Adjunctive=-;

Degree=comp; Coord=-; Commas=-; NPLevel=0;Slash=[];
Person=3rd;Case=(nom,acc) ;};

: NP {HeadLex="fewer";NForm=pronoun;WhForm=-;Elliptical=-;Adjunctive=-;

Degree=comp; Coord=-; Commas=-; NPLevel=0;Slash=[];
Person=3rd;Case=(nom,acc) ;};

: PRO_3p {HeadLex="few";};

: PRO_3p {HeadLex="many";};

: PRO_3s {HeadLex="little";};
: PRO_3s {HeadLex="much";};

: PRO_3p {HeadLex="all";};

: PRO_3p {HeadLex="both";};

: PRO_3p {HeadLex="certain";};
: PRO_3p {HeadLex="several';};
: PRO_3p {HeadLex="some";};

: PRO_3s {HeadLex="another";};
: PRO_3s {HeadLex="any";};

: PRO_3s {HeadLex="each";};

: PRO_3s {HeadLex="either";};
: PRO_3s {HeadLex="neither";};
: PRO_3s {HeadLex="such";};

: PROO_3s {HeadLex="anybody";};



"anyone"
"anything"
"everybody"
"everyone"
"everything"
"nobody"
"none"
"noone"
"nothing"
"somebody"
"someone"
"something"

: PROO_3s
: PROO_3s
: PROO_3s
: PROO_3s
: PROO_3s
: PROO_3s
: PROO_3s
: PROO_3s
: PROO_3s
: PROO_3s
: PROO_3s
: PROO_3s

%%% Demonstratives

Ilthatll

"these"
Ilthis n
"those"

: PRO {HeadLex="that";NPLevel=2;WhForm=-;Number=sg;Person=3rd;

{HeadLex="anyone";};
{HeadLex="anything";};
{HeadLex="everybody";};
{HeadLex="everyone";};
{HeadLex="everything";};
{HeadLex="nobody";};
{HeadLex="none";};
{HeadLex="noone";};
{HeadLex="nothing";};
{HeadLex="somebody" ; };
{HeadLex="someone";};
{HeadLex="something";};

Case=(nom,acc) ; };
: PRO_3p {HeadLex="this";};
: PRO_3s {HeadLex="this";};
: PRO_3p {HeadLex="that";};

4% Personal pronouns

Ilhell
"her"
"him"
IIIII

n it n
Ilme n

one
"she"
"them"
"rem"
"they"
"ys"
nogn
"ye"
||y0u||
nyau

: PPRO_3s
: PPRO_3s
: PPRO_3s
: PPRO_sg
: PPRO_3s
: PPRO_sg
: PPRO_3s
: PPRO_3s
: PPRO_3p
: PPRO_3p
: PPRO_3p
: PPRO_pl
: PPRO_pl
: PPRO_pl
: PPRO_2

: PPRO_2

%A% Possessive pronouns

"her"
"his"

n 1ts n
Ilmyll
"our"
"their"
"ones"
Ilyourll

%h% Reflexive

"herself"
"himself"

: PPRO_sg
: PPRO_sg
: PPRO_sg
: PPRO_sg
: PPRO_pl
: PPRO_pl
: PPRO_sg
: PPRO_

Pronouns

: PPRO_3s
: PPRO_3s

{HeadLex="he" ;Case=nom;};
{HeadLex="she" ;Case=acc;};
{HeadLex="he" ;Case=acc;};
{HeadLex="1I";Case=nom;Person=1st;};
{HeadLex="it";};
{HeadLex="1";Case=acc;Person=1st;};
{HeadLex="one";}; %%% One can do ...
{HeadLex="she" ;Case=nom;};
{HeadLex="they";Case=acc;};
{HeadLex="they";Case=acc;};
{HeadLex="they";Case=nom;};
{HeadLex="we" ;Case=acc;Person=1st;};
{HeadLex="we" ;Case=acc;Person=1st;};
{HeadLex="we" ;Case=nom;Person=1st;};
{HeadLex="you";};

{HeadLex="you";};

{HeadLex="her"; Case=gen;Person=3rd;};
{HeadLex="his"; Case=gen;Person=3rd;};

{HeadLex="its"; Case=gen;Person=3rd;};
{HeadLex="my"; Case=gen;Person=3rd;};
{HeadLex="our"; Case=gen;Person=3rd;};

{HeadLex="their" ;Case=gen;Person=3rd;};
{HeadLex="ones"; Case=gen;Person=3rd;};
{HeadLex="your"; Case=gen;Person=2nd;};

{HeadLex="<refpro>";};
{HeadLex="<refpro>";};

169
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"itself"
"oneself"
"myself"
"ourselves"
"themselves"
"thyself"
"yourself"
"yourselves"

%A% expletive pronouns

n lt n
"there"

WRRRRRALA L. WHPRO

"what"

"which"

who
Ilwhomll
"whose"

Ilwhenll
"where"

WhRRRRALA L. RELPRO %

Ilwho n
Ilwhomll
"whose"
"which"

"whereby"
"wherein"
"where"
"When"

WRRRRAA LA RS LOCPRD k)

"around"

now
Ilthenll
Iltodayll
"tomorrow"
"yesterday"

"here"
"there"
"ahead"
"afterward"
"afterwards"
"backward"

"before"

: NP_it {};
: NP_there {};

hh

: WHPP {HeadLex="when";};
: WHPP {HeadLex="where";};

: RELPP {HeadLex="by";};
: RELPP {HeadLex="in";
: RELPP {HeadLex="where";};
: RELPP {HeadLex="when";};

3

DWW I I T

: PPO {HeadLex="here";};
: PPO {HeadLex="there";};
: PPO {HeadLex="ahead";};
: PPO {HeadLex="afterward";};
: PPO {HeadLex="afterwards";};
: PPO {HeadLex="backward";};

: PPO {HeadLex="before";};

APPENDIX B. THE ENGLISH YAP GRAMMAR

: PPRO_3s {HeadLex="<refpro>";};
: PPRO_3s {HeadLex="<refpro>";};
: PPRO_1s {HeadLex="<refpro>";};
: PPRO_1p {HeadLex="<refpro>";};
: PPRO_3p {HeadLex="<refpro>";};
: PPRO_2s {HeadLex="<refpro>";};
: PPRO_2s {HeadLex="<refpro>";};
: PPRO_2p {HeadLex="<refpro>";};

: WHNP {HeadLex="what";Case=(nom,acc) ;Number=sg;};
: WHNP {HeadLex="which";Case=(nom,acc) ;Number=sg;};
: WHNP {HeadLex="who";Case=(nom,acc) ;Number=sg;};

: WHNP {HeadLex="who";Case=acc;Number=sg;};

: WHNP {HeadLex="who";Case=gen;Number=sg;};

: RELNP {Case=(nom,acc);};
: RELNP {Case=acc;};
: RELNP {Case=gen;};
: RELNP {Case=(nom,acc);};

: PPO {HeadLex="around";Mod=(noun,verb) ;};

: PPO {HeadLex="now";Mod=(noun,verb);};

: PPO {HeadLex="then";Mod=(noun,verb);};

: PPO {HeadLex="today";Mod=(noun,verb);};

: PPO {HeadLex="tomorrow";Mod=(noun,verb);};
: PPO {HeadLex="yesterday";Mod=(noun,verb);};



"downward" : PPO
"downtown" : PPO
"eastward" : PPO

"elsewhere" : PPO
"forward" : PPO
"heavenward" : PPO
"henceforward" : PPO
"homeward" : PPO
"inward" : PPO
"landward" : PPO

"leeward" : PPO
"onward" : PPO
"out" : PPO
"outward" : PPO
"oversea" : PPO
"overseas" : PPO
"skyward" : PPO

"somewhere" : PPO
"southward" : PPO
"thenceforward" : PPO
"upward" : PPO
"westward" : PPO

WIBDRIIII DD P RAhh DA YYYANAA
"after" : P {HeadLex="after";Arg=[*];};
"before" : P {HeadLex="before";Arg=[*];};

"notwithstanding" : P {HeadLex="notwithstanding";Arg=[*];};

Ilago n
"a.Wa.y"
"earlier"
"later"

‘o ‘U 'Ju ‘o

"about"
"against"
Ilasll

Ilat n
"besides"
"between"
"beyond"
Ilbyll

Ilbyll
"despite"
"during"
"except"
"for"
"from"
Ilinll
"into"
"like"
Ilof n
"off"
Ilonll
"over"

'U"U"U'U"U"U'U"U'U'U"UI'U'U"U'U'U"U'U'U"U'U'U

"since"

{HeadlLex="downward";};
{HeadLex="downtown";};
{HeadLex="eastward";};

{HeadlLex="elsewhere";};

{HeadLex="forward";};

{HeadLex="heavenward";};
{HeadLex="henceforward";};

{HeadLex="homeward";};
{HeadLex="inward";};
{HeadlLex="1landward";};
{HeadLex="leeward";};
{HeadLex="onward";};

{HeadLex="out";Mod=-;1};

{HeadLex="outward";};
{HeadLex="oversea";};
{HeadLex="overseas";};
{HeadLex="skyward";};

{HeadLex="somewhere";};
{HeadLex="southward";};
{HeadLex="thenceforward";};

{HeadLex="upward";};
{HeadlLex="westward";};

{HeadLex="ago" ;Order=post ;Arg=[*] ;Mod=(verb,noun) ; };
{HeadLex="away" ; Order=post; Arg=[*] ;Mod=(verb,noun) ;};
{HeadLex="earlier";Order=+;Arg=[*] ;Mod=(verb,noun) ;};
{HeadLex="later";0rder=(pre,post) ; Arg=[*] ;Mod=(verb,noun) ; };

{HeadLex="about" ;Mod=(-,noun) ; };

{HeadLex="against";};

{HeadLex="as" ;Mod=(verb,noun,\-) ;};

{HeadLex="at";};
{HeadLex="besides";};
{HeadLex="between";};
{HeadLex="beyond";};

{HeadLex="by" ;Mod=(verb,-);};
{HeadLex="by" ;Mod_Elem=[NP{NForm=noun;}] ;Mod=noun;};

{HeadLex="despite";};
{HeadLex="during";};
{HeadLex="except";};
{HeadLex="for";};
{HeadLex="from";};
{HeadLex="in";};
{HeadLex="into";};

{HeadLex="1ike" ;Mod=(verb,-);};
{HeadLex="of";Mod=(noun, \-) ;};

{HeadLex="off";};
{HeadLex="on";};
{HeadLex="over";};

{HeadLex="since";};
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"to" : P_ {HeadLex="to'";Mod=(noun,-);};

"through" : P_ {HeadLex="through";};

"toward" : P_ {HeadLex="toward";};

"towards" : P_ {HeadLex="towards";};

"under" : P_ {HeadLex="under";};

"unlike" : P_ {HeadLex="unlike";};

"until" : P_ {HeadLex="until";};

LES AR : P_ {HeadLex="until";};

"upon" : P_ {HeadLex="upon";};

"with" : P_ {HeadLex="with";};

"within" : P_ {HeadLex="within";};

"without" : P_ {HeadLex="without";};

"worth" : P_ {HeadLex="worth'";Mod=-;};

