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Problem 1

Indicate in the figure below what the linear maximum margin (SVM)
classifier for the binary problem triangle vs. dot is.

Draw three lines:

the two boundaries of the maximum margin

the maximum margin hyperplane

Which of the vectors are support vectors?
You can solve this problem visually by drawing your solution into the figure.
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Problem 1

.
Recap: SVM
..

......

large margin classifiers

for vector space classification

binary classification

aim: find a decision boundary that is maximally far from any point in
the training data
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Problem 1

.
Recap: SVM
..

......

Why do we want to maximize the margin?

classification safety margin with respect to errors and random
variation

better generalize to test data

unique solution for decision boundary
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Problem 1

.
Recap: SVM
..

......

Terminology:

maximum margin: the “board” we use to separate our classes

maximum margin hyperplane: the decision boundary (middle of the
two boundaries of the maximum margin)

support vectors: the vectors on the boundaries of the max. margin
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Problem 1

Indicate in the figure below what the linear maximum margin (SVM)
classifier for the binary problem triangle vs. dot is.

maximum margin
  hyperplane

support vectors

boundaries 
  of maximum
     margin
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Problem 2

(i) Perform a 3-means clustering for the points below. If a tie occurs during
an assignment step, you can freely choose any of the possible assignments.

(ii) Give an example of a clustering that 3-means can converge to that is
different from the one in (i)

1 2 3

1

2

3
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Problem 2

.
Recap: K-means
..

......

clustering algorithm

works in vector space with Euclidean distance

idea: represent each cluster by its centroid

goal: minimize the average squared difference from the centroid

iterative algorithm
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Problem 2

.
Recap: K-means: Algorithm
..

......

initialize centroids
(e.g. with random points (seeds) from the training data)

while != stop:
▶ assign each vector to its closest centroid
▶ update centroids given assigned vectors
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Problem 2

Solution to (i):

1 2 3

1

2

3

Initialization:

1 2 3

1

2

3

Iteration 1:
re-assignment:

1 2 3

1

2

3

Iteration 1:
re-computation:

=> converged
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Problem 2

Solution to (ii):

1 2 3

1

2

3
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Problem 3

For this web graph, compute PageRank for each of the three pages.
Assume that the PageRank teleport probability is 0.1.
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Problem 3

.
Recap: Page Rank
..

......

idea: web-graph:
nodes: web pages
edges: links between pages

user clicks through web pages randomly
(⇒ random walker walks through web graph)

each link is used equiprobably!

long-term visit rate of a page = PageRank of the page
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Problem 3

.
Recap: Page Rank
..

......

PageRank is only well-defined if web-graph is an ergodic Markov chain
(esp.: no dead-ends in graph!)

make web-graph ergodic: include teleportation!

teleportation with rate r :
▶ at a dead end:

⋆ jump to random page with probability 1
num pages

▶ at a non dead-end:

⋆ if page i has no link to page j :
set probability of going from i to j to r · 1

num pages
⋆ adjust the probabilities for link connections

so that sum of probabilities stays 1
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Problem 3

.
Recap: Page Rank: Computation
..

......

If our current probability vector is x ,
then it will be x · P after one step
and x · P2 after two steps
and x · P i after i steps.
(P : transition probability matrix with teleportation)

This converges. Hence, for the PageRank vector π: π = π · P
⇒ π is the left eigenvector for the eigenvalue 1.

Power method:
start with any distribution x and multiply P until the result converges.
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Problem 3

For this web graph, compute PageRank for each of the three pages.
Assume that the PageRank teleport probability is 0.1.
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Problem 3

Link-matrix:0 1 1
0 0 1
0 1 0


Probability transition matrix:0 0.5 0.5
0 0 1
0 1 0


Teleported matrix:

P =

 1
30

29
60

29
60

1
30

1
30

14
15

1
30

14
15

1
30


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Problem 3

Initialize x randomly: x = (13 ,
1
3 ,

1
3)

x · P = ( 1
30 ,

29
60 ,

29
60)

x · P2 = ( 1
30 ,

29
60 ,

29
60)

⇒ Convergence ⇒ π = ( 1
30 ,

29
60 ,

29
60)
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Problem 3

For this web graph, compute PageRank for each of the three pages.
Assume that the PageRank teleport probability is 0.1.

Hint: Using symmetries to simplify and solving with linear
equations might be easier than using iterative methods.
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Problem 3

Solution 2 (using symmetries):

in-degree of d1: 0
⇒ PageRank(d1) = 0,1 ·13 = 1

30 (teleport)

by symmetry: PageRank(d2) = PageRank(d3)

⇒ PageRank(d2) = PageRank(d3) =
1− 1

30
2 = 29

60
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The end

Thank you for your attention!

Do you have any questions?
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