
The Grammar of German
in the Grammatical Framework

(Draft, January 9, 2025)

Hans Leiß
leiss@cis.uni-muenchen.de

Bereiter Anger 10

81541 München

Contents

1 Syntax of Natural Languages 4

1.1 Grammatical Notions . 4

1.2 Parallellism within a language . 5

2 Formal Languages and their Grammars 6

2.1 Parallel Multiple Context-Free Grammars (PMCFG) 8

2.2 The Grammatical Framework (GF) . 11

2.2.1 Abstract grammars . 11

2.2.2 Concrete Grammars . 12

2.2.3 Grammar compilation (todo) . 13

3 Grammars in the Resource Library 15

3.1 The Abstract Resource Grammar Lang . 15

3.1.1 Categories . 16

3.1.2 Noun . 19

3.1.3 Adjective . 23

3.1.4 Verb . 25

3.1.5 Adverb . 29

3.1.6 Numerals . 30

3.1.7 Sentences, Clauses and Imperatives . 30

3.1.8 Questions and Interrogative Pronouns . 32

3.1.9 Relative Clauses and Relative Pronouns 34

3.1.10 Conjunction . 34

3.1.11 Phrase . 34

3.1.12 Text . 35

3.1.13 Structural . 36

3.1.14 Idiom . 36

3.1.15 Tense . 36

3.1.16 Transfer . 37

3.1.17 Extra and Extend . 38

3.2 Limitations, Deficits and Problems . 40

3.2.1 n-ary Verbs and Predicates . 40

3.2.2 Ambiguities in Common Nouns . 42

3.2.3 Prepositions and Adverbial Dimensions in a Multilingual Grammar 42

3.2.4 Missing Types of Pronouns and Numbers 43

3.2.5 Missing Notion of Modalities . 43

3.2.6 Iterated Modifications . 43

3.2.7 Bounded Embedding Depth . 43

3.2.8 Overgeneration Due to Empty Constituents 43

4 A Sketch of German 43

4.1 Noun and Noun Phrase . 44

4.2 Adjective and Adjective Phrase . 46

4.3 Verb and Verb Phrase . 47

4.4 Adverb . 55

4.5 Clause . 56

5 The Resource Grammar LangGer 59

5.1 Noun Phrases . 61

5.1.1 Common Nouns . 67

5.1.2 Determiners . 73

5.1.3 Numbers and number words . 74

5.1.4 Construction of Noun Phrases . 93

5.1.5 Modification of Noun Phrases . 95

5.2 Adjective Phrases . 100

5.2.1 Construction of Adjective Phrases . 103

5.2.2 Modification of Adjective Phrases . 106

5.3 Adverb Phrases . 109

5.3.1 Categories of Adverbs . 109

5.3.2 Construction of Adverbs . 110

5.4 Verb Phrases and Clauses . 114

5.4.1 Verb Phrases VP and Incomplete Verb Phrases VPSlash 116

2

5.4.2 Clauses and Sentences . 138

5.4.3 Relative Clauses and Relative Sentences 148

5.4.4 Interrogative Clauses and Questions (improve!) 153

5.4.5 Interrogative Noun Phrases . 153

5.4.6 Interrogative Adverbs . 156

5.4.7 Interrogative Verb Phrases . 158

5.4.8 Interrogative Complements to Copula Verbs 158

5.4.9 Imperatives . 162

5.5 Conjunction (incomplete) . 164

5.6 Phrase . 168

5.7 Text . 169

5.8 Structural (todo) . 169

5.9 Idiom (todo) . 171

5.10 Tense . 172

5.11 Extension of LangGer to AllGer . 173

5.11.1 ExtendGer (partial) . 174

5.11.2 ExtraGer (todo) . 181

6 Improving Translation by Structural Transfer 187

6.1 The grammar DGrammar . 188

6.2 Adding flags normalize and transfer to put tree 188

6.3 Improving translations . 190

6.4 Translation of idiomatic expressions . 193

6.5 Translation of multi-word-expressions . 196

6.6 The modules DIdiomTransfer and DLang . 197

7 Lose Ends 200

7.1 How to Prove Properties of a Resource Grammar? 200

7.2 Problems . 201

7.3 ExtraGer: what to do to improve parsing . 205

7.3.1 Structural ambiguiuties . 205

3

Introduction

Why write this? As documentation of the existing Lang and LangGer for outsiders of GF, such
as linguists, computer scientists and programmers. As explanation of principal limits of Lang

and current limits of LangGer for GF-users. To provide a list of necessary improvements for
GF-developers.

1. Syntax of Natural Languages

For non-linguists, in particular for computer scientist or logicians interested in natural language,
we sketch some basic differences between formal languages and natural languages.

We do not discuss the usage of language, like utterances of expressions by a speaker or writer
and the effects of such utterances on hearers or readers, but just the form of expressions. For
different possible intentions behind an utterance, like asking, informing, commanding, there are
typical forms of expressions, but there is no clear-cut correspondence. We only discuss the form
of linguistic expressions, as they are written in standard writing conventions, without the often
important aspects added by intonation. The interpretation of expressions is situation-dependent
and also ignored, although occasionally some comparison with the semantics of formal languages
may be made.

1.1. Grammatical Notions

• kinds (types) categories of expressions

In formal language theory, a category A of expressions is interpreted as a set of strings
A ⊆ {w | w ∈ L∗ } over an alphabet (or lexicon) L.

Todo 1: Relate concatenation A · B of string sets with function application and division
A/B and B\A with incomplete expressions. In formal language theory, concatenation is
the only construction of type A → B → (A · B). In categorial grammar, concatenation
also has types A→ A\B → B and A/B → B → A, for example.

• grammatical constructions of expressions (from immediate constituents)

Syntactic constructions are typed functions f : A1 × . . . × An → B or f : A1 → (A2 →
(. . . (An → B) . . .)). The more precise a grammar should be, the more categories and
constructions are needed. With few categories, the constructions will typically overgener-
ate, i.e. produce strings w = f(w1, . . . , wn) : B from strings w1 : A1, . . . , wn : An which
are actually not in use. (For example, most binary verbs combine with noun phrases in
singular or plural as object, but some, e.g. to collect, impose a number restriction on their
argument; thus, a construction f : V2 → NP → VP overgenerates by giving e.g. collect
a (single) stamp.) If a grammar’s construction f : A → B overgenerates, the intended
linguistic construction is a partial function of type A → B, and A is wider than the in-
tended set of possible arguments of f . There is a trade-off between preciseness of language
description and grammar size in terms of number of categories and constructions.

• grammatical functions or relations between expressions.

The n different immediate constituents e1, . . . , en of an expression e stand in n different
(functional) syntactic relations f1, . . . , fn to the expression e. We say that ei is the fi of
e, or “ei realizes the function fi in e”. For example, a noun phrase may be the subject
of a clause, or realize the subject function in the clause. Conversely, if the subject of a

4

clause is a noun phrase, we speak of a nominal subject, if it is an infinitive, we speak of
an infinitival subject, etc.

(Expressions can function as complement of a verb, noun or adjective in a compound
expression. The complements of a verb (or: of a basic clause) are subject and object .
The verb, noun or adjective functions as head in these head + complements-expressions.
Complemented words can be extended by modifiers, such as: nouns by attributes, rel-
ative clauses, and adverbs; verbs (and basic clauses) by adverbs and adverbial clauses
(conditional clause? coordination?); adjectives by adadjectives. Other syntactic functions:
predicate (and subject) in a basic clause, attributive function of adjective phrases in noun
phrases, predicative function of adjective or noun phrases in basic clauses, adverbial func-
tion of adverbs and adjective phrases in basic clauses and basic noun phrases; coordinator
or subordinator in a conjoined expression?)

Remark 1 : A subexpression typically realizes a unique syntactic function or role in its
enclosing expression, but sometimes realizes two functions. For example, Fermat’s in
Fermat’s last theorem, simultaneouly plays the role of a determiner and of a possessive.
Similarly, in ACI-constructions, e.g. wir sahen den Hund die Katze jagen, the accusative
noun phrase den Hund is the object of the main verb sehen as well as the implicit subject
of the embedded verb jagen.

basic phrase = head combined with all complements,
phrase = basic phrase combined with modifiers/attributes.1

Ok for noun phrase and adjective phrase, but difference between verb phrase and clause:
the verb phrase misses the subject of its head verb, the clause does not.

• forms of expressions, agreement and rection: forms depending on inflection parameters
(declination for nouns, conjugation for verbs); congruence of form parameters, and depen-
dence of parameters from (main verb agrees with subject, or subject governs main verb in
finiteness features? die Leute mögen das nicht. Urlaub zu machen, ist schön.

• grammatical transformations: mappings between expressions of different categories

Define syntactic arity or complement frame to specify the type of possible complement
expressions of verbs, nouns and adjectives.

Language in use: utterances, imperatives, indexicals, reflexives and speaker, reciprocals, plural
subjects

1.2. Parallellism within a language

• predication/attribution/relativization

• declarative/relative/interrogative clause, NP, Adv

• negation of subsentential phrases

• personal/relative/reflexive pronoun

• word order and intonation

1Todo 2: relate these to the head-complement-structures and head-adjunct-structures of HPSG

5

2. Formal Languages and their Grammars

In Formal Language Theory, a formal language is a set of strings, i.e. sequences (a1, . . . , an) of
finite lengths n of elements a1, . . . , an from a finite set Σ of letters, the alphabet or vocabulary .
The set of all strings over Σ is denoted by Σ∗. The string () of length 0 is called the empty string
and denoted by ε. Two strings u = (a1, . . . , an) and v = (b1, . . . , bm) can be concatenated to a
string u·v = (a1, . . . , an, b1, . . . , bm) of length n+m. The concatenation operation · is associative,
i.e. (u · v) ·w = u · (v ·w) for all strings u, v, w, and has ε as neutral element, i.e. ε ·w = w · ε = w
for all strings w, so that (Σ∗, ·, ε) is a monoid . It is actually the free monoid generated by Σ,
i.e. no other identities u = v between strings u, v hold except those that follow from associativity
of · and neutrality of ε. We usually write a1 · · · an for (a1, . . . , an) and uv for u · v.

The concatenation operation can be lifted from strings to formal languages A,B ⊆ Σ∗ by

A ·B = {u · v | u ∈ A and v ∈ B },

and with {ε} as neutral element gives rise to the power set monoid (P(Σ∗), ·, {ε}) of all formal
languages over Σ. On the set level, besides this multiplicative monoid (P(Σ∗), ·, {ε}) there is
the additive, commutative monoid (P(Σ∗),∪, ∅), with set union

A ∪B = {u | u ∈ A or u ∈ B }

as associative operation and the empty set ∅ as neutral element. Their combination gives the
semiring of all formal languages over Σ,

(S,+, ·, 0, 1) = (P(Σ∗),∪, ·, ∅, {ε}),

where in addition to the monoid properties of (S,+, 0) and (S, ·, 1) the distributivity and anni-
hilation properties

A · (B + C) ·D = (A ·B ·D) + (A · C ·D) and A · 0 ·B = 0

hold, for all A,B,C,D ∈ S. On the semiring, there is a partial order ≤ defined by A ≤ B iff
A+B = B, the subset relation.

The terminology of Formal Language Theory can be misleading when applied to natural lan-
guages. First, though the alphabet of a written natural language is finite, its vocabulary often
is not: it may contain infinitely many number words, e.g. neunhunderttausendvierundfünzig in
German. Second, not every concatenation of letters gives a word in the language, and not every
concatenation of words gives a sentence or other expression of the language; the concatenation
comes with modification of its elements, like spelling modifications or inflectional modifications,
so it is not a free operation. Third, not every set of sentences (or other word sequences) over
a vocabulary makes a language; a natural language has to be closed under certain variations of
sentences and has to exclude others.

While the power set monoid or semiring of all formal languages over Σ is too wide a class to be
considered, there are submonoids or subsemirings that are large enough to at least contain the
ususal programming languages and the formula languages of mathematical logic.

Since the combination of expressions in natural languages is not free, we now switch from free
monoids Σ∗ to arbitrary monoids M . Given a monoid M = (M, ·, 1), its power set monoid
(PM, ·, {1}), with elementwise product A · B = { a · b | a ∈ A, b ∈ B } for A,B ∈ PM ,
has a submonoid FM of all finite subsets of M . As ∅ is a finite set and the union of two

6

finite sets is finite, FM = (FM,∪, ·, ∅, {1}) is actually a subsemiring of the power set semiring
PM = (PM,∪, ·, ∅, {1}) of all subsets of M .

The semiring FM is too small to study formal or natural languages: if languages are closed
under some form of iterative or inductive constructions of expressions2, we cannot avoid infinite
languages. The most important extension of FM is the subsemiring CM ⊆ PM of all context-
free subsets of M of the power set semiring PM . The set CM is the smallest set S ⊆ PM of
subsets of M such that (i) FM ⊆ S, (ii) if A,B ∈ S, then A ·B ∈ S and A∪B ∈ S, and (iii) if
n ∈ N and p1(X1, . . . , Xn), . . . , pn(X1, . . . , Xn) are built from variables X1, . . . , Xn and elements
of S using · and ∪, then the least sets A1, . . . , An ∈ PM satisfying

A1 ⊇ p1(A1, . . . , An),

... (1)

An ⊇ pn(A1, . . . , An),

belong to S. These sets A1, . . . , An can be obtained by starting from A1,0 = . . . = An,0 := ∅ ∈
FM ⊆ S, and given A1,k, . . . , An,k ∈ S, putting Ai,k+1 := pi(A1,k, . . . , An,k) ∈ S by (ii), and
finally showing that the sets Ai :=

⋃
{Ai,k | k ∈ N } for i = 1, . . . , n satisfy (1), for which one

first shows Ai,k ⊆ Ai,k+1 by induction on k.

Since the semiring properties hold in PM , any expression pi(X1, . . . , Xn) can be written as a fi-
nite sum αi,1∪ . . .∪αi,ri of products αi,j of variables X1, . . . , Xn and the members of S occurring
in pi(X1, . . . , Xn). By induction, these members of S can be assumed to be ∅ or singleton sets
{m} with m ∈ M . When M is the free monoid Σ∗, a system X1 ⊇ p1(X1, . . . , Xn), . . . , Xn ⊇
pn(X1, . . . , Xn) is therefore nothing else than a context-free grammar with “terminal sym-
bols” Σ, “nonterminal symbols” X1, . . . , Xn, “start symbol” X1 and “grammar rules” Xi ⊇ αi,j ,
with 1 ≤ i ≤ n and 1 ≤ k ≤ ri. A grammar rule like Xi ⊇ {v1}X1{v2} · · ·Xn{vn+1} with
v1, . . . , vn+1 ∈ Σ∗ is usually written as v1X1v2 · · ·Xnvn+1 → Xi. It can be seen as a function
f : Σ∗ × . . .×Σ∗ → Σ∗ given by f(w1, . . . , wn) = v1w1v2 · · ·wnvn+1, or rather as the restriction
f : A1 × . . .× An → Ai of this function to the sets or types A1, . . . , An ⊆ Σ∗ of strings defined
by the grammar.

A residuated partially ordered monoid (N, ·, 1,≤, \, /) is a partially ordered monoid with
two binary division operations \, / : N ×N → N such that for all k,m, n ∈ N ,

m · k ≤ n ⇐⇒ k ≤ m\n and k ·m ≤ n ⇐⇒ k ≤ n/m.

It follows that m\n is the largest k such that m · k ≤ n and n/m is the largest k such that
k ·m ≤ n,3 and if · is commutative, m\n = m/n. Since multiplication is monotone,

m ·m\n ≤ n and n/m ·m ≤ n.

For example, on (N, ·, 1,≤) with ordinary, commutative multiplication and standard order ≤,
the two divisions coincide, with e.g. 14/3 = 4 = 3\14. On the partially ordered monoid
(PM, ·, {1},⊆) there are two quotient operations

A/B = the largest C ∈ PM such that C ·B ⊆ A,
B\A = the largest C ∈ PM such that B · C ⊆ A.

2which of course is an idealization
3One says the monotone function k 7→ m ·k is residuated and has n 7→ m\n as its residual function, likewise

for k 7→ k ·m and n 7→ n/m.

7

It is easily seen that A/B = {m ∈ M | {m} · B ⊆ A } and B\A = {m ∈ M | B · {m} ⊆ A }.
(The existence and uniqueness of a largest C ∈ PM such that C ·B ⊆ A follows from the closure
of PM under arbitrary unions. Is CM a residuated semiring? Is { {m} | m ∈ M, {m} · B ⊆
A } ∈ CCM and hence it’s union A/B ∈ CM , for A,B ∈ CM? By Pentus’ theorem?)

The residual functions or language divisions B\· and ·/B play a minor role in formal
language theory, but are important for the theory of natural languages.

Todo 3: Movement and partial phrases: Verb phrases as sentences missing an initial (subject)
noun phrase in English, i.e. VP = NP \S, fronting of object-noun phrase in wh-movement and
relative clauses: RS = RelPron · S/NP. Yes/No-questions as variations of sentences (by intona-
tion and word order), Wh-questions as sentences with a noun or adverbial phrase substituted by
an interrogative noun phrase or interrogative adverbial: QNP ·NP\S ≤ QS, John’s car is broken
7→ whose car is broken?, or S/Adv ·QAdv ≤ QS John arrives today 7→ John arrives when?

First, consider context-free languages and grammars, then categorial grammars.

• Explain the Slash-categories and their use to describe extraction phenomena.

• complements B are arguments to predicates A/B or B\A and reduce the arity4:

(A/B) ·B ≤ A, B · (B\A) ≤ A.

• adverbials are pre- resp. post-modifiers P/P resp. P\P of predicates P that don’t change
the predicate category:5

P/P · P ≤ P, P · (P\P) ≤ P.

Other aspects of natural langages (in contrast to formal languages):

• unspecific scope of quantifiers (in NPs) and operators (in adverbials)

• Coordination as abbreviation mechanism (on various levels, not just Cl)

2.1. Parallel Multiple Context-Free Grammars (PMCFG)

Developed by Seki e.a. 1991 [10], [5], [7]

• as extension of context-free grammars, with categories of split-strings

• uses of split strings: paradigms and split-constituents

• difficulties to write context-free grammars: possible merging, extractions

Example of non-context-freeness in natural language: day by day, line by line versus N by N.

A parallel multiple context-free grammar (PMCFG) G = (Σ, N, S, F, P) over the monoid
M consists of a finite alphabet Σ ⊆ M , a finite set N of syntactic categories or nonterminals
A of dimension d(A) ∈ N, a distinguished start or sentence category S ∈ N (of dimension 1),

4A/B has arity n + 1, if A has arity n.
5unless we view predicates as modifiable in various dimensions and treat the adverb as dimension argument.

But adverbs are largely optional, which complicates the treatment as dimension argument.

8

a finite set F of concatenation functions f : Md1 × . . . ×Mdn → Mdr of dimensions d(f) =
d1 × . . .× dn → dr with d1, . . . , dn, dr ∈ N (depending on f), such that each component of

f((w1,1, . . . , w1,d1), . . . , (wn,1, . . . , wn,dn)) ∈Mdr

is a product of elements from {w1,1, . . . , wn,dn} ∪Σ∗, and a finite set P of grammar rules (A→
f [A1, . . . , An]) with f ∈ F and A,A1, . . . An ∈ N such that d(f) = d(A1)× . . .× d(An)→ d(A).

Each concatenation function f : d1× . . .×dn → dr lifts to a monotone function P(f) : P(Md1)×
. . .× P(Mdn)→ P(Mdr) on the set level, defined by

P(f)(X1, . . . , Xn) = { f(~w1, . . . , ~wn) | ~w1 ∈ X1, . . . , ~wn ∈ Xn } ⊆Mdr

for Xn ∈ P(Md1), . . . , Xn ∈ P(Mdn). Therefore, there are least sets L(A) ⊆ Md(A), A ∈ N ,
such that for all grammar rules (A→ f [A1, . . . , An]) ∈ P

{ f(~w1, . . . , ~wn) | ~w ∈ L(A1), . . . , ~wn ∈ L(An) } ⊆ L(A).

Notice that L(A) belongs to P(〈Σ〉d(A)) for the submonoid 〈Σ〉 of M generated by Σ.

A syntax rule (A→ f [A1, . . . , An]) can be seen as a typed function symbol f : A1×. . .×An → A.

Q1: Is the family pm-CM of parallel, multiple context-free subsets of M<ω a semiring, even a
residuated semiring, or why can we use the Slash-categories?

Since P(M r) is a partial order, each construction P(f) : P(Md1) × . . . × P(Mdn) → P(Mdr)
has residuals, i.e. for any L1 ∈ PMd1 , . . . , Ln ∈ P(Mdn) and L ∈ P(Mdr), there is a largest set
X ∈ PMdi with P(f)(L1, . . . , Li−1, X, Li+1, . . . , Ln) ⊆ L, namely

X = { ~w ∈Mdi | P(f)(L1, . . . , Li−1, {~w}, Li+1, . . . , Ln) ⊆ L }.

If all syntax rules f : A1× . . .×An → A with the same result type A have a (unique?) common
argument type B, we can define A/B as ??? The VP has a field nn : Agr => Str * ... *

Str for its nominal object; it is filled with the paradigm of empty strings in a VPSlash = VP **

{c2:Prep}. A construction of a VPSlash, like

Slash2V3 : V3 -> NP -> VPSlash ; -- give it (to her)

contributes to VPSlash = VP/NP by . . .

There are several advantages in using a PMCFG to express the grammar of a natural language,
resp. in interpreting categories by sets of string tuples rather than by sets of strings:

• paradigms: a word can have different forms, reflecting different syntactic roles in different
contexts of usage. For example, a noun in German has four singular and four plural forms,
so it is best view as an 8-tuple of strings, (w1, . . . , w8); it is useful to distinguish eight
abstract noun forms, even if for each noun, the nominative plural and accusative plural
forms are the same string. The same applies to phrases, e.g. clauses in different tenses.

• discontinuous phrases: a phrase need not be continuous, i.e. a sequence of consecutive
words in a sentence, but can be split in two or more parts. For example, in German
a relative clause (or infinitival object) of a nominal object is often moved behind the
infinite part of the verb, as in “Wir haben die Warnung mißachtet, die auf der Packung
stand”, where both the nominal object “die Warnung, die auf der Packung stand”, and
the predicate “haben mißachtet” are split in two parts.

9

• alternative linearizations: it may be useful to distinguish a standard from non-standard
forms of a phrase. For example, an initial part of an expression may be glued with a
preceding word, e.g. “in dem warmen Zimmer” 7→ “im warmen Zimmer”, “in das warme
Zimmer” 7→ “ins warme Zimmer”, so we may distinguish the standard form “das warme
Zimmer” from a shortened one without definite article, “warme Zimmer”, and use the
second in combination with certain prepositions.

More complicated: “der Angeklagte hat Angaben nicht gemacht” 7→ “der Angeklagte hat
keine Angaben gemacht”. “ich trinke ein Bier nicht” 7→ “ich trinke kein Bier”. (For
this, we apparantly have to separate the predicate from the indefinite nominal subject and
objects, and be able to omit the indefinite article to perform sentence negation.)

Remark 2 : The choice between different forms or alternative linearizations has to be imple-
mented in GF by a table, a finite function from abstract forms to strings, e.g. Gender×Number→
String. (For example, see p. 66 for the possible contraction of prepositions with definite articles.)
(One can also have alternative tree constructions in application grammars.)

Problem 1. The main category of a PMCFG should have dimension 1, so that parsers take
ordinary strings as input. With context-free grammars, word order is encoded in the tree struc-
ture6; for languages with relatively free word order, this leads to a high number of grammar
rules.

For a PMCF-grammar, the same holds for each dimension. If A is an n-dimensional, M a
1-dimensional category and f : M → A → A a modification rule that attaches the modifying
string to the right of the i-th component, i.e. for (m) ∈M , ~a = (a1, . . . , an) ∈ A,

f((m), (a1, . . . , an)) = (a1, . . . , ai−1, aim, ai+1, . . . , an) ∈ A,

iterated modifications of ~a by m1, . . . ,mk ∈M lead to ~a′ ∈ A with different component ~a′i = aim,
m ∈ Mk, that are constructed by different trees. So, for each component, as in a context-free
grammar the word order is reflected by tree structure. However, the trees also reflect different
orders of modifier applications in different components ai, aj of ~a, and these are not to be seen
in the resulting tuple

~a′ = (a1, . . . , ai−1, aim, ai+1, . . . , aj−1, ajm
′, aj+1 . . . , an) ∈ A.

If a sentence s ∈ S is constructed from an ~a ∈ A by g(~a) = s, then g can only concatenate
the components of ~a (and additional constant strings). But is this any more than the ambiguity
problem for CFGs? [In LangGer, we insert different kinds of complements of a verb in different
components of a vp:VP, and the ordering in which the parser found them in the input s is
irrelevant for ~a, though remembered in the tree structure; but different trees with the same
linearization in Ger might have different linearizations in Eng or some other language. So, the
question is how far does, should and can the abstract grammar encode the word order of its
languages?]

Todo 4: Discuss the problems to write a PMCFG:

1. Tuples can be used either for merge operations ~a ·~b = (a1, b1, a2, b2, . . .), or for permutation
operations, ~b = (aπ1, . . . , aπn), or as mixtures of both, including copying and concatenating
of components,

6though not uniquely: if the grammar is ambiguous, the same string may be the linearization of different trees

10

2. In GF, tupels are also used for alternatives, e.g. use pre- and post-positions as circum-
positions p = {s1:Str; s2:Str} and then concatenate both components appPrep p np =
p.s1 ++ np.s ++ p.s2. It is not obvious if in such cases it is always assumed that at least
one component is empty. Should there be a discipline when to use several components, and
when to use a tuple {s : Str * Str}? It’s hard to know what the fields of a linearization
record are used for, e.g. complements or modifiers?

3. If several modifying elements may be combined with a head element, as for noun mod-
ification by possessive, adjective, adverb and relative clause, these can either be stored
in separate fields of the implementation record, or concatenated in a single field. The
first possibility is useful to fix a relative order of the modifiers, via cn.ap ++ cn.s ++

cn.poss ++ cn.adv ++ cn.rel when using the cn, but the order in which the fields are
filled –coded in the tree– is irrelevant, hence we pay by ambiguity. The second possibility
is useful to allow for different orders of the modifiers, say cn.s = ap.s ++ n.s ++ adv.s

++ poss.s and cn.s = ap.s ++ n.s ++ poss.s ++ adv.s, probably including some that
are not correct in a concrete language.

4. Is it plausible that Currying is a good idea for syntax? For example, if binary “verbs” can
be obtained by adding a complement to ternary verbs, then passive constructions may not
work for the binary verbs obtained that way.

2.2. The Grammatical Framework (GF)

A GF-grammar consists of an abstract grammar , containing declarations of syntactic cat-
egories and syntactic constructions, and a number of concrete grammars, which provide
implementation types of the syntactic categories and linearization functions of the syntactic
constructions declared in the abstract grammar. GF-grammars are multilingual in the sense
that the same abstract grammar can have several concrete grammars.

2.2.1. Abstract grammars

An abstract grammar can be split into different (abstract) modules (c.f. Section 3.1). Typically,
there is a module containing the declarations of syntactic categories, and several extensions of
this module containing syntactic constructions to build expressions of specific categories.

A syntactic category (or: abstract type) C is declared by7

cat C ;

a syntactic construction (or: grammar rule name) f of arity k is declared by

fun f : C1 -> ... -> Ck -> C ;

where C1, . . . , Ck, C are syntactic categories. The declared constructions can be combined to
well-typed terms, called trees: if fun f:C is a 0-ary construction, then f is an atomic tree of
category C; if t1, . . . , tk are trees of categories C1,. . . ,Ck and fun f : C1 -> ...-> Ck -> C is
a syntactic construction, then f t1 . . . tk is a compound tree of category C.

7We here only sketch a fragment where the abstract language is a language of simply typed terms and ignore
that GF more generally admits dependent types, although these can be very useful for natural languages, e.g. to
define categories NP Sg and NP Pl of noun phrases in singular and plural, respectively.

11

2.2.2. Concrete Grammars

A concrete grammar CG of an abstract grammar G provides a linearization category for each
syntactic category and a linearization function for each syntactic construction of G. These are
types and terms of a certain programming language.

The linearization category (or: implementation type) of a syntactic category C is a record
type associated to C by a declaration

lincat C = {s1 : sigma1 ; ... ; sn : sigman ; p1 : tau1 ; ... ; pm : taum} ;

where s1,. . . ,sn and p1,. . . ,pm are labels and sigma1,. . . ,sigman and tau1,. . . ,taum are types of
a specific implementation (programming) language.

The linearization function (or: grammar rule implementation) of a syntactic construction
f : C1 -> ... -> Ck -> C is defined in the form

lin f x1 ... xk = t ;

where t is a term of the implementation type of C in the programming language and is built
from variables x1,. . . ,xk of the implementation types of C1,. . . ,Ck.

Todo 5: check! The underlying programming languages has basic types like Bool and Str for
boolean values and strings, parameter types Ty (with finitely many values) declared by

param

Ty = F1 ty_11 ... ty_1k | ... | Fl ty_l1 ... Fl ty_lk’

where F1,. . . ,Fl are type constructors and ty 11, . . . , ty lk’ are parameter types; moreover,
there are record types

{l1 : ty_1 ; ... ; lk : ty_k}

with pairwise different labels l1, . . . , lk, and types

ty => ty’

of functions from a parameter type ty to a type ty’. Types ty can be given names T by type
declarations

oper

T : Type = ty ;

The implementation type

{s1 : sigma1 ; ... ; t1 : tau1 ; ... }

of a syntactic category typically has some fields s1, . . . of type Str or ty1 => ... => tyk =>

Str and some fields t1, . . . of parameter types. Records of this type contain fixed strings or tables
with result type Str, e.g. inflection paradigms for nouns in German, of type Number => Case

=> Str, or word order variations of an expression, of type Order => Str for some parameter
type Order. In general, a subexpression of a sentence in natural language is not a substring of

12

the sentence, but can be split into several, non-adjacent substrings, so there will be several such
fields s1, . . . sk. Besides these, there typically are some fields t1, . . . , tl of parameter types,
holding fixed, inherent parameters, e.g. fields t1:Gender and t2:Person holding the gender and
person values of a personal pronoun.

Remark 3 : Different syntactic categories can have the same implementation type, e.g. particles
and adverbs might have the implementation type {s:Str} of a record with a single field of type
string. But the declaration lincat C = ty implicitly makes the implementation type unique
by adding a (hidden) field whose label lock C contains the name C of the syntactic category:
the declaration lincat C = ty is equivalent to

oper C : Type = ty ** {lock_C : {}} ; -- or: oper C : Type = lin C ty ;

Todo 6: values of these types, records {s1 = w1 ; ... ; t1 = x1 ; ... }, \\x => t, field
selection r.s and table selection t!s, overwriting record extension r ** s, opers \x− > t, . . .

The GF-Book: Ranta [9], the overview for programmers: Ranta [8].

2.2.3. Grammar compilation (todo)

The GF compiler: Angelov [1]

Compilation of GF-grammars to PMCFG-grammars: Inherent parameters p of a category C are
compiled to PMCFG-categories Cp. Grammar rules f : C → D → E to PMCFG-rules fp,q,r :
Cp → Qq → Er for parameter values p, q, r. (Compilation of TestLangGer with generation of
PMCFG: 324164 msec)

Formal language theory: Switch from syntactic categories as sets of strings and grammar rules as
inclusions A ·X · Y ⊆ X to types and typed functions f : A→ X → Y → X, while maintaining
an interpretation of types by sets of n-tuples of strings (and parameter values).

Result 1: Linearization of trees

Notice that linearization cannot be done by case distinction on the abstract form of the argu-
ments. Explain why this is necessary for parsing.

GF-book, p.147: “So, when is run-time transfer needed? The general answer follows from
a fundamental property of GF: that linearization is compositional . Compositionality means
that the linearization of any tree is a function of the linearizations of its subtrees. In other
words,

(f x1 . . . xn)∗ = f∗ x∗1 . . . x
∗
n

where t∗ is the linearization of a tree t, and f∗ is the linearization function of a function f . This
means that linearization cannot inspect the structure of the subtrees themselves, but only of
their linearizations. Hence, whenever an operation is not compositional, it cannot be encoded
as linearization in GF, and hence needs run-time transfer.”

Result 2: The GF parser: Angelov [1].

Remark 4 : The parser operates on a category S and a string w ∈ Σ∗ and tries to find trees
t that linearize to w. However, if S has dimension n > 1, it accepts w if there is a partial
tree t(x1, . . . , xk) : S with some unknown subtrees x1, . . . , xk represented by metavariables
?1,?2,...,?k, such that w is a component ai of the linearization (a1, . . . , an) ∈ (Σ∗)n of some
completion of t to a tree t(s1, . . . , sk) without free variables.

Conversely, the linearization of a grammar rule f : B → A with m-dimensional category B ought
to be a term t : A where all components of arguments v = (b1, . . . , bm) are used in the string

13

fields of t; otherwise, a partial tree t = f(. . . xj . . .) : A will be produced and metavariables ?m
appear in the syntactic structure.

14

3. Grammars in the Resource Library

The Resource Grammar Library of the GF provides

(i) an abstract grammar Grammar consisting of a set of 106 syntactic categories together with
a set of 278 abstract syntactic constructions8,

(ii) a library of concrete grammars GrammarEng, GrammarSpa, . . . for about 50 natural lan-
guages like English, Spanish, . . . implementing this abstract grammar Grammar, and

(iii) abstract lexicons Lexicon and Structural of about 350 content words and 120 struc-
tural words, with implementations LexiconEng, LexiconSpa, . . . and StructuralEng,
StructuralSpa, . . . for the 50 natural languages.

The grammars and lexicons are combined to abstract modules Lang and their language specific
concrete modules LangEng, LangSpa, . . . , intended for testing the grammars. Some of the
concrete grammars are under development and only partial implementations of Grammar and
Lang.

3.1. The Abstract Resource Grammar Lang

Todo7: This can only be a repetition of gf-rgl/src/abstract/, but besides the single examples
given there, a few lines of explanatory text for each rule could be helpful. There may also be
proposals to improve Lang.

Abstract syntax as a (free) algebra of simply typed terms (abstract trees). Types correspond
to expression categories (syntactic types), a term- or tree-constructor can be seen as the name
of a syntactic construction, turning expressions of input categories to an expression of result
category.

Lang consists of modules Grammar and Lexicon9 using the same module Cat of syntactic cate-
gories. The Grammar consists of modules

abstract Grammar =

Noun,

Verb,

Adjective,

Adverb,

Numeral,

Sentence,

Question,

Relative,

Conjunction,

Phrase,

Text,

Structural,

Idiom,

Tense,

8113 data declarations + 273 fun declarations in Grammar - 108 fun declarations in Structural
9We skip some additional modules Construction, Documentation and Markup.

15

Transfer

;

declaring syntactic constructions as function symbols whose types are simple types with syn-
tactic categories as base types. Each of these modules extends a module Cat that declares
syntactic categories as base types, from which function types can be built that serve as types of
grammatical constructions, i.e. declared grammar rules in the above modules.

3.1.1. Categories

Todo 8: Maybe I should not give all categories in one sweep, as Cat.gf does, but give them in
connection with the construction rules, i.e. the determiner and noun categories in Noun, etc.,
but these need AP, RS, etc., which are not explained in Noun.

Preliminary extraction from abstract/Cat.gf:

-- Sentences and clauses (Sentence.gf, Idiom.gf)

S ; -- declarative sentence e.g. "she lived here"

QS ; -- question e.g. "where did she live"

RS ; -- relative e.g. "in which she lived"

Cl ; -- declarative clause, with all tenses e.g. "she looks at this"

ClSlash;-- clause missing NP (S/NP in GPSG) e.g. "she looks at"

SSlash ;-- sentence missing NP e.g. "she has looked at"

Imp ; -- imperative e.g. "look at this"

It seems the ClSlash and SSlash are meant to be categories of clauses and sentences missing
an object noun phrase. (At least, the implementation categories show a field c2 : Prep in Eng.)

-- Questions and interrogatives (Question.gf)

QCl ; -- question clause, with all tenses e.g. "why does she walk"

IP ; -- interrogative pronoun e.g. "who"

IComp ; -- interrogative complement of copula e.g. "where"

IDet ; -- interrogative determiner e.g. "how many"

IQuant; -- interrogative quantifier e.g. "which"

-- Relative clauses and pronouns (Relative.gf)

RCl ; -- relative clause, with all tenses e.g. "in which she lives"

RP ; -- relative pronoun e.g. "in which"

-- Adjectival phrases (Adjective.gf)

AP ; -- adjectival phrase e.g. "very warm"

-- Nouns and noun phrases (Noun.gf, Structural.gf)

CN ; -- common noun (without determiner) e.g. "red house"

NP ; -- noun phrase (subject or object) e.g. "the red house"

Pron ; -- personal pronoun e.g. "she"

16

The syntactic category Det of determiners is, in a sense, a collection of expression categories
that satisfy the same syntactic function, without common structure (or build from a head
component); in formal language theory terms it is a sum Det = Num + Card + Ord + Pron.

-- The determiner structure is: Predet (QuantSg | QuantPl Num) Ord.

Det ; -- determiner phrase e.g. "those seven"

Predet ; -- predeterminer (prefixed Quant) e.g. "all"

Quant ; -- quantifier (’nucleus’ of Det) e.g. "this/these"

Num ; -- number determining element e.g. "seven"

Card ; -- cardinal number e.g. "seven"

ACard ; -- adjective like cardinal e.g. "few", "many"

Ord ; -- ordinal number (used in Det) e.g. "seventh"

DAP ; -- determiner with adjective e.g. "three small"

-- Numerals (Numeral.gf)

Numeral ; -- cardinal or ordinal in words e.g. "five/fifth"

Digits ; -- cardinal or ordinal in digits e.g. "1,000/1,000th"

-- Structural words (Structural.gf)

Conj ; -- conjunction e.g. "and"

Subj ; -- subjunction e.g. "if"

Prep ; -- preposition, or just case e.g. "in"

Astonishingly, the abstract grammar has a category Prep (that includes cases), though clearly,
prepositions are language-specific. As far as they are used to connect a complement to verbs,
nouns or adjectives, they come with the implementation of the verb, noun or adjective in concrete
grammars and do not show up in the abstract grammar.

-- Verb phrases (Verb.gf)

VP ; -- verb phrase e.g. "is very warm"

Comp ; -- complement of copula, such as AP e.g. "very warm"

VPSlash ; -- verb phrase missing complement e.g. "give to John"

The category VP is the category of (basic, noncoordinated) clauses missing a (nominal) subject,
consisting of a finite verb with all complements except a subject, and possibly some modifying
adverbials (and appositions?). It corresponds to the category S/NP of categorial grammar and
GPSG, or rather to Cl/NP, except that it is not assumed that the missing np:NP can only be
added at the end of a vp:Cl/NP to give a clause cl:Cl. The category VPSlash corresponds to
the category VP/NP, i.e. of clauses missing a nominal subject and a nominal object.

-- Words of open classes (Lexicon.gf, additional lexicon modules)

V ; -- one-place verb e.g. "sleep"

V2 ; -- two-place verb e.g. "love"

17

V3 ; -- three-place verb e.g. "show"

VV ; -- verb-phrase-complement verb e.g. "want"

VS ; -- sentence-complement verb e.g. "claim"

VQ ; -- question-complement verb e.g. "wonder"

VA ; -- adjective-complement verb e.g. "look"

V2V ; -- verb with NP and V complement e.g. "cause"

V2S ; -- verb with NP and S complement e.g. "tell"

V2Q ; -- verb with NP and Q complement e.g. "ask"

V2A ; -- verb with NP and AP complement e.g. "paint"

A ; -- one-place adjective e.g. "warm"

A2 ; -- two-place adjective e.g. "divisible"

N ; -- common noun e.g. "house"

N2 ; -- relational noun e.g. "son"

N3 ; -- three-place relational noun e.g. "connection"

PN ; -- proper name e.g. "Paris"

Some additional categories are inherited from Common.gf. They are defined there since they
have the same implementation in all languages in the resource grammar library (typically,
just a string). These categories are AdA, AdN, AdV, Adv, Ant, CAdv, IAdv, PConj, Phr,

Pol, SC, Tense, Text, Utt, Voc, Interj. Moreover, the list categories ListAdv, ListAP,

ListNP, ListS are defined in Conjunction.gf and only used locally there.

There are no categories for verbs of arity greater than three. Of course, missing categories like
these can be added to Cat.gf, suitable lexical entries to Lexicon.gf and new constructors to
Verb.gf, Noun.gf and Adjective.gf, at least. However, higher arities of verbs can easily lead
to complexity issues in grammar compilation and parsing.

Remark 5. There are no categories for nouns with non-nominal complements, like NV for nouns
with an infinitival complement, e.g. “belief:NV to become a millionaire”, or N2V for nouns with a
nominal and an infinitival complement, e.g. “advice:N2V to an exhausted colleague to work less”.
There are no categories for adjectives with non-nominal complements, like AV for adjectives with
an infinitival complement, e.g. “eager:AV to become the boss”.

Sentential, interrogative and infinitival (subject or object) complements can be added to nouns
and adjectives via the rules SentCN : CN -> SC -> CN and SentAP -> AP -> SC -> AP, and
sentential subjects via PredSCVP : SC -> VP -> Cl. Such complements are constructed by

EmbedS : S -> SC ; -- that she goes

EmbedQS : QS -> SC ; -- who goes

EmbedVP : VP -> SC ; -- to go

But these cannot be reflexive, I guess: “(seine) Versuche, sich zu bessern”

The one-, two- and three-place verbs V, V2, V3, nouns N, N2, N3 and adjectives A, A2 take nominal
objects, which are related to the verb, noun or adjective by a specific case or preposition with
case. These are language-dependent and specified in the implementation of the verb, noun, or
adjective, e.g. eng. to believe in versus ger. glauben an.

Remark 6 : It is somewhat unclear which of two nominal objects plays which syntactic roles, and
whether the role is the same in all concrete languages. For example, are direct and indirect

18

objects coded by complement c2 and c3 uniformly? Are english di-transitive verbs like give sb
sth and binary verbs like give sth to sb correctly related?

3.1.2. Noun

From Noun.gf: (but in different order)

Construction of Determiners, Quantifiers and Numerals

-- The determiner has a fine-grained structure, in which a ’nucleus’

-- quantifier and an optional numeral can be discerned.

DetQuant : Quant -> Num -> Det ; -- these five

DetQuantOrd : Quant -> Num -> Ord -> Det ; -- these five best

-- Whether the resulting determiner is singular or plural depends on the

-- cardinal.

-- All parts of the determiner can be empty, except Quant, which is

-- the "kernel" of a determiner. It is, however, the Num that determines

-- the inherent number.

NumSg : Num ; -- [no numeral, but marked as singular]

NumPl : Num ; -- [no numeral, but marked as plural]

NumCard : Card -> Num ; -- one/five [explicit numeral]

Notice that determiners generally depend on number, as can be seen from the types of DetQuant,
DetQuantOrd and the constants someSg Det, somePl Det. The number of a noun phrase,
e.g. when used as subject of a clause, can (almost) always be chosen freely by the speaker10, so
the it is a design decision of Grammar to give determiners an inherent number (which is inherited
to noun phrases and then determines the form of verbs in subject-verb combinations).

-- Card consists of either digits or numeral words.

data

NumDigits : Digits -> Card ; -- 51

NumNumeral : Numeral -> Card ; -- fifty-one

-- The construction of numerals is defined in [Numeral Numeral.html].

-- A Card can be modified by certain adverbs.

fun

AdNum : AdN -> Card -> Card ; -- almost 51

-- An Ord consists of either digits or numeral words.

10except that a reciprocal pronoun can enforce plural subject, e.g. they talk to each other, and some verbs
demand plural objects, e.g. to collect stamps (or mass nouns: to collect money).

19

-- Also superlative forms of adjectives behave syntactically like ordinals.

OrdDigits : Digits -> Ord ; -- 51st

OrdNumeral : Numeral -> Ord ; -- fifty-first

OrdSuperl : A -> Ord ; -- warmest

-- One can combine a numeral and a superlative.

OrdNumeralSuperl : Numeral -> A -> Ord ; -- third largest

-- Definite and indefinite noun phrases are sometimes realized as

-- neatly distinct words (Spanish "un, unos ; el, los") but also without

-- any particular word (Finnish; Swedish definites).

IndefArt : Quant ; -- a/an

DefArt : Quant ; -- the

Construction of Common Nouns CN

-- Simple nouns can be used as nouns outright.

UseN : N -> CN ; -- house

-- Relational nouns take one or two arguments.

ComplN2 : N2 -> NP -> CN ; -- mother of the king

ComplN3 : N3 -> NP -> N2 ; -- distance from this city (to Paris)

-- Relational nouns can also be used without their arguments.

-- The semantics is typically derivative of the relational meaning.

UseN2 : N2 -> CN ; -- mother

Use2N3 : N3 -> N2 ; -- distance (from this city)

Use3N3 : N3 -> N2 ; -- distance (to Paris)

One may expect relational nouns to also have prepositional complements, but although Cat has
a category Prep of prepositions, the argument category in ComplN2 and ComplN3 is NP, not Prep.
Likewise, complementation rules for relational adjectives A2 and verbs V2, V3 do not have Prep

as argument category, but NP. The preposition used to combine a complement with a relational
noun, adjective or verb is specific to (and must be derived from) this noun, adjective or verb.

Remark 7. The various ways that a preposition can be used in a language does not allow for
a uniform translation of prepositions, nor can a verb be combined with an arbitrary preposition.
So one should not expect Prep as argument category. However, there are such rules in Grammar:

20

Adverb.PrepNP : Prep -> NP -> Adv for: in the house (see Remark 19, p. 29),
Extend.PrepCN : Prep -> CN -> Adv for: by accident,
Extend.AdvRNP : NP -> Prep -> RNP -> RNP for: a dispute with his wife11,
Question.PrepIP : Prep -> IP -> IAdv for: with whom,
Relative.FunRP : Prep -> NP -> RP -> RP for: the mother of whom12

Verb.VPSlashPrep : VP -> Prep -> VPSlash for: live in (the city)
Sentence.SlashPrep : Cl -> Prep -> ClSlash for: (with whom) he walks.

Since we cannot expect a one-to-one translation of prepositions from one language to another,
we here have to consider Prep as a category of abstract prepositions fulfilling specific semantic
purposes, like specifying positions or directions in space, relative to the speaker or hearer.

Modification of common nouns

-- Nouns can be modified by adjectives, relative clauses, and adverbs.

AdjCN : AP -> CN -> CN ; -- big house

RelCN : CN -> RS -> CN ; -- house that John bought

AdvCN : CN -> Adv -> CN ; -- house on the hill

The modification rule AdvCN is overgenerating, since Adv subsumes adverbial clauses, e.g. *house,
because the weather was fine. The rule is apparently meant to be used only with pro-adverbs,
e.g. over there = dahinten, and adverbs built from (meaningful) prepositions, e.g. under : Prep
=< Adv/NP. Q3: Can this restriction be implemented, or is it better to rely on syntactically
correct input to parsing?13

-- Nouns can also be modified by embedded sentences, questions and infinitives.

-- For some nouns this makes little sense, but we leave this for applications

-- to decide.

SentCN : CN -> SC -> CN ; -- question where she sleeps

The rule SentCN only makes sense for nouns derived from (or at least related to) verbs or adjec-
tives with suitable (and similar) complement frame, and a few other nouns like fact, question,
command. Extensions of nouns by sentences, questions and infinitives are complementations
rather than modifications. E.g., from verbs know:VQ, know:VS, believe:VS, but ∗believe:VQ,
one might derive nouns of suitable noun categories, “knowledge (who VP)”, but not “belief
(who VP)”. Since SentCN operates on arbitrary common nouns cn:CN and arbitrary sentential
complements sc:SC, and can be applied repeatedly, it is highly overgenerating.

Remark 8. (c.f. Remark 5). Instead of the category SC and the modification rule SentCN,
Grammar better had categories like NS, NQ, NV, AS, AQ, AV and complementation rules ComplNS : NS

-> S -> CN etc. to combine nouns and adjectives of the appropriate category with sentential, in-
terrogative and infinitival complements, and categories like N2V, e.g. for “advice to John to work
less”. Since the non-nominal objects seem optional, we’d also need embedding rules UseNS : NS

13A common noun modified by several of these modifications has several trees differing in the relative order of
modification. To reduce spurious ambiguities, one can implement a tree transformation nfCN : CN -> CN that
collapses the different modification orders. See Remark 34 and p. 190.

21

-> CN etc. The same noun might have different complement frames, e.g. “belief in God” and
“belief that God exists”, or “Hoffnung auf Erlösung” and “Hoffnung, zu überleben”. Since com-
plements are attached “closer” to the noun than modifiers, some spurious ambiguities would be
avoided, i.e. we only had (AdjCN ap (ComplNS n s)) instead of the two constructions (AdjCN

ap (SentCN (UseN n) s)) and (SentCN (AdjCN ap (UseN n)) s).

Modification of CN by apposition, possessive and partitive noun phrases:

-- Apposition. This is certainly overgenerating.

ApposCN : CN -> NP -> CN ; -- city Paris (, numbers x and y)

-- Possessive and partitive constructs

PossNP : CN -> NP -> CN ; -- house of Paris, house of mine

PartNP : CN -> NP -> CN ; -- glass of wine

Remark 9 : The examples for ApposCN are rather examples for a more restricted apposition by
(a conjunction of) names, the apostles Peter and Paul, so maybe the type should be ApposCN :

CN -> [PN] -> CN, where [PN] is the category of lists of names PN (c.f. category Conjunction).
Apposition by a full noun phrase ought to be separated by commata: Paris, the capital of France,
or Peter and Paul, my favorite apostles, or the Sophists, a group of philosphers in ancient greece,.

Proposal 1: Let ApposCN embed the apposition in commata and add a separate apposition
ApposPN : CN -> [PN] -> CN without commata. Or add ExtApposCN for post-nominal appo-
sitions in commata. Todo 9: Compare with Extend.ApposNP. /

Q4: Is there a German version of PossNP when the noun phrase is a personal pronoun, e.g. PossNP
she Pron = Haus von ihr?

Construction of Noun Phrases NP

-- The three main types of noun phrases are

-- - common nouns with determiners

-- - proper names

-- - pronouns

fun

DetCN : Det -> CN -> NP ; -- the man

UsePN : PN -> NP ; -- John

UsePron : Pron -> NP ; -- he

-- Pronouns are defined in the module Structural.gf.

-- Determiners can form noun phrases directly.

DetNP : Det -> NP ; -- these five

In some languages, determiners have special forms for such “stand-alone” usages.

22

-- Nouns can be used without an article as mass nouns. The resource does

-- not distinguish mass nouns from other common nouns, which can result

-- in semantically odd expressions.

MassNP : CN -> NP ; -- beer

Remark 10 : The rule is massively overgenerating, so one better omits it for parsing, i.e. uses
Grammar - [MassNP] for parsing. It seems better to add a lexical category MN of mass nouns
and a more limited construction MassNP : MN -> NP. Then lexical entries fun n:MN can specify
which nouns n can be used as mass nouns. For example, a mass noun in singular can be used as
a noun phrase, e.g. life is not easy, while nouns in general cannot. Some quantifiers cannot be
used with mass nouns, others can only be used with mass nouns: ∗much child, much time, many
children, ∗many time. However, ordinary count nouns can also be used without determiner: er
hat Haus und Hof verloren und Frau und Kind verlassen. Q5: What can be done to restrict
determinerless usage of CN as NP and limit the ambiguities in parsing?

Modification of NP and DAP

-- A noun phrase already formed can be modified by a predeterminer.

PredetNP : Predet -> NP -> NP ; -- only the man

-- A noun phrase can also be postmodified by the past participle of a

-- verb, by an adverb, or by a relative clause

PPartNP : NP -> V2 -> NP ; -- the man seen

AdvNP : NP -> Adv -> NP ; -- Paris today

ExtAdvNP: NP -> Adv -> NP ; -- boys, such as ..

RelNP : NP -> RS -> NP ; -- Paris, which is here

-- This is different from the partitive, as shown by many languages.

CountNP : Det -> NP -> NP ; -- three of them, some of the boys

-- Conjoinable determiners and ones with adjectives

AdjDAP : DAP -> AP -> DAP ; -- the large (one)

DetDAP : Det -> DAP ; -- this (or that)

3.1.3. Adjective

Construction of adjective phrases

The file gf-rgl/src/abstract/Adjective.gf declares constructions for adjective phrases.

abstract Adjective = Cat ** {

fun

-- The principal ways of forming an adjectival phrase are positive,

23

-- comparative, relational, reflexive-relational, and elliptic-relational.

PositA : A -> AP ; -- warm

ComparA : A -> NP -> AP ; -- warmer than I

ComplA2 : A2 -> NP -> AP ; -- married to her

ReflA2 : A2 -> AP ; -- married to itself

UseA2 : A2 -> AP ; -- married

UseComparA : A -> AP ; -- warmer

CAdvAP : CAdv -> AP -> NP -> AP ; -- as cool as John

-- The superlative use is covered in Ord.

AdjOrd : Ord -> AP ; -- warmest

Remark 11 : The rule ComplA2 might be replaced by rules SlashA2 : A2 -> APSlash and
ComplAPSlash : APSlash -> NP -> AP, with APSlash = AP ** {c2:Preposition}.
Todo 10: Discuss why Grammar has no categories APSlash and NPSlash.

Modification of adjective phrases

The first modification rule SentAP : AP -> SC -> AP adds a sentential complement, i.e. sen-
tence, infinitive or question to an adjective phrase:

-- Sentence and question complements defined for all adjectival phrases,

-- although the semantics is only clear for some adjectives.

SentAP : AP -> SC -> AP ; -- good that she is here

Remark 12 : The semantics is not clear at all. SentAP combines an adjective with a sentence
or an infinitive, e.g. good that she is here or good to sleep. But these are not adjective phrases
and don’t express properties! Otherwise they could be turned into a verb phrase and combined
with a noun phrase to a clause14, but ∗John is good that she is here is not a clause. Even when
combined with it, the clauses it is good that she is here or it is good to sleep do not have subject
it and predicates good that she is here or good to sleep, but (moved) sentential and infinitival
subjects that she is here and to sleep, respectively, subject-correlate it, and predicate to be good.
Similarly: the subject of a good man is hard to find is not a good man, but to find a good man.
(Recall also Chomsky’s examples John is easy to please and John is eager to please.)

As remarked for SentCN, the modification rule SentAP seems to be a substitute for missing
subcategories AS, AV, AQ of (binary) adjectives and missing complementation rules, like

ComplAS : AS -> S -> AP ; -- (we are) glad that she is here

ComplAV : AV -> VP -> AP ; -- (we are) happy to be alive

ComplAQ : AQ -> QS -> AP ; -- (we are) uncertain, whether they arrived

Such complementations (ComplAS as s):AP apparently are only used predicatively (hence might
have result category Comp).15 Moreover, subcategories of unary adjectives that can be used

14by UseComp o CompAP : AP -> VP and PredVP : NP -> VP -> Cl
15Can we attributively say der gelobt zu werden begierige Schüler, eng. the student eager to be praised?

24

predicatively with sentential, infinitival or interrogative subject may be necessary, e.g. false,
unlikely, unbelievable, plausible. (Attributive usage of such adjectives are restricted to specific
nouns, e.g. false statement, unbelievable claim, plausible assumption.)

-- An adjectival phrase can be modified by an *adadjective*, such as "very".

AdAP : AdA -> AP -> AP ; -- very warm

-- It can also be postmodified by an adverb, typically a prepositional phrase.

AdvAP : AP -> Adv -> AP ; -- warm by nature

-- The formation of adverbs from adjectives (e.g. "quickly") is covered

-- in Adverb.gf; the same concerns adadjectives (e.g. "extremely").

}

3.1.4. Verb

Construction rules for VP and VPSlash .

A verb phrase , VP, is a clause missing a nominal subject complement. An incomplete verb
phrase , VPSlash, i.e. a verb phrase missing a nominal object. The simplest verb phrase con-
struction is to use a unary (full) verb:

UseV : V -> VP ; -- sleep

A verb phrase can also be built be adding a nominal complement to an incomplete verb phrase:

ComplSlash : VPSlash -> NP -> VP ; -- love it

The next group of constructions are the complementation of binary and ternary verbs by com-
plements of suitable types. Binary verbs expecting an infinitival, sentential, interrogative or
adjectival complement can be combined with appropriate complements to a verb phrase VP:

ComplVV : VV -> VP -> VP ; -- want to run

ComplVS : VS -> S -> VP ; -- say that she runs

ComplVQ : VQ -> QS -> VP ; -- wonder who runs

ComplVA : VA -> AP -> VP ; -- they become red

The simplest incomplete verb phrases are binary verbs expecting two nominal complements:

SlashV2a : V2 -> VPSlash ; -- love (it)

Further incomplete verb phrases are obtained by combining ternary verbs with complements of
suitable type, where a nominal phrase can be used as either missing complement:

Slash2V3 : V3 -> NP -> VPSlash ; -- give it (to her)

Slash3V3 : V3 -> NP -> VPSlash ; -- give (it) to her

SlashV2V : V2V -> VP -> VPSlash ; -- beg (her) to go

SlashV2S : V2S -> S -> VPSlash ; -- answer (to him) that it is good

SlashV2Q : V2Q -> QS -> VPSlash ; -- ask (him) who came

SlashV2A : V2A -> AP -> VPSlash ; -- paint (it) red

25

An incomplete verb phrase can also be built by combining a verb expecting an infinitival object
with an incomplete verb phrase:

SlashVV : VV -> VPSlash -> VPSlash ; -- want to buy

SlashV2VNP : V2V -> NP -> VPSlash -> VPSlash ; -- beg me to buy

These “incomplete” complementations correspond to the “complete” ones by ComplVV and
ComplV2V. Q6: Is it intended that SlashVV corresponds to ComplVV in the sense that

(ComplVV vv (ComplSlash vps np)) == (ComplSlash (SlashVV vv vps) np)

i.e. that these trees are equivalent, i.e. have the same implementation records?

Remark 13. ComplSlash generalizes the rule VP/NP · NP ≤ VP of categorial grammar; it com-
bines an incomplete verb phrase vps:VPSlash with a noun phrase np:NP to a verb phrase, using
a preposition or case inferred from vps to inflect the np. However, for ternary verbs v3:V3 an
ambiguity arises, as for any n2,n3:NP, these two constructions give the same linearization16:

(CompSlash (Slash2V3 v3 np2) np3) = (ComplSlash (Slash3V3 v3 np3) np2)

It may therefore be reasonable to replace ComplSlash by special complementation rules for
ternary verbs (and likewise for verbs of higher arity):

ComplV2 : V2 -> NP -> VP ; -- love it --HL

Compl23V3 : V3 -> NP -> NP -> VP ; -- give it to her --HL

Compl32V3 : V3 -> NP -> NP -> VP ; -- give to her the book --HL

Can the ambiguitiy be avoided and the two complementation rules be used to provide two different
word orders, and how can these be matched in different languages? The drawback would be that
modification rules for VPSlash could not be applied to (Slash2V3 v3 np2) before combining
with np3. (The function Compl23V3 v3 np2 : NP -> VP is not the same as the expression
(Slash2V3 c3 np2) : VPSlash, or NP -> VP not the same as VPSlash.)

-- Verb phrases can also be constructed reflexively.

ReflVP : VPSlash -> VP ; -- love himself

Remark 14. ReflVP constructs a verb phrase by using a reflexive personal pronoun. Another
way to construct a verb phrase reflexively, missing in Grammar, is to use a reflexive possessive
pronoun, e.g. “to love one’s parents” or “to blow one’s nose” = “sich schneuzen”.

Grammar misses the “indefinite” personal resp. reflexive pronoun “one” resp.“oneself”, as used
in or “one should not hate oneself” or in reflexive infinitival subject sentences: “to love oneself
is better than to love nobody”. (Just add one Pron : Pron to Structural.gf (Ger: “man”),
and add further cases to reflPron, possPron : Agr => Str, say AgP0 Sg => “oneself” |

AgP0 Pl => “each other” (Ger: “sich” and “einander”), and AgP0 Sg => “one’s” | AgP0

Pl => “each other’s” (Ger: “sein” and “von einander”)?)

16in Eng. Are the linearizations necessarily equal in all languages? No, in Ger they are different.

26

-- Passivization of two-place verbs is another way to use them. In many

-- languages, the result is a participle that is used as complement to a

-- copula.

PassV2 : V2 -> VP ; -- be loved

-- *Note*. the rule can be overgenerating, since the V2 need not take a

-- direct object.

Remark 15 : More generally, one can build verb phrases by passive constructions from incomplete
verb phrases rather than from binary verbs. (See extensions of Lang by Extra.gf.) These
incomplete verb phrases can be obtained from ternary verbs; so, implicitly there are passive
constructions from n-ary verbs for n > 2 (see TestLang). /

Finally, verb phrases can consist of a copula verb alone,

UseCopula : VP ; -- be

or by combining a copula verb with a suitable complement,

UseComp : Comp -> VP ; -- be warm

A copula verb can combine with different complements to a verb phrase, e.g. to be old, to be
here, to be king, to be the next president. These complements are built by embedding adjective
phrases, noun phrases, adverbs or common nouns to the category Comp:

-- Adjectival phrases, noun phrases, and adverbs can be used.

CompAP : AP -> Comp ; -- (be) small

CompNP : NP -> Comp ; -- (be) the man

CompAdv : Adv -> Comp ; -- (be) here

CompCN : CN -> Comp ; -- (be) a man/men

Remark 16 : The only copula verb in Lang is “to be”, but one can extend the lexicon by others,
like “to become” or “to remain”. But the constructions UseCopula and UseComp only admit the
copula verb “to be”; Lang has no category of copula verbs. /

Modification rules.

Verb phrases and incomplete verb phrases can be modified by adverbs of type Adv or AdV.

-- Adverbs can be added to verb phrases. Many languages make a distinction

-- between adverbs that are attached at the end vs. next to (or before) the verb.

AdvVP : VP -> Adv -> VP ; -- sleep here

ExtAdvVP : VP -> Adv -> VP ; -- sleep , even though ...

AdVVP : AdV -> VP -> VP ; -- always sleep

Remark 17 The difference between a category Adv for “adverbs attached at the end of the verb
phrase” and a category AdV for “adverbs inserted before (or near) the verb” is unplausible: why
should the same abstract adverb behave the same way in all languages, and why should the

27

same adverb positions correspond to each other in all languages? (Some concrete grammars of
Lang insert the adverb before or after the negation adverb, not before or after the verb.) For
German, I don’t see such a difference: “we always park our car here” – “wir parken unseren
Wagen immer hier”. /

AdvVPSlash : VPSlash -> Adv -> VPSlash ; -- use (it) here

AdVVPSlash : AdV -> VPSlash -> VPSlash ; -- always use (it)

VPSlashPrep : VP -> Prep -> VPSlash ; -- live in (it)

Q7: Why is it useful to have both AdvVP and AdvVPSlash? In LangEng, we have a difference:

Lang> p -cat=S "I read today the book"

UseCl (TTAnt TPast ASimul) PPos (PredVP (UsePron i_Pron)

(ComplSlash (AdvVPSlash (SlashV2a read_V2) today_Adv)

(DetCN (DetQuant DefArt NumSg) (UseN book_N))))

Lang> p -cat=S "I read the book today"

UseCl (TTAnt TPres ASimul) PPos (PredVP (UsePron i_Pron)

(AdvVP (ComplSlash (SlashV2a read_V2)

(DetCN (DetQuant DefArt NumSg) (UseN book_N)))

today_Adv))

Is there a difference in relativising an adverbially modified noun phrase. i.e. the book here, which
I bought yesterday from I bought (the book here) yesterday, versus the book, which I bought here
yesterday from I bought (the book) here yesterday.

Remark 18. The rule VPSlashPrep is meant to be used to construct relative clauses by extract-
ing the noun phrase of an adverbial of type Prep =< Adv/NP. For example, from the sentence
“we (live (in the city):Adv):VP” we can obtain a relativization of the noun phrase in the adverb:
“the city we (live (in:Adv/NP)):VP/NP”. This construction is available in English, but certainly
not in German, so it is questionable whether it can belong to the multilingual grammar Lang.17

But the rule leads to ambiguities in German:

PredVP (UsePron he_Pron)

(AdvVP (UseV sleep_V)

(PrepNP in_Prep (DetCN (DetQuant DefArt NumSg) (UseN house_N))))

PredVP (UsePron he_Pron)

(ComplSlash (VPSlashPrep (UseV sleep_V) in_Prep)

(DetCN (DetQuant DefArt NumSg) (UseN house_N)))

er schläft im Haus

er schläft im Haus

Aarne: c.f. ExtraEng|Swe for use of the rule for preposition stranding. Well, in German we
have a limited form of preposition stranding for pronominal adverbs “dafür”, “damit”, “daran”,
“darauf”, “davor” etc., e.g. “da arbeite ich nicht für|mit|dran”, “da warte ich nicht drauf”, “da
warne ich vor”. But while we can say “auf den warte ich nicht”, we cannot say “den warte ich
nicht drauf”, the separation is only possible with da+prep ' prep+das.

17In German, the preposition and relative pronoun combine to a relative adverb: “die Stadt, in der wir leben”
or “die Stadt, worin wir leben”.

28

3.1.5. Adverb

According to gf-rgl/src/Common.gf, there are the following adverb categories:

Adv ; -- verb-phrase-modifying adverb e.g. "in the house"

AdV ; -- adverb directly attached to verb e.g. "always"

AdA ; -- adjective-modifying adverb e.g. "very"

AdN ; -- numeral-modifying adverb e.g. "more than"

IAdv ; -- interrogative adverb e.g. "why"

CAdv ; -- comparative adverb e.g. "more"

The difference between Adv and AdV seems unplausible; a language-independent difference can
arise from the meaning, not from the position in English (unless these correspond to each other).
Q8: : Or is the difference related to questions of scope? I.e., whether a (quantified) complement
of the verb is within or outside the scope of the adverb? But this also seems not fixed in the
syntax.