"aboard" : P_ {HeadLex="aboard";Mod=(noun,verb) ; Arg=[NP{}];};
"above" : P_ {HeadLex="above";Mod=(noun,verb,-) ;Arg=[NP{}];};
"across" : P_ {HeadLex="across";Mod=(noun,verb,-);Arg=[NP{}];};
"along" : P_ {HeadLex="along";Mod=(noun,verb,-) ;Arg=[NP{}];};
"alongside" : P_ {HeadLex="alongside" ;Mod=(noun,verb,-) ;Arg=[NP{}];};
"amid" : P_ {HeadLex="amid";Mod=(noun,verb,-);Arg=[NP{}];};
"amidst" : P_ {HeadLex="amidst";Mod=(noun,verb,-) ;Arg=[NP{}];};
"among" : P_ {HeadLex="among" ;Mod=(noun,verb,-) ;Arg=[NP{}];};
"amongst" : P_ {HeadLex="amongst";Mod=(noun,verb,-) ;Arg=[NP{}];};
"around" : P_ {HeadLex="around";Mod=(noun,verb,-) ;Arg=[NP{}];};
"astride" : P_ {HeadLex="astride";Mod=(noun,verb) ;Arg=[NP{}];};
"atop" : P_ {HeadLex="atop";Mod=(noun,verb,-);Arg=[NP{}];};
"behind" : P_ {HeadLex="behind";Mod=(noun,verb,-);Arg=[NP{}];};
"below" : P_ {HeadLex="below";Mod=(noun,verb,-) ;Arg=[NP{}];};
"beneath" : P_ {HeadLex="beneath";Mod=(noun,verb,-) ;Arg=[NP{}];};
"beside" : P_ {HeadLex="beside";Mod=(noun,verb,-);Arg=[NP{}];};
"down" : P_ {HeadLex="down";Mod=(noun,verb,-) ; Arg=[NP{}];};
"inside" : P_ {HeadLex="inside";Mod=(noun,verb,-);Arg=[NP{}];};
"less" : P_ {HeadLex="less";Mod=noun;Arg=[NP{}];};

"minus" : P_ {HeadLex="minus";Mod=noun;Arg=[NP{}];};

"near" : P_ {HeadLex="near";Mod=(noun,verb,-);Arg=[NP{}];};
"nearer" : P_ {HeadLex="nearer";Mod=(noun,verb,-) ;Arg=[NP{}];};
"nearest" : P_ {HeadLex="nearest";Mod=(noun,verb,-) ;Arg=[NP{}];};
"onto" : P_ {HeadLex="onto";Mod=(noun,verb,-);Arg=[NP{}];};
"opposite" : P_ {HeadLex="opposite";Mod=(noun,verb,-);Arg=[NP{}];};
"outside" : P_ {HeadLex="outside";Mod=(noun,verb,-) ;Arg=[NP{}];};
"past" : P_ {HeadLex="past";Mod=(noun,verb,-);Arg=[NP{}];};
"pending" : P_ {HeadLex="pending";Mod=verb;Arg=[NP{}];};

"per" : P_ {HeadLex="per";Mod=(noun,verb) ;Arg=[NP{}];};
"plus" : P_ {HeadLex="plus";Mod=noun;Arg=[NP{}];};

"round" : P_ {HeadLex="round";Mod=(noun,verb,-) ;Arg=[NP{}];};
"throughout" : P_ {HeadLex="throughout";Mod=(noun,verb) ; Arg=[NP{}];};
"till" : P_ {HeadLex="till";Mod=(noun,verb,-);Arg=[NP{}];};
"times" : P_ {HeadLex="times";Mod=noun;Arg=[NP{}];};
"underneath" : P_ {HeadLex="underneath";Mod=(noun,verb,-) ;Arg=[NP{}];};
"unto" : P_ {HeadLex="unto";Mod=(noun,verb,-);Arg=[NP{}];};
"up" : P_ {HeadLex="up";Mod=(noun,verb,-);Arg=[NP{}];};

"y " : P_ {HeadLex="versus";Mod=noun;Arg=[NP{}];};

"yersus" : P_ {HeadLex="versus";Mod=noun;Arg=[NP{}];};

"yia" : P_ {HeadLex="via";Mod=noun;Arg=[NP{}];};

"ys. " : P_ {HeadLex="versus";Mod=noun;Arg=[NP{}];};

"within" : P_ {HeadLex="within";Mod=(noun,verb,-);Arg=[NP{}];};
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Wb hhhhhts CS %

"that" : C {HeadLex="that";CForm=(rel,arg,subj);};
"ifn : C {HeadLex="if";CForm=(argb,adj);};
"whether" : C {HeadLex="whether";CForm=argb;};
"after" : C_ {HeadLex="after";};

"although" : C_ {HeadLex="although";};

"as" : C_ {HeadLex="as";};

"because" : C_ {HeadLex="because";};

"before" : C_ {HeadLex="before";};

"except" : C_ {HeadLex="except";};

"for" : C_ {HeadLex="for";};

"however" : C_ {HeadLex="however";};

"lest" : C_ {HeadLex="lest";};

"once" : C_ {HeadLex="once";};

"since" : C_ {HeadLex="since";};

"so" : C_ {HeadLex="so";};

"though" : C_ {HeadLex="though";};

"till" : C_ {HeadLex="till";};

"unless" : C_ {HeadLex="unless";};

"until" : C_ {HeadLex="until";};

"when" : C_ {HeadLex="when";};

"whenever" : C_ {HeadLex="whenever";};
"whereas" : C_ {HeadLex="whereas";};
"whereupon" : C_ {HeadLex="whereupon";};
"wherever" : C_ {HeadLex="wherever";};

"while" : C_ {HeadLex="while";};

"whilst" : C_ {HeadLex="whilst";};

Y R YY)

'./"

0 "/'.

o './"

oToToTo o To o To o oo

"and" : C {HeadLex="and";CForm=coordl;};

"or" : C {HeadLex="or";CForm=coordl;};

ng" : C {HeadLex="&";CForm=coordi;};

"but" : C {HeadLex="but";CForm=coord2;};

"yet" : C {HeadLex="yet";CForm=coord2;};

e : C {HeadLex=";";CForm=coord3;};

non : C {HeadLex=",";CForm=coord3;};

"either" : C {HeadLex="either_or";CForm=coord4;};
"both" : C {HeadLex="both_and";CForm=coord4;};
"neither" : C {HeadLex="neither_nor";CForm=coord4;};
"between" : C {HeadLex="between_and" ;CForm=coord4;};
"and" : C {HeadLex="between_and";CForm=coord5;};
"and" : C {HeadLex="both_and";CForm=coord5;};
"nor" : C {HeadLex="neither_nor";CForm=coord5;};
"or" : C {HeadLex="either_or";CForm=coord5;};

Wbl hhhht SM %
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"o : SM {HeadLex=".";SForm=decl;};
L. : SM {HeadLex="...";SForm=decl;};
en : SM {HeadLex=":";SForm=decl;};
e : SM {HeadLex="!";SForm=imp;};
nen : SM {HeadLex="7";SForm=quest;};

WhLbDBhIhDh CMRhhhhhhlhhh bt bttt ot te
mon : CM {HeadLex=",";};

nn : CM {HeadLex="-";};
n__n : CM {HeadLex="-";};

WRRRRRRRRIS Q  RRRRRRRRRRIBDIDT NI Tl

||\||l| : Q {HeadLeX="\"";};

neen : Q {HeadLex="‘‘";Pos=left;};
non : Q {HeadLex="°‘";Pos=right;};
" : Q {HeadLex="(";Pos=left;};
mn : Q {HeadLex="(";Pos=right;};
e : Q {HeadLex="[";Pos=left;};
e : Q {HeadLex="[";Pos=right;};
non : Q {HeadLex="’";};

WRRRRRRRRL S GM RRRDRRRRDRIIIDIDTHToTo ol

nogn : GM {HeadLex="’s";};
non : GM {HeadLex="’s";};

WORRLLLKLKKY CORR LR bbb hhhhhh bbb htstotstols

ngn : CURR {HeadLex="$";Subcat=[];};

"gssg" : CURR {HeadLex="US$";Subcat=[];};

"CANS" : CURR {HeadLex="CAN$";Subcat=[];};

"DM" : CURR {HeadLex="DM";Subcat=[];};

g : CURR {HeadLex="#";Subcat=[];};

ngn : CURR {HeadLex="$";Subcat=[NP_curr{}];};
"gssg" : CURR {HeadLex="US$";Subcat=[NP_curr{}];};
"CAN$" : CURR {HeadLex="CAN$";Subcat=[NP_curr{}];};
"DM" : CURR {HeadLex="DM";Subcat=[NP_curr{}];};
g : CURR {HeadLex="#";Subcat=[NP_curr{}];};

WRRRRRRRL S ADY bbb hh bbb hhh bbb oo toth

"how" : WHADVP {HeadLex="how";};

"why" : WHADVP {HeadLex="why";Mod=verb;};

"not" : ADV {HeadLex="not";Not=+;Degree=pos;Mod=(verb,adv,adj,noun,sbar) ;};

"n’t" : ADV {HeadLex="not";Not=+;Degree=pos;Mod=clitic;};

"no" : ADV {HeadLex="no";Not=+;Degree=pos;Mod=adv;};

"no" : ADV {HeadLex="no";Not=+;Degree=pos;Mod=adj;Mod_Elem=[ADJP{Pred=+;}];};
g P J

"about" : ADV_pos {HeadLex="about";Mod=adj;Mod_Elem=[ADJP{Numerical=+;}];};

"over" : ADV_pos {HeadLex="over";Mod=adj;Mod_Elem=[ADJP{Numerical=+;3}];};
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"some" : ADV_pos {HeadLex="some";Mod=adj;Mod_Elem=[ADJP{Numerical=+;3}];};

"too" : ADV_verb {HeadLex='"too";};

WWRWLLLLK K DEG hhhhhhhhhhhhhhh bbbt

"more" : DEG {HeadLex="more";Degree=comp;};
"]ess" : DEG {HeadLex="less";Degree=comp;};
"most" : DEG {HeadLex="most";Degree=sup;};
"as" : DEG {HeadLex="as";Degree=as;};
"too" : DEG {HeadLex="too";Degree=too;};
"very" : DEG {HeadLex="very";Degree=pos;};
"pretty" : DEG {HeadLex="pretty";Degree=pos;};
"rather" : DEG {HeadLex="rather";Degree=pos;};
"real" : DEG {HeadLex="real";Degree=pos;};

hhhhthhhhhts ADJI %

"many" : _ADJ_pos {HeadLex="many";ComlexFrame="";Nominal=-;};

"much" : _ADJ_pos {HeadLex="much";ComlexFrame="";Nominal=-;};

"more" : _ADJ_cmp {HeadLex="more";ComlexFrame="";Nominal=-;};

"more" : _ADJ_cmp {HeadLex="more";ComlexFrame="NP-ADJ";};

"less" : _ADJ_cmp {HeadLex="less";ComlexFrame="";Nominal=-;};

"less" : _ADJ_cmp {HeadLex="less";ComlexFrame="NP-ADJ";};

"most" : _ADJ_sup {HeadLex="most";ComlexFrame="";};

"old" : _ADJ_pos {HeadLex="o0ld";ComlexFrame="NP-ADJ";};

"on" : _ADJ_pos {HeadLex="on" ;Pred=+;ComlexFrame="";};

"over" : _ADJ_pos {HeadLex="over";Pred=+;ComlexFrame="";};

"only" : _ADJ_pos {HeadLex="only";Pred=-;ComlexFrame="";};

"other" : _ADJ_pos {HeadLex="other";Pred=-;ComlexFrame="";};

"several" : _ADJ_pos {HeadLex="several";ComlexFrame="";Nominal=-;};

"such" : _ADJ_pos {HeadLex="such";ComlexFrame="";Nominal=-;};

"ahead" : _ADJ_pos {HeadLex="ahead";ComlexFrame="NP-ADJ";};

"ahead" : _ADJ_pos {HeadLex="ahead";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="o0f";}];};

"ahead" : _ADJ_pos {HeadLex="ahead";ComlexFrame="NP-ADJ-PP";Subcat=[PP{HeadLex="of";},NP{}];};
"away" : _ADJ_pos {HeadLex="away";ComlexFrame="";};

