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Problem 1

Indicate in the figure below what the linear maximum margin (SVM)
classifier for the binary problem triangle vs. dot is.

Draw three lines:
@ the two boundaries of the maximum margin
@ the maximum margin hyperplane
Which of the vectors are support vectors?
You can solve this problem visually by drawing your solution into the figure.
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Problem 1

Recap: SVM
@ large margin classifiers
@ for vector space classification
@ binary classification

@ aim: find a decision boundary that is maximally far from any point in
the training data
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Problem 1

Recap: SVM

Why do we want to maximize the margin?
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Problem 1

Recap: SVM
Why do we want to maximize the margin?

@ classification safety margin with respect to errors and random
variation

@ better generalize to test data

@ unique solution for decision boundary
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Problem 1
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Recap: SVM

Terminology:

@ maximum margin: the “board” we use to separate our classes

@ maximum margin hyperplane: the decision boundary (middle of the

two boundaries of the maximum margin)

@ support vectors: the vectors on the boundaries of the max. margin
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Problem 1

Indicate in the figure below what the linear maximum margin (SVM)
classifier for the binary problem triangle vs. dot is.
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Problem 2

(i) Perform a 3-means clustering for the points below. If a tie occurs during
an assignment step, you can freely choose any of the possible assignments.

(ii) Give an example of a clustering that 3-means can converge to that is
different from the one in (i)

3r X X X
21 X X X
1+ X X X
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Problem 2

Recap: K-means
@ clustering algorithm
works in vector space with Euclidean distance
idea: represent each cluster by its centroid
goal: minimize the average squared difference from the centroid
iterative algorithm
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Problem 2

Recap: K-means: Algorithm
@ initialize centroids
(e.g. with random points (seeds) from the training data)
@ while != stop:

assign each vector to its closest centroid
update centroids given assigned vectors
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Problem 2

Solution to (i):

Initialization:

1.2 3

Iteration 1: Iteration 1:

re-assignment: re-computation:
3} X0 3

N

D

—_

1.2 3
=> converged
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Problem 2

Solution to (ii):

= N W
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Problem 3

For this web graph, compute PageRank for each of the three pages.
Assume that the PageRank teleport probability is 0.1.

13 /22



Problem 3

Recap: Page Rank
@ idea: web-graph:
nodes: web pages
edges: links between pages

@ user clicks through web pages randomly
(= random walker walks through web graph)

@ each link is used equiprobably!
@ long-term visit rate of a page = PageRank of the page
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Problem 3

Recap: Page Rank

@ PageRank is only well-defined if web-graph is an ergodic Markov chain

(esp.: no dead-ends in graph!)

@ make web-graph ergodic: include teleportation!
@ teleportation with rate r:
at a dead end:
jump to random page with probability m
at a non dead-end:
if page i has no link to page j:
set probability of going from i to j to r - ﬁpages

adjust the probabilities for link connections
so that sum of probabilities stays 1




Problem 3

Recap: Page Rank: Computation

If our current probability vector is x,

then it will be x - P after one step

and x - P? after two steps

and x - P' after i steps.

(P: transition probability matrix with teleportation)

This converges. Hence, for the PageRank vector m: m =7 - P
= 7 is the left eigenvector for the eigenvalue 1.

Power method:
start with any distribution x and multiply P until the result converges.
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Problem 3

For this web graph, compute PageRank for each of the three pages.
Assume that the PageRank teleport probability is 0.1.
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Problem 3

Link-matrix:

011

0 01

010

Probability transition matrix:

0 05 05

0 0 1

0 1 o0

Teleported matrix:
1 29 29
30 60 ?2

p=(L1 L
30 15 30
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Problem 3

e Initialize x randomly: x = (%, %, %)

o x-P = (3.8 3)
ox-P2:(%7%7%)

= Convergence = 7 = (

1
30°

29

0

)

29
60
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Problem 3

For this web graph, compute PageRank for each of the three pages.
Assume that the PageRank teleport probability is 0.1.

Hint: Using symmetries to simplify and solving with linear
equations might be easier than using iterative methods.



Problem 3

Solution 2 (using symmetries):
@ in-degree of di: 0
= PageRank(d;) = 0,1 -3 = 5 (teleport)

@ by symmetry: PageRank(d>) = PageRank(d3)
-5

= PageRank(d>) = PageRank(d;) = —2 = 2



The end

Thank you for your attention!

g
Do you have any questions?
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