Construction rules. The full constructions of Adverb.gf are:

-- The two main ways of forming adverbs are from adjectives and by

-- prepositions from noun phrases.

PositAdvAdj : A -> Adv ; -- warmly

PrepNP : Prep -> NP -> Adv ; -- in the house

Remark 19 : The adverb construction PrepNP : Prep -> NP -> Adv uses the category Prep in
the abstract grammar. Such a preposition p:Prep may have a language-independent meaning
as a binary spatial, directional or temporal relation, hence a translation of p:Prep to various
concrete languages is not excluded. But even in these cases, the usage of a preposition seems
rather language-dependent; the German preposition um in um vier Uhr and um Mitternacht
corresponds to different prepositions in English in at four o’clock and around midnight.18 Hence,
the meaning of an adverb PrepNP p np cannot be expected to be compositional, and its transla-
tion by linearize◦parse may be incorrect. At least, the prepositions in Structural and Lexicon

have to be thought of as abstract prepositions, not as English ones.

-- Comparative adverbs have a noun phrase or a sentence as object of

-- comparison.

ComparAdvAdj : CAdv -> A -> NP -> Adv ; -- more warmly than John

ComparAdvAdjS : CAdv -> A -> S -> Adv ; -- more warmly than he runs

-- Subordinate clauses can function as adverbs.

SubjS : Subj -> S -> Adv ; -- when she sleeps

-- Like adverbs, adadjectives can be produced by adjectives.

PositAdAAdj : A -> AdA ; -- extremely

18or: in English versus auf Deutsch.

29

-- Comparison adverbs also work as numeral adverbs.

AdnCAdv : CAdv -> AdN ; -- less (than five)

Remark 20 : The use of CAdv in ComparAdvAdj and AdnCAdv is dubious. In English, we get less
well than John and less than five, but as well as John and ∗as as five. In German, one can say
weniger gut als Johann, but uses besser als Johann, not ∗mehr gut als Johann.

Modification rules

-- Adverbs can be modified by ’adadjectives’, just like adjectives.

AdAdv : AdA -> Adv -> Adv ; -- very quickly

Example: noch:AdAdv in noch schnell

Q9: can’t comparative adverbs also be used with infinitives? E.g., he hoped to write a paper
more easily than to paint a picture

Q10: what about adverb negation? not likely = unlikely, not often = rarely, etc. Should this be
treated using (AdAdv not:AdA adv:Adv):Adv, where AdAdv concatenates the two strings of its
arguments? (For CAdv, Eng has s : Polarity => Str.)

3.1.6. Numerals

Todo 11: extract from CatGer and explain the intended rules

cat Numeral ;

fun digits2num : Digits -> Numeral ;

fun num : Sub1000000 -> Numeral ;

cat Digits ;

fun IDig : Dig -> Digits ;

fun IIDig : Dig -> Digits -> Digits ;

fun dconcat : Digits -> Digits -> Digits ;

fun nd10 : Sub10 -> Digits ;

fun nd100 : Sub100 -> Digits ;

fun nd1000 : Sub1000 -> Digits ;

fun nd1000000 : Sub1000000 -> Digits ;

fun num2digits : Numeral -> Digits ;

3.1.7. Sentences, Clauses and Imperatives

abstract Sentence = Cat ** {

-- Clauses

-- The predication rule form a clause whose linearization gives a table of

-- all tense variants, positive and negative. Clauses are converted to

30

-- sentences (with fixed tense and polarity) with the UseCl function below.

PredVP : NP -> VP -> Cl ; -- John walks

-- Using an embedded sentence as a subject is treated separately. This can

-- be overgenerating. E.g. "whether you go" as subject is only meaningful

-- for some verb phrases.

PredSCVP : SC -> VP -> Cl ; -- that she goes is good

While an infinitival subject is recognized correctly,

Lang> p -cat=Cl "to sleep is good"

PredSCVP (EmbedVP (UseV sleep_V)) (UseComp (CompAP (PositA good_A)))

when the infinitival subject is moved and replaced by a correlate it, we get wrong trees. (See
Remark 12.)

-- Clauses missing object noun phrases

-- This category is a variant of the ’slash category’ S/NP of GPSG and

-- categorial grammars, which in turn replaces movement transformations in

-- the formation of questions and relative clauses. Except SlashV2, the

-- construction rules can be seen as special cases of function composition,

-- in the style of CCG.

SlashVP : NP -> VPSlash -> ClSlash ; -- (whom) he sees

AdvSlash : ClSlash -> Adv -> ClSlash ; -- (whom) he sees today

SlashPrep : Cl -> Prep -> ClSlash ; -- (with whom) he walks

SlashVS : NP -> VS -> SSlash -> ClSlash ; -- (whom) she says that he loves

-- *Note* the set is not complete and lacks e.g. verbs with more than 2 places.

-- Imperatives

-- An imperative is straightforwardly formed from a verb phrase. It has

-- variation over positive and negative, singular and plural. To fix these

-- parameters, see Phrase.gf.

ImpVP : VP -> Imp ; -- love yourselves

AdvImp : Adv -> Imp -> Imp ; -- please love yourselves

-- Embedded sentences

-- Sentences, questions, and infinitival phrases can be used as subjects

-- and (adverbial) complements.

EmbedS : S -> SC ; -- that she goes

EmbedQS : QS -> SC ; -- who goes

31

EmbedVP : VP -> SC ; -- to go

-- Sentences

-- These are the 2 x 4 x 4 = 16 forms generated by different combinations

-- of tense, polarity, and anteriority.

UseCl : Temp -> Pol -> Cl -> S ; -- she had not slept

UseQCl : Temp -> Pol -> QCl -> QS ; -- who had not slept

UseRCl : Temp -> Pol -> RCl -> RS ; -- that had not slept

UseSlash : Temp -> Pol -> ClSlash -> SSlash ; -- (that) she had not seen

-- An adverb can be added to the beginning of a sentence, either with comma

-- ("externally") or without:

AdvS : Adv -> S -> S ; -- then I will go home

ExtAdvS : Adv -> S -> S ; -- next week, I will go home

-- This covers subjunctive clauses, but they can also be added to the end.

SSubjS : S -> Subj -> S -> S ; -- I go home, if she comes

-- A sentence can be modified by a relative clause referring to its contents.

RelS : S -> RS -> S ; -- she sleeps, which is good

}

Notice that SSubjS does not use Adverb.SubjS : Subj -> S -> Adv to combine its arguments
Subj and S and then add the adverbial sentence at the end. But AdvVP, ExtAdvVP : VP ->

Adv -> VP add an adverb at the end of the a2 field of a verb phrase, so this can be used before
adding the subject by PredVP. Q11: Does this lead to spurious ambiguities?

(Scope problems: “ich will nicht (A, weil B)” versus “ich will (nicht A), weil B” = “weil B,
will ich nicht A”.)

The rule PredSCVP can use any sentence, question or infinitive as subject with a verb phrase.
This is massively overgenerating. Interrogative subjects may occur as complements of adjective
phrases with copula verbs, e.g. why this is the case, is unknown, or by passivization from verbs
with interrogative objects, e.g. why this is the case, was asked by many. It seems there are
no verbs that need an interrogative subject, though there are verbs that need sentential or
infinitival subjects, e.g. that John is a fool, doesn’t shock us or to not get troubles pleased him.
Yet, it may be reasonable to not classify verbs according to their subject category, as this seems
systematically overloaded: a subject sentence like that John is a fool can be transformed into a
nominal subject for the same verb, e.g. the fact that John is a fool. If we had verb categories
like SV, QV, IV for verbs with sentential, interrogative or infinitival subject, we should also have
noun categories like NS, NQ and NV for nouns that take these subjects as objects (and perhaps a
nominalization operation that derives such nouns from the corresponding verbs).

3.1.8. Questions and Interrogative Pronouns

abstract Question = Cat ** {

32

-- A question can be formed from a clause (’yes-no question’) or

-- with an interrogative.

fun

QuestCl : Cl -> QCl ; -- does John walk

QuestVP : IP -> VP -> QCl ; -- who walks

QuestSlash : IP -> ClSlash -> QCl ; -- whom does John love

QuestIAdv : IAdv -> Cl -> QCl ; -- why does John walk

QuestIComp : IComp -> NP -> QCl ; -- where is John

-- Interrogative pronouns can be formed with interrogative determiners,

-- with or without a noun.

IdetCN : IDet -> CN -> IP ; -- which five songs

IdetIP : IDet -> IP ; -- which five

-- They can be modified with adverbs.

AdvIP : IP -> Adv -> IP ; -- who in Paris

-- Interrogative quantifiers have number forms and can take number modifiers.

IdetQuant : IQuant -> Num -> IDet ; -- which (five)

-- Interrogative adverbs can be formed prepositionally.

PrepIP : Prep -> IP -> IAdv ; -- with whom

-- They can be modified with other adverbs.

AdvIAdv : IAdv -> Adv -> IAdv ; -- where in Paris

-- Interrogative complements to copulas can be both adverbs and pronouns.

CompIAdv : IAdv -> IComp ; -- where (is it)

CompIP : IP -> IComp ; -- who (is it)

-- More IP, IDet, and IAdv are defined in Structural.gf

-- Wh questions with two or more question words require a new, special category.

cat

QVP ; -- buy what where

fun

ComplSlashIP : VPSlash -> IP -> QVP ; -- buys what

AdvQVP : VP -> IAdv -> QVP ; -- lives where

AddAdvQVP : QVP -> IAdv -> QVP ; -- buys what where

33

QuestQVP : IP -> QVP -> QCl ; -- who buys what where

}

3.1.9. Relative Clauses and Relative Pronouns

-- The simplest way to form a relative clause is from a clause by a pronoun

-- similar to "such that".

RelCl : Cl -> RCl ; -- such that John loves her

-- The more proper ways are from a verb phrase or a sentence with a missing

-- noun phrase.

RelVP : RP -> VP -> RCl ; -- who loves John

RelSlash : RP -> ClSlash -> RCl ; -- whom John loves

-- Relative pronouns are formed from an ’identity element’ by prefixing

-- or suffixing (depending on language) prepositional phrases or genitives.

IdRP : RP ; -- which

FunRP : Prep -> NP -> RP -> RP ; -- the mother of whom

So, RelVP is used to relativize the nominal subject of a clause, RelSlash to relativize a nominal
object of a clause. What is called here a relative pronoun RP can be any relativizing noun phrase
or prepositional phrase; e.g. the relativization may come from a relativizing possessive, like mit
dessen Freunden.

3.1.10. Conjunction

(todo)

3.1.11. Phrase

--1 Phrase: Phrases and Utterances

abstract Phrase = Cat ** {

-- When a phrase is built from an utterance it can be prefixed

-- with a phrasal conjunction (such as "but", "therefore")

-- and suffixing with a vocative (typically a noun phrase).

fun

PhrUtt : PConj -> Utt -> Voc -> Phr ; -- but come here, my friend

-- Utterances are formed from sentences, questions, and imperatives.

UttS : S -> Utt ; -- John walks

UttQS : QS -> Utt ; -- is it good

UttImpSg : Pol -> Imp -> Utt ; -- (don’t) love yourself

UttImpPl : Pol -> Imp -> Utt ; -- (don’t) love yourselves

34

UttImpPol : Pol -> Imp -> Utt ; -- (don’t) sleep (polite)

-- There are also ’one-word utterances’. A typical use of them is

-- as answers to questions.

-- *Note*. This list is incomplete. More categories could be covered.

-- Moreover, in many languages e.g. noun phrases in different cases

-- can be used.

UttIP : IP -> Utt ; -- who

UttIAdv : IAdv -> Utt ; -- why

UttNP : NP -> Utt ; -- this man

UttAdv : Adv -> Utt ; -- here

UttVP : VP -> Utt ; -- to sleep

UttCN : CN -> Utt ; -- house

UttCard : Card -> Utt ; -- five

UttAP : AP -> Utt ; -- fine

UttInterj : Interj -> Utt ; -- alas

-- The phrasal conjunction is optional. A sentence conjunction

-- can also be used to prefix an utterance.

NoPConj : PConj ; -- [plain phrase without conjunction in front]

PConjConj : Conj -> PConj ; -- and

-- The vocative is optional. Any noun phrase can be made into vocative,

-- which may be overgenerating (e.g. "I").

NoVoc : Voc ; -- [plain phrase without vocative]

VocNP : NP -> Voc ; -- my friend

}

Remark 21 : The category PConj is dubious: why should it be possible to prefix any utterance
with any conjunction in all languages? And why is the example therefore a phrasal conjunction?
(see also Remark 101).

3.1.12. Text

-- Texts are built from an empty text by adding Phrases,

-- using as constructors the punctuation marks ".", "?", and "!".

-- Any punctuation mark can be attached to any kind of phrase.

abstract Text = Common ** {

fun

TEmpty : Text ; -- [empty text, no sentences]

TFullStop : Phr -> Text -> Text ; -- John walks. ...

TQuestMark : Phr -> Text -> Text ; -- Are they here? ...

TExclMark : Phr -> Text -> Text ; -- Let’s go! ...

}

35

3.1.13. Structural

3.1.14. Idiom

--1 Idiom: Idiomatic Expressions

abstract Idiom = Cat ** {

-- This module defines constructions that are formed in fixed ways,

-- often different even in closely related languages.

fun

ImpersCl : VP -> Cl ; -- it is hot

GenericCl : VP -> Cl ; -- one sleeps

CleftNP : NP -> RS -> Cl ; -- it is I who did it

CleftAdv : Adv -> S -> Cl ; -- it is here she slept

ExistNP : NP -> Cl ; -- there is a house

ExistIP : IP -> QCl ; -- which houses are there

-- 7/12/2012 generalizations of these

ExistNPAdv : NP -> Adv -> Cl ; -- there is a house in Paris

ExistIPAdv : IP -> Adv -> QCl ; -- which houses are there in Paris

ProgrVP : VP -> VP ; -- be sleeping

ImpPl1 : VP -> Utt ; -- let’s go

ImpP3 : NP -> VP -> Utt ; -- let John walk

-- 3/12/2013 non-reflexive uses of "self"

SelfAdvVP : VP -> VP ; -- is at home himself

SelfAdVVP : VP -> VP ; -- is himself at home

SelfNP : NP -> NP ; -- the president himself (is at home)

}

3.1.15. Tense

--1 Common: Structures with Common Implementations.

-- This module defines the abstract parameters of tense, polarity, and

-- anteriority, which are used in Phrase.gf to generate different

-- forms of sentences. Together they give 4 x 2 x 2 = 16 sentence forms.

-- These tenses are defined for all languages in the library. More tenses

-- can be defined in the language extensions, e.g. the "passe simple" of

-- Romance languages in ../romance/ExtraRomance.gf.

36

abstract Tense = Common ** {

fun

TTAnt : Tense -> Ant -> Temp ; -- [combination of tense and anteriority,

-- e.g. past anterior]

PPos : Pol ; -- I sleep [positive polarity]

PNeg : Pol ; -- I don’t sleep [negative polarity]

TPres : Tense ; -- I sleep/have slept [present]

ASimul : Ant ; -- I sleep/slept [simultaneous, not compound]

TPast : Tense ; -- I slept [past, "imperfect"] --# notpresent

TFut : Tense ; -- I will sleep [future] --# notpresent

TCond : Tense ; -- I would sleep [conditional] --# notpresent

AAnter : Ant ; -- I have slept/had slept --# notpresent

-- [anterior, "compound", "perfect"]

}

3.1.16. Transfer

A structural transfer function maps (abstract) trees to trees and is defined by pattern
matching over tree constructors. The pattern matcher of GF recognizes a syntactic construction
as tree constructor only if an abstract module declares it by a data declaration instead of a fun

declaration. Transfer contains mainly two structural transfer functions19,

active2passive : Cl -> Cl

digits2numeral : Card -> Card

The first one transfers clauses in active voice into clauses in passive voice and is defined in

abstract Transfer = Sentence, Verb, Adverb, Structural, NumeralTransfer ** {

fun

active2passive : Cl -> Cl ;

def

active2passive (PredVP subj (ComplSlash (SlashV2a v) obj)) =

PredVP obj (AdvVP (PassV2 v) (PrepNP by8agent_Prep subj)) ;

active2passive (PredVP subj (AdvVP (ComplSlash (SlashV2a v) obj) adv)) =

PredVP obj (AdvVP (AdvVP (PassV2 v) (PrepNP by8agent_Prep subj)) adv) ;

active2passive (PredVP subj (AdVVP adv (ComplSlash (SlashV2a v) obj))) =

PredVP obj (AdVVP adv (AdvVP (PassV2 v) (PrepNP by8agent_Prep subj))) ;

active2passive cl = cl ;

}

The submodules Sentence, Verb, Adverb have data declarations for the syntactic constructions
PredVP, ComplSlash, SlashV2a, AdvVP and AdVVP used in the patterns here, while Structural

19The GF-book presents a further transfer function aggr : S -> S for aggregation on p. 147, 148.

37

has just a fun declaration for by8agent Prep, for example. (All binary verbs v:V2 can be used
in PassV2 v, not just transitive binary verbs in the linguistic sense.)

The other main transfer function converts between represenations of numbers and numeral words
and is defined in the submodule NumericalTransfer by

fun digits2numeral : Card -> Card ;

def

digits2numeral (NumDigits d) = NumNumeral (digits2num d) ;

digits2numeral n = n ;

where the embeddings of digits, decimals and numerals into Card are data declarations

NumDigits : Digits -> Card ; -- 51

NumDecimal : Decimal -> Card ; -- 3.14, -1, etc

NumNumeral : Numeral -> Card ; -- fifty-one

in Noun and digits2num : Digits -> Numeral is one of many auxiliary transfer functions of
NumeralTransfer dealing with representations of various kinds of numbers and number words
(cf. Subsection 5.1.3).

Structural transfer functions have no linearizations, so there are no corresponding concrete
modules TransferGer.gf and NumericalTransferGer.gf.

The original (unshortened) file Transfer.gf also gives some examples like

> p "she sees him" | pt -transfer=active2passive | l

he is seen by her

> p -cat=NP "3 cats with 4 dogs" | pt -transfer=digits2numeral | l

three cats with four dogs

However, the flag -transfer to pt is no longer supported (since version gf-3.9); it used to
recursively go down a tree and apply the given transfer function to subtrees. One can still use
the flag -compute and provide a tree containing transfer functions:

Lang> pt -tr -compute (UseCl (TTAnt TFut AAnter) PPos

(active2passive (PredVP (UsePron she_Pron)

(ComplSlash (SlashV2a see_V2) (UsePron he_Pron))))) | l

UseCl (TTAnt TFut AAnter) PPos

(PredVP (UsePron he_Pron) (AdvVP (PassV2 see_V2)

(PrepNP by8agent_Prep (UsePron she_Pron))))

he will have been seen by her

Thus, transfer functions can only be used as part of a tree supplied to pt -compute. The flag
transfer of pt being removed, we cannot easily apply transfer functions to a parse result.

Remark 22 : To overcome this, in Section 6 we show how to re-introduce a version of pt

-transfer=f to the gf-shell and provide a variation DGrammar of Grammar which makes all
syntactic constructions usable in tree patterns.

3.1.17. Extra and Extend

Reflexive noun phrase constructions from Extra:

38

cat

RNP ; -- reflexive noun phrase, e.g. "my family and myself"

RNPList ; -- list of reflexives to be coordinated, e.g. "my family, myself, everyone"

-- Notice that it is enough for one NP in RNPList to be RNP.

fun

ReflRNP : VPSlash -> RNP -> VP ; -- support my family and myself

ReflPron : RNP ; -- myself

ReflPoss : Num -> CN -> RNP ; -- my family

PredetRNP : Predet -> RNP -> RNP ; -- all my brothers

ConjRNP : Conj -> RNPList -> RNP ; -- my family, John and myself

Base_rr_RNP : RNP -> RNP -> RNPList ; -- my family, myself

Base_nr_RNP : NP -> RNP -> RNPList ; -- John, myself

Base_rn_RNP : RNP -> NP -> RNPList ; -- myself, John

Cons_rr_RNP : RNP -> RNPList -> RNPList ; -- my family, myself, John

Cons_nr_RNP : NP -> RNPList -> RNPList ; -- John, my family, myself

Some more constructions using RNP are declared in Extend:

AdvRNP : NP -> Prep -> RNP -> RNP ; -- a dispute with his wife

AdvRVP : VP -> Prep -> RNP -> VP ; -- lectured about her travels

AdvRAP : AP -> Prep -> RNP -> AP ; -- adamant in his refusal

ReflA2RNP : A2 -> RNP -> AP ; -- indifferent to their surroundings

-- NOTE: generalizes ReflA2

PossPronRNP : Pron -> Num -> CN -> RNP -> NP ;

-- his abandonment of his wife and children

Remark 23 : The examples given for the rules AdvRNP, AdvRVP and AdvRAP are unfortunate: to
dispute sth with sb, to lecture about sth, (to be) admant in sth seem to be a noun, verb and
adjective with fixed prepositions to combine with a complement, i.e. these examples should be
handled by complementation rules. For other examples like dispute in their office, recommended
on the day of his resign, prevented by her own nature, a category RAdv of reflexive adverb
with (only?) constructor

PrepRNP : Prep -> RNP -> RAdv ;

seems appropriate, and AdvRNP, AdvRVP and AdvRAP should be replaced by constructions

RAdvNP : NP -> RAdv -> RNP ;

RAdvVP : VP -> RAdv -> VP ;

RAdvAP : AP -> RAdv -> AP ;

But as for adverbs constructed by PrepNP, the meaning of reflexive adverbs is non-compositional,
since prepositions usually don’t have the same meaning in different languages.

39

3.2. Limitations, Deficits and Problems

Todo 12: check any claimed problem!

3.2.1. n-ary Verbs and Predicates

The predicates of arity n > 1 can be atomic, i.e. n-ary verbs or n-ary adjectives with auxiliary
verb, or compound, i.e. arise from (n+ 1)-ary atomic predicates combined with an object, or be
a sub- or coordination of n-ary predicates.

GF has categories V (unary verbs), V2 (binary verbs), V3 (ternary verbs), VP (verb phrase = unary
predicat), Comp (complement of a copula verb), VPSlash (verb phrase missing an a complement
= binary predicate), and some further categories like VS (verb taking a nominal and a sentential
complement), V2V (verb taking two nominal and an infinite complement),

Problem 2. In order to be able to translate verbs (or nouns, adjectives of arity 2) from one
language to another, we not only need a common constant v, but also need to map the semantic
roles properly between languages. For example, to map English “give sb sth” to German “jmdm
etwas geben”, the implementation type of V3 in both languages has record fields c2 and c3 to
store the case or preposition needed when attaching the first or second complement of give:V3.
But what is intended to be the first resp. second complement? GF has no notion of direct vs.
indirect object, only the c-slots.

Suppose ci is a complement type, and vn : cn -> ... -> (c2 -> VP) is the type of an
n-ary verb. (So VP corresponds to c1 -> S and VPSlash to c2 -> VP, where c1 is the type
of the subject, c2 the type of the object.) From V3 on, there is no obvious inherent ordering
of complements. Even for ditransitive verbs V2 of English, mkV3 give noPrep noPrep only
by convention defines give sb sth and mkV3 give noPrep to Prep defines give sth to sb.
(There is the further mess with the pronoun switch in “give it her”!) Can we enforce that c3

represents “the indirect”, c2 “the direct” object? Can we force users to use mkV3 always in
the sense of mkV3 v c2 c3, to guarantee (give sth:c2 to-sb:c3 =) give sb:c3 sth:c2 =
jmdm:c3 etwas:c2 geben, or can we rely on fixing this via application grammars?

Only with such conventions like vn : cn -> ... (c2 -> VP) can we use the slash-rules

SlashiVn : Vn -> NP -> cn -> [-> ci] -> ... (c1-> t)

consistently, and translate properly. (SlashiVj v np stores the np into the ci-field of the j-ary
verb v:Vj.) Not cases or prepositions must match accross languages, but argument roles (or
GF-argument numbers).

Problem 3. There is the annoying ambiguity of complementizing a V3 one by one,

ComplSlash (Slash3V3 v3 np3) np2 vs. ComplSlash (Slash2V3 v3 np2) np3

which in LangEng construct the same implementation record. A VPSlash can be used in different
ways, so there is no doubt about the construction rules for VPSlash:

Slash2V3 : V3 -> NP -> VPSlash ; -- give it (to her)

SlashV2V : V2V -> VP -> VPSlash ; -- beg (her) to go

...

40

Can we –to get rid of the ambiguities with (ComplSlash (SlashiV3 v npi) np(5-i))– replace
the single complementation rule

ComplSlash : VPSlash -> NP -> VP ; -- love it

by different complementation rules (for each construction) that build a VP from the underlying
ternary verb directly, like

ComplV3 : V3 -> NP -> NP -> VP ; -- give it to her

ComplV2V : V2V -> VP -> NP -> VP ; -- beg her to go

... ?

It seems that the modifications of VPSlash also are available as modifications of VP. (The same
would be needed for verbs with higher arity.).

Remark 24 : First, the ambiguity does not hold in all languages: in Ger of gf-3.3, the lineariza-
tions of (ComplSlash (SlashiV3 v3 npi) np(5-i)) give np3 ++ np2 for i = 2, but np2 ++

np3 for i = 3. (The SlashiV3 and ComplSlash use insertObj, which adds obj!a to the left
of vp.n2. More precisely, an np with isPron = True was inserted at the front of VP.n0, those
with isPron = False at the front of VP.n2, and the clauses order complements as in n0 < neg

< n2 < ap.) In Eng, (ComplSlash (SlashiV3 v3 npi) np(5-i)) for i = 2, 3 both linearize to
v3 ++ np2 ++ np3, the indirect object last. But then the same tree has different meanings in
Ger and Eng, at least if v.c2 and v.c3 are the same.

Second, collect a set of examples for trees using ComplSlash. Then we can test the above
suggestion and see if we don’t lose other trees we wanted to keep. (Can we write a normalization
of existing trees to avoid ComplSlash? But still, GF-external programs for tree transformations
had to be adjusted to such a change in the RGL.)

Problem 4. There are similar ambiguities between the following trees:

(ComplVV vv (ComplSlash vps np)) =?= (ComplSlash (SlashVV vv vps) np)

(ComplSlash (SlashV2VNP v2v np1 vps) np2) =?=

(ComplSlash (SlashV2V v2v (ComplSlash vps np2) np1)

For example, we get four trees for the following example (trees hidden):

TestLang> p -cat=VP -tr "promise him to let my wife read the book" | l

promise him to let my wife read the book

promise him to let my wife read the book

promise him to let my wife read the book

promise him to let my wife read the book

arising from

ComplSlash (SlashV2VNP versprechen him

(SlashV2VNP lassen (my wife) read)) (the book)

ComplSlash (SlashV2V versprechen

(ComplSlash (SlashV2VNP lassen (my wife) read) (the book))) him

ComplSlash (SlashV2V versprechen

(ComplSlash (SlashV2V lassen (ComplSlash read (the book))) (my wife))) him

ComplSlash (SlashV2V versprechen

(ComplSlash (SlashV2V lassen (ComplV2 read (the book))) (my wife))) him

41

Ok, the final tree is from my added rule ComplV2 and does not belong to Lang.

3.2.2. Ambiguities in Common Nouns

Problem 5. A similar cause of ambiguities are the modifications of a CN. The RGL-rules modify
a CN by an AP attribute, an RCl relative clause, or an Adv adverbial, etc. The string obtained
depends on the ordering of modifiers in the tree, if the modifier extends the same cn.s field, but if
different fields cn.rel, cn.adv, cn.ext are modified, one obtains spurious ambiguities depending
on the ordering of modifications. (Emptyness tests of the fields, or arbitrary extensions?)

Proposal 2: Since there are no noun categories of Lang with sentential or infinitival objects,
certain noun phrases, e.g. “der Glaube, daß ein Gott die Welt erschaffen hat” or “die Hoffnung,
das Spiel zu gewinnen”, cannot be recognized (Nonsense: Use SentCN) Lang ought to be extended
by noun categories NS, NQ, NV and NA, with a systematic way to infer the category of nouns derived
from verbs and adjectives. (See also Remark 5 and Remark 8. And Section 5.11.2.) /

Problem 6. Nouns of category N2 and N3 may attach their objects via prepositions. Such
prepositional objects are also parsed as adverbial attributes, e.g. “das Warten auf die Abfahrt”
(using UseN2 and AdvCN). Can a parse as prepositional object be enforced by a kind of binding
precedence (in the parser), or is this rare enough because of different cases in the prepositions
of objects versus those of adverbs?

3.2.3. Prepositions and Adverbial Dimensions in a Multilingual Grammar

Q12: Can a multilingual grammar like Lang have pre- or postpositions at all?

Where preposititions are used, like cases, to express which complement function a constituent
realizes, they are semantically empty; the multilingual grammar must only be able to identify
the complement function across languages. In this sense, a nominal object in instrumental case
like np.s ! v.c2 = np.s ! instr and a prepositional object like v.c2.s ++ np.s ! vp.c2.c

= "mit" ++ np.s ! dative amount to the same and are identified by v.c2. (For this, we
need a language-specific v.c2 : Prep with oper Prep : Type = {s:Str ; c:Case}, but no
multilingual lexical category cat Prep.)

But: what to do with moved prepositional objects, as in

SlashPrep : Cl -> Prep -> ClSlash ; -- (with whom) he walks

Where prepositions have semantic content, i.e. where they are used to construct adverbials,
like under the table, we have a chance that a limited, language-independent number of adverbial
dimensions like param AdvDim = loc | temp | dir | ... might be enough to define Prep =

Adv/NP in the sense of fun in Prep : Prep with lin in Prep = {s = "in"; d = loc} and
UsePrep : Prep -> NP -> Adv. This seems to me the better solution. The drawback is that
since some prepositions like in can construct adverbs in several dimensions, which may lead to
a number of ambiguities, at least if we had an Adv category for each dimension. (Moreover, an
instrumental adverbial in one language may be represented by an instrumental Case in another
language, etc.) In any case, the prepositions added to Lang are English prepositions and don’t
fit very well to other languages; the abstract grammar is not abstract enough.

There are verbs that need an adverbial of a specific dimension to build a verb phrase, i.e. to
stay at a place, or an einem Ort wohnen and in einem Raum übernachten. So, at least some
adverbials should be treated as complements of verbs rather than modifications of verb phrases.

42

This would need categories VAdv d and Adv d of verbs and adverbs depending on a dimension
d:AdvDim and a dimension-specific rule

ComplVAdvDim : (d:AdvDim) -> VAdv d -> Adv d -> VP.

(Since an adverbial has an inherent dimension, adverbs cannot adapt to a dimension specified
by the verb, in contrast to noun phrases which can adapt to a case specified by the verb.)

3.2.4. Missing Types of Pronouns and Numbers

Demonstratives; Cardinals and Ordinals are there, but what about n-fold (threefold:A,Adv,
dreifach:A,dreimal:Adv), the n-th, (third, dritte) ?

3.2.5. Missing Notion of Modalities

There are modal verbs as auxiliary verbs, but no notion of modalized adjectives or participles, like
(un)lesbar = kann (nicht) gelesen werden or das zu lesende Buch = das Buch, das

gelesen werden muß

3.2.6. Iterated Modifications

Some modification rules can be used iteratively, like adding an adverb to a clause or verb phrase,
or adding a relative clause to a common noun or noun phrase. In these cases, when added
constituents are “stacked” like vp.a2 ++ adv.s or np.s ++ np.rc ++ rc.s, a leading comma
in adv.s or rc.s may be disturbing, but a leading comma in the first of the stacked elements
may be necessary. In my opinion, instead of stacking one ought to use a form of coordination
of adverbials or relative clauses, and the coordinated constituent could have an introductory
comma.

3.2.7. Bounded Embedding Depth

Embedding of verbal prases is limited (with problems for modal verbs and V2V in Ger); extraction
from subconstituents is limited. What else?

Do we need a parameter vptype = VPactive | VPrefl | VPpass in VP and VPSlash? What
do we need to implement different passives in Ger?

Generally: which properties of subconstituents have to be stored in parameter values?

3.2.8. Overgeneration Due to Empty Constituents

In particular, empty determiners and empty prepositions cause unnecessary or strange trees.
MassNP (or PassV2) is known from the beginning to be overgenerating, as it is applicable to
any np:NP (resp. v:V2), independent of inherent parameters of its head noun (resp. verb). But:
constructions are total functions, so parameters cannot limit their applicability.

But certainly, having categories NS, NA, NV of nouns with restricted kinds of complements could
eliminate arbitrary combinations of N with complements SC.

4. A Sketch of German

Before describing the implementation of a grammar for German in GF, we give an overview of
main properties of German in standard linguistic notions.

43

We here only sketch properties of the main lexical and phrasal categories, omitting prepositions,
determiners, coordination etc. (What about subordination? Only simple sentences?)

To see how to describe the language by a PMCFG grammar, we have to check in how many
pieces a discontinuous phrase can be split and where the pieces can be moved to. Extraposition
to the right is the normal choice, but fronting is another.20

4.1. Noun and Noun Phrase

Noun phrases can be proper names, e.g. Johann, personal pronouns, e.g. ich, wir, definite
and indefinite common names21 e.g. das Haus and ein Haus, quantified noun phrases,
e.g. all my children and coordinations of noun phrases, e.g. neither my wife nor my children.

Morphologically, all noun phrases inflect by case, i.e. have forms for Nominativ, Akkusativ, Dativ,
Genitiv. In addition, common names and pronouns inflect for number, i.e. have Singular and
Plural forms, and personal pronouns have additional possessive forms.22

Articles

Number Singular Plural Singular Plural

Gender Masc. Fem. Neutr. Masc. Fem. Neutr.

Nominative der die das die ein eine ein (einige)
Accusative den die das die einen eine ein —

Dative dem der dem den einem einer einem —
Genitive des der des der eines einer eines —

Proper names can be modified by nominal attributes, e.g. Johann, ein netter Bursche or Karl
der Große, and by relative clauses, e.g. Caesar, der von Brutus ermordet wurde; with a definite
article or possessive pronoun they can also be modified by adjectival or participial attributes,
e.g. die|unsere kluge Maria or die|deine dich liebende Maria or der von Brutus ermordete Cae-
sar). In vocatives, they can also be modified by adjectival attributes, e.g. lieber Johann.

Common names have a syntactic arity. Most of them are of syntactic arity 0, i.e. take no
complements, but denote unary predicates (in combination with a copula verb), e.g. Präsident
werden; der Chef sein, or ein Narr sein. Others take one nominal complement and denote binary
predicates, e.g. Mutter von Johann, Glaube an die Freiheit, or two nominal (resp. prepositional)
complements, i.e. Fahrt von Paris nach London or Division von 20 durch 5.

Nouns derived from adjectives: dumm 7→ Dummheit (objects: neugierig auf ⇐⇒ Neugier auf?)

Nouns derived from verbs: entfernen von 7→ Entfernung von, hoffen auf 7→ Hoffnung auf,
(ich:nom entferne A:acc von B:dat 7→ das|mein Entfernen des A:gen von B ?)

(schlage A:dat vor, Inf-zu 7→ Vorschlag an A:acc, Inf-zu)

Common names can be modified to common nouns by adjectival attributes, e.g. kleines Haus,
adverbial attributes, e.g. Haus auf dem Berg, and relative clauses, e.g. Haus, dem ein Dach fehlt
or Haus, in dem ich wohnte. Common nouns inflect, like common names, for number and case,

20LangGer seems to hande fronting with special rules, but extraposition via the ext-field of phrase records.
21I use common name for the lexical noun categories and common noun for their extensions by complement,

adjectival or adverbial attribute, and relative clause, i.e. the basic noun phrase missing a determiner. Both N, N2,
N3 and CN are called common noun in GF’s resource grammar Lang.

22Should we consider a reflexive function of nominal objects in clauses?

44

but in addition also for adjective forms, e.g. ein kleines Haus, but das kleine Haus; the adjective
form depends on the determiner attached when the common noun is extended to a noun phrase.

Pronouns: reflexive, reciprocal, demonstrative, relative, interrogative, possessive, indefinite
(jemand, man)

Functions: possessive, determinative (du alter Narr, wir ahnungslose(n) Esel)

Also: reflexive possessive: sein|ihr eigener vs. sein|ihr. See also Remark 14.

The indefinite pronoun man can occur in the comparison part of an adjective phrase: es war
einfacher als man erwartet hatte oder Johann is dümmer als man sein sollte. Strangely, man
agrees with singular verb form, but with singular and plural reflexive pronoun: man soll sich
nicht ärgern und man soll einander helfen, or man versprach, sich zu bessern and man versprach,
einander zu helfen. There are infinitival subjects with indefinite implicit subject, e.g. sich zu
ärgern ist ungesund, but einander zu helfen ist gut. (The indefinite pronoun jemand does not
agree with reflexive pronoun in plural.)

The difference between reflexive and personal pronoun is to indicate referential identity or dif-
ference. For binary verbs, a reflexive object complement often refers to the individual referred to
by subject, e.g. er hat sich selbst gelobt versus er hat ihn gelobt. In imperatives, the individual
referred to may be the adressee (i.e. the implicit subject): help yourself, and God will help you.
With ternary verbs, the reflexive indirect object may refer to the direct object, e.g. er hat ihn
sich selbst überlassen, or to the subject, e.g. er hat ihn sich selbst untergeordnet.23

But with complex noun phrases, the it is less clear which referential identities and differences
are expressed by the various pronouns: (sein1 Vater)2 hat ihn1|sich2 gelobt, and (jeder Freund
(meines Vaters)2)1 half (sich selbst)1|*ihm1|ihm2|mir0|*(mir selbst)0. Likewise with reflexive
possessive pronouns, e.g. ein Freund meines Bruders hat meinen|seinen|(seinen eigenen)|dessen
Kollegen beleidigt? Or, der Freitag, 10.3.2022, Literatur V: Kurz danach veröffentlichte Krug ein
Buch mit den vielen, wunderbaren Postkarten Beckers an seine Frau Ottilie und ihn. (seine,er
= Krug)

Q14: what about selbst combined with personal pronoun: das schadet ihm selbst versus das
schadet ihm? (And differently: er hat ihm selbst|selber geholfen = er selbst|selber hat ihm
geholfen. Is selbst just used to mark an emphasis?)

Functions (and uses of noun phrases)

Predicative function : indefinite common names can, combined with a copula verb, function
as unary predicates: Johann wurde ein Mann.

Possessive function of noun phrases by Gen, resp. by possessive pronoun. Nouns derived
from verbs (or adjectives) and the systematic change of arities.

Possessive function of noun phrases in common nouns: Johanns Haus or das|ein Haus von|des
Johann for proper names, by possessive forms sein Haus for pronouns, by post-attribute in gen-
itive for common names, Haus einer|der Frau, by post-attrivbute in genitive for quantified noun
phrases, Haus jeder Frau, Eigentum vieler Frauen, Eigentum von vielen Frauen, by preposi-
tion von for coordinated noun phrases: Haus von Johann und seiner Frau (or pre-attribute in
genitive: weder Johanns noch seiner Frau Haus)

23Q13: For reflexive verbs, it seems that the short reflexive pronoun sich instead of sich selbst is preferred, e.g. er
hat ihn sich vorgeknöpft, or sich schämen, not sich selbst schämen. Do we use sich selbst only for the reflexive
usage of non-reflexive verbs? (To test the implementation, it is useful to differ between personal mich,dich and
reflexiv mich selbst, dich selbst, while for third person, the difference between ihn,sie,es and sich is apparent.)

45

Complement (subject or object) of verbs, adjectives and common names: as nominal subject of
unary common names (= possessive?)24 Glaube der Kinder, Behauptung von Johann; as nominal
(or prepositional) object of binary or ternary common names: Mord des Brutus an Caesar ;
Achtung vor dem Gesetz ; Rücksicht auf die Kranken. (Common names can have complements
of sentential or infinitive form: Versuch, einen Beweis zu finden. The complements of a common
name are optional, i.e. the common name alone can combine with a copula verb to the predicate
of clauses, e.g. Johannes ist ein Mann; Johann ist der Chef ; er wurde Arzt.

GF has no category NV for nouns with (nominal subject and) infinitival complement, e.g. Versuch
Fermat’s, seine Behauptung zu beweisen, or N2V for nouns with nominal object and infinitive
complement, e.g. Rat des Johann an uns, weniger zu arbeiten.

Ordering of complements and modifications:

unmodified common noun: (N2 ++ subject ++ object ++ complement).

modified common noun: (AP ++ (N2 ++ subject ++ object ++ complement)) ++ RelS)
Mutter eines kleinen Sohns, den ich nicht kenne and Mutter eines kleinen Sohns, die ich kenne
(2 relative extractions?)

basic noun phrase: np = {s = PreDet ++ Det ++ AP ++ N, ext = Rel ++ Appos} in
ich habe np.s getroffen, np.ext.
{s = alle meine alten Freunde, ext = die mich nicht vergessen haben, die Guten,}
{s = alle meine alten Freunde, ext = die Guten, die mich nicht vergessen haben,}
Todo 13: discuss syntactic functions only for immediate constituents, i.e. functions in common
nouns (or: as complement of common names), in verb phrase (or: as complement of verbs) etc.

Q15: Discuss how the syntactic functions should be accounted for in a GF-grammar like LangGer.
Now there is a PossNP : CN -> NP -> CN in Noun.gf, not only PossPron : Pron -> Quant.

Agreement within noun phrases

Agreement of determiner, adjective and noun in number and case; dependence of determiner
and adjective on the gender of the noun; dependence of the adjective on the determiner type.

4.2. Adjective and Adjective Phrase

Morphological adjective :

Usage : Adjectives are used in attributive function and then inflect, e.g. die schwarze Nacht, or
are used in predicative function and then don’t inflect, e.g. die Nacht war schwarz. In adverbial
function, adjectives are not inflected, e.g. er hat die Drogen schwarz gekauft or der Wagen ist
sehr schnell gefahren. Adjectives can also be used as objects of verbs, e.g. wir streichen die
Fenster blau.

The attributively used adjective inflects in all degrees according to number and case, and in
singular also to gender. Moreover, it inflects according to one of three adjective inflection
types. The endings are shown in Table 1 below (from Duden[2] 475-477).

The strong (or determinating) type is used for noun phrases missing an article, e.g. junger Mann,
junge Frau, junges Kind. The weak type is used for noun phrases with definite article, e.g. in
accusative den jungen Mann, die junge Frau, das junge Kind. The third, mixed type is used

24The possessive function corresponds closely to the subject function of the auxiliary verb haben, i.e. er hat
eine Frau 7→ seine Frau, and to the subject function of full verbs, e.g. er versucht, einzuschlafen 7→ sein Versuch,
einzuschlafen.

46

for noun phrases with indefinite article (or possessive pronoun as determiner), i.e. (d)ein junger
Mann, (d)eine junge Frau, (d)ein junges Kind. It combines the strong forms in nominative and
accusative singular with the weak forms in dative and genitive singular and in plural.

Strong Weak Mixed

Number Case Masc Fem Neuter Masc Fem Neuter Masc Fem Neuter

Singular Nom -er -e -es -e -e -e -er -e -es
Acc -en -e -es -en -e -e -en -e -es
Dat -em -er -em -en -en -en -en -en -en
Gen -en -er -en -en -en -en -en -en -en

Plural Nom -e -en -en
Acc -e -en -en
Dat -en -en -en
Gen -er -en -en

without det after definite article after kein,mein

Table 1: Ending tables of adjective inflection

Adjective phrases may be discontinuous: with a comparison adadjective, e.g. so|ähnlich – wie a
predicative adjective phrase may be continuous, e.g. Fritz war so stark wie Johann, or discontin-
uous, e.g. Fritz ist so stark gewesen wie Johann, and similarly, when the adjective phrase is built
from the comparative of an adjective, it may be continuous, e.g. Fritz ist stärker als Johann,
or discontinuous, e.g. Fritz ist stärker gewesen als Johann. In attributive usage, comparative
adjective phrases are split by a common name, e.g. ein stärkerer Junge als Johann, unless the
comparative part is missing, e.g. ein älterer Herr.

Todo 14: Internal word order: Obj ++ AdA ++ A2: (ein) seiner Frau sehr treuer (Mann) or
(der) auf das Ergebnis ziemlich neugierige (Forscher).

For split adjective phrases: 〈(ein) so großer (Fehler),wie (deiner)〉, as in das wäre ja ein ebenso
großer Fehler gewesen wie deiner. The comparison part varies in case: “(ich fand) einen größeren
Fehler als deinen”.

4.3. Verb and Verb Phrase

Morphological verbs, i.e. verbs restricted to their inflectional behaviour, have finite, impera-
tive and infinite forms. Finite forms inflect according to

• tense (Präsens, Präteritum),

• mood (Indikativ, Konjunktiv),

• number (Singular, Plural), and

• person (Erste, Zweite, Dritte).

Imperative forms inflect according to

• number (Singular, Plural).

Infinite forms are

47

• infinitive (Infinitiv, zu-Infinitiv),

• participle (Partizip Präsens, Partizip Perfekt).

The participles can be used in adjectival function and then inflect like adjectives (in Positiv),
e.g. das spielende Kind and ein gekochtes Ei, or uninflected in predicative or adverbial function,
e.g. das Kind hat gespielt and das Ei ist gekocht or er hat ihn spielend überholt and sie hat
gelassen reagiert. (Objektprädikativ: er hat das Ei gekocht gegessen.)

German has two kinds of prefix verbs: those where the prefix is (not emphasized and) always
glued to the stem, e.g. the prefix um of the verb umfáhren in er umfährt den Pfosten, and those
where the prefix is (emphasized and) sometimes split from the stem, e.g. the prefix um of the
verb úmfahren in er fährt den Pfosten um. The Partizip Perfekt and Infinitiv-zu of these kinds
of prefix verbs also differ: umfáhren vs. úmgefahren, and zu umfáhren vs. úmzufahren.

Syntactic verb classification

With respect to their syntactic behaviour, one distinguishes full verbs, which have a meaning
and correspond to the logical notion of relation with number (and semantic type) of arguments,
from auxiliary verbs and copula verbs, which have no meaning, although some can also be
used as a full verb, e.g. haben in ich habe kein Geld.

The syntactic arity (resp. verb frame) of a full verb specifies which kinds of complements
it can combine with to form a clause (resp. a verbal phrase or unary predicate). The number
of possible complements can range form zero to almost ten. The verbs of arity 0 can only be
combined with the formal (non-denoting or expletive) subject es; these are mainly the so-called
weather verbs, e.g. es regnet, but also a few others, e.g. es scheint so.25 Many complements26 are
nominal , i.e. have the form of noun phrases, including the intransitive verbs, those that take
a single, nominal complement (as subject)27, e.g. sleep, almost all of which have their subject
in nominative case; but subject in dative or accusative case is also possible, e.g. mir schwindelt
and mich friert. (Subject in genitive case is possible for passive sentences, e.g. der Toten wird
gedacht.)

There are verbs with several nominal complements, up to almost ten28; the order in which the
complements have to appear in a clause is at best partially fixed, so they are distinguished
by case or a preposition with case, e.g. nominative subject and accusative object: ich füttere
den Hund nicht, or den Hund füttere ich nicht, or nominative subject and two objects with
prepositions: der Lehrer spricht mit dem Schüler über den Aufsatz, or über den Aufsatz spricht
er mit ihm. There are verbs with a sentential complement: er glaubt, dass der Hund beißt or
er verspricht ihr, dass er zurückkommt, and verbs with an interrogative complement: er fragt,
wer das angeordnet hat or er fragt, in welcher Richtung der Bahnhof liegt. There are verbs with
infinitival complements29: sie will arbeiten, or er glaubt, das Spiel zu gewinnen. Some verbs
take a sentential subject and nominal object, e.g. dass wir gesund sind, freut uns, some take
an infinitival subject and nominal object, e.g. zu erkranken, betrübt uns. (Of course, sentential,
interrogative and infinitival complements may have a head verb with sentential, interrogative

25There are also verbs with very few possible objects, e.g. es|das|nichts|etwas|manches|vieles|alles tun
26Todo 15: prepositional complements
27We count the subject as first complement, the objects as second, third etc. to be specified by c1, c2,. . . in GF.
28C.S.Peirce’s: person x0 rents person x1 a thing x2 in place x3 for an amount x4 from time x5 to time x6.
29i.e. verb phrases as defined below and denoted by Inf or Inf-zu here, consisting of a verb in Infinitiv or

Infinitiv-zu form, combined with objects and adverbials.

48

or infinitival complement, e.g. er behauptet, daß er nicht wußte, daß|ob er wiederkommt or sie
wundert sich, warum er fragt, wohin sie geht or er verspricht ihr, zu versuchen, ihr zu helfen.)

Similarly, there are verbs with an adjectival complement, e.g. der Wein schmeckt sehr gut
or du siehst schlechter aus als gestern, and verbs that take both a nominal and an adjectival
complement, e.g. ich male die Wand blau or sie wirkt auf mich kompetenter als du. (Besides these
full verbs with adjectival complements, copula verbs combine with adjective phrases, e.g. ich bin
zufrieden or du wirst unglücklich. Strangely, GF declares become VA : VA to be a full verb.)

A classification of verbs therefore ought to tell the number and kind of complements they can
take, given in some standard order. Using a case c to name the nominal phrases in this case c,
and letting the subject come last in the syntactic arity, the verbs could be classified by

schwindeln : Dat→ Clause

schlafen : Nom→ Clause

füttern : Acc→ Nom→ Clause

sprechen : über-Acc→ mit-Dat→ Nom→ Clause

glauben : dass-S→ Nom→ Clause

versprechen : dass-S→ Dat→ Nom→ Clause

wollen : Inf→ Nom→ Clause

glauben : Inf-zu→ Nom→ Clause

empfehlen : Inf-zu→ Dat→ Nom→ Clause

freuen : Acc→ dass-S→ Clause

betrüben : Acc→ Inf-zu→ Clause

where Clause stands for sentences depending on tense and mood, S for sentences with a fixed
tense and mood. Notice that the syntactic arity of a verb is not unique, as for glauben above.
For ternary words with nominal objects, these verb frames would mention the complements in
the ordering30

indirect object < direct object < subject.

For example, the arity of schenken then is

schenken : Dat→ Acc→ Nom→ Clause.

In contrast to the slash-categories of categorial grammar, the position of the arguments in clauses
is not fixed by the syntactic arity of its main verb. For verbs having two complements of the same
case, like nennen : Acc→ Acc→ Nom→ Clause, one therefore cannot definitely tell how the two
object noun phrases in a sentence correspond to the syntactic arity, e.g. er nennt seinen Freund
den Weltmeister vs. er nennt den Weltmeister seinen Freund. (In these cases, word order is
important.) There are a few nullary verbs, like the weather verbs regnen, schneien, dämmern
etc., which combine to a clause with the expletive subject es, e.g. heute regnet es, but also some
verbs with higher arity, e.g. um das Spiel zu gewinnen, bedarf es großer Geschicklichkeit.

Some complements can be optional, e.g. sie liest gerade ein Buch vs. sie liest gerade.

Each syntactic arity gives a class of verbs. The transitive verbs are those with a nominal
subject in nominative and a single nominal object in accusative, e.g. einen Aufsatz schreiben,

30or rather direct < indirect < subject, to make it the reverse of the typical ordering in subordinate clauses like
weil er ihr einen Blumenstrauß schenkt? Compare accdatV in ResGer|Eng. For more than 3 complements, there
is no intuitively “standard” ordering, so a convention for the arity of words in a multilingual lexicon is needed.

49

the ditransitive verbs are those with nominal subject in nominative and two nominal objects
in accusative31, e.g. der Wagen kostet mich einen Tausender.

Reflexive verbs are verbs with a nominal subject in nominative and, besides further com-
plements, a nominal object that has to be a reflexive pronoun (in accusative or dative)32 that
agrees in person and number with the subject, e.g. sich schämen in ich schäme mich or sich
etwas merken in ich merke mir den Termin. The reflexive pronoun is a syntactically necessary
complement, but does not correspond semantically to an argument of the predicate named by
the verb. A reflexive verb therefore often translates to a non-reflexive verb of smaller arity,
e.g. sich schämen 7→ to be ashamed ; sich etwas merken 7→ to remember sth, and hence multi-
lingual grammars cannot have a lexical type of reflexive verbs. Notice the distinction between
a reflexive verb and a reflexively used non-reflexive verb; a non-reflexive verb with nomi-
nal (or prepositional) object can, but need not be used with reflexive pronoun as complement,
e.g. jemanden|sich ärgern and mit etwas|sich hadern versus sich|*jmdn schämen or sich|*jmdm
etwas merken.

The modal verbs, i.e. mögen, wollen, dürfen, können, sollen33, müssen, are the verbs of arity
Inf→ Nom→ Clause. (See also p. 54.)

The infinitive is also used in accusative cum infinitive (ACI)-constructions, mainly with
perception verbs: ich höre den Hund bellen, or ich sehe den Hund einen Hasen jagen. These are
like compressed forms of sentential complements: ich höre, dass|wie der Hund bellt or ich sehe,
dass|wie der Hund einen Hasen jagt. So it seems these verbs have a basic arity dass-S→ Nom→
Clause and an arity Inf → Acc → Nom → Clause derived by subject-to-object raising : the
nominal subject Nom of the complement dass-S is raised to an object Acc of the verb, which
simultaneously is the implicit subject of the verb of the Inf complement.

Similarly, the verb lassen combines with accusative and infinitive: ich lasse dich schlafen = ich
lasse zu, dass du schläfst.34 E.g. lassen : Inf → Acc → Nom → Clause can be seen as derived
from zulassen : dass-S→ Nom→ Clause.

Verbs of arity Inf-zu→ Nom→ Clause, e.g. hoffen in ich hoffe, den Wettkampf zu gewinnen, let
their subject be the implicit subject of their Inf-zu complement, i.e. ich hoffe, den Wettkampf
zu gewinnen = ich hoffe, daß ich den Wettkampf gewinne. This is syntactically observable when
the complement Inf-zu is built with a reflexive or reflexively used verb; the reflexive pronoun
then has to agree in person and number with the (implicit) subject: ich hoffe, mich nicht zu
blamieren; du hoffst, dich nicht zu blamieren, etc.

Control verbs are verbs of arity Inf-zu → Dat → Nom → Clause or Inf-zu → Acc → Nom →
Clause. In subject-control verbs, their subject is the implicit subject of the Inf-zu complement,
e.g. ich verspreche dir, mich zu beeilen. In object-control verbs, their object is the implicit
subject of the Inf-zu complement, e.g. ich rate dir, dich zu beeilen or ich ermahne dich, dich zu
beeilen. We have to keep track of the control-feature in translation, since reflexive verbs in the
target language need not be reflexive in the source language, e.g. I promise you to hurry up 7→
ich verspreche dir, mich zu beeilen, but I advise you to hurry up 7→ ich rate dir, dich zu beeilen.

The Inf-zu complement may be accompanied by an additional correlate es or das, e.g. ich
rate es dir, dich zu beeilen or dich zu beeilen, das rate ich dir. Sometimes, the complement

31English: give sb sth as opposed to give sth to-sb. May, for German, one object be in dative?
32The reflexive pronoun sich in third person singular can be dative or accusative.
33sollen can be used to circumscribe indirect imperatives: er soll schweigen! or sie meinen, ich soll arbeiten!
34But lassen is also a passive auxiliary verb (lassen-Passiv): ich lasse mich täuschen = ich lasse zu, dass ich

getäuscht werde, or ich lasse mir ein Haus bauen = ich veranlasse, dass mir ein Haus gebaut wird.

50

Inf-zu seems to be a restricted instance of a prepositional object, and then a pro-form of the
preposition, like damit, daran, dazu, may be necessary in addition to the Inf-zu complement:
ich prahle mit meinem Erfolg → ich prahle damit, Erfolg zu haben, likewise ich erinnere dich
daran, dich zu beeilen, or ich bringe dich dazu, dich zu beeilen.

Q16: Control verbs V2V with Inf -complement? ACI: ich sehe|lasse euch euch streiten; ich höre
ihn sich rasieren; ich lasse dich dich schämen. Or could isAux:Bool be omitted in V2V?

Auxiliary verbs are morphological verbs (without meaning, hence without syntactic arity) that
combine with infinite forms of other verbs to function as predicate in clauses. (The auxiliary verb
shows person, number, tense and mood resp. imperative.) German has the following auxiliary
verbs:

• the perfect auxiliary verbs haben and sein, combine with the Partizip Perfekt of a verb,

• the future auxiliary verb werden combines with a verb’s Infinitive to Futur-I, and with
Partizip Perfekt and haben to build the Futur-II

• the passive auxiliary verbs werden, bekommen, combine with Partizip Perfekt, the passive
auxiliary verb lassen combines with Inf (Xerxes ließ das Meer auspeitschen), but also
with dative nominal object: er ließ sich:Dat die Haare:Acc schneiden vs. er ließ sich:Acc
auspeitschen

• (lassen in ich lasse dich gehen? Is this an “admissing” modal verb? Person, die sich nicht
impfen lassen darf)

Copula verbs: sein, bleiben, werden (building a predicate with a CN or AP) and(?) haben
(building a predicate with a CN or NP)

We might give copula verbs the syntactic arities sein,bleiben,werden : AP -> VP as well
as sein,bleiben,werden : NP -> VP and haben : CN -> VP as well as haben : NP -> VP,
e.g. Pech haben or eine Frau haben, or die besten Möglichkeiten haben.

Raising verbs:

• subject-to-subject raising : scheinen : dass-S → es → Cl : es scheint, daß das Wetter
sich bessert 7→ das Wetter scheint sich zu bessern. But also with scheinen : dass-S → Dat
→ Cl : mir scheint, daß sie Narren sind 7→ sie scheinen mir Narren zu sein

• subject-to-object raising = ACI? ich sehe, daß|wie du den Hund fütterst 7→ ich sehe
dich den Hund füttern or ich höre, daß es regnet 7→ ich höre es regnen

(Infinitive for participle in ACI: ich habe dich schlafen sehen instead of ich habe dich
schlafen gesehen?)

he wants that we help 7→ he wants us to help; dt. er will|erwartet von uns, daß wir helfen,
6= er fordert uns auf, zu helfen?

• object-to-subject raising? the Acc object of an active sentence can be raised to the
Nom subject in its passive sentence:

Einen guten Mann zu finden, ist schwer 7→ Ein guter Mann ist schwer zu finden

We treat the verbal gender (Aktiv, Passiv) and the clausal tenses (Perfekt, Plusquamperfekt
Futur-I, Futur-II), under verb phrase and clause. (But: don’t we have to distinguish verbs that

51

admit a passive from those that don’t? Discuss passive as argument reduction, in comparision
to reflexive usage?)

There are verbs that need an adverbial to build a verb phrase, i.e. an einem Ort wohnen oder in
einem Raum übernachten. Such adverbials can be viewed as complements of verbs rather than
as modifications of verb phrases. (c.f. page 42 and Proposal 36.)

Verb phrases

A basic verb phrase is the combination of a verb with expressions realizing all but the subject
complement functions given by the syntactic arity of the verb.35 Basic verb phrases can be
coordinated and modified by adverbials to give verb phrases. Roughly, n-ary verbs correspond
to n-ary atomic logical predicates, complements to arguments, adverbials to arity-preserving
predicate modifiers; then verb phrases correspond to unary complex logical predicates.36

In languages like English, where word order is rather rigid and the subject of a basic clause is in
initial position, one may assume the remaining final part of the clause to be a constituent of the
clause, i.e. its verb phrase; for example, one may then build a complex clause by combining a
single subject with a coordination of several verb phrases, e.g. John walked home and went to bed.
For languages where the ordering of verb complements as clause constituents is relatively free,
as in German, a similar argument holds with object complements, e.g. den Ring hatte er gekauft
und ihr geschenkt, but is not used to justify an “object-missing-clause” as clause constituent.

A perhaps better reason to assumme a verb phrase category is that they provide infinitival
complements, so to speak clausal complements of verbs, nouns and adjectives that leave their
subject implicit and identify it with the subject or an object of the verb, noun or adjective.37

Even though a basic verb phrase is not a basic clause, it is useful to speak of its predicate
constituent and its object constituents.

Usage as predicate of clauses: Basic verb phrases can be combined with a subject to
build a basic clause. In this case, its predicate consists of two verbal parts, a finite part vfin

and a (possibly empty) infinite part vinf, which in turn consist of verb forms of an auxiliary
verb and a full or modal verb. The predicate of a verb phrase has four tenses in addition to
the Präsens and Imperfekt of verbs, namely Perfekt, Plusquamperfekt, Futur I, Futur II. The
Perfekt resp. Plusquamperfekt are expressed by the finite form of the full verb’s perfect auxiliary,
sein or haben, in Präsens resp. Imperfekt and the Partizip Perfekt of the full verb. The Futur I
resp. Futur II is expressed by a finite form of the future auxilary verb werden in Präsens and
the Infinitiv of the full verb, resp. the Infinitiv of the verb and followed by the Infinitiv of the
verb’s perfect auxiliary:

35In Head Phrase Structure Grammar (HPSG), the basic verb phrase is a head-complement-structure, where
the verb is the head, the other expressions are the complements. With respect to the syntactic arity of the verb,
these are just the object complements of the verb. So, essentially, VP = Nom→ Clause or VP = NP\S.

36This correspondence is not precise, since complements and modifiers may contain quantifiers, hence don’t
represent individuals in the logical sense.

37These infinitival phrases often have a clear meaning as action ascribed to the implicit subject. The resource
grammar Lang assumes verb phrases for all languages.

52

vfin vinf vfin vinf

Präsens glaubt geht

Imperfekt glaubte ging

Perfekt hat geglaubt ist gegangen

Plusquamperfekt hatte geglaubt war gegangen

Futur I wird glauben wird gehen

Futur II wird geglaubt haben wird gegangen sein

If, rather than from a full verb, the predicate comes from a , e.g. wollen, which takes haben
as its perfect auxiliary, the predicate part vinf also contains the infinite verb of the infinitival
complement of the modal verb. Then its Partizip Perfekt gewollt is replaced by its infinitive
wollen, and in Futur II the infinitive of its perfekt auxiliary is put in front of the infinitive of
the infinitival complement:

vfin vinf

Präsens will gehen

Imperfekt wollte gehen

Perfekt hat gehen wollen

Plusquamperfekt hatte gehen wollen

Futur I wird gehen wollen

Futur II wird haben gehen wollen

In a basic clause, the , as well as the ordering of the predicate parts vfin and vinf, can vary;
in particular, the subject does not occupy a fixed position. Rather than considering the order
of objects and adverbs within verb phrases, it makes more sense to view a verb phrase as
discontinuous, or even as an unordered collection of predicate parts, object complements and
adverbials that only will, together with the subject, be brought into various relative orderings
in basic clauses.

In most cases, each of the vfin and vinf parts, the nominal objects, the sentential and infinitival
objects, and the adverbials is internally ordered and continuous. An adjectival complement
may be continuous, e.g. heller als das Meer in (er) malt den Himmel heller als das Meer, or
discontinuous, i.e. (weil er) den Himmel heller malt als das Meer. Adjectival complements(?) of
copula verbs (or: the predicative usage of adjective phrases), may be continuous, e.g. größer als
Johannes in (Maria) ist größer als Johannes, but can also be discontinuous, as in (weil Maria)
größer ist als Johannes. But nominal complements also need not be continuous; the relative
clause or the infinitival object may be right-extracted: (er) hat das Haus gekauft, das du gebaut
hast, or (er) hatte den Plan gefaßt, das Haus zu kaufen. (Likewise in infinitival complements:
den Plan zu fassen, das Haus zu kaufen, (war klug).)

If verb phrases are modified by several adverbs or adverbial clauses, are they always combined to
a continuous modifier (in a fixed relative order, like: temporal before local adverbs), e.g. ich lese
das Buch morgen im Zug, or can they be ordered in different ways in a clause, e.g. morgen lese
ich im Zug das Buch? Q17: Is the ordering preserved, when adverbial clauses replace adverbs?

Verb phrases can also be used to build infinitival complements of verbs, nouns and adjectives,
in which case their head verb is put in Infinitive or Infinitive-zu.

Usage as infinitival complement : when a verb phrase is used as infinitival complement, the
order of complements and adverbials of its head verb seems rather fixed: nominal objects and
adjectival objects precede the infinite head verb, sentential, infinitival or interrogative comple-
ments follow the head verb (or are extracted further to the right). E.g. jemandem [zu] glauben,

53

daß die Sonne untergeht, or jemanden [zu] fragen, wann der Zug ankommt, or den Brüdern
(manchmal) einen Gruß [zu] senden, or sich (niemals) [zu] schämen or (oft) mit dem Gedanken
[zu] spielen, eine Weltreise zu machen, and das Bild (gerne) schwarz [zu] übermalen. (Appar-
ently, adverbs are between two nominal objects, before the non-pronominal nominal object, after
the pronominal object, but not attached to the verb, as AdV suggests.)

Let us call an infinite verb phrase a reflexive infinitive , if its infinite head verb is a reflexive
or reflexively used verb. The reflexive infinitive then contains a reflexive (personal or possessive)
pronoun, which has to agree in number and person with the implicit subject of its head verb,
e.g. sich bemühen, sich nicht zu schämen and sich bemühen, seine eigenen Probleme zu lösen.
If the reflexive infinitive is the infinitival object of a (matrix) verb, its implicit subject is the
subject or the (direct) object complement of the matrix verb, depending on whether the matrix
verb is a subject-control verb or an object-control verb.

Since the head verb of the reflexive infinite may itself be a control verb and have an infinitival ob-
ject, we can get nested infinitival complements, e.g. (ich hoffe,) dich [davon] zu überzeugen,
mir zu helfen, or, more complicated, (ich hoffe,) dich [davon] überzeugen zu können, dir helfen
zu lassen and even (ich hoffe,) dich [davon] überzeugen zu können, ihr zu raten, sich helfen
zu lassen. In such cases, the embedded infinitival complements with zu apparently have to
be extracted to the right and may leave a correlate in place, e.g. the davon above. Infinitival
complements without zu stay in place, e.g. eine Pause machen dürfen, or dich das Buch lesen
lassen or mir helfen können wollen. (Todo 16: Nested infinitives are complex in Futur-II and
Plusquamperfekt.)