"away" : _ADJ_pos {HeadLex="away";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="of";}];};

"away" : _ADJ_pos {HeadLex="away";ComlexFrame="NP-ADJ-PP";Subcat=[PP{HeadLex="from";},NP{}];};

"effective" : ADJ_pos {HeadLex="effective";Subcat=[NP_{HeadLex="<cardinal>";}];};
"inevitable": _ADJ_pos {HeadLex="inevitable";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="for";}];};

"full" : _ADJ_pos {HeadLex="full";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="of";}];};
"payable" : _ADJ_pos {HeadLex="payable";ComlexFrame="ADJ-NP";};

"payable" : _ADJ_pos {HeadLex="payable";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="in";}];};
"related" : _ADJ_pos {HeadLex="related";ComlexFrame="NP-ADJ";};

"up" : _ADJ_pos_pred {HeadLex="up“;ComlexFrame=““;};

"up" : _ADJ_pos_pred {HeadLex="up";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="from";}];};
"up" : _ADJ_pos_pred {HeadLex="up";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="to";}];};

"down" : _ADJ_pos_pred {HeadLex="down" ;ComlexFrame="";};
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"down" : _ADJ_pos_pred {HeadLex="down";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="from";}];};
"down" : _ADJ_pos_pred {HeadLex="down";ComlexFrame="ADJ-PP";Subcat=[PP{HeadLex="to";}];};
"junior" : ADJ_post {HeadLex="junior";Mod_Elem=[NP{WhForm=-;NForm=(propername,noun);}];};
"senior" : ADJ_post {HeadLex="senior";Mod_Elem=[NP{WhForm=-;NForm=(propername,noun);}];};

"designate" : ADJ_post {HeadLex="designate";Mod_Elem=[NP{WhForm=-;NForm=noun;}];};
"outstanding": ADJ_post {HeadLex="outstanding";Mod_Elem=[NP{WhForm=-;NForm=noun;}];};

"emeritus" : ADJ_post {HeadLex="emeritus'";Mod_Elem=[NP{WhForm=-;NForm=noun;}];};
"else" : ADJ_post {HeadLex="else";Mod_Elem=[NP{NForm=pronoun;}];};

"a.m." : ADJ_post {HeadLex="a.m.";Mod_Elem=[NP{WhForm=-;NForm=noun;}];};
"p.m." : ADJ_post {HeadLex="p.m.";Mod_Elem=[NP{WhForm=-;NForm=noun;}];};

WRRRLRLL KT M

"dozen" : M {HeadLex="dozen";};

"hundred" M {HeadLex="hundred";};
"thousand" M {HeadLex="thousand";};
"million" M {HeadLex="million";};
"billion" M {HeadLex="billion";};
"trillion" : M {HeadLex="trillion";};
"percent" M {HeadLex="percent";};
A : M {HeadLex="percent";};

WRRRRRRRAR S N k)

Wbt

%%% I bought the cheap one to save money

"ones" : NN_pl {HeadLex="one";Subcat=[];};
"one" : NN_sg {HeadLex="one";Subcat=[];};

%%% Three times the expected number

"time" : NN_sg {HeadLex="time";Subcat=[NP_acc{}];};

"times" : NN_pl {HeadLex="time";Subcat=[NP_acc{}];};

"matter" : N {HeadLex="matter";NForm=noun;Subcat=[SBAR_argw{}];
Number=sg; Coord=-; Compound=-;1};

%h% ... in common with ...

"common" : NN_sg {HeadLex="common";Subcat=[PP{HeadLex="with";}];};

Wbl hhhhht RP %l

"about" : RP {HeadLex="about";};
"across" : RP {HeadLex="across";};
"along" : RP {HeadLex="along";};
"apart" : RP {HeadLex="apart";};
"around" : RP {HeadLex="around";};
"aside" : RP {HeadLex="aside";};
"away" : RP {HeadLex=“away";};
"back" : RP {HeadLex="back";};
"behind" : RP {HeadLex="behind";};
"by" : RP {HeadLex="by";};
"down" : RP {HeadLex="down";};
"for" : RP {HeadLex="for";};

"forth"  : RP {HeadLex="forth";};



"forward"
I|inl|

Iloff n
Ilonll
Ilopenll
Iloutll
"over"
"through"
Iltoll
"together"
Ilupll
Iluponll

WRRRRRRRARS T

"am"

nomn

are
" et
nig"
nig"
nig"
nogn
nogn

nygn

Mgin
Ilaill
ngin
"are"
no» re n
"was"

"was"

was
"were"
"were"
Ilbell
"being"
"been"

Ilhasll
no» Sll
"have"
"have"
n )vell
n 7vell
Ilhadll
n )dll
"have"

"having"

"does"
Ildoll
Ildoll
"did"

: RP
: RP
: RP
: RP
: RP
: RP
: RP
: RP
: RP
: RP
: RP
: RP

{HeadLex="forward";};
{HeadLex="in";};
{HeadLex="off";};
{HeadLex="on";};
{HeadLex="open";};
{HeadLex="out";};
{HeadLex="over";};
{HeadLex="through";};
{HeadLex="t0";};
{HeadLex="together";};
{HeadLex="up";};
{HeadLex="upon";};

WhWRRARRBIIIIIIDHT T ToTolo oo

: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE
: BE

: DO
: DO
: DO
: DO

{VForm=fin;Subcat=[VP_prp_pas_inf{},NP_sg{Person=1st;}];};
{VForm=fin;Subcat=[VP_prp_pas_inf{},NP_sg{Person=1st;}];};
{VForm=fin;Subcat=[VP_prp_pas_inf{},NP_sg{Person=2nd;}];};
{VForm=fin;Subcat=[VP_prp_pas_inf{},NP_sg{Person=2nd;}];};
{VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_3s{}];};
{VForm=fin;Subcat=[VP_prp_pas_inf{},SBAR{}];};
{VForm=fin;Subcat=[VP_prp_pas_inf{},VP{}]1;};
{VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_3s{}];};
{VForm=fin;Subcat=[VP_prp_pas_inf{},SBAR{}];};
{VForm=fin;Subcat=[VP_prp_pas_inf{},VP{}1;};
{VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_3s{}];};
{VForm=fin;Subcat=[VP_prp_pas_inf{},SBAR{}];};
{VForm=fin;Subcat=[VP_prp_pas_inf{},VP{}1;};
{VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_pl{}];};
{VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_pl{}];};
{VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_sg{Person=(1st,3rd);}]1;};
{VForm=fin;Subcat=[VP_prp_pas_inf{},SBAR{}];};
{VForm=fin;Subcat=[VP_prp_pas_inf{},VP{}];};
{VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_sg{Person=2nd;}];};
{VForm=fin;Subcat=[VP_prp_pas_inf{},NPe_pl{}];};
{VForm=bse;Subcat=[VP_prp_pas_inf{},*];};
{VForm=prp;Subcat=[VP_prp_pas_inf{},*];};
{VForm=pap;Subcat=[VP_prp_pas_inf{},*];};

: HAVE {VForm=fin;Subcat=[VP_pap{},NPe_3s{}];};
: HAVE {VForm=fin;Subcat=[VP_pap{},NPe_3s{}];};
: HAVE {VForm=fin;Subcat=[VP_pap{},NPe_n3s{}1;};
: HAVE {VForm=fin;Subcat=[VP_pap{},NPe_pl{}];};
: HAVE {VForm=fin;Subcat=[VP_pap{},NPe_n3s{}];};
: HAVE {VForm=fin;Subcat=[VP_pap{},NPe_pl{}];};
: HAVE {VForm=fin;Subcat=[VP_pap{},NPe_nom{}];};
: HAVE {VForm=fin;Subcat=[VP_pap{},NPe_nom{}];};
: HAVE {VForm=bse;Subcat=[VP_pap{},NP{}];};

: HAVE {VForm=prp;Subcat=[VP_pap{},NP{}]1;};

{VForm=fin;Subcat=[VP_bse{},NPe_3s{}];};
{VForm=fin;Subcat=[VP_bse{},NPe_n3s{}];};
{VForm=fin;Subcat=[VP_bse{},NPe_pl{}];};
{VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};
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"do" : DO {VForm=bse;Subcat=[VP_bse{},NP_nom{Person=2nd;3}];};
"shall" : WILL {VForm=fin;Subcat=[VP_bse{},NP_nom{Person=1st;}];};
"will" : WILL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};

LES N : WILL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};

"o : WILL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};

"would" : WILL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};

mogn : WILL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};

"will" : WILL {VForm=fin;Subcat=[VP_bse{},SBAR_argx{}];};

noqqn : WILL {VForm=fin;Subcat=[VP_bse{},SBAR_argx{}];};

"wo" : WILL {VForm=fin;Subcat=[VP_bse{},SBAR_argx{}];};
"would" : WILL {VForm=fin;Subcat=[VP_bse{},SBAR_argx{}];};

g : WILL {VForm=fin;Subcat=[VP_bse{},SBAR_argx{}];};
"will" : WILL {VForm=fin;Subcat=[VP_bse{},VP_prp_inf{}1;};
" : WILL {VForm=fin;Subcat=[VP_bse{},VP_prp_inf{}];};

"wo" : WILL {VForm=fin;Subcat=[VP_bse{},VP_prp_inf{}1;};
"would" : WILL {VForm=fin;Subcat=[VP_bse{},VP_prp_inf{}1;};

g : WILL {VForm=fin;Subcat=[VP_bse{},VP_prp_inf{}];};
"can" : CAN {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};

"cannot" : CAN {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};

"ca" : CAN {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};

"could" : CAN {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};

"shall" : SHALL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};

"sha'" : SHALL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};
"should" : SHALL {VForm=fin;Subcat=[VP_bse{},NPe_nom{}];};

"may" : AUX_fin {HeadLex="may";Subcat=[VP_bse{},NPe_nom{}];};
"might" : AUX_fin {HeadlLex="may";Subcat=[VP_bse{},NPe_nom{}];};
"must" : AUX_fin {HeadLex="must";Subcat=[VP_bse{},NPe_nom{}];};
"ought" : AUX_fin {HeadLex="ought";Subcat=[VP_inf{},NPe_nom{}];};
"used" : AUX_fin {HeadLex="use";Subcat=[VP_inf{},NPe_nom{}];};
"to" : AUX {HeadLex="to";VForm=inf;Subcat=[VP_bse{},NP{}];};
"na" : AUX {HeadLex="to";VForm=inf;Subcat=[VP_bse{},NP{}];};
"going" : AUX {HeadLex="go";VForm=prp;Subcat=[VP_inf{},*];};
"gon" : AUX {HeadLex="go";VForm=prp;Subcat=[VP_inf{},*];};
"gets" : GET {VForm=fin;Subcat=[VP_pas{},NPe_3s{}];};

"get" : GET {VForm=fin;Subcat=[VP_pas{},NPe_n3s{}];};

"get" : GET {VForm=fin;Subcat=[VP_pas{},NPe_pl{}];};

"got" : GET {VForm=fin;Subcat=[VP_pas{},NPe_nom{}];};

"get" : GET {VForm=bse;Subcat=[VP_pas{},NP{}];};

"getting" : GET {VForm=prp;Subcat=[VP_pas{},NP{}];};

% %h Multi Word Units ¥ YYAYAYAA

category MWL1 {};
category MWL2 {};



category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category
category

ngn

"according"

"along"
Ilas n

Ilat n
"because"
"between"
"course"
"except"
"few"
"for"

n 1f n

n inll
"inside"
"instead"
"just"
"least"
"lieu"
"long"

