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Abstract

The representation of documents and queries as
vectors in a high-dimensional space 1s well-established
in information retrieval [1]. This paper proposes to
represent the semantics of words and contexts in a text
as vectors. The dimensions of the space are words and
the initial vectors are determined by the words occur-
ring close to the entity to be represented which im-
plies that the space has several thousand dimensions
(words). This makes the vector representations (which
There-
fore, dimensionality reduction by means of a singular
value decomposition 1s employed. The paper analyzes
the structure of the vector representations and applies
them to word sense disambiguation and thesaurus in-
duction.

are dense) too cumbersome to use directly.

1 Introduction

In this paper a new representational scheme is in-
troduced that tries to provide a basis for determin-
ing closeness in meaning. The approach is motivated
by work on vector representations in information re-
trieval. In IR systems such as SMART and SIRE doc-
uments and queries are represented as vectors in term
space [1]. The assumption is that two documents are
similar to the extent that they contain the same words.
An obvious extension of this methodology to the rep-
resentation of contexts is to assign to each context the
set of words that occur in close proximity, say in a
window of fifty words. However, the same content can
be expressed with very different words, so that in this
simple scheme two contexts could have a similarity
measure of 0 although they are very close in meaning.

The problem is that the absence or presence of a
given word is very little information if we treat words
as unanalyzed symbols or indices in term vectors. The
lexical representations used for comparing contexts
have to be enriched. The approach adopted here is

to represent words as term vectors that reflect their
pattern of usage in a large text corpus. Figure 1
shows how this can be done. The terms cash and
sport are the dimensions of the space in which simi-
larity is to be measured. The columns of the matrix
represent the words bank, interest, and finals. Fach
entry in the matrix is a cooccurrence count. For in-
stance, @cash, bank = 300 encodes the fact that the
words cash and bank cooccur 300 times in the (hy-
pothetical) corpus. Cooccurrence can be defined with
respect to windows of a given size or on the basis of
sentence boundaries.

With cosine of the angle between the vectors as
a measure, we get the following correlations for the
three words in Figure 1: cos(bank, interest) = 0.94,
cos(interest, finals) = 0.92, cos(bank, finals) = 0.74.
These numbers can be interpreted geometrically as
shown in Figure 2. Terms are axes, words are vec-
tors whose components on the various dimensions are
determined by the cooccurrence counts in the collo-
cation matrix. Similarity between vectors has then a
straightforward graphical equivalent: Proximity in the
multidimensional space corresponding to the colloca-
tion matrix. In Figure 2 bank and finals are not very
close to each other, but both are close to the vector
interest between them.

Now we are in a position to compute a represen-
tation of context that is more reliable than the bag-
of-words method criticized above: The normalized av-
erage (or centroid) of the vectors of the words in a
context can be seen as an approximation of its seman-
tic content. If at least some of the words in the context
are frequently used to describe what the current con-
text 1s about then their vectors will pull the centroid

| bank interest finals
cash | 300 210 133
sport | 75 140 200

Figure 1: A collocation matrix.
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Figure 2: A vector model for context.

toward the direction of that topic or content. It 1s
possible to defeat this scheme by describing a content
exclusively using words that normally express unre-
lated thoughts. But such situations are expected to
be rare.

Let us look at word sense disambiguation to see
how this representation of context can be put to work.
Consider the example of the word interest. Let PER-
CENT be the tag for uses of interest in the sense
“charge on borrowed money” and CONCERN the tag
for “a feeling that accompanies or causes special at-
tention.” Then the PERCENT sense will occur more of-
ten in contexts that score high on the cash dimension,
and the CONCERN sense will occur more often in con-
texts that score high on the sport dimension. We can
then disambiguate an occurrence of interest at a given
position in the text by computing