But the reflexive infinitive may also be the subject complement of its matrix verb. In this case,
its reflexive personal or possessive pronoun is ungoverned, e.g. sich mit dem Ergebnis abzufinden,
or to close one’s eyes 7→ seine|die Augen zu schließen. This is the reason why verb phrases vp

need to store nominal objects as tables vp.nn: Agr => Str, not as fixed strings vp.nn: Str.
Q18: Can Agr be used to handle reciprocal complements as well, e.g. ich rate euch, einander zu
helfen, where einander only makes use of the plural of Agr.

Q19: What about VP-negation, and negation of modal verbs: ich will nicht sprechen vs. ich will
schweigen. i.e. can we negate the (full) verb, and so to speak add complements to the dual verb,
the negated verb? Do we still get a positive polarity? Maybe clearer with Inf-zu: verb phrase
negation ich hoffe, nicht einzuschlafen (eng. I hope not to fall asleep) vs. sentence negation
ich hoffe nicht, einzuschlafen (eng. I do not hope to fall asleep, or ich rate dir, nicht der Letzte zu
sein vs. ich rate dir nicht, der Letzte zu sein, or ich verspreche dir, den Vortrag nicht zu halten
vs. ich verspreche dir nicht, den Vortrag zu halten. (Can we admit nicht at several positions
and let the parser accept only one, by forcing Pol = PPos for all following positions?)

Where to put negation? How to combine negation + indefinite noun phrase – nicht ein = kein, or
mass noun: “nicht Geld = kein Geld”? Highly influenced by emphasis, ok: “nicht eine Minute”.
Where is the negation of modal verbs sie darf sich nicht impfen lassen and where is the negation
with auxiliaries, e.g. “er hat sich nicht gefragt, ob ...” and “wir dürfen das Fest nicht ausfallen
lassen”, or ihr müßt [uns|das Kind|einen Narren] nicht loben, or “wir sollen dem|einem Kind das
Spielen nicht verbieten” Do we have negated quantifiers: “nicht wenige”, “nicht viele”, “nicht
alle”, “nicht ein”? Negated noun phrases can be focused: “nicht viele Aufgaben konnten sie
lösen” vs. “viele Aufgaben konnten sie nicht lösen”. But ∗“nicht manche”.

Which grammar had a second way to set the polarity depending on negated quantifiers, Fre?

Q20: Do the modal verbs (vv.isAux=True) or lassen:V2V.isAux=True combine with a full

54

verb (similarly as its perfect and future) as an auxiliary or to a new verb, i.e. das Buch [nicht]
(lesen wollen) or [nicht] (das Buch lesen) wollen? And likewise with passive auxiliary? (([nicht]
(gelesen werden)) wollen):V and [nicht] ((gelesen werden) wollen):V ?

What about scheinen in er scheint ein Narr zu sein? Is this a VV-verb with isAux = False?
Is there a perfect form – er hat ein Narr zu sein geschienen??

4.4. Adverb

Todo 17: German has an adverb negation , e.g. Fritz arbeitet nicht gerne, where nicht gerne
= ungerne, likewise nicht oft = manchmal, nicht immer = manchmal nicht, nicht jetzt = ein
anderes Mal, in contrast to clause negation , e.g. Fritz arbeitet jetzt nicht 6= Fritz arbeitet nicht
jetzt. The first sentence has negative polarity, the second positive polarity.

LangGer can parse er schläft nicht hier heute (as Eng: he doesn’t sleep here today), but not er
schläft heute nicht hier or er schläft heute nicht.

er schläft nicht hier heute = er schläft woanders heute = er schläft heute woanders?

Gibt es doch AdV + nicht + Adv? müssen später nicht erneut beantwortet werden — ∗ erneut
nicht später, oder geht es hier einmal um ein Adverb zu müssen, das andere Mal um ein Adverb
zu beantworten? um (sie später: Adv nicht (erneut: Adv zu beantworten)): Inf-zu.

How to set the sentence polarity for support verbs,. e.g. “spielt dann nicht eine Rolle” 7→ “spielt
dann keine Rolle”?

Q21: Is it true that the averbs are ordered in a rather standard way (at least in the Mittelfeld?
Zeit < Ort, etc.?), and if so, how do we fix the order of adverbs? Does German make a difference
between Adv and AdV? Aarne: er schläft heute|*immer nicht, but er schläft nicht immer.

(Isn’t er schläft (immer ńıcht) = immer (er schläft nicht) = er schläft nie, and ich verlasse
dich nie = immer (ich verlasse dich nicht), so (immer ńıcht) = nie? In contrast, (er schl´äft
immer) nicht = nicht (immer (er schläft)) = manchmal (nicht (er schläft)) = manchmal (er
schläft nicht) = er schläft manchmal ńıcht, and there is no lexical adverb for manchmal ńıcht?)

According to Macheiner[6] (p.74): (in a declarative sentence with transitive verb,) the temporal
adverbial can be put at the beginning of the sentence, at the end, or after the finite verb.

Am Anfang schuf Gott den Himmel und die Erde.
Gott schuf den Himmel und die Erde am Anfang.
Gott schuf am Anfang den Himmel und die Erde.

There may be several adverbials, which can be put at the beginning, at the end, or at the middle
position, i.e. between subject and verbal phrase, but then hardly the temporal adverb at the
end.

One distinguishes between referential adverbials, which contribute to the situation or event
referred to, from evaluative adverbials, which express the speaker’s evaluation of the event.
(To the latter kind belong “ja”, “doch”, “wohl” etc.). Among adverbials of the same kind, the
more specific one follows the more general one. (“leider” < “wahrscheinlich”.) Among local
adverbials, the more specific one comes before the less specific ones.

Relative order of temporal, local, causal, modal and instrumental adverbials: temporal < local
(“am Montag um 8 Uhr vor dem Dom”)

Sentence negation:

55

ich habe viele Bücher (nicht) gelesen ich lese viele Bücher (nicht)
ich habe ein Buch nicht gelesen ich lese ein Buch nicht
ich habe kein Buch nicht gelesen ich lese kein Buch nicht

Prepositional phrases as special case of adverbs, via Prep =< Adv/NP.

There are split prepositions in German, i.e. wenn man von hier aus den Blick über den Dnjepr hinweg
nach Osten richtet (Karl Schlögel, Entscheidung in Kiew, S.92); also von dort her. But are these
worth a second field s2:Str in Prep, which lead to a lot of wrong trees (via VPSlashPrep only,
c.f. Remark 18)?.

At which positions can we have an adverb (if objects are “positive”)?

vz Vorfeld vfin Mittelfeld vinf

Präsens Nom glaubt Dat Acc Adv nicht

Imperfekt Nom glaubte Dat Acc nicht

Perfekt Nom hat Dat Acc nicht geglaubt

Plusquamperfekt Nom hatte Dat Acc nicht geglaubt

Futur I Nom wird Dat Acc nicht glauben

Futur II wird Dat Acc nicht geglaubt haben

Es ist niemals so simpel! Eher für atomare Aussage s:S (mit individuellen Objekten?) und
temporalem Adverb advT:Adv wird am Satzende negiert, bei v:V2: Sind Einstellungsadverbien
AdvM anders zu behandeln als temporale, lokale oder Wiederholungsadverbien? Z.B.

Satznegation advT Adverbnegation ? advM

er liest das Buch heute (nicht), er liest das Buch (nicht) gerne
heute liest er das Buch (nicht), gerne liest er das Buch (nicht)
er liest heute das Buch (nicht), er liest ?nicht gerne das Buch

Aber: er liest das Buch (nicht heute), oder er geht nicht gerne ins Kino und er stellt nicht gerne
eine Frage. Darf im Skopus von gerne ein negierter Satz stehen? er arbeitet (gerne nicht) = er
unterläßt gerne das Arbeiten. Welche Adverbien sind “mit der Negation vertauschbar”, d.h.

nicht regelmäßig φ =? regelmäßig ¬φ,

oder haben ein duales Adverb,

nicht immer φ = manchmal ¬φ ?

und wann hat man so etwas wie

selten φ ⇐ nicht oft φ ⇐? oft ¬φ ⇐ immer ¬φ = nie φ ?

At least, English does not put an adverb between verb and object, but German does: I sometimes
read novels – ich lese manchmal Romane.

4.5. Clause

A basic clause is the combination of a verb with other expressions realizing all complement
functions according to the syntactic arity of the verb. Thus, a basic verb phrase can be extended
to a basic clause by adding a suitable subject expression.

56

Subject-verb agreement : nominative nominal subject and predicate (finite verb part vfin)
agree in person and number: ich schlafe, du schläfst, wir schlafen, etc.; a non-nominative nominal
or prepositional subject agrees with the predicate in third person singular: mich|uns friert, or
mir|uns ist schlecht, or dir|euch wird verziehen, and nach mir|uns wird gesucht. Sentential,
interrogative and infinitival subjects agree with the predicate in third person singular, e.g. daß
es schneit, freut uns or wo die Sterne stehen, ist uns bekannt or den Armen zu helfen ist eine
Pflicht.

Remark 25 : Contractions of preposition and article cannot generally be excluded in (object)
complement frames of verbs, nouns, and adjectives; they can even be used in subjects of passive
clauses, e.g. ans Christkind wird geglaubt. (Hence we cannot avoid 9 ≤ |Prep| ≤ 15.)

• verbal gender, (Aktiv, Passiv)

• Vorfeld + vfin + Mittelfeld + vinf + Nachfeld

• verb order in interrogative, main, and subordinate clauses

• extraction to the Nachfeld

• in-place correlates es and das and extraction of infinitives and daß -sentences

• relative order of adverbials in the Mittelfeld

• negation: VP-negation versus sentence-negation, (negation in NPs with kein)

Where do negation, modalization, passivization operate? On verbs/predicates: es nicht tun, es
tun können, getan werden (können); on adjective modifiers un : A/A as in unschön or bar : V \A
in erziehbar (also in AGrec), on participles ungelesen

There are (passive) (and passive interrogative) clauses without (even expletive) subject, like
hier wird nicht demonstriert or jetzt wird wieder gearbeitet (and muß dagegen nicht protestiert
werden?). (Apparently, there is no infinitive form of these passives. Or is demonstriert werden
the subject of the question demonstriert werden darf heute nicht?)

As explained above, the predicate is split into a finite part vfin and an infinite part vinf.

Sentential objects are often right-extracted (from the Mittelfeld), i.e. moved to the right behind
the infinite verb part, e.g. er hatte [es] geglaubt, daß die Erde flach sei and er wird [es] glauben,
daß die Erde flach ist. Like nominal objects, the sentential object can be moved to the Vorfeld,
e.g. daß die Erde flach ist, [das] wird er glauben. Acceptable, but less used is the in-place
position: er hat, daß die Erde flach ist, nicht geglaubt. In subordinate clauses: (weil) daß die
Erde flach ist, niemand glaubt. The probably most used placement is in the Nachfeld. (So
LangGer gives VP a field ext:Str to put the extracted constituent into.)

Vorfeld vfin Mittelfeld vinf Nachfeld

damals hat/hatte (es) fast jeder geglaubt, daß die Erde flach ist

vz heute glaubt (es) fast niemand, daß die Erde flach ist

heute wird (es) kaum jemand glauben, daß die Erde flach ist

Word ordering Interrogative clause = verb-initial, declarative clause = verb-second, subordi-
nate clause = verb-final

57

Q22: But what about the ordering of light and heavy noun phrases, the ordering of adverbs, the
position of the negation adverb, the extraction depending on expression length?

. . .

58

5. The Resource Grammar LangGer

Let me emphasize that this is a documentation and explanation of source code developed by
Aarne Ranta, Harald Hammarström and Björn Bringert (2002-2006), with some additions and
changes by Erzsébet Galgóczy, Scharolta Siencnik and myself. (Scharolta Siencnik at least made
noun phrases and adjective phrases discontinuous, added clauses with non-nominal subjects
and added focus-rules in ExtraGer.) Hence I may at places have misunderstood the original
intentions. The examples from German demonstrating various phenomena or constructions often
cannot directly be tested with the implementation; the main reason is that the small test lexicon
LexiconGer and lexicon of structural words StructuralGer miss entries of corresponding word
classes (or words with properties in question) or that the available entries would give semantically
inadequate examples.38

The full code is on https://github.com/GrammaticalFramework/gf-rgl.git.

As mentioned in Section 3.1, the abstract grammar Lang consists of modules Grammar and
Lexicon and fixes a startcategory Phr of phrases. Accordingly, the concrete grammar LangGer

consists of modules GrammarGer and LexiconGer. The module GrammarGer collects implemen-
tations for the submodules of Grammar.

concrete GrammarGer of Grammar =

NounGer,

VerbGer,

AdjectiveGer,

AdverbGer,

NumeralGer,

SentenceGer,

QuestionGer,

RelativeGer,

ConjunctionGer,

PhraseGer,

TextX - [Tense,Temp,Adv,CAdv],

IdiomGer,

StructuralGer,

TenseGer,

NamesGer

** {

flags startcat = Phr ; unlexer = text ; lexer = text ;

} ;

These are all extensions of a module CatGer providing implementation categories for the syntac-
tic categories of Cat, in particular the 1-dimensional implementation type for the start category:

lincat

Phr = {s : Str} ;

38Most of the phenomena can be demonstrated with lexicon entries, if the semantics is ignored. An extension
of Lang by a TestLexicon with entries to test specific syntactic properties is under construction, as well as a file
lintest.gfs for linearizing all constructions in LangGer and LangEng, to support regression tests.

59

Any concrete grammar in GF is based on a language-specific resource module which defines
parameter types like gender, number, case, tense etc., as well as record types of morphological
words like noun, adjective, verb, preposition, adverb, which contain inflection paradigms for
these types of word that make use of the parameter types. A parameter type is defined by

param Typename =

Constructor_1 ArgumentTypes_1 | ... | Constructor_k ArgumentTypes_k ;

where the constructors are function symbols f used to build terms ft of type Typename from
terms t of f ’s argument types. In the simplest case of 0-ary constructors, these are just constants
f of type Typename.

The type of a morphological word class is defined by

oper Wordclass : Type =

{s : Form => Str ; p_1 : Type_1 ; ... ; p_m : Type_m} ;

where s, p 1,. . . , p m are parameter names, including the name s for an inflection table, and
Form => Str is a table type for s, Type 1, . . . , Type m are names of parameter types (or table
types) for p 1, . . . , p m, and Form is the parameter type of (abstract) forms of words of the
wordclass, Str the type of strings. The inflection table can have a more complicated type, for
example Form => Str * Str for split words, or Form 1 * Form 2 => Str or Form 1 => Form 2

=> Str if the abstract forms can be split into two parts; if there is no variation in forms, the
type of s can be just the type Str or Str * Str.

Example 1. For example, a type of adpositions might be defined by

param Kind = Pre | Post | Circum ;

param AdCase = Genitive | Dative | Accusative ;

oper Adposition : Type = {s : Str * Str ; t : Kind ; c : AdCase} ;

An adposition would then be a record of this type, defined as an operation by, for example,

oper umherum : Adposition =

{s = <"um", "herum"> ; t = Circum ; c = Accusative} ;

The grammar rule for combining an adposition with a noun phrase would then have to see from
umherum.t = Circum that the first part umherum.s.p1 = "um" has to be put in front of the noun
phrase, the second part umherum.s.p2 = "herum" has to be put after the noun phrase, and from
umherum.c = Accusative that the noun phrase has to be put in the accusative case.

As we aim at explaining the implementation of the grammar rules for German, we will not
explain how the inflection paradigms are built. (For this, see the resource file ParadigmsGer.)
From the auxiliary operation of the resource file ResGer, we only give the parameter types and
wordclass types as needed, and in doing so, often omit the keywords param and oper. Other
operations of ResGer are often presented informally, by describing their effect on the linerization
records of arguments in grammar rules.

The syntactic categories of the abstract grammar, given in Cat, are interpreted by linearization
types or implementation types in CatGer. However, we shall not explain the implementation
types of all syntactic categories in one sweep, but do this one by one.

60

The abstract grammar does not make a formal distinction between lexical and syntactic cate-
gories, but treats them alike as atomic categories of a system of simple types. Some of these are
categories of word classes, like N, V, A etc. Their implementation type is then derived from the
corresponding morphological word class, Noun, Verb, Adjective etc. by

lincat V = Verb ;

There is a slight distinction between the morphological type and the implementation type derived
from it. Several lexical categories in the grammar, e.g. subjunctors Subj and conjunctors Conj,
which consist of just uninflected words, have the same morphological type oper M = {s : Str}.
The linearization categories

lincat Subj = M ; lincat Conj = M ;

derived from M have an additional invisible field and are different types

Subj = {s : Str ; lock_Subj : {}} ; Conj = {s : Str ; lock_Conj : {}} ;

Notice that the name of the category is part of the additional lock-field, lock Subj and lock Conj

respectively, so that the type checking phase of the grammar compiler can detect type incor-
rect uses of a subjunctor as a conjunctor, for example. Above, {} is the unit type , and each
subjunctor or conjunctor has the only possible value <> of this type in its lock-field.

5.1. Noun Phrases

Morphological noun . Nouns vary in number and case and have an inherent gender. The
parameter domains are the standard two value number, four-value case and three-value gender:

param

Number = Sg | Pl ;

Case = Nom | Acc | Dat | Gen ;

Gender = Masc | Fem | Neutr ;

The auxiliary type Noun has a field for the inflection paradigm and the inherent gender39:

Noun : Type = {

s : Number => Case => Str ;

g : Gender

} ;

Lexical noun categories

This auxiliary type Noun (of ResGer.gf) is extended in CatGer to three lexical noun categories:40

lincat

N = Noun ;

N2 = Noun ** {c2 : Preposition} ;

N3 = Noun ** {c2,c3 : Preposition} ;

39We here skip two fields dealing with compound nouns
40For records r and s, r ** s is the extension of r by the fields of s, where fields with a label common to r

and s get their value from s.

61

The categories N2 of binary nouns and N3 of ternary nouns have fields c2 and c3 indicating the
preposition and case used to combine a nominal complement with the noun.

Prepositions The auxiliary type41

Preposition : Type =

{s : PrepForm => Str ; s2 : Str ; c : Case ; t : PrepType} ;

has a field s for the preposition string (or “inflection” table), a field s2 for the post-position
string (or second part of a circum-position), a field t to distinguish between three types of
prepositions, and a field c for the case of the nominal complement.

There are three types of “prepositions”: (i) cases, (ii) pure pre-, post- and circum-positions, and
(iii) prepositions contracted with the definite article in singular, e.g. am for an dem or ins for
in das, or with some relative or interrogative pronouns, e.g. worin for in was, distinguished by
the parameter type

param

PrepType = isCase | isPrep | isContracting ;

To handle prepositions contracted with the definite article in singular, e.g. zum for zu dem and
zur for zu der, the pre-position is not just of type Str, but a table of type PrepForm => Str,
since the contracted form depends on the gender. This argument type

param

PrepForm = CPl | CSg Gender | CAdvPron | CIPron ;

of the table type PrepForm => Str provides six values, CPl, CSg Masc, CSg Fem, CSg Neutr,
CAdvPron and CIPron. An inflection table s : PrepForm => Str therefore provides six strings:
the standard form of the preposition, three contractions of the preposition with the definite
article in singular (in the case demanded by the preposition), the contraction of the preposition
with the demonstrative das (used as pronominal adverb, e.g. damit,) and the contraction with
the relative or interrogative pronoun was, e.g. womit. Thus, for prepositions, the table s does not
contain a paradigm of word forms in the usual sense, but the preposition and some contractions
with article or pronouns das and was. For example, according to the above types, the preposition
zu can then be defined as operation

oper

zu : Preposition =

{s = table{CPl => "zu";

CSg Masc => "zum" ; CSg Fem => "zur"; CSg Neutr => "zum" ;

CAdvPron => "dazu" ; CIPron => "wozu"};

s2 = "" ;

c = Dat;

isPrep = isContracting} ;

Remark 26 : Some prepositions restrict the number of its complement noun phrase, e.g. zwischen
with dative in zwischen den Bäumen, and zwischen with accusative in zwischen die Seiten. So,
the implementation type might need a further field n with values Nums = SgOrPl | PlOnly.

41The implementation type of the syntactic category Prep is derived by lincat Prep = Preposition ;

62

Since the paradigms of pronouns, proper names, common nouns, and noun phrases not all have
the same domains, we use two auxiliary functions to apply propositions. To apply a preposition
p to a table t : Case => Str, the inflection table of a noun in a given number, an operation

appPrep0 : Preposition -> (Case => Str) -> Str = \p,t ->

p.s ! CPl ++ t ! p.c ++ p.s2 ;

can be used. It concatenates the normal, uncontracted preposition string p.s ! CPl with the
form for case p.c taken from the table t, and adds the postposition part p.s2. E.g., it combines
a circumposition um herum taking the accusative and a noun phrase der Tisch to um den Tisch
herum.

To apply a preposition to a noun phrase, another operation

appPrepNP : Preposition -> NP -> Str

will be explained below. E.g., it combines the above preposition zu with the noun phrases der
Baum, die Tür, das Haus by concatenating a suitable contraction of zu with the definite article
of the noun phrase, followed by the noun phrase with article removed, giving zum Baum, zur
Tür, zum Haus. For noun phrases not having a definite article in singular, it uses the form
zu.s ! CPl, e.g. gives zu den Bäumen, zu einem Baum etc.42

To apply a preposition to an interrogative or relative pronoun, two similar operations

appPrepIP : Preposition -> IP -> Str ;

appPrepRP : Preposition -> RP -> RelGenNum => Str ;

are defined (in ResGer) and combined to an overloaded operation

appPrep = overload {

appPrep : Preposition -> (Case => Str) -> Str = appPrep0 ;

appPrep : Preposition -> NP -> Str = appPrepNP ; -- e.g. in dem CN => im CN

appPrep : Preposition -> IP -> Str = appPrepIP ; -- e.g. in was => worin

appPrep : Preposition -> RP -> RelGenNum => Str = appPrepRP ;

} ;

that can be applied to a preposition and an object of any of the four types of the second
argument.

Perhaps not all the contracted prepositions can be used to combine a noun with its nominal
complement, but there are some examples like Weg ins Glück or Fahrt zur Hölle. German has
postpositions, e.g. den Tag über, die Straße entlang, den Berechnungen zufolge, der Sage nach,
and circumpositions, e.g. von mir aus or um den Tisch herum; these are hardly used to combine
a noun with its nominal complement, perhaps die Fahrt um die Insel herum.

Recall that Lang has no noun categories with non-nominal objects. Of course, German does
have nouns with non-nominal objects, e.g. Gründe, das Buch zu lesen. (These are treated in
Lang by the rules EmbedVP : VP -> SC and SentCN : CN -> SC -> CN that turn infinitives to
sentential complements and combine these with arbitrary common nouns.)

42There are also: ans, am, aufs, beim, hinters, hinterm, ins, im, übers, überm, unters, unterm, vom, vors, vorm.

63

Categories Pron, PN, CN and NP

Pronouns have personal and possessive forms; the personal form varies in case, the possessive in
gender (in third person singular) and case. This gives rise to the parameter domains

param

NPForm = NPCase Case | NPPoss GenNum Case ;

GenNum = GSg Gender | GPl ;

This four values of GenNum are suffcient, since in German word inflection, gender distinctions
are only made in the singular.

Moreover, pronouns (and noun phrases generally) have an inherent agreement feature, with
gender, number and person components:43

param

Agr = Ag Gender Number Person ;

Person = P1 | P2 | P3 ;

When the pronoun or noun phrase is used as subject of a sentence, its number and person
determine the form of the main verb; its gender determines the form of the article and adjective
of the noun phrase.

So the implementation category for pronouns is

Pron = {s : NPForm => Str ; a : Agr} ;

Proper names inflect for case (only) and have an inherent gender, so the category PN is

PN = {s : Case => Str; g : Gender} ;

The category of common nouns has an inherent gender parameter g:Gender, inherited from
its head noun, an inflection paradigm s:Adjf => Number => Case => Str varying in adjective
form, number and case, and three movable parts that can be separated from the head noun:

CN = {s : Adjf => Number => Case => Str ;

rc : Number => Str ; -- Frage , [rc die ich gestellt habe]

ext : Str ; -- Frage , [sc wo sie schläft])

adv : Str ; -- Haus [adv auf dem Hügel]

g : Gender} ;

43This parameter type Agr has |Agr| = |Gender|*|Number|*|Person| = 3*2*3 = 18 values. But distinctions
in gender are only made in third person singular, so we can replace the parameter type by

Agr = AgSgP1 | AgSgP2 | AgSgP3 Gender | AgPl Person | AgPlPol ;

which only has 9 values, including a value for the polite personal pronoun Sie, which has special reflexive and
possessive forms, e.g. Sie sollten sich anstrengen und Ihr Bestes tun. For the indefinite personal pronoun, in
German we can use man with agreement value AgSgP3 Masc, e.g. Man soll sich anstrengen und sein Bestes tun,
but in English, this pronoun one needs a special agreement value to select its reflexive possessive form one’s from
reflPron, e.g. in One should try hard and do one’s best, not his best. As far as I see, noun phrase agreement in
plural noun phrases can only use gender as in “eine von ihnen” vs. “einer von ihnen”. But this is such a special
case that we restricted np.a to AgPl Person.

64

Common nouns can be constructed from lexical nouns and can be modified by adjectival at-
tributes, relative clauses, and adverbials. The adjectival attribute is attached to the noun from
the left and part of the s-field; its form depends on properties of determiners, e.g. (das) kleine
Kind, (ein) kleines Kind, and the common noun varies in number and case: (dem) kleinen Kind,
(viele) kleine Kinder. A relative clause and a sentential complement of the noun can be sepa-
rated (“moved away”) from the noun by a verb, e.g. sie hat die Frage beantwortet, die ich gestellt
habe, or sie hat die Frage nicht beantwortet, wovon sie lebe or sie hat die Hoffnung aufgegeben,
ein Star zu werden; hence these are stored in separate fields rc and ext.

An adverbial modification of the noun, e.g. a local adverbial auf dem Hügel, is attached to the
noun from the right. It can be separated from the noun by a possessive attribute, e.g. (das)
Haus von Johann auf dem Hügel44, and maybe therefore stored in a separate field adv. But
since possessive attributes are also part of the common noun, this is not a good reason for
having a separate adv-field in CN. It seems rather unusual to insert a participle between noun
and modifying adverb, e.g. (?) wir haben ein Haus gekauft [in Hamburg | aus Stein].
Todo 18: better omit the field CN.adv:Str.

An adjectival modification by an adjective with a comparison complement, attributively used,
must be split and wrapped around the noun: in positive degree, e.g. (ein) ebenso großer Berg
wie die Zugspitze, or in comparative degree, “(ein) größerer Berg als die Zugspitze”. The
comparative part can also be separated from the noun by a verb: “wir haben einen größeren
Berg bestiegen als die Zugspitze”.

The type NP of (basic) noun phrase consists of a field s : Bool => Case => Str for the inflec-
tion table, two fields ext:Str and rc:Str for movable parts, and inherent parameters a:Agr

for agreement features and w:Weight. The s-field of np:NP combines two inflection tables: the
ordinary inflection table np.s ! False : Case => Str of four strings for the four cases, and a
special table np.s ! True : Case => Str where the leading definite article (of a noun phrase
in singular) is dropped, to be used in appPrepNP : Preposition -> NP -> Str.

NP : Type = { -- HL 7/22: Bool = True if DefArt is dropped

s : Bool => Case => Str ;

rc : Str ; -- die Frage , [rc die ich gestellt habe]

ext : Str ; -- die Frage , [sc wo sie schläft]

a : Agr ;

w : Weight } ; -- light NPs come before negation in simple clauses

The determiner, the adjectival and the adverbial attributes cannot be moved45 and are part of
the s-field, e.g. er hat die schwierige Frage von Johann, ob die Erde eine Kugel sei, beantwortet,
die bisher offen geblieben war. Apparently, the (attributive) possessive noun phrase (i.e. von
Johann) cannot be separated from the head noun. The rc-field stores a relative clause, the
ext-field stores the interrogative, infinitival or sentential object of the head noun, which can be
separated from the noun: sie hat die Frage beantwortet, wo er war ; sie hat den Wunsch geäußert,
eine Weltreise zu machen; wir haben die Hoffnung aufgegeben, dass der Regen aufhört.

The weight of a noun phrase combines the properties of being a pronoun, being a light noun
phrase and having a definite article to a 4-value parameter domain

44yielding an ambiguity: (Haus von Johann):CN auf dem Hügel versus Haus von (Johann auf dem Hügel):CN,
using MassNP : CN -> NP and PossNP, if the possessive uses von.

45But: the comparision part of an adjectival attribute may have to be put to np.ext: ich habe ein kleineres
Haus [] gekauft als deines.

65

param

Weight = WPron | WLight | WHeavy | WDefArt ;

When used as nominal objects of a verb, the light noun phrases, i.e. those with weight WPron
or WLight, are placed before the sentence negation adverb nicht in clauses and infinitival verb
phrases, the heavy ones after the negation adverb. (See mkClause on p. 140 and infVP on p. 123.
Notice that nicht is not seen in infinitival complements, since ComplVV, SlashVV and SlashV2V

only admit infinitival complements with positive polarity.)46 The weight is also used to place
pronouns in accusative before pronouns in dative. (See p. 120, p. 140.)

The weight WDefArt of an np indicates that the np has a leading definite article. This is used
in the above mentioned auxiliary operation

appPrepNP : Preposition -> NP -> Str

that handles the contraction of definite article with prepositions; the code is explained below:

appPrepNP : Preposition -> NP -> Str = \prep,np ->

let

g : Gender = genderAgr np.a ;

n : Number = numberAgr np.a ;

b = case <prep.t,n,np.w> of {

<isContracting,Sg,WDefArt> => True ;

-- e.g. "zum Hof | zur Tür | zum Fenster herein"

_ => False} ; -- e.g. "auf dem Hof | auf der Tür | auf dem Fenster"

f = case b of {True => CSg g ; _ => CPl} ;

in

prep.s ! f ++ np.s ! b ! prep.c ++ np.ext ++ prep.s2 ++ np.rc ;

If a preposition p has p.t = isContracting, say zu above, and an np has np.w = WDefArt and
a singular agreement np.a in gender g, say der große Berg, then appPrepNP p np concatenates
the contracted form p.s ! (CSg g) of the preposition, i.e. zum, with the noun phrase without
its definite article np.s ! True ! p.c in the appropriate case p.c, i.e. großen Berg, yielding
zum großen Berg. For prepositions p like auf with p.t = isPrep, appPrepNP p np concatenates
the preposition string p.s ! CPl, i.e. auf, with the noun phrase including its definite article,
np.s ! False ! p.c, i.e. dem großen Berg, yielding auf dem großen Berg.

Remark 27 : The contraction of pre- or postpositions with possessive pronouns, e.g. meiner +
wegen ⇒ meinetwegen (likewise deinetwegen,. . . ,deretwegen), or with demonstrative pronouns,
e.g. seit + das ⇒ seitdem, is not implemented. In GF, a demonstrative pronoun is a complex
expression, e.g. das = DetNP (DetQuant DefArt NumSg), hence such contractions seem to afford
tree transformations.47 The pronominal adverbs provided by the CAdvPron part of prepositions
is not used yet, but probably useful as (i) correlate part of complex adverbs or (ii) prepositional
objects, for which the preposition in v.c2 could be used to connect a sentential object with the
verb, e.g. wir hatten damit gerechnet, dass es regnet for a verb v = rechnen mit etwas. /

46Q23: Where is the negation put when the verb has a heavy and a light nominal object? ich schenke dem Kind
nicht einen Ball with nicht einen = keinen? With emphasis, we can say Ich schenke dem Kind (nicht einen) |
keinen Ball, sondern einen Drachen, but also: Ich schenke dem Kind einen Ball nicht = Ich schenke dem Kind
keinen Ball. Q24: How does the weight depend on the quantifier in the object-np? Ich lese diese|viele Bücher
nicht vs. ∗ich lese wenige Bücher nicht, at least ∗ich lese nicht manche Bücher

47So far, LangGer > l PrepNP an Prep (DetNP (DetQuant DefArt NumSg)) gives am dem, not daran.

66

Q25: Where is the adverbial attribute relative to the possessive and object-np? The default
ordering of constituents seems to be

Det ++ AP ++ N2 ++ possessive ++ nominal ++ sentential ++ relative clause

This is implemented in the linearization default (in CatGer) for top-level usage of noun phrases:

linref

NP = \np -> np.s!False!Nom ++ np.ext ++ np.rc ;

Q26: Which clause constructions allow us to extract a relative clause (or sentential complement)
of an object noun phrase behind the infinite predicate part? (Currently, mkClause ignores this.)

Remark 28 : The compilation complexities of the most expensive rules are now, (after reducing
Agr to 9 values, with 15M VerbGer.gfo)

+ SlashV2VNP 99532800 (46080,240)

+ SlashVP 207360 (14160,136)

+ ComplSlash 207360 (150480,186)

5.1.1. Common Nouns

Construction of Common Nouns

Todo 19: remove field CN.adv and attach adv.s to cn.s in AdvCN.

A simple noun and a binary relational noun without an object can be used as common noun by
the rules

UseN : N -> CN ; -- house

UseN2 : N2 -> CN ; -- mother

The noun paradigm and gender are lifted to the paradigm and gender of the common noun, and
an empty relative clause, extracted part and adverbial are added to the corresponding fields:

UseN, UseN2 = \n -> {

s = _ => n.s ;

g = n.g ;

rc = _ => [] ;

ext,adv = []

} ;

Binary relational nouns N2 can be lexical elements or obtained from a ternary (lexical) noun N3

by ignoring one of its argument positions:

Use2N3 : N3 -> N2 ; -- distance (from this city)

Use3N3 : N3 -> N2 ; -- distance (to Paris)

This is done by dropping the field n.c3 from a given n:N3 and using the remaining fields n.s,
n.g, and n.c2, or by using n.c3 as field c2:Preposition:

67

Use2N3 n = n ;

Use3N3 n = n ** {

c2 = n.c3;

} ;

A common noun can also be obtained from a binary noun by adding a (nominal) complement:

ComplN2 : N2 -> NP -> CN ; -- mother of the king

The complement is added to the paradigm field and cannot be moved from the head noun:

ComplN2 n2 np = {

s = _,n,c => n2.s ! n ! c ++ appPrepNP n2.c2 np ;

g = n2.g ;

rc = _ => [] ;

ext,adv = []

} ;

Similarly, a binary noun can be obtained from a ternary noun by adding a nominal complement:

ComplN3 : N3 -> NP -> N2 ; -- distance from this city (to Paris)

The complement is used as “direct object” n3.c2 of a ternary noun n3:N3:

ComplN3 n3 np = {

s = \\n,c => n3.s ! n ! c ++ appPrepNP n3.c2 np ;

g = n3.g ;

c2 = n3.c3 ;

} ;

The idea seems to be that the c2-object stands closer to the head n3 than the n3-object, i.e.

n3 ++ np1 ++ np2 = ComplN2 (ComplN3 np1) np3,

since there is no rule ComplN3’ that inserts a complement np to the c3-field of an n3.

Modification of Common Nouns

Nouns can be modified by adjectives, relative clauses, and adverbs.

i) Modification by adjectives. In German, the modification by adjectives (with their complements
and modifiers)

AdjCN : AP -> CN -> CN ; -- big house

puts the adjective in front of the common noun it modifies, unless the adjective phrase has a
sentential complement:

AdjCN ap cn =

let

g = cn.g

68

in cn ** {

s = case ap.isPre of { -- HL 1/2023 False only for ap = SentAP ap’ sc

True => \\a,n,c => -- besserer cn als a.s2 [instead: cn, besser als a.s2,]

(ap.c.p1 ++ ap.c.p2 ++ ap.s ! agrAdj a (gennum g n) c)

++ (cn.s ! a ! n ! c) ++ ap.s2 ! c ++ ap.ext ;

False => \\a,n,c => cn.s ! a ! n ! c ++ -- postnominal ap with sc

embedInCommas (ap.c.p1 ++ ap.c.p2 ++ ap.s ! APred ++ ap.s2 ! c ++ ap.ext)} ;

g = g

} ;

In the paradigm ap.s, only the forms for the Strong adjective inflection type are stored. The
forms of the Weak and Mixed inflection types can be computed with the auxiliary operation
agrAdj (c.f. Section 5.2) by properly selecting forms of the strong inflection, given gender,
number and case.

ii) A common noun can be modified by a relative clause:

RelCN : CN -> RS -> CN ; -- house that John bought

The implementation given for RelCN cn rs in NounGer extends the field rc of the argument cn
by a suitable form of the given relative clause rs:

RelCN cn rs = cn ** {

rc = \\n => (cn.rc ! n ++ embedInCommas (rs.s ! RGenNum (gennum cn.g n)))

} ;

This sounds not very well: instead of relativizing twice, e.g. bekannter Maler, der in Florenz
geboren wurde, der in Rom starb, we would rather coordinate the relative clauses and then
modify the noun once, i.e. bekannter Maler, der in Florenz geboren wurde und in Rom starb,.

iii) Modification by an adverbial:

AdvCN : CN -> Adv -> CN ; -- house on the hill

The implementation adds the adverb string at the end of a possibly already present adverb:

AdvCN cn a = cn ** {adv = cn.adv ++ a.s} ;

Remark 29 : Iterated usage of this rule leads to ambiguities, in combination with PrepNP : Prep

-> NP -> Adv and DetCN : Det -> CN -> NP, if these rules concatenate their constituents in
the argument order. Then the trees

AdvCN cn1 (PrepNP p (DetCN det (AdvCN cn2 adv)))

AdvCN (AdvCN cn1 (PrepNP p (DetCN det cn2))) adv

linearize to the same string, cn1 ++ p ++ det ++ cn2 ++ adv, e.g. “Tiere im Wald auf dem
Berg”. (This is not the case if p is a postposition.)

Similarly, AdvCN and the rule AdvVP : VP -> Adv -> VP give rise to an ambiguity between
attaching an adverb to the noun of an object of the verb or to the verb phrase, i.e. the VP-trees

69

ComplSlash (SlashV2a v2) (DetCN det (AdvCN adv cn))

AdvVP (ComplSlash (SlashV2a v2 (DetCN det cn))) adv

have the same linearizations, as sketched in

(v2 ++ (det ++ cn ++ adv)) versus ((v2 ++ (det ++ cn)) ++ adv)

and “see (the man (with the telescope))” versus “see (the man) (with the telescope)”. /

iv) Modification by embedded sentences, infinitives and questions:

According to the abstract syntax in Noun.gf, nouns can be modified by embedded sentences,
questions and infinitives, but this modification “makes little sense” for “some” nouns. As dis-
cussed in the abstract syntax, Proposal 3.2.2, the intended modification rules are actually com-
plementation rules for suitable subcategories NS, NQ, NV of the category N of nouns, i.e.

ComplNS : NS -> S -> CN ;

ComplNQ : NQ -> QS -> CN ;

ComplNV : NV -> VP -> CN ;

We view the “modification rule”

SentCN : CN -> SC -> CN ; -- question where she sleeps

of Lang as a compensation for these missing noun categories and complementation rules.48 This
view is supported by the fact that the modifiers are collected in a category SC of “sentential
complements” (defined in the module Verb 5.4).

The rule SentCN : CN -> SC -> CN adds a sentence, question or infinitive sc.s:Str of a com-
plement sc:SC to the right of the ext-field of a cn:CN.

SentCN cn sc = cn ** {ext = cn.ext ++ embedInCommas sc.s} ;

In German, the sentential complement can be separated from the noun, e.g. sie hat die Frage
gestellt, wer das getan hat, so it is stored the field ext for extractions. The complement sentence,
question or infinitive sc.s has to be separated from the noun by a comma.

Clearly, this rule is highly overgenerating, as it applies to any (even modified) noun and any
kind of sentential complement; moreover, the rule can be appplied iteratively and so add several
sentential “complements” to the same noun.

v) Modification by apposition

As remarked in the abstract syntax Noun, the apposition rule

ApposCN : CN -> NP -> CN ; -- city Paris (, numbers x and y)

is certainly overgenerating. For example, the number of the common noun and of the noun
phrase should agree: city Paris, *cities Paris and numbers 3 and 4, *numbers 3. It is ques-
tionable if appositions can be attached to common nouns, or just to (coordinations of) proper
names, e.g. Johann, mein bester Freund, or Elisabeth die zweite and Karl der Große. The
implementation

48If one adds them, one should also add embedding rules UseNS:NS -> CN, UseNQ:NQ -> CN, UseNV:NV -> CN.

70

ApposCN cn np = cn ** {

s = \\a,n,c => cn.s ! a ! n ! c ++ np.s ! False ! c ++ np.ext ++ np.rel

} ;

attaches the noun phrase at the end of the common noun, in the same case, but does not ensure
that common noun and noun phrase agree in number (and gender: *Elisabeth der zweite).
Moreover, sometimes the apposition should be embedded in commata, sometimes not. Although
there are rules AdvNP and ExtAdvNP to attach an adverb to the end of a noun phrase, there is (so
far) no rule to attach an adverb to the beginning, and hence appositions like Johann, angeblich
dein bester Freund, cannot be parsed. So, this implementation seems somewhat too imprecise.
Todo 20: at least, we should embed the attached np in commata49.50

vi) Possessive construct:

A common noun can be modified by a possessive attribute using the rule

PossNP : CN -> NP -> CN ; -- house of Paris, house of mine

This is implemented in gf-3.9 by attaching the possessive noun phrase using the preposition
von with dative:

PossNP cn np = cn ** case np.w of {

WDefArt => {s = \\a,n,c => cn.s ! a ! n ! c

++ np.s ! False ! Gen ++ np.ext ++ np.rc} ;

_ => {s = \\a,n,c => cn.s ! a ! n ! c

++ appPrep P.von_Prep (np.s ! False) ++ np.ext ++ np.rc}

} ;

The possessive noun phrase, including its sentential complement or relative clause, is attached
closer to the common noun than an adverbial modifier, relative clause or sentential complement
of the common noun, in the s-field. (Q28: is this usual in German?)

Remark 30 : There are different ways to use a noun phrase np possessively in German. The
attachment by von is perhaps not the most common one; it constructs a common noun and
admits both pronouns, proper names and complex noun phrases as possessive attributes: (der)
alte Hund von ihm or (der) Hund von Johann or (der) Hund von einem fremden Mann. Another,
perhaps more frequent (post- or pre-nominal) attachment is by the genitive, i.e. (der) alte Hund
eines fremden Mannes or (der) alte Hund Johanns. We only implement the postnominal genitive
attribute when np has a definite article. A possessive prenominal genitive attribute, e.g. eines
fremden Mannes alter Hund, replaces a definite article and constructs a noun phrase, not a
common noun, c.f. Extend.GenNP : NP -> Quant; likewise for a possessively used proper name
in genitive, e.g. Johanns alter Hund. A personal pronoun in genitive cannot be used as possessive
attribute, as there are special possessive forms: instead of der Hund seiner one has to use sein
Hund. (Q29: What about the possessive with indefinite NPs, like einer seiner Hunde, einer von
Johanns Hunden or einer der Hunde Johanns?)

49But commata would disturb glass of CN np = N.ApposCN (mkCN (P.mkN "Glas" "Gläser" neuter)) np in
ConstructionsGer. Shouldn’t this be implemented by PartNP?. And also in Königin Elisabeth die zweite, ApposCN
(ApposCN (UseN queen N) (UsePN elisabeth PN)) (DetNP (DetQuantOrd defArt ord)). So perhaps a sepa-
rate rule ExtApposCN is needed that puts the apposition in commata to cn.ext.

50Q27: can we implement appositions as projections from relative clauses: Johann, der angeblich dein bester
Freund ist 7→ Johann, angeblich dein bester Freund, and thereby ensure the agreement in number?

71

Expl: (SZ 285, 2023) eines der wichtigsten Werke der modernen deutschen Literatur and eines
der wichtigsten Dokumente des zerrütteten Erbes dessen, was Buber einstmals “die deutsch-
jüdische Symbiose” nannte

Q30: A common noun can be extended to a noun phrase by a prenominal possessive in genitive.
In this construction51, say PossDetCN : NP -> CN -> NP, we could use np.w = WPron to check
if np:NP is a pronoun and then switch from genitive to possessive pronoun forms. For post-
nominal possessive np in genitive (in PossNP), we have to exclude personal pronouns p:Pron,
but we cannot implement such a restriction in GF given the (total) rule UsePron : Pron ->

NP. Pronouns in German cannot be used whereever complex noun phrases can, the distributions
differ. So UsePron is somewhat dubious.

Remark 31 : Concerning AdvCN and PossNP, German has means to avoid ambiguities and mis-
readings: both die Häuser aus Holz unserer Vorfahren as well as die Häuser unserer Vorfahren
aus Holz have unintended readings (i.e. Holz unserer Vorfahren resp. Vorfahren aus Holz). Using
compound nouns, the intended reading can be expressed: die Holzhäuser unserer Vorfahren.
(Likewise by derived adjectives: die hölzernen Häuser, eng. the wooden houses.)

vii) Partitive construct:

PartNP : CN -> NP -> CN ; -- glass of wine

The implementation is the same as for the possessive construction:

PartNP cn np = case np.w of {

WDefArt => cn ** {s = \\a,n,c => cn.s ! a ! n ! c ++

np.s ! False ! Gen ++ np.ext ++ np.rc} ;

_ => cn ** {s = \\a,n,c => cn.s ! a ! n ! c ++

appPrep von_Prep (np.s ! False) ++ np.rc}

} ;

We have not enough parameters in the argument np to see if it is built by MassNP and then drop
the von in e.g. Glas von Wein.

Remark 32 : This is a case where we would like to be able to do constructions by induction on
the abstract tree of the arguments, not its linearization records.

Remark 33 : The module Structural has constants possess Prep:Prep and part Prep:Prep,
both implemented using the preposition "von". These constants have to be kept for backward
compatibility, although they are termed “obsolete” and subsumed under PossNP and PartNP. /

Remark 34. The various modification rules of CN can be applied in different order when parsing
the same string, which leads to (I think, spurious) ambiguities:

Lang> p -cat=CN "new green house of John" | ? grep -v ApposCN

AdjCN (PositA new_A) (AdjCN (PositA green_A) (PartNP (UseN house_N) (UsePN john_PN)))

AdjCN (PositA new_A) (AdjCN (PositA green_A) (PossNP (UseN house_N) (UsePN john_PN)))

AdjCN (PositA new_A) (PartNP (AdjCN (PositA green_A) (UseN house_N)) (UsePN john_PN))

AdjCN (PositA new_A) (PossNP (AdjCN (PositA green_A) (UseN house_N)) (UsePN john_PN))

PartNP (AdjCN (PositA new_A) (AdjCN (PositA green_A) (UseN house_N))) (UsePN john_PN)

PossNP (AdjCN (PositA new_A) (AdjCN (PositA green_A) (UseN house_N))) (UsePN john_PN)

51is this Extend.GenNP?

72

Similar with modification by MassNP, PossNP, PartNP:

Lang> p -cat=CN "cap of wine of John" | ? grep -v ApposCN

PartNP (UseN cap_N) (MassNP (PartNP (UseN wine_N) (UsePN john_PN)))

PartNP (UseN cap_N) (MassNP (PossNP (UseN wine_N) (UsePN john_PN)))

PartNP (PartNP (UseN cap_N) (MassNP (UseN wine_N))) (UsePN john_PN)

PartNP (PossNP (UseN cap_N) (MassNP (UseN wine_N))) (UsePN john_PN)

PossNP (UseN cap_N) (MassNP (PartNP (UseN wine_N) (UsePN john_PN)))

PossNP (UseN cap_N) (MassNP (PossNP (UseN wine_N) (UsePN john_PN)))

PossNP (PartNP (UseN cap_N) (MassNP (UseN wine_N))) (UsePN john_PN)

PossNP (PossNP (UseN cap_N) (MassNP (UseN wine_N))) (UsePN john_PN)

Can’t we reduce this by fixing possible orders of modifiers, for example, attach PossNP and
PartNP always closer to the N than AdjCN and AdvCN? This can in principle be done by using
operator precedences to limit the extraction of trees from parse forests. A substitute is by tree
transformation and collaps, see p. 190. It could also be enforced using categories depending on
modifiers, c.f. slides for the GF summerschool in Riga, 2017.

5.1.2. Determiners

Construction of Determiners

The linearization category Det of determiners det:Det in Ger contains two inflection paradigms,
the “standard” paradigm det.s for its use in combination with a common noun, e.g. in der
erste schöne Tag, and a “special” paradigm det.sp when used as a noun phrase in itself, e.g. in
der erste. The form of the determiner varies in gender and case, where the gender depends
on the common noun it is combined with52 and the case on the complement (or adverbial)
function of the noun phrase in a clause. In order to treat contractions of prepositions with
definite articles, we use a boolean flag b:Bool to distinguish between the usual paradigms
det.s ! False, det.sp ! False and shortened versions det.s ! True, det.sp ! True where
the leading definite article is missing.

lincat

Det = {s,sp : Bool => Gender => Case => Str ; -- True if DefArt is dropped

n : Number ; a : Adjf ; isDef, hasDefArt : Bool} ;

Moreover, the implementation type contains inherent features, the number det.n and the
adjective inflection type det.a, according to which the common noun is inflected, and two
boolean flags det.isDef to distinguish definite from non-definite determiners and hasDefArt

to distinguish those having a leading definite article (in the full paradigms det.s ! False,
det.sp ! False) from those that do not.

Recall that by design, Grammar gives determiners an inherent number, which will be inherited to
noun phrases, and the number of the subject of a clause determines the form of the main verb.

Determiners, except for atomic ones, are constructed from “quantifiers” Quant (including articles
and possessive pronouns), cardinals Card and ordinals Ord, via an intermediate category Num of
grammatical number, by

52In the stand-alone usage, the gender must be given by the construction, e.g. DetNPMasc, DetNPFem in Extend.

73

DetQuant : Quant -> Num -> Det ;

DetQuantOrd : Quant -> Num -> Ord -> Det ;

NumCard : Card -> Num ;

NumPl : Num ;

NumSg : Num ;

Therefore we first review the cardinals and ordinals. For the moment, keep in mind that the
most complex determiners are examples like meine zwei ersten in meine zwei ersten weißen
Zähne. (Q31: Is einer meiner zwei ersten weißen Zähne? a Card modified by a possessive noun
phrase?)

Determiners are normally used to turn complemented and modified nouns to noun phrases (and
thereby stop further noun modification possibilities, like adjectival attributes), e.g. ich mag kein
Bier. But they can also be used stand-alone, as a noun phrase, e.g. keines in ich mag keines.
As the example shows, the forms can differ in these two usages. Hence the implementation type
for determiners will have two paradigms, one for nomal usage, Det.s, and one for stand-alone
usage, Det.sp. Since the difference shows in the leading quantifier element, there will also be
two paradigms Quant.s and Quant.sp.

Q32: What about the relative ordering between numerals and ordinals: meine drei besten Ar-
beiten, drei meiner besten Arbeiten, die drei ersten Fälle, drei der ersten Fälle, die ersten drei
Fälle ? And die drittbeste, not die dritte beste.

5.1.3. Numbers and number words

Numbers, restricted to cardinal and ordinal numbers (drei and dritte, but no quotients like
drittel, or repetion numbers dreimal, dreifach etc.), occur as numerals, i.e. numbers in words
of natural language, or as digits, i.e. in mathematical notation, based on sequences of digits
0,. . . ,9.

Numeral ; -- cardinal or ordinal in words e.g. "five/fifth"

Digits ; -- cardinal or ordinal in digits e.g. "1,000/1,000th"

There are conversion functions53 that convert digits to numerals and conversely,

digits2num : Digits -> Numeral

num2digits : Numeral -> Digits

so we can here limit on the construction of digits

Digits and decimals

When used as cardinals, digits don’t inflect (perhaps except genitive and dative plural, 3er and
3en), but certainly the numeral (emphasized) ein inflects like an adjective in gender, number
and case: in singular masculine, we have (der) eine, (den) einen, in plural (die) einen (und die
anderen); moreover, there is the stand-alone usage, nominative: einer, eine, eines. When used
as ordinals, they inflect like adjectives. So the inflection tables use a parameter type

53for which computation rules of Transfer are needed, see Section 3.1.16

74

param

CardOrd = NCard AForm | NOrd AForm ;

which is unfortunately big to cover the worst-case cardinal ein. The implementation categories
for the syntactic categories Digits and Decimal are

lincat

Digits = {s : CardOrd => Str ; n : Number ; isDig, tail1to19 : Bool} ;

Decimal = {s : CardOrd => Str ; n : Number ; hasDot : Bool} ;

The inherent n : Number has the value Pl for all digits and decimals except 1, for which it has
the value Sg. Hence, as determiners, digits and decimals govern the following common noun in
number, e.g. 0 Kinder, 1 Kind, 2 Kinder.

Digits

The category Digits is for the digital representation. The non-empty sequences of digits are
constructed from the ten sequences of length 1,

D_0, D_1, D_2, D_3, D_4, D_5, D_6, D_7, D_8, D_9 : Dig,

where the implementation category of Dig is

Dig = {s : CardOrd => Str ; n : Number ; isZero : Bool} ;

The implementation record of D i for i 6= 1 is obtained as in

D_4 = mk3Dig "4" "4t" Pl ;

with the auxiliary operation

mk3Dig : Str -> Str -> Number -> Dig = \c,o,n -> {

s = table {NCard _ => c ;

NOrd af => (regA o).s ! Posit ! af} ;

n = n ;

isZero = False

} ;

except that for i = 0, it has isZero = True. The inflection paradigm s : CardOrd => Str

contains the same string for all forms54 NCard af, and strings with adjective endings (of the
strong adjective inflection) for the forms NOrd af, to get 4ter Tag for fourth day (and predicative
form 4t). For D 1, we put n = Sg and the cardinal forms are obtained by concatenating "1"

with corresponding endings of the pronoun,

NCard (AMod (GSg g) c) => "ein" + pronEnding ! GSg g ! c ;

to get the singular (accusative) forms 1en Planeten, 1e Königin (but 0 Planeten, 0 Königinnen).

Remark 35 : The determiner 1 also governs the adjective inflection: 1 kleines Kind.

54Todo 21: But don’t we need some inflection for stand-alone usage: (den) dreien?

75

There is a subltety in constructing the ordinal forms: the ordinal endings of German numerals
(in nominative singular feminine) for the numbers 0 to 19 are -te, while those for 20 to 100
are -ste, those for 101 to 119 again -te, etc. The same holds for digital representations, so we
have 0te,. . . ,19te, 20ste,. . . ,100ste, 101te,. . . ,119te, 120ste,. . . ,200ste, 201te,. . . ,219te, etc. To
produce these forms from the implementation records, the boolean flags isDig and tail1to19

of Digits are used in the implementation of the two by constructors

IDig : Dig -> Digits ;

IIDig : Dig -> Digits -> Digits ;

The construction IDig is implemented by taking the inflection paradigm of a d:Dig and filling
the fields n, isDig and tail1to19 appropriately:

IDig d = {s = d.s ; n = d.n ; isDig = True ; tail1to19 = notB d.isZero} ;

The construction IIDig adds a the cardinal form of d:Dig in front of an ordinal form of a
sequence i:Digits. The fields d.isDig and i.tail1to19 are used to decide whether an s has
to be inserted in front of the ordinal ending:

IIDig d i =

let i = lin Digits i ; -- suppress warning "missing lock_Digits"

isPld : Bool = case d.n of {Sg => False ; _ => True} ;

b : Bool = case i.isDig of {True => isPld ; _ => notB i.tail1to19} ;

i’ : Digits = case b of {True => IDig (mkDig (i.s ! invNum ++ BIND ++ "s")) ;

_ => i }

in {s = table {NCard af => d.s ! invNum ++ BIND ++ i.s ! NCard af ;

NOrd af => d.s ! invNum ++ BIND ++ i’.s ! NOrd af} ;

n = Pl ;

isDig = False ;

tail1to19 = case i.isDig of {True => notB isPld ; False => i.tail1to19}

} ;

If i:Digits has length 1, say i = 4, the ordinal forms 14te, 24ste,. . . ,94ste are build; if i:Digits
has length at least 2, the combination DigII d i has the same ordinal endings as i itself.

Remark 36 : The implementation of D 4 : Dig via

D_4 = mk3Dig "4" "4t" Pl ;

is a simplified form of mkDigit "4" "14" "40" "4te", where mkDigit is the construction of
numerals below.

Decimals are constructed from sequences of digits by

NegDecimal : Digits -> Decimal ;

PosDecimal : Digits -> Decimal ;

depending whether one wants to add a leading - sign. The leading minus sign in -20st is glued
with the digits ”20st”, i.e. without inserting a space, by inserting the BIND token:

76

NegDecimal d = {

s = \\o => "-" ++ BIND ++ d.s ! o ;

n = Pl ;

hasDot = False

} ;

A further construction

IFrac : Decimal -> Dig -> Decimal ;

allows us to put a dot "." before the final digit and then add further digits at the end by
repeated applications:

IFrac d i = {

s = \\o => d.s ! invNum ++

if_then_Str d.hasDot BIND (BIND ++ "." ++ BIND) ++

i.s ! o;

n = Pl;

hasDot = True

} ;

using an abbreviation

invNum : CardOrd = NCard (AMod (GSg Masc) Nom) ;

When several dots are needed, e.g. to represent dates like 24.12.2023, separate constructions
have to be implemented.

Numerals

The implementation category of numerals (i.e. number words) contains an inflection paradigm
and a field for an inherent feature of (grammatical) number:

Numeral = {s : CardOrd => Str ; n : Number} ;

To construct numerals, for each digit d, special forms of 10 + d and d ∗ 10 are simultaneously
treated, e.g. three, thirteen, thirty or drei, dreizehn, dreissig (former: dreißig) for digit 3.

Digit

For these, an auxiliary category Digit is used, with the implementation type

Digit = {s : DForm => CardOrd => Str} ;

where the parameter type DForm is

param

DForm = DUnit | DTeen | DTen ;

The implementation records for the digits n2:Digit,. . . ,n9:Digit are built for digit d from the
numerals for d, 10 +d, d ∗ 10 and a specific ordinal form (i.e. feminine singular nominative) of d:

77

lin

n2 = mkDigit "zwei" "zwölf" "zwanzig" "zweite" ;

by means of auxiliary operations

mkDigit : (x1,_,_,x4 : Str) -> Digit =

\drei,dreizehn,dreissig,dritte ->

{s = table {

DUnit => cardOrd drei dritte ;

DTeen => cardOrd dreizehn (dreizehn + "te") ;

DTen => cardOrd dreissig (dreissig + "ste")

}

} ;

cardOrd : Str -> Str -> CardOrd => Str = \drei,dritte ->

table {

NCard a => _ => drei ; -- (regA drei).s ! Posit ! a ;

NOrd a => (regA (init dritte)).s ! Posit ! a

} ;

As mentioned above, the numbers (0 and) 1 to 19 have ordinal ending -te, the remaining ones
have ordinal ending -ste, as it is implemented in mkDigit. Not yet: It can also be seen from
cardOrd that all cardinal forms NCard af have the strong adjective endings (of table 1, p. 47),
provided by adjective declension regA in positive degree. The ordinal forms are built from the
specific ordinal form provided, shortened by the final e, also using regA.

The syntactic category Digit is used to build up the numerals. There are special forms for mul-
tiples of 1 to 9 by 10, 100, 1000, 1000000, i.e. zehn,. . . ,neunzig, (ein)hundert, . . . , (ein)tausend,
. . . , eine Million. The abstract module Numeral of Grammar has syntactic types Sub10, Sub100,
Sub1000, Sub1000000 and embeddings

fun pot0 : Digit -> Sub10 ;

fun pot1 : Digit -> Sub100 ;

fun pot1plus : Digit -> Sub10 -> Sub100 ;

fun pot1to19 : Digit -> Sub100 ;

fun pot1as2 : Sub100 -> Sub1000 ;

fun pot2as3 : Sub1000 -> Sub1000000 ;

fun pot2 : Sub10 -> Sub1000 ;

fun pot3 : Sub1000 -> Sub1000000 ;

fun num : Sub1000000 -> Numeral ;

and conversion functions between Digits and Sub1000000 to Numerals

fun digits2num : Digits -> Numeral ;

fun num : Sub1000000 -> Numeral ;

The type Sub10 covers the numbers 1 to 9 = 10-1, the type Sub100 the numbers 1 to 99 = 100
- 1, etc. We only describe Sub10.

78

Sub10

The implementation type for Sub10 has a field for an inflection paradigm as in Digit and a field
for an inherent number:

Sub10 = {s : DForm => CardOrd => Str ; n : Number} ;

The numerals in Sub10 are obtained from the digits n2,. . . ,n9 by the construction

pot0 : Digit -> Sub10 ;

which is implemented by taking their inflection paradigm and giving them the number Pl:

pot0 d = {s = d.s ; n = Pl} ;

The fixed numeral for the number 1,

pot01 : Sub10 ;

is the only one where the cardinal endings vary in gender and case:55

pot01 = {

s = \\f => table {

NCard af => (regA "ein").s ! Posit ! af ;

NOrd af => (regA "erst").s ! Posit ! af

} ;

n = Sg

} ;

The linearization types for the other domains have a simpler inflection paradigm than Sub10:

Sub100, Sub1000, Sub1000000 = {s : CardOrd => Str ; n : Number} ;

We omit a description of the constructors for these domains and refer to the source code in
NumeralGer.gf and NumeralTransfer.gf.

Cardinals

By cardinals, Grammar means both cardinal words, e.g. dreiundzwanzig, and cardinal numbers in
digital notation, e.g. 23. In German, they inflect in gender and case, at least in the exceptional
case ein = NumNumeral (num (pot2as3 (pot1as2 (pot0as1 pot01)))): in nominative, we
have ein, eine, ein, in accusative einen, eine, eine. Moreover, it inflects like an adjective e.g. der
eine (große Fehler) vs. mein einer (großer Fehler), which occurs often in singular der eine – der
andere and plural die einen – die anderen. (Other cardinals sometimes also inflect, at least for
genitive plural in strong adjective inflection, e.g. zweier Fehler.) The cardinals have an inherent
number. So the implementation type is

Card = {s : AForm => Str ; n : Number} ;

55Q33: What is the reason for not having a digit n1:Digit defined by n1 = mkDigit "ein" "elf" "zehn"

"erste" and then putting pot01 = pot0 n1 ** {n = Sg} ? Currently, pot01 has DUnit,DTeen,DTen = ein.

79

and card.s stores the Strong adjective forms of card:Card. The inherent number governs
the number of the common noun in determiner-noun constructions: e.g. ein Hund, zwei Hunde.
(GrammarGer does not have null Hunde.)

The construction of cardinals by

NumNumeral : Numeral -> Card ;

NumDigits : Digits -> Card ;

NumDecimal : Decimal -> Card ;

are just extractions of parts of the paradigms of the underlying digits or numeral:

NumNumeral numeral = {s = \\af => numeral.s ! NCard af ; n = numeral.n} ;

NumDigits digits = {s = \\af => digits.s ! NCard af ; n = digits.n} ;

NumDecimal decimal = {s = \\af => decimal.s ! NCard af ; n = decimal.n} ;

Cardinals can be modified by the rule

AdNum : AdN -> Card -> Card ; -- more than 51

which just puts a numeral-modifying adverb in front of the cardinal form:

AdNum adn num = {s = \\af => adn.s ++ num.s ! af ; n = num.n } ;

The category AdN of numeral-modifying adverbs has the implementation type {s : Str} of a
record with just a field s of type string. An AdN can be a lexical element, like almost AdN,
at least AdN, and at most AdN, or can be constructed by

AdnCAdv : CAdv -> AdN ;

from a comparision adverb less CAdv, as CAdv and more CAdv. Thus, using AdNum we get
cardinals like fast|höchstens|wenigstens 5 and weniger|mehr als 5 (resp. fünf), but also

Lang> l (AdNum (AdnCAdv as_CAdv) (NumDecimal (PosDecimal (IDig D_5))))

as as 5

genau 5

To obtain different linearizations of as CAdv here and in ComparAdvAdj, we have modified the
implementation type of CAdv. Todo 22: This needs to be done for English as well.

By convention, cardinals up to twelve are usually expressed by numerals, e.g. die zehn Gebote
and die zwölf Apostel, not by digits.

Cardinals can be used predicatively, e.g. we are nineteen, as a special case of predicative noun
phrases; in German: die Apostel waren zwölf, an Teilnehmern gab es 23.

Remark 37 : There is a computation rule for cardinals in NumeralTransfer.gf.

Ordinals

In Grammar, the syntactic category Ord covers ordinal numbers as digitals, e.g. 19te, 20ste or
numerals, e.g. neunzehnte, zwanzigste, but also adjectives in superlative, e.g. älteste. Ordinals
in German inflect like adjectives, so the implementation type is

80

Ord = {s : AForm => Str} ;

(As for adjectives, only the forms for the strong adjective inflection type are stored; the others
can be obtained via agrAdj.) Ordinal numbers are constructed from digits and numerals by

OrdDigits : Digits -> Ord ; -- 51st

OrdNumeral : Numeral -> Ord ; -- fifty-first

Other Ords can be constructed from adjectives (c.f. Section 5.2) by

OrdSuperl : A -> Ord ; -- warmest

In German, the predicative forms of the examples shown are am 51sten, am einundfünfzigsten,
and am wärmsten. The linearizations project the ordinal part of the paradigms of digits and
numerals, slightly modified to obtain the predicative form56

OrdDigits numeral =

{s = table{APred => "am" ++ numeral.s ! NOrd APred ++ BIND ++ "en" ;

af => numeral.s ! NOrd af}} ;

OrdNumeral numeral =

{s = table{APred => "am" ++ numeral.s ! NOrd APred ++ BIND ++ "en" ;

af => numeral.s ! NOrd af}} ;

Likewise, the linearization of OrdSuperl projects the superlative forms of the underlying adjec-
tive, modifying the predicative form wärmsten of the adjective warm to am wärmsten:

OrdSuperl a =

{s = table {APred => "am" ++ a.s ! Superl ! APred ;

af => a.s ! Superl ! af}} ;

If first, second etc. are viewed as definite ordinal numbers, some adjectives like next, last can be
viewed as indefinite ordinal numbers. Here, any adjective in superlative form is an Ord.