MWL3

MWL4

MWL5

MWL6

MWL7

MWL8

MWLO

MWL10
MWL11
MWL12
MWL13
MWL14
MWL15
MWL16
MWL17
MWL18
MWL19
MWL20
MWL21
MWL22
MWL23
MWL24
MWL25
MWL26
MWL27
MWL28
MWL29
MWL30
MWL31
MWL32
MWL33
MWL34
MWL35
MWL36
MWL37
MWL38
MWL39

{3;
{};
{};
{3;
{};
{};
{3;
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};
{};

: MWL20

: MWL22

: MWL1
: MWL25
: MWL18
: MWL3
: MWL38
. MWL37
: MWL5
: MWL21
: MWL6
: MWL28
: MWL7
: MWL12
: MWL30
: MWL33
: MWL19
: MWLS
: MWL36

{HeadLex="a";};
{HeadLex="according";};
{HeadLex="along";};
{HeadlLex="as";};
{HeadLex="at";};
{HeadLex="because";};
{HeadLex="between";};
{HeadLex="course";};
{HeadLex="except";};
{HeadLex="few";};
{HeadLex="for";};
{HeadLex="if";};
{HeadLex="in";};
{HeadLex="inside";};
{HeadLex="instead";};
{HeadLex="just";};
{HeadLex="least";};
{HeadLex="1lieu";};
{HeadLex="long";};
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"matter" : MWL35 {HeadLex="matter";};
"next" : MWL13 {HeadLex='"next";};
"no" : MWL34 {HeadLex='"no";};
"not" : MWL29 {HeadLex="not";};
"of" : MWL4 {HeadLex="of";};
"one" : MWL39 {HeadLex='"omne";};
"order" : MWL10 {HeadLex="order";};
"out" : MWL14 {HeadLex="out";};
"outside" : MWL15 {HeadLex="outside";};
"per" : MWL16 {HeadLex="per";};
"rather" : MWL31 {HeadLex="rather";};
"se" : MWL17 {HeadLex="se";};
"so" : MWL23 {HeadLex="so";};
"spite" : MWL9 {HeadLex="spite";};
"such" : MWL27 {HeadLex="such";};
"than" : MWL32 {HeadLex="than";};
"that" : MWL24 {HeadLex='"that";};
"to" : MWL11 {HeadLex="to";};
"well" : MWL26 {HeadLex="well";};
"with" : MWL2 {HeadLex="with";};

P_{HeadLex="along_with";} -> MWL1 {} ‘MWL2 {HeadLex=%;};
P_{HeadLex="according_to";}-> MWL22{} ‘MWL11 {HeadLex=x%;};
P_{HeadLex="because_of";} -> MWL3 {} ‘MWL4 {HeadLex=%;};
P_{HeadLex="except_for";} -> MWL5 {} ‘MWL6 {HeadLex=%;};
P_{HeadLex="in_lieu_of";} -> MWL7 {} MWL8 {} ‘MWL4 {HeadLex=+;};
P_{HeadLex="in_order_to";} -> MWL7 {} MWL10 {} ‘MWL11 {HeadLex=%;};
P_{HeadLex="in_spite_of";} -> MWL7 {} MWLO {} ‘MWL4 {HeadLex=%;};
P_{HeadLex="inside_of";} -> MWL12 {} ‘MWL4 {HeadLex=x;};
P_{HeadLex="next_to";} -> MWL13 {} ‘MWL11 {HeadLex=x;};
P_{HeadLex="out_of";} -> MWL14 {} ‘MWL4 {HeadLex=x*;};
P_{HeadLex="outside_of";} -> MWL15 {} ‘MWL4 {HeadLex=%;};

ADV_ {Degree=pos;HeadLex="at_least";Mod=(noun,verb,prep,adj,adv);} ->
MWL18 {} ‘MWL19 {HeadLex=*;};

ADV_verb {HeadLex="per_se'";} -> MWL16 {} ‘MWL17 {HeadLex=x;};

ADV_verb {HeadLex="of_course";} -> MWL4 {} ‘MWL37 {HeadLex=x;};

DT {HeadLex="a_few";WhForm=-;Number=pl;} -> MWL20 {} ‘MWL21 {HeadLex=%*;};

PRO_3s {HeadLex="noone";} ->
MWL34{} ‘MWL39 {HeadLex=%;};

C {HeadLex="along_with";CForm=coord2;} -> MWL1{} ‘MWL2 {HeadLex=%;};
C {HeadLex="as_well_as";CForm=coord2;} -> MWL25{} ‘MWL26 {HeadLex=*;} MWL25{};
C {HeadLex="if_not";CForm=coord2;} -> MWL28{} ‘MWL29 {HeadLex=x%;};
C {HeadLex="instead_of";CForm=coord2;} -> MWL30{} ‘MWL4 {HeadLex=%;};
C {HeadLex="rather_than";CForm=coord2;} -> MWL31{} ‘MWL32 {HeadLex=*;};
C {HeadLex="not_just";CForm=coord2;} -> MWL29{} ‘MWL33 {HeadLex=x*;};
C {HeadLex="so_that";CForm=adj;} -> MWL23{} ‘MWL24 {HeadLex=*;};
C {HeadLex="as_long_as";CForm=adj;} -> MWL25{} MWL36 {} ‘MWL25{HeadLex=x*;};

P_ {HeadLex="such_as";} -> MWL27{} ‘MWL25 {HeadLex=%;1};
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ADVP {WhForm=-;Not=-;Mod=verb;Degree=pos;} ->
MWL34{} ‘MWL35 {HeadLex=%;} SBAR {CForm=quest;Slash=[];Commas=-;};
PPO {HeadLex="in_between'";Mod=(noun,verb,-);} ->

‘MWL7 {HeadLex=*;} MWL38 {};

#include "sub-lexicon" J other, more regular lexical entries
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Appendix C

The English LPCF Grammar

ADJ= -> ADJ_’

ADJ= -> ADV= ADJ_’

ADJ= -> DEG_ ADJ_’

ADJC1 -> ADJC1 COM_ ADJC1
CONJ_ ADJC1’

ADJC1 -> ADJC1 COM_ ADJC1’

ADJC1 -> ADJC1 CONJ_ ADJC1’

ADJC1 -> ADJC1’ PUN=

ADJC1 -> ADJ_C?

ADJC1 -> ADJ_C’ PC1

ADJC1 -> ADJ_C’ THATC1

ADJC1 -> ADJ_C’ VTOC1

ADJC1 -> PCONJ_ ADJC1 COM_ ADJC1

CONJ_ ADJC1’

ADJC1 -> PCONJ_ ADJC1 CONJ_ ADJC1’

ADJC1 -> PUNL_ ADJC1’ PUNR_
ADJMOD -> ADJ_C’

ADJMOD -> ORD_’

ADJMOD -> VN_C?

ADJMOD -> VPASS_C’

ADJR_ -> ADJR’

ADJR_ -> ADV= ADJR’

ADJS_ -> ADJS’

ADJ_ -> ADJ’

ADJ_ -> ADJR_’

ADJ_ -> ADJS_’

ADJ_ -> ORD_’

ADJ_C -> ADJ= ADJ=’
ADJ_C -> ADJ=’

ADJ_C -> ADJ_C CONJ_ ADJ_C’
ADJ_C -> NC1 CONJ_ ADJ_C’
ADV= -> ADV= CONJ_ ADV=’
ADV= -> ADV_’

ADV_ -> ADV’

ADV_ -> ADV_ ADV’

ADV_ -> DEG_ ADV’

ADV_C -> ADV=’

ADV_C -> ADV=’ PUN=

ADV_C -> DEG_’

ADV_C -> PUNL_ ADV=’ PUNR_
ADV_C -> WHA_C?

AS_C -> AS’ ADJC1

AS_C -> AS’ NC1

AS_C -> AS’ VGC1

AUX-ADV -> ADV=’

AUX-ADV -> PC1’

CD_ -> ADV= CD_’

CcD_ -> CD’

CD_ -> CD_ CD’

CD_ -> CD_ CONJ_ CD_’

CD_ -> DEG_ THAN_ CD_’

CD_ -> DEG_ THAN_ DETPL_’
COM_ -> COM’

CONJ_ -> CONJ’

CONJ_C -> CONJ’

CONJ_C -> CONJ’ PUN=

DEG_ -> ADV= DEG’

DEG_ -> DEG’

DEG_ -> DEG_ DEG’

DETPL= -> DETPL_ CONJ_ DETPL_’
DETPL= -> DETPL_’

DETPL= -> DETPL_’ ADV=
DETPL= -> S_ADV_ DETPL_’
DETPL_ -> ADV=’ POS_

DETPL_ -> CD_ PREP_ CD_’
DETPL_ -> CD_’

DETPL_ -> DETPL’

DETPL_ -> DETPL’ CD_

DETPL_ -> DETPL’ NPL_ POS_
DETPL_ -> DETPL_ OF_ DETPL_’
DETPL_ -> DETPL_ OF_ N_C P0S’
DETPL_ -> DETPL_ OF_ PRO$’
DETPL_ -> NC1 POS’

DETPL_ -> N_C PO0S’

DETPL_ -> PDET_ DETPL_’
DETPL_ -> PN= P0S’

DETPL_ -> PRO$_’

DETSG= -> DETSG_ CONJ_ DETSG_’
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DETSG= -> DETSG_’

DETSG= -> DETSG_’ ADV=
DETSG= -> S_ADV_ DETSG_’
DETSG_ -> ADV’

DETSG_ -> ADV=’ POS_
DETSG_ -> DETSG’

DETSG_ -> DETSG’ NPL_ POS_
DETSG_ -> DETSG’ NSG_ POS_
DETSG_ -> DETSG_’ CD_
DETSG_ -> NC1 POS’

DETSG_ -> N_C POS’

DETSG_ -> PDET_ DETSG_’
DETSG_ -> PN= POS’

DETSG_ -> PRO$_’

TART_ -> IART’

ITJ= -> ITJ’

ITJ= -> ITJ= ITJ’

ITJ= -> ITJ= PUN= ITJ’
ITJ_C —> ITJ=’

ITJ_C -> ITJ=’ PUN=

ITJ_C -> PUNL_ ITJ=’ PUNR_
M= -> ADV= M=’

M= -> IART_ MSG_’

MD= -> MD_’

MD= -> MD_’ AUX-ADV

MD_ -> ADV= MD’

MD_ -> MD’

MD_ -> VDF=’

MSG_ -> ADJC1 MSG’

MSG_ -> MSG’

N-CHAIN -> N-CHAIN NPL=’
N-CHAIN -> N-CHAIN NSG=’
N-CHAIN -> N-CHAIN PN=’
N-CHAIN -> NPL=’

N-CHAIN -> NSG=’

N-CHAIN -> PN=’

NC1 -> ADJC1 CONJ_ NC1’
NC1 -> DETPL= PUNL_ NC1’ PUNR_
NC1 -> DETSG= PUNL_ NC1’ PUNR_
NC1 -> DETSG= VGC1’

NC1 -> DETSG= VGPC1’

NC1 -> NC1 COM_ NC1 COM_ CONJ_ NC1’
NC1 -> NC1 COM_ NC1 CONJ_ NC1’
NC1 -> NC1 CONJ_ NC1’

NC1 -> NC1’ PUN=

NC1 -> NC1’ VGC1

NC1 -> NC1’ VPASSC1

NC1 -> N_C?

NC1 -> N_C’ PC1

NC1 -> N_C’ PC1 PC1

NC1 -> N_C’ PC1 VTOC1

NC1 -> N_C’ PC1 VTOPC1

NC1 -> N_C’ RELC1

APPENDIX C.