Finally, there is a special construction of ordinals

OrdNumeralSuperl : Numeral -> A -> Ord ;

which glues an ordinal number with an adjective in superlative, e.g. zweitälteste or drittbeste:

OrdNumeralSuperl n a = {

s = table {APred => "am" ++ n.s ! NOrd APred ++ BIND

++ a.s ! Superl ! APred ;

af => n.s ! NOrd APred ++ Predef.BIND ++ a.s ! Superl ! af}

} ;

Remark 38 : There is no rule OrdDigitsSuperl : Digits -> A -> Ord to obtain am 51stbesten.

Remark 39 : Due to the token glueing in OrdNumeral and OrdNumeralSuperl, to parse am 10ten,
the parser input must be am 1 &+ 0t &+ en. To ease the parsing of adjectives, OrdSuperl

56the predicative form of the underlying digits and numeral are 51st and einundfünfzigst, respectively.

81

does not glue the ending -en to the predicative of the adjective, but the predicative form of
the adjective is besten, not best or am besten (see Section 5.2). Hence OrdNumeralSuperl can
produce am drittbesten. To parse am drittbesten, the parse input must be am dritt &+ besten.
(But the predicative form besten does not allow us to construct bestmöglich.)

Remark 40 : The non-glued combination das dritte beste Lied is subsumed by DetCN det cn

and AdjCN ap cn via DetQuantOrd : Quant -> Num -> Ord -> Det.

Ordinals ord:Ord can be used attributively, as determiner and as noun phrase via

AdjOrd ord : AP

DetQuantOrd IndefArt NumPl ord : Det

DetNP (DetQuantOrd IndefArt NumPl ord) : NP.

The noun phrase of the last construction can be used predicatively, if the ord is an adjective
in superlative, e.g. sie sind am besten or sie sind am grünsten, and as nominal complement,
e.g. die ältesten schlafen.

Q34: What about die 7te Beethoven’sche Symphonie, but also with cardinal: die 7 Beethoven’schen
Symphonien? And what about predicative usage: das ist gut 7→ das ist am besten, but also: es
war 7 (Uhr) 7→ es war am 7ten (Tag des Monats).

Quantifiers and Numbers

The category Quant of Grammar is not identical with the category of quantifier words. For
example, some quantifiers have an inherent number, e.g. jeder (eng. each) is inherently singular,
while alle (eng. all) is inherently plural. Others can combine with both singular or plural nouns,
e.g. kein (eng. no). One could try to combine these to quantifier expressions varying in number,
so that each and all are the singular and plural forms of the same quantifier (i.e. ∀ in logic), but
there are quantifiers like many that have no singular form. In Grammar, the determiners have an
inherent number, which is provided by a separate Num constituent of determiners; it may be a
cardinal like 1 (with number singular) or 0,2,. . . (with number plural), or a token with singular
or plural number, but empty string field.

The Quant is the kernal of a determiner, and combines with a Num (cardinal or token fixing a
grammatical number) and possibly an additional ordinal to a determiner:

DetQuant : Quant -> Num -> Det ; -- these five

DetQuantOrd : Quant -> Num -> Ord -> Det ; -- these five best

The implementation type of the syntactic category Num is an extension of the implementation
type of Card by a boolean field isNum. Thus, for GrammarGer, the implementation type is

Num = {s,sp : AForm => Str ; n : Number ; isNum : Bool} ;

The second paradigm sp : AForm => Str is for stand-alone usage; e.g. wir sprachen mit zweien,
kannten aber nur einen von ihnen. This is needed in DetNP det, but not implemented yet for
plural. (To simplify the ordinary paradigm from Card.s : AForm => Str to Card.s : Str,
maybe we can use (NumCard m).sp for the inflection needed for cardinal 1 = ein(s). But this
would use the BIND to glue the endings to "ein", a disadvantage for parsing.)

The construction

NumCard : Card -> Num ;

82

takes the inflection paradigm and inherent number value of the cardinal, adds an inflection
paradigm for stand-alone usage and sets the isNum field:

NumCard n = n ** {

sp = table {AMod gn c => n.s ! APred ++ BIND ++ adjEnding ! gn ! c ;

APred => n.s ! APred} ;

isNum = True

} ;

The sp-paradigm can be used to generate57 the plural 2e, 2e, 2en, 2er or zweie, zweie, zweien,
zweier, but stem and endings need to be given as separate tokens in parsing.

Todo 23: The sp-paradigm is not used yet, neither nominally, e.g. wir erinnerten uns zweier,
nor attributively, e.g. wir erinnerten uns zweier Fehler. Currently, we only get

Lang> l PredVP (UsePron we_Pron) (ComplSlash (SlashV2a listen_V2)

(DetNP (DetQuant DefArt (NumCard (NumDigits (IDig D_2))))))

wir hören den 2 zu

Should beide (and viele) count as cardinals, like zwei, so that we would get die beiden Kinder?

Adding endings in the s-paradigm of cardinals would disturb the generation of numerals like
hundertfünfundzwanzig, so we only should add endings when applying NumCard : Card -> Num.
Q35: But maybe also to the s-paradigm of NumCard card for small cardinals only,?

The two other constructions of Num, i.e. NumSg, NumPl : Num, are implemented by an inflection
paradigm of empty strings and appropriate values for number and isNum:

NumPl = {s,sp = \\af => []; n = Pl ; isNum = False} ;

NumSg = {s,sp = \\af => []; n = Sg ; isNum = False} ;

The quantifiers of Grammar are articles, demonstative and possessive pronouns, but also the
negated quantifier kein (eng. no). The quantifier forms vary in grammatical number, gender (in
singular) and case (c.f. the table of definite and indefinite article on p.44).

The quantifiers, possibly followed by a cardinal and an ordinal, e.g. this one, these two, the four
youngest58, these four youngest, a fourth, my four youngest, four, are normally used as deter-
miners, i.e. to turn a common noun into a noun phrase. But they can also be used separately,
as a substitute for a noun phrase, e.g., we liked the four youngest, or the four youngest were
nice. At least the quantifiers ein, kein and mein have other endings in combination with a com-
mon noun than when used separately, e.g. ein|kein|mein Hund vs. einer|keiner|meiner. Hence,
two inflection paradigms, s and sp, are needed in the implementation type for Quant. The
stand-alone forms under sp also depend on whether a cardinal or ordinal follows the quantifier
(indicated by the flag num.isNum : Bool in DetQuant and DetQuantOrd): wir geben es denen
vs. wir geben es den dreien, not ∗wir geben es denen drei(en), and wir geben es denen vs. wir
geben es den dritten. The inflection paradigm s also varies, but only for the indefinite article: if
a cardinal follows, the indefinite article is dropped, e.g. a dog, but ∗a one dog simplifies to one
dog, and ∗a two dogs is ungrammatical. In German, the indefinite article and the cardinal one

57with the options in l -table -bind NumCard (NumDigits (IDig D 2)) to glue the stem with the endings
58The grammar accepts the three first, but not the first three.

83

have even the same form, ein, and both ∗ein ein Hund and ∗ein zwei Hunde are ungrammatical.
The implementation type of Quant therefore has two inflection paradigms:59

Quant = {

s : Bool => GenNum => Case => Str ; -- True if leading DefArtSg is dropped

sp : GenNum => Case => Str ; -- and contracted with preposition

a : Adjf ;

isDefArt : Bool ;

delCardOne : Bool -- delete following cardinal 1 (IndefArt and no_Quant)

} ;

There are three further fields. First, quantifiers govern the following common noun in the
adjective inflection, e.g. ein junger Hund vs. der junge Hund, hence we need a field a:Adjf.
Second, the linearization type must have a boolean field telling whether a quant:Quant is the
definite article. This flag helps us in the determiner constructions to build two forms of the
determiner, one with and one without the leading definite article60, e.g. der zweite and zweite.
To contract prepositions with a leading definite article in noun phrases, we can then pick the
shortened determiner form and get e.g. im zweiten alten Haus instead of in dem zweiten alten
Haus (using DetQuantOrd), likewise im einen instead of in dem einen (Fall) (using DetQuant

with cardinal ein(s) and number Sg).61 Third, a flag delCardOne is added, with value True for
the quantifiers IndefArt and no Quant only, as these behave differently from other quantifierts
when combined with the cardinal ein: der eine, mein einer, jener eine, but ein ein(er) = ein
einziger, kein ein(er) = kein einziger. [Alternatively, we could implement ein ein(er) = ein and
kein ein(er) = kein, which would lead to more ambiguities.]

The construction

DefArt : Quant ;

is implemented as follows. The forms of the definite article (c.f. the table on p.44) are collected
in an auxiliary table (with cases orderd as Nom, Acc, Dat Gen):

artDef : GenNum => Case => Str = table {

GSg Masc => caselist "der" "den" "dem" "des" ;

GSg Fem => caselist "die" "die" "der" "der" ;

GSg Neutr => caselist "das" "das" "dem" "des" ;

GPl => caselist "die" "die" "den" "der"

} ;

This table is then used in both the normal and stand-alone usage of the article. In the stand-
alone usage, the genitive singular forms and the genitive and dative plural forms den and der

59Their types originally were Bool => Number => Gender => Case => Str, which gives tables of 2*2*3*4 =
48 strings, while the types (Bool =>) GenNum => Case => Str used here gives (2 *) 4 * 4 = (32) 16 strings:
in DetQuant and DetQuantOrd, we can see from quant.a = MixedStrong that quant=IndefArt, and then drop
the quant part if num.isNum = True. (However, we need empty strings in DefArt.s!True!(GSg g) to avoid a
metavariable being raised when parsing a contracted preposition, e.g. im Haus.)

60Namely, for DetQuant : Quant -> Num -> Det, we know in DetQuant quant num from quant.isDefArt,
num.isNum and num.n, whether the quant.s is a definite article in singular, so we can drop it in the determiner
paradigm.

61However, in stand-alone usage DetNP det, we don’t want to contract preposition and definite article alone,
e.g. have in dem, not im. Can we do this in PrepNP p np without an additional flag in np:NP remembering
whether np is constructed with DetNP (DetQuant DefArt NumSg)? This is a fairly rare case, so we ignore it.

84

have to be overwritten, e.g. to get (wir erinnern uns) dessen, (wir erinnern uns) derer and (wir
geben es) denen:

DefArt = {

s = \\b,gn,c => case <b,gn> of {

<True,GSg _> => [] ; _ => artDef ! gn ! c} ;

sp = \\gn,c => case <gn,c> of {

<GSg Masc,Gen> => "dessen" ;

<GSg Fem, Gen> => "derer" ;

<GSg Neutr,Gen> => "dessen" ;

<GPl,Dat> => "denen" ; -- HL 6/2019

<GPl,Gen> => "derer" ; -- HL 6/2019

_ => artDef ! gn ! c } ;

a = Weak ;

isDefArt = True ;

delCardOne = False ;

} ;

The auxiliary operations

numGenNum : GenNum -> Number = \gn ->

case gn of {GSg _ => Sg ; GPl => Pl} ;

genGenNum : GenNum -> Gender = \gn ->

case gn of {GSg g => g ; GPl => Masc} ;

select the number and gender (in plural, a default) from a value gn:GenNum.

The indefinite article

IndefArt : Quant ;

is implemented similarly. In the normal usage, the endings of the indefinite article ein (in
singular) and the negated indefinite article kein are the “pronominal” endings collected in

pronEnding : GenNum => Case => Str = table {

GSg Masc => caselist "" "en" "em" "es" ;

GSg Fem => caselist "e" "e" "er" "er" ;

GSg Neutr => caselist "" "" "em" "es" ;

GPl => caselist "e" "e" "en" "er"

} ;

In the stand-alone usage, the singular has different forms, e.g. masculine einer,einen,einem,eines,
collected in

detEnding : GenNum => Case => Str = table {

GSg Masc => caselist "er" "en" "em" "es" ;

GSg Fem => caselist "e" "e" "er" "er" ;

GSg Neutr => caselist "es" "es" "em" "es" ;

GPl => caselist "e" "e" "en" "er"

} ;

85

The indefinite article has no plural forms, but in stand-alone usage, we add forms of einige
(eng. some), to avoid problems with empty noun phrases.62

IndefArt = {

s = table {GSg g => \\c => "ein" + pronEnding ! (GSg g) ! c ;

GPl => \\c => []} ;

sp = table {GSg g => \\c => "ein" + detEnding ! (GSg g) ! c ;

GPl => caselist "einige" "einige" "einigen" "einiger"} ;

a = MixedStrong ; -- Sg Mixed, Pl Strong

isDefArt = False ;

delCardOne = True ; -- ein+ein(er) => ein(er)

} ;

The construction of quantifiers from personal pronouns, i.e.

PossPron : Pron -> Quant ;

gives possessive pronouns.63 As part of determiners in their normal usage, e.g. in (ich lese) dein
neues Buch and (ich lese) dein erstes neues Buch, they have the same forms. But as part of
determiners in their stand-alone usage, they take different forms, e.g. (ich lese) deines and (ich
lese) dein erstes (eng. yours and your first one).

PossPron p = {

s = \\gn,c => p.s ! NPPoss gn c ; -- mein (dritter)

sp = \\gn,c => p.sp ! PossF gn c ; -- meiner

a = Mixed ;

isDefArt = False ;

delCardOne = False ;

} ;

Remark 41 : The PossF gn c differ only slightly from the NPPoss gn c, and we could probably
use an auxiliary operation spPoss : GenNum -> Case -> NPForm to get

p.sp ! PossF gn c = p.s ! spPoss gn c ;

similar to the computation of Weak and Mixed adjective paradigms from the strong one via
agrAdj : Adjf -> GenNum -> Case -> Str. So, we can probably get rid of p.sp. /

The quantifier

no_Quant : Quant ;

is implemented as shown

62Q36: Are there still cases where einige popped up in unwanted contexts? Yes, e.g. glass of CN (DetNPFem

somePl Det) gives Glas einige, but singular Glas eines is also nonsense. How can we block using (DetQuant

IndefArt NumPl).sp ! False in (DetNP det).s = det.sp?
63These can be seen as determinative usage of personal pronouns, in contrast to their nominal usage provided

by UsePron : Pron -> NP.

86

no_Quant = {

s = _ => table {GSg g => \\c => "kein" + pronEnding ! GSg g ! c ;

GPl => \\c => "kein" + detEnding ! GPl ! c} ;

sp = \\gn,c => "kein" + detEnding ! gn ! c ;

a = Mixed ;

isDefArt = False ;

delCardOne = True} ; -- HL kein+ein(er) => kein(er)

Similarly for that Quant and this Quant, except that their two paradigms don’t differ and they
enforce Weak adjective inflection:

that_Quant = let jener : GenNum => Case => Str =

\\gn,c => "jen" + detEnding ! gn ! c

in {s = _ => jener ; sp = jener ; a = Weak ; isDefArt,delCardOne = False} ;

this_Quant = let dieser : GenNum => Case => Str =

\\gn,c => "dies" + detEnding ! gn ! c

in {s = _ => dieser ; sp = dieser ; a = Weak ; isDefArt, delCardOne = False} ;

Determiners

Expressions of syntactic categories like noun phrase, adjective phrase or verb phrase are exten-
sions of a head element of a lexical category, i.e. a noun, adjective or verb, by complements or
attributes. Determiners, i.e. expressions of category Det, are not extensions of words of a single
lexical category, but rather expressions of different structure that can be combined with common
nouns to a noun phrase. (The expressions that fulfil the determinative syntactic function are
collected in the category Det.) This standard or determining usage of determiners is made
precise in the construction DetCN : Det -> CN -> NP. When a common noun is understood
from the context, there is also a stand-alone usage of determiners, made precise in the
construction DetNP : Det -> NP. Determiners have different paradigms for the two usages.

The paradigms s and sp for determiners vary in gender (in singular) and case.64 In additon, de-
terminers take a boolean argument to distinguish between common forms (under s ! False) and
variants (under s ! True) in which the possibly leading definite article in singular is dropped.
The implementation type of determiners is

Det = {

s,sp : Bool => Gender => Case => Str ; -- True if DefArt is dropped, HL 8/22

n : Number ; a : Adjf ; isDef, hasDefArt : Bool

} ;

The inherent parameters n:Number for grammatical number and a:Adjf adjective inflection type
govern the form of adjective attributes in the common noun that may be combined with the
determiner. The boolean parameters hasDefArt is used to produce contractions of prepositions
and leading definite article, e.g. to obtain im alten Haus from in dem alten Haus. The flag
isDef is used for the relative order of various nominal objects in a verb phrase.

64The dependence on gender in plural is an artefact. Since determiners have an inherent number, the paradigms
ought to have a type Bool => G n => Case => Str depending on the number n, where G Sg ' Gender and G

Pl has a single value, respectively. Equivalently, we might have two separate categories DetSg and DetPl, with
paradigms of types Bool => Gender => Case => Str and Bool => Case => Str, respectively.

87

The module Structural of structural words of Grammar has six atomic determiners

every_Det, few_Det, many_Det, much_Det, somePl_Det, someSg_Det : Det ;

None of these have a leading definite article in singular, so the boolean argument to their
paradigms is irrelevant. Moreover, the two paradigms often don’t differ at all. Three of these
impose plural and strong adjective inflection:

few_Det = {

s,sp = _,g,c => "wenig" + adjEnding ! (gennum g Pl) ! c ;

n = Pl ; a = Strong ; isDef = False ; hasDefArt = False} ;

many_Det = {

s,sp = _,g,c => "viel" + adjEnding ! (gennum g Pl) ! c ;

n = Pl ; a = Strong ; isDef = False ; hasDefArt = False} ;

somePl_Det = {

s,sp = _,g,c => "einig" + adjEnding ! (gennum g Pl) ! c ;

n = Pl ; a = Strong ; isDef = True ; hasDefArt = False} ; ---- isDef?

The adjective endings added here are the endings of the strong adjective inflection, given by

adjEnding : GenNum => Case => Str = table {

GSg Masc => caselist "er" "en" "em" "en" ;

GSg Fem => caselist "e" "e" "er" "er" ;

GSg Neutr => caselist "es" "es" "em" "en" ;

GPl => caselist "e" "e" "en" "er"

} ;

Only that part of the paradigms is relevant that corresponds to the number value. So, for
these three determiners the following adjective has the same (strong) endings as the determiner
(c.f. Duden[2] 496, 485, 494), e.g.

Lang> l -table DetCN many_Det (AdjCN (PositA old_A) (UseN wine_N))

s False Nom : viele alte Weine

s False Acc : viele alte Weine

s False Dat : vielen alten Weinen

s False Gen : vieler alter Weine

s True Nom : viele alte Weine

s True Acc : viele alte Weine

s True Dat : vielen alten Weinen

s True Gen : vieler alter Weine

ext :

rc :

Remark 42 : In general, viel-, wenig-, einig- etc. can be used in singular and plural, so these count
adjectives should have type Quant in LangGer, and the above determiners be constructed from
them via DetQuant, like someSg Det = DetQuant some Quant NumSg. /

Of the three singular determiners, every Det has the same paradigms for determining and
stand-alone usage and imposes weak adjective inflection:

88

Memo:

Strong Weak Mixed

Number Case Masc Fem Neuter Masc Fem Neuter Masc Fem Neuter

Singular Nom -er -e -es -e -e -e -er -e -es
Acc -en -e -es -en -e -e -en -e -es
Dat -em -er -em -en -en -en -en -en -en
Gen -en -er -en -en -en -en -en -en -en

Plural Nom -e -en -en
Acc -e -en -en
Dat -en -en -en
Gen -er -en -en

without det after definite article after kein,mein

Table 2: Ending tables of adjective inflection

adjEnding pronEnding detEnding

Number Case Masc Fem Neuter Masc Fem Neuter Masc Fem Neuter

Singular Nom -er -e -es - -e - -er -e -es
Acc -en -e -es -en -e - -en -e -es
Dat -em -er -em -em -er -em -em -er -em
Gen -en -er -en -es -er -es -es -er -es

Plural Nom -e -e -e
Acc -e -e -e
Dat -en -en -en
Gen -er -er -er

Table 3: Ending tables of determiner constructions

End Memo

every_Det = {

s,sp = _,g,c => "jed" + detEnding ! (gennum g Sg) ! c ;

n = Sg ; a = Weak ; isDef = False ; hasDefArt = False} ;

The two paradigms differ for someSg Det, as seen e.g. in er kaufte ein altes Auto versus er kaufte
eines, and this determiner imposes mixed adjective inflection:

someSg_Det = {

s = _,g,c => "ein" + pronEnding ! GSg g ! c ; -- ein, eine, ein

sp = _,g,c => "ein" + detEnding ! GSg g ! c ; -- einer, eine, eines

n = Sg ; a = Mixed ; hasNum = True ; isDef = False ; hasDefArt = False

} ;

Remark 43 : In a sense, the determiners someSg Det and somePl Det are derived from the
indefinite article IndefArt:Quant, which leads to multiple parse results, e.g.

Lang> p -lang=Ger -cat=NP "ein guter Wein"

DetCN someSg_Det (AdjCN (PositA good_A) (UseN wine_N))

DetCN (DetQuant IndefArt NumSg) (AdjCN (PositA good_A) (UseN wine_N))

But we have implemented a slight difference in plural:

89

Lang> p -lang=Ger -cat=NP "gute Weine"

DetCN (DetQuant IndefArt NumPl) (AdjCN (PositA good_A) (UseN wine_N))

Lang> l DetCN somePl_Det (AdjCN (PositA good_A) (UseN wine_N))

einige gute Weine

For the singular determiner much Det and several other count adjectives as singular determiners,
the adjective inflection has some exceptions (c.f. Duden[2] 482 - 496), so the four possibilities of
Adjf are somewhat crude.65 If we use viel without endings, which seems useful for mass nouns
at least, strong adjective inflection is imposed.

much_Det = {

s = _,g,c => "viel" ;

sp = _,g,c => "viel" + detEnding ! (gennum g Sg) ! c ;

n = Sg ; a = Strong ; isDef = False ; hasDefArt = False} ;

The use of detEndings in the stand-alone usage is a guess (may at least be wrong in genitive).

Remark 44 : In German, we can add a definite article in front of much Det, e.g. das viele Geld.
Similarly for many Det, e.g. die vielen Kinder. This is not accepted by GrammarGer. (It would
be, if viele would count as a cardinal.)

The module Noun has two main ways to construct determiners,

DetQuantOrd : Quant -> Num -> Ord -> Det ;

DetQuant : Quant -> Num -> Det ;

To prepare the contraction of preposition and definite articles of noun phrases, for both DetQuant

quant num and DetQuantOrd quant num ord we need variants of the paradigms of quant: if
quant is the definite article and num is in singular, the variants have empty strings: The quant

is the leading constituent in a determiner constructed by DetQuantOrd or DetQuant, and the de-
terminer the leading constituent in a noun phrase constructed by DetCN det cn. A contractable
preposition then just combines with the noun phrase shortened by the leading definite article,
e.g. [in] dem (einen) (besten) Fall 7→ [im] (einen) (besten) Fall.

We first consider the construction DetQuantOrd quant num ord. In this case, there is no differ-
ence between the normal and the stand-alone paradigm, because of the final ordinal, e.g. dieser
dritte Versuch and dieser dritte, or deine drei besten Aufsätze and deine drei besten. The quant

determines the adjective inflection of the following ordinal and common noun, e.g. der|dieser
dritte große Versuch, ein|mein|kein dritter großer Versuch. If num is a cardinal except ein(s),
it is not inflected, e.g. zwei in nominative die zwei dritten Zähne or dative den zwei dritten
Zähnen.

Whether num is the cardinal ein can be detected from num.n = Sg and num.isNum = True.
This num needs to be inflected, e.g. der eine große Fehler, den einen großen Fehler, mein einer
großer Fehler, meinen einen großen Fehler. Moreover, if the preceding quant is IndefArt or
no Quant, they are contracted with the num ein, e.g. ein + ein = ein (einziger), kein + ein
= kein (einziger). The flag quant.delCardOne indicates whether we should drop a following
numeral one or, as implemented below, replace it by a form of einziger.

65If DetCN det cn could inspect the abstract construction of det, this could be accounted for using slight
modifications as provided by agrAdj.

90

DetQuantOrd quant num ord =

let

n = num.n ;

a = quant.a ;

d = quant.isDefArt ;

isCardOne = case n of {Sg => num.isNum ; _ => False} ;

nums : AForm => Str = \\af => case af of {

AMod (GSg g) c => case <quant.delCardOne,isCardOne> of {

<True,True> => einziger ! af ; -- (ein,kein) einziger

<_,True> => num.sp ! af ; -- (der,dieser) eine ; (mein) einer

_ => num.s ! af } ; -- (die,diese) zwei ; (meine) zwei

_ => num.s ! APred}

in {

s,sp = \\b,g,c => let gn = gennum g n in

quant.s ! b ! gn ! c ++ nums ! agrAdj a gn c ++ ord.s ! agrAdj a gn c ;

n = n ;

a = a ;

isDef = case a of {Strong => False ; _ => True} ;

hasDefArt = d

} ;

Remark 45 : Determiners ending in an ordinal give rise to an ambiguity, e.g. for my third teeth.

Lang> p -cat=NP "meine dritten Zähne"

DetCN (DetQuant (PossPron i_Pron) NumPl)

(AdjCN (AdjOrd (OrdNumeral (num (pot2as3 (pot1as2 (pot0as1 (pot0 n3)))))))

(UseN tooth_N))

DetCN (DetQuantOrd (PossPron i_Pron) NumPl

(OrdNumeral (num (pot2as3 (pot1as2 (pot0as1 (pot0 n3)))))))

(UseN tooth_N)

Here, OrdNumeral numeral : Ord can either be turned into an AP by AdjOrd and then used
to modify the common noun, or it can be the final part of a determiner which combines with
the noun. Roughly, the three (best new books) = (DetCN (DetQuant quant num) (AdjCN ord

cn)) versus (the three best) new books = (DetCN (DetQuantOrd quant num ord) cn). /

For the construction DetQuant quant num, the normal and the stand-alone paradigms dif-
fer: if no cardinal follows, i.e. num.isNum = False, the stand-alone form of quant is used,
e.g. ein|kein|mein großer Fehler versus einer|keiner|meiner, but also if quant is the definite
article: wir gaben es den Kindern versus wir gaben es denen, and in singular wir erinnern uns
des Problems|der Frage versus wir erinnern uns dessen|derer(?).66

DetQuant quant num =

let

n = num.n ;

a = quant.a ;

d = quant.isDefArt ;

66Sometimes, defArt.sp is avoided, e.g. mit dem 7→ damit, wegen des 7→ deswegen, wegen der 7→ deretwegen.

91

DetCN det cn DetNP det

Quant Num Adjf (DetQuant quant num).s (DetQuant quant num).sp

der NumSg weak der q.s + n.s ! a der
NumPl die die (Dat,Gen) q.sp
ein der eine q.s + n.sp ! a der eine
zwei die zwei die zwei q.s + n.s(p)

ein NumSg mixed ein q.s + ε einer q.sp
NumPl strong ε q.s + n.s ! a einige(?) q.sp
ein mixed ein (einziger) q.s + einziger ein (einziger) q.s + einziger
zwei strong zwei ε+ n.s ! a zwei(e) q.s + n.s(p)!a

kein NumSg mixed kein q.s + n.s keiner q.sp
NumPl keine keine

? ein kein (einziger) kein einziger q.s + einziger
? / nicht ein / nicht einer / nicht + einer

zwei keine zwei q.s + n.s keine zwei q.s + n.s

mein NumSg mixed mein q.s + n.s meiner q.sp
NumPl meine q.s + n.s meine q.sp
ein mein einer q.s + einer!a mein einer q.s + einer
zwei meine zwei q.s + n.s meine zwei q.s + n.s

dieser NumSg weak dieser dieser
NumPl diese diese
ein dieser eine dieser eine
zwei diese zwei diese zwei

Table 4: The paradigms s of determinative and sp of stand-alone usage of determiners

quantsp : Bool => GenNum => Case => Str =

case num.isNum of {True => quant.s ; False => quant.sp} ;

isCardOne = case n of {Sg => num.isNum ; _ => False} ;

nums : AForm => Str = \\af => case af of {

AMod (GSg g) c => case <quant.delCardOne,isCardOne> of {

<True,True> => einziger ! af ; -- (ein,kein) einziger

<_,True> => num.sp ! af ; -- (der,dieser) eine ; (mein) einer

_ => num.s ! af } ;

AMod GPl c => num.s ! APred ; -- (den,diesen) zwei(en) .sp?

APred => num.s ! APred}

in {

s = \\b,g,c => let gn = gennum g n in

quant.s ! b ! gn ! c ++ nums ! agrAdj a gn c ;

sp = \\b,g,c => let gn = gennum g n in

quantsp ! b ! gn ! c ++ nums ! agrAdj a gn c ;

n = n ;

a = a ;

isDef = case a of {Strong => False ; _ => True} ;

hasDefArt = d

} ;

Todo 24: If the determiner ends in a cardinal, inflection may be needed. At least the (empty)

92

indefinite article in plural imposes strong adjective inflection for small cardinals: wir erinnern
uns der|meiner drei Fehler versus wir erinnern uns dreier Fehler, or mit den zwölf Aposteln
versus mit den zwölfen. This is not implemented yet.

Remark 46 : In the paradigm for stand-alone usage, the possible omission of a leading definite
article in singular needs an exception: if the article is not followed by a cardinal, the contraction
of preposition and article should be avoided: in dem einen 7→ im einen, but in dem 7→ ∗im.
(Instead, we get im dem. Can we obtain in dem 7→ darin?)

Determiners can be coordinated, e.g. these three or your two (ones). This is handled in the
module Conjunction (Section 3.1.10, 5.5).

Remark 47 : Grammar does not have noun phrases in genitive as determiners, e.g. the philosopher
Plato’s books, Lady Windermere’s fan, my best student’s ideas. This construction is declared
in Extend.GenNP : NP -> Quant and generalizes PossPron : Pron -> Quant. (But it admits
strange iterations: eines Tages, eines Tages Abends, eines Tages Abends Endes,)

5.1.4. Construction of Noun Phrases

Basic noun phrases can be built from a determiner and a common noun with the rule

DetCN : Det -> CN -> NP ; -- the man

The paradigm of DetCN det cn concatenates det.s with cn.s and varies in case. The form of
the determiner depends on the gender cn.g of the common noun and the adjective inflection of
the common noun depends on the determiner, as given by det.a : Adjf.

The relative clause and a sentential, interrogative or infinitival complement of a cn:CN are lifted
to the rc-field and ext-field of the noun phrase DetCN det cn, respectively.

DetCN det cn = {

s = \\b,c => det.s ! b ! cn.g ! c

++ cn.s ! (adjfCase det.a c) ! det.n ! c ++ cn.adv ;

a = agrgP3 cn.g det.n ;

w = case det.isDef of { True => case det.hasDefArt of {True => WDefArt ;

_ => WLight } ;

_ => WHeavy } ;

rc = cn.rc ! det.n ;

ext = cn.ext

} ;

The agreement value of the noun phrase is agrgP3 = (Ag cn.g det.n P3) and determined by
the gender of the common noun and the number read off from the determiner. If the determiner
is definite, the noun phrase counts as light, else as heavy. The weight of the noun phrase
influences its relative position with respect to negation in clauses, e.g. ich sehe den Mann nicht
vs. ich sehe nicht einen Mann =? ich sehe keinen Mann (see mkClause, p.140).67

A variant of DetCN is to construct a noun phrase from a determiner alone, i.e. the construction

67Notice that rc and ext are lifted from the constituent cn. This suggests that the independent rule RelNP,
p. 23, to relativize a full noun phrase by a relative clause is questionable, at least if proper names and pronouns
can also be relativized (before embedding them into NP).

93

DetNP : Det -> NP ; -- these five

where the common noun of DetCN det cn is empty, e.g. diese fünf or dieses fünfte:

DetNP det = { -- more genders in ExtraGer

s = \\b,c => det.sp ! b ! Neutr ! c ;

a = agrP3 det.n ;

-- HL 6/2019: no pronoun switch: ich gebe ihr das vs. ich gebe es ihr

w = case det.isDef of {

True => case det.hasDefArt of { True => WDefArt ;

_ => WLight } ;

_ => WHeavy } ;

rc, ext = []

} ;

This construction (resp. its generalization DAP) is the only one where det.sp is used. The gender
Neutr of the determiner (and in the agreement value agrP3) is a default; variants DetNPMasc

and DetNPFem with gender Masc and Fem are defined in ExtendGer.68

Atomic noun phrases that are obtained by using a proper name via the rule

UsePN : PN -> NP ; -- John

are light noun phrases with third person singular agreement and by default no relative clause or
sentential, interrogative or infinitival complement.

UsePN pn = {

s = _,c => pn.s ! c ;

a = agrgP3 pn.g Sg ;

w = WLight ;

rc, ext = []

} ;

Similarly, when pronouns are used as noun phrases by

UsePron : Pron -> NP ; -- he

the inflection type Pron.s : NPForm => Str has to be turned into NP.s : Bool => Case =>

Str.

UsePron pron = {

s = _,c => pron.s ! NPCase c ;

a = pron.a ;

w = WPron ;

rc, ext = []

} ;

68For parsing, either use the rules ExtendGer.DetNP* or the more general rules ExtendGer.DAP*, but not both.

94

Since proper names and personal pronouns are light noun phrases, nominal objects of these
kinds precede sentence negation in clauses, i.e. we get sie liebt Johann|ihn nicht rather than sie
liebt nicht Johann|ihn.

Q37: What about ich Arme(r), du Dumme(r), or wir Studenten?

Remark 48 : Pronouns have a different distribution than complex noun phrases: the possessive of
a pronoun has special forms (the possessive pronoun) which are used in front of the common
noun, e.g. meine kleinen Kinder, while the possessive usage of non-pronoun noun phrases is by
its genitive form, either in front of or following the common noun. (PartNP checks whether its
argument np is a pronoun, and builds Hand des Mannes, but Hand von mir. Shouldn’t PossNP
similarly distinguish between Hund des Mannes and mein Hund, and Extend.GenNP subsume
the pre-nominal possessive pronoun?)

The construction of noun phrases from mass nouns,

MassNP : CN -> NP ; -- (I drink) beer

is massively overgenerating, since Cat provides no category of mass nouns. Any common noun
in singular can be used as mass noun to construct a noun phrase without determiner:

MassNP cn = {

s = _,c => cn.s ! Strong ! Sg ! c ++ cn.adv ;

a = agrgP3 cn.g Sg ;

w = WLight ; -- ich trinke Bier nicht vs. ich trinke kein Bier

rc = cn.rc ! Sg ;

ext = cn.ext

} ;

Also, some quantifiers cannot be used with mass nouns, others can only be used with mass
nouns: ∗viel Kind, viel Glück, viele Kinder, ∗viele Glück. (Case and gender in singular: wir
wünschen euch viel Freude, viel Erfolg, viel Glück.)

5.1.5. Modification of Noun Phrases

-- A noun phrase already formed can be modified by a pre-determiner.

PredetNP : Predet -> NP -> NP ; -- only the man

The type of pre-determiners is supposed to be

lincat

Predet = {

s : Number => Gender => Case => Str ;

c : {p : Str ; k : PredetCase} ;

a : PredetAgr -- if an agr is forced, e.g. jeder von uns ist ...

} ;

param

PredetCase = NoCase | PredCase Case ;

PredetAgr = PAg Number | PAgNone ;

95

The field a:PredetAgr suggests that pre-determiners can be used to build subjects of a clause,
which is the case with PredetNP : Predet -> NP -> NP, but not with PredetRNP : Predet

-> RNP -> RNP. The field c:{p:Str ; k:PredetCase} is used when the pre-determiner governs
the case of its argument (reflexive) noun phrase.

PredetNP pred np =

let ag = case pred.a of {PAg n => agrP3 n ; _ => np.a} in np ** {

s = \\b,c0 =>

let c = case pred.c.k of {NoCase => c0 ; PredCase k => k} in

pred.s ! numberAgr ag ! genderAgr np.a ! c0 ++ pred.c.p ++ np.s ! b ! c ;

a = ag ;

w = WHeavy

} ;

Todo 25: Examples: Discuss. Distinguish according to isPron np?

Remark 49 : In Grammar, every is a determiner, which governs the common noun in number, but
all is a predeterminer, which combines with any (singular or plural) noun phrase. In particular,
in can precede the definite article. Hence, ∗every dogs sleep|sleeps is not accepted, but all (the)
dogs sleep and(!) all (the) dog sleeps are. (The latter may be useful for mass nouns, e.g. all the
money. In German, we have in singular aller Mut, alle Freude, alles Geld, but with article only
all der|mein Mut, all die|meine Freude, all das|mein Geld.)

The abstract grammar declares four post-nominal modifications of noun phrases. The post-
nominal modification of noun phrases by a past participle,

PPartNP : NP -> V2 -> NP ; -- the man seen

should in German at least have the participle in commata, so it is implemented by

PPartNP np v2 = np ** {

s = \\b,c => np.s ! b ! c ++ embedInCommas (v2.s ! VPastPart APred) ;

w = WHeavy

} ;

with an auxiliary operation

embedInCommas : Str -> Str= \s -> bindComma ++ s ++ endComma

This gives, e.g. das Buch, ungelesen,. However, more commonly, the participle is modified,
e.g. das Buch, kaum gelesen, or das Buch, von einigen hoch gelobt,.

Remark 50 : There are constructions

Extend.PastPartAP : VPSlash -> AP ;

Extend.PastPartAgentAP : VPSlash -> NP -> AP ;

that provide such examples, up to the post-nominal position:

AllGerAbs> l DetCN (DetQuant DefArt NumSg)

(AdjCN (PastPartAP (AdVVPSlash always_AdV (SlashV2a read_V2))) (UseN book_N))

das immer gelesene Buch

96

If we let PastPartAP set isPre = False, then AdjCN would give an uninflected post-nominal
modification, das Buch, immer gelesen. /

The two post-nominal modifications by an adverb,

AdvNP : NP -> Adv -> NP ; -- Paris today

ExtAdvNP: NP -> Adv -> NP ; -- boys, such as ..

are similarly implemented by attaching the adverb to np.s:

AdvNP np adv = np ** {

s = \\b,c => np.s ! b ! c ++ adv.s ;

w = WHeavy

} ;

ExtAdvNP np adv = np ** {

s = \\b,c => np.s ! b ! c ++ embedInCommas adv.s ;

w = WHeavy

} ;

Todo26: In ExtAdvNP, it may be better to put the adv.s to np.ext, so that it can be separated
from the noun, e.g. sie hatten einige Philosophen studiert, darunter Platon und Aristoteles.

Finally, the post-nominal modification of noun phrases by relative clauses,

RelNP : NP -> RS -> NP ; -- Paris, which is here

adds the argument rs to the field np.rc:

RelNP np rs = np ** {

rc = let gn = gennum (genderAgr np.a) (numberAgr np.a)

in np.rc ++ embedInCommas (rs.s ! RGenNum gn) ;

w = case isPron np of { True => WLight ; _ => np.w }

} ;

Q38: Do we really want to relativize a noun phrase, or can we remove RelNP in favour of new
rules PronRel : Pron -> RS -> NP and RelPN : PN -> RS -> NP in addition to the existing
rule RelCN : CN -> RS -> CN? Is die Stadt Paris, die ich kenne, a good example, or is this the
relativization of common noun with apposition, i.e.

DetCN det (RelCN (ApposCN (UseN city_N) (UsePN paris_PN)) rs ?

Better may be e.g. mindestens 15 Staaten, die zusammen 65 Prozent der EU-Bevölkerung reprä-
sentieren, (der Freitag, 4. Januar 2024, p.3). At least semantically, this is not the plural of
a relativized common noun, RelCN (UseN state N) rs. (Or e.g. die Haltung des Gesund-
heitsministers, der wenig Verständnis für deren Forderungen hat.) By RelNP, several relative
clauses can be added, e.g. die Stadt Paris, die ich kaum kenne, die viele Leute lieben,. This
seems strange; a single, coordinated relative sentence seems better.

Remark 51. Relative sentences can be attached to common nouns and to noun phrases, which
leads to ambiguities (DetCN det (RelCN cn rs)) and (RelNP (DetCN det cn) rs) like “das
Haus , das ich kenne ,”. Can these ambiguities be reduced? The above post-nominal modifications
can be applied in any order, which gives some flexibility for the price of ambiguities.

97

TestLang> p -cat=NP "Paris heute , gesehen , , das schläft ,"

PPartNP (AdvNP (RelNP (UsePN paris_PN) (UseRCl ... rs)) today_Adv) see_V2

PPartNP (RelNP (AdvNP (UsePN paris_PN) today_Adv) (UseRCl ... rs)) see_V2

RelNP (PPartNP (AdvNP (UsePN paris_PN) today_Adv) see_V2) (UseRCl ... rs)

Todo 27: Avoid the double comma, produced by RelNP and PPartNP.

Todo 28: The rule

CountNP : Det -> NP -> NP ; -- three of them, some of the boys

is claimed to be different from the partitive in many languages.

CountNP det np = -- drei der Kinder | drei von den Kindern -- HL 7/22, ad-hoc TODO

-- det or numeral? np or rather (DefArt +) cn? drei (einiger Kinder) ?

let g = genderAgr np.a

in {

s = \\b,c => det.sp ! b ! g ! c ++ appPrep von_Prep np ;

a = agrgP3 g det.n ;

w = case det.isDef of { True => WLight ; _ => WHeavy } ;

rc = np.rc ;

ext = np.ext

} ;

A problem here is that the number det.n cannot influence the number of the argument np (but
it governs the number of cn in DetCN det cn). So this construction overgenerates.

Lang> l CountNP (DetQuant no_Quant NumSg) (UsePron we_Pron)

none of us

keiner von uns

Lang> l CountNP (DetQuant IndefArt NumPl) (UsePron we_Pron)

ones of us

einige von uns

There are two more rules in Noun, providing determiners with adjectives and coordinations
of such, e.g. ein kleines oder dein bestes. The first extends any determiner to a determiner
“with adjective phrase”. Since the extended determiner can be used stand-alone, but also in
combination with another adjective phrase, two paradigms are needed:

DetDAP det = {

s = \\g,c => det.s ! False ! g ! c ;

sp = \\g,c => det.sp ! False ! g ! c ;

n = det.n ; a = det.a ; isDef = det.isDef ; hasDefArt = det.hasDefArt

} ;

The second rule modifies such an extended determiner by adding another adjective phrase; the
determiner governs the adjective inflection type, as in AdjCN, so that we get e.g. ein kleiner, but
also der kleine:

98

AdjDAP dap ap = -- the large (one)

{s,sp = \\g,c => dap.s ! g ! c ++ ap.c.p1 ++ ap.c.p2

++ ap.s ! agrAdj dap.a (gennum g dap.n) c ++ ap.s2 ! c ++ ap.ext ;

a = dap.a ; n = dap.n ; isDef = dap.isDef ; hasDefArt = dap.hasDefArt } ;

The relative order between sentential complement and comparision noun phrase of the adjective
may be wrong (if both arise at the same time).

Lang> l AdjDAP (DetDAP every_Det) (ComparA old_A (UsePN john_PN))

every older than John

jeder ältere als Johann

Remark 52 : Not every determiner may be used in this rule. E.g., we get hard to understand
examples with determiner much Det and comparative adjective (Q39: how to avoid?):

Lang> l (AdjDAP (DetDAP much_Det) (ComparA old_A (UsePN john_PN)))

much older than John

viel älterer als Johann

The sequence much + older sounds like an adjective modification, which it isn’t here and would
in German be viel älter instead of viel älterer. Together with Extend.UseDAP : DAP -> NP,
these give strange apparent complements to copula verbs, e.g. ich bin viel älterer als du. /

Todo29: Check whether the correct paradigm s or sp is used by Extend.UseDAP : DAP -> NP.

99

5.2. Adjective Phrases

Morphological Adjective

Adjectives can be used in postive, comparative and superlative degree . The parameter type is

param

Degree = Posit | Compar | Superl ;

In each degree, adjectives have forms for predicative and attributive usage. The predicatively
used German adjective does not inflect (for number and person, as the predicatively used verb
does), e.g. jung in du bist jung and sie sind jung, while the attributively used adjective inflects
for number and case of the noun it modifies, e.g. mein junger Hund vs. meine jungen Hunde
and meinen jungen Hund vs. meine jungen Hunde, in singular also for gender, e.g. mein junger
Hund vs. meine junge Katze. Therefore, the parameter type for adjective forms is

param

AForm = APred | AMod GenNum Case ;

Attributively used adjectives also vary according to an adjective inflection type ,

Adjf = Strong | Weak | Mixed | MixedStrong ;

This inflection type of attributively used adjectives in noun phrases depends on the determiner
of the noun phrase; the Strong form is used when there is no determiner, e.g. kleines Kind,
the Weak form is used when there is a definite article, das kleine Kind. The Mixed adjective
inflection combines the Strong form in the nominative and accusative singular with the Weak

forms in all other inflection cases; it is used for the negation determiner kein and the possessive
pronoun as determiner of the noun phrase. The MixedStrong form is used with the indefinite
article, using the Mixed forms in singular and the Strong forms in plural.

The strong attributive forms of adjectives are AMod GenNum Case. Where the weak and mixed
forms do not agree with the strong ones, they use the two endings -e and -en, which are also
the endings in the strong inflection of AMod (GSg Fem) Nom and AMod (GSg Masc) Acc. Hence,
the forms of the weak and mixed inflection types can be obtained by properly selecting from the
strong paradigm. This is done by an auxiliary operation

agrAdj : Adjf -> GenNum -> Case -> AForm = \g,a,n,c ->

let

gn = gennum g n ;

e = AMod (GSg Fem) Nom ;

en = AMod (GSg Masc) Acc ;

in

case a of {

Strong => AMod gn c ;

Weak => case <gn,c> of {

<GSg _, Nom> => e ;

<GSg Masc,Acc> => en ;

<GSg _, Acc> => e ;

_ => en } ;

Mixed => case <gn,c> of {

100

<GSg g, Nom|Acc> => AMod gn c ;

_ => en } ;

MixedStrong => case <gn,c> of {

<GSg _, Dat|Gen> => en ;

_ => AMod gn c }

} ;

Applying agrAdj whenever attributive adjective forms are needed, the type of the inflection
paradigm of adjectives can be simplified from Degree => Adjf => AForm => Str by dropping
the dependence on Adjf. The auxiliary type of the morphological adjective therefore is just

Adjective : Type = {s : Degree => AForm => Str} ;

and only contains the forms of the strong adjective inflection.

Lexical Adjective

There are two syntactic categories of adjectives, unary and binary adjectives:

lincat

A = Adjective ;

A2 = Adjective ** {c2 : Preposition} ;

Remark 53 : In Lexicon.gf, there is an entry easy A2V : A2, which seems to suggest that there
is a category A2V of ternary adjectives with prepositional and infinitival objects, e.g. leicht für
jemanden, es zu tun. But easy A2V is typed as a binary adjective, maybe because the infinitival
complement is the subject, not an object of the adjective. ParadigmsGer says:

-- Notice: categories $AS, A2S, AV, A2V$ are just A,

-- and the second argument is given as an adverb.

In fact, to add a sentential or infinitival subject, one first has to apply PositA or UseComparA

to the adjective to obtain an adjective phrase, then apply UseComp o CompAP to obtain a verb
phrase and finally add the subject by PredSCVP o EmbedS or PredSCVP o EmbedVP; for example,
this gives that John sleeps is probable from probable AS or to hear music is fun from fun AV. To
add a sentential or infinitival object, one turns it into a “sentential complement” SC by EmbedS

or EmbedVP and embeds this by SentAP to the adjective phrase; for example, this gives John is
glad to hear music from glad A:A. The sentential object could, unplausibly, also be analysed as
adverbial sentence and added to the adjective phrase (or to the derived verb phrase) by AdvAP

(or AdvVP); for example, this gives a strange analysis of John is glad that he can sleep. /

Category of Adjective Phrase

Instead of letting adjective phrases vary in degree, Grammar has three syntactic constructions

PositA : A -> AP

UseComparA : A -> AP

AdjOrd o OrdSuperl : A -> AP

that turn a unary adjective into an adjective phrase in which the adjective is in positive, compar-
ative and superlative degree, respectively. Therefore, the inflection paradigm of adjective phrases
does not depend on Degree, but is just a table of type AForm => Str. The implementation type
of adjective phrases is (an extension of the one of gf-3.9 by the s2-field) is

101

AP = {s : AForm => Str ; -- (strong) adjective paradigm

s2 : Case => Str ; -- comparison noun phrase

isPre : Bool ; -- True unless post-nominal as attribute to CN

c: Str * Str ; -- (ich bin) [c1 ihm] treu ; stolz [c2 auf dich]

ext : Str} ; -- (du bist) so klug (gewesen) [ext ihn zu lesen]

The field s2 : Case => Str is to hold a comparision noun phrase, e.g. wie der Kirchturm in
so hoch wie der Kirchturm or als der Kirchturm in höher als der Kirchturm. The comparision
noun phrase depends on case, e.g. sie bauten ihre Häuser nicht höher als den Kirchturm, and,
in attributive usage, can be separated from the adjective by a noun, e.g. größere Türme als die
Kirchtürme, or (ein) so hoher Turm wie der Kirchturm. Hence a separate field s2 is needed.

The complement of a binary adjective is stored in a field c : Str * Str. Nominal objects are
stored in the first component, prepositional objects in the second.69 A special field s is needed
since objects can be separated from the adjective, e.g. by the participle gewesen in er war stolz
gewesen auf sein Prüfungsergebnis. A complement can of course also be fronted, e.g. auf sein
Prüfungsergebnis war er sehr stolz. As the examples indicate, in predicatively used adjective
phrases the nominal objects precede the noun, e.g. sie blieb ihrem Ziel treu rather than ∗sie blieb
treu ihrem Ziel. (But in adverbial usage, this might be the proper ordering.) With prepositional
objects, both positions are common, e.g. er war stolz auf sein Ergebnis and er war auf sein
Ergebnis sehr stolz.

The field ext : Str is intended for sentential complements, e.g. an infinitival complement in
froh [darüber], die Prüfung bestanden zu haben, or a sentential complement in froh [darüber],
daß die Sonne schien. As with nominal and prepositional complements, they can be separated
from the adjective, e.g. by a participle, or fronted.

Q40: How are adjectives with a sentential complement used in comparisons, as in froher, VP.inf
als NP or as in froher als NP, VP.inf ? Generally, the comparision part need not be a noun
phrase, e.g. ein besserer Sänger als ich, or (Pelé war) ein ebenso guter Sambatänzer wie Fußball-
spieler, but can for example be an adverb, e.g. ein besseres Wetter als gestern.

In contrast to other languages, German does not distinguish between adjectives that precede
from those that follow the noun in their attributive usage. The attributively used adjective
phrase precedes the noun (though a comparison noun phrase may follow), except when its
adjective has a sentential complement. In this case, the (uninflected) attribute follows the noun,
e.g. die Kinder, froh, daß es schneit, instead of ∗die frohen, daß es schneit, Kinder (though we
might say die darüber, daß es schneit, frohen Kinder). Hence, a flag isPre : Bool distinguishes
adjective phrases which can be used as prenominal attribute from those which cannot (the ones
constructed by SentAP).

Remark 54 : There is a post-nominal adjectival apposition: das Brot, hart und angeschimmelt,
war ungenießbar, or das Buch, noch nicht gelesen, lag auf dem Tisch. To turn an adjective
phrase into such a post-nominal attribute or apposition, i.e. uninflected adjective in commata,
we might add a rule ApposCN : CN -> AP -> CN to Extend, implemented roughly by AdjCN (ap

** {isPre = False}) cn, or a similar rule ApposNP:NP -> AP -> NP generalizing PPartNP.

Remark 55. The complement type AP.c : Str * Str should be AP.c : Agr => Str * Str

to allow for reflexive pronouns and reflexive possessives, as in “stolz auf sich” or “stolz auf seine

69This can be seen from Adjective.ComplA2. The constructions Verb.ComplVA and Verb.SlashV2A use
insertAdj adj c ext vp to insert the nominal complement c.p1 to vp.nn.p2, but the adjective with the prepo-
sitional complement adj.s ++ c.p2 to vp.adj, and ext to vp.ext.

102

(eigene) Leistung”. Also, the sentential objects can depend on Agr, e.g. “froh, sich entschuldigt
zu haben”. Hence, a better implementation type could be

AP : Type = {

s : AForm => Str ; -- (strong) adjective paradigm

isPre : Bool ; -- True unless post-nominal as attribute to CN

s2 : Agr => Case => Str ; -- comparison part: klügere N als man selbst

c : Agr => Str * Str ; -- nominal vs. prepositional complement

ext: Agr => Str} ; -- sentential complement: froh, sein Ziel zu erreichen

See ExtraGer.ReflA2RNP, p. 178. /

5.2.1. Construction of Adjective Phrases

The construction

PositA : A -> AP ; -- warm

to use a unary adjective in positive degree just selects the positive forms of the adjective paradigm
and fills the other fields with empty comparison part and complements:

PositA a = {

s = a.s ! Posit ;

s2 = _ => [] ;

isPre = True ;

c = <[],[]> ;

ext = []

} ;

There are two constructions to use an adjective in comparative degree. First, the adjective can
be used without a comparison part, by

UseComparA : A -> AP ; -- warmer

E.g., das Meer ist heute wärmer or wir lieben die wärmeren Tage. Then the comparative forms
of the adjective are stored in the paradigm of the adjective phrase:

UseComparA a = {

s = \\af => a.s ! Compar ! af ;

s2 = _ => [] ;

isPre = True ;

c = <[],[]> ;

ext = []

} ;

Second, the adjective can be used with a comparison part. In Grammar, the comparison part
must be a noun phrase (hence, e.g. today, the sea is warmer than yesterday is not recognized70):

70Todo 30: Check if Extend would accept this. The original implementation of ComparA stores the comparison
part of an adjectival attribute in the field cn.s:Str, too, as in LangEng.

103

ComparA : A -> NP -> AP ; -- warmer than I

In German, the comparison noun phrase is not concatenated with the adjective, since they can be
separated by an intervening noun, e.g. (ein) wärmeres Meer als die Nordsee, so the comparison
noun phrase is stored in a special field s2 of the adjective phrase:

ComparA a np = {

s = \\af => a.s ! Compar ! af ;

s2 = \\c => conjThan ++ np.s ! False ! c ++ np.ext ++ np.rc ;

isPre = True ;

c = <[],[]> ;

ext = []

} ;

The comparison part has a leading conjunction conjThan, in German als, and it varies in case, so
that the adjective phrase can be an attribute in nominal objects, e.g. (ich kenne) ein wärmeres
Meer als den Atlantischen Ozean.

Binary adjectives can be used without complement, by

UseA2 : A2 -> AP ; -- married

as in eine verheiratete Frau or wir sind verheiratet, which is implemented, like PositA, by

UseA2 a = {

s = a.s ! Posit ;

s2 = _ => [] ;

isPre = True ;

c = <[],[]> ;

ext = []

} ;

The only binary adjective in Lexicon.gf is married A2. (Participles of verbs can be turned
into adjective phrases by Extend.PastPartAP:VPSlash -> AP.) A better example is e.g. proud
(of sth) in a woman proud of her career or she is proud of her career.

Remark 56 : A problem with this rule is that if the adjective expects a prepositional object, the
object can be read as an adverbial modification of the adjective phrase, e.g. mit mir verheiratet :

AdvAP (UseA2 married_A2) (PrepNP with_Prep (UsePron i_Pron))

Similarly, the adjective phrase can be turned into a VP by UseComp o CompAP and modified by
AdvVP with the adjective’s prepositional object understood as Adv. (And AdvAP or AdvVP can
be applied iteratively, leading to acceptance of e.g. die mit mir mit mir verheiratete Frau.) /

Binary adjectives can also be used with a complement:

ComplA2 : A2 -> NP -> AP ; -- married to her

Depending on whether the adjective expects a nominal or prepositional object, the complement
string is added to the first or second component of the complement field c, in the case a.c2

expected by the adjective:

104

ComplA2 a np =

let

obj = appPrepNP a.c2 np

in {

s = a.s ! Posit ;

s2 = _ => [] ;

isPre = True ;

c = case a.c2.t of {isCase => <obj, []> ; _ => <[], obj>} ;

ext = []

} ;

Binary adjectives can also be used reflexively, by

ReflA2 : A2 -> AP ; -- married to itself

Here, the third person singular (of any gender) of the reflexive pronoun is put into the comple-
ment field s:

ReflA2 a =

let

obj = appPrep a.c2 (reflPron ! agrP3 Sg) ;

in {

s = a.s ! Posit ;

s2 = _ => [] ;

isPre = True ;

c = case a.c2.t of {isCase => <obj, []> ; _ => <[], obj>} ;

ext = []

} ;

E.g., with suitable adjectives, this gives auf sich stolz or sich treu and seiner (selbst) bar.

Remark 57 : The restriction to reflexive pronoun in third person excludes examples like wir
waren stolz auf uns. More generally, the complement could be a relflexive noun phrase RNP, see
Extend.ReflA2RNP (and git branch reflexiveNPs).

To use an adjective in superlative degree, it first has to be turned into an ordinal by OrdSuperl

: A -> Ord, which selects the superlative attributive forms of the adjective paradigm and adds
a leading am to the predicative form (c.f. p. 81). An ordinal can be turned into an adjective
phrase by

AdjOrd : Ord -> AP ; -- warmest

The implementation just selects the paradigm from the ordinal:

AdjOrd a = {

s = a.s ;

s2 = _ => [] ;

isPre = True ;

c = <[],[]> ;

ext = []

} ;

105

The rule AdjOrd does not allow us to use a binary adjective in superlative degree, e.g. viele sind
stolz auf sich, aber Johann ist am stolzesten auf dich.

Remark 58 : The transformation to an ordinal leads to ambiguities: either the adjective in
superlative is the final part of the determiner or the initial part of the common noun:

Lang> parse -cat=NP "der wärmste Tag"

DetCN (DetQuant DefArt NumSg) (AdjCN (AdjOrd (OrdSuperl warm_A)) (UseN day_N))

DetCN (DetQuantOrd DefArt NumSg (OrdSuperl warm_A)) (UseN day_N)

It seems better not to transform the adjective to an ordinal, but instead have rules UseSuperlA
= AdjOrd o OrdSuperl : A -> AP and UseSuperlA2 : A2 -> AP. /

5.2.2. Modification of Adjective Phrases

Todo31: Check where the modification rules have to make the result depend on ap.isPre of its
argument ap, and whether the ordering of complements and modifying adverb is correct.

An adjective phrase can be modified by a comparison adverb and a (nominal) comparison part:

CAdvAP : CAdv -> AP -> NP -> AP ; -- as cool as John

Remark 59 : As a modification rule, CAdvAP can be iterated, which seems artificial, e.g. the water
is as [as warm as the sea] as the air. Similarly, if its argument ap already expresses a value
like quite warm on the implicit (temperature) scale provided by warm, the resulting CAdv adv

ap np, e.g. as quite warm as the sea, expresses incomparable degrees: either the temperature
is quite warm or as warm as the sea, but not both. To overcome this, one could restricted the
rule to a construction rule CAdvAP : CAdv -> A -> NP -> AP, analogous to ComparA : A ->

NP -> AP. (Probably, the reason for GF’s type of CAdvAP is to admit adjectival arguments with
complements, e.g. as [proud of his work] as John, but this would apply as well to ComparA and
e.g. [prouder of his work] than John.)71

The implementation of CAdvAP adds the first part of the comparative adverb as–as, in German
(eben)so–wie, to the paradigm forms in s and the second to the comparision field in s2:72

CAdvAP cadv ap np =

let adv : Str * Str = cadv.s ! False in

ap ** {

s = \\afl => adv.p1 ++ ap.s ! afl ;

s2 = \\c => ap.s2 ! c ++ adv.p2 ++ np.s ! False ! c ++ np.ext ++ np.rc ;

isPre = True

} ;

The isPre field is set to True, so that the resulting adjective phrase ap can be used as pre-
nominal attribute in AdjCN ap cn, or rather as attribute wrapped around the noun.

Remark 60 : The original implementation restricted the comparison part to be a noun phrase in
nominative. But besides e.g. ich besitze einen kleineren Wagen als du, one can also say, e.g. ich
kaufe einen kleineren Wagen als diesen Sportwagen. Hence the restriction is removed here.

71Q41: Can this be improved with incomplete adjective phrases APSlash = AP/NP and appropriate complenta-
tion and modification rules?

72Since ap:AP, not ap:A, the use of the adjective’s comparison object ap.s2 is to avoid a metavariable in the
parse tree. This clearly indicates that the argument ap should not itself be constructed by CAdvAP, but it can.

106

As remarked earlier, the modification rule

SentAP : AP -> SC -> AP ; -- good that she is here

ought to be a construction rule ComplAS : AS -> S -> AP or ComplAV : AV -> VP -> AP with
subcategories AS and AV of A. SentAP ap sc is intended to combine the sentential, infinitival or
interrogative complement sc:SC of the (head) adjective of ap to the ext-field of an ap. (The
example good that she is here is misleading, as it shows an adjective with a sentential subject,
[that she is here] is good. An adjective with sentential object is happy in (John is) happy that
she is here or (John is) happy to be alive. There are adjectives with interrogative subject, e.g. ob
es besser wird, ist unklar, but I don’t see an adjective with interrogative object.)

Typed as a modification rule, SentAP is overgenerating, since it can be applied iteratively and
there is no restriction to the argument ap. The implementation SentAP ap sc concatenates the
sentential complement sc.s to the extraction field ap.ext of the argument ap:

SentAP ap sc = ap ** {

isPre = False ;

ext = ap.ext ++ sc.s

} ;

(It seems to be assumed here that ap.ext is the empty string.) The complement can be separated
from the adjective, as in e.g. Johann ist froh [darüber] gewesen, daß sie kommt.

The sentential complement of an adjective phrase built by SentAP can be a subject-sentence
(or -infinitive or -interrogative clause), e.g. that S, is good or why S, is unknown, or an object-
sentence, e.g. I find inacceptable, that S or they considered it unbelievable, why S. But such
adjective phrases can hardly be used as pre-nominal attribute, e.g. der gelobt zu werden begierige
Schüler. Instead, they can be used as uninflected post-nominal attribute (or apposition), e.g. der
Schüler, begierig, gelobt zu werden, or Johann, froh, daß sie gekommen war,. The flag isPre is
set to False to indicate that the attributive usage of the adjective phrase (in Noun.AdjCN) is
not pre-nominal, but post-nominal.

The modification of adjective phrases by “adadjectives”,

AdAP : AdA -> AP -> AP ; -- very warm

puts the adadjective in front of the forms of the adjective phrase’s paradigm, but leaves the
complements intact:

AdAP ada ap = ap ** {s = \\a => ada.s ++ ap.s ! a} ;

This is certainly not very precise, hence overgenerating. It ignores that some adadjectives modify
adjective phrases in specific degrees, e.g. sehr|zu dumm, but ∗sehr|zu dümmer, ∗sehr|zu dümmste,
or wenig|kaum|viel dümmer als ..., but ∗wenig|kaum|viel dumm wie

Remark 61 : One could change the linearization types of AP and AdA and implement

AdAP ada ap = ap ** {s = \\deg,a => ada.s ++ ap.s ! ada.deg ! a} ;

The rules PositA, ComparA and SuperlA = AdjOrd o OrdSuperl could be combined to a rule
UseA : A -> AP. Then all uses of adjectives had to provide a degree to be passed to the adjective

107

phrase. This could be done by splitting the rule AdjCN for attributive and CompAP for predicative
usage into three rules each. But when a modification fixes the degree of an adjective phrase, one
cannot apply another (degree-fixing) modification rule to the result. A dead end? Alternatively,
one perhaps can use dependent types and AdAP : (d:Degree) -> AdA d -> AP d -> AP d.
In the end, different subclasses of adjectives may be modified in specific ways only, depending
on their meaning, e.g. scalar adjectives like old by absolute resp. relative scale values, e.g. 50
years old resp. e.g. as old as John or much older than John, but colour adjectives like blue by
other adjectives, e.g. light blue or dark blue. /

In English, an adjective phrase can be postmodified, say by a prepositional phrase,

AdvAP : AP -> Adv -> AP ; -- warm by nature

In German, the modifying adverb precedes the adjective,

AdvAP ap adv = ap ** {s = \\a => adv.s ++ ap.s ! a} ; -- HL 1/2024

e.g. von Natur aus warm, or (das) mit Abstand bevölkerungsreichste (Land), or (ein) heutzutage
selten gelesenes (Buch). In attributively used adjective phrases, the modifying adverb (as well
as the nominal complements) precede the adjective, e.g. ein vor Angst krankes Kind, so that
the adjective inflection comes at the end. But in predicative or adverbial usage, the adverb may
follow the adjective, e.g. krank vor Angst or treu seinem Auftrag.

The attributive usage of adjectives is implemented by AdjCN : AP -> CN -> CN in the module
Noun, the predicative usage by CompAP o UseComp : AP -> VP in the module Verb. Adjectives
can also be used as adverbs, e.g. der Wagen fuhr schnell. Adjectives in superlative can be used
as adadjectives, e.g. höchst dumm or e.g. äußerst klug, maybe also schellstmöglich. These are
treated in the module Adverb.

Todo 32: Add test examples to lintest.gfs, with doubly modified adjective phrases.

108

5.3. Adverb Phrases

Lang differs between AdV, the “adverb directly attached to verb” (e.g. “always”), and Adv, the
“verb-phrase-modifying adverb” (e.g. “here”). Among the verb-phrase-modifying adverbs, Lang
distinguishes between definite adverbs Adv, e.g. here, and interrogative adverbs IAdv, e.g. where.
The indicated difference between Adv and AdV by occcurence position in sentences does not hold
for German: immer = always is not directly attached to the verb in German, but rather between
two nominal objects of a v:V3: Johann hat mir immer eine Zigarette angeboten is preferred over
alternatives73

Still, different adverb insertion functions may be needed for German, since adverbial clauses are
ususally sentence-initial or -final. According to Verb.gf, AdvVP is to add adverbs at the end
of a vp, while AdVVP is to attach them next to or before the verb. But is it plausible that the
position of an adverb corresponds across languages?

Presumably, the category AdV corresponds to sentence-modifying adverb (Satzadverb in German).
But even if the semantic difference between predicate modifiers Adv and sentence operators AdV
is made, I don’t see a systematic difference in the position of these adverbs in German sentences.

5.3.1. Categories of Adverbs

The resource grammar Grammar does not distinguish between a lexical category Adv and a phrasal
category AdvP of adverbs, as one might expect. There are four categories Adv, AdV, IAdv and
CAdv of adverbs at the end of verb phrases, adverbs close to the verb, interrogative adverbs
and comparative adverbs (or adverb prases). Their linearization categories are the same for all
languages of the library, given (in CommonX) as

Adv = {s : Str} ;

AdV = {s : Str} ;

IAdv = {s : Str} ; -- interrogative adverb

CAdv = {s,p : Str} ; -- comparative adverb

While these types are as expected for lexical adverbs74, they are insufficient for adverbial phrases.
In German, adverbs ought to be split strings. First, adverbs can have a movable comparison
part: Johann ist schneller gefahren als sein Freund or er ist schneller gefahren als [es] erlaubt
ist. Second, adverbs can consist of a “pronominal” adverb, e.g. dort, plus a movable relative
clause: Die CO2-Anlagen sind dort geplant, wo die Klimakrise bereits besonders heftig wütet.
The relative clause can be fronted, e.g. wo . . . wütet, dort sind . . . geplant, while the comparison
part apparently cannot. Hence the implementation type ought to have three fields:

Adv = {s : Str ; cp : Str ; rc : Str} ;

Q42: But what about the degree of an adverb: you work well, he works better, she works best?
e.g. zur Zeit des Krieges habe man besser gelebt als jetzt. While adverbs derived from adjectives
might vary in degree, others certainly do not, e.g. in this way. So it seems better to generate
three adverbs from an adjective.

73Johann hat immer mir eine Zigarette angeboten or Johann hat mir eine Zigarette immer angeboten. For
binary verbs, it may be different: Johann hat immer seine Arbeit gemacht and Johann hat seine Arbeit immer
gemacht are used.

74One might distinguish pronominal adverbs, e.g. here, now, etc., from adverbial phrases in general and add a
field isPron : Bool to the implementation type to mark the difference.

109

On the assumption that the category AdV corresponds to sentence-modifying adverbs, the fol-
lowing implementation type seems correct:

AdV = {s : Str} ;

There is also a (lexical) category CAdv of comparative adverbs. Comparative adverbs have two
string parts, e.g. 〈weniger,als〉 and 〈[genau] so,wie〉. To construct from cadv:CAdv an adverb
can afford a different linearization of cadv than to construct a cardinal modifier (i.e. an AdN),
e.g. (she did it) as well as John, but (she has) exactly 4 (children), and (she did it) better than
John, but (she has) more than 4 children. Hence, a CAdv has a table of string pairs and a field
to select the degree of the adjective used when forming an adverb:

CAdv = {s : Bool => Str * Str ; deg : Degree} ; -- True for AdN ; False for Adv

The rule AdnCAdv selects the True part of the paradigm, the rule ComparAdvAdj the False part.

5.3.2. Construction of Adverbs

Construction of Comparative Adverbs

As the type of CAdv is changed, the operation mkCAdv of common/CommonX.gf is overwritten by
an operation

mkCAdv : Str * Str -> Str * Str -> Degree -> CAdv

which creates a record of type CAdv by inserting the arguments in the corresponding fields of
the record. Examples of comparative adverbs are given in StructuralGer by

as_CAdv = P.mkCAdv <"genau",[]> <"so","wie"> Posit ; -- genau 5 ; so gut wie np

less_CAdv = P.mkCAdv <"weniger","als"> <"weniger","als"> Posit ;

more_CAdv = P.mkCAdv <"mehr","als"> <"","als"> Compar ;

There may be user-defined comparative adverbs like 〈”anders”,”als”〉 in e.g. (sie) hat Covid
nicht anders bewertet als andere Infektionskrankheiten.

Construction of Adverbs

Lexical adverbs are built with an auxiliary operation mkAdv : Str -> Adv, where

mkAdv str = {s = str ; cp,rc = []} ;

Some atomic adverbs are given in the modules LexiconGer and StructuralGeg, for example

already_Adv = mkAdv "schon" ;

now_Adv = mkAdv "jetzt" ;

today_Adv = mkAdv "heute" ;

everywhere_Adv = mkAdv "überall" ;

An often used construction of adverbs is from preposition and noun phrase,

PrepNP : Prep -> NP -> Adv ; -- in the house

110

which combines75 the preposition with the noun phrase in the case demanded by the preposition:

PrepNP prep np = {s = appPrepNP prep np ; cp,rc = []} ;

Remark 62 : The argument np may have a sentential object, which sometimes is an extractable
part of the adverb, e.g. sie hatten in der Absicht trainiert, das Spiel zu gewinnen. To implement
this, we could add a field ext:Str to the implementation type of Adv and use a variant of
appPrepNP that allows us to lift np.ext or np.rc to the ext-field of PrepNP prep np. /

Next, there are adverbs constructed from an adjective. The construction

PositAdvAdj : A -> Adv ; -- warmly

uses the predicative, uninflected form of an adjective adverbially:

PositAdvAdj a = {s = a.s ! Posit ! APred ; cp,rc = []} ;

Comparative adverbs with a noun phrase as comparision,

ComparAdvAdj : CAdv -> A -> NP -> Adv ; -- more warmly than John

add the noun phrase in nominative to the comparison field of the adverb, as in e.g. (der Hund
ist) weniger schnell (gelaufen) als der Hase:

ComparAdvAdj cadv a np = let adv : Str * Str = cadv.s ! False in {

s = adv.p1 ++ a.s ! cadv.deg ! APred ;

cp = adv.p2 ++ np.s ! False ! Nom ++ bigNP np ;

rc = []

} ;

The comparative adverbs governs the degree of the argument adjective. This is used to obtain
from more CAdv schneller als rather than mehr schnell als. The example more warmly than in
the rule declaration would in German be wärmer als, e.g. ich trinke den Tee wärmer als du.

Remark 63 : While the comparative adverb governs the degree of the argument adjective in
ComparAdvAdj, it cannot determine the degree of the argument adjective phrase in CAdvAP. So
CAdvAP more CAdv (PostitA good A) gives ∗gut als, not (∗)mehr gut als. It seems dubious
that a comparison adverb can be combined with an adjective phrase of any degree, e.g. more
good|better|best than; on the other hand, the adjective can take complements, e.g. more proud
of herself than John.)

As we implement more CAdv to use the adjective in comparative in ComarAdvAdj, we get an
ambiguity for adjectives from CAdvAP:

Lang> p -cat=AP "besser als er"

CAdvAP more_CAdv (UseComparA good_A) (UsePron he_Pron)

ComparA good_A (UsePron he_Pron)

75For appPrepNP, see p. 66.

111

/

Remark 64 : There are also adverbs (and adjectives) obtained by comparison of two adverbs (or
adjectives) by, e.g. rather more - than -, in which the comparative degree is not used, as in the
idiomatic mehr recht als schlecht, or mehr|eher warm als kalt. But this would be a construction
of a different type.

Comparative adverbs with a sentential comparision part,

ComparAdvAdjS : CAdv -> A -> S -> Adv ; -- more warmly than he runs

hold the sentence in subordinate word order in their comparison field:

ComparAdvAdjS cadv a s = let adv : Str * Str = cadv.s ! False in {

s = adv.p1 ++ a.s ! cadv.deg ! APred ;

cp = adv.p2 ++ s.s ! Sub ;

rc = []

} ;

e.g. (er fuhr) schneller als [es] die Polizei erlaubt. Again, the comparison clause can be separated
from the adverb, e.g. er stellte sich weniger dumm an [,] als wir gedacht hatten.

Todo 33: We can also build adverbs from adjectives in superlative degree, e.g. wir gehn am
liebsten schwimmen, by an additional rule SuperlAdvAdj : A -> Adv, implemented by

SuperlAdvAdj a = {s = a.s ! Superl ! APred ; cp,rc = []} ;

(In Eng, the adjective good A:A has forms well, better, and best, but the adverbs better Adv

and best Adv are independent entries in DictEng.gf.) There are also adverbs AdV resp. Adv
derived from present participles, e.g. das Problem ist weitgehend gelöst resp. daran wird laufend
gearbeitet. /

Finally, adverbs can be built from a subjunctor and a sentence via

SubjS : Subj -> S -> Adv ;

Adverbial sentences, e.g. weil die Sonne scheint, are obtained by putting the subjunctor in front
of the sentence in subordinate word order, i.e. the finite verb is at the end:

SubjS subj s = {s = subj.s ++ s.s ! Sub ; cp,rc = []} ;

Todo 34: Implement the combination of a pronominal adverb with a movable relative clause,
in various orderings, e.g. the local adverb dort, wo der Pfeffer wächst or its directional version
dorthin, wo . . . in e.g. (sie sollen) dorthin gehen, wo der Pfeffer wächst, or wo der Pfeffer
wächst, dorthin sollen sie gehen. This seems to be missing and will need the (so far unused)
field Adv.rc. So far, wo is an interrogative adverb only:

Lang> p -cat=QCl "wo regnet es"

QuestIAdv where_IAdv (ImpersCl (UseV rain_V0))

Do we need a category RAdv for relative adverbs to implement dort, wo es regnet, or can we
misuse the IAdv for a construction RelAdv : IAdv -> Cl -> RCl ?

112

Remark 65 : Perhaps the pronominal adverb dorthin is a correlate of the adverb wo der Preffer
wächst, and instead of the fields s:Str and rc:Str we better had s:Str and cor:Str for an
adverb correlate. Then SubjS could fill the s-field with the adverbial sentence weil die Sonne
scheint and the cor field with the correlate deshalb. The correlate should be provided by the
subjunctor, i.e. subjunctors would have to be correlate-subjunctor pairs, e.g. 〈deshalb, weil〉 or
〈damals, als〉 or 〈[erst] dann, nachdem〉. Can we do so also with 〈da|dort|hier, wo〉, where the
local adverbial sentence is built with a relative pronoun wo instead of a subjunctor? /

Modification of Adverbs

Some adverbs can be modified by adadjectives like very in English, sehr in German:

AdAdv : AdA -> Adv -> Adv ; -- very quickly

As in English, the modifying adadjective is put in front of the adverb derived from an adjective:

AdAdv ada adv = adv ** {s = ada.s ++ adv.s} ;

as in e.g. (der Zug fuhr) sehr schnell or zu schnell. Clearly, the rule is overgenerating: if the
adverb is an adverbial clause, an ungrammatical expression will arise, e.g. ∗sehr weil die Sonne
scheint. Moreover, an adverb modifier like very AdA should only be used to modify an adverb
in “positive degree”, e.g. sehr schnell, but not one in “comparative degree”, e.g. ∗sehr schneller
als der Hase. Conversely, viel modifies adverbs in comparative degree, e.g. viel schneller als der
Hase, but not those in “positive degree”, ∗viel schnell.

Remark 66 : For the category AdV of “adverbs directly attached to the verb” there is a an atomic
adverb always AdV in Structural, and construction and modification rules PositAdVAdj and
AdAdV in Extend.

Todo 35: Discuss the negation adverb nicht and its relation to the polarity of clauses!

Todo 36: Adapt insertAdj, insertAdv and insertAdV to handle split adjectives and adverbs.

Proposal 3: To order adverbs in basic clauses we may need to refine the category Adv in
AdverbGer to carry an additional field to classify adverbs:

lincat Adv = {s:Str; t:AdvType} ;

param AdvType = loc | dir | temp | mod | ... ;

Then the VPSlash and VP categories would need a field adv : {loc,dir,temp,mod,...:Str}
to insert adverbs to appropriate fields (which would give spurious ambiguities according to which
adverb is inserted first!) and order them by AdvType in clauses, perhaps in various AdvOrders.

The AdvType would also be nice to classify prepositions of “semantic” type Prep =< Adv/NP

(as distinguished from those in verb frames). The classification should be done by (overlapping)
tests, e.g. isLocal : Prep -> Bool, to avoid adding parameters to Prep.

How to translate adverb orderings to other languages (using parameters of cl.s : Tense =>

... => Ord => AdvOrd => Str, probably)? Should adverbial clauses be classified also? /

113

5.4. Verb Phrases and Clauses

Morphological Verb

The various verb categories V,. . . ,V2V,V3 all are extensions of the type of morphological verb:

Verb : Type = {

s : VForm => Str ;

prefix : Str ;

particle : Str ;

aux : VAux ;

vtype : VType

} ;

Each field of this record type gives the type of the information in the record of a verb v:Verb.

The field v.s of v contains the inflection paradigm of the verb. The verb form parameter VForm
of v.s : VForm => Str distinguishes the infinite, finite, imperative and participle forms of v:

param VForm =

VInf Bool -- True = with the particle "zu"

| VFin Bool VFormFin -- True = prefix glued to verb

| VImper Number -- prefix never glued

| VPresPart AForm -- prefix always glued

| VPastPart AForm ;

The finite forms vary in tense, mood, number and person, so one would expect a constructor VFin
Tense Mood Number Person. But the four mood and tense variations are here represented by
four constructors VPresInd, VPresSubj, VImpfInd, VImpfSubj of a parameter type VFormFin,
where Pres and Impf indicate the Präsens and Präteritum (or Imperfekt) tense, and Ind and
Subj indicate the Indikativ and Konjunktiv mood:

param VFormFin =

VPresInd Number Person

| VPresSubj Number Person

| VImpfInd Number Person --# notpresent

| VImpfSubj Number Person --# notpresent

;

This grouping (presumably) is to highlight the finite forms as those varying in (at least) both
number and person; there is no further use of the parameter type VFormFin made in LangGer.
(The lines marked by --# notpresent are ignored when the grammar is compiled to a restricted
version that covers the present tense only.)

The value of the parameter Bool in VFin Bool VFormFin steers whether the prefix of the verb
is glued to the stem or not.76 . . .

76The value of Bool is fixed when v:Verb is turned to a verb of a lexical category V,. . . ,V3 and the paradigm
v.s is extended to the paradigm of the lexical verb. Q43: Why is the dependence of the participle and infinite
not marked by a Bool – because it is not needed in the present participle?

114

The participle forms are not grouped like VPart Tense AForm, but given by two separate con-
structors VPresPart AForm for the Partizip Präsens and VPastPart AForm for the Partizip
Perfekt77, where the parameter type AForm covers both the predicative and adjectival forms of
adjectives.

The field v.prefix of v:Verb holds the prefix attached to (most of) the forms in v.s when v is
extended to a verb v:V or some of the other verbal categories. Likewise, the field v.particle

holds a separable particle, e.g. Lehrgeld zahlen. The field v.VAux of type

param VAux = VHaben | VSein ;

fixes which of the perfect auxiliaries haben or sein the verb needs. Finally, the field v.VType

stores the verbtype of v, using the parameter values

param VType = VAct | VRefl Case ;

Actually, the only reflexive verbs seem to be of verbtype VRefl Dat and VRefl Acc, so the
parameter type VType might be reduced somewhat.

Lexical Verb This partial classification of morphological verbs v:Verb is extended to the full
syntactic arity when v is turned into a verb of the lexical categories of the grammar Lang, namely

lincat

V, VA, VS, VQ = ResGer.Verb ;

VV = Verb ** {isAux : Bool} ;

V2, V2A, V2S, V2Q = Verb ** {c2 : Preposition} ;

V2V = Verb ** {c2 : Preposition ; isAux : Bool ; objCtrl : Bool} ;

V3 = Verb ** {c2, c3 : Preposition} ;

The verbs of category VA, VS, VQ take an adjectival, sentential and interrogative object, those
of category V2 and V3 take one and two nominal objects, respectively. The fields c2 and c3

hold the preposition or just the case used to attach the nominal object to the verb. The
verbs of category V2A, V2S, V2Q are those with a nominal and an adjectival, sentential and
interrogative object respectively. (There is no category for verbs with adverbial complement,
e.g. an einem Ort wohnen in Johann wohnt hier nicht mehr.) These verb categories don’t restrict
the subject complement, although only few verbs admit sentential, interrogative or infinitival
subjects. There is also no category for nullary verbs, i.e. verbs with the expletive subject es,
like the weather verbs, e.g. heute regnet es; so the grammar does not exclude das Haus regnet.

The verbs v of category VV and V2V take an infinitival complement; those with field v.isAux

= True are auxiliary verbs, which take a pure Inf complement and use the infinitive as past
participle form, e.g. sie will arbeiten and sie hat arbeiten wollen as well as ich lasse sie arbeiten
and ich hatte sie arbeiten lassen, whereas those with v.isAux = False take an Inf-zu comple-
ment and use the participle form, e.g. sie hofft, zu arbeiten and sie hat gehofft, zu arbeiten78 as
well as ich verspreche|rate dir, zu arbeiten and ich hatte dir versprochen|geraten, zu arbeiten.

77Q44: What is the reason for this different grouping?
78The comma and the extraction to the right are less common, if the complement is short.

115

For V2V, the field objCtrl is to distinguish object- from subject-control verbs by values True

and False. Depending on the value of v.objCtrl of v:V2V, reflexive pronouns in the infinitival
complement have to agree in person and number with the nominal object or the subject of v.

5.4.1. Verb Phrases VP and Incomplete Verb Phrases VPSlash

Verb phrases have more “tenses” than verbs; they are built from the verb tense in combination
to an anteriority parameter:

param VPForm =

VPFinite Mood Tense Anteriority

| VPImperat Bool

| VPInfinit Anteriority ;

In gf-3.3, the implementation category of VP was

VP : Type = {

s : Verb ;

a1 : Polarity => Str ; -- nicht

n0 : Agr => Str ; -- dich

n2 : Agr => Str ; -- deine Frau

a2 : Str ; -- heute

isAux : Bool ; -- is a double infinitive

inf : Str ; -- sagen

ext : Str -- dass sie kommt

} ;

Clearly, the s-field is intended to hold the verb of the VP, the a2-field holds an adverb (or
an adverbial clause, added by ExtAdvVP). But why does the a1-field, which seems to hold the
negation, depend on Polarity? To be able to change the polarity of a tree and then linearize
correctly?

The participle perfect of a modal verb v exists, as in Er hat das gewollt, but is replaced by
the infinitive, if v comes with an infinitive complement, like Wir hatten aufbrechen wollen.
(According to Eisenberg [3], das “führt zum Aufeinandertreffen von zwei Infinitiven” – the double
infinitive) So, isAux = True seems to mean the verb v is a modal verb. And the inf-field takes
the infinitive (or zu-infinitive) complement of v, and ext the sentential complement. The fields
n0 and n2 seem to separate reflexive pronominal from other reflexive nominal complements.

Remark 67. In gf-3.3, VP.a1:Polarity => Str contained the negation nicht, and insertAdV

added adverbs adv:AdV in front of VP.a1, example: immer nicht – but shouldn’t this be nie ?–,
while insertAdv added adverbs adv:Adv at the end of VP.a2. Does this distinction really exists
in German, or is gf-3.10 right with assuming it doesn’t exist? At least, several adverbs some-
times occur consecutively in a clause, e.g “(die Außenminister verabschiedeten die Maßnahmen)
am Freitagabend bei einem Treffen in Brüssel”.79 So, insertAdv seems useful. Was the idea
of a1 : Polarity => Str to make certain adverbs depend on polarity, so that we might have

79Notice the ambiguity in (prep (DetCN det cn)) (prep np) versus (prep (DetCN det (cn prep np))), as
for (am Abend) (beim Treffen) (in Brüssel) versus (am Abend) (beim (Treffen in Brüssel)).

116

always AdV = {s = \\p => case p of {Pos => "immer"; Neg => "nie"}} and insertAdV

adv vp = vp ** {a1 = \\p => adv ! p ++ vp.a1 ! p}? Can it work with non-empty vp.a1

or several AdVs? At least this was not so since gf-3.0.

(VP of gf-3.10 hidden.)

Q45: What caused the complexity in gf-3.9? There are complexity issues with verbs of arity
4 or higher; with contracted pronouns am, . . . , zum; with case distinction of moving/extracting
infinite complements etc.

Redesign : (forget the predicative AP,CN,Adv in nn.p4 for the moment)

Among its fields, a verb phrase vp:VP should have a field s:Verb for its main verb, a field
nn:Agr => Str for the verb’s nominal objects (the reflexives of which depend on the agreement
features of the missing subject), a field ext for sentential and interrogative (right-extracted)
complements, and a field inf for the infinitival complement of vp.s : Verb.80

The infinitival complement of auxilary verbs v:VV or v:V2V is hold in-place , e.g. ich habe
schlafen wollen and ich habe ihn schlafen lassen, those of full verbs v:VV or v:V2V are extracted
to the right, e.g. ich habe versucht, zu schlafen and ich habe ihn gebeten, nicht zu schlafen. More
precisely, the infinitival complement is not continuous, but in general split into an in-place and a
right-extracted part. We hold the in-place part of vp’s infinitival complement81 in vp.inf.inpl

and the extracted part in vp.inf.extr. Since an infinitival complement may contain reflexives
that have to agree with the subject (or a nominal object) of the matrix verb, the components
have to be of type Agr => Str, e.g. ich will mir selbst helfen, du willst dir selbst helfen etc., so
sich selbst helfen wollen : Agr => Str.

However, for in-place infinitival complements, this type Agr => Str will not quite do, since
the in-place part is in general a split string. Namely, in a verb phrase whose main verb is an
auxiliary verb, e.g. wollen:VV or lassen:V2V, in Futur-II its infinitival complement is split by the
inserted tense auxiliary haben, e.g. the infinitival complement euch helfen in man wird (euch
haben helfen) wollen and man wird ihn (euch haben helfen) lassen. To separate nominal objects
from the predicate (the verb in infinitive form, modified by adverbs), we need a splitted field82

vp.inf.inpl : (Agr => Str)*Str.

The infinitival complement may be a verbal phrase with an embedded infinitival complement.
By wrapping a further <obj,pred> pair around its inner infinitival complement, we can have a
vp with a nested infinitival complement, and if it is used in finite form in tense Futur-II, say in
PredVP np vp for ich0 werde ihn1 dir2 haben helfen2 lassen1 müssen0, we have to insert haben
into the gap of the innermost infinitival complement 〈dir, helfen〉.
The split point may be used to insert a correlate es for moved inf-zu infinitives, at least if the
original position of an infinitival object comes before the nominal object (of a V2V verb), as in

80In Eng, Ger of gf-3.9, vp.inf did just hold the infinite form of the verb vp.s (which was not used for
eng), but we here change this to let vp.inf be the infinitival complement of vp.s. We should also not store an
embedded infinitival complement separately, but distinguish between in-place and extracted infinitival complement.
In gf-3.6, Ger.ComplVV v vp added infExt ++ vp.exp to rvp.ext, but this was the embedded infinitive.

81assuming that there is only one; but in general, a sentence can have several: to be is better than not to be.
82The object depends on Agr since it may be a reflexive pronoun, e.g. mir selbst in du wirst mich mir selbst

haben helfen lassen wollen instead of du wirst mich dir haben helfen lassen sollen *(gesollt haben). The predicate,
i.e. the verb’s infinitive, modified by adverbs, does not depend on Agr. Q46: This is not true for adverbs: ich
werde jmdn in seinem(!) Haus haben wohnen lassen müssen, where haben is inserted between adverb and verb
infinitives!

117

ich habe (euch zu helfen) ihm empfohlen 7→ ich habe [es] ihm empfohlen, euch zu helfen, just as
the indirect nominal object (v.c3) comes before the direct nominal object (v.c2) of a V3 verb
(in the unmarked ordering). But possibly there is a correlate switch involved that moves the
es forward, and the original position of the infinitival object follows the nominal object?

VP should also have a field inf.extr : Agr => Str for an extracted (even direct?) infinitival
complement. The two fields inpl and extr of vp.inf can be used simultaneously, as one of
them contributes an empty string (unless extraction leaves a correlate es in vp.inf.inpl).

When the vp is used as the finite verb phrase of a clause, by PredVP np vp or PredSCVP sc

vp, we have to decide on the relative order between vp.inf.extr and vp.ext. The content
of vp.inf.extr might alternatively go to vp.ext, as there seem to be no verbs with both a
sentential (or interrogative) and an infinitival complement.83

There is no need to split inf.extr like inf.inpl into <objs,pred>, since inf.extr can only
be used as infinitival complement, for which there is no need for the gap for a missing temporal
auxiliary haben. Extracted infinitival complements are nested by embedding them to the right,
e.g. ich habe (ihr empfohlen, (dich zu bitten, ihr zu helfen)), also with auxiliary verbs in between,
e.g. ich habe ihr empfehlen müssen, dich zu bitten, ihn ihr helfen zu lassen. Extracted infinitival
complements may depend on agreement features over several embedding levels, which makes
reflexive resolution non-obvious. For example, we can have ich muß dir|euch raten, (ihr zu
versprechen, (dich|euch um sie zu kümmern)), with control verbs of different control.

Q48: Do we want to be able to define such complex predicates like jmdm raten, zu versprechen,
sich zu kümmern or jmdm empfehlen, zu versuchen, sich anzustrengen, or jmdn schwören lassen,
(sich von jmdm fernzuhalten)? We’d need a clear difference in defining to let sb help himself
versus to let sb help oneself.

Therefore, the implementation category VP should be as follows:

VP : Type = {

s : Verb ; -- schlafe:V,lese:V2, will,hoffe:VV, lasse,verspreche,rate:V2V

-- nominal,prepositional object or comp of s

-- HL 3/2021: nn = <refl|pron,NP,PP,AP|CN|Adv> -- pron,light,heavy,comp

-- <sich|ihr,deine Frau,an sie,gut>

nn : Agr => Str * Str * Str * Str

adj : Str ; -- adjectival complement of s:V(2)A, e.g. ich finde dich schön

a1 : Str ; -- adv before negation, adV -- e.g. hat es heute nicht getan

a2 : Str ; -- adv at the end -- e.g. hat es [deshalb] nicht getan, weil S

isAux : Bool ; -- auxiliary, e.g. (hat es tun) wollen (*gewollt)

ext : Str ; -- sentential complement of s:V(2)S, e.g. dass|wann sie kommt

-- infinitival complement of s:V(2)V, e.g. sich zu tun

-- e.g. will:VV tun | hoffe:VV, zu tun,

-- lasse:V2V (dich) tun | verspreche,rate:V2V (dir), mich|dich zu bessern

inf : {inpl : (Agr => Str)*Str ; extr : Agr => Str} ;

c1 : Preposition -- case of subject, e.g. mich friert

83Q47: The ext-field should not hold an np-part (e.g. a postponed relative clause), if it is to contain a sentential
or infinitival complement. Can we ensure this? For example, v:V2 admits extracted relative clauses from nominal
objects, e.g. ich habe den Beweis nicht verstanden, den du skizziert hast, but probably v:V2V does not: is ich
bitte dich, den Beweis nochmal zu erklären, den du skizziert hast ok, or should it read ich bitte dich, den Beweis,
den du skizziert hast, noch einmal zu erklären? But the first is just the infinitive of den Beweis verstehen, den ...
Here we could glue the extraction to the verb infinitive, when using infVP isAux vp.

118

} ;

Remark 68. Alternatively, we could have inf : Agr => Str * Str * Str and use the first
two strings to build the inplace, the third for the extracted infinitival complement, which would
make reflexive resolution simpler.

The sentential complements VP.ext might also be of type Agr => Str. A sentential complement
can contain an open reflexive personal or possessive pronoun that refers to the subject or object
of the matrix verb: “er hat ihr|ihm gesagt, daß man ihn selbst fragen soll”. One could then, for
ext, too, resolve reflexive (personal or possessive) pronouns as for inf. One could possibly also
merge inf.extr with ext : Agr => Str.

If the resolution method is inadequate, having ext:Str and using SelfNP might be the better
solution. (But SelfNP and SelfAdvVP give a lot of trees.)

The nn.p4-field of VP must have type Agr => Str, because there are reflexive complements to
copula verbs, e.g. (to be one’s own boss):Comp, in Ger: Johann ist sein eigener Chef and du bist
dein (eigener) Chef, er ist größer als sein eigener Vater etc.

Remark 69. Position of clause negation and reflexive object of infinitival constituent: [es] nicht
wissen, sich zu helfen = nicht (sich zu helfen) wissen 7→ sich nicht zu helfen wissen 6= (sich nicht
zu helfen) wissen. It is hard to tell the scope of negation from the surface word order.

P.Weiss, Marat/Sade: “So verseucht sind wir von den Gedankengängen / die Generation von
Generation übernahm / daß auch die besten von uns / sich immer noch nicht zu helfen wissen”.

The category VPSlash extends VP by a field c2:Preposition used to add a prepositional or
nominal object, and by a field objCtrl:Bool used to resolve reflexive pronouns:

VPSlash =

VP ** {c2 : Preposition ;

objCtrl : Bool } ; -- True = embedded reflexives agree with object

A third category involved in the construction of verb phrases is the category Comp of complements
to copula verbs. It consists of a paradigm depending on agreement features and a field for an
extracted part:

Comp = {s : Agr => Str ; ext : Str} ;

The inflection paradigm varies on Agr, since its copula verb has to agree with the subject when
used as a predicate. Moreover, reflexive pronouns and reflexive possessives in the complement
refer to the implicit subject of the copula verb, e.g. e.g. sich treu sein, or sein (eigener) Chef
werden or älter als ihr|sein (eigener) Bruder sein. Part of a complement can be extracted,
e.g. part of the complement der Chef, der es allen recht macht is extracted in du kannst nicht
der Chef sein, der es allen recht macht. But in general, the extracted part could also depend
on Agr: sie wird besser sein als ihr Bruder. (Todo37: So AP has to be changed to make also the
ext part of an adjective phrase depend on Agr.)

Remark 70. The default implementation of reflexive possessives by
../common/ExtendFunctor.gf : ReflPossPron = PossPron he Pron : Quant doesn’t get the
dependece on agreement right:

119

TestLang> l (PredVP (UsePron she_Pron) (UseComp (CompAP

(ComparA old_A (DetCN (DetQuant ReflPossPron NumSg) (UseN2 brother_N2))))))

she is older than his brother

sie ist älter als [ReflPossPron] Bruder

Remark 71 : missing optional dative: du bist mir ein schöner Trottel

Most constructions of verb phrases first build an initial vp:VP from a verb v:V, with v in vp.s

and default values in the remaining fields (see predV : V -> VP, p. 122 below), and then insert
complements of type Str or Agr => Str to the fields vp.nn, . . . , vp.inf. Some of these insertion
operations just append a string to the left or right of an existing string value:

insertAdV : Str -> VP -> VP = \adv,vp -> vp ** {

a1 = adv ++ vp.a1 } ;

insertAdv : Str -> VP -> VP = \adv,vp -> vp ** {

a2 = vp.a2 ++ adv } ;

insertExtrapos : Str -> VP -> VP = \ext,vp -> vp ** {

ext = vp.ext ++ ext } ;

These operations can be used iteratively (e.g. via AdvVP : VP -> Adv -> VP or SlashVV : VV

-> VPSlash -> VPSlash), so that several adverbs or extraposed elements occur consecutively
at one position in a clause. (Q49: when to add a comma in front of an extraposed element?)

Remark 72 : currently, insertAdV is not used in LangGer, all adverbs are collected in vp.a2.

Complements of a copula verb are inserted into the fourth component of the field vp.nn of the
verb phrase vp spanned by the copula verb, using

insertObj : (Agr => Str) -> VP -> VP = \obj,vp -> -- obj:Comp A|Adv|CN

vp ** { nn = \\a => let vpnn = vp.nn ! a in

<vpnn.p1, vpnn.p2, vpnn.p3, obj ! a ++ vpnn.p4> } ;

Nominal and prepositional complements of a verb are inserted into the first three components
of the field vp.nn of the initial verb phrase spanned by the verb. The main insertion operation
is the following insertObjNP, but there is a further one, insertObjRefl, below.84

insertObjNP : NP -> Preposition -> VPSlash -> VPSlash = \np,prep,vp ->

let obj = appPrep prep np ;

b : Bool = case prep.t of {isPrep | isContracting => True ; _ => False} ;

w = np.w ;

c = prep.c

in insertObj’ obj b w c vp ;

insertObj’ : Str -> Bool -> Weight -> Case -> VPSlash -> VPSlash =

\obj,isPrep,w,c,vp -> vp ** {

nn = \\a =>

84Remark 73 : insertObjc to insert an np into a VPSlash is no longer used, except in ParseGer.

120

let vpnn = vp.nn ! a in

-- HL 11/6/19: rough object NP order (expensive):

-- vfin < accPron < refl < (gen|dat)Pron < lightNP

-- < neg < heavyNP|PP < vinf|comp

case <isPrep, w, c> of { -- 2 * 3 * 4 = 24 cases

<True, _,_> => -- <prons, light, heavy++pp, compl>

<vpnn.p1, vpnn.p2, vpnn.p3 ++ obj, vpnn.p4> ;

<False,WPron, Acc> => -- <ihn ++ sich, light, heavy, comp>

<obj ++ vpnn.p1, vpnn.p2, vpnn.p3, vpnn.p4> ;

<False,WPron, _ > => -- <sich ++ ihm|seiner, light, heavy, comp>

<vpnn.p1 ++ obj, vpnn.p2, vpnn.p3, vpnn.p4> ;

<False,WLight,Dat> => -- (assuming v.c2=acc) nonPron: dat < acc|gen

-- <prons, dat ++ np, heavy, comp>

<vpnn.p1, obj ++ vpnn.p2, vpnn.p3, vpnn.p4> ;

<False,WLight,_ > => -- <prons, np ++ gen|acc, heavy, comp>

<vpnn.p1, vpnn.p2 ++ obj, vpnn.p3, vpnn.p4> ;

<False,WHeavy|WDefArt,Dat> => -- <prons, light, dat ++ np, comp>

<vpnn.p1, vpnn.p2, obj ++ vpnn.p3, vpnn.p4> ;

<False,WHeavy|WDefArt,_ > => -- <prons, light, np ++ gen|acc, comp>

<vpnn.p1, vpnn.p2, vpnn.p3 ++ obj, vpnn.p4> }

} ; -- the ordering of objects of v:V3 also depends on Slash?V3

The nominal and prepositional complements are inserted into different components of vp.nn

so that when extending the verb phrase to a clause (see mkClause, p. 140), one can order
the complements according to their structure, weight and case. In vp.nn.p1 the pronouns are
collected, with accusative pronoun leftmost, to implement the pronoun switch for ternary
verbs: ich schicke der Behörde einen Brief versus ich schicke ihn ihr (∗ich schicke ihr ihn).
Given the relatively free word order in the German Mittelfeld, no such order by structure,
weight and case of the complements can be satisfying in all circumstances.85

Remark 74. It is not clear if in insertObjNP np prep vp the complete nominal or preposi-
tional object appPrepNP prep np built by

appPrepNP : Preposition -> NP -> Str = \prep,np ->

prep.s ++ np.s ! False ! prep.c ++ bigNP np ++ prep.s2 ;

bigNP : NP -> Str = \np -> np.ext ++ np.rc ;

should be inserted into one of the four components of the field vp.nn, or if np.rc and np.ext

better go to vp.ext. In the latter case, how can we know if vp.ext already contains a sentential
or interrogative complement, and how should these be ordered relative to np.rc and np.ext?

Constructions of VP

The simplest verb phrase construction is to use a unary (full) verb. This rule

UseV : V -> VP ; -- sleep

85See gf-rgl/src/english/RefineEng(Abs).gf for an experimental implementation of pronoun switch in Eng.

121

is implemented by

UseV v = predV v ;

where predV turns a morphological verb v : Verb into a verb phrase vp = predV v : VP by
inserting v into vp.s, noting in vp.isAux that the verb (by default) is not an auxiliary verb,
and if it is a reflexive verb, as seen from v.vtype = VRefl c with case c, inserts a suitable
form of the reflexive pronoun in vp.nn ! p1; the remaining fields of vp are filled with empty
constituents or default values as follows:

predV : Verb -> VP = predVGen False ;

predVGen : Bool -> Verb -> VP = \isAux, verb -> {

s = verb ;

isAux = isAux ;

a1,a2,adj,ext : Str = [] ;

nn : Agr => Str * Str * Str * Str = case verb.vtype of {

VAct => _ => <[],[],[],[]> ;

VRefl c => \\a => <reflPron ! a ! c,[],[],[]>

} ;

inf = {inpl = <_ => [], []>; extr = _ => []} ;

c1 = PrepNom

} ;

Of the four complementation rules for binary verbs with infinitival, sentential, interrogative or
adjectival complement, i.e.

ComplVV : VV -> VP -> VP ; -- want to run

ComplVS : VS -> S -> VP ; -- say that she runs

ComplVQ : VQ -> QS -> VP ; -- wonder who runs

ComplVA : VA -> AP -> VP ; -- they become red

the latter three are simply adding the sentential, interrogative or adjective argument phrase to
the corresponding fields ext:Str or adj:Str of the implementation record predV v = vp : VP

of the verbal phrase built from the argument verb v:

ComplVS v s =

insertExtrapos (comma ++ conjThat ++ s.s ! Sub) (predV v) ;

ComplVQ v q =

insertExtrapos (comma ++ q.s ! QIndir) (predV v) ;

ComplVA v ap =

insertAdj (ap.s ! APred) ap.c ap.ext (predV v) ;

In ComplVS, the object sentence s is used in its form s.s ! Sub for subordinate sentences, which
has its verb at the end.86 In ComplVQ, the interrogative phrase q is used in indirect form, which
also means that the verb is at the end.

86We need a second rule that adds the object sentence in conjunctive form: er behauptete, die Erde sei flach?

122

In ComplVA, from the adjective phrase ap the predicative form ap.s ! APred of the adjective
together with the post-adjective complement ap.c.p2 is appended to vp.adj, the pre-adjective
complement ap.c.p1 to vp.nn.p2 and the extracted part ap.ext to vp.ext:

insertAdj : Str -> Str * Str -> Str -> VP -> VP = \adj,c,ext,vp -> vp ** {

nn = \\a =>

let vpnn = vp.nn ! a in <vpnn.p1, vpnn.p2 ++ c.p1, -- der Frau treu

vpnn.p3, vpnn.p4> ;

adj = vp.adj ++ adj ++ c.p2 ; -- neugierig auf das Buch

ext = vp.ext ++ ext} ;

So far, reflexives are not handled in complements ap.c : Str*Str of adjectives, c.f. Remark 55.

Q50: insertAdj is intended to insert the adjectival complement of a verb v:VA, like er malt die
Wand blau. Can these adjectives have complements like those in the comment of insertAdj?
Maybe they can: wir halten dich für (ihr treu | ihm überlegen | älter als deinen Bruder)?

The complementation rule ComplVV for adding infinitival complements is more difficult. The
difficulty comes from the fact that a verb phrase vp:VP has two rather different uses, one as a
predicate (employing a finite form of the verb) in a clause, and another as infinitival complement
of a verb, noun or adjective (employing an infinite form of the verb). Since in German, the verb’s
complements in a clause can be ordered relatively freely, the fields of vp holding its constituents
are not combined to a single (split) string in vp.s. But in an infinitival complement, the verb’s
complements are orderd in a rather fixed way. So, to use vp as infinitival complement, we first
have to combine its infinite verb form and its complements into a suitable (split) string.

Hence, an application (ComplVV v vp) of the rule

ComplVV : VV -> VP -> VP ; -- want to run

first has to turn its argument vp:VP into an infinitival form and then insert this into the inf-field
of the verb phrase vps = (predVGen v):VP opened by the verb v:VV to give the resulting verb
phrase rvp = (ComplVV v vp):VP.

ComplVV v vp = -- HL 3/22: inf-complement in-place,

let -- infzu-complement extracted

vps = predVGen v.isAux v ; -- e.g. will.isAux=True | wagt.isAux=False

inf = mkInf v.isAux Simul Pos vp

in

insertExtrapos vp.ext (

insertInf inf vps) ;

Here, mkInf uses an auxiliary operation infVP to turn vp into an infinitival complement of rvp.
This operation infVP combines vp’s nominal objects to objs, combines its verb vp.s in suitable
infinite form with adverbs vp.a1 and vp.a2 to pred, and extracts its infinitival complement inf.
In general, the infinitival complement of rvp depends on a chosen polarity and anteriority of the
form of vp.s, e.g. (nicht) lesen and (nicht) gelesen haben87, or the passive (nicht) gelesen werden
and (nicht) gelesen (worden) sein, and on v.isAux to select between pure and zu-infinitive of
vp.s.

87quite usual: wir hoffen, Ihnen hiermit geholfen zu haben or Sie glauben, mir damit nicht geschadet zu haben?

123

infVP : Bool -> Anteriority -> Polarity -> VP

-> { objs:(Agr => Str) ; pred:Str;

inpl:(Agr => Str)*Str ; extr:Agr => Str } =

\isAux, ant, pol, vp -> let vps = useVP vp in

{ objs = \\agr => (vp.nn ! agr).p1 ++ (vp.nn ! agr).p2

++ negation ! pol ++ (vp.nn ! agr).p3

++ vp.a2 ++ (vp.nn ! agr).p4 ; -- objects + predicative A|CN|NP

pred = vp.a1 ++ vp.adj

++ (vps.s ! (notB isAux) ! agrP3 Sg ! VPInfinit ant).inf ;

inpl = vp.inf.inpl ;

extr = vp.inf.extr

} ;

In the resource grammar LangGer, the module VerbGer fixes infinitives to be in simultaneous
anteriority and positive polarity, so we here simply write (infVP v.isAux vp).88,89

For mkInf, basically, if v.isAux = True, the infinitival complement of rvp built from vp is put
in-place, i.e. goes to rvp.inf.inpl. In this case, it roughly is <objs,pred>, the combination
of objs = vp.nn paired with pred, the adverbially modified infinitive of v.s!VPInf.90 The in-
place infinitival complement has to be split in two parts, and if vp has its own in-place infinitival
complement, this is embedded in the gap, e.g. (ich) will ihn1 den Hund2 füttern2 lassen1, using

-- embed <sich, helfen> into <ihn, lassen> = <ihn sich, helfen lassen>

embedInf : (Agr => Str) * Str -> (Agr => Str) * Str -> (Agr => Str) * Str =

\f,g -> <\\a => g.p1!a ++ f.p1!a, f.p2 ++ g.p2> ;

For v.isAux = False, the infinitival complement built from vp by mkInf is extracted, i.e. goes
to rvp.inf.extr, e.g. (ich) wage, ihm1 zu raten1, den Hund2 zu füttern2. (So, extraction is
forced even for short Inf-zu complements, i.e. we get (weil) man bittet, zu läuten instead of
weil man zu läuten bittet, and (weil) ich glaube, es zu wissen instead of (weil) ich es zu wissen
glaube.)

More precisely, there is no clear decision between inplace and extracted placement of the in-
finitival complement, but there is an in-place and extracted part of the infinitival complement
rvp.inf in (ich) hoffe, versprechen zu können, das zu tun: the verbal phrase vp = (ich) kann
(versprechen, das zu tun) has part of its own infinitival complement versprechen, das zu tun
moved to rvp.inf.inpl = <[],versprechen können >, the other part moved to rvp.inf.extr

= , das zu tun . To get nested infinitival complements right, we distinguish whether the ma-
trix verb v and the verb of the vp are auxiliary verbs or not:

glueInpl : (Agr => Str)*Str -> (Agr => Str) =

\inplace -> \\agr => (inplace.p1!agr ++ inplace.p2) ;

mkInf : Bool -> Anteriority -> Polarity -> VP ->

{inpl : (Agr => Str) * Str ; extr : (Agr => Str)} =

88But there is the more general CompVV : VV -> Anteriority -> Polarity -> VP -> VP in ParseGer.
89Q51: are the adverbials, negation and adjectival complement properly ordered in obs and pred?
90The infinitival complement vp.inf.extr cannot be derived from vp.inf.inpl as \\agr => vp.inf.in.p1!agr

++ vp.inf.in.p2. This caused serious troubles for nesting, when in in-place vp.inf.inpl has to be turned into
rvp.inf.extr depending on v.isAux!

124

\isAux,ant,pol,vp ->

let

vpi = infVP isAux ant pol vp ;

topInpl = <vpi.objs, vpi.pred> ;

emptyInpl : (Agr => Str) * Str = <_ => [], []> ;

comma = bindComma

in

case <isAux,vp.isAux> of {

<True,True> -- 1: will {inpl=<(sich, waschen) können>, extr = []}

=> {inpl = embedInf vpi.inpl topInpl ;

extr = \\agr => vpi.extr!agr} ;

<True,False> -- 2: will {inpl=<[], versuchen>, extr = sich zu waschen}

=> {inpl = topInpl ;

extr = \\agr => (glueInpl vpi.inpl)!agr ++ vpi.extr!agr} ;

<False,True> -- 3: wagt{inpl=<[], []>, extr = (sich, waschen) zu wollen}

=> {inpl = emptyInpl ;

extr = let moved = embedInf vpi.inpl topInpl

in \\agr => comma ++ (glueInpl moved)!agr ++ vpi.extr!agr} ;

<False,False> -- 4: wagt, {inpl=<[], []>, extr = zu versuchen,

=> {inpl = emptyInpl ; -- (sich zu waschen)}

extr = \\agr => comma ++ (glueInpl topInpl)!agr ++ vpi.extr!agr}

} ;

The infinitival constituent inf is then inserted into vps:VP by embedding the in-place part of
inf into the gap of vps.inf and by appending the extracted part of inf to vp.inf.extr, using

insertInf : {inpl:(Agr => Str)*Str ; extr:(Agr => Str)} -> VP -> VP =

\inf,vp -> vp ** {inf = {inpl = embedInf inf.inpl vp.inf.inpl ;

extr = \\agr => vp.inf.extr!agr ++ inf.extr!agr}} ;

Example 2. In German, v.isAux = wollen.isAux = True and v.isAux = wagen.isAux =

False. With the following (simplified) implementation records of argument verb phrases

vp1 = {s=lesen; nn=ein Buch; inf = {inpl=[];extr=[]}}

vp2 = {s=wollen; nn=[]; inf = {inpl=<[],versuchen>;extr= sich zu waschen}}

we get these implementation records of the resulting verb phrase rvp:

ComplVV wollen vp1 = {s = will; nn=[];

inf={inpl=<ein Buch, lesen>; extr=[]}}

ComplVV wagen vp1 = {s = wagt; nn=[];

inf = {inpl = <[],[]>; extr =, ein Buch zu lesen}}

ComplVV wagen vp2 =

{s = wagt; nn=[];

inf = {inpl = [];

extr = versuchen zu wollen, sich zu waschen}}

The last, and most important, complementation rule for binary verbs v:V2 with a nominal
complement is subsumed by the complementation rule

125

ComplSlash : VPSlash -> NP -> VP ; -- love it

for an incomplete verb phrase vps:VPSlash by a noun phrase np. The incomplete verb phrase
vps extends a verb phrase by a field c2:Preposition and a field objCtrl:Bool. These are used
by ComplSlash to add a nominal object and bind the reflexives to this object:

ComplSlash vps np =

let vp = case vps.objCtrl of { True => objAgr np vps ; _ => vps }

** { c2 = vps.c2 ; objCtrl = vps.objCtrl } ;

in insertObjNP np vps.c2 vp ;

If the main verb in vps is an object-control verb, the reflexives in vps are forced to take the
agreement of the added nominal object.91 The auxiliary operation insertObjNP inserts np.s

with preposition or case vps.c2 into the nn-field of vps.

The operation objAgr np vp instantiates vp.nn and vp.inf fields to agreement np.a. So
objAgr implements the following method to resolve reflexive pronouns. For a verbal phrase
vp:VP or an incomplete verbal phrase vp:VPSlash, the nominal objects in vp.nn and vp.inf

depend on agreement features a : Agr. When a clause is built from vp by (PredVP np vp), we
bind the reflexives to this subject np by letting the nominal objects be constantly vp.nn!(np.a),
i.e. replace vp by

vp ** {nn = \\a => vp.nn ! np.a}

before using the vp in finite form as predicate of the clause; we proceed similarly with its
infinitival object vp.inf. For a clause (PredVPSC sc vp) with sentential subject, instead of
np.a we use agreement with third person singular. So to speak, all (unbound) reflexives in
vp:VP are viewed as subject-controlled. If a nominal complement np is added to vp:VPSlash

in (ComplSlash np vp), then, as shown above, if vp.objCtrl = True we bind the reflexives
in vp.nn to this nominal object np by instantiating vp.nn with np.a, otherwise leave them
unbound, i.e. subject-controlled.92 To build an infinitive from vp with unknown implicit subject,
e.g. to be used as an infinitival subject as in “to blow one’s nose in the tablecloth is unpolite”,
we can just instantiate reflexives to third93 person singular.

The rule to build a verb phrase by using an incomplete verb phrase reflexively, i.e.

ReflVP : VPSlash -> VP ; -- love himself

generalizes the reflexive usage of binary verbs. It is implemented by inserting a reflexive pronoun
as nominal or prepositional object according to the case or preposition in vp.c2:

ReflVP vp = insertObjRefl vp ; -- HL, 19/06/2019

91Todo 38: shouldn’t this instantiation be done by insertObjNP, so that it applies as well to SlashV2VNP in beg
me to buy in to beg sb to love his (own!) neighbours? Would the default objCtrl=False conflict with insertObjNP

used in Slash?V3’s to insert an object to predVc v:V3? Or should this be reserved to reflexive noun phrases RNP

of Extra/Extend? Are and should reflexive possessives in vps also be instantiated to np.a?
92Rethink this when adding a reflexive noun phrase rnp: to promise sb. to wash one’s car vs. to ask sb. to wash

his (own) car, so the rnp needs its own agreement rnp.a, c.f. I promised | asked my wife to wash my | her hair.
93or rather, the agreement features of the indefinite personal pronoun man (to be added). Maybe objAgr should

differ between instantiating vp.nn and vp.inf: object-control is about the implicit subject of vps.inf; at least if
the vps:VPSlash is obtained by adding complements to verbs of arity n ≥ 3, the vps.nn should perhaps not be
specialized by objAgr?

126

The auxiliary operation inserts a pure reflexive pronoun in field vp.nn.p1, and a reflexive
pronoun with preposition in field vp.nn.p2:

insertObjRefl : VPSlash -> VPSlash = \vp ->

let prep = vp.c2 ;

obj : Agr => Str = \\a => prep.s ! CPl ++ reflPron ! a ! prep.c ++ prep.s2

in vp ** {

nn = \\a =>

let vpnn = vp.nn ! a in

case prep.t of {

isCase => <obj ! a ++ vpnn.p1, vpnn.p2, vpnn.p3, vpnn.p4> ;

_ => <vpnn.p1, obj ! a ++ vpnn.p2, vpnn.p3, vpnn.p4> }

} ;

When a clause is formed by applying mkClause np vp (p. 140) to the resulting verb phrase, the
objects in vp.nn.p1 are placed in front of the negation adverb nicht, those in vp.nn.p2 after
the negation adverb.

Remark 75. In LangGer, a reflexive verb prhase ReflVP vps can be part of a generalized
clause, GenericCl (ReflVP vps), i.e. the general subject “man” is correctly referred to by the
reflexive pronoun “sich”. But it is wrong in LangEng, where “oneself” ought to be used:

TestLang> l GenericCl (ReflVP (SlashV2a know_V2))

one knows itself

man kennt sich

ReflVP does not allow to form infinitives with reflexive possessives, like “man soll seine Angele-
genheiten selber regeln”. For this, use ReflPoss,ReflRNP of ExtraGer, see p. 175.

Copula Verbs Of the two constructions of verb phrases from copula verbs, i.e.

UseCopula : VP ; -- be

UseComp : Comp -> VP ; -- be warm

the first is implemented by the default verb phrase spanned by the copula verb sein:94

UseCopula = predV sein_V ;

Q52: Is the default isAux = False correct for UseCopula, or do we need predVGen True

sein V?

The second construction first builds the initial verb phrase vp spanned by sein and then in-
serts the inflection paradigm comp.s of the complement into the object field vp.nn.p4 and the
extracted part comp.ext into the field vp.ext:

94It is unclear why this deserves a special construction, but other copula verbs bleiben or werden don’t. True,
we can say hier sein—bleiben, but not hier werden, but this is not a strong reason to exclude bleiben and werden
from being copula verbs.

127

UseComp comp =

insertExtrapos comp.ext (

insertObj comp.s (predV sein_V)) ; -- agr not used

Remark 76 : Apparently, Scharolta added the field vp.adj for adjectival complements of verbs,
as the example ich finde dich schön showed. The complement of a copula verb is inserted in
vp.nn.p4. Todo39: check if the pre-adjective complement ap.c.p1 of an adjectival complement
ap of ComplVA va ap inserted by insertAdj into the vp.nn.p2-field is correct. Can there be a
problem, as we are talking about different verb phrases vp, i.e. predV sein V and predV va?

Copula-preceded Complements

The four constructions to build complements to copula verbs,

CompAP : AP -> Comp ; -- (be) small

CompNP : NP -> Comp ; -- (be) the man

CompAdv : Adv -> Comp ; -- (be) here

CompCN : CN -> Comp ; -- (be) a man/men

are implemented by filling the fields comp.s and comp.ext of the resulting comp:Comp by suitable
values. In CompAdv a, the adverb is inserted in comp.s and the empty string in comp.ext:

CompAdv a = {s = _ => a.s ; ext = []} ;

In CompAP ap = comp, the predicative form of an adjective phrase with its pre- and post-
adjective complements and the comparision part is inserted in comp.s and ap.ext in comp.ext

CompAP ap = {s = _ => ap.c.p1 ++ ap.s ! APred ++ ap.c.p2 ++ ap.s2 ! Nom ;

ext = ap.ext} ;

In CompNP np, the predicatively used noun phrase np in nominative case is inserted in comp.s,
together with its relative clause np.rc:

CompNP np = {s = _ => np.s ! False ! Nom ++ np.rc ; ext = np.ext} ;

Similarly with CompCN cn, where the predicative usage needs an indefinite article in the singular
and a strong adjective inflection:

CompCN cn = {s = \\a => case numberAgr a of {

Sg => "ein" + pronEnding ! GSg cn.g ! Nom ++

cn.s ! Strong ! Sg ! Nom ++ cn.rc ! Sg ;

Pl => cn.s ! Strong ! Pl ! Nom ++ cn.rc ! Pl

} ;

ext = cn.adv ++ cn.ext

} ;

The resulting inflection tables comp.s : Agr => Str are constant, except for CompCN cn. Hence
reflexives in the verbal phrases built from comp are excluded, e.g. ist in seinen besten Jahren, ist
sich treu, ist klüger als sein Bruder, ist die Hoffnung seines Vereins, ist ein geachteter Bürger
seiner Heimatstadt, ist sein eigener Herr.

Todo 40: This should be fixed by changing AP.c : Str * Str to AP.c : Agr => Str * Str.

Passive Constructions

128

-- Passivization of two-place verbs is another way to use them. In many

-- languages, the result is a participle that is used as complement to a

-- copula.

PassV2 : V2 -> VP ; -- be loved

-- *Note*. the rule can be overgenerating, since the V2 need not take a

-- direct object.

The construction PassV2 v is implemented by modifying the initial verb phrase vp spanned
by the passive auxiliary verb werden. The predicatively used past partiple v.s ! VPastPart

APred is inserted into the field vp.nn.p4 for the complement of copula verbs, and the subject
case is set depending on v.c2:

PassV2 v = -- acc object -> nom subject; all others: same Case

let vp = predV werdenPass in

insertObj (_ => v.s ! VPastPart APred) vp

** { c1 = subjPrep v.c2 } ;

If v:V2 expects a nominal object in accusative, the default case for the subject, vp.c1, is changed
to nominative; if v expects a nominal object in some other case, or a prepositional object, the
corresponding value v.c2 is used as subject case vp.c1. This is done by the auxiliary operation

subjPrep : Preposition -> Preposition = \prep ->

case <prep.c,prep.t> of {

<Acc,isCase> => prep ** {c = Nom} ;

_ => prep

} ;

Q53: What about the difference between getan werden and getan sein? Some other forms of
passive are implemented in TestLangGer.

Remark 77. PassV2 is generalized to PassVPSlash : VPSlash -> VP in ExtraGer, which
does not work properly if the vps is obtained from ternary verbs. PassVPSlash vps is in-
correct for vps = Slash2V3 v[c2:acc,c3:dat] np.acc: we get “*ihr.dat wird einen.acc Brief
geschickt” instead of “sie.nom bekommt einen.acc Brief geschickt”. But: “ihr.dat wird miß-
traut:V2[dat]”, not “*sie.nom bekommt mißtraut”. That is, PassVPSlash vps needs to know
whether its argument vps is built from a V3[acc,dat] or a V2[dat]; this would need an in-
spection of the abstract tree of the argument vps, which is impossible in GF. May we should not
passivize predicates (VPSlash), but only verbs (V2, and separately V3) – PassVPSlash is too
general and thereby wrong. But GF has no notion of transitive verb, i.e. verb of category V2 that
can be passivized.

Constructions of VPSlash

The basic constructions of an incomplete verb phrase are to use a binary verb or to combine a
ternary verb with one complement of the expected category.

SlashV2a : V2 -> VPSlash ; -- love (it)

Slash2V3 : V3 -> NP -> VPSlash ; -- give it (to her)

Slash3V3 : V3 -> NP -> VPSlash ; -- give (it) to her

129

These are easily implemented by inserting the complement in the appropriate field of the record
vps = (predVc v):VPSlash opend by the verb v, where

predVc : Verb ** {c2 : Preposition} -> VPSlash = \v ->

predV v ** {c2 = v.c2 ; objCtrl = False} ;

fills all fields of (predV v):VP and then adds the preposition v.c2 and a default that the
embedded verb is not an object-control verb:

SlashV2a v = (predVc v) ;

Slash2V3 v np = insertObjNP np v.c2 (predVc v) ** {c2 = v.c3} ;

Slash3V3 v np = insertObjNP np v.c3 (predVc v) ;

Notice that, by convention, c2 should be used to combine the verb with its direct, c3 to combine
it with its indirect nominal object.95 (Q54: What does this tell about the linear order of objects?
insertObjNP adds pronouns to the left, other nominal or prepositional objects to the right (of
the corresponding nn-component). So we should not have equivalent linearizations of the trees

ComplSlash (Slash3V3 v np3) np2 == ComplSlash (Slash2V3 np2) np3

but we do! Todo 41: check again, and see how mkClause orders its objects.)

For ternary verbs with a non-nominal complement, an incomplete verb phrase is obtained by
combining the non-nominal complement to the verb by the rules

SlashV2V : V2V -> VP -> VPSlash ; -- beg (her) to go

SlashV2S : V2S -> S -> VPSlash ; -- answer (to him) that it is good

SlashV2Q : V2Q -> QS -> VPSlash ; -- ask (him) who came

SlashV2A : V2A -> AP -> VPSlash ; -- paint (it) red

The implementations of these are easy for sentential, interrogative and adjectival complements,
which are inserted into (predV v) as with ComplVS, ComplVQ, ComplVA, and then the field for
c2 is filled by v.c2 and the one for objCtrl by a default:

SlashV2S v s =

insertExtrapos (comma ++ conjThat ++ s.s ! Sub) (predV v)

** {c2 = v.c2; objCtrl = False} ;

SlashV2Q v q =

insertExtrapos (comma ++ q.s ! QIndir) (predV v)

** {c2 = v.c2; objCtrl = False} ;

SlashV2A v ap =

insertAdj (ap.s ! APred) ap.c ap.ext (predV v)

** {c2 = v.c2; objCtrl = False} ;

The implementation of SlashV2V is a simple extension of ComplVV:

SlashV2V v vp = -- (jmdn) bitten, sich zu waschen | sich waschen lassen

ComplVV v vp ** {c2 = v.c2 ; objCtrl = v.objCtrl} ;

95For correct translation between ternary verbs, this convention is essential.

130

An application of SlashV2V, just like ComplVV, uses infVP to turn its argument vp:VP into
the infinitival complement of its argument v:V2V and inserts it into the inf-field of the verb
phrase vps = (predVGen v.isAux v) opened by v; it then adds v.c2 and v.objCtrl to give
the resulting partial verb phrase rvp := (SlashV2V v vp):VPSlash. Since v:V2V is a control
verb, reflexives in rvp.inf depend on its missing subject or nominal object, so we have to
remember v.objCtrl in rvp to be able to instantiate reflexives properly when an object noun
phrase is added to rvp by ComplSlash. (The argument-vp may itself be reflexive, e.g. vpi.inf
= sich vornehmen, etwas zu tun.)96

Reflexive resolution works with this in Ger (Eng considers v:V2V to be an object-control verb):

TestLang> gr -number=4 (PredVP (UsePron i_Pron)

(ComplSlash (SlashV2V ? (ReflVP (SlashV2a wash_V2))) (UsePron ?))) | l

I let me wash myself

ich lasse mich mich selbst waschen

I warn it to wash itself

ich warne es , sich selbst zu waschen

I promise us to wash ourselves -- wrong

ich verspreche uns , mich selbst zu waschen

I let her wash herself

ich lasse sie sich selbst waschen

Due to a mistake in SlashVP, reflexive resolution doesn’t work in relative clauses (p. 145). (Also,
SelfNP, SelfAdVVP and SelfAdvVP give non-reflexive readings with selbst. To highlight the
difference between personal and reflexive pronoun, ReflVP uses ResGer.reflPronSelf, which
adds selbst to all forms of ResGer.reflPron.)

See the extension of Extend.RNP to reflexive (incomplete) predicates in ReflGer|Eng.

But: “reflexive resolution” cannot be as simple as implemented by objCtrl and objAgr: in I:NP
advise (my brother/sister):RNP to help (him/her)self:ReflPron!rnp.a and (my:PossPron!np.a
child), the infinitival complement of advise:V2V refers to the object rnp:RNP as its implicit
subject and to the subject np:NP as referent of the possessive. The infinitival complement of a
verb v:V2V can depend on the two agreement values np.a and rnp.a of the subject and object
of the main verb v:V2V. (8/23)

Incomplete verb phrases can also be obtained by adding an incomplete infinitival complement
to a verb v:VV or v:V2V by the rules

SlashVV : VV -> VPSlash -> VPSlash ; -- want to buy

SlashV2VNP : V2V -> NP -> VPSlash -> VPSlash ; -- beg me to buy

Applications of both rules have to turn their argument vp:VPSlash into an incomplete infinitival
complement of their argument v:VV. This can be done using the same operation vpi = infVP

v.isAux vp, because the vp just has no nominal c2-object under vp.nn (i.e. an empty string).

An ad-hoc implementation of SlashVV uses ComplVV and adds the c2 and objCtrl fields of its
argument vp:VPSlash to the result rvp:VPSlash.

96We may have vp.s.vtype = VRefl c, but generally, a “reflexive” vp:VP (built with ReflVP : VPSlash ->

VP) just has a reflPron inserted in vp.nn.p1, so we can’t check if it is a reflexive vp, unless we add a field
vp.vtype or can check if vp.nn.p1 is empty. Or can we use reflexive noun phrases Extra.RNP, which are inserted
to nn.p4, or misuse vp.s.vtype?.

131

SlashVV v vp =

ComplVV v vp ** {c2 = vp.c2 ; objCtrl = vp.objCtrl} ;

The idea is that adding a nominal object np:NP to this resulting partial verb phrase gives the
same as adding np as a complement to the argument vp:VPSlash, i.e. that

(ComplSlash (SlashVV v vp) np) == (ComplVV v (ComplSlash vp np)) (*)

are equivalent in the sense that these trees have the same linearizations. In Eng, Romance, and
perhaps other languages, this seems to be the case, even for iterated uses of SlashVV, since an
object added to the innermost vp:VPSlash is rightmost in the linearization and hence can be
added likewise to the topmost partial verb phrase:

(want to dare to try to read) (the book) = want to dare to try to (read the book)

The topmost partial verb phrase can both be completed to first a verp phrase and then a clause,
or to first an incomplete clause and then a relative clause:

(we:NP ((want to dare to try to read):VPSlash (the book):NP):VP):Cl,
(which:RP (we:NP ((want to dare to try to read):VPSlash):ClSlash)):RCl.

For Ger, the ad-hoc implementation of SlashVV doesn’t work well, since an Inf-zu-complement
is ususally extracted, but less so when its nominal object is missing: (ich) will (nicht) wagen,
das Buch zu lesen, but rather das Buch, das ich (nicht) zu lesen wagen will, than das Buch, das
ich (nicht) wagen will, zu lesen

Complementizing the innermost partial verb phrase zu lesen first to the verb phrase das Buch
zu lesen and then using ComplVV iteratively, we obtain

(wir:NP (wollen (wagen (, zu versuchen (, das Buch zu lesen):VP):VP):VP):VP):Cl.

If we can use SlashVV iteratively to the partial verb phrase zu lesen, there is certainly no
extraction of partial Inf-zu complements involved, but we would rather get

(((zu lesen):VPSlash zu versuchen):VPSlash wagen):VPSlash.

One can then both complete this first to a verb phrase and then to a clause, as well as complete
it first to an incomplete clause and then to a relative clause:

(wir:NP (wollen ((das Buch):NP (zu lesen zu versuchen wagen):VPSlash):VP):VP):Cl
(das:RP (wir:NP (zu lesen zu versuchen wagen):VPSlash):ClSlash):RCl

It follows that for Ger, the equivalence (*) does not hold: applications of SlashVV combine
partial verb phrases in-place, while applications of ComplVV combine Inf-zu complements by
extractions, e.g. (ich) habe das Buch (zu kaufen gewagt) versus (ich) habe gewagt(, das Buch zu
kaufen).97

97So, when is an implementation of VPSlash correct? When a vp:VPSlash can be completed to a verb phrase
(by ComplSlash), or to an incomplete clause (by SlashVP and RelSlash), or when it behaves “well” as top-level
construct?