NC1 ->
NC1 ->
NC1 ->
NC1 ->
NC1 ->
NC1 ->
NC1 ->
NC1 ->
NC1 ->
NC1 ->
NC1 ->
NC1 ->
NPL= ->
NPL=
NPL=
NPL=
NPL=
NPL=
NPL_
NPL_
NPL_
NPL_
NPL_
NPL_
NPL_
NPL_
NSG=
NSG=
NSG=
NSG=
NSG=
NSG=
NSG_ —>
NSG_ —>
NSG_ ->
NSG_ ->
NSG_ —>
NSG_ —>
NSG_ —>
NSG_ ->
NSG_ ->
N_C ->
N_C ->
N_C ->
N_C ->
N_C ->
N_C ->
N_C ->
N_C ->
N_C ->
N_C ->
N_C ->
N_C ->

THE ENGLISH LPCF GRAMMAR

N_C’ THATC1

N_C’ VTOC1

N_C’ VTOPC1
PCONJ_ NC1 CONJ_ NC1’
PN="

PN_ CD_’

P0S= VGC1’
PROPL_’

PROSG_’

PUNL_ NC1’ PUNR_
VGC1’

VGPC1’

ADJMOD ADJMOD NPL_’
ADJMOD COM_ ADJMOD NPL_’
ADJMOD CONJ_ ADJMOD NPL_’
ADJMOD NPL_’

NPL_’

PUNL_ NPL=’ PUNR_

ADJC1 NPL_’

CD_ NPL_’

N-CHAIN NPL’

NPL’

NPL_ NPL_’

NSG_ NPL_’

PN_ NPL_’

VPASS_ NPL_’

ADJMOD ADJMOD NSG_’
ADJMOD COM_ ADJMOD NSG_’
ADJMOD CONJ_ ADJMOD NSG_’
ADJMOD NSG_’

NSG_’

PUNL_ NSG=’ PUNR_

ADJC1 NSG_’

CD_ NSG_’

CDh_?

N-CHAIN NSG_’

NPL_ NSG_’

NSG’

NSG_ NSG_’

PN_ NSG_’

VPASS_ NSG_’
ADJC1 CONJ_ N_C°
Cbh_’
DETPL=
DETPL=
DETPL=
DETPL=
DETPL=
DETPL=
DETSG=
DETSG=
DETSG=
DETSG=

ADJC1’
ADJS_’
NPL=’

0F_ PROPL’
PN="
PROPL_’
ADJC1’
ADJS_’
CD_’

NSG=’



-> DETSG= ORD_’

-> DETSG= PN=’

-> DETSG= PROSG_’

-> M= NPL=’

-> M= OF_ NPL=’

-> M= 0OF_ NSG=’

-> NPL=’

NSG=’

-> N_C COM_ N_C COM_ CONJ_ N_C’
-> N_C COM_ N_C CONJ_ N_C’
-> N_C CONJ_ N_C’

-> N_C POS_’

-> N_C’ PUN=

-> PCONJ_ N_C CONJ_ N_C’
-> PUNL_ N_C’ PUNR_

-> WHN_C’

(0) 2

ORD_ -> ORD’

PART_C -> ADV= PART’

PART_C -> PART’

PART_C -> PART_C CONJ_ PART_C’
PART_C -> PART_C PART_C’
PART_C -> PART_C’ PUN=

PC1 -> PC1 COM_ PC1 COM_ CONJ_ PC1’
PC1 -> PC1 COM_ PC1 CONJ_ PC1’
PC1 -> PC1 CONJ_ PC1’

PC1 -> PC1’ PUN=

PC1 -> PCONJ_ PC1 CONJ_ PC1’
PC1 -> PCONJ_ P_ST_C CONJ_ PC1’
PC1 -> PUNL_ PC1’ PUNR_

PC1 > P_C’

PC1 -> P_ST_C CONJ_ PC1’
PCONJ_ -> PCONJ’

PDET_ -> ADV= PDET’

PDET_ -> ADV= PDET_’

PDET_ -> PDET’

PER_C -> PER’

PN= -> ADJC1 PN_’

PN= -> PN_’

PN= -> PN_’ COM_ PN_

PN= -> VN= PN_’

PN_ -> ADJC1 PN_’

PN_ -> CD_ PN_’

PN_ -> NPL_ PN_’

PN_ -> NSG_ PN_’

PN_ -> PN

PN_ -> PN’ CD_

PN_ -> PN_ PN’

PN_ -> VPASS_ PN_’

POS= -> N_C POS_’

POS_ -> POS’

PREP_ -> ADV= PREP’

PREP_ -> PREP’

== — A — ==~ — I — I — A — I — A —
[eNoNoNsEoNs NN NN NI NN NINONS!
|
\%

o
=
I
I
\%
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PRO$_ -> PRO$’

PRO$_ -> PRO$’ DETPL_
PRO$_ -> PRO$’ DETSG_
PROPL_ -> PROPL’

PROSG_ -> ADV= PROSG’
PROSG_ -> PROSG’

PUN= -> LB’
PUN= -> PUN_’
PUN= -> RB’
PUNL_ -> LB’

PUNL_ -> PUN_ PUNL_’
PUNL_ -> PUN_’
PUNR_ -> COM_ PUNR_’
PUNR_ -> PUN_’

PUNR_ -> RB’
PUN_ -> COM_’
PUN_ -> PUN’

P_C -> PREP_ CONJ_ PREP_’ NC1
P_C -> PREP_’ ADV=
P_C -> PREP_’ NC1

P_C -> PREP_’ P_C
P_C -> P_ST_C’ COM_
P_ST_C -> PREP_’

P_ST_C -> P_ST_C’ PUN=
RELC1 -> PUNL_ RELC1’ PUNR_
RELC1 -> RELC1 CONJ_ RELC1’
RELC1 -> RELC1’ PUN=

RELC1 -> THAT_C NC1 VFC1’
RELC1 -> THAT_C NC1 VFPC1’
RELC1 -> THAT_C VFC1’

RELC1 -> THAT_C VFPC1’
RELC1 -> WHA_C NC1 VFC1’
RELC1 -> WHA_C NC1 VFPC1’
RELC1 -> WHN_C NC1 VFC1’
RELC1 -> WHN_C NC1 VFPC1’
RELC1 -> WHN_C VFC1’

RELC1 -> WHN_C VFPC1’

RELC1 -> WHP_C NC1 VFC1’
RELC1 -> WHP_C NC1 VFPC1’
RELC1 -> WHP_C VFC1’

RELC1 -> WHP_C VFPC1’

S -> ADJC1’ PER_C

S -> ADV_C’ PER_C

S -> ITJ_C’ PER_C
S -> NC1’ PER_C

S -> PC1’ PER_C

S -> RELC1’ PER_C
S -> SMAJ’ PER_C

S -> SUBC1’ PER_C

S -> VFC1’ PER_C

SMAJ -> CONJ_ S_C’

SMAJ -> PCONJ_ S_C CONJ_ S_C’
SMAJ -> PUN= S_C’



APPENDIX C. THE ENGLISH LPCF GRAMMAR

186

SMAJ -> PUNL_ S_C’ PUN= PUNR_ VBASEC1
SMAJ -> PUNL_ S_C’ PUNR_ VBASEC1
SMAJ -> S_C CONJ_C S_C’ VBASEC1
SMAJ -> S_C? VBASEC1
SMAJ -> S_C’ PUN= VBASEC1
SUBC1 -> PUNL_ SUBC1’ PUNR_ VBASEC1
SUBC1 -> SUBC1’ PUN= VBASEC1
SUBC1 -> SUB_C’ SMAJ VBASEC1
SUBC1 -> SUB_C’ VBASEC1 VBASEC1
SUBC1 -> SUB_C’ VGC1 VBASEC1
SUBC1 -> SUB_C’ VPASSC1 VBASEC1
SUB_C -> ADV= SUB’ VBASEC1
SUB_C -> SUB’ VBASEC1
SUB_C -> SUB’ ADV= VBASEC1
S_ADV_ -> ADV’ VBASEC1
S_C -> ADV= NC1 VFC1’ VBASEC1
S_C -> ADV= NC1 VFPC1’ VBASEC1
S_C -> NC1 RELC1 VFC1’ VBASEC1
S_C -> NC1 RELC1 VFPC1’ VBASEC1
S_C -> NC1 VFC1’ VBASEC1
S_C -> NC1 VFPC1’ VBASEC1
S_C -> NC1 VPASSC1 VFC1’ VBASEC1
S_C -> NC1 VPASSC1 VFPC1’ VBASEC1
S_C -> PC1 NC1 RELC1 VFC1’ VBASEC1
S_C -> PC1 NC1 VFC1’ VBASEC1
S_C -> PC1 NC1 VFPC1’ VBASEC1
S_C -> PC1 NC1 VPASSC1 VFC1’ VBASEC1
S_C -> PC1 NC1 VPASSC1 VFPC1’ VBASEC1
S_C -> SUBC1 NC1 RELC1 VFC1’ VBASEC1
S_C -> SUBC1 NC1 VFC1’ VBASEC1
S_C -> SUBC1 NC1 VFPC1’ VBASEC1
S_C -> WHN_C VFC1’ VBASEC1
S_C -> WHN_C VFPC1’ VBASEC1
THAN_ -> THAN’ VBASEC1
THATC1 -> THATC1’ PUN= VBASEC1
THATC1 -> THAT_C’ VBASEC1
THATC1 -> THAT_C’ SMAJ VBASEC1
THAT_C -> THAT’ VBASEC1
TO= -> ADV= TO_’ VBASEPC1
TO= -> TO_’ VBASEPC1
TO_ -> TO? VBASEPC1
VBASE= -> ADV= VBASE_’ VBASEPC1
VBASE= -> VBASE_’ VBASEPC1
VBASEC1 -> PUNL_ VBASEC1’ PUNR_ VBASEPC1
VBASEC1 -> VBASEC1 CONJ_ VBASEC1’ VBASEPC1
VBASEC1 -> VBASEC1 CONJ_ VBASEC1’ ADV= VBASEPC1
VBASEC1 -> VBASEC1’ PUN= VBASEPC1
VBASEC1 -> VBASEC1’ PUN= ADV= VBASEPC1
VBASEC1 -> VBASE_C’ VBASEPC1
VBASEC1 -> VBASE_C’ ADJC1 VBASEPC1
VBASEC1 -> VBASE_C’ ADJC1 ADV= VBASEPC1
VBASEC1 -> VBASE_C’ ADJC1 PC1 VBASEPC1
VBASEC1 -> VBASE_C’ ADJC1 PC1 ADV= VBASEPC1

VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’
VBASE_C’

VBASEPC1’

ADV=
ADV= NC1
ADV= PC1
ITJ_C

NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1

ADJC1

ADV=

AS_C

NC1

NC1 ADV=
PART_C
PART_C ADV=
PART_C PC1
PC1

PC1 ADV=
VBASEC1

NC1 VGC1

NC1 VTOC1
PART_C

PART_C ADV=
PART_C NC1
PART_C NC1 PC1
PART_C PC1
PART_C PC1 ADV=
PC1
PC1
PC1
PC1
PC1
PC1
SMAJ
SMAJ ADV=
THATC1
THATC1 ADV=
VGC1

VTOC1

VTOC1 ADV=
VTOC1 VTOC1
PUN=

ADV=
PC1
SMAJ
VGC1
VTOC1

VBASEP_C’

VBASEP_C’
VBASEP_C’
VBASEP_C’
VBASEP_C’
VBASEP_C’
VBASEP_C’
VBASEP_C’
VBASEP_C’
VBASEP_C’
VBASEP_C’
VBASEP_C’
VBASEP_C’
VBASEP_C’

ADJC1
ADV=
ADV=
ADV=
AS_C
NC1
NC1 PC1
PART_C
PART_C ADV=
PART_C PC1
PC1

PC1 ADV=
PC1 PC1

NC1
PC1



VBASEPC1 -> VBASEP_C’ PC1 SMAJ
VBASEPC1 -> VBASEP_C’ PC1 THATC1
VBASEPC1 -> VBASEP_C’ PC1 VTOC1
VBASEPC1 -> VBASEP_C’ SUBC1
VBASEPC1 -> VBASEP_C’ THATC1
VBASEPC1 -> VBASEP_C’ VTOC1
VBASEP_C -> VBASEP|’

VBASEP| -> VBBASE= VPASS=’
VBASE_ -> VBASE’

VBASE_C -> VBASE|’

VBASE| -> VBASE= CONJ_C VBASE=’
VBASE| -> VBASE=’

VBASE| -> VBBASE= VG|’

VBASE| -> VBBASE=’

VBASE| -> VHBASE= VN|’

VBBASE= -> VBBASE_’

VBBASE= -> VBBASE_’ ADV=
VBBASE_ -> ADV= VBBASE’

VBBASE_ -> VBBASE’

VBBASE| -> VBBASE=’

VBBASE| -> VHBASE= VBN=’

VBF= -> MD= VBBASE|’

VBF= -> VBF_ VBG=’

VBF= -> VBF_’

VBF= -> VBF_’ AUX-ADV

VBF= -> VHF= VBN=’

VBF_ -> ADV= VBF’

VBF_ -> VBF’
VBG= -> VBG_’
VBG_ -> ADV= VBG’
VBG_ -> VBG’
VBN= -> VBN_’

VBN= -> VBN_’ ADV=

VBN= -> VBN_’ ADV= VBG=
VBN= -> VBN_’ VBG=

VBN_ -> ADV= VBN’

VBN_ -> VBN’

VDF= -> VDF_’

VDF= -> VDF_’ AUX-ADV
VDF_ -> ADV= VDF’

VDF_ -> VDF’
VF= -> ADV= VF_’
VF= -> VF_’

VFC1 -> PUNL_ VFC1’ PUNR_
VFC1 -> VBF=’ PART_C VTOC1
VFC1 -> VBF=’ PART_C VTOPC1
VFC1 -> VFC1 COM_ VFC1 COM_
CONJ_ VFC1’
VFC1 -> VFC1 COM_ VFC1 CONJ_ VFC1’
VFC1 -> VFC1 CONJ_ VFC1’
VFC1 -> VFC1’ PUN=
VFC1 -> VF_C’
VFC1 -> VF_C’ ADJC1

VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1

VF_C’
VF_C’
VF_C?
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’

ADJC
ADJC
ADJC
ADJC
ADJC
ADJC
ADJC
ADJC
ADJC
ADV=
ADV=
ADV=
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1
PART
PART
PART
PART
PART
PART
PART
PART
PART
PART
PART
PC1
PC1

187

1 ADV=

1 PC1

1 PC1 ADV=

1 THATC1

1 THATC1 ADV=
1 VTOC1

1 VTOC1 ADV=
1 VTOPC1

1 VTOPC1 ADV=

NC1
PC1

ADJC1

ADJC1 ADV=
ADV=

AS_C

NC1

NC1 ADV=

NC1 PC1

NC1 PC1 ADV=
PART_C
PART_C ADV=
PART_C PC1
PART_C PC1 ADV=
PC1

PC1 ADV=

PC1 NC1

PC1 NC1 ADV=
PC1 PC1
THATC1
VBASEC1
VBASEC1 ADV=
VGC1

VGC1 ADV=
VGPC1

VTOC1

VTOC1 ADV=
VTOPC1
VTOPC1 ADV=
_C

_C ADV=

_C NC1

_C NC1 ADV=
_C NC1 PC1
_C NC1 PC1 ADV=
_C PC1

_C PC1 ADV=
_C PC1 THATC1
_C SMAJ

_C THATC1

ADV=
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VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFC1
VFPC1
VFPC1
VFPC1
VFPC1
VFPC1
VFPC1
VFPC1
VFPC1
VFPC1
VFPC1
VFPC1
VFPC1
VFPC1
VFPC1
VFPC1
VFPC1
VFPC1
VFPC1
VFPC1

VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’
VF_C’

PC1 NC1

PC1 NC1 NC1
PC1 NC1 NC1 ADV=
PC1 PC1

PC1 PC1 ADV=
PC1 SMAJ

PC1 SMAJ ADV=
PC1 THATC1
PC1 VGC1

PC1 VGC1 ADV=
PC1 VTOC1

PC1 VTOC1 ADV=
PC1 VTOPC1
PC1 VTOPC1 ADV=
P_ST_C

P_ST_C ADV=
SMAJ

SMAJ ADV=
SUBC1

SUBC1 ADV=
THATC1

THATC1 ADV=
VBASEC1
VBASEC1 ADV=
VGC1

VGC1 ADV=
VTOC1

VTOC1 ADV=
VTOC1 VTOC1
VTOC1 VTOPC1
VTOPC1

VTOPC1 ADV=
VTOPC1 VTOC1
VTOPC1 VTOPC1

PUNL_ VFPC1’ PUNR_
VFPC1’ PUN=

VFPC1’ PUN= ADV=
VFP_C’

VFP_C’ ADJC1

VFP_C’ ADV=

VFP_C’ ADV= NC1
VFP_C’ ADV= PC1
VFP_C’ AS_C

VFP_C’ NC1

VFP_C’ NC1 ADV=
VFP_C’ NC1 NC1
VFP_C’ NC1 NC1 ADV=
VFP_C’ NC1 PC1
VFP_C’ NC1 PC1 ADV=
VFP_C’ NC1 PC1 PC1
VFP_C’ PART_C
VFP_C’ PART_C ADV=
VFP_C’ PART_C PC1

VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFPC1 ->
VFP_C ->
VFP_C ->
VF_ >V
VF_C ->
VF_C ->
VF_C ->
VF_C ->
VF_C ->
VF_C ->
VF_C ->
VF_C ->
VF_C ->
VF_C ->
VG= -> A
VG= -> V
VGC1 —>
VGC1 —>
VGC1 —>
VGC1 ->
VGC1 ->
VGC1 ->
VGC1 —>
VGC1 —>
VGC1 —>
VGC1 ->
VGC1 ->
VGC1 —>
VGC1 —>
VGC1 —>
VGC1 ->
VGC1 ->
VGC1 ->
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VFP_C’ PART_C PC1 ADV=
VFP_C’ PART_C SMAJ
VFP_C’ PC1

VFP_C’ PC1 ADV=
VFP_C’ PC1 PC1
VFP_C’ PC1 PC1 ADV=
VFP_C’ PC1 SMAJ
VFP_C’ PC1 THATC1
VFP_C’ PC1 THATC1 ADV=
VFP_C’ PC1 VGC1
VFP_C’ PC1 VGC1 ADV=
VFP_C’ PC1 VTOC1
VFP_C’ P_ST_C
VFP_C’ SMAJ

VFP_C’ SMAJ ADV=
VFP_C’ SUBC1

VFP_C’ SUBC1 ADV=
VFP_C’ THATC1
VFP_C’ THATC1 ADV=
VFP_C’ VTOC1

VFP_C’ VTOC1 ADV=
VBF= VPASS=’

VHF= VNP=’

F?

MD= VBASE|"’

MD=’

VBF= VG|’

VBF="

VDF= VBASE|’

VDF="

VF=’

VF_C CONJ_ VF_C’
VHF= VN|’

VHF="

DV= VG_’

G?

PUNL_ VGC1’ PUNR_
VGC1 COM_ VGC1 COM_ CONJ_ VGC1’
VGC1 COM_ VGC1 CONJ_ VGC1’
VGC1 CONJ_ VGC1’
VGC1’ PUN=

vG_C’

VG_C’> ADJC1

VG_C’ ADJC1 THATC1
VG_C’> ADJC1 VTOC1
VG_C’ NC1

VG_C’ NC1 ADJC1
VG_C’ NC1 AS_C

VG_C’ NC1 NC1

VG_C’ NC1 PART_C
VG_C’ NC1 PART_C PC1
VG_C’ NC1 PC1

VG_C’ NC1 PC1 PC1



VGC1 -> VG_C’ NC1 VBASEC1
VGC1 -> VG_C’ NC1 VGC1
VGC1 -> VG_C’ NC1 VTOC1
VGC1 -> VG_C’ PART_C

VGC1 -> VG_C’ PART_C NC1

VGC1 -> VG_C’ PART_C NC1 PC1

VGC1 -> VG_C’ PART_C PC1
VGC1 -> VG_C’ PART_C SMAJ

VGC1 -> VG_C’ PART_C THATC1

VGC1 -> VG_C’ PC1

VGC1 -> VG_C’ PC1 PC1
VGC1 -> VG_C’ PC1 SMAJ
VGC1 -> VG_C’ PC1 THATC1
VGC1 -> VG_C’ PC1 VGC1
VGC1 -> VG_C’ PC1 VTOC1
VGC1 -> VG_C’ SMAJ

VGC1 -> VG_C’ THATC1
VGC1 -> VG_C’ VTOC1

VGC1 -> VG_C’ VTOC1 VTOC1
VGPC1 -> VGPC1’ PUN=
VGPC1 -> VGP_C’

VGPC1 -> VGP_C’> AS_C
VGPC1 -> VGP_C’ PC1
VGP_C -> VBG= VPASS_C’

VG_ —> VG’

VG_C -> VBG= VPASS=’

VG_C -> VBG=’

VG_C -> VG=’

VG_C -> VG_C COM_ VG_C CONJ_ VG_C’
VG_C -> VG_C CONJ_ VG_C’

VG_C -> VHG=’ VN|

VG| -> VBG=’

VG| -> VG=’

VHBASE= -> VHBASE_’
VHBASE_ -> ADV= VHBASE’
VHBASE_ -> VHBASE’

VHF= -> MD= VHBASE_’
VHF= -> VBF= VHG=’

VHF= -> VHF= VHN=’

VHF= -> VHF_’

VHF= -> VHF_’ AUX-ADV
VHF_ -> ADV= VHF’

VHF_ -> VHF’

VHG= -> VHG_’

VHG_ -> VHG’

VHN= -> ADV= VHN_’
VHN= -> VHN_’

VHN_ -> VHN’

VN= -> ADV= VN_’

VN= -> VN_’

VNP= -> VBN= VPASS=’
VN_ -> VN

VN_C -> VN_C CONJ_ VN_C’
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VN_C -> VN|’
VN| -> VBN= VG|’
VN| -> VBN=’
VN| -> VN=?