132

Question 55. But if the two trees in (*) linearize differently, how to know which of the con-
structions should be used to yield which word order in which language? It is not true that the
different trees have the same linearization in Eng, as can be seen from

TestLang> p -lang=Ger -cat=Cl -tr

"ich will nichts zu meinem Buch hinzufügen müssen" | l -lang=Eng

PredVP (UsePron i_Pron)

(ComplVV want_VV (ComplVV must_VV (ComplSlash

(Slash2V3 add_V3 nothing_NP)

(DetCN (DetQuant (PossPron i_Pron) NumSg) (UseN book_N)))))

PredVP (UsePron i_Pron)

(ComplVV want_VV (ComplSlash (SlashVV must_VV

(Slash3V3 add_V3 (DetCN (DetQuant (PossPron i_Pron) NumSg) (UseN book_N)))

) nothing_NP))

PredVP (UsePron i_Pron)

(ComplSlash (SlashVV want_VV (SlashVV must_VV

(Slash3V3 add_V3 (DetCN (DetQuant (PossPron i_Pron) NumSg) (UseN book_N)))

)) nothing_NP)

I want to have to add nothing to my book

I want to have to nothing add to my book

I want nothing to have to add to my book

The three trees have the same linearization in Ger, because of the separation of objects in the
four components of the VP.nn-field, it seems.

Can we make (SlashVV wagen VV (SlashV2a read V2)) be a vp:VPSlash with vp.inf.inpl

= zu lesen wagen and not extract this under must VV? In the default implementation, (SlashVV
wagen VV lesen) embeds “, zu lesen” in vp.inf.extr. Does an embedding without comma in
vp.inf.inpl give a correction, which handles nested SlashVV properly? Incomplete trial:

SlashVV v vp =

let

vps = predVGen v.isAux v ; -- e.g. will.isAux=True|wage.isAux=False

vpi = infVPSlash v.isAux Simul Pos vp ;

inf : {inpl: (Agr => Str) * Str ; extr : (Agr => Str)} =

let

topInpl = <vpi.objs, vpi.pred> ;

emptyInpl : (Agr => Str) * Str = <_ => [], []> ;

glue : (Agr => Str)*Str -> (Agr => Str) =

\i -> \\agr => (i.p1!agr ++ i.p2) ;

in

case <v.isAux,vp.isAux> of {

<True,_ > -- 1. will lesen können | 2. will zu lesen wagen

=> {inpl = embedInf vpi.inpl topInpl ;

extr = vpi.extr} ;

<False,True> -- 3. wagt lesen zu wollen

=> {inpl = emptyInpl ;

extr = let moved = (embedInf vpi.inpl topInpl)

133

in \\agr =>

(comma ++ (glue moved)!agr ++ (vpi.extr!agr))} ;

<False,False> -- 4. wagt zu lesen zu versuchen

=> {inpl = embedInf vpi.inpl topInpl ;

extr = vpi.extr} } ;

in

insertExtrapos vp.ext

(insertInf inf vps) ** {c2 = vp.c2 ; objCtrl = vp.objCtrl};

We use a slight modification infVPSlash of infVP to build the infinitive zu lesen wagen from
the partial verb phrase wage zu lesen, instead of wagen, zu lesen. We can then iteratively build
inplace nested infinitives of partial verb phrases followed by adding a nominal complement, i.e.

(ComplSlash (SlashVV vn (... (SlashVV v1 vp) ...)) np),

or add the nominal complement to the innermost partial verb phrase and iteratively extract
nested infinitives of verb phrases, i.e.

(ComplVV vn (... (ComplVV v1 (ComplSlash vp np)) ...)),

but cannot add a nominal complement in between, as for ComplVV o ComplSlash o SlashVV:

TestLang> p -tr -cat=Cl -lang=Eng "I must dare to read the book" | l -lang=Ger

PredVP (UsePron i_Pron)

(ComplSlash (SlashVV must_VV (SlashVV wagen_VV (SlashV2a read_V2)))

(DetCN (DetQuant DefArt NumSg) (UseN book_N)))

PredVP (UsePron i_Pron)

(ComplVV must_VV (ComplSlash (SlashVV wagen_VV (SlashV2a read_V2))

(DetCN (DetQuant DefArt NumSg) (UseN book_N))))

PredVP (UsePron i_Pron)

(ComplVV must_VV (ComplVV wagen_VV (ComplSlash (SlashV2a read_V2)

(DetCN (DetQuant DefArt NumSg) (UseN book_N)))))

ich muss das Buch zu lesen wagen

ich muss das Buch wagen zu lesen -- wrong

ich muss wagen , das Buch zu lesen

The reason is that ComplSlash inserts a nominal object at top-level, while the object is missing
in an embedded infinitival, but we can’t know how deeply embedded.

Finally, the construction of incomplete verb phrases by98

SlashV2VNP : V2V -> NP -> VPSlash -> VPSlash ; -- beg me to buy

can preliminarily be implemented by

SlashV2VNP v np vp = -- jmdn bitten zu kaufen | jmdn kaufen lassen

insertObjNP np v.c2 (ComplVV v vp ** {c2 = v.c2 ; objCtrl = v.objCtrl}) ;

98See Problem ??, p. ??, on the effect of VPSlash.objCtrl:Bool and VPSlash.c1|c2:Preposition on the
complexity of compilation of SlashV2VNP.

134

As intended, this gives (dich waschen lasse):VPSlash with auxiliary lassen:V2V in

TestLang> l (RelSlash IdRP (SlashVP (UsePron i_Pron)

(SlashV2VNP lassen_V2V (UsePron youSg_Pron) (SlashV2a wash_V2))))

that I let you wash

den ich dich waschen lasse

but it doesn’t embed the infinitival complement properly in Ger:

TestLang> l (RelSlash IdRP (SlashVP (UsePron i_Pron)

(SlashV2VNP beg_V2V (UsePron youSg_Pron) (SlashV2a wash_V2))))

that I beg you to wash

den ich dich bitte , zu waschen

instead of den zu waschen ich dich bitte. Using SlashVV instead of ComplVV to obtain an in-place
infinitival complement causes a memory problem. (In Eng, the definitions are

SlashVV vv vp = vp **

insertObj (\\a => infVP vv.typ vp False Simul CPos a) (predVV vv) ;

SlashV2VNP vv np vp = vp **

insertObjPre (_ => vv.c2 ++ np.s ! NPAcc)

(insertObjc (\\a => vv.c3 ++ infVP vv.typ vp False Simul CPos a)

(predVc vv)) ;

The infinitive is inserted as string into the s2:Str field for complements of Eng.VP.

And it gets reflexive resolution and the object order wrong under SlashVP

TestLang> l (PredVP (UsePron he_Pron)

(ComplSlash (SlashV2VNP beg_V2V (UsePron i_Pron) (SlashV2a listen_V2))

(UsePron we_Pron)))

he begs me to listen to us

er bittet mich uns , zuzuhören

TestLang> l DetCN (DetQuant DefArt NumSg) (RelCN (UseN woman_N)

(UseRCl (TTAnt TPres ASimul) PPos (RelSlash IdRP

(SlashVP (UsePron they_Pron)

(SlashV2VNP beg_V2V (UsePron i_Pron) (SlashV2a listen_V2))))))

the woman that they beg me to listen to

die Frau , die sie mich bitten , zuzuhören ==>..., der sie mich bitten, ...

Without SlashVP: er bittet mich, auf ihn|*sich|mich zu hören. The object order is wrong in Eng

as well under ReflVP:

TestLang> l (PredVP (UsePron he_Pron)

(ReflVP (SlashV2VNP beg_V2V (UsePron i_Pron) (SlashV2a listen_V2))))

he begs to himself me to listen

Remark 78 : (SlashV2VNP beg V2V (UsePron he Pron) (SlashV2a listen V2)) = bitte ihn
, (jmdm) zuzuhören should be made to work for relative clauses like die Frau , der zuzuhören

135

ich ihn bitte. But Eng the woman whom I (beg him to listen to) is simpler: v2v np vps can
be used to build a clause under np ((v2v np vps) np):VP using ComplSlash, or to build a
relative clause under RP np (v2v np vps) under RelSlash and SlashVP.

TestLang> l (UseCl (TTAnt TPres ASimul) PPos (PredVP (UsePron i_Pron)

(ComplSlash (SlashV2VNP beg_V2V (UsePron he_Pron) (SlashV2a listen_V2))

(UsePron she_Pron))))

I beg him to listen to her

ich bitte ihn ihr , zuzuhören

We want to get: die Frau , der er mich bittet zuzuhören, just like das Haus , das er (mich bittet
zu kaufen):VPSlash

Q56: Can we implement ACI as lexical transformation sehen:VS 7→ sehen:V2V? . . .

Modification of Verb Phrases

According to Verb.gf, AdvVP is to add adverbs at the end of a vp, while AdVVP is to attach
them next to or before the verb.

-- Adverbs can be added to verb phrases. Many languages make a distinction

-- between adverbs that are attached at the end vs. next to (or before) the

-- verb.

AdvVP : VP -> Adv -> VP ; -- sleep here

ExtAdvVP : VP -> Adv -> VP ; -- sleep , even though ...

AdVVP : AdV -> VP -> VP ; -- always sleep

An adverbial clause should be added by ExtAdvVP, so that it is embedded in commata:

ExtAdvVP vp adv = insertAdv (embedInCommas adv.s) vp ;

The auxiliary operation insertAdv (p. 120) adds adv.s to the right end of vp.a2. But since
Adverb.gf (p. 29) does not make a distinction between lexical adverbs and adverbial clauses99,
we cannot restrict adv to adverbial clauses in ExtAdvVP vp adv or to lexical adverbs in the
other rules.

The difference between adverbs occurring in front of the verb and those following the verb (or
the negation adverb, as in gf-3.2 of LangGer), suggesting the other two rules AdVVP and AdvVP,
does not seem to exist in German, so these both insert adv to vp.a2 by insertAdv:

AdvVP vp adv = insertAdv adv.s vp ;

AdVVP adv vp = insertAdv adv.s vp ; -- not AdV 27/5/2012: nicht immer

Remark 79 : In simple clauses in main verb order and unary verb, the adverb follows the verb
and precedes the sentence negation: wir arbeiten heute – wir arbeiten heute nicht. But besides
sentence negation, there is an adverb negation: wir arbeiten nicht heute (, sondern morgen),
or wir arbeiten nicht gern, e.g. wir arbeiten ungern. Is this different with adverbs like immer,
oft, which involve quantification over time and hence relate to the tense of the verb form? wir

99it only makes a distinction between adverbs Adv and comparison adverbs CAdv

136

arbeiten manchmal nicht = wir arbeiten (nicht immer), or wir arbeiten oft nicht = Oft arbeiten
wir nicht 6= wir arbeiten nicht oft = wir arbeiten selten, but ∗wir arbeiten nicht manchmal,
only: wir arbeiten manchmal nicht = manchmal (arbeiten wir nicht)? Is it similar with adverbs
quantifying over positions where an action can take place? hier (arbeiten wir nicht) vs. (hier
arbeiten wir) nicht? Is this really clearer in English? here, (we don’t work) vs. we don’t (work
here)

Remark 80. The word order in sentences is the one of the corresponding clause, fixed by
mkClause and UseCl below (p. 140 and 142; also TestLangGer.mkClSlash ExtraGer.mkVPS).
But mkClause gets the position of adverbs wrong in inverted and subordinate clauses: the adverbs
vp.a2 should follow the subject subj, not be at the end of obj3 (c.f. Remark 84).

1. The difference between preverbal and postverbal adverbs does not seem to exist in Ger-
man: all adverbs are postverbal “John doesn’t sleep here|often|today = Johann schläft
hier|oft|heute nicht”. (This is sentence negation np doesn’t v adv = neg (np does (v

adv)), not verb phrase negation np does neg(v adv), it seems.)
If this is true, then with unary verbs, adverbs should appear in front of negation: “Johann
schläft hier nicht”, “Johann wird hier nicht schlafen”. The different “Johann schläft heute
(nicht hier)” would then be a kind of adverbial negation: “nicht hier = anderswo”.
Do the English preverbal adverbs correspond to a different scope? “John doesn’t always
sleep =? John (does not always) sleep = (not always) does John sleep = Johann schläft
(nicht immer)”.100

In some cases, the “standard”(?) negation is expressed by a different adverb: “Johann
schläft immer nicht = Johann schläft nie”. But for which adverbs do we have a contracted
(and strongly preferred) form like “immer nicht = nie”?

2. AdvVP (become red) today: “ich bin nicht rot heute geworden” works with pfin ++ neg

++ nn4 ++ advs ++ pinf, but “ich bin heute nicht rot geworden” with pfin ++ advs ++

neg ++ nn4 does not. Likewise “ich werde nicht bereit heute sein” instead of “ich werde
heute nicht bereit sein”.
This concerns AdvVP vp adv for verb phrases of the form (ComplVA v ap), (UseComp

(CompAP ap))

3. For verb phrases of the form ComplSlash (SlashV2a v) np, the adverb should follow
the object, “ich hatte sie heute nicht gewaschen” instead of “ich hatte sie nicht heute
gewaschen”, i.e. we need subj ++ pfin ++ nn1 ++ adv ++ neg ++ ...++ pinf instead
of subj ++ pfin ++ nn1 ++ neg ++ (nn3 ++ nn4 ++ adv) ++ pinf

4. Can we simply put the adverbs in vp.a2 before neg, even if other objects follow the nega-
tion? With light objects: “ich habe dir das Buch heute nicht geschickt” and with heavy
objects: “ich habe dir heute nicht ein Buch geschickt” = “ich habe dir heute kein Buch
geschickt”. Looks good. Is the order then

Main => subj ++ pfin ++ light ++ adv ++ neg ++ heavy ++ comp ++ pinf

But then adverbial complements have to be put to comp (i.e. nn4): “sie wohnt nicht in
Berlin”, not “sie wohnt in Berlin nicht”.
Remark 81 : in gf-3.3 the order was

Main => subj ++ verb.fin ++ compl ++ inf ++ extra

100And what happens with modal verbs: “kann nicht immer schlafen” – “(kann nicht) (immer schlafen)” or
“(kann (nicht immer)) schlafen”? Is this resolved by intonation?

137

with compl = obj0 ++ vp.a1!pol ++ obj ++ vp.a2, where vp.a1 = pre-verbal advs

++ neg and obj0 = pronouns, obj = non-pron objects. This doesn’t place the adverbs
correctly either, I think. Do some tests with tests/german/vpadv.trees.

5. Should we use vp.a1 for post-verbal (post-vfin), and post-negation adverbs (AdV), and
vp.a2 for post-verbal, pre-negation adverbs Adv? Does such a distinction exist in German?
Q57: Can there be a correct translation between languages that make the difference between
Adv and AdV and those that don’t (likewise if it is just a difference in adverb positioning,
not in adverb kind)?

Examples for adverb ordering (from journal der Freitag Nr48, S.5/6, Nov.2023)

1. Es gibt bis heute kein ausgereiftes technisches Verfahren, das flächendeckend und langfristig
garantieren könnte, dass das CO2 für immer unter der Erde bleibt. (adv.tmp < adv.loc)

2. Kurz davor hatte es dort lange und heftig geregnet. (adv.tmp < adv.loc < adv.mod)

3. Seine Vorstellung war, dass die schwere Lohnarbeit irgendwann vollständig durch Tech-
nisierung ersetzt werden könnte. (adv.tmp < adv.mod)

4. Er wird 1930 in Sachsen-Anhalt als Sohn einer jüdischen Mutter und eines evangelischen Pfarrers
geboren. (adv.tmp < adv.loc < adv.mod)

5. Kurze Zeit später sind sie auch dort nicht mehr sicher. (adv.tmp < adv.loc < adv.neg)

There also is a construction AdvS resp. ExtAdvS to add an adverb resp. an adverbial sentence to
the front of a sentence (p. 143); a rule SSubjS : S -> Subj -> S -> S to add a subjunctive
clause at the end of a sentence. This must lead to multiple analyses when the adverbial clause
is at the end (in main verb order), like

SSubjS (PredVP np vp) subj s = PredVP np (AdvVP vp (SubjS subj s))

In any case, an adverbial modification of verb phrases is needed, e.g. to build adverbially modified
infinitival complements: we recommend you to always be polite.

5.4.2. Clauses and Sentences

Categories of Clauses and Sentences

The implementation type of clauses consists of a field s for an inflection paradigm.

lincat Cl =

{s : Mood => ResGer.Tense => Anteriority => Polarity => Order => Str} ;

The parameter types Mood, Tense101, Anteriority, Polarity and Order come with the values

param

Mood = MIndic | MConjunct ;

Tense = Pres | Past | Fut | Cond ;

Anteriority = Simul | Anter ;

Polarity = Pos | Neg ;

Order = Main | Inv | Sub ;

101The parameter type Tense = ResGer.Tense is not the syntactic category cat Tense in Section 5.10.

138

The mood has a value MIndic for indicative mood and a value MConjunct for conjunctive mood,
which shows at the form of the finite main verb. In tense, three values for present tense, past
tense and future tense are distinguished, and a value Cond for conditional. The clause tense
is realized by the present or imperfect form of its finite main verb, or by combining a finite
form of a temporal auxiliary verb sein, haben or werden with an infinite form of the main verb.
The anteriority expresses relative temporal order between the tense of the clause and the event
mentioned; for each tense there, these are either simultaneous or anterior, in which case the
event mentioned is past relative to the tense level of the clause.

Polarity indicates the absence or presence of the negation adverb nicht : a clause without the
negation adverb has positive polarity Pos, a clause with the negation adverb has negative polarity.
(Polarity does not fully correspond to the difference between atomic and negated atomic formulas
in logic: in natural languages, negation may be incorporated in quantifiers like kein (eng. no),
and then does not influence polarity. wir trinken kein Bier has positive polarity, but Bier trinken
wir nicht has negative polarity. So, it seems unclear what use should be made of the positive
polarity of we don’t drink beer when translating this sentence from English to German.)

The order refers to the position of the finite verb: in main clauses, with order Main, the finite
verb follows the first, clause-initial complement (or adverb), in subordinate clauses, with order
Sub, the finite verb comes at the end, and in questions, at the beginning, i.e. the order is inverted.
For example, of the possible 96 forms of the simple clause wir gehen, we show those for positive
polarity and main order:

MIndic Pres Simul Pos Main : wir gehen

MIndic Pres Anter Pos Main : wir sind gegangen

MIndic Past Simul Pos Main : wir gingen

MIndic Past Anter Pos Main : wir waren gegangen

MIndic Fut Simul Pos Main : wir werden gehen

MIndic Fut Anter Pos Main : wir werden gegangen sein

MIndic Cond Simul Pos Main : wir würden gehen

MIndic Cond Anter Pos Main : wir würden gegangen sein

MConjunct Pres Simul Pos Main : wir gehen

MConjunct Pres Anter Pos Main : wir seien gegangen

MConjunct Past Simul Pos Main : wir gingen

MConjunct Past Anter Pos Main : wir wären gegangen

MConjunct Fut Simul Pos Main : wir werden gehen

MConjunct Fut Anter Pos Main : wir werden gegangen sein

MConjunct Cond Simul Pos Main : wir würden gehen

MConjunct Cond Anter Pos Main : wir würden gegangen sein

Sentences are obtained from clauses by fixing a value for mood, tense, anteriority and polarity,
so their implementation type consists of a paradigm inflecting with respect to order only:

S = {s : Order => Str} ;

Similar categories for relative and interrogative clauses and sentences will be handled in sections
5.4.3 and 5.4.4

Construction of Clauses

The subject in a German clause can be nominal in any of the four cases, or prepositional,
or sentential, interogative or infinitival. To handle the various types uniformly, an auxiliary

139

operation mkClause is used that takes a subject, split into a string subj and agreement features
agr (gender, number, and person), and a verb phrase vp, instantiates the fields vp.nn of nominal
and vp.inf of infinitival objects to agr and returns a clause (mkClause subj agr vp):Clause.

In this auxiliary operation mkClause102, the initial useVP builds the VPForms of the vp.

mkClause : Str -> Agr -> VP -> Cl = \subj,agr,vp ->

let vps = useVP vp in {

s = \\m,t,a,b,o =>

let

ord = case o of {

Sub => True ; -- glue prefix to verb

_ => False

} ;

verb = vps.s ! ord ! agr ! VPFinite m t a ;

haben = verb.inf2 ;

neg = negation ! b ;

obj1 = (vp.nn ! agr).p1 ++ (vp.nn ! agr).p2 ; -- refl ++ pronouns ++ light nps

obj2 = (vp.nn ! agr).p3 ; -- pp-objects and heavy nps

obj3 = (vp.nn ! agr).p4 ++ vp.adj ++ vp.a2 ; -- pred.AP|CN|Adv, via useComp

compl = obj1 ++ neg ++ obj2 ++ obj3 ; -- HL 6/2019

infObjs = (vp.inf.inpl.p1)!agr ;

infPred = vp.inf.inpl.p2 ;

-- leave inf-complement of +auxV(2)V in place,

-- extract infzu-complement of -auxV(2)V: (ComplVV, SlashV2V)

infCompl : Str = case <t,a,vp.isAux> of {

<Fut|Cond,Anter,True> => [] ; _ => infObjs ++ infPred } ;

pred : {inf, infComplfin : Str} = case <t,a,vp.isAux> of {

<Fut|Cond,Anter,True> => --# notpresent

{inf = infObjs ++ haben ++ infPred ++ verb.inf ; --# notpresent

infComplfin = -- es ++ wird ++ haben ++ tun ++ wollen --# notpresent

infObjs ++ verb.fin ++ haben ++ infPred ++ verb.inf} ; --# notpresent

<_,Anter,True> => --# notpresent

{inf = verb.inf ++ haben ; --# notpresent

infComplfin = -- es ++ wird/hat/hatte ++ tun ++ wollen --# notpresent

infObjs ++ verb.fin ++ infPred ++ verb.inf ++ haben} ; --# notpresent

_ =>

{inf = verb.inf ++ haben ;

infComplfin = -- es zu tun ++ versucht ++ [] ++ hat

infCompl ++ verb.inf ++ haben ++ verb.fin}

} ;

extra = vp.inf.extr!agr ++ vp.ext ;

in

case o of {

Main => subj ++ verb.fin ++ compl ++ infCompl ++ pred.inf ++ extra ;

Inv => verb.fin ++ subj ++ compl ++ infCompl ++ pred.inf ++ extra ;

Subj => subj ++ compl ++ pred.infComplfin ++ extra

102For simplicity, we here identify the result type Clause:Type of MkClause with the linearization type Cl.

140

}

} ;

In subordinate clauses the verb.fin is not at the end even in <Fut|Cond,Simul,True> and
< ,Anter,True>, since we say (weil) er das Buch hatte lesen wollen instead of (weil) er das
Buch lesen wollen hatte. (The position of adverbs vp.a2 has to be changed, see Remark 80.)

Remark 82. A fixed order of nominal, prepositional and other complements is built in, together
with the position of the (sentence) negation. This order depends on the four components of
vp.nn, where in each component there is an ordering depending on the constructions used to fill
these components, so a minor word order flexibility seems possible. (But the strict separation
between light and heavy nominal objects and between nominal and prepositional object is dubious.)

As we insert complements in separate record fields, we loose the relation between word order and
the sequence of insertions that is coded in a tree. So, in a sense, the implementation record can
be “more abstract” than the tree: different trees having the same implementation record represent
an ambiguity that is independent of how the record is linearized.

The relative order of complements and adverbs in German is rather free, e.g.

heute trifft Maria ihre Kollegen beim Essen nicht
Maria trifft heute ihre Kollegen beim Essen nicht
Maria trifft ihre Kollegen beim Essen heute nicht
ihre Kollegen trifft Maria heute beim Essen nicht
ihre Kollegen trifft Maria beim Essen heute nicht
beim Essen trifft Maria ihre Kollegen heute nicht

heute hat Maria ihre Kollegen beim Essen nicht getroffen
Maria hat heute ihre Kollegen beim Essen nicht getroffen
ihre Kollegen hat Maria heute beim Essen nicht getroffen
ihre Kollegen hat Maria beim Essen heute nicht getroffen
beim Essen hat Maria ihre Kollegen heute nicht getroffen
(getroffen hat Maria ihre Kollegen beim Essen heute nicht)

In particular, the subject need not be in front of a verb phrase (consisting of finite and infinite
verb part, complements and adverbs), but can be exchanged with an object or adverb in the
Mittelfeld (between finite verb “hat” and infinite verb part “getroffen”).

How can we admit more relative orderings of subject, complements and adverbs? By a change
of the type of clause constructions, for example by adding to PredVP an additional argument
p:Perm (linearized to the empty string as for t:Temp in UseCl), a specific permutation of these
complements, adverbs and the subject could be fixed. But besides a change in the abstract gram-
mar, this would at least need information about which of these complements and adverbs in
vp.nn and vp.a2 are nonempty; moreover, a component of vp.nn may concatenate two or more
objects, which blocks a permutation of those. In general, if all objects and adverbs were stored
in separate fields of vp, the sequence of filling these fields (with nonempty(?) strings) could be
remembered in a parameter field p:Param of vp, and the clause paradigm might cover some
permutations different from the one in vp.p. By making the parameter type Order depend on
Param, the clause paradigm would contain all the permutations. But to select a specific one, the
type of UseCl would still need a separate argument of type Param.

Notice that GrammarEng concatenates nominal objects, prepositional objects, adverbs and some
adjectival and infinitival complements in vp.s2, so different trees of category VP may have dif-
ferent implementation records in GrammarEng, but the same ones in GrammarGer. It is not clear

141

how word orders of different languages are related to each other by the abstract grammar. As
translations ought to preserve meaning, the relative scope of quantifiers in objects and adverbs
may be coded differently by the word orders of different languages, which may be a problem for
the common abstract syntax Grammar.

The predication rule

PredVP : NP -> VP -> Cl ; -- John walks

for clauses with nominal (and prepositional) subject can be implemented by reading off from a
verb phrase vp:VP the case (and preposition) vp.c1 for the subject, putting a noun phrase np

into this case (and preposition) to get a string np.s ! vp.c1 and letting mkClause build the
clause PredVP np vp with the help of the agreement features depending on np and vp.c1:

PredVP np vp =

let subj = mkSubject np vp.c1

in mkClause subj.s subj.a vp ;

The auxiliary operation mkSubject : NP -> Preposition -> {s:Str ; a:Agr}, when applied
to np:NP and p:Preposition, returns the string selected from the inflection paradigm np.s by
the preposition or case p and the agreement features np.a, when p is nominative, else the
agreement of third person singular.

The predication rule for clauses with sentential, interrogative or infinitival subjects,

PredSCVP : SC -> VP -> Cl ; -- that she goes is good

is similarly implemented with mkClause, using the string of its subject argument and the agree-
ment of third person singular:

PredSCVP sc vp = mkClause sc.s (agrP3 Sg) vp ;

Remark 83 : The default value vp.c1 = prepNom:Preposition for nominal or prepositional
subjects is ignored by PredSCVP. Can we distinguish on the type level between verb phrases
taking a nominal from those taking a sentential subject? (With dependent categories one can
do it, but what is the price in grammar writing, and what is the gain in correctness?)

Todo 42: Discuss that many extractions (focussing) of partial phrases will not be covered in
LangGer, like “gern gelesen hat er den Brief nicht” and “gelesen hat er den Brief nicht gern”.

Construction of Sentences

The rules to construct sentences

UseCl : Temp -> Pol -> Cl -> S ; -- she had not slept

is simply implemented by selecting, from the paradigm cl.s of a clause cl, the strings for given
values t:Temp for tense and p:Pol for polarity:

UseCl t p cl = {

s = \\o => t.s ++ p.s ++ cl.s ! t.m ! t.t ! t.a ! p.p ! o

} ;

142

The values t:Temp and p:Pol provide empty strings t.s and p.s as well as values t.m : Mood,
t.t : Tense, t.a : Anteriority and p.p : Polarity. These are used to select from the
paradigm

cl.s : Mood => ResGer.Tense => Anteriority => Polarity => Order => Str

a corresponding table of type Order => Str as paradigm of the sentence (see Section 5.10).

Modification of Sentences

A sentence can be modified by adding an adverb, using

AdvS : Adv -> S -> S ; -- then I will go home

The adverb is added at the beginning. To obtain a sentence in inverted or main verb order, the
argument sentence in inverted verb order follows (giving a sentence in main order); to obtain a
sentence in subordinate order, the argument sentence in subordinate order follows:

AdvS a s = {s = table {Sub => a.s ++ s.s ! Sub ; o => a.s ++ s.s ! Inv}} ;

Remark 84. This is too simple; in inverted and subordinate clauses, the adverb ought to be in
third position, following the finite verb and the subject, e.g. “würde man heute nicht bereit sein”
and “(wenn) man heute nicht bereit sein würde”, but we get

TestLang> l -table (AdvS today_Adv

(UseCl (TTAnt TCond ASimul) PNeg (GenericCl ready_VP)))

s : today one wouldn’t be ready

s Main : heute würde man nicht bereit sein

s Inv : heute würde man nicht bereit sein

s Sub : heute man nicht bereit sein würde

It seems this construction should only be used with Main order. (For inverted and subordinated
order, use AdvVP or AdvVPSlash to adverbially modify the verb phrase, not the sentence.)

Remark 85 : Adverbs can be split, e.g. dort, wo S, and the parts are often separated, e.g. wir
wollen dort wohnen, wo es schön ist, Q58: Is dort the correlate of the adverb wo S, or dort
the adverb and wo S a relative clause as in in Bayern, wo es schön ist, i.e. do we want Adv =

{s:Str ; cor:Str} or Adv ={s:Str ; rc:Str}?
To modify a sentence by an adverbial clause, a separate construction

ExtAdvS : Adv -> S -> S ; -- next week, I will go home

is used that attaches a comma to the sentence-initial adverbial clause:

ExtAdvS a s =

{s = table {Sub => a.s ++ "," ++ s.s ! Sub ;

o => a.s ++ "," ++ s.s ! Inv}} ;

This covers subjunctive clauses, but these can also be added to the end, using

143

SSubjS : S -> Subj -> S -> S ; -- I go home, if she comes

The implementation attaches to the end of the given sentence a : S a modifying sentence b : S

in subordinate verb order with leading comma and subjunction s : Subj:

SSubjS a s b = {s = \\o => a.s ! o ++ "," ++ s.s ++ b.s ! Sub} ;

The modification of a sentence by a relative clause, i.e. the construction

RelS : S -> RS -> S ; -- she sleeps, which is good

appends, in each of the three orders, a comma-separated relative clause at the end, introduced
by the relative pronoun was:

RelS s r = {s = \\o => s.s ! o ++ "," ++ r.s ! RSentence} ; --- "was"

Incomplete Clauses and Incomplete Sentences

An incomplete clause is a clause missing a nominal object. Incomplete clauses are used to
construct relative clauses (p. 145) and (object-) questions (p. 147): these have a clause-initial
relativizing or interrogative noun (or prepositional) phrase in the case of the missing object,
followed by the incomplete clause. An incomplete sentence is a sentence missing a nominal
object.

Categories ClSlash and SSlash

The implementation categories are those of clauses and sentences, extended by a field c2 for the
(preposition and) case of the missing nominal object:

ClSlash = {

s : Mood => ResGer.Tense => Anteriority => Polarity => Order => Str ;

c2 : Preposition

} ;

SSlash = {s : Order => Str} ** {c2 : Preposition} ;

The paradigm type of ClSlash.s ends in Order => Str rather than Str, because both relative
clauses and object questions are derived from incomplete clauses, and these use different order:
from the clause er hat ihr einen Brief geschickt we can relativize the object by (der Brief), den
er ihr geschickt hat with order Sub of the incomplete clause er hat ihr geschickt, and we can
form an object-question welchen Brief hat er ihr geschickt, with order Inv in the incomplete
clause.

Remark 86 : The category ClSlash should have a result type Agr => Str or RelGenNum =>

Case => Str instead of Str in field s, as RCl already has. Then we could implement SlashVP

by a modification mkClSlash of mkClause that resolves reflexives against the (yet unknown)
object, or at least does not resolve them against the inserted subject. (The values of GenNum

have to be extended by a value for the relative pronoun was for clauses

RelGenNum = RGenNum GenNum | RSentence ;

144

See the Section 5.4.3 on relative clauses for details.)

Construction and Modification of Incomplete Clauses ClSlash

The main constructions are:

SlashVP : NP -> VPSlash -> ClSlash ; -- (whom) he sees

AdvSlash : ClSlash -> Adv -> ClSlash ; -- (whom) he sees today

SlashPrep : Cl -> Prep -> ClSlash ; -- (with whom) he walks

SlashVS : NP -> VS -> SSlash -> ClSlash ; -- (whom) she says that he loves

Currently, the rule

SlashVP : NP -> VPSlash -> ClSlash ; -- (whom) he sees

is implemented by mkClause:

SlashVP np vp =

let subj = mkSubject np vp.c1

in mkClause subj.s subj.a vp ** {c2 = vp.c2} ;

Problem 7. This implementation of SlashVP assumes that open reflexives in its argument vp
refer to the subject and so dependencies on Agr are instantiated to the agreement of the subject.
But the resulting (SlashVP np vp) is an incomplete clause, missing a nominal object to which
the reflexives may have to refer, depending on vp.objCtrl.

TestLang> l (RelSlash IdRP (SlashVP (UsePron i_Pron)

(SlashV2V lassen_V2V (ReflVP (SlashV2a wash_V2)))))

that I let wash myself

den ich mich selbst waschen lasse

In the definition of SlashVP, we must modify mkClause to mkClSlash: ... => Agr => Str,
obtained like mkClause with open constituents, so to speak. We seem to need

RelSlash : RP -> ClSlash -> RCl ; -- whom John loves

such that RelSlash rp cls = rp.s ++ cls.s!(rp.agr). But this would make ClSlash rather
expensive, extending the table ClSlash.s by a factor of |Agr| = 3 ∗ 2 ∗ 3 = 18. But if we let
ClSlash.s end in RelGenNum => Str instead of Agr => Str, due to |RelGenNum| = 5 this
is reasonably efficient and good enough to have reflexive resolution with the following modified
SlashVP and RelSlash:

SlashVP np vp =

let subj = mkSubject np vp.c1

in mkClSlash subj.s subj.a vp ** { c2 = vp.c2 } ;

RelSlash rp slash = {

s = \\m,t,a,p,gn =>

(appPrep slash.c2 rp) ! gn ++ slash.s ! m ! t ! a ! p ! Sub ;

c = slash.c2.c

} ;

145

For SlashVP and RelSlash, we use the following modification of ClSlash and mkClSlash in
TestLangGer.gf. The point is to let ag : Agr depend on objCtrl:

lincat

ClauseSlash = {

s : Mood => ResGer.Tense => Anteriority => Polarity => Order

=> RelGenNum => Str ;

c2 : Preposition

} ;

oper

gnToAgr : RelGenNum -> Agr = \gn ->

case gn of {RGenNum (GSg g) => AgSgP3 g ;

RGenNum GPl => AgPl P3 ;

RSentence => AgSgP3 Neutr} ;

mkClSlash : Str -> Agr -> ResGer.VPSlash -> ClauseSlash = \subj,agr,vp ->

let vps = useVP vp in lin ClauseSlash {

c2 = vp.c2 ;

s = \\m,t,a,b,o,gn =>

let

ord = case o of {

Sub => True ; -- glue prefix to verb

_ => False

} ;

verb = vps.s ! ord ! agr ! VPFinite m t a ;

haben = verb.inf2 ;

neg = negation ! b ;

ag : Agr = case vp.objCtrl of {True => gnToAgr gn ; _ => agr} ;

obj1 = (vp.nn ! ag).p1 ++ (vp.nn ! ag).p2 ; -- refl ++ pronouns ++ light nps

obj2 = (vp.nn ! ag).p3 ; -- pp-objects and heavy nps

obj3 = (vp.nn ! ag).p4 ++ vp.adj ++ vp.a2 ; -- pred.AP|CN|Adv, via useComp HL 6/2019

compl : Str = obj1 ++ obj2 ++ neg ++ obj3 ;

infObjs = vp.inf.inpl.p1 ! ag ;

infPred = vp.inf.inpl.p2 ;

infCompl : Str = case <t,a,vp.isAux> of {

<Fut|Cond,Anter,True> => [] ; _ => infObjs ++ infPred } ;

pred : {inf, infComplfin : Str} = case <t,a,vp.isAux> of {

<Fut|Cond,Anter,True> => --# notpresent

{inf = infObjs ++ haben ++ infPred ++ verb.inf ; --# notpresent Duden 318

infComplfin = -- es ++ wird ++ haben ++ tun ++ wollen --# notpresent

infObjs ++ verb.fin ++ haben ++ infPred ++ verb.inf} ; --# notpresent

<_,Anter,True> => --# notpresent

{inf = verb.inf ++ haben ; --# notpresent

infComplfin = -- es ++ wird/hat/hatte ++ tun ++ wollen --# notpresent

infObjs ++ verb.fin ++ infPred ++ verb.inf ++ haben} ; --# notpresent

<Pres,_,_> =>

{inf = verb.inf ++ haben ;

infComplfin = -- es zu tun ++ [] ++ [] ++ versucht

146

infCompl ++ verb.inf ++ haben ++ verb.fin}

; --# notpresent

_ => --# notpresent

{inf = verb.inf ++ haben ; --# notpresent

infComplfin = -- es zu tun ++ versucht ++ [] ++ hat --# notpresent

infCompl ++ verb.inf ++ haben ++ verb.fin} --# notpresent

} ;

extra : Str = (vp.inf.extr) ! ag ++ vp.ext ;

in

case o of {

Main => subj ++ verb.fin ++ compl ++ infCompl ++ pred.inf ++ extra ;

Inv => verb.fin ++ subj ++ compl ++ infCompl ++ pred.inf ++ extra ;

Subj => subj ++ compl ++ pred.infComplfin ++ extra

}

} ;

Q59: Is the position of the adverbs vp.a2 in obj3 correct or dubious?

Todo 43: To resolve reflexive possessive against the missing nominal object, we may have to
use rp.a : RAgr = RNoAg | RAg Number Person to compute a different agreement value for
specializing vp.nn. (For example: “wir, die wir(!) dies unser(!) Schicksal so gut erkannten”)

The other uses of ClSlash are adapted to this ClauseSlash in TestLangGer.gf. (The RelGenNum
(and ip.a?) plays a role in forming object questions from incomplete clauses, to resolve reflexives
and reflexive possessives: “wer hat seinem (eigenen!) Kind versprochen, sich(!) zu bessern?”.)

QuestSlash ip slash =

let gn : GenNum = case ip.n of {Sg => GSg Masc ; _ => GPl}

in {

s = \\m,t,a,p =>

let

cls = slash.s ! m ! t ! a ! p ;

who = appPrep slash.c2 ip.s ;

in table {

QDir => who ++ cls ! Inv ! (RGenNum gn);

QIndir => who ++ cls ! Sub ! (RGenNum gn)

}

} ;

AdvSlash slash adv = {

s = \\m,t,a,b,o,gn => slash.s ! m ! t ! a ! b ! o ! gn ++ adv.s ;

c2 = slash.c2

} ;

SlashPrep cl prep = {

s = \\m,t,a,p,o,gn => cl.s ! m ! t ! a ! p ! o ;

c2 = prep

} ;

SlashVS np vs slash =

let subj = mkSubject np PrepNom ;

147

vp = insertExtrapos (conjThat ++ slash.s ! Sub) (predV vs) -- comma?

in mkClSlash subj.s subj.a (vp ** {c2 = slash.c2 ;

objCtrl = False}) ; -- pseudo

UseSlash t p cl = {

s = \\o => t.s ++ p.s ++ cl.s ! t.m ! t.t ! t.a ! p.p ! o ;

c2 = cl.c2

} ;

Some occurrences of ClSlash in Extra/Extend remain to be adapted to ClauseSlash:

Construction of Incomplete Sentences SSlash

UseSlash : Temp -> Pol -> ClSlash -> SSlash ; -- (that) she had not seen

Construction of Embedded Sentences SC

The three constructions for sentential, interrogative and infinitival complements

EmbedS : S -> SC ; -- that she goes

EmbedQS : QS -> SC ; -- who goes

EmbedVP : VP -> SC ; -- to go

are implemented by

EmbedS s = {s = conjThat ++ s.s ! Sub} ; -- no leading comma, if

EmbedQS qs = {s = qs.s ! QIndir} ; -- sentence-initial

EmbedVP vp = {s = useInfVP False vp} ;

As noted in the comment, a leading comma is not part of the complements, because they can
also be used as subjects, in sentence-initial position. (Q60: Is then the first letter capitalized by
token Predef.CAPIT:Str?)

Remark 87 : useInfVP has been changed and needs to be adapted here and in CatGer.

5.4.3. Relative Clauses and Relative Sentences

Categories RP of Relative Pronoun and RCl of Relative Clause

A relative clause basically is obtained from a clause (in subordinate, verb final order) by
dropping a nominal complement of its verb and putting a relative pronoun (or relativizing noun
phrase or prepositional phrase) in front of the resulting incomplete clause. Usually, the dropped
nominal complement is in third person, but first and second person are possible as well: du,
dem ich oft geholfen habe, or wir, die wir(!) dies unser Schicksal so gut erkannten (G. Seferis).
The relative pronoun inflects for case, as the nominal complement, but also for the gender of
the (head) noun of the dropped nominal complement; an additional form is used to relativize a
sentential complement, e.g. die Sonne schien, was uns freute.

RelGenNum = RGenNum GenNum | RSentence ;

148

The 4-valued parameter domain GenNum was introduced for noun phrases (p.64). The relative
pronoun agrees in person and number with the finite verb, and an additional agreement value
RNoAg is used when the relative pronouns represents a sentential complements of the verb.103:

RAgr = RNoAg | RAg Number Person ;

Therefore, the implementation category RP of relative pronoun is:

RP = {s : RelGenNum => Case => Str ; a : RAgr} ;

The category of relative clauses is similar to that of incomplete clauses, ClSlash, but instead
of c2:Preposition we have the simpler field c:Case (since contractions like an dem = am
only occur with article dem, not with relative pronoun dem) and the paradigm RCl.s varies in
RelGenNum, which determines the form of the relative pronoun:

RCl = {s : Mood => Tense => Anteriority => Polarity => RelGenNum => Str ;

c : Case} ;

As subordinate clauses, relative clauses have the fixed order Sub, i.e. the verb is at the end.

Q61: The flag RCl.c classifies relative clauses and relative sentences. It is set in RelCl, RelVP
and RelSlash below. As far as I see, it is used only in UseRCl, to set RS.c, and RS.c is used
only in ConjunctionGer, to set the flag c of the category of lists of relative clauses:

lincat

[RS] = {s1,s2 : RelGenNum => Str ; c : Case} ;

lin

BaseRS x y = twoTable RelGenNum x y ** {c = y.c} ;

ConsRS xs x = consrTable RelGenNum comma xs x ** {c = xs.c} ;

As there is no comparison of c in different list members, these flags could be removed, I think.

Remark 88 : In principle, a relative clause ought to inflect not for RelGenNum, but for Agr,
because possessives in the clause depend on person, e.g. du, der|die du deine Kinder liebst. But
this was too complex for ClSlash, so it probably will be too complex for RCl, too.

Construction of Relative Clauses

A somewhat rare way to turn a clause into a relative clause,

RelCl : Cl -> RCl ; -- such that John loves her

is to use the clause in subordinate order, introduced by derart, daß :

RelCl cl = {

s = \\m,t,a,b,_ => "derart" ++ conjThat ++ cl.s ! m ! t ! a ! b ! Sub ;

c = Nom

} ;

103Check that this is really the usage of RNoAg.

149

(The English clause relativization by such that does not correspond to the German so daß, which
introduces a “consecutive clause”. But derart dass or Kleist’s dergestalt daß are also in little
use; is this a clause relativization at all? The clause relativization Johann liebt Maria, was mich
freut is different, RelVP rp vp below.)

The two standard ways to relativize are by relativizing the nominal subject or object of a clause.
If the subject of a clause PredVP np vp is relativized using

RelVP : RP -> VP -> RCl ; -- who loves John

we build a clause from the verb phrase vp with a suitable form of the relative pronoun rp as
subject; the verb in the relative clause has to agree in person and number with the omitted
subject, so we need the agreement features RP.a to choose the proper form of the verb vp.s:

RelVP rp vp = {

s = \\m,t,ant,b,rgn =>

let

gn = case rgn of {

RGenNum gf => gf ;

RSentence => GSg Neutr

} ;

agr = case rp.a of {

RNoAg => agrP3 (numGenNum gn) ;

RAg n p => Ag Neutr n p

} ;

cl = mkClause (rp.s ! rgn ! Nom) agr vp

in

cl.s ! m ! t ! ant ! b ! Sub ;

c = Nom

} ;

Remark 89 : First and second person subjects can be relativized as well, using “ich, der|die ich
. . . tue”, “du, der|die du . . . tust”, etc., but not with RelNP : NP -> RS -> NP, since RS and
RCl deliver a table ...=> RelGenNum => Str intended to relativize a subject in third person.

Todo44: Add a special rule RelPronVP : Pron -> VP -> NP that builds, so to speak, pron, rp

++ (mkClause pron vp)!Sub. (From pron.a we get gender, number and person, so we can use
a suitable value for RelGenNum in rp. But in StructuralGer, i Pron has inherent gender Masc,
youSg Pron inherent gender Fem, so one needs iFem Pron and youSgMasc Pron in Extend.) /

If a nominal object of a clause is relativized, we combine the incomplete clause obtained by
dropping the object with a suitable form of the relative pronoun, using

RelSlash : RP -> ClSlash -> RCl ; -- whom John loves

Only the direct object (ClSlash.c2) can be relativized by RelSlash; an indirect object of a
ternary verb has to be turned into a direct one by the Slash2V3-rule. The implementation is:

RelSlash rp slash = {

s = \\m,t,a,p,gn =>

(appPrep slash.c2 rp) ! gn ++ slash.s ! m ! t ! a ! p ! Sub ;

c = slash.c2.c

} ;

150

See the correction of this above (p. 145) concerning the dependence on RelGenNum.

The relativization of a nominal object combines the preposition used to attach the object with
the relative pronoun: ich warte auf den Tag 7→ der Tag, auf den ich warte.

TestLang> l (RelSlash IdRP (SlashVP (UsePron i_Pron) (SlashV2a wait_V2)))

that I wait for

auf den ich warte

This is done by the appPrepIP case of appPrep, which also implements the contraction auf was
= worauf :104

Lang> l -table (UseRCl (TTAnt TPres ASimul) PPos

(RelSlash IdRP (SlashVP (UsePron i_Pron) (SlashV2a wait_V2))))

s (RGenNum (GSg Masc)) : auf den ich warte

s (RGenNum (GSg Fem)) : auf die ich warte

s (RGenNum (GSg Neutr)) : auf das ich warte

s (RGenNum GPl) : auf die ich warte

s RSentence : worauf ich warte

Relative clauses can also be obtained by relativising the noun phrase of an adverbial:

Lang> l DetCN (DetQuant DefArt NumSg) (RelCN (UseN house_N)

(UseRCl (TTAnt TPres ASimul) PPos (RelSlash IdRP

(SlashPrep (PredVP (UsePron we_Pron) (UseV sleep_V)) in_Prep))))

das Haus , in dem wir schlafen

Here, SlashPrep : Cl -> Prep -> ClSlash considers Prep as a partial adverb, Prep = Adv/NP.

Construction of Relative Pronouns

There are two constructions of relative pronouns. The first one,

IdRP : RP ; -- which

is implemented by

IdRP = {s = relPron ; a = RNoAg} ;

where relPron : RelGenNum => Case => Str is a paradigm of the four cases of der, die, das
in singular and die in plural, and the four cases was, was, was, wessen for RSentence, and RNoAg

the special value for agreement of relative pronouns.105

Ambiguity: die Frau , mit der er verheiratet ist :

RelSlash IdRP (SlashVP np (VPSlashPrep vp prep))

= RelSlash IdRP (SlashPrep (PredVP np vp) prep)

104Since the first value of RelGenNum, i.e. RGenNum (GSg Masc), is used for parsing a relative sentence, we cannot
parse worauf ich warte, only auf den ich warte.
105more precisely?

151

The other construction of relative pronouns is by

FunRP : Prep -> NP -> RP -> RP ; -- the mother of whom

An application FunRP p np rp is a relative pronoun that, for gn:RelGenNum and c:Case, ex-
tends the np in case c by the given rp applied to gn, and stores number and person of the np.a

in its agreement field:

FunRP p np rp = {

s = \\gn,c => np.s ! False ! c ++ appPrep p (rp.s ! gn) ;

a = RAg (numberAgr np.a) (personAgr np.a)

} ;

(Can the construction reasonably be iterated?) der Aufstieg auf den Berg war schwierig 7→ (der
Berg), der Aufstieg auf den schwierig war [wouldn’t we rather say: (der Berg), auf den der
Aufstieg schwierig war?]

This calls for a discussion: FunRP seems to be intended for relativizing an embedded nominal
in a nominal object: I know the mother of John 7→ John, the mother of whom I know. For a
possessive genitive, we need a different linearization, Extend.GenRP: die Mutter von|des Johann
7→ (Johann), dessen Mutter. Todo 45: Implement GenIP and GenRP.

The most complicated cases are relativizations of nominals in infinitival or sentential objects.
he promised us to provide a proof of the claim 7→ (the claim) he promised us to provide a proof
of, Ger (die Behauptung), von der er uns einen Beweis zu liefern versprach. These are only
addressed in Extra/Extend.

There are no modification rules for relative clauses and relative sentences.

Relative Sentences

A relative sentence is obtained from a relative clause by fixing values for mood, tense, ante-
riority and polarity. Its category therefore consists of a field s for an inflection paradigm that
simplifies the one for relative clauses by dropping dependencies on mood, tense and antiority,
and of a field c for a case (holding the case of the relative pronoun?):

RS = {s : RelGenNum => Str ; c : Case} ;

The only way to construct a relative sentence is by specializing a relative clause using

UseRCl : Temp -> Pol -> RCl -> RS ; -- that had not slept

This rule is implemented by selecting from the paradigm cl.s of a given relative clause cl the
string for given values t:Temp and p:Pol:

UseRCl t p cl = {

s = \\r => t.s ++ p.s ++ cl.s ! t.m ! t.t ! t.a ! p.p ! r ;

c = cl.c

} ;

The values t:Temp and t:Pol contribute empty strings t.s and p.s to the strings in the
paradigm and provide parameter values t.m, t.t, t.a and t.p for mood, tense, anteriority
and polarity for the selcection from cl.s.

152

5.4.4. Interrogative Clauses and Questions (improve!)

Categories of Interrogative Clause and Question

The implementation type of interrogative clauses is similar to that of (definite) clauses. It
consists of a field s of an inflection paradigm varying in mood, tense, anteriority, polarity and
position of the finite verb:

QCl = {s : Mood => Tense => Anteriority => Polarity => QForm => Str} ;

However, while in (definite) clauses the finite verb position varies according to the 3-valued
paramter type Order, in interrogative clauses there are only two values,

param

QForm = QDir | QIndir ;

In direct interrogative clauses, e.g. hast du gut geschlafen, the finite verb is in initial position,
i.e. QDir corresponds to the value Inv of Order, while in subordinate interrogative clauses,
e.g. ob du gut geschlafen hast, the finite verb is in final position, i.e. QIndir corresponds to Sub.

The implementation category for questions consists of a field for an inflection paradigm varying
only according to QForm:

QS = {s : QForm => Str} ;

Interrogative clauses are either Yes-No-questions (built from an ordinary clause by intonation
or word order) or build from a verb phrase by adding an interrogative noun phrase or adverb
at the beginning, or an interrogative complement of a copula verb. We first introduce these
interrogative categories (IP, IAdv, IComp) and their construction and modification rules, and
then come back to interrogative clauses.

5.4.5. Interrogative Noun Phrases

Lang has a limited notion of interrogative noun phrase , a category IP called interrogative
pronoun in GF. I prefer to use the more general name106, since IP also covers noun phrases
with interrogative determiners, e.g. welcher bekannte Autor or wessen bedeutendes Buch107, and
noun phrases with interrogative attributes, e.g. die Bücher welcher Autoren or die Weine aus
welchem Land. I will use “interrogative pronoun” in the traditional sense, i.e. for wer and was.

Interrogative noun phrases are always in third person, e.g. wer or welche Studenten, vary in case
and have an inherent number:

IP = {s : Case => Str ; n : Number} ;

The field n:Number is the analogon of the field NP.a:Agr for agreement features. The interroga-
tive pronouns wer and was are singular, but other interrogative noun phrases are plural, so as
subjects, they determine the number of the finite verb, e.g. welcher Student bestand das Examen
vs. welche Studenten bestanden das Examen.

106Maybe the category name should be INP, similar to the category RNP of “reflexive noun phrases” in Extend.
107provided as IQuant in ExtraGer

153

Remark 90 : The linearization type IP needs corrections. Instead of n:Number, a more general
agreement field a:GenNum is needed: as subject, an interrogative noun phrase also determines
reflexive possessive attributes of objects, e.g. welches Kind hat seine Mutter gesucht vs. welche
Mutter hat ihr Kind gesucht. We may also have to add a field isPron : Bool to distinguish
interrogative pronouns from more general interrogative noun phrases. E.g., the possessive can
be expressed by a pre-nominal interrogative possessive pronoun, e.g. wessen Wagen, or by a
post-nominal interrogative complex noun phrase in genitive, e.g. der Wagen welcher Person,
but hardly the other way round, at least not ∗der Wagen wessen. /

Interrogative noun phrases are constructed from interrogative determiners by

IdetCN : IDet -> CN -> IP ; -- which five songs

IdetIP : IDet -> IP ; -- which five

e.g. wie viele Brüder von Johann, welches kleine Kind, welche drei Kinder, welche drei. These
constructions correspond to the constructions

DetCN : Det -> CN -> NP ;

DetNP : Det -> NP ;

of noun phrases in Section 4.1. So we first consider interrogative determiners.

Interrogative determiners and quantifiers

In analogy to the construction of determiners by DetQuant, interrogative determiners are build
from an interrogative quantifier or possessive pronoun and a cardinal number, e.g. welcher eine
(große Fehler) or wessen drei (kleine Kinder).

An interrogative determiner varies in gender (in singular) and case and has an inherent
number. They also determine the adjective inflection in interrogative noun phrases: welches
eine gute Buch liebst du, wessen gutes Buch liebst du. So, the linearization type is

IDet = {s : Gender => Case => Str ; n : Number ; a : Adjf} ;

An interrogative quantifier , e.g. welche, welcher, welches, varies in gender (in singular)108,
number and case, and determines the adjective inflection:

IQuant = {s : GenNum => Case => Str ; a : Adjf} ;

Construction of Interrogative Quantifiers and Determiners

The only interrogative quantifier in Lang is the lexical element welcher, welche, welches, defined
in StructuralGer by

which_IQuant = {s = \\gn,c => "welch" + detEnding ! gn ! c ; a = Strong} ;

An interrogative determiner is either a lexical element, e.g. wieviel, wieviele (eng. how much,
how many), the second of which defined by

108I changed the type by combining the Number and Gender, as I did for Quant, and by adding a:Adjf.

154

how8many_IDet = {

s = \\g,c => "wie viel" + detEnding ! (gennum g Pl) ! c ;

n = Pl ; a = Strong

} ;

in StructuralGer, or constructed with

IdetQuant : IQuant -> Num -> IDet ; -- which (five)

from an interrogative quantifier by fixing the grammatical number obtained from the cardinal:

IdetQuant iquant num =

let

n = num.n

in {

s = \\g,c => iquant.s ! (gennum g n) ! c ++ num.s ! g ! c ;

n = n

} ;

For example, this gives welche drei and welche 13.

Lang> p -cat=IDet "welche drei"

IdetQuant which_IQuant

(NumCard (NumNumeral (num (pot2as3 (pot1as2 (pot0as1 (pot0 n3)))))))

Construction of Interrogative Noun Phrases

An interrogative noun phrase can be a lexical element, i.e. an interrogative pronoun, e.g. was
and wer, or a noun phrase constructed with an interrogative determiner and possibly a cardinal,
e.g. wie viele Brüder von Johann, welches kleine Kind, welche drei Kinder, welche drei.

Within an interrogative noun phrase constructed by

IdetCN : IDet -> CN -> IP ; -- which five songs

the interrogative determiner agrees (in singular) with the gender of the common noun, governs
the adjective declination and number of the common noun, e.g. welcher junge Hund, welche
junge Katze, welches junge Tier, wie viele alte Hunde; the interrogative noun phrase inflects
according to case only:

IdetCN idet cn =

let

g = cn.g ;

n = idet.n

in {

s = \\c => idet.s ! g ! c ++ cn.s ! idet.a ! n ! c

++ cn.adv ++ cn.rc ! n ++ cn.ext ;

n = n

} ;

The rule

155

IdetIP : IDet -> IP ; -- which five

is similar, but with fixed gender Neutr and without a common noun.

Remark 91 : To ask for the possessor of something, whose car, wessen Wagen, use Extend.GenIP
or Extend.GenModIP. There seems to be no rule to ask with post-nominal interrogative posses-
sive, e.g. the car of whom, der Wagen von wem. We also cannot ask with indefinite interrogative
noun phrases, like what (kind of) a car (is this), was für ein Wagen (ist das)? [But: the con-
traction mit was 7→ womit does not apply to mit was für einem N.neutr.]

Modification of Interrogative Noun Phrases

An interrogative noun phrase can be modified by

AdvIP : IP -> Adv -> IP ;

This just expands an interrogative noun phrase by an adverb at the end:

AdvIP ip adv = {

s = \\c => ip.s ! c ++ adv.s ;

n = ip.n

} ;

e.g. wer hier or wer in unserer Stadt. Probably, the construction should not be used with
adverbial sentences adv, e.g. ∗wer, weil die Sonne scheint.

Remark 92 : Interrogative noun phrases built by IDetCN id cn can have relative clauses in
the cn constituent. But relative clauses can in German also be combined with interrogative
pronouns, e.g. wer, der bei Verstand ist, würde das tun? Todo 46: Add a rule RelIP : IP ->

RelS -> IP, an interrogative version of RelNP, to ExtendGer or ExtraGer.

5.4.6. Interrogative Adverbs

An interrogative adverb is an adverb which turns a clause into an interrogative clause or
question. Semantically, it questions when or where the fact expressed by the clause holds, or
how or why the action expressed is performed, etc.

Interrogative adverbs, e.g. wann or an welchem Ort, do not vary at all, so their implementation
type is

IAdv = {s : Str} ;

Q62: Maybe we need a second field s2:Str, e.g. wann (wollen wir arbeiten), wenn nicht jetzt?

Construction of Interrogative Adverbs

An interrogative adverb can be a lexical element like wie, wann, wo, warum, defined by

how_IAdv = {s = "wie"} ;

when_IAdv = {s = "wann"} ;

where_IAdv = {s = "wo"} ;

why_IAdv = {s = "warum"} ;

156

in StructuralGer. Interrogative adverbs can also be constructed with

PrepIP : Prep -> IP -> IAdv ; -- with whom

by applying a preposition to an interrogative noun phrase:

PrepIP p ip = {

s = appPrep p ip.s ;

} ;

e.g. mit was, mit wem or mit welchem Freund. However, since the clause cl in QuestIAdv iadv

cl can already have an adverb, the same adverbial function of the clause may get filled twice,
e.g. warum arbeitet Johann, weil er Geld braucht. (While there is a category ClSlash = Cl/NP

for clauses missing a nominal object, there is no category Cl/Adv for a clause missing an adverb,
hence there are no specific constructions of type IAdv -> Cl/Adv -> QCl.)

Remark 93 : In German there are also many contractions of wo with a preposition, e.g. womit =
mit was, wofür, wohin, worin; some of these are interrogative pronominal adverbs, e.g. womit in
womit habt ihr das gemacht, but some can (also or only) be used to introduce a relative clause:
das Ereignis, woran wir denken. (Todo 47: implement these adverbs, by opers of types Prep ->

IPron -> IAdv and Prep -> RelPron -> RAdv, similar to the contraction of prepositions with
definite article singular or as tree transformations.)

Remark 94 : In German (and other languages), one may ask for the value on the implicit scale
provided by an adjective, as in wie alt, wie lang, wie kalt. These can be used as interrogative
complement to a copula, e.g. wie kalt ist das Wasser (c.f. IComp), but also attributively, e.g. in
wie kaltem Wasser schwimmst du? So we may need a construction HowA : A -> IAP to build
an interrogative adjective phrase from an adjective (possibly derived from a participle: e.g. ein
wie berühmter Autor ist er?). So far, there is no category IAP in Grammar or Extend. /

Modification of Interrogative Adverbs

An interrogative adverb can be modified by

AdvIAdv : IAdv -> Adv -> IAdv ;

which attaches an adverb at the end of the interrogative adverb, e.g. wo in diesem Land :

AdvIAdv i a = {s = i.s ++ a.s} ;

This may be applied to some atomic adverbs, e.g. wo überall, but not to all, e.g. ∗wo nirgends.
Similarly for wie gern, wie oft. The construction can also be used to ask for the value of an
adverbially used adjective, e.g. wie gut or how well in how well did you sleep:

Lang> l AdvIAdv how_IAdv (PositAdvAdj good_A)

how well

wie gut

(In particular, we don’t need an additional rule HowAdv : A -> IAdv.)

Remark 95 : One may also ask for the difference of values on the implicit scale provided by an
(adverbially used) adjective, e.g. wie viel besser geht es dir heute (als gestern)? or wieviel lieber
trinkst du Wein als Bier? There is an interrogative adverb

157

how8much_IAdv = {s = "wieviel"} ;

in StructuralGer, which at least gives

Lang> l AdvIAdv how8much_IAdv (ComparAdvAdj more_CAdv good_A (MassNP (UseN bread_N)))

how much more well than bread

wieviel besser als Brot

Todo 48: So, we might need a rule HowmuchA : A -> Adv that uses the comparative degree of
the adjective to form an adverb, e.g. how much better than – as. Or else the above modification
AdvIAdv iadv adj : IAdv should be able to use a degree of adj depending on the iadv. Also,
it should be possible to drop the comparison part. /

Q63: It seems that we need to distinguish (interrogative) adverbs in positive from adverbs in
comparative degree, and both are split phrases: Johann ist genau so schnell gefahren wie du
and Johann ist schneller gefahren als du, as well as wieviel schneller ist Johann gefahren als du?

5.4.7. Interrogative Verb Phrases

Todo 49: Implement the four constructions of interrogative verb phrases QVP, ComplSlashIP,
QuestQVP, AdvQVP and AddAdvQVP. (Lincat QVP = ?)

5.4.8. Interrogative Complements to Copula Verbs

Finally, interrogative complements of copula verbs vary in agreement, so they can be
adapted to the agreement features of the nominal subject, e.g. was für ein Narr ist Johann, was
für Narren waren wir for number, but in some contexts also for gender (or rather sex), e.g. ∗was
für eine Mutter ist Johann, though was für eine Bestie|Flasche ist er is grammatical.

IComp = {s : Agr => Str ; ext : Str} ;

In Lang, there are only two ways to construct interrogative complements:

CompIAdv : IAdv -> IComp ; -- where (is it)

CompIP : IP -> IComp ; -- who (is it)

implemented by

CompIAdv a = {s = _ => a.s ; ext = ""} ;

CompIP ip = {s = _ => ip.s ! Nom ; ext = "" } ;

The second one also allows interrogative complements as e.g. which car in which car do you like.

A further construction from an interrogative adjective phrase

ICompAP : AP -> IComp ; -- "how old"

is given in Extend resp. Extra. However, it can also be used with adjective phrases in compar-
ative or superlative degree and then gives poor results, e.g. how much older as an IComp.

Extend also provided a construction from an interrogative quantifier,

CompIQuant : IQuant -> IComp ; -- which (is it) [agreement to NP]

158

Constructions of Interrogative Clauses

First, interrogative Yes-No-clauses, in all moods, tenses, anteriorities and polarities, are built
from a clause by

QuestCl : Cl -> QCl ; -- does John walk

They begin with a finite verb (and should end in a question mark ?), but as subordinate clauses,
start with ob (eng. whether) and have the finite verb at the end:

QuestCl cl = {

s = \\m,t,a,p =>

let cls = cl.s ! m ! t ! a ! p

in table {

QDir => cls ! Inv ;

QIndir => "ob" ++ cls ! Sub

}

} ;

The second construction of an interrogative clause

QuestVP : IP -> VP -> QCl ; -- who walks

puts an interrogative pronoun as nominal or prepositional subject in front of a verb prase:

QuestVP ip vp = {

s = \\m,t,a,p =>

let

who = appPrep vp.c1 ip.s ;

cl = (mkClause who (agrP3 ip.n) vp).s ! m ! t ! a ! p ;

in table {

QDir => cl ! Main ;

QIndir => cl ! Sub

}

} ;

Remark 96 : In QuestionGer, the subject string was ip.s ! Nom, so the rule did not work for
(passive) verb phrases with prepositional subject, like auf wen wird gewartet, or with (active)
verbs with non-nominative subject, e.g. wen friert, wem ist kalt. (But frieren can also have
nominative subject: ich friere, man fror.)

Third, an interrogative clause can be built with

QuestSlash : IP -> ClSlash -> QCl ; -- whom does John love

by adding an interrogative nominal or prepositional object in front of an incomplete clause:

QuestSlash ip slash = {

s = \\m,t,a,p =>

let

cls = slash.s ! m ! t ! a ! p ;

159

who = appPrep slash.c2 ip.s ;

in table {

QDir => who ++ cls ! Inv ;

QIndir => who ++ cls ! Sub

}

} ;

This rule (and the original implementation of SlashVP using mkClause) is used in parsing
e.g. wen liebt ihr, welche Bücher habt ihr gelesen or auf was wartet ihr.

Lang> l (QuestSlash whoSg_IP (SlashVP (UsePron youPl_Pron) (SlashV2a love_V2)))

whom do you love

wen liebt ihr

Lang> l (QuestSlash whatSg_IP (SlashVP (UsePron youPl_Pron) (SlashV2a wait_V2)))

what do you wait for

auf was wartet ihr

Todo50: Does the modified implementation of SlashVP in TestLangGer using mkClSlash allow
us to parse reflexives correctly, i.e. examples like welches seiner (eigenen) Werke liebt man am
meisten, wer liebt seine (eigenen) Kinder nicht?

Fifth, interrogative clauses can also consist of an interrogative adverb followed by a clause:

QuestIAdv : IAdv -> Cl -> QCl ; -- why does John walk

In direct questions, the finite verb follows the interrogative adverb, e.g. warum geht Johann, in
subordinate question, the finite verb is at the end, e.g. (ich weiß,) warum Johann geht :

QuestIAdv iadv cl = {

s = \\m,t,a,p =>

let

cls = cl.s ! m ! t ! a ! p ;

why = iadv.s

in table {

QDir => why ++ cls ! Inv ;

QIndir => why ++ cls ! Sub

}

} ;

Copula verbs can be combined to clauses with complements of category Comp, which can be an
AP, NP, Adv or CN, and nominal subjects. Accordingly, there is a rule

QuestIComp : IComp -> NP -> QCl ; -- where is John

to construct an interrogative clause by combining a copula verb and its nominal subject with
an interrogative complement IComp, which can be an interrogative AP, e.g. wie klug bist du,
an interrogative NP resp. IP, e.g. wer bin ich, an interrogative Adv resp. IAdv, e.g. wo seid ihr,
an interrogative CN, e.g. was für ein Mensch ist Johann, ein wie alter Junge ist Johann.109 The

109Recall that Lang has no class of copula verbs; the verbal phrase is always formed with to be. Aarne: Other
copula verbs, e.g. to become or to remain, may not be combined with an arbitrary Comp or IComp: here|where is
John, but *here|where becomes John.

160

interrogative complement can be splittable and admits extraction of a part, e.g. wieviel älter
bist du, als wir vermutet haben.

The implementation of QuestIComp puts the extractable part of the given interrogative com-
plement icomp into the ext-field of the verb phrase vp built from the copula verb, combines
the nominative form of the given noun phrase np with the vp to a clause cls, and prefixes this
clause with the non-extracted part of icomp adapted to the agreement features of the np:

QuestIComp icomp np = {

s = \\m,t,a,p =>

let

vp = predV sein_V ** {ext = icomp.ext};

subj = mkSubject np vp.c1 ;

cls = (mkClause subj.s subj.a vp).s ! m ! t ! a ! p ;

why = icomp.s ! np.a

in table {

QDir => why ++ cls ! Inv ;

QIndir => why ++ cls ! Sub

}

} ;

Construction of Questions

The only way to construct a question or interrogative sentence is by fixing the tempus and
polarity arguments of an interrogative clause:

UseQCl : Temp -> Pol -> QCl -> QS ; -- who had not slept

This construction is implemented, like the corresponding one for sentences on p.142, by selecting
from the paradigm cl.s of an interrogative clause cl the strings for given values t.m of mood,
t.t of tense, t.a of anteriority and t.p of polarity, which are selected from arguments t:Temp

and p:Pol:

UseQCl t p cl = {

s = \\q => t.s ++ p.s ++ cl.s ! t.m ! t.t ! t.a ! p.p ! q

} ;

Recall from p.142 that t.s and p.s are empty strings.

There are no modification rules for interrogative clauses and questions.

161

5.4.9. Imperatives

Category

The implementation type of the category Imp of imperatives

Imp = {s : Polarity => ImpForm => Str} ;

consists of an inflection paradigm varying in polarity and imperative form. There are singular
and plural forms, and polite and familiar forms, (given in common/ParamX.gf):

param

ImpForm = ImpF Number Bool ; -- True = polite, False = familiar.

There are two familiar forms in each polarity, e.g. schäme dich (nicht), schämt euch (nicht),
and two polite forms, e.g. schämen Sie sich (nicht), helfen Sie einander (nicht). Notice that for
polite forms, a difference in number is apparent in the use of reflexive versus reciprocal pronoun
in the verb phrase.

Construction of Imperatives

-- An imperative is straightforwardly formed from a verb phrase.

-- It has variation over positive and negative, singular and plural.

ImpVP : VP -> Imp ; -- love yourselves

A nicer example would be love each other, but reciprocal pronouns are not part of Lang.

To build an imperative ImpVP vp from a verb phrase vp, the function ImpVP first generates the
finite verb forms of the verb phrase, in particular the imperative verb forms (contained in vps

= useVP vp), and then constructs a paradigm varying in polarity pol and imperative form n:
for familiar imperative form, the second person imperative verb form in the number given by n

is chosen, with separable verb prefixed separated. The imperative verb form comes in front, the
negation, objects, adverbs and infinite verb part follow.

ImpVP vp = let vps = useVP vp in {

s = \\pol,n =>

let

ps = case n of {

ImpF _ True => <P3,"Sie",True> ; -- setzen Sie sich

_ => <P2,[],False>

} ;

agr = Ag Fem (numImp n) ps.p1 ; --- g does not matter

verb = vps.s ! False ! agr ! VPImperat ps.p3 ;

inf = vp.inf.inpl.p2 ++ verb.inf ; -- HL .s/.inpl.p2

obj = (vp.nn ! agr).p2 ++ (vp.nn ! agr).p3 ++ (vp.nn ! agr).p4 ++ vp.adj

in

verb.fin ++ ps.p2 ++ (vp.nn ! agr).p1

++ vp.a1 ++ negation ! pol ++ obj ++ vp.a2 ++ inf ++ vp.ext

} ;

162

The parameters pol:Polarity of imperatives is fixed by turning imperatives into utterances, us-
ing UttImpSg and UttImpPl from the module Phrase, p.168. In particular, since CatGer.linref
VP uses positive polarity as default, imperatives with positive polarity can be parsed as Imp, but
those with negative polarity can only be parsed as Utt.

Lang> p -cat=Imp "komm"

ImpVP (UseV come_V)

Lang> p -cat=Imp "komm nicht"

The parser failed at token 2: "nicht"

Lang> p -cat=Utt "komm nicht"

UttImpSg PNeg (ImpVP (UseV come_V))

Remark 97 : Gender g does not matter, because the singular polite imperative form ImpF Sg

True is never used. If it were, we had agr = Ag g Sg P3, so a possessive object (vp.nn ! agr).p2

depended on gender, e.g. seine Pflicht versus ihre Pflicht (eng. one’s duty). For the plural po-
lite imperative form ImpF Pl True we need a “polite possessive pronoun”, which Lang does not
provide: tu deine Pflicht, tut eure Pflicht, tun Sie Ihre Pflicht. Actually, number is irrelevant
for the polite imperative in German; the parameter type could be a 3-valued domain:

ImpForm = Familiar Number | Polite

Todo51: Maybe the adverb vp.a2 comes too late, or always AdV has to be inserted into vp.a1.
More testing is needed. Some mistakes are

1. A predicate with copula verb and reflexive nominative complement like to always be oneself
= immer man selbst sein has the personal pronoun as part of the complement, so the
imperatives are sei immer du selbst, seid immer ihr selbst, seien Sie immer Sie selbst.

Lang> gr -tr -cat=Imp ImpVP ? | l

ImpVP (SelfAdvVP (AdVVP always_AdV UseCopula))

always be yourself

sei immer selbst

For vp = SelfAdvVP (...), we have vp.a2 = immer selbst. To fix this, we would need
vp.a2 : Agr => Str instead of vp.a2 : Str.

Remark 98 : Modal verbs do not have imperatives. Instead of müsse singen, a sentence (with
emphasis on the infinite verb) is used: du mußt singen, du kannst gehen, du darfst schlafen, du
willst arbeiten.110 But copula verbs do have imperatives: sei still, bleibe hier, werde erwachsen.

Modification of Imperatives

The abstract grammar of Lang has a rule to modify imperatives by adverbs:

AdvImp : Adv -> Imp -> Imp ; -- please love yourselves

However, the please in the example shown is not an adverb, but a vocative: please Voc:Voc.
Vocatives are added at the end, not at the beginning, of an utterance by a phrase construction
PhrUtt : PConj -> Utt -> Voc -> Phr in the module Phrase. It might be reasonable to
allow for a vocative at the beginning or in the midst of imperatives, i.e. to introduce rules

110A tree transformation can handle this, see Section ??.

163

VocImp : Voc -> Imp -> Imp ; ImpVocVP : Voc -> VP -> Imp ;

to get bitte, Herr Ober, bringen Sie mir ein Bier and bringen Sie mir, bitte, ein Bier.

The rule AdvImp is implemented for Eng, Bul, Romance, and Scand only, mostly by

AdvImp adv imp = {

s = \\pol,impform => adv.s ++ imp.s ! pol ! impform

} ;

Since the verb phrase argument of ImpVP : VP -> Imp may already contain an adverb, a rule
to add an adverb to an imperative seems unnecessary.

But: there are imperatives with a leading conditional: wenn du Hilfe brauchst, ruf mich an, and
imperatives where the adverb follows the verb: üb’ immer Treu’ und Redlichkeit or quäle nie
ein Tier im Scherz.

5.5. Conjunction (incomplete)

For many categories, a list of two or more expressions of this category can be conjoined to an
expression of the category, mainly by putting a conjunction like and Conj:Conj between the
final two elements and a comma between the remaining elements of the list.

For any conjoinable category C there is a category ListC and a conjoin construction

ConjC : Conj -> ListC -> C ;

and two list constructors

BaseC : C -> C -> ListC ;

ConsC : C -> ListC -> ListC ;

Implementations of these are provided in ConjunctionGer.gf or ExtendGer.gf. A conjunction
word is a split string, e.g. 〈entweder,oder〉 or 〈sowohl,als auch〉. The implementation category
for conjunctions therefore is

Conj = {s1,s2 : Str ; n : Number} ;

where the field n:Number is relevant only for noun phrase coordination. Some examples of
conjunction words are given in StructuralGer,

and_Conj = {s1 = [] ; s2 = "und" ; n = Pl} ;

or_Conj = {s1 = [] ; s2 = "oder" ; n = Sg} ;

if_then_Conj = {s1 = "wenn" ; s2 = comma ++ "dann" ; n = Sg} ;

We begin with conjunctions for a category with simple implementation type {s : Str}.

Conjunction of interrogative adverbs

Because the implementation category of interrogative adverbs is IAdv = {s : Str}, the imple-
mentation category of ListIAdv, with special notation [IAdv], is

[IAdv] = {s1,s2 : Str} ;

164

Here, s2 is the field for the final element of the list. The constructors are implemented by

BaseIAdv x y = {s1 = x.s ; s2 = y.s} ;

ConsIAdv x xs = {s1 = x.s ++ comma ++ xs.s1 ; s2 = xs.s2} ;

ConjIAdv conj ss = {s = conj.s1 ++ ss.s1 ++ conj.s2 ++ ss.s2} ;

For example, a conjunction of three interrogative adverbs is as follows:

TLang> l (ConjIAdv and_Conj (ConsIAdv where_IAdv (BaseIAdv when_IAdv how_IAdv)))

where , when and how

wo , wann und wie

Conjunction of adverbs

The conjunction of adverbs is implemented similarly. (GF provides some support to ease such
implementations, which we don’t use here.)

TLang> l ConjAdv neither7nor_DConj

(BaseAdv (PrepNP in8front_Prep (DetCN (DetQuant DefArt NumSg) (UseN house_N)))

(PrepNP in_Prep (DetCN (DetQuant DefArt NumSg) (UseN garden_N))))

neither in front of the house nor in the garden

weder vor dem Haus noch im Garten

So far, there is no possibility to separate the initial from the final part of the conjoined adverb,
as e.g. in wir haben weder im Haus gearbeitet noch im Garten.

Conjunction of prepositions (todo)

A coordination of prepositions expecting the same case is quite common, e.g. das Buch lag
weder auf noch unter dem Tisch. But since the category Prep does not fix the case governed by
prepositions, this restriction cannot be implemented in the coordination of prepositions.

Q64: Since there are several types of Preposition, i.e. cases, pre-, post-, circumpositions, and
contracting prepositions, a coordination rule would probably be overgenerating in unexpected
ways. Better leave it?

Conjunction of determiners

It seems that for GF, roughly, the initial part of a (simple) noun phrase obtained by dropping
the noun is considered as a determiner with adjective phrase, or DAP = NP/N, e.g. the third best
book 7→ the third best. Since DAP has paradigms s,sp for usage with following adjective phrase
and for stand-alone usage, the implementation type for ListDAP is

[DAP] = {s1,sp1,s2,sp2 : Gender => Case => Str ; n : Number ; a : Adjf} ;

(We ignore here the contraction of prepositions with a leading definite article in singular and
hence omit the flags hasDefArt and isDef.) The list constructors concatenate forms for each
paradigm separately:

BaseDAP x y = {

s1 = x.s ; sp1 = x.sp ; s2 = y.s ; sp2 = y.sp ; n = y.n ; a = y.a} ;

165

ConsDAP x xs = {

s1 = \\g,c => x.s!g!c ++ comma ++ xs.s1!g!c ;

sp1 = \\g,c => x.sp!g!c ++ comma ++ xs.sp1!g!c ;

s2 = xs.s2 ; sp2 = xs.sp2 ; n = xs.n ; a = xs.a} ;

The conjoin construction is (preliminarily) implemented by

ConjDet conj ss = {

s = \\b,g,c => conj.s1 ++ ss.s1!g!c ++ conj.s2 ++ ss.s2!g!c ;

sp = \\b,g,c => conj.s1 ++ ss.sp1!g!c ++ conj.s2 ++ ss.sp2!g!c ;

n = conj.n ;

a = Weak ; isDef,hasDefArt = False} ; -- ad hoc

It may be better to use the values of the adjective inflection from the last list element and the
definiteness values of the first list element. Perhaps, conjunctions like the following hardly occur:

TLang> l ConjDet and_Conj

(ConsDAP (DetDAP (DetQuant DefArt NumSg))

(ConsDAP (AdjDAP (DetDAP somePl_Det) (PositA brown_A))

(BaseDAP (DetDAP (DetQuant this_Quant NumSg))

(DetDAP few_Det))))

der , einige braune , dieser und wenige

Conjunction of adjective phrases (todo)

How should split adjectives ap = {s:AForm => Str; s2:Case => Str} be coordinated? A
problem here is the conjunction of comparison parts s2: colder than water and warmer than
ice is fine predicatively, but how to use the conjunction attibutively in German? eine kältere
Flüssigkeit als Wasser und wärmere als Eis? Or rather as in English, with post-nominal at-
tribute: eine Flüssigkeit, kälter als Wasser und wärmer als Eis? What if some, but not all
conjuncts are split? E.g. eine rote, aber flüssigere Farbe als Blut, or eine rote Farbe, aber
flüssiger(e?) als Blut? If we had a boolean flag to test whether one of the s2-fields is non-
empty, we could force a postnominal coordinated attribute.

As a compromise, we currently combine the comparison noun phrase (in nominative!) to the
inflection part of each conjunct. This gives a wrong case for adjectival objects (of a V2A) in

male die Erde sowohl kleiner als die Sonne als auch größer als der Mond

and a strange, but comprehensible prenominal attribute in

viele sowohl kleinere als die Sonne als auch größere als der Mond Sterne

Conjunction of sentences

In the coordination of sentences, it seems that the conjunction can restrict the order of the
component sentences. For example, und uses the same order for all sentences of the list,

Main sie liest das Buch und er trinkt das Bier
Inv liest sie das Buch und trinkt er das Bier (?)
Sub (wenn) sie das Buch liest und er das Bier trinkt

166

but 〈weder,noch〉 or 〈einerseits,andererseits〉 demand order Inv on both conjunct sentences,

Main weder liest sie das Buch, noch trinkt er das Bier
Inv weder liest sie das Buch noch trinkt er das Bier (?) – liest weder . . .
Sub (wenn) weder sie das Buch liest noch er das Bier trinkt

Moreover, if then Conj = 〈wenn,dann〉 expects Sub in the first and Inv in the second conjunct:

wenn sie das Buch liest, dann trinkt er das Bier

Remark 99 : It seems to me that 〈wenn,dann〉 is not a conjunction, but a subjuctor wenn or falls
(constructing an adverbial sentence) and an adverb correlate dann, so that falls sie das Buch
liest, dann is an adverb in a basic sentence. /

The current implementation of sentence conjunction is:

BaseS x y = { -- twoTable Order ;

s1 = x.s ;

s2 = table {Inv => y.s ! Main ; o => y.s ! o}

} ;

ConsS x xs = { -- consrTable Order comma ;

s1 = \\o => x.s ! Inv ++ comma ++ xs.s1 ! case o of {Inv => Main ; _ => o} ;

s2 = xs.s2

} ;

ConjS conj ss = conjunctDistrTable Order conj ss ;

But this gives, for example, at least an incorrect inverse order:

TLang> p -cat=S "Mary reads the book and John drinks the beer" | l -table

s : Mary reads the book and John drinks the beer

s Main : Maria liest das Buch und Johann trinkt das Bier

s Inv : liest Maria das Buch und Johann trinkt das Bier

s Sub : Maria das Buch liest und Johann das Bier trinkt

So it seems that in Sub resp. Inv order, both component sentences have to be in Sub resp. Inv
order, but in Main order, the order of the component sentences is determined by the conjunct.

Q65: Do we have to change the implementation type of Conj to

Conj = {s1,s2 : Str ; n : Number ; o1,o2 : Order}

and adapt the constructors for sentence coordination?

Conjunction of infinitives (todo)

Expl. Um die Region zu mythisieren, musste Kundera nicht nur deren Gegenwart verkennen,
sondern auch ihre Geschichte kräftig schönen. (der Freitag, 18. Januar 2024)

Conjunction of noun phrases

Nominal objects can be coordinated, but to parse them as noun phrases, they have to be given
in nominative (by the restriction in linref NP). For example, nicht nur die Frauen , sondern
auch die Männer has the tree

167

ConjNP notonly_butalso_Conj

(BaseNP (DetCN (DetQuant DefArt NumPl) (UseN woman_N))

(DetCN (DetQuant DefArt NumPl) (UseN man_N)))

Q66: How can we implement a coordination of prepositional objects, e.g. (wir warten) weder auf
dich noch auf ihn or (er arbeitet) sowohl für die Firma als auch für sich selbst? Since GF has
no category of prepositional phrases, it is not obvious how to handle this.

Conjunction of imperatives

Since the linearization category of imperatives is Imp = {s : Polarity => ImpForm => Str},
the implementation of conjoined imperatives is clear:

lincat

[Imp] = {s1,s2 : Polarity => ImpForm => Str} ;

lin

BaseImp x y = {s1 = \\p,f => x.s ! p ! f ; s2 = \\p,f => y.s!p!f} ;

ConsImp x xs =

{s1 = \\p,f => x.s ! p ! f ++ comma ++ xs.s1 ! p ! f ; s2 = xs.s2} ;

ConjImp conj xs =

{s = \\p,f => conj.s1 ++ xs.s1 ! p ! f ++ conj.s2 ++ xs.s2 ! p ! f} ;

Here is an example:

TLang> l ConjImp and_Conj

(BaseImp (AdvImp now_Adv (ImpVP (UseComp (CompAP (PositA froh_A)))))

(ImpVP (UseV laugh_V)))

jetzt sei froh und lache

5.6. Phrase

The module Phrase contains, among other things, constructions of utterances. These are
expressions of category Utt, which has the implementation type

Utt = {s : Str} ;

There are imperatives to a single or to several persons, and polite imperatives in plural:

UttImpSg : Pol -> Imp -> Utt ; -- (don’t) love yourself

UttImpPl : Pol -> Imp -> Utt ; -- (don’t) love yourselves

UttImpPol : Pol -> Imp -> Utt ; -- (don’t) sleep (polite)

These are implemented by

UttImpSg pol imp = {s = pol.s ++ imp.s ! pol.p ! ImpF Sg False} ;

UttImpPl pol imp = {s = pol.s ++ imp.s ! pol.p ! ImpF Pl False} ;

UttImpPol pol imp = {s = pol.s ++ imp.s ! pol.p ! ImpF Sg True} ;

168

5.7. Text

The module Text of Grammar is implemented in GrammarGer by a restriction

TextX - [Tense,Temp,Adv,CAdv],

of a language-independent concrete module TextX which extends a module CommonX of imple-
mentation types like

Text = {s:Str} ;

Phr = {s:Str} ;

and implementation types for Tense, Temp, Adv, CAdv that are changed for German in CatGer.
The text constructors

TEmpty : Text ;

TFullStop, TQuestMark, TExclMark : Phr -> Text -> Text ;

are implemented by

concrete TextX of Text = CommonX ** open Prelude in {

lin

TEmpty = {s = []} ;

TFullStop x xs = {s = x.s ++ SOFT_BIND ++ "." ++ xs.s} ;

TQuestMark x xs = {s = x.s ++ SOFT_BIND ++ "?" ++ xs.s} ;

TExclMark x xs = {s = x.s ++ SOFT_BIND ++ "!" ++ xs.s} ;

}

Here, the token SOFT BIND instructs the parser to glue the period, question mark or exclamation
mark to the string x.s of the argument x:Phr without inserting a space.

5.8. Structural (todo)

Remark 100. The implementations of the pre-determiners in StructuralGer

all_Predet = {s = appAdj (regA "all") ; c = noCase ; a = PAgNone} ;

most_Predet = {s = appAdj (regA "meist") ; c = noCase ; a = PAgNone} ;

oper noCase : {p : Str ; k : PredetCase} = {p = [] ; k = NoCase} ;

do not work properly, yielding “all myself” = “aller ich” and “most myself” = “meister ich”.
These combinations do not make much sense. At least we should have a plural agreement in

all_Predet = {s = appAdj (regA "all") ; c = noCase ; a = PAg Pl} ;

(or do we want to allow “all mein schönes Geld”, too?) Then we get “ich liebe alle meine jungen
Kinder”, although likewise “alle mein junges Kind”. Maybe we could let all Predet be empty
in combination with singular forms of ReflPron, and “wir|ihr|sie alle” in plural.

It seems that most, “die meisten” in German, is more a quantifier than a pre-determiner.

169

most_Predet = {

s = \\n,g,c => let gn = MorphoGer.gennum g n ;

adj = (P.mkA "viel" "mehr" "meiste").s ! Superl

in

MorphoGer.artDef ! gn ! c ++ adj ! (agrAdj Weak gn c) ;

c = {p = [] ; k = PredCase Gen} ;

a = PAg Pl} ;

By the test for pronoun in PredetRNP, this gives “die meisten von uns”, but “die meisten meiner
kleinen Kinder”. (MorphoGer subsumes ResGer.)

The prepositions – c.f. Remark 33

possess_Prep = P.von_Prep ; -- mkPrep "von" P.dative ;

part_Prep = P.von_Prep ; -- mkPrep "von" P.dative ;

are obsolete; they can be used with PrepNP prep np to build an adverbial, which is incorrect.
Better use the possessive and partitive constructions PossNP,PartNP : CN -> NP -> CN and
load Structural - [possess Prep, part Prep] in a grammar used for parsing.

The determiner someSg Det:Det (eng. some) is implemented by

someSg_Det = {

s = _,g,c => "ein" + pronEnding ! GSg g ! c ; -- ein, eine, ein

sp = _,g,c => "ein" + detEnding ! GSg g ! c ; -- einer, eine, eines

n = Sg ; a = Mixed ; isDef = False ; hasDefArt = False

} ;

It has the same forms as the construction DetQuant IndefArt NumSg (eng. a/one) from the
indefinite article in singular (up to the irrelevant aPl:Adjf). This causes unnecessary ambiguities
in parsing; perhaps we should indicate intonation, using "eı́n" here, to avoid these ambiguities.

Remark 101 : There are three “phrase-beginning conjunctions” in Structural,

but_PConj = {s = "aber"} ;

otherwise_PConj = {s = "sonst"} ;

therefore_PConj = {s = "deshalb"} ;

This cannot work for sentences, since aber expects Main sentence order, the other two expect
Inv sentence order. But UttS forces Main order, leading to wrong orders for deshalb and sonst :

Lang> p -tr -lang=Eng "therefore she laughs" | l

PhrUtt therefore_PConj (UttS (UseCl (TTAnt TPres ASimul) PPos

(PredVP (UsePron she_Pron) (UseV laugh_V)))) NoVoc

therefore she laughs

deshalb sie lacht

In German, deshalb is an adverb, not a PConj. Q67: Does PConj make sense for German, and
can we expect a strict correspondence between PConj expressions of different languages? One
can put aber or und in front of a sentence in Main order (so these are PConjs), e.g. the first
sentence of [4], Aber Jakob ist immer quer über die Gleise gegangen. /

170

5.9. Idiom (todo)

Discuss at least

ImpersCl vp = mkClause "es" (agrP3 Sg) vp ; -- it is cold

GenericCl vp = mkClause "man" (agrP3 Sg) vp ;

For German, we don’t need to add an indefinite personal pronoun man in the lexicon, since
reflexive and possessive forms are the same as those of er and obtained from the agreement value
agrP3 Sg. (But in English, there are special forms oneself and one’s, so at least a separate
agreement value is needed.) Notice that although man has singular agreement, it can be used
with plural reciprocal pronoun: man hilft einander.

Check: A generic clause GenericCl vp is a simple clause; sentences like wenn man ..., dann ...
man ... have to be built using SubjS and two generic clauses.

Q68: What about man=einer, in das können die doch nicht mit einem machen!

Q69: Are there rules in Grammar (or Extend) that care about correlates? i.e. sentences with
an additional (non-complement) es or das at the “original position” from where a sentential
complement is moved? It may be a subject sentence, as in es ist seltsam, dass die Erde nicht
flach ist, or an object senctence, as in wir glauben es|das nicht, dass die Erde eine Scheibe ist.
Likewise with infinitival complements: es ist schön, im Meer zu schwimmen and wir glauben es
kaum, euch schon wieder zu treffen.

Bug 1 : There is no difference between the it in an ImpersCl and the personal pronoun it. While
an infinitival subject is recognized correctly,

Lang> p -cat=Cl "to sleep is good"

PredSCVP (EmbedVP (UseV sleep_V)) (UseComp (CompAP (PositA good_A)))

when the infinitival subject is moved and replaced by a correlate it, we get the wrong trees

Lang> p -cat=Cl "it is good to sleep"

ImpersCl (UseComp (CompAP (SentAP (PositA good_A) (EmbedVP (UseV sleep_V)))))

PredVP (DetNP (DetQuant DefArt NumSg))

(UseComp (CompAP (SentAP (PositA good_A) (EmbedVP (UseV sleep_V)))))

PredVP (UsePron it_Pron)

(UseComp (CompAP (SentAP (PositA good_A) (EmbedVP (UseV sleep_V)))))

What is wrong here is that SentAP builds an adjective phrase good to sleep, which can then be
turned into a verb phrase

(UseComp (CompAP (SentAP (PositA good_A) (EmbedVP (UseV sleep_V)))))

which can be combined with the expletive it of it rains (and ImpersCl) as well as the pronoun
it, as well as any noun phrase as subject. This would similarly allow a predicate hard to follow
in your argument is hard to follow, which must be analyzed as a version of it is hard to follow
your argument or to follow your argument is hard. Similarly: a good man is hard to find.

But this gives Chomsky’s John is easy to please and John is eager to please examples:

Lang> p -cat=Cl "John is good to see"

171

PredVP (UsePN john_PN)

(UseComp (CompAP (SentAP (PositA good_A)

(EmbedVP (ComplSlash (SlashV2a see_V2)

(DetNP (DetQuant IndefArt NumPl)))))))

Lang> p -cat=Cl "John is good to sleep"

PredVP (UsePN john_PN)

(UseComp (CompAP (SentAP (PositA good_A)

(EmbedVP (UseV sleep_V)))))

The number agreement in good men are hard to find indicates that this is a version of object-
to-subject raising.

5.10. Tense

Recall from Section 3.1.15 that the grammar Lang has syntactic catetegories Temp, Tense, Ant
and Pol that are used to select 16 = 4 x 2 x 2 forms of clauses for all languages in the library.
Each clause form is defined by a selection of one out of four values for tense, two for anteriority
and two for polarity. Eight “expressions” of the syntactic category Temp are constructed by

TTAnt : Tense -> Ant -> Temp ;

from the four constants TPres, TPast, TFut, TCond of Tense and two constants ASimul, AAnter
of Ant. The module abstract/Tense.gf also provides two constants PPos, PNeg of Pol.

For German, the implementation categories of Temp, Tense, Ant and Pol are

lincat

Temp = {s : Str ; t : ResGer.Tense ; a : Anteriority ; m : Mood} ;

Tense = {s : Str ; t : ResGer.Tense ; m : Mood} ;

Ant = {s : Str ; a : Anteriority} ;

Pol = {s : Str ; p : Polarity} ;

Besides a field s for a string, the records of these types have fields t, a, m or p for a value of the
parameter types (c.f. Section 5.4.2)

param

Tense = Pres | Past | Fut | Cond ;

Anteriority = Simul | Anter ;

Mood = MIndic | MConjunct ;

Polarity = Pos | Neg ;

The constants of categories Ant and Pol are interpreted by empty strings [] = "" and corre-
sponing parameters (via a module TenseX):

lin

ASimul = {s = [] ; a = Simul} ;

AAnter = {s = [] ; a = Anter} ; --# notpresent

PPos = {s = [] ; p = Pos} ;

PNeg = {s = [] ; p = Neg} ;

172

In Grammar, the syntactic categories Tense and Ant are used only as argument categories of
TTAnt : Tense -> Ant -> Temp, and only Temp and Pol are argument categories of other
syntactic constructions (namely, UseCl, UseQCl, UseRCl and UseSlash). The four constants
of category Tense and the construction TTAnt to interpret the 16 values of category Temp are
implemented as follows:

concrete TenseGer of Tense =

CatGer [Tense,Temp], TenseX [Ant,Pol,AAnter,ASimul,PNeg,PPos]

** open ResGer in {

lin

TTAnt t a = {s = t.s ++ a.s ; t = t.t ; a = a.a ; m = t.m} ;

TPres = {s = [] ; t = Pres ; m = MIndic} ;

TPast = {s = [] ; t = Past ; m = MIndic} ; --# notpresent

TFut = {s = [] ; t = Fut ; m = MIndic} ; --# notpresent

TCond = {s = [] ; t = Cond ; m = MIndic} ; --# notpresent

}

The paradigm temp.s of any expression temp = TTAnt t a : Temp is the empty string, temp.s
= t.s ++ a.s. Likewise, the paradigm p.s of the two expressions p:Pol is the empty string.
Hence, an application of UseCl : Temp -> Pol -> Cl -> S can turn any clause cl:Cl into a
sentence s:S by parsing empty substrings of the input to any of the eight values of Temp and
two values of Pol. For example, we have

Lang> p -cat=S "wir schlafen nicht"

UseCl (TTAnt TPres ASimul) PNeg (PredVP (UsePron we_Pron) (UseV sleep_V))

Notice that the four values of category Tense are implemented by four values of the linearization
category TenseGer that have indicative mood MIndic built in, but there are four more values
with conjunctive mood MConjunct. The paradigm of a clause,

Cl = {s : Mood => ResGer.Tense => Anteriority => Polarity => Order => Str} ;

covers 2 x 4 x 2 x 2 = 32 sentences, i.e. paradigms of type Order => Str. To parse sentences
in conjunctive mood, one can add values like (c.f. ExtraGer)

TImpfSubj = {s = [] ; t = Past ; m = MConjunct} ; --# notpresent

to the category Tense, but these would not be linearized to other languages in the library.

5.11. Extension of LangGer to AllGer

There is a module abstract/Extend.gf with declarations of constructions that are available in
several languages, but perhaps cannot be implemented for all languages of the resource gram-
mar library. Implementations of the common abstract language Grammar,Extend can be ob-
tained by means of a default implementation common/ExtendFunctor.gf of the declarations

173

in Extend.111 The language-specific implementation ExtendGer overwrites those default imple-
mentations where needed.

There is also a module ExtraGer of constructions declared in ExtraGerAbs that are specific for
German.112 This leads to a grammar

abstract AllGerAbs =

Lang,

IrregGerAbs,

Extend --, Extra

** {} ;

with implementation

concrete AllGer of AllGerAbs =

LangGer,

IrregGer,

ExtendGer

** open ExtraGer in {} ---- to force compilation

;

Notice that in order to be able to linearize trees obtained with AllGer to other languages of the
library, the target languages must share the same abstract grammar AllGerAbs, although they
need not provide implementations for the irregular verbs of IrregGerAbs.

5.11.1. ExtendGer (partial)

The construction

GenNP : NP -> Quant ; -- this man’s

generalizes PossPron : Pron -> Quant. It is implemented in ExtendGer as

GenNP np = {

s,sp = \\gn,c => np.s ! False ! Gen ++ np.ext ++ np.rc ;

a = Strong ;

isDefArt = False ;

delCardOne = False

} ;

BUT: the rule leads to many trees. Since UseDAP is intended to replace DetNP, let us compare
the number of trees with either rule, after correcting DefArt.sp:

AllGerAbs> p -cat=NP "des Mannes Wagen" | ? wc -l ==> 182

AllGerAbs> p -cat=NP "des Mannes Wagen" | ? grep -v DAP | wc -l ==> 56

AllGerAbs> p -cat=NP "des Mannes Wagen" | ? grep -v DetNP | wc -l ==> 56

111See also gf-rgl/doc/DocExtend.hs for a script to create a documentation GF-RGL-Extend.html showing
which functions of Extend are implemented for which languages of the RGL.
112Extra was a previous version of Extend. For many languages of the library, the concrete grammars for Extra

and Extend overlap. For German, we have moved all constructions in Extra that are also declared in Extend to
ExtendGer, so that ExtraGer is small and can be loaded in combination with ExtendGer. The plan is to put some
constructions providing word-order variations to ExtraGer, in particular extractions of sentential complements.

174

And dessen alter Wagen has 228 trees!

AllGerAbs> p -cat=NP "dessen alter Wagen" | ? wc -l ==> 228

AllGerAbs> p -cat=NP "dessen alter Wagen" | ? grep -v DetNP | wc -l ==> 66

AllGerAbs> p -cat=NP "dessen alter Wagen" | ? grep -v DAP | wc -l ==> 2

The linearization of trees seems correct (all versions with endings -es and -e not shown):

AllGerAbs> l -table

DetCN (DetQuant (GenNP (DetCN (DetQuant (PossPron i_Pron) NumSg) (UseN man_N))) NumSg)

(AdjCN (PositA old_A) (UseN dog_N))

s False Nom : meines Manns alter Hund

s False Acc : meines Manns alten Hund

s False Dat : meines Manns altem Hund

s False Gen : meines Manns alten Hunds

ext :

rc :

But one cannot parse all forms, and the number of trees is rather absurd:

AllGerAbs> p -cat=Utt "meines Manns alter Hund" | ? wc -l ==> 2700

AllGerAbs> p -cat=Utt "meines Manns alten Hund" | ? wc -l ==> 120

AllGerAbs> p -cat=Utt "meines Manns altem Hund" | ? wc -l ==> 0

AllGerAbs> p -cat=Utt "meines Manns alten Hunds" | ? wc -l ==> 12240

AllGerAbs> p -cat=Utt "meines Manns alte Hunde" | ? wc -l ==> 60

AllGerAbs> p -cat=Utt "meines Manns alten Hunden" | ? wc -l ==> 0

AllGerAbs> p -cat=Utt "meines Manns alter Hunde" | ? wc -l ==> C-c C-c thread killed

Reflexive Noun Phrases

The abstract module Extend (and Extra) contains a category RNP of reflexive noun phrases,
which is implemented in ExtendGer by

RNP = {s : Agr => Case => Str ; rc,ext : Str ; isPron : Bool} ;

Reflexive noun phrases admit a verb phrase construction ReflRNP : VPSlash -> RNP -> VP

that generalizes the construction ReflVP : VPSlash -> VP of Verb. An rnp:RNP cannot be
used as subject of a clause, as it has no inherent agreement value.113 While the inflection
table np.s : Bool => Case => Str of a noun phrase np varies in Bool and Case to handle
contractions of preposition and definite articles, the inflection table rnp.s : Agr => Case =>

Str of a reflexive noun phrase rnp varies in agreement and case. The first construction of
reflexive noun phrases,

ReflPron : RNP ; -- myself (oneself)

113But then the comment on a:PredetAgr in the type of Predet below makes no sense! Subjects like die
meisten meiner Brüder need a fixed agreement value Ag Masc Pl P3, so the possessive cannot be constructed
with ReflPoss, but must be built by PossPron i Pron.

175

is just the reflexive (non-nominative) usage of personal pronouns, with special form sich instead
of ihn, sie, es in third person singular:

ReflPron = { -- personal pronoun, with "sich" in P3 Sg

s = ResGer.reflPron ; rc,ext = [] ; isPron = True } ;

The second construction is the possessive usage of personal pronouns,

ReflPoss : Num -> CN -> RNP ; -- my family, one’s nose

A proper implementation needs a case distinction on the construction of num by NumSg, NumPl,
or NumCard card: mein kleines Kind, meine kleinen Kinder, but instead of wenigstens 3 meine
Kinder we need wenigstens 3 meiner Kinder. Since this case distinction is impossible in GF, to
get at least the tolerable meine wenigstens 3 Kinder we put the possessive in front:

ReflPoss num cn = { -- HL 5/2022, mixed adjf, Duden 477

s = \\a,c => let adjf = case num.n of {Sg => Strong | Pl => Weak}

in possPron a num.n cn.g c ++ num.s ! cn.g ! c

++ cn.s ! adjfCase adjf c ! num.n ! c ++ cn.adv ;

ext = cn.ext ;

rc = cn.rc ! num.n ;

isPron = False } ;

It is not quite clear to me what is intended with the third construction

PredetRNP : Predet -> RNP -> RNP ; -- all my brothers

In ExtraEng, an application PredetRNP pdet rnp puts the fixed string pdet.s:Str in front of
the strings of the paradigm rnp.s : Agr => Str. This works with the pre-determiner only, but
for all and the reflexive pronoun, is all we meant to be replaced by all of us or we all (and what
about all I or most we)? For Ger, we use a flag RNP.isPron to allow for a special combination
of pre-determiners with ReflPron in the implementation by

PredetRNP pred rnp = rnp ** {

s = \\a,c => let n = case pred.a of {PAg n => n ; _ => numberAgr a} ;

g = genderAgr a ;

d = case pred.c.k of {NoCase => c ; PredCase k => k}

in case rnp.isPron of {

True => pred.s ! Pl ! Masc ! c ++ "von" ++ rnp.s ! a ! Dat ;

_ => pred.s ! n ! g ! c ++ pred.c.p ++ rnp.s ! a ! d} ;

isPron = False} ;

The special case with “von” makes only sense for “die meisten von uns” or “alle von uns”, but
is wrong for other pre-determines, e.g. gives “nur von uns” instead of “nur wir”. Perhaps, as
the name pre-determiner indicates, they should not be used in combination with ReflPron.

The construction PredetRNP can be used iteratively, which makes sense for nur nicht ich, nicht
nur ich, nicht alle meine Freunde, but less or not so for e.g. die meisten nur meiner Freunde.

A final construction

176

ConjRNP : Conj -> RNPList -> RNP ; -- my family, John and myself

builds a reflexive noun phrase from a list of reflexive (and non-reflexive) noun phrases by a
conjunction like und, oder, or a split conjunction like sowohl als auch . The category of lists
of reflexive noun phrases is a record of two paradigms,

RNPList = {s1,s2 : Agr => Case => Str} ;

and the conjunction rule is implemented by a built-in operation conjunctDistrTable2:

ConjRNP conj rnps = conjunctDistrTable2 Agr Case conj rnps

** {isPron = False ; ext,rc = []} ;

which constructs a paradigm s : Agr => Case => Str by putting a comma or the conjunction
conj between the strings of the paradigms in the list of n+ 2 elements. The list constructors

Base_rr_RNP : RNP -> RNP -> RNPList ; -- my family, myself

Base_nr_RNP : NP -> RNP -> RNPList ; -- John, myself

Base_rn_RNP : RNP -> NP -> RNPList ; -- myself, John

Cons_rr_RNP : RNP -> RNPList -> RNPList ; -- my family, myself, John

Cons_nr_RNP : NP -> RNPList -> RNPList ; -- John, my family, myself

are implemented by turning the non-reflexive noun phrases into a constant paradigm (containing
sentential or infinitival objects and relative clauses) before combining the paradigms:

Base_rr_RNP x y = twoTable2 Agr Case x y ;

Base_nr_RNP x y =

twoTable2 Agr Case {s = _,c => x.s ! False ! c ++ x.ext ++ x.rc} y ;

Base_rn_RNP x y =

twoTable2 Agr Case x {s = _,c => y.s ! False ! c ++ y.ext ++ y.rc} ;

Cons_rr_RNP x xs = consrTable2 Agr Case comma x xs ;

Cons_nr_RNP x xs = consrTable2 Agr Case comma

{s = _,c => x.s ! False ! c ++ x.ext ++ x.rc} xs ;

The rule Verb.ReflVP : VPSlash -> VP inserts a reflexive pronoun into the field vp.nn.p1 of
an incomplete verb phrase vp. A more general rule is needed that can insert any reflexive noun
phrase instead. This rule

ReflRNP : VPSlash -> RNP -> VP ; -- support my family and myself

is so far implemented by

ReflRNP vps rnp =

insertObj (\\a => appPrep vps.c2 (rnp.s ! a)) vps ;

Here, insertObj obj vps adds obj to vps.nn.p4, ignoring whether the obj is derived from a
pronoun rnp or not. Now that we have added fields isPron, rc and ext to RNP, we can improve
ReflRNP to make it generalize ReflVP. At least closer to a generalization of ReflVP is

177

ReflRNP vps rnp = insertObjReflNP vps rnp ;

where the operation insertObjReflNP vps rnp distinguishes between (reflexive) pronouns and
non-pronons, and considers all non-pronouns as light nominal objects inserted into vps.nn.p2.

insertObjReflNP : RNP -> ResGer.VPSlash -> ResGer.VP =

\rnp,vp -> insertObjRNP rnp vp.c2 vp ;

insertObjRNP : RNP -> Preposition -> ResGer.VPSlash -> ResGer.VP =

\rnp,prep,vp ->

let obj : Agr => Str =

\\a => prep.s ! CPl ++ rnp.s ! a ! prep.c ++ rnp.ext ++ rnp.rc

in vp ** {

nn = \\a =>

let vpnn = vp.nn ! a in -- acc-pron < pron < non-pron nominal < prep.

case <prep.t, rnp.isPron, prep.c> of {

<isCase,True,Acc> => <obj ! a ++ vpnn.p1, vpnn.p2, vpnn.p3, vpnn.p4> ;

<isCase,True,_> => <vpnn.p1 ++ obj ! a, vpnn.p2, vpnn.p3, vpnn.p4> ;

<isCase,False,_> => <vpnn.p1, vpnn.p2 ++ obj ! a, vpnn.p3, vpnn.p4> ;

<_,_,_> => <vpnn.p1, vpnn.p2, vpnn.p3 ++ obj ! a, vpnn.p4> }

} ;

To prove that this ReflRNP generalizes ReflVP : VPSlash -> VP, do we need more than show-
ing that ReflRNP vps RelfPron amounts to ReflVP vps for any vps:VPSlash?

Of the additional constructions using RNP declared in abstract/Extend, the first one,

AdvRNP : NP -> Prep -> RNP -> RNP ; -- a dispute with his wife

is a variation of AdvNP : NP -> Adv -> NP in which the adverb is built by an implicit reflexive
version of PrepNP : Prep -> NP -> Adv. The construction is implemented (in ExtraGer) by

AdvRNP np prep rnp = {s = \\a,c => np.s ! False ! c

++ appPrep prep (rnp.s ! a) ++ rnp.ext ++ rnp.rc ;

ext = np.ext ; rc = np.rc ; isPron = False} ;

It is not quite clear whether a sentential, infinitival or interrogative complement np.ext of
the argument noun phrase np should be separated by a sentential, infinitival or interrogative
complement and relative clause in the modifying adverbial, as e.g. in (wir haben) den Beweis
für seine Behauptung, dass ihm alle glauben, (nicht abgewartet), den er angekündigt hatte.

As mentioned earlier, in Remark 23, the example (a) dispute with his wife appears to be a
complementation construction (say, RComplN2 : N2 -> RNP -> RCN). But modifications by re-
flexive adverbials are possible, e.g. ein Baum in seinem Garten, or by a reflexive possessive,
e.g. Virginia Woolf’s title a room of one’s own.

The construction

ReflA2RNP : A2 -> RNP -> AP ; -- indifferent to their surroundings

178

ought to build a reflexive adjective phrases, in which the complement depends on Agr.114 As
long as AP.c : Str * Str does not depend on Agr, we can only use a default agreement value:

ReflA2RNP adj rnp = -- would need AP.c : Agr => Str * Str

let -- without reflexive APs,

compl = appPrep adj.c2 (rnp.s ! agrP3 Sg) ; -- use a fixed agreement

in {

s = adj.s ! Posit ;

isPre = True ;

c = case adj.c2.isPrep of {False => <compl, []> ; True => <[], compl>} ;

ext = rnp.ext ++ rnp.rc

} ;

The construction of modifying an adjective phrase by a reflexive adverb RAdv = Prep + RNP

AdvRAP : AP -> Prep -> RNP -> AP ; -- adamant in his refusal

can preliminarily be implemented by

AdvRAP ap prep rnp =

let -- ? Ger: adv ++ ap.s ! af

adv = appPrep prep (rnp.s ! agrP3 Sg) ; -- bug: fixed agreement

in ap ** { s = \\af => ap.s ! af ++ adv } ; -- e.g. unknown in one’s youth

Remark 102 : It might be better if AP had a field AP.adv : Agr => Str where a reflexive adverb
could be inserted. Todo52: order by adv ++ ap.s: (eine) in meinen Augen gute (Lösung). The
relative order of complements and adverb in an adjective phrase needs to be considered.

Remark 103 : When using a reflexive ap : AP, one has to concatenate ap.s ! (AMod gn c) or
ap.s ! APred with ap.c ! agr. E.g. ein auf seine(!) Taten stolzes Kind or sie ist stolz auf
ihre(!) Taten, and, with reflexive adverb, sie war in ihrer Jugend stolz auf ihre Taten.

The construction of modifiying a verb phrases vp by a reflexive adverb prep + rnp,

AdvRVP : VP -> Prep -> RNP -> VP ; -- lectured about her travels

would force us to make vp.a2:Str depend on Agr and relate it with object-control: er traf sich
mit ihr in seinem Haus vs. er traf sich mit ihr in ihrem Haus. An implementation would make
verb phrases more complex, and probably lead to memory problems in grammar compilation,
so we don’t implement AdvRVP. As mentioned earlier, the example suggests a complementation
rule, and reflexive nominal (and prepositional) objects can already be inserted into vp.nn.

Finally, an implementation of

PossPronRNP : Pron -> Num -> CN -> RNP -> NP ;

-- his abandonment of his wife and children

uses the possessive of the given pronoun and the given numeral to build a determiner, which
then combines the common noun with a possessively used reflexive noun phrase:

114In Eng, we have AP.s : Agr => Str and RNP.s : Agr => Str, so there is no need to introduce RAP.

179

PossPronRNP pron num cn rnp =

DetCN (DetQuant (PossPron pron) num)

(PossNP cn (lin NP {s = _,c => rnp.s ! pron.a ! c ;

a = pron.a ;

w = WLight ;

ext = rnp.ext ;

rc = rnp.rc})) ;

This gives (randomly generated) examples like

AllGerAbs> l PossPronRNP we_Pron NumPl (UseN student_N)

(ReflPoss NumPl (UseN camera_N))

unsere Studenten von unseren Kameras

But the provided English example suggests that a complementation rule is intended, taking a
reflexive noun phrase as complement and yielding a reflexive common noun, e.g. abandonment
of one’s family (called RComplN2 : N2 -> RNP -> RCN above). We would then probably have

(PossPronRNP pron num (UseN2 n2) rnp).s =

(ReflPoss num (RComplN2 n2 rnp)).s ! pron.a

to build one’s abandonment of one’s family.

Reflexive Predicates

Q70: How far do we want to push reflexive noun phrases? Besides the reflexive pronouns,
the reflexive noun phrases are of the form predet ++ (reflposs ++ cn), where a sentential
object or relative clause of the common noun cn does not contain reflexives. For example, since
rnp.ext:Str, the infinitival object in

TestLang> p -cat=Cl "ich fürchte meine Gründe , meinen Hund zu fürchten ,"

PredVP (UsePron i_Pron) (ReflRNP (SlashV2a fear_V2)

(ReflPoss NumPl (SentCN (UseN reason_N) (EmbedVP

(ComplSlash (SlashV2a fear_V2)

(DetCN (DetQuant (PossPron i_Pron) NumSg) (UseN dog_N)))))))

contains PossPron i Pron, not ReflPoss. But of course relative clauses and infinitival com-
plements can contain reflexives in German, e.g. man soll seine Anstrengungen, seine (eigenen)
Fehler zu korrigieren, nicht übertreiben.

In preliminary modules german/Refl.gf, german/ReflGer.gf and german/ReflEng.gf I have
implemented some extensions to use reflexive noun phrases. In general, all constructions f:A

-> NP -> B call for a modification Rf:A -> RNP -> RB, where fields d:D => Str of B have to
be changed in RB to d:Agr => D => Str, if f(a,np) embeds strings np.s ! c : Str obtained
from a parameter c:Case to field B.d. For example, PrepNP : Prep -> NP -> Adv needs a
modification to PrepRNP : Prep -> RNP -> RAdv, to turn Adv.s : Str into RAdv.s : Agr

=> Str, so that we get reflexive adverbs like in my (own) house, more precisely, in one’s house.

How many “reflexive” versions of categories do we need to add to GrammarGer, and how many
can we add within the limits of grammar compilation? RNP, RAdv, AP with reflexive object AP.c,
CN with reflexive adverb CN.adv or RCN with reflexive nominal object incorporated in RCN.s

etc.? So far, VP and VPSlash have reflexive nominal objects VP.nn and reflexive infinitival

180

complemente VP.inf, but sentential complements or relative clauses are not dependent on Agr.
(Infinitival complements should be reflexive because of control verbs.)

Remark 104. How can an application grammar define a unary predicate “to brush one’s teeth”?
Should we be able to distinguish between the possessive “his” and the reflexive possessive “his
own”, as in “he explained it to his (own?) child”. Should we write “sein eigener” to distinguish
the reflexive possessive from the personal possessive “sein”, or rather “sein” and “dessen”?

For Eng, ReflRNP has to insert a reflexive noun phrase like “one’s teeth” or “one’s own car” of
type Agr => Str into an incomplete verb phrase vps and must update vps.s2 : Agr => Str to
s2 = \\a => vps.s2!a ++ rnp!a. We need a new value AgP0:Agr with persPron!AgP0=“one”,
possPron ! AgP0 =“one’s”, reflPron ! AgP0 = “oneself” and (ReflPoss num cn).s ! AgP0

= one’s ++ num.s ++ cn.s ! num.n, and should define linref RNP using AgP0 [instead of
adding a one Pron:Pron with one Pron.a = AgP0:Agr and one Pron.s ! Nom = “one”]. Since
Ger uses Ag Masc Sg P3 as agreement of the implicit subject of the infinitive in EmbedVP (and
of the subject “man” in GenericCl), we get the intended infinitives in Ger, but not in Eng:

AllGerAbs> l EmbedVP (ReflRNP (SlashV2a love_V2) (ReflPoss NumSg (UseN dog_N)))

seinen Hund zu lieben

AllEngAbs> l EmbedVP (ReflRNP (SlashV2a love_V2) (ReflPoss NumSg (UseN dog_N)))

to love its dog

For Eng, all tables Agr => Str have to be extended. GenericCl has to use “one” as subject
and must update reflexives in vp by instantiating vp.s2 to AgP0, as EmbedVP has to, in order to
make the reflexives depend on the missing subject’s agreement. (See also RelPronVP, p. 44.)

Remark 105 : There is a kind of “semireflexive predicates”, i.e. predicates with reflexive reference
to an object: jmdn ermahnen, sich anzustrengen in sie ermahnten uns, uns anzustrengen.

Todo 53: Explain more of the constructions in Extend. At least

• adjust mkClause, ComplVPIVV, MkVPS, DisToCl in Extra and Extend

5.11.2. ExtraGer (todo)

Constructions specific to German may be lexical items, e.g. the modal verb

moegen_VV : VV ; -- ich mag/möchte singen

or forms of passive from ternary verbs, like

Pass3V3 : V3 -> VPSlash ; -- wir bekommen den Beweis erklärt

or constructions with correlate es for sentential or infinitival complements (or for adverbs).

EsVV : VV -> VP -> VP ; -- ich genieße es zu schlafen

EsV2A : V2A -> AP -> S -> VP ; -- ich finde es schön, dass ...

Correlates

Many verbs with a sentential complement can as well have an infinitival complement, and con-
versely. For example, ich genieße es, zu schlafen, but also ich genieße es, dass die Sonne scheint.

181

Likewise, ich finde es schön, daß die Sonne scheint and ich finde es schön, im See zu schwimmen.
In a sense, es and das are correlates for “direct” sentential complements (analogs to nominal ob-
jects in accusative), in contrast to the following “prepositional” sentential complements (analogs
to prepositional objects).

As we can use prepositions to combine complements with a verb, we can use the CAdvPron field
of contracting prepositions115 to insert a correlate for an infinitival or sentential complement.

Correlates for infinitival and sentential complements of nouns (sketch)

For noun complements, a possible rule could be

SentN2 : N2 -> SC -> CN ;

with implementation (so far, in gf-rgl/tests/german/TestLexiconGer.gf)

SentN2 n2 sc =

let cor : Str = case n2.c2.t of {

R.isContracting => n2.c2.s ! R.CAdvPron ; _ => []}

in {

s = _,n,c => n2.s ! n ! c ++ cor ++ P.bindComma ;

ext = sc.s ;

rc = _ => [] ;

adv = [] ;

g = n2.g

} ;

With hope NV:N2 and

hope_NV = mkN2 (mkN "Hoffnung" feminine) aufs_Prep ;

this would give, for example:

TLang> gr -tr -cat=NP (DetCN ? (SentN2 hope_NV (EmbedVP ?))) | l

DetCN few_Det (SentN2 hope_NV (EmbedVP ready_VP))

few hopes to be ready

wenige Hoffnungen darauf , bereit zu sein

This seems better than SentCN. First, SentN2 : N2 -> SC -> CN applies to binary nouns
only. Second, the correlate darauf depends on the noun’s preposition hope NV.c2 = aufs Prep.
Third, we can have a special rule CorN2 : N2 -> CN which uses just the correlate as comple-
ment, e.g. die Hoffnung darauf. Forth, instead of a sentential complement we can always also
add a nominal complement, by ComplN2 : N2 -> NP -> CN116. But since SentN2 applies to all
binary nouns, we would still get bad examples, e.g. Bruder davon, zu schlafen.117 A drawback
is that since both the complement and the correlate can be dropped by UseN2 : N2 -> CN and
PrepNP auf np is an adverb, we get three trees for die Hoffnung auf np,

115More generally, non-contracting prepositions should also have such a field to be used for correlates.
116This is quite common: ein Grund (für np | dafür, dass s), der Glaube (an np | daran, dass s) etc.
117But ich bin kein Freund davon, zu träumen is good.

182

DetCN defArt (ComplN2 hope np)

DetCN defArt (AdvCN (UseN2 hope) (PrepNP auf np))

AdvNP (DetCN defArt (UseN2 hope)) (PrepNP auf np)

Q71: How can the readings as adverb be suppressed by an existing reading as complement?

Remark 106 : English seems to make less use of sentential correlates: That she spoiled the game
..., there can be little doubt 7→ There can be little doubt that she spoiled the game ... Ger: Daß
S, daran kann es kaum Zweifel geben 7→ Es kann kaum Zweifel (daran) geben, daß S.

Alternatively, instead of combining a sentential complement sc:SC with a binary noun, we could
be more specific and use categories NS of nouns with sentential object, NV of nouns with infinitival
object, and NQ of nouns with interrogative objects. We could then use

lincat NS = Noun ** {c2 : Preposition} ;

and use the prepositions in ns.c2 to add a correlate in the complementation rule

ComplNS : NS -> S -> CN ;

implemented by

ComplNS ns s =

let p = ns.c2 ;

cor = case p.t of {isContracting => p.s ! CAdvPron ; _ => []}

in {

s = \\a,n,c => ns.s ! n ! c ++ cor ++ comma ;

rc = \\n => [] ;

ext = conjThat ++ s.s ! Sub ;

adv = [] ;

g = ns.g

} ;

E.g., to add the correlate daran in (der) Glaube daran, dass die Erde eine Kugel ist. Clearly, such
correlates are strongly related to the prepositions used in corresponding verbs, i.e. glauben an
etwas. Without a separate construction to add a nominal object, (der) Glaube an das Christkind
would not be accepted. Analogously to UseN2 : N2 -> CN, we would need a rule

UseNS : NS -> CN ;

to use the noun without its sentential complement (and without its correlate, of course).

Sentential complements in conjunctive

An object sentence can also take the form of a sentence in subjunctive mood (Konjunktiv),
e.g. (der) Glaube , die Erde sei eine Kugel. Such a construction can however not be implemented
with argument type S of indicative sentences. We need a new syntactic category SConj of
sentences in conjunctive, with linearization category

SConj = {s : Order => Str} ;

The construction of such sentences by

183

UseConjCl : Temp -> Pol -> Cl -> SConj ;

can be implemented by a variation of UseCl, ignoring the value t.m of its argument t:Temp:

UseConjCl t p cl = {

s = \\o => t.s ++ p.s ++ cl.s ! MConjunct ! t.t ! t.a ! p.p ! o

} ;

We can then implement the complementation by sentences s:SConj,

ComplConjNS : NS -> SConj -> CN ;

ignoring the correlate in ns.c2.s ! CAdvPron and using conjunctive mood in the object clause:

ComplConjNS ns s = {

s = \\a,n,c => ns.s ! n ! c ++ comma ;

rc = \\n => [] ;

ext = s.s ! Main ;

adv = [] ;

g = ns.g

} ;

For example, with this we can parse both kinds of sentence complements:

TLang> p -cat=NP "der Glaube , es gebe keine Hoffnung"

DetCN (DetQuant DefArt NumSg)

(ComplConjNS belief_NS (UseConjCl (TTAnt TPres ASimul) PPos

(ExistNP (DetCN (DetQuant no_Quant NumSg) (UseN2 hope_NV)))))

TLang> p -cat=NP "der Glaube daran , dass es keine Hoffnung gibt"

DetCN (DetQuant DefArt NumSg)

(ComplNS belief_NS (UseCl (TTAnt TPres ASimul) PPos

(ExistNP (DetCN (DetQuant no_Quant NumSg) (UseN2 hope_NV)))))

Similarly, one could add complement sentences in conjunctive mood for verbs and adjectives. /

Remark 107 : However, such complementation rules by sentential complements need more lexical
work to specify the categories of nouns (and adjectives), and some computational overhead (at
least six rules UseNS, UseNV, UseNQ, ComplNS, ComplNV, ComplNQ) instead of a single overgener-
ating rule SentN2.

Correlates for infinitival and sentential complements of verbs (sketch)

An implementation of a rule SentVS : VS -> SC -> VP similar to SentN2 above can insert the
correlate to vp.nn as prepositional object and the sc to vp.ext, so that correlate and sentential
object can be separated, e.g. wir hatten nicht daran geglaubt, dass es möglich ist. However, the
argument category SC in SentVS is too crude: not every verb that takes an infinitival object
also takes a sentential object, e.g. manche versuchen, den Ärmelkanal zu durchschwimmen 67→
manche versuchen, dass sie den Ärmelkanal durchschwimmen.

Grammar distinguishes between verbs VS taking a sentential object, verbs VV taking an infinitival
object, and verbs VQ taking an interrogative object. In particular, Grammar has rules ComplVS :

184

VS -> S -> VP and SlashV2S : V2S -> S -> VPSlash to add complement sentences to verbs
expecting an object sentence. So we only need to add complementation rules that also (or only)
add a correlate for the object sentence (infinitive or interrogative, respectively).

To do so, take lincat VS = V2 instead of VS = Verb118 in CatGer, change ParadigmsGer.mkVS
accordingly and add a field cor:Str to the implementation type VP. Then add a construction

ComplCorVS : VS -> S -> VP ; -- glaube daran|es, dass S

that inserts a correlate for the sentential object to the correlate field of the resulting verb phrase.
From prepositions, we derive correlates by

oper

mkCor : Preposition -> Str = \p ->

case p.t of {isContracting => p.s ! CAdvPron ; _ => "es" | "das"} ;

If vs.c2 contains a contracting preposition, the correlate can be daran, darauf etc.

ComplCorVS vs s =

insertExtrapos (comma ++ conjThat ++ s.s ! Sub)

(predV vs ** {c2 = vs.c2 ; cor = mkCor vs.c2}) ;

(This violates the convention that resource grammar rules should avoid alternatives like "es"|"das".)
A separate construction

CorVS : VS -> VP ; -- glaube daran

is needed to only add the correlate, e.g. to get wir hatten daran nicht geglaubt.

CorVS vs =

predV vs ** {c2 = vs.c2 ; cor = mkCor vs.c2} ;

Changing StructuralGer to

hope_VS = mkVS (regV "hoffen") ** {c2 = aufAcc_Prep} ;

we get for example:

TLang> p -cat=S "wir hatten darauf nicht gehofft"

UseCl (TTAnt TPast AAnter) PNeg (PredVP (UsePron we_Pron) (CorVS hope_VS))

The correlate would better follow the negation adverb. Similarly, we can have correlates for
infinitival complements:

CorVV vv = predV vv ** {c2 = vv.c2 ; cor = mkCor vv.c2} ;

ComplCorVV vv vp =

let inf = mkInf False Simul Pos vp ; -- False = force extraction

in insertExtrapos vp.ext (insertInf inf (CorVV vv)) ;

118Similarly, one could change the type of ternary verbs V2S by adding a field c3:Preposition.

185

Again, the corrolate ought to follow the adverb jeden Montag in

TLang> p -cat=Cl "ich denke daran jeden Montag , dein Buch zu lesen"

Todo 54: Maybe add rules for correlates with ternary verbs

SlashCorV2S : V2S -> S -> VPSlash ; -- glaube es (dir) , dass ...

SlashCorV2V : V2V -> VP -> VPSlash ; -- rate es (dir) , mehr zu arbeiten

And for correlates for interrogative complements, e.g. worauf|auf was hoffen wir?

There is no syntactic category for correlates119, and correlates cannot generally be used to
replace a prepositional object, e.g. sie starren an die Wand 67→ sie starren daran. (Correlates
are pro-forms of sentential complements; if the complement sentence is combined with the verb
without a preposition, e.g. ich sehe (es) ein, dass 5 ungerade ist, there seems to be no difference
between a correlate es and a pronoun es in ich sehe es ein?)

Todo 55: Correct the two constructions EsVV : VV -> VP -> VP and EsV2A : V2A -> AP ->

S -> VP that add a correlate es for an infinitival or sentential object. The correlate should not
be treated as an object, which is sometimes not put before, but after the negation adverb nicht.
And rename the rules to ComplCorVV etc.? At least, EsV2A should rather be called EsVSA:VSA

-> S -> A -> VP, as there is no nominal object.

Correlates for adverbs and adverbial clauses (todo)

How can we deal with correlates for adverbs, e.g. ich gehe deshalb schlafen, weil ich müde bin
for weil ich müde bin, (deshalb) gehe ich schlafen and deshalb gehe ich schlafen.120

What can we do? In TCatGer, we can add a category PronAdv of pronominal adverbs, relating
interrogative and definite adverbs with subjunctions for adverbial clauses. A linearization type
with several fields of type Str would not do, because at most two of these (the definite adverb and
the subjunction) are used in a single sentence (hence the third component raises a metavariable
in parsing). But a table with result type Str might do.

param AdvType = AdvI | AdvD | AdvS ;

lincat PronAdv = {s : AdvType => Str} ;

lin deshalb_PronAdv =

{s = table AdvType {AdvI => "weshalb" ; AdvD => "deshalb" ; AdvS => "weil"} ;

We can then use several of the three strings, but perhaps not as adverbs or subjunctors. To
make this possible, we can let PronAdv have components of other syntactic categories, i.e.

lincat PronAdv =

{s : AdvType => Str ; i : IAdv ; d : Adv ; sj : Subj} ;

with padv.s ! AdvI = padv.i.s etc., and define from S = StructuralGer

119The correlate daran in wir glauben daran is not the pronominal adverb daran Adv, as it represents an object
sentence, not an adverbial sentence.
120Q72: Do we have the same double realisation of a syntactic role in ich sah ihn kommen, den Hund?

186

da_wo : PronAdv = let adv : CatGer.IAdv * CatGer.Adv * CatGer.Subj =

<S.where_IAdv, S.there_Adv, {s = [] ; lock_Subj=<>}>

in {s = table{AdvI => adv.p1.s ; AdvD => adv.p2.s ; AdvSj => adv.p3.s} ;

i = adv.p1 ; d = adv.p2 ; sj = adv.p3

} ;

We would like to get dort, wo der Pfeffer wächst as a split adverb, using dort as a correlate, but
both components being adverbs in themselves, or the second one a “freier Fragesatz” [3] as in
ich weiß, wo der Pfeffer wächst. This can be done with a rule

PronAdvS : PronAdv -> S -> Adv ;

implemented by

PronAdvS p s = {s = p.i.s ++ s.s!Sub ; cor = p.d.s ; cp = []} ;

A comma is omitted, so that both sie sollen dort wohnen, wo der Pfeffer wächst and wo der
Pfeffer wächst, dort sollen sie wohnen are possible. But: since the resulting Adv has two string-
fields, whence we always have to use both fields.

Q73: Can we instead just add a correlate in a rule CorExtAdvS : Adv -> S -> S, and give
up the constraint implemented by PronAdv? (How to compute a correlate from adv:Adv, if
adv.isPron = True?)