VPASS= -> ADV= VPASS_’

VPASS= -> VPASS_’

VPASSC1 -> PUNL_ VPASSC1’ PUNR_
VPASSC1 -> VPASSC1 CONJ_ VPASSC1’
VPASSC1 -> VPASSC1’ PUN=
VPASSC1 -> VPASS_C’

VPASSC1 -> VPASS_C’ ADJC1
VPASSC1 -> VPASS_C’ AS_C
VPASSC1 -> VPASS_C’ NC1

VPASSC1 -> VPASS_C’ NC1 ADJC1
VPASSC1 -> VPASS_C’ NC1 NC1
VPASSC1 -> VPASS_C’ NC1 PART_C
VPASSC1 -> VPASS_C’ NC1 PC1
VPASSC1 -> VPASS_C’ NC1 VGC1
VPASSC1 -> VPASS_C’ NC1 VTOC1
VPASSC1 -> VPASS_C’ PART_C
VPASSC1 -> VPASS_C’ PART_C NC1
VPASSC1 -> VPASS_C’ PART_C PC1
VPASSC1 -> VPASS_C’ PC1

VPASSC1 -> VPASS_C’ PC1 PC1
VPASSC1 -> VPASS_C’ PC1 VGC1
VPASSC1 -> VPASS_C’ PC1 VTOC1
VPASSC1 -> VPASS_C’ SMAJ
VPASSC1 -> VPASS_C’ THATC1
VPASSC1 -> VPASS_C’ VGC1
VPASSC1 -> VPASS_C’ VTOC1
VPASS_ -> ADV= VPASS’

VPASS_ -> VPASS’

VPASS_C -> VBN= VPASS_’

VPASS_C -> VPASS_’

VPASS_C -> VPASS_C CONJ_ VPASS_C’
VTOC1 -> PUNL_ VTOC1’ PUNR_
VTOC1 -> VTOC1 CONJ_ VTOC1’
VTOC1 -> VTOC1 CONJ_ VTOC1’ ADV=
VTOC1 -> VTOC1’ PUN=

VTOC1 -> VTOC1’ PUN= ADV=

VTOC1 -> VTO_C’

VTOC1 -> VTO_C’ ADJC1

VTOC1
VTOC1
VTOC1
VTOC1
VTOC1
VTOC1
VTOC1
VTOC1
VTOC1
VTOC1
VTOC1

-> VT0_C’
-> VT0_C’
-> VT0_C’
-> VT0_C’
-> VT0_C’
-> VT0_C’
-> VT0_C’
-> VT0_C’
-> VT0_C’
-> VT0_C’
-> VT0_C’

ADJC1 ADV=
ADJC1 PC1
ADJC1 VTOC1
ADJC1 VTOC1 ADV=
ADV=

ADV= NC1
ADV= PC1
ITJ_C

NC1

NC1 ADJC1
NC1 ADV=
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VTOC1 -> VTO_C’ NC1 AS_C VTOPC1 -> VTOP_C’ PART_C
VTOC1 -> VTO_C’> NC1 NC1 VTOPC1 -> VTOP_C’ PART_C ADV=
VTOC1 -> VTO_C’ NC1 NC1 ADV= VTOPC1 -> VTOP_C’ PART_C PC1
VTOC1 -> VTO_C’ NC1 PART_C VTOPC1 -> VTOP_C’ PC1

VTOC1 -> VTO_C’ NC1 PART_C ADV= VTOPC1 -> VTOP_C’ PC1 ADV=
VTOC1 -> VTO_C’ NC1 PART_C PC1 VTOPC1 -> VTOP_C’ PC1 PC1
VTOC1 -> VTO_C’> NC1 PC1 VTOPC1 -> VTOP_C’ PC1 SMAJ
VTOC1 -> VTO_C’ NC1 PC1 ADV= VTOPC1 -> VTOP_C’ SUBC1
VTOC1 -> VTO_C’ NC1 PC1 PC1 VTOPC1 -> VTOP_C’ SUBC1 ADV=
VTOC1 -> VTO_C’ NC1 VBASEC1 VTOPC1 -> VTOP_C’ THATC1
VTOC1 -> VTO_C’ NC1 VGC1 VTOPC1 -> VTOP_C’ VTOC1
VTOC1 -> VTO_C’ NC1 VGC1 ADV= VTOP_C -> TO= VBASEP|’
VTOC1 -> VTO_C’ NC1 VTOC1 VTO_C -> TO= VBASE|’

VTOC1 -> VTO_C’ NC1 VTOC1 ADV= VTO_C -> TO= VBBASE=’

VTOC1 -> VTO_C’ PART_C VTO_C -> TO0=’

VTOC1 -> VTO_C’ PART_C ADV= WHA_C -> ADV= WHADV’

VTOC1 -> VTO_C’ PART_C NC1 WHA_C -> WHADV’

VTOC1 -> VTO_C’ PART_C NC1 PC1 WHA_C -> WHA_C CONJ_ WHA_C’
VTOC1 -> VTO_C’ PART_C PC1 WHA_C -> WHDEG_ ADJC1’
VTOC1 -> VTO_C’ PART_C PC1 ADV= WHA_C -> WHDEG_ ADV=’

VTOC1 -> VTO_C’ PART_C SMAJ WHDEG_ -> WHDEG’

VTOC1 -> VTO_C’ PART_C THATC1 WHDET_ -> WHDET’

VTOC1 -> VTO_C’ PC1 WHDET_ -> WHPRO$’

VTOC1 -> VTO_C’ PC1 ADV= WHN_C -> WHDET_ NPL=’

VTOC1 -> VTO_C’ PC1 PC1 WHN_C -> WHDET_ NPL_’

VTOC1 -> VTO_C’ PC1 PC1 ADV= WHN_C -> WHDET_ NSG=’

VTOC1 -> VTO_C’ PC1 SMAJ WHN_C -> WHDET_ PN=’

VTOC1 -> VTO_C’ PC1 THATC1 WHN_C -> WHDET_ PROPL_’
VTOC1 -> VTO_C’ PC1 VGC1 WHN_C -> WHDET_ PROSG_’
VTOC1 -> VTO_C’ PC1 VGC1 ADV= WHN_C -> WHN_C’ PUN=

VTOC1 -> VTO_C’ PC1 VTOC1 WHN_C -> WHPRO_’

VTOC1 -> VTO_C’> SMAJ WHPRO_ -> ADV= WHPRO’

VTOC1 -> VTO_C’ SMAJ ADV= WHPRO_ -> WHPRO’

VTOC1 -> VTO_C’ SUBC1 WHP_C -> PREP_’ WHN_C

VTOC1 -> VTO_C’ SUBC1 ADV= WHP_C -> PUNL_ WHP_C’ PUNR_
VTOC1 -> VTO_C’ THATC1 WHP_C -> WHP_C’ PUN=

VTOC1 -> VTO_C’ THATC1 ADV=
VTOC1 -> VTO_C’ VGC1

VTOC1 -> VTO_C’ VGC1 ADV=
VTOC1 -> VTO_C’ VTOC1

VTOC1 -> VTO_C’ VTOC1 ADV=
VTOPC1 -> VTOPC1’ PUN=
VTOPC1 -> VTOPC1’ PUN= ADV=
VTOPC1 -> VTOP_C’

VTOPC1 -> VTOP_C’ ADJC1
VTOPC1 -> VTOP_C’ ADV=
VTOPC1 -> VTOP_C’ ADV= NC1
VTOPC1 -> VTOP_C’ ADV= PC1
VTOPC1 -> VTOP_C’ AS_C
VTOPC1 -> VTOP_C’ NC1
VTOPC1 -> VTOP_C’ NC1 ADV=
VTOPC1 -> VTOP_C’ NC1 PC1
VTOPC1 -> VTOP_C’ NC1 PC1 PC1



Appendix D

Disambiguation

D.1 Test Sentences

These are the 100 sentences which have been used in the disambiguation experiment reported
in section 6.3.4.

Rockwell said the agreement calls for it to supply 200 additional so-called shipsets for the planes.
Rockwell, based in El Segundo, Calif., is an aerospace, electronics, automotive and graphics concern.
Mr. Carlucci, 59 years old, served as defense secretary in the Reagan administration.

In January, he accepted the position of vice chairman of Carlyle Group, a merchant banking concern.

Thomas E. Meador, 42 years old, was named president and chief operating officer of Balcor Co., a
Skokie, 1ll., subsidiary of this New York investment banking firm.

Balcor, which has interests in real estate, said the position is newly created.
Mr. Meador had been executive vice president of Balcor.

In addition to his previous real-estate investment and asset-management duties, Mr. Meador takes
responsibility for development and property management.

Those duties had been held by Van Pell, 44, who resigned as an executive vice president.
Before the loan-loss addition, it said, it had operating profit of $ 10 million for the quarter.

The move followed a round of similar increases by other lenders against Arizona real estate loans,
reflecting a continuing decline in that market.

Arbitragers were n’t the only big losers in the collapse of UAL Corp. stock.

When bank financing for the buy-out collapsed last week, so did UAL’s stock.

By yesterday’s close of trading, it was good for a paltry $ 43.5 million.

Mr. Johnson succeeds Harry W. Sherman, who resigned to pursue other interests, in both positions.
Manwille is a building and forest products concern.

US Facilities Corp. said Robert J. Percival agreed to step down as vice chairman of the insurance
holding company.

191
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There was a difference of opinion as to the future direction of the company, a spokeswoman said.
Mr. Percival declined to comment.

In a statement, US Facilities said Mr. Percival’s employment contract calls for him to act as a con-
sultant to the company for two years.

Mr. Percival will be succeeded on an interim basis by George Kadonada, US Fucilities chairman and
president.

In the same statement, US Facilities also said it had bought back 112,000 of its common shares in a
private transaction.

The buy-back represents about 8 % of the company’s shares, based on the 3.7 million shares outstanding
as of Sept. 30.

In national over-the-counter trading yesterday, US Facilities closed at $ 3.625, unchanged.

Merck € Co. reported a 25 % increase in earnings; Warner-Lambert Co.’s profit rose 22 % and Eli
Lilly €& Co.’s net income rose 24 %.

The results were in line with analysts’ expectations.

Merck, Rahway, N.J., continued to lead the industry with a strong sales performance in the human
and animal health-products segment.

International sales accounted for 47 % of total company sales for the nine months, compared with 50
% a year earlier.

Sales for the quarter rose to $§ 1.63 billion from § 1.47 billion.

Intense competition, however, led to unit sales declines for a group of Merck’s established human and
animal-health products, including Aldomet and Indocin.

In New York Stock Exchange composite trading yesterday, Merck shares closed at $ 75.25, up 50 cents.
Sales for the quarter rose to $ 1.11 billion from § 1.03 billion.

World-wide sales of Warner-Lambert’s non-prescription health-care products, such as Halls cough
tablets, Rolaids antacid, and Lubriderm skin lotion, increased 3 % to $ 362 million in the third quarter;
U.S. sales rose 5 %.

Confectionery products sales also had strong growth in the quarter.

Third-quarter sales of the Indianapolis, Ind., company rose 11 % to $ 1.045 billion from $ 940.6
million.

Nine-month sales grew 12 % to $ 8.39 billion from $ 3.03 billion a year earlier.
Sales of Prozac, an anti-depressant, led drug-sales increases.

Higher sales of pesticides and other plant-science products more than offset a slight decline in the sales
of animal-health products to fuel the increase in world-wide agricultural product sales, Lilly said.

Advanced Cardiovascular Systems Inc. and Cardiac Pacemakers Inc. units led growth in the medical-
instrument systems division.

Lilly shares closed yesterday in composite trading on the Big Board at $§ 62.25, down 12.5 cents.
Analysts estimate Colgate’s world-wide third-quarter sales rose about 8 % to $ 1.29 billion.
Mr. Mark attributed the earnings growth to strong sales in Latin America, Asia and Europe.

Results were also bolstered by a very meaningful increase in operating profit by Colgate’s U.S. business,
Mr. Mark said.
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Operating profit at Colgate’s U.S. household products and personal-care businesses jumped 25 % in the
quarter, Mr. Mark added.

He said the improvement was a result of cost savings achieved by consolidating manufacturing opera-
tions, blending two sales organizations and focusing more carefully the company’s promotional activi-
ties.

The estimated improvement in Colgate’s U.S. operations took some analysts by surprise.

Colgate’s household products business, which includes such brands as Fab laundry detergent and Ajax
cleanser, has been a weak performer.

Analysts estimate Colgate’s sales of household products in the U.S. were flat for the quarter, and they
estimated operating margins at only 1 % to 3 %.

But it’s not mediocre, it’s a real problem.

To focus on its global consumer-products business, Colgate sold its Kendall health-care business in
1988.

H. Anthony Ittleson was elected a director of this company, which primarily has interests in radio and
television stations, increasing the number of seats to five.