In analogy to QuestIAdv : IAdv -> Cl -> QCl, we might have a relative clause construction

RelAdv : PronAdv -> Cl -> RCl ; -- RAdv = ReflAdv ?

RelAdv adv qs = {s = qs.s ! QIndir ; cor = adv.s ; cp = []} ;

-- RelAdv is bad: accepts "die Frage , wo sie war" by

-- ExtAdvNP with metavariable for cor = []

Note: wo can be used as temporal adverb: heutzutage, wo jeder ein Auto hat

Moving extractions (todo)

Some implementation categories have a field ext:Str for sentential, infinitival or interrogative
complements. These fields, like the field for a relative sentence in noun phrases or for a compari-
son noun phrase in adjective or adverb phrases, contain parts of a phrase that may be separated
from the other part. Typically, the past participle of a verb may be inserted between a noun
and a relative clause, or between an adjective and its comparison noun phrase.

So far, such constructions are not implemented yet.

187

6. Improving Translation by Structural Transfer

It has sometimes been suggested that structural transfer should be done outside of GF, by
exporting the data type of GF-trees to haskell or some other programmig language and writing
tree transformers in the host programming language, suited to particular applications.

In my opinion, this is misguided in that there are or may be structural transfers useful for many
applications and common to many concrete languages. To make better use of structural trans-
formations inside GF, two possibilities are needed: (i) to declare more syntactic constructions fun
f:C by data f:C, and (ii) to apply structural transformations to (subtrees of) trees resulting
from parsing an input string.

6.1. The grammar DGrammar

To allow for more transfer functions to be defined without changing the abstract grammar
Grammar, we introduce a variant DGrammar consisting of variants DNoun.gf of Noun.gf etc. where
(almost) all syntactic constructions are data constructors and then use the original concrete
modules to define concrete modules of the variants.

Using functors D<module>F for each module of Grammar, the second step can be done uniformly
for several languages. For example, we define a functor DNounF by

incomplete concrete DNounF of DNoun = open Noun in {

lin DetCN = Noun.DetCN ; ... }

and the language specific concrete module DNounGer for German by

concrete DNounGer of DNoun = CatGer ** DNounF with (Noun = NounGer) ;

Then DGrammar can be extended by the example lexicon Lexicon (or a version DLexicon where
all entries are declared by data) and a module of transfer functions to DLang. (See Section
6.6.) This is done in (my) ~/GF/gf-rgl/tests/german/DLang.gf. To explore parallelism
between definite, interrogative and relative phrases, additionally some categories are turned
into dependent categories, in ~/GF/gf-rgl/tests/german/DepLang.gf (not using functors).

6.2. Adding flags normalize and transfer to put tree

To make the use of tree transfer functions available in the gf-shell again, we have to modify two
files of the GF-compiler,

gf-core/src/compiler/GF/Command/Commands.hs

gf-core/src/compiler/GF/Command/TreeOperations.hs

We distingish two possibilities: first, we just want to apply a transfer function f:C -> D to a
parse result tree : C and obtain a transformed tree of possibly different type D. This ought to
be done by

> parse -cat=C "..." | put_tree -transfer=f

Second, we want to apply a transfer function f:C -> C to replace all maximal subtrees s:C of
a given tree by their transforms f(s):C of the same type. This ought to be done by

188

> parse -cat=C "..." | put_tree -normalize=f

The transformed tree can be linearized to a target language Tgt by piping it to linearize

-lang=Tgt. Since def-rules can be recursive and can call other transfer functions, f(s) may
apply a transfer g:C’ -> C’ to some of its subtrees of type C’.

To install these possibilities, first add the following definitions to the file TreeOperations.hs:

-- Apply transfer function f:C -> D to tree e, if e:C, else return e. HL 12/2024

transfer :: PGF -> CId -> Expr -> Expr

transfer pgf f e = case inferExpr pgf (appf e) of

Left _err -> e

Right _ty -> compute pgf (appf e)

where

appf = EApp (EFun f)

-- Apply transfer function f:C -> C to the tree e’s maximal subtrees s:C,

-- and replace these s by the normalized values of f(s):C.

normalize :: PGF -> CId -> Expr -> Expr

normalize pgf f e = case inferExpr pgf (appf e) of

Left _err -> case e of

EApp g a -> EApp (normalize pgf f g) (normalize pgf f a)

_ -> e

Right _ty -> case (compute pgf (appf e)) of

v | v /= appf e ->

case v of -- v may contain transfer functions

EApp (EFun g) a | v /= e -> normalize pgf g a

_ -> v

_ -> e -- default case of f, or f has no computation rule

where

appf = EApp (EFun f)

Moreover, edit the function allTreeOps by entries for transfer and normalize like

("transfer",("wrap this transfer function around tree and compute",

Right $ \f -> map (transfer pgf f))),

so that help pt will show

flags:

-transfer wrap this transfer function around tree and compute

-normalize apply this type-preserving transfer function to all suitable subtrees

Second, in the file Commands under pgfCommands, edit the list of examples for pt by two entries
for the new flags (similar to that for the flag compute), so that help pt will show

examples:

p "the 4 dogs" | pt -normalize=digits2numeral | l -- "the four dogs"

p -cat=S "they played the opossum" | pt -transfer=idiomS | l -lang=Ger

-- "sie stellten sich tot"

189

Todo 56: Instead of idiomS, use a type-changing example like nominalize:VP -> NP.

Finally, recompile and install the modified GF-compiler by calling

cabal install

from a shell in the directory gc-core.

6.3. Improving translations

The translation method offered by GF is linearize ◦ parse, i.e. the translation of a text src:Str
from a source language Src to a text (of type Str) in a target language Tgt is done by

parse -lang=Src src | linearize -lang=Tgt

Ideally, each abstract tree obtained from parsing represents a meaning of the source text. How-
ever, even if the same trees are useful to structure expressions of source and target language, a
structure-preserving translation often results in possible, but rarely used wordings. Sometimes
the source and target languages even use different structures to express the same meaning. For
example, Ancient Greek has 11 participles, while English or German only have two. To translate
the participles of Ancient Greek, we must use differently structured expressions (like relative or
adverbial clauses).

To improve the structure-preserving translation offered by linearize ◦ parse, we want to apply
transfer functions in between, i.e. use the more general translation by linearize ◦ transfer ◦parse,
expressed in the gf-shell by

parse -lang=Src src | put_tree -transfer=f | linearize -lang=Tgt

It may seem that the transfer function f used here ought to depend on the source and target
languages Src and Tgt. But in general, a tree is linearized to several target languages, and
transfer functions in GF operate on the abstract syntax, so there are no transfer functions specific
to a given source and a given target language (unless pt -compute is modified).

Let us call a type-preserving transfer function f : C → C a normalizing transfer function .
Such a transfer function can be used to substitute subtrees of a given type C in a tree. Several
applications of normalizing transfers come to mind:

Collapsing different structures to reduce ambiguities

When expressions of a category C can be modified by different modification constructions fi :
C → C, the relative order in which the modifiers are attached to the head element is often
irrelevant (in particular, if the modifiers are stored in different fields of the implementation
record). For example, there are six ways to modify a simple common noun by AdjCN, AdvCN and
RelCN, e.g. small dog in Paris that jumps, although the adjective is pre-nominal and there are
at most two relative orderings of the postnominal adverbial and postnominal relative clause (in
Eng), and the different constructions seem not to correspond to semantic differences. To give the
adverbial modifiers narrowest scope and the relative clauses the widest scopes, one can define a
normalizing transfer nfCN by

fun nfCN : CN -> CN ;

def nfCN (RelCN cn rs) = insertRS (nfCN cn) rs ;

190

nfCN (AdvCN cn adv) = insertAdv (nfCN cn) adv ;

nfCN (AdjCN ap cn) = insertAdj ap (nfCN cn) ;

nfCN cn = cn ;

The axiliary functions presuppose that their CN-argument already is in normal form, i.e. that
modifying adverbs are innermost, modifying relative clauses outermost:

fun insertAdv : CN -> Adv -> CN ; -- with cn in normal form !

def insertAdv (RelCN cn rs) adv = RelCN (insertAdv cn adv) rs ;

insertAdv (AdjCN ap cn) adv = AdjCN ap (insertAdv cn adv) ;

insertAdv cn adv = AdvCN cn adv ;

fun insertAP : AP -> CN -> CN ; -- with cn in normal form !

def insertAP ap (RelCN cn rs) = RelCN (insertAP ap cn) rs ;

insertAP ap cn = AdjCN ap cn ;

fun insertRS : CN -> RS -> CN ; -- with cn in normal form !

def insertRS (AdjCN ap cn) rs = RelCN (AdjCN ap cn) rs ;

insertRS (AdvCN cn adv) rs = RelCN (AdvCN cn adv) rs ;

insertRS cn rs = RelCN cn rs ;

The last clause might be replaced by first conjoining several relative clauses:

-- conjoin multiple relativizations:

insertRS (RelCN cn (ConjRS and_Conj rse)) rs

= RelCN cn (ConjRS and_Conj (rconsRS rse rs)) ;

insertRS (RelCN cn rs1) rs

= RelCN cn (ConjRS and_Conj (BaseRS rs1 rs)) ;

insertRS cn rs = RelCN cn rs ;

fun rconsRS : ListRS -> RS -> ListRS ;

def rconsRS (BaseRS rs1 rs2) rs = ConsRS rs1 (BaseRS rs2 rs) ;

rconsRS (ConsRS rs1 rse) rs = ConsRS rs1 (rconsRS rse rs) ;

Using pt -normalize=nfCN -nub, the six different constructions of the example are mapped to
the same “normal form” before translation:

DLang> p -lang=Eng -cat=NP "a small dog in Paris that jumps"

| pt -normalize=nfCN -nub -tr | l -lang=Ger

DetCN (DetQuant IndefArt NumSg)

(RelCN (AdjCN (PositA small_A)

(AdvCN (UseN dog_N) (PrepNP in_Prep (UsePN paris_PN))))

(UseRCl (TTAnt TPres ASimul) PPos (RelVP IdRP (UseV jump_V))))

ein kleiner Hund in Paris , der springt

Similarly, one might identify special uses of RelNP and AdvNP with uses of RelCN and AdvCN:

fun nfNP : NP -> NP ;

def nfNP (RelNP (DetCN det cn) rs) = DetCN det (RelCN cn rs) ;

nfNP (AdvNP (DetCN det cn) adv) = DetCN det (AdvCN cn adv) ;

Perhaps the last clause should better be

191

nfNP (AdvNP (DetCN det cn) adv) = DetCN det (nfCN (AdvCN cn adv)) ;

And perhaps nfNP should also give PossNP narrower scope than AdvNP.

Clearly, we can’t reduce arbitrary uses of RelNP to uses of RelCN, since a relativization of
noun phrases is possible, e.g. Johann und sein Bruder, die ich gut kenne. This combination
seems mostly function as apposition, not as restriction. (Q74: Should we distinguish between
restrictions, by CN+RC, Det+RC, and appositions, by PN+RC, Pron+RC, NP+RC? Both noun phrases
and relative clauses can be appositions, so is the difference Extend.ApposNP : NP -> NP ->

NP and RelNP : NP -> RS -> NP the best we can do?)

Improve wordings

We might also want to translate or normalize negations of an indefinite noun phrase, e.g.

nfNP (PredetNP not_Predet something_NP) = nothing_NP ;

nfNP (PredetNP not_Predet nothing_NP) = something_NP ;

nfNP (PredetNP not_Predet somebody_NP) = nobody_NP ;

nfNP (PredetNP not_Predet nobody_NP) = somebody_NP ;

nfNP (PredetNP not_Predet (DetCN (DetQuant IndefArt num) cn)) =

DetCN (DetQuant no_Quant num) cn ;

nfNP (PredetNP not_Predet (DetCN someSg_Det cn)) =

DetCN (DetQuant no_Quant NumSg) cn ;

These are sometimes unused under intonation, e.g. sie machten nicht éınen Fehler, which is
preserved, e.g. sie machten kéınen Fehler.

It is less clear if normalizations of determiners like (c.f. StructuralGer)

fun nfDet : Det -> Det ;

def nfDet someSg_Det = DetQuant IndefArt NumSg ;

nfDet det = det ;

are language independent or rather restricted to specific languages like German. Eng:some vs.
a/one.

Stylistic changes

Sometimes a structural change does not preserve the category of the tree, in which case we
cannot substitute an embedded expression by its transformed version.

Here is an example for such a non-normalizing transfer function . Modal verbs, i.e. verbs
of category VV, do not have imperative forms in English or German, but they can be used in
imperatives in GF:

Lang> l AdvImp now_Adv (ImpVP (ComplVV must_VV (UseV go_V)))

now have to go

jetzt müsse gehen

The correct way to express the intended command is by a suitable indicative clause. To transfer
such incorrect imperatives to clauses, we can define a transfer function:

192

fun trImp : Imp -> Cl ;

def trImp (ImpVP (ComplVV modalV VP))

= PredVP (UsePron youSg_Pron) (ComplVV modalV VP) ;

trImp (AdvImp adv (ImpVP (ComplVV modalV VP)))

= PredVP (UsePron youSg_Pron) (AdvVP (ComplVV modalV VP) adv) ;

and then translate the incorrect modal imperatives to clauses:

DLang> p -cat=Imp -lang=Eng "now have to go" | pt -transfer=trImp -tr | l

PredVP (UsePron youSg_Pron) (AdvVP (ComplVV must_VV (UseV go_V)) now_Adv)

you must go now

du musst jetzt gehen

To allow for the plural ihr, the polite Sie, use youPl pron and youPol Pron as pronoun. Q75:
How can we admit negated imperatives, i.e. variants for UttImpSg : Pol -> Imp -> Utt etc.?
We may write binary transfers f, but can we pipe an imp:Imp to pt -transfer="f PNeg" ?

Other candidates for non-normalizing transfer functions:

Reduction to a core language (todo)

Mappings from language-specific constructions to a core common to several languages, toCore :
E → C, and conversely, mappings toExtra : C → E from the common core to a language-specific
extension. We need an artificial abstract language combining the (disjoint) Extra parts.

What about tree transformations toAllEng : Grammar -> AllEngAbs to replace constructions
in Grammar by language-specific ones in AllEngAbs, or converse transformations fromAllEng:

AllEngAbs -> Grammar, fromAllGer : AllGerAbs -> Grammar to a common core Grammar?

For example, AllEngAbs might exclude Verb.ReflVP, and we could translate

fun nfVP : VP -> VP ;

def nfVP (ReflVP vps) = ReflRNP vps ReflPron ;

nfVP vp = vp ;

No, this is still a normalizing transfer! The transfer module must contain the tree constructor
Grammar.ReflVP and the syntactic constructor AllEngAbs.ReflRNP:VPSlash -> RNP -> VP.
But why should one want to include the obsolete ReflVP and transfer it away in trees, rather
than excluding it in the abstract language, i.e. use AllEngAbs?

Todo57 Another non-normalizing transfers could be nominalize : VP -> NP, as in e.g. to read
a book 7→ the reading of a book. It can perhaps roughly be implemented by

fun nominalize : VP -> NP ;

def nominalize ComplSlash (SlashV2a v2) np) =

DetCN (DetQuant DefArt NumSg) (ComplCN (PresPartCN (UseV v2)) np)

with so far undefined constructions ComplCN:CN -> NP -> CN and PresPartCN:VP -> CN.

Similarly, one can transfer (some) relative clauses into participle constructions and conversely:
low hanging (fruits) 7→ (fruits) that hang low, roughly

ap + cn => cn + RelVP rp (UseComp (CompAP ap))

193

6.4. Translation of idiomatic expressions

Idiomatic expressions are grammatically well-formed expressions, but are used with a meaning
that is not composed of the literal meanings of their words in the standard way. Often, they
also can be used with the compositional meaning, like at the end of the day. To translate
the idiomatic reading of an expression in the source language to one or more target languages,
transfer its grammatical construction tree to a idiom constant and linearize the constant to the
linearizations of trees of expressions in the target languages.121 Consider the following constants

fun idiom_early_bird_Cl : Cl ; -- the early bird catches the worm

idiom_simulate_dead_VP : VP ; -- play the opossum

In a grammar for English, the linearization is given by the tree of the English idiom:

lin idiom_early_bird_Cl =

PredVP (DetCN (DetQuant DefArt NumSg)

(AdjCN (PositA early_A) (UseN bird_N)))

(ComplSlash (SlashV2a catch_V2)

(DetCN (DetQuant DefArt NumSg) (UseN worm_N)))

In a grammar for German, the linearization can be the tree of a corresponding German idiom
with similar idiomatic meaning, i.e. Morgenstund’ hat Gold im Mund :

lin idiom_early_bird_Cl =

PredVP (MassNP (UseN morgenstunde_N))

(AdvVP (ComplSlash (SlashV2a have_V2) (MassNP (UseN gold_N)))

(PrepNP in_Prep (DetCN (DetQuant DefArt NumSg) (UseN mouth_N))))

For idiom simulate daed VP, the linearization in English is the tree of the expression,

lin idiom_simulate_dead_VP =

(ComplSlash (SlashV2a play_V2)

(DetCN (DetQuant DefArt NumSg) (UseN opossum_N))) ;

while the linearization in German uses a special reflexive Verb sich totstellen:

lin idiom_simulate_dead_VP =

UseV (reflV (prefixV "tot" (regV "stellen")) accusative) ;

Notice that parsing the idomatic expression src gives both its standard tree and the idiom con-
stant, hence, if all words in the tree have linearizations in the target language Tgt, a translation
by linearize ◦ parse gives a literal translation as well as an idiomatic translation:

DLang> p -tr -lang=Eng -cat=Cl "the early bird catches the worm" | l -lang=Ger

PredVP (DetCN (DetQuant DefArt NumSg) (AdjCN (PositA early_A) (UseN bird_N)))

(ComplSlash (SlashV2a catch_V2)

(DetCN (DetQuant DefArt NumSg) (UseN worm_N)))

121If there is one target language only, the transfer function can map the idiom’s tree to the target expression’s
tree, and skip the idiom constant.

194

idiom_early_bird_Cl

der frühe Vogel fängt den Wurm

Morgenstund hat Gold im Mund

To suppress the non-idiomatic reading of an idiom src, we can use a transfer function f to map
its tree to the idiom constant and identify both, using

parse -lang=Src -cat=S src | pt -normalize=f -nub | l -lang=Tgt

Idiomatic expressions can be sentences, but more often they can vary in tense and combine with
different subjects and objects, i.e. are of type Cl, VP or VPSlash, or they can be adverbs.

Let idiomS be a transfer function intended to handle idioms of type S. As default case, we let
the transfer function go down its input tree to subtrees of the same or similar kinds, and transfer
these with transfer functions of appropriate type:

fun idiomS : S -> S ;

def idiomS (UseCl tmp pol cl) = UseCl tmp pol (idiomCl cl) ;

idiomS s = s ;

Special cases, which might fix tmp or pol in idiomS, have to be inserted before the default case.
To map the tree of the early bird catches the worm of type Cl to the constant, we insert a special
case before the default of idiomCl:

fun idiomCl : Cl -> Cl ;

def idiomCl (PredVP (DetCN (DetQuant DefArt NumSg)

(AdjCN (PositA early_A) (UseN bird_N)))

(ComplSlash (SlashV2a catch_V2)

(DetCN (DetQuant DefArt NumSg) (UseN worm_N)))

= idiom_early_bird_Cl ;

idiomCl (PredVP np vp) = PredVP np (idiomVP vp) ;

idiomCl cl = cl ;

The syntactic constructors in the tree, including the words, have to be introduced by data

declarations, so we need to declare some words of the idioms that are not in DLexicon:

data catch_V2 : V2 ; early_A : A ;

morgenstunde_N : N ; opossum_N : N ;

To be able to translate in the reverse direction, the tree for the German corresponding idiom,
Morgenstund hat Gold im Mund, must also be mapped to idiom early bird VP in idiomCl.122

Parsing the English idiom then gives two trees, the ordinary parse of the expression and the one
containing the idiom constant. These are identified123 and translated to the German idiom by

122These pattern trees contains language-specific words, so the transfer function can be applied to trees obtained
from parsing any language: only pattern trees with words of the input language can match the input tree.
123But not when using pt -normalize=idiomS, since then the second tree is mapped to a tree UseCl tmp pol

(idiomCl idiom early bird Cl). Strange bug?: if data ok : Cl, then pt -compute (idiomCl ok) gives ok, but
if fun ko : Cl, then pt -compute (idiomCl ko) only gives idiomCl ko, ignoring the default idiomCl cl = cl.
Sure, we need that pt -compute (f ko) gives (f ko) if f has no computation rule (a syntactic constructor).

195

DLang> p -lang=Eng -cat=S "the early bird catches the worm"

| pt -tr -normalize=idiomCl -nub | l -lang=Ger

UseCl (TTAnt TPres ASimul) PPos idiom_early_bird_Cl

Morgenstund hat Gold im Mund

While idioms of type Cl can be varied in tense and polarity, idioms of type VP can additionally
be combined with any noun phrase to a clause. The example idiom simulate dead VP can be
treated as special case in

fun idiomVP : VP -> VP ;

def idiomVP (ComplSlash (SlashV2a play_V2)

(DetCN (DetQuant DefArt NumSg) (UseN opossum_N)))

= idiom_simulate_dead_VP ;

The idiomatic verb phrase can be part of sentences and provide literal and idiomatic transla-
tions:124

DLang> p -lang=Eng "John would have played the opossum" | l -lang=Ger

Johann würde das Opossum gespielt haben

Johann würde sich totgestellt haben

Similarly, we can have idiomatic expressions of type VPSlash that combine with two comple-
ments, e.g. jmdm den Kopf waschen.

Remark 108 : In some cases, binary predicates can be translated by linearize ◦parse via constants
of category VPSlash or even V2 in the lexicon, e.g. to be ashamed of 7→ sich schämen für.

6.5. Translation of multi-word-expressions

So far, we can translate expressions of basic syntactic types, using abstract constants of categories
N, A, V, Adv, or VP, V2, and VPSlash (to translate predicates like be ashamed 7→ sich schämen).125

More difficult to handle are multi-word-expressions, e.g. to translate the predicate give a talk
into einen Vortrag halten: the nouns talk and Vortrag, of common meaning, are combined with
specific verbs give and halten of different and here irrelevant meanings. But a talk and einen
Vortrag here are not fixed complements, but just represent a range of noun phrases with fixed
head nouns, as in gave two interesting talks on birds. Depending on which parts of the noun
phrase complement are missing, we need constants of non-basic syntactic types like Det -> VP

and Det -> AP -> VP. Corresponding special cases have to be inserted into idiomVP:

-- multi-word-expressions: more variation

idiomVP (ComplSlash (SlashV2a give_V2) (DetCN det (UseN2 talk_N2)))

= give_talk_VP det ;

idiomVP (ComplSlash (SlashV2a give_V2) (DetCN det (ComplN2 talk_N2 np)))

= give_talk_on_VP det np ;

124If S, two birds may be killed with the one stone 7→ Falls S, könnte man zwei Fliegen mit einer Klappe schlagen.
125Q76: Can we handle reflexive predicates like to do one’s best, to care about the health of one’s children etc.,

or to hurt one’s leg 7→ sich das Bein verletzen.

196

idiomVP (ComplSlash (SlashV2a give_V2)

(DetCN det (AdjCN ap (UseN2 talk_N2))))

= give_AP_talk_VP det ap ;

idiomVP (ComplSlash (SlashV2a give_V2)

(DetCN det (AdjCN ap (ComplN2 talk_N2 np))))

= give_AP_talk_on_VP det np ;

Again, these special cases should be followed by cases going down to subtrees and applying
transfer functions of appropriate type, until a final default case:

idiomVP (AdvVP vp adv) = AdvVP (idiomVP vp) adv ;

idiomVP (AdVVP adv vp) = AdVVP adv (idiomVP vp) ;

idiomVP (ProgrVP vp) = ProgrVP (idiomVP vp) ;

idiomVP (ComplVV vv vp) = ComplVV vv (idiomVP vp) ;

idiomVP (ComplVS vs s) = ComplVS vs (idiomS s) ;

idiomVP vp = vp ;

Sentences with this multi-word-expression can be correctly parsed and translated:

DLang> p -lang=Eng -cat=S -tr "John will give a good talk on birds" | l -lang=Ger

...

UseCl (TTAnt TFut ASimul) PPos (PredVP (UsePN john_PN)

(give_AP_talk_on_VP (DetQuant IndefArt NumSg) (PositA good_A)

(DetCN (DetQuant IndefArt NumPl) (UseN bird_N))))

...

Johann wird einen guten Vortrag über Vögel halten

However, there will be several different readings where on birds is viewed as modifying adverb,
and these cannot be collapsed to a single tree by pt -normalize=idiomVP any more.

6.6. The modules DIdiomTransfer and DLang

A module of transfer functions using any syntactic constructors of Lang in tree patterns can
then be built by extending DGrammar and DLexicon. We let it contain the above data and fun

declarations and def computation rules:

--# -path=.:../../src/abstract

-- 12/2024, needs modified gf-core/src/compiler/GF/Commands|TreeOperations

abstract DIdiomTransfer = DGrammar, DLexicon ** {

data

opossum_N : N ; ...

give_AP_talk_on_VP : Det -> AP -> AP -> NP -> VP ;

fun

idiom_simulate_dead_VP : VP ; ...

fun

idiomS : S -> S ;

197

def

idiomS (UseCl tmp pol cl) = UseCl tmp pol (idiomCl cl) ;

...

}

We can then build a version of Lang in which all syntactic constructions can be used in patterns
of transfer functions, by combining DGrammar and (for convenience) DLexicon with the above
module of transfer functions:

--# -path=.:../../src/abstract:../../common:

abstract DLang =

DGrammar,

DLexicon,

DIdiomTransfer -- HL 12/2024

** {

flags startcat=Phr ;

} ;

The module DIdiomTransfer declares transfer functions (which have no linearizations), but
also some syntactic constructions that need language-specific linearizations. Hence, concrete
modules implementing DIdiomTransfer are needed in concrete languages implementing DLang.

--# -path=.:../../src/abstract:../../src/common:../../src/prelude:../../src/german

concrete DIdiomTransferGer of DIdiomTransfer =

CatGer ** open ParadigmsGer, DGrammarGer, DLexiconGer in {

lin

idiom_early_bird_Cl =

(PredVP (MassNP (UseN morgenstunde_N))

(ComplSlash (AdvVPSlash (SlashV2a have_V2)

(PrepNP in_Prep (DetCN (DetQuant DefArt NumSg) (UseN mouth_N))))

(MassNP (UseN gold_N)))) ;

idiom_simulate_dead_VP =

UseV (reflV (prefixV "tot" (regV "stellen")) accusative) ;

opossum_N = reg2N "Opossum" "Opossums" neuter ;

early_A = mkA "früh" "früher" "früheste" ;

catch_V2 = dirV2 (irregV "fangen" "fängt" "fing" "finge" "gefangen") ;

morgenstunde_N = mkN "Morgenstund" "Morgenstunden" feminine ;

give_V2 = dirV2 (irregV "geben" "gibt" "gab" "gebe" "gegeben") ;

talk_N2 = mkN2 (mkN "Vortrag" "Vorträge" masculine)

(mkPrep "über" "über den" "über die" "übers" accusative);

give_talk_VP det =

(ComplSlash (SlashV2a hold_V2) (DetCN det (UseN2 talk_N2))) ;

198

give_AP_talk_VP det ap =

(ComplSlash (SlashV2a hold_V2) (DetCN det (AdjCN ap (UseN2 talk_N2)))) ;

give_talk_on_VP det np =

(ComplSlash (SlashV2a hold_V2) (DetCN det (ComplN2 talk_N2 np))) ;

give_AP_talk_on_VP det ap np =

(ComplSlash (SlashV2a hold_V2) (DetCN det (AdjCN ap (ComplN2 talk_N2 np)))) ;

}

Linearizations for words in the English idioms are just provided to support the literal transla-
tions. Notice that in the linearizations of give talk VP etc., the verb give V2 is replaced by
hold V2, so that give a talk can be translated to einen Vortrag halten.

199

7. Lose Ends

7.1. How to Prove Properties of a Resource Grammar?

We can do testing, but how can we prove correctness, or any other property of GF’s resource
grammars? This is a difficult question.

• First, all grammars are incomplete: for example, the resource grammars have no verbal
category of verbs of arity greater than 3, but languages have such verbs.

• Second, the prepositions of the RGL are English prepositions, and neither do they cover all
prepositions, nor do the given ones map one-to-one to prepositions of other languages, like-
wise for adverbs (then/when/when? in Eng corresponds to dann/als|sobald|nachdem/wann?
in Ger). So, correct translation of adverbials calls for a comprehensive set of adverb con-
structors, possibly organized in several adverbial dimensions, i.e. temporal, local, direc-
tional, causal, etc. prepositions or pro-adverbs.

Similarly, categories such as PConj for “phrase-beginning conjuncts” will not contain “the
same” words in all languages, and hence they cannot have a simple translation.

• Third, different sequences of rule applications may produce the same record in one lan-
guage, but different ones in another language. For example, the sequence may be relevant
for the word order in one language but not in the other. How can the word orders be made
corresponding between those language where order matters?

On the other hand, the advantage of writing grammar rules is that we can improve and correct
them, so we can reason about the constructions, and guarantee certain properties. For example,
we would like to prove that the two trees

ComplSlash (Slash3V3 v np3) np2 === ComplSlash (Slash2V3 v np2) np3

have the same linarizations, for all v:V3 and np2:NP, np3:NP, in all languages (or are different
trees intended for different word orders, c.f. below). Putting the implementation issues aside,
can we prove such properties using the intended mathematical interpretation of abstract terms
(trees) by records with string and parameter fields?

A better example may be

ImpersCl vp === PredVP (UsePron it_Pron) vp

since

IdiomEng.gf: ImpersCl vp = mkClause "it" (agrP3 Sg) vp ;

SentenceEng: PredVP np vp = mkClause (np.s ! npNom) np.a vp ;

IdiomGer.gf: ImpersCl vp = mkClause "es" (agrP3 Sg) vp ;

SentenceGer: PredVP np vp = let subj = mkSubject np vp.c1

in mkClause subj.s subj.a vp ;

ResGer.mkSubject (UsePron it_Pron) Nom = {s = "es" ; a = agrP3 Sg}

So it seems that ImpersCl can be reduced to the “core” language without Idiom. This could be
expected, but in fact the implementations in IdiomEng, IdiomGer are based on ResEng, ResGer,

200

not only on constructors of other grammar modules (which contain it Pron). However, the use
of it Pron here is in fact a correlate for the moved infinitival subject, or sentential subject: es
ist gut, dass S, or es ist gut, ... zu tun.

More generally, it would be nice to implement normalization of trees (say, to give a normal form
to realize a possessive function, or relate passive clauses to active ones, or translate adjectival
attributes to relative clauses, etc. (This should be part of Transfer.)

Having such proofs, it would be nice to record the assumptions used, and re-establish them after
grammar modifications. (i.e. do regression tests of general properties of the grammars, not just
of individual parse results.)

Word order and parsing: do we want two trees, or use a new ComplV3 instead?

Lang> p -tr -lang=Eng -cat=Cl "I sell the dog to the man" | l

PredVP (UsePron i_Pron) (ComplSlash (Slash2V3 sell_V3

(DetCN (DetQuant DefArt NumSg) (UseN dog_N)))

(DetCN (DetQuant DefArt NumSg) (UseN man_N)))

PredVP (UsePron i_Pron) (ComplSlash (Slash3V3 sell_V3

(DetCN (DetQuant DefArt NumSg) (UseN man_N)))

(DetCN (DetQuant DefArt NumSg) (UseN dog_N)))

I sell the dog to the man

ich verkaufe dem Mann den Hund

I sell the dog to the man

ich verkaufe dem Mann den Hund

If we insert objects into the same nn:Str field, the order of objects must be reflected in the tree.
If we insert the objects in separated components of nn:Str *...* Str, different trees have the
same record, and the record is more abstract than the trees. We then need a default relative
ordering of the nn fields. Or some (invisible) parameters that choose between the possible
relative orders, similar to the t:Temp with empty string component.

Q77: What is needed of RNP to be able to prove that ReflRNP : VPSlash -> RNP -> VP is a
generalization of ReflVP : VPSlash -> VP?

Generally, when is an abstract rule implemented correctly? For example, are there criteria how
a constituent constructed by a Slash*-rule has to behave? If the constituent embedded in a
relative clause (with the relativizing element extracted) or if it embedded in a complementation
rule works correctly?

Proposal 4: There ought to be a set of abstract, semantically motivated prepositions as adverb
constructors. (c.f. Remark 7.) /

7.2. Problems

Todo 58: There are some problems with the existing LangGer.

• Nesting depth of VV or V2V complements:

• Sometimes, a comparison of Ger with Eng is useful or needed to understand the motivation
of constructions in the RGL. For example, the difference between AdvVP and AdVVP appar-
ently makes little sense for Ger, because only English has a distinction between adverbs
coming before and adverbs coming after the verb.

201

• Modification rules can be applied iteratively, which may be ok for AdvCN:CN -> Adv ->

CN, but is dubious for RelCN:CN -> RelS -> CN. In some cases, only a single modification
is correct. However, GF does not allow us to have partial rules that are not applicable
to a CN already modified (though the iterated modification might return its argument cn

unchanged). See nfCN in DIdiomTransfer.gf.

• Inflection paradigms s : Parameters => Str

• Adjectives with object sentences or object infinitives have category A, e.g. probable AS

and fun AV. Hence, an object sentence can also be analysed as an adverbial sentence, which
makes no sense, e.g. John is glad that he can sleep, c.f. the remark to lexical adjectives in
Section 53.

• Compound nouns in DictGer are often not inflected correctly: if they are composed of
adjective and noun, like grasgruene taeubling, the adjective is not inflected: e.g. ∗des
Grasgrüne Täublings.

• CAdv is used in combination with an adjective in

ComparAdvAdj : CAdv -> A -> NP -> Adv ; -- more warmly than John

ComparAdvAdjS : CAdv -> A -> S -> Adv ; -- more warmly than he runs

to form an adverb, and with

CAdvAP : CAdv -> AP -> NP -> AP ; -- as cool as John

to form an adjective phrase. In the first usage, the comparative adverb can govern the
degree of the adjective, e.g. more + good = good ! Compar = better, in the second usage,
it cannot, as the adjective phrase has a fixed degree. Q78: Can we let CAdv determine the
degree of an adjective and still add complements? If we had

CAdvAP : CAdv -> A -> NP -> AP ;

CAdvA2P : CAdv -> A2 -> NP -> NP -> AP ;

we could build genau so stolz auf np1 wie np2 and stolzer auf np1 als np2. If we let AP.s
: Degree => AForm => Str, each usage of an ap has to somehow choose a degree.

There is yet no ComplComparA2 : A2 -> NP -> AP for adding an object to an A2 in
comparative, e.g. stolzer auf sein Kind (als wir).

• Sometimes, prefixverbs have a modifiable prefix, e.g. wohlfühlen rV:V = sich wohlfühlen.
But how can we modify the separable prefix, as in “der Pazifische Makrelenhecht, der sich
bei 15 bis 18 Grad im Wasser am wohlsten fühlt” (SZ 16.Februar 2024, Nr.39, S.14)

• How to parse damals war es für sie so, als sei . . . der Fall, or so, als ob . . . der Fall sei?
Do we have an adverb construction as if : Cl -> Adv?

• It seems that most Predet is specific to Eng, e.g. most of [the children | my old articles].
In Ger, we’d rather need a quantifier most Quant, e.g. die meisten [der Kinder | meiner
alten Artikel] (c.f. Remark 100.) So we seem to need a transfer Eng.most Predet 7→
Ger.most Quant. Maybe most:Predet is incorrect even for English. Was it intended for
most small houses, not for most of the small houses only?

202

Remark 109 : The rule ExtraGer.PassVPSlash : VPSlash -> VP is overwritten in TestLangGer.

Example problems:

• Left extraction: SZ 26.2.2022 hat die EU gegen Russland das härteste Sanktionspaket in
der Geschichte des Wirtschaftsblocks erlassen from Paket von Sanktionen gegen Russland.

• PossNP and AdvNP: Notice the complement auf die Ukraine of Angriff, in contrast to the
adverbial modification (or complement?) für die Ukraine of Folgen in

– die wirtschaftlichen Folgen des russischen Angriffs auf die Ukraine

– die wirtschaftlichen Folgen des russischen Angriffs für die Ukraine

It seems that objects are closer to N than possessive genitives, and these closer than
adverbial modifiers.

GF has PossNP and PartNP to attach a noun phrase (in genitive resp. with of) to a
common noun. It should also have ComplSubjN2 besides ComplN2, for subject and object
complement to binary nouns: the education of children by adults, die Ermordung des
Cäsars durch Brutus, der Mord des Brutus an Cäsar. The concrete type of N2 seems to
need fields c1,c2:Preposition to relate the subject- and object-complement to the noun
(at least for nouns derived from binary verbs).

• It also seems that objects (of nouns) are closer than adjective or adverbial modifiers, but
should we identify (nice ((talk (on birds)) in Paris)) with (nice (talk (in Paris)) (on birds))
by tree normailzations, while keeping the difference to nice talk (on (birds in Paris))? Or
should we use different scopes to represent possibly different word orders? How could this
work across languages?

Q79: Can we accept variants and generate a normal form of an expression? This would be very
useful to let less used variants be accepted in parsing, but only a specific form be generated in
linearization. For example, ConstructionGer defines

timeunitAdv n time =

let n_hours_NP : NP = mkNP n time

in SyntaxGer.mkAdv (for_Prep | P.accPrep) n_hours_NP ;

with alternative tree constructions. Both “elf Wochen” and “für elf Wochen” are parsed to the
same tree

timeunitAdv (NumNumeral (num (pot2as3 (pot1as2 pot111)))) week_Timeunit

But the first construction seems to be the “normal form” for generation:

Lang> p -tr -cat=Adv "elf Wochen" | l

timeunitAdv (NumNumeral (num (pot2as3 (pot1as2 pot111)))) week_Timeunit

für elf Wochen

The other form is also generated when linearizing the full inflection table (using l -table):

203

Lang> p -cat=Adv "elf Wochen" | l -table

s : für elf Wochen

s : elf Wochen

A resource grammar perhaps ought not to have such alternatives. For application grammars,
however, they seem rather useful, provided this works similarly for nested alternatives and the
selection of the “normal form” is stable under compiler optimizations. /

Remark 110 : ApposCN, DetNP and MassNP cause rather incorrect trees, e.g. for er lebt in seinem
Haus seiner Frau:

PredVPRAdv (UsePron he_Pron) (UseV live_V)

(PrepRNP in_Prep (ReflPoss NumSg (ApposCN (ApposCN (UseN house_N)

(DetNPFem (DetQuant (PossPron i_Pron) NumSg))) (MassNP (UseN woman_N)))))

A lot (78%) of incorrect trees are obtained by

ReflPredicates>

p -cat=VP "seinem Chef seinen Hund zu verkaufen" | ? wc -l => 79

p -cat=VP "seinem Chef seinen Hund zu verkaufen" | ? grep MassNP | wc -l => 62

p -cat=VP "seinem Chef seinen Hund zu verkaufen" | ? grep ApposCN | wc -l => 62

p -cat=VP "seinem Chef seinen Hund zu verkaufen"

| ? grep -v ApposCN | grep -v he_Pron | grep -v it_Pron

ComplRSlash (SlashR3V3 sell_V3 (ReflPoss NumSg (UseN boss_N)))

(ReflPoss NumSg (UseN dog_N))

ReflRNP (SlashR3V3 sell_V3 (ReflPoss NumSg (UseN boss_N)))

(ReflPoss NumSg (UseN dog_N))

Generally, a CN can be possessively post-modified by an NP in genitive, like Haus seiner Frau, but
then should not additionally be possessively pre-modifiable by an NP in genitive or a possessive
pronoun, like mein Haus seiner Frau or your house of mine. In principle, syntactic constructions
are typed partial functions, i.e. ‘good’ arguments should satisfy properties not encoded in their
type, but the syntactic constructions of GF are total. To fix this, the linearization of a syntactic
construction of GF could set an error-field in the constructed expression if its (type-correct)
argument is not ‘good’ according to the values of its fields.

Q80: Noun complements and compound nouns: there is a difference between (finite automata)
theory = theory of finite automata and modern (automata theory) = modern theory of automata.
Using words of Lexicon.gf, we get two trees for new paper industry :

Lang> p -lang=Eng -tr -cat=NP "the new paper industry" | l

DetCN (DetQuant DefArt NumSg) (AdjCN (PositA new_A)

(ApposCN (UseN paper_N) (MassNP (UseN industry_N))))

DetCN (DetQuant DefArt NumSg) (ApposCN (AdjCN (PositA new_A) (UseN paper_N))

(MassNP (UseN industry_N)))

the new paper industry

das neue Papier Industrie

the new paper industry

das neue Papier Industrie

204

The trees are clearly wrong (at least in German, where the head noun Industrie is feminine). It
seems that paper in paper industry is a modifier or object of industry. In German, endliche Auto-
matentheorie is ungrammatical, it has to be Theorie endlicher Automaten. (Duden: ∗der chemis-
che Fabrikbesitzer, but: der klassische Gitarrenunterricht.) These constructions involve com-
pound nouns in German. ParseEngAbs has declarations fun CompoundSgCN, CompoundPlCN :

CN -> CN -> CN.

7.3. ExtraGer: what to do to improve parsing

Todo 59: We should write a new version of the parsing grammar ParseGer that omits some
overgenerating rules of Grammar and adds, besides rules of ExtendGer, further rules specific to
German, to be collected in ExtraGer.

1. Exclude Noun.DetNP and replace it by DetNPMasc, DetNPFem, DetNPNeutr : Det ->

NP, using an operation oper DetNP : Det -> Gender -> NP with parameter type Gender.

2. Exclude MassNP : CN -> NP, and replace it by a category MN of mass nouns, a category CMN

of common mass nouns, and rules UseMN : MN -> CMN and DetCMN : Det -> CMN -> NP

to generate water MN:MN, klares Wasser:CMN and viel klares Wasser:NP. However,
count nouns are also used without article, e.g. Überfischung und Klimawandel sind die
Hauptgründe für die Entwicklung.

3. Remove rules AdvRNP, AdvRVP and AdvRAP of Extend and replace them by RAdvNP, RAdvVP
and RAdvAP using a category RAdv of reflexive adverbs, see Remark 23.

4. Implement splittable adjective and adverb phrases, e.g. weil die Inflation größer war
als die Lohnerhöhungen and dass die Bürger weniger konsumieren als erwartet

5. Add complement frames to nouns and adjectives in LexiconGer, e.g. Grund für etwas,
Hoffnung auf etwas. (But if we can’t suppress adverbial readings of these prepositional
objects, what do we gain?)

6. Implement sentential correlates: (Gründe) dafür, daß sich die Wirtschaft nur zaghaft er-
holt, and allow them as alternative to prepositional objects.

7. Implement the extraction of relative clauses of nominal objects behind the non-finite verb
part.

7.3.1. Structural ambiguiuties

1. Replace the rules to modify a noun by AP, Adv, RelS to a joint modification, so that
different orders of modifiers are ignored. (With dependent category (CN am advm rsm) as
in the Riga Summerschool, or by reduction to a normal form and identification of trees?)
Can we similarly collaps modifications of NPs, or identify modifications of DetCN det cn

with modifications of the embedded cn?

2. German adjectives can be read as adverbs, in context where they shouldn’t:

TLang> p -cat=Cl "ich bin jung"

PredVP (UsePron i_Pron) (UseComp (CompAP (PositA young_A)))

PredVP (UsePron i_Pron) (UseComp (CompAdv (PositAdvAdj young_A)))

PredVP (UsePron i_Pron) (AdvVP UseCopula (PositAdvAdj young_A))

Can we collaps the three readings to the first one (by pt -transfer and pt -nub) ?

3. For parsing from German, can we omit someSg Det from the abstract syntax, or normalize
it to DetQuant IndefArt NumSg? Rather not; they differ in Engslish: some vs. a/one.)
Can we ignore, i.e. normalize away, the cardinal 1 used as number in determiners?

205

4. A binary adjective a2 or noun n2 that combines with a nominal object np by a preposition
a2.c2, n2.c2 : Preposition can always be used without complement and the resulting
AP or CN be modified by the adverb adv = PrepNP p np via

AdvVP (UseComp (CompAP (UseA2 a2))) adv

AdvVP (UseComp (CompCN (UseN2 n2))) adv

Q81: How can one enforce that complementation precedes modification? A (language-
independent?) operator precedence declaration should instruct the parser to only extract
one of the two structures from the parse table. Can the parser compare the preposition p

of the adverb adv in the trees above with the preposition p’ = a2.c2 in the complement
construction ComplA2 a2 np resp. ComplN2 n2 np? Sure, on the abstract language level,
we cannot compare the trees

(AdvCN (UseN2 n2) (PrepNP p np)) = (ComplN2 n2 np)

and see if p is the preposition n2.c2 used to bind the complement np to n2.

5. An adverb may be moved from a subordinate clause to the main (or superordinate) clause,
and can be read as adverb of the main clause: dass die Forscher wegen des Rückgangs der
Inflation damit rechnen, dass die Zentralbanken [?] die Zinsen wieder senken

Todo 60: Add testfiles *.gfs or *.gftest ?

Remarks: 110, Todos: 60, Questions: 81, Proposals: 4

206

References

[1] K. Angelov. The Mechanics of the Grammatical Framework. PhD thesis, Chalmers Uni-
versity of Technology, Gothenburg, Sweden, 2011.

[2] G. Drosdowski, editor. DUDEN “Grammatik der deutschen Gegenwartssprache”, vol-
ume 4., völlig neu bearbeitete und erweiterte Auflage. Bibliographisches Institut,
Mannheim/Wien/Zürich, 1984.

[3] P. Eisenberg. Grundriß der deutschen Grammatik. J.B.Metzlersche Verlagsbuchhandlung,
Stuttgart, 1986.

[4] U. Johnson. Mutmassungen ber Jakob. Suhrkamp Verlag, Frankfurt a.M., 1959.

[5] Y. Kaji, R. Nakanishi, and H. Seki. The computational complexity of the universal recog-
nition problem for parallel multiple context-free grammars. Computational Intelligence,
10(4):440–452, 1994.

[6] J. Macheiner. DAS GRAMMATISCHE VARIETÉ oder Die Kunst und das Vergnügen,
deutsche Sätze zu bilden. Eichborn Verlag, Frankfurt am Main, 1998.

[7] R. Nakanishi, K. Takada, and H. Seki. An efficient recognition algorithm for multiple
context-free languages. In MOL 5: 5th Meeting on the Mathematics of Language, pages
119–123, Saarbrücken, Germany, 1997.

[8] A. Ranta. Grammatical framework, a type-theoretic grammar formalism. Journal of Func-
tional Programming, 14(2):145–189, 2004.

[9] A. Ranta. Grammatical Framework: Programming with Multilingual Grammars. CSLI
Publications, Stanford, 2011. ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth).

[10] H. Seki, T. Matsumura, and T. Kasami. On multiple context-free grammars. Theoretical
Computer Science, 88(2):191–229, 1991.

207

Index

GenNum, 62
adjEnding, 86
agrAdj, 67, 79, 99
BIND, 74

abstract grammar, 11
accusative cum infinitive, 48, 134
ACI (accusative cum infinitive), 176
adjective

adverbial usage, 109
scalar, 155

adjective inflection type, 45, 98
adjective inflection types, 45, 87
adverb

interrogative, 154
pronominal, 27, 107
relative, 110

adverb negation, 53
agreement

in noun phrases, 45
subject verb, 55

alphabet, 5
alternative linearization, 9
ambiguity, 10, 24, 27, 31, 39
article, 42
auxiliary verb, 46

basic clause, 55
basic phrase, 5
basic verb phrase, 50
beide, 81

categorial grammar, 8
clause negation, 53
common name, 42, 43
common noun, 43
comparative adverb, 108
complement, 5, 44

of copula verb, 125
adjectival, 47
infinitival, 47
interrogative, 47, 158, 159
nominal, 47
prepositional, 19
reciprocal, 52
sentential, 47
sentential,interrogative,infinitival, 17

complement frame, 5
compositional, 13
concatenated, 5
concrete grammar, 11
context-free grammar, 7
context-free language, 8
context-free subset, 7
control verb, 49, 52
coordinations of noun phrases, 42
copula verb, 26, 31, 46, 47, 49, 117, 125, 127,

156, 158
correlate, 49, 115, 169, 182, 184, 185, 189, 193

for dass-sentence, 55
for adverb, 111
for infinitival complement, 49, 52
for infinitival subject, 29, 189
for sentential or infinitival subject, 23

correlate switch, 115
count adjectives, 86

degree, 98
determiner

empty, 42
interrogative, 152

determiner ending tables, 87
determining usage of determiners, 85
digits, 72
discontinuous phrase, 9

empty string, 5
evaluative adverbial, 54
expletive, 46
extracted, 55, 115

finite subsets of M , 6
formal language, 5
full verb, 46

GF-grammar, 11
grammar

multilingual, 11
grammar rule, 7

head, 5

implementation type, 11
implicit subject, 48
in-place, 115

208

incomplete clause, 141
incomplete sentence, 141
incomplete verb phrase, 24
indefinite personal pronoun, 169
infinitival, 5
interrogative complement of copula verb, 156
interrogative sentence, 159

language division, 8
letter, 5
linearization category, 11
linearization function, 11
linearization type, 58

metavariable, 13
method to resolve reflexive pronouns, 124
modal verb, 51
modifier, 5
monoid, 6

free, 6

nested infinitival complements, 52
nominal, 5
nonterminal, 7
normal form, 191
normalize, 168
noun

lexical, 59
morphological, 59

noun phrase
interrogative, 151
light, 64
reflexive, 151, 176

number
decimal, 74
digital, 73

Numbers, 72
numerals, 72

object, 5, 51
nominal, 16
prepositional, 40
sentential, 64, 185

object-control, 52
object-to-subject raising, 50
ordering of complements and adverbials, 51
original position, 115

paradigm, 9
parallel multiple context-free grammar, 8

personal pronoun, 42
phrase, 5
Possessive function, 44
power set monoid, 6
predicate, 51

semireflexive, 182
Predicative function, 44
prefix verb, 46
preposition, 17, 19

as adverb constructor, 41
as argument category, 19
contracted with definite article, 60
empty, 42
implementation type, 60

preposition stranding, 27
prepositional, 46
pronoun, 43

indefinite personal, 25
indefinite reflexive, 25
interrogative, 151
personal, 21
possessive, 93
reciprocal, 18, 160, 169
reflexive personal, 25
reflexive possessive, 25

pronoun switch, 119
proper name, 42

quantified noun phrases, 42
quantifier

interrogative, 152
question, 159

raising
object-to-subject, 170
subject-to-object, 48, 50
subject-to-subject, 50

raising verb, 50
referential adverbial, 54
reflexive adjective phrase, 117
reflexive function, 42
reflexive infinitive, 52
Reflexive Predicates, 181
reflexively used, 48
relative clause, 146
relative sentence, 149
residual, 7
residual function, 8
residuated, 7
residuated partially ordered monoid, 7

209

resource module, 58

semiring of all formal languages, 6
sentence negation, 53
stand-alone usage of determiners, 85
string, 5
structural transfer, 35
subject, 5

infinitival, 5
nominal, 5, 16

subject-control, 49, 52
syntactic arity, 5, 46
syntactic category, 11
syntactic construction, 11
syntactic role, 9, 176

transfer, 13, 35, 172
lexical, 134, 173

tree
abstract, 11
atomic, 11
compound, 11

tree transformation, 5, 39, 161, 173
type

implementation, 58

unit type, 59
usage

attributive, of adjective, 106
infinitival, of verb phrase, 52
of adjective, 45
possessive, of pronoun, 70
predicative, of adjective, 106
predicative, of noun phrase, 126
predicative, of verb phrase, 51
top-level, of noun phrase, 65

usage of determiners, 72
utterance, 166

verb
auxiliary, 49
copula, 25
ditransitive, 48
intransitive, 47
lexical, 113
modal, 48
morphological, 46, 111
object-control, 49
reflexive, 48
subject-control, 49

transitive, 48
verb phrase negation, 53
vocabulary, 5

weight, 63
word order, 56

210

Status of Dictionaries

There are 16 dictionaries under gf-rgl/src/:

~/GF/gf-rgl/src$ ls -l */Dict???Abs.gf

1347458 Sep 11 2018 english/DictEngAbs.gf

1684580 Sep 11 2018 estonian/DictEstAbs.gf

556 Sep 11 2018 finnish/DictFinAbs.gf

2372417 Sep 11 2018 french/DictFreAbs.gf

956238 Aug 5 18:09 german/DictGerAbs.gf

138051 Feb 3 2022 icelandic/DictIceAbs.gf

3041777 Feb 7 2022 latin/DictLatAbs.gf

1586314 Jul 5 2019 latvian/DictLavAbs.gf

126834 Sep 11 2018 maltese/DictMltAbs.gf

491611 Sep 11 2018 mongolian/DictMonAbs.gf

3020372 Jul 5 2019 portuguese/DictPorAbs.gf

82468 Feb 7 2022 russian/DictRusAbs.gf

1010377 Jul 5 2019 spanish/DictSpaAbs.gf

336 Sep 11 2018 swedish/DictSweAbs.gf

541219 Sep 11 2018 turkish/DictTurAbs.gf

~/GF/gf-rgl/src$ ls -l */Dict???.gf

2985699 Sep 11 2018 english/DictEng.gf

8163388 Sep 11 2018 estonian/DictEst.gf

561 Sep 11 2018 finnish/DictFin.gf

5015320 Aug 7 16:37 french/DictFre.gf

2583201 Aug 5 18:09 german/DictGer.gf

719729 Feb 3 2022 icelandic/DictIce.gf

4065682 Feb 7 2022 latin/DictLat.gf

3350709 Jul 5 2019 latvian/DictLav.gf

293722 Sep 11 2018 maltese/DictMlt.gf

968876 Sep 11 2018 mongolian/DictMon.gf

8310232 Jul 5 2019 portuguese/DictPor.gf

269269 Feb 7 2022 russian/DictRus.gf

1811727 Jul 5 2019 spanish/DictSpa.gf

344 Sep 11 2018 swedish/DictSwe.gf

876085 Jul 5 2019 turkish/DictTur.gf

634522 Sep 11 2018 urdu/DictUrd.gf

How many entries of a given category C of Grammar do exist in these dictionaries? Counted by
gf-rgl/src> grep " C " */Dict*Eng*Abs.gf | wc -l for language Eng etc.

There are also 5 dictionaries in gf-rgl/src/morphodict, for Eng, Fin, Ger, Ita, Swe.

211

Cat Eng Est Fin Fre Ger Ice Lat Lav Mlt Mon Por Rus Spa Swe Tur Urd

V 4016 7211 0 8751 4698 860 3417 20420 4146 7415 0 1008 5218 7322 2657 3551
V2 6730 616 0 0 3870 0 3529 0 0 1378 0 0 2 554 0 7040
V3 75 0 - - 742 - 0 - - 99 - - 0 0 0 0
VV 112 18 0 0 55 0 0 0 0 4 0 119 0 0 0 8

N 72354 42392 60130 59297 61825 5257 19116 33325 0 9413 84457 952 29010 74833 18890 23428
N2 3 0 0 3 0 0 0 0 0 1 0 3 0 0 0 0

A 25852 4044 2932 22525 15774 784 8822 0 0 5394 44072 984 5571 18638 659 18573
A2 7 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0

Adv 2375 2418 10899 1570 1462 4 2162 0 0 0 0 993 1130 1162 0 941

Prep 367 0 0 0 0 0 87 0 0 0 0 0 27 179 0 32

Differences of GF from what the GF-book says

These differences occurred with Grammatical Framework (GF) version 3.11.0

1. The gf-shell command pt = put tree no longer supports the option -paraphrase men-
tioned on p. 144 of the F-book

2. The gf-shell command pt = put tree no longer supports the option -transfer=f that
is mentioned on p.195 of the GF-book. (So we can no longer parse and apply the tree
transform function f to the result, p "..." | pt -transfer=f | l, which was useful for
translation to a single target language.)

3. Contrary to C.3.6 (p.267) of the GF-book, one cannot separate a declaration data f : A

-> C; to fun f : A -> C; data C = f;. A conflict results when adding data NP =

DetCN; to Noun. According to C.3.6, “all these constructor definitions must appear in the
same module in which the category is itself defined.” While above NP is defined in the
module Cat which is not “the same” module as Noun = Cat ** { fun DetCN : Det ->

CN -> NP; ... }, the conflict also results if a category C, a declaration fun f : A ->

C, and the separate declaration data C = f appear in the same module.
However, a declaration data f : A -> C need not be in the module where C is defined,
so replacing fun DetCN : Det -> CN -> NP; in Noun by data DetCN : Det -> CN ->

NP; works. This is heavily used in Lang, e.g. for data UseV : V -> VP in Verb.

4. The GF-compiler does not type-check in

table (Ints n) [value_0,...,value_n] ! k

whether k ≤ n and raises an Internal error in Compute.ConcreteNew. But it detects
a type mismatch between Case and Int in table (Case) [value 0,...,value n] ! 4.

212

Appendix: What needs to be added or improved?

1. a better test lexicon: for all lexical categories and inflection classes (for a given language),
the (language-specific) text lexicon should have an instance.
(c.f. GF/gf-rgl/tests/german/TestLexicon.gf)

2. a more complete lexicon of structural words: all pronominal adverbs, all pronominal ad-
jectives (so, solch, ander, welch), subjunctions like bevor, ehe, als, während, nachdem
(Bem. eher-als+am ehesten:Adv?)

3. a semantically organized lexicon of all? prepositions as adverb constructors, so that adverbs
can be translated in a meaning-preserving way

4. a large treebank of abstract trees, organized according to the syntax modules. Some cases
that show all variations, some that show the tree structure in typical case. (See

• GF/gf-rgl/treebanks/rgl-exx.txt 15k From trees, treebanks for Eng, Swe, Bul are
generated by the gf-script GF/gf-3.6/testsuite/libraries/exx-resource.gfs

• GF/gf-rgl/treebanks/rgl-api-trees.txt 991 trees, 104k, 2018

• GF/gf-rgl/treebanks/ud-rgl-trees.txt 64 trees, 12k, 2019

• GF/gf-rgl/treebanks/numeral-trees.txt 10 trees

• GF/gf-rgl/treebanks/pron-ordering-trees.txt.*V3

• GF/gf-rgl/tests/german/object-order.README

• GF/gf-rgl/tests/german/infinitives*.trees 16975+1266

• GF/gf-rgl/tests/german/trees.eng.tmp 16443

• GF/gf-rgl/tests/german/parsetrees.eng.tmp 9895

• GF/gf-rgl/tests/german/passive.pos|neg|dub.trees 5366,768,744

• GF/gf-rgl/tests/german/relativeClause.trees 1952

• GF/gf-rgl/tests/german/rnp.trees 2880

• GF/gf-rgl/tests/german/s.eng.trees.gf-3.9 16358

• GF/gf-rgl/tests/german/todo.trees 2085

• GF/gf-rgl/tests/german/vp.eng.trees 8939

• GF/gf-rgl/tests/german/vpadv.trees 4919

• GF/gf-rgl/tests/german/vp.trees 9172

• Vorlesungen/GrammaticalFramework-14-15/grammar.trees, 9106 K,

• Vorlesungen/GrammaticalFramework-12-13/exx-resourceGer.txt)

• Magisterarbeiten/Baatarkhuu/gf-trees/examples.abs, 7235 K

• Magisterarbeiten/Erdenebadrakh/mongolian/test.trees 10755

• GF/gf-3.7.1/lib/src/german/examples.abs

• gf-3.8 = GF/gf/lib/src/german/trees|trees.AllGer|.abs

See also the .txt files in these directories for example input to the parser. Can we have
text examples with acceptance bit, as in passive.txt ?

5. movement of extractable parts: specific rules may give expressions with moved extractions,
for example ComplSlashExt for nominal objects with relative clause extracted behind the
infinite verb part, or ApposCNExt for post-nominal apposition in commata.

6. grammar rules for participle constructions (c.f. Magisterarbeiten/Derkatcheva)

213

Files with bugs:

1. Vorlesungen/GrammaticalFramework-12-13/gf-errors.txt

2. Magisterarbeiten/Azimi/germanNeu/BUGs.txt

3. Magisterarbeiten/Azimi/germanNeu/TestLexAllAbs.gf

4. GF/gf-bugs.txt

5. GF/gf-rgl/tests/german/bug.adjective - ../bug.sentence

6. GF/gf-3.7.1/lib/src/german/Bugs.hl (20 Fehler, z.T. korrigiert)

7. GF/gf-3.7.1/lib/src/german/Bug.AdvVP-ComplSlash.txt

Changes made:

1. GF/gf-3.7.1/ChangesHL

GF-scripts: see also GF/gf/lib/tests/run.hs+readme.rst, GF/gf/lib/doc/Test.hs

1. GF/gf-3.0/testsuite/libraries/exx-resource.gfs

2. GF/gf-3.7.1/lib/src/german/examples.gfs

3. GF/gf-3.7.1/lib/src/german/examplesLang.gfs

4. GF/gf/lib/src/german/dictnouns|nouns|paradigms|trees*.gfs 2017-2021

Older .gfo-files

1. GF/gf-3.6/lib/src/german/LangGer.gfo

2. GF/gf/lib/src/german/LangGer.gfo 2017-2021

Changes made in older versions of gf-*/lib/src/german/:

diff GF/gf-3.6/lib/src/german/*Ger.gf GF/gf-3.6/lib/src/german/*Ger.gf~

< CleftNP np rs = mkClause "es" np.a -- HL (agrP3 Sg)

> CleftNP np rs = mkClause "es" (agrP3 Sg)

diff ~/GF/gf-3.6/lib/src/german/CatGer.gf ~/GF/gf-3.6/lib/src/german/CatGer.gf~

< VP = \vp -> useInfVP False vp ++ vp.ext ;

> VP = \vp -> useInfVP False vp ;

diff ~/GF/gf-3.6/lib/src/german/LexiconGer.gf ~/GF/gf-3.6/lib/src/german/LexiconGer.gf~

< -- talk_V3 = mkV3 (regV "reden") datPrep von_Prep ;

< talk_V3 = mkV3 (regV "reden") (mkPrep "mit" dative) (mkPrep "über" accusative) ; -- HL

> talk_V3 = mkV3 (regV "reden") datPrep von_Prep ;

diff ~/GF/gf-3.6/lib/src/german/SentenceGer.gf ~/GF/gf-3.6/lib/src/german/SentenceGer.gf~

< EmbedVP vp = {s = useInfVP False vp ++ vp.ext} ; -- 10/7/16 vp.ext, HL

> EmbedVP vp = {s = useInfVP False vp} ;

GF/gf-3.2/lib/src/german/StructuralGer.gf:

whatPl_IP = {s = caselist "was" "was" "was" "wessen" ; n = Sg} ; -- HL: Sg!

whoPl_IP = {s = caselist "wer" "wen" "wem" "wessen" ; n = Sg} ; -- HL: Sg for Subj-Verb agreement

< whatPl_IP = {s = caselist "was" "was" "was" "wessen" ; n = Sg} ; -- HL: Sg!

> whatPl_IP = {s = caselist "was" "was" "was" "wessen" ; n = Pl} ; ----

< whoPl_IP = {s = caselist "wer" "wen" "wem" "wessen" ; n = Sg} ; -- HL: Sg for Subj-Verb agreement

< -- But: Wer(Pl) taeuscht(Sg) einander(Pl)

> whoPl_IP = {s = caselist "wer" "wen" "wem" "wessen" ; n = Pl} ;

214

-- The only changes in gf-3.1/*/germans are:

---gf-3.1/lib/src/german/README.hl

For testing, see lib/src/Make.hs

Changes made in LexiconGer:

airplane_N = reg2N "Flugzeug" "Flugzeuge" neuter ;

become_VA = mkVA IrregGer.werden_V ;

close_V2 = dirV2 (IrregGer.schließen_V) ;

blow_V = IrregGer.blasen_V ;

burn_V = IrregGer.brennen_V ;

dig_V = IrregGer.graben_V ;

fall_V = seinV (IrregGer.fallen_V) ;

float_V = seinV (IrregGer.treiben_V) ;

flow_V = seinV (IrregGer.fließen_V) ;

fly_V = seinV (IrregGer.fliegen_V) ;

freeze_V = IrregGer.frieren_V ;

lie_V = IrregGer.lügen_V ;

sing_V = IrregGer.singen_V ;

smell_V = IrregGer.riechen_V ;

stand_V = IrregGer.stehen_V ;

swim_V = seinV (IrregGer.schwimmen_V) ;

think_V = IrregGer.denken_V ;

-- No changes in gf-3.0/*/germans (except Lexicon: Flugzeuge)

Todo-files:

Feb 3 2022 GF/todo.improvements.txt

4369 Jul 13 2017 GF/gf/lib/src/german/README.hl

Concerning translation, see Aarne’s remarks of 2014 in GF/gf/lib/doc/translation.txt

Concerning the gf-shell commands, see GF/gf-core/src/compiler/GF/Command/Commands2.hs

To create .gfo files for earlier versions, change ../../Setup.hs by telling haskell/build where
to look for the RGL sources:

-- | RGL source directory

sourceDir :: FilePath

-- sourceDir = "src"

-- HL, to build original *.gfo’s

sourceDir = "../gf-3.9/lib/src"

From Aarne’s mail 22 Feb ’22 to the gf-list.

The most systematic unit test treebank is the one displayed in the RGL synopsis,

http://www.grammaticalframework.org/lib/doc/synopsis/

215

with source code in

https://github.com/GrammaticalFramework/gf-rgl/blob/master/doc/synopsis/api-examples.txt

meant to address each RGL structure individually.

However, some systematic work has been done at least in German:

https://github.com/GrammaticalFramework/gf-rgl/tree/master/tests/german

where we have also used Stefan Müller’s HPSG test sets.

216