Osborn also operates Muzak franchises, entertainment properties and small cable-television systems.

Mr. Ittleson is executive, special projects, at CIT Group Holdings Inc., which is controlled by Manu-
facturers Hanover Corp.

The Boston Globe says its newly redesigned pages have a crisper look with revamped fixtures aimed at
making the paper more consistent and easier to read.

By late last night, Globe Managing Editor Thomas Mulvoy, bending to the will of his troops, scrapped
the new drawings.

Trouble was, nobody thought they looked right.

Lynn Staley, the Globe’s assistant managing editor for design, acknowledges that the visages were on
the low end of the likeness spectrum.

Is such a view justified?
About 20,000 years ago the last ice age ended.
Enormous ice sheets retreated from the face of North America, northern Europe and Asia.

This global warming must have been entirely natural — nobody would blame it on a few hundred thousand
hunter-gatherers hunting mammoths and scratching around in caves.

Furthermore, no bell has yet rung to announce the end of this immense episode of natural global
warming.

The Internal Revenue Service plans to restructure itself more like a private corporation.

The IRS also said that it would create the position of chief financial officer, who will be hired from
within the agency.

The IRS hopes to fill the new positions soon.

Although the jobs will probably pay between $§ 70,000 and $ 80,000 a year, IRS officials are confident
that they can attract top-notch candidates from the private sector.

When Maj. Moises Giroldi, the leader of the abortive coup in Panama, was buried, his body bore several
gunshot wounds, a cracked skull and broken legs and ribs.

They were the signature of his adversary, Panamanian leader Manuel Antonio Noriega.
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The rebel officer’s slow and painful death, at the headquarters of Panama’s Battalion-2000 squad, was
personally supervised by Gen. Noriega, says a U.S. official with access to intelligence reports.

And he is collecting the names of those who telephoned the coup-makers to congratulate them during
their brief time in control of his headquarters.

In the two weeks since the rebellion, which the U.S. hesitantly backed, Mr. Noriega has been at his
most brutal - and efficient - in maintaining power.

America’s war on the dictator over the past two years, following his indictment on drug charges in
February 1988, is the legacy of that relationship.

Before American foreign policy set out to destroy Noriega, it helped create him out of the crucible of
Panama’s long history of conspirators and pirates.

For most of the past 30 years, the marriage was one of convenience.
The woman had nearly died.
Mr. Noriega’s tips on emerging leftists at his school were deemed more important to U.S. interests.

The 55-year-old Mr. Noriega is n’t as smooth as the shah of Iran, as well-born as Nicaragua’s Anastasio
Somoza, as imperial as Ferdinand Marcos of the Philippines or as bloody as Haiti’s Baby Doc Duvalier.

Yet he has proved more resilient than any of them.

In keeping with America’s long history of propping up Mr. Noriega, recent U.S. actions have extended
rather than shortened his survival.

If the U.S. had sat back and done nothing, he might not have made it through 1988, Mr. Moss contends.

One Colombian drug boss, upon hearing in 1987 that Gen. Noriega was negotiating with the U.S. to
abandon his command for a comfortable exile, sent him a hand-sized mahogany coffin engraved with
his name.

He is cornered, says the Rev. Fernando Guardia, who has led Catholic Church opposition against
Noriega.

It is easy to fight when you do n’t have any other option.

Mr. Noriega often tells friends that patience is the best weapon against the gringos, who have a short
attention span and little stomach for lasting confrontation.

The U.S. discovered the young Tony Noriega in late 1959, when he was in his second year at the
Chorrillos Military Academy in Lima, according to former U.S. intelligence officials.

Tony was four years older than most of his fellow cadets, and gained admission to the academy because
his brother had falsified his birth certificate.

He had an elegant uniform with gold buttons in a country where there was a cult of militarism, where
officers were the elite with special privileges, recalls Darien Ayala, a fellow student in Peru and a
lifelong friend.

Mr. Noriega’s relationship to American intelligence agencies became contractual in either 1966 or
1967, intelligence officials say.

United Fruit was one of the two largest contributors to Panama’s national income.

Mr. Noriega’s initial retainer was only $ 50 to § 100 a month, plus occasional gifts of liquor or groceries
from the American PX, a former intelligence official says.

It was modest pay by American standards, but a healthy boost to his small military salary, which fellow
officers remember as having been $ 800 to $ 400 monthly.
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He did it very well, recalls Boris Martinez, a former Panamanian colonel who managed Mr. Noriega
and his operation.

He started building the files that helped him gain power.

A National Guard job assumed by Capt. Noriega in 1964 — as chief of the transit police in David City,
capital of the Chiriqui Province — was tailor-made for an aspiring super-spy.

By pressuring taxi and bus drivers who needed licenses, he gained a ready cache of information.

He knew which local luminaries had been caught driving drunk, which had been found with their mis-
tresses.

Mr. Noriega had learned that a local union leader was sleeping with the wife of his deputy.

So he splashed the information on handbills that he distributed throughout the banana-ezxporting city
of Puerto Armuelles, which was ruled by United Fruit Co.

It was like a play on Broadway, recalls Mr. Martinez.

Noriega was an expert at bribing and blackmailing people.

D.2 Results

The following table shows the results of the disambiguation experiment. The contents of the
columns are as follows:

No.: number of the sentence
MaxScore: highest score for this sentence
Score: score of the correct analysis

Analyses: number of analyses for this sentence

AsGood: number of analyses with a score as high as or higher than the correct one
%AsGood: the same value expressed in percent of all analyses

Better: number of analyses with a score higher than the correct one

%Better: the same value expressed in percent of all analyses

No. | MaxScore | Score | Analyses | AsGood | %AsGood | Better | %Better
1 44635 | 42015 37 24 64.86 23 62.16
2 860 860 675 404 59.85 184 27.26
3 38972 | 36086 40 24 60.00 16 40.00
4 9833 9739 129 8 6.20 4 3.10
5 114340 | 111295 | 17997650 27540 0.15 | 27416 0.15
6 13079 12556 50 22 44.00 12 24.00
7 4126 4126 3 1 33.33 0 0.00
8 19318 | 13440 11013 951 8.64 947 8.60
9 7795 3832 411 76 18.49 68 16.55

10 27449 | 27449 356 2 0.56 0 0.00
11 24284 8907 3700 396 10.70 387 10.46
12 39188 2530 27 6 22.22 4 14.81
13 9705 2470 198 124 62.63 122 61.62
14 96717 2343 193 45 23.32 44 22.80
15 79086 | 67506 18 8 44.44 ) 27.78
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File | MaxScore | Score | Analyses | AsGood | %AsGood | Better | %Better
16 465 435 13 2 15.38 1 7.69
17 64420 15229 912 178 19.52 166 18.20
18 13560 11121 624 180 28.85 168 26.92
19 141 141 2 2 100.00 0 0.00
20 159921 | 62645 57372 5008 8.73 5004 8.72
21 34415 | 30394 1010 576 57.03 562 55.64
22 9498 5676 11327 4271 37.71 4267 37.67
23 25419 24714 142 39 27.46 34 23.94
24 1208 897 460 340 73.91 268 58.26
25 83457 | 83225 954 22 2.31 21 2.20
26 37814 1265 7 6 85.71 ) 71.43
27 1958 1525 3179 500 15.73 485 15.26
28 55768 | 48377 42854 1800 4.20 1790 4.18
29 5940 5940 32 2 6.25 0 0.00
30 43242 42846 121358 119 0.10 114 0.09
31 82513 1975 10136 5228 51.58 5204 51.34
32 5940 5940 32 2 6.25 0 0.00
33 12546 7190 298414 | 250316 83.88 | 249958 83.76
34 4094 3828 8 8 100.00 4 50.00
35 10777 6362 48 28 08.33 26 54.17
36 6422 726 81 81 100.00 74 91.36
37 1661 1599 19 ) 26.32 1 5.26
38 87267 | 70250 137996 16870 12.22 | 16862 12.22
39 2901 2901 1204 36 2.99 0 0.00
40 26260 2497 1500 164 10.93 160 10.67
41 26853 24222 138 41 29.71 40 28.99
42 9747 9741 39 6 15.38 3 7.69
43 91091 61268 79622 17956 22.55 17954 22.55
44 51896 5374 22460 6482 28.86 6452 28.73
45 50329 | 47339 536122 66528 12.41 66498 12.40
46 37967 4303 70 28 40.00 24 34.29
47 1137 965 1262 952 75.44 940 74.48
48 152439 15841 37356 21236 56.85 | 21234 56.84
49 1646 1646 6 6 100.00 0 0.00
50 113515 | 113347 576 86 14.93 78 13.54
51 77953 | 75778 11910 924 7.76 916 7.69
52 1225 1225 6 3 50.00 0 0.00
53 6572 1079 3208 864 26.93 848 26.43
54 47153 2380 5602 1142 20.39 1140 20.35
55 10522 5957 576 107 18.58 104 18.06
o6 655 655 8 1 12.50 0 0.00
57 104923 | 95802 971 302 31.10 298 30.69
58 169 158 2 2 100.00 1 50.00
59 50687 | 50687 19 1 5.26 0 0.00
60 3533 3489 46 15 32.61 14 30.43
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File | MaxScore | Score | Analyses | AsGood | %AsGood | Better | %Better
61 7172 7172 1939 2 0.10 0 0.00
62 72423 | 40585 11 ) 45.45 4 36.36
63 2094 2094 54 2 3.70 0 0.00
64 5844 5755 10 3 30.00 1 10.00
65 492 492 8 1 12.50 0 0.00
66 12835 12092 1026 828 80.70 812 79.14
67 41714 5259 3789 862 22.75 854 22.54
68 124033 | 124027 39 4 10.26 2 5.13
69 68869 | 31726 492472 307182 62.38 | 307166 62.37
70 42105 7129 900 108 12.00 82 9.11
71 185068 | 179057 1580 250 15.82 246 15.57
72 120484 | 64602 65647 6875 10.47 6869 10.46
73 19686 14412 25504 5046 19.79 5034 19.74
74 151520 | 56311 100 25 25.00 24 24.00
75 626 626 3 1 33.33 0 0.00
76 24440 7731 1166 1004 86.11 992 85.08
77 66702 | 62716 22721 19865 87.43 19491 85.78
78 1045 1045 2 1 50.00 0 0.00
79 46614 9152 23513 9128 38.82 9125 38.81
80 12596 12476 1352 17 1.26 13 0.96
81 238430 | 107755 | 4445800 | 239774 5.39 | 239758 5.39
82 1287 1287 10 2 20.00 0 0.00
83 38723 | 35974 40 28 70.00 24 60.00
84 100576 5481 4216 288 6.83 282 6.69
85 261525 | 179775 395281 | 194604 49.23 | 194598 49.23
86 36189 | 36189 100 3 3.00 0 0.00
87 53369 | 14769 | 5751994 | 1243308 21.62 | 1243270 21.61
88 249781 | 211575 1528 566 37.04 564 36.91
89 15445 | 14166 54 10 18.52 9 16.67
90 6086 2920 559180 138883 24.84 138849 24.83
91 8271 5917 21444 7984 37.23 7956 37.10
92 70550 | 70304 168 4 2.38 2 1.19
93 1037 1037 7 1 14.29 0 0.00
94 193909 | 115087 | 3300316 | 1797396 54.46 | 1797348 54.46
95 9018 8982 23 ) 21.74 4 17.39
96 2894 1652 2913 1529 52.49 1521 52.21
97 4247 4067 90 8 8.89 7 7.78
98 11908 2828 1595 1199 75.17 1180 73.98
99 13678 1204 32 21 65.62 20 62.50

100 6971 548 14 14 100.00 13 92.86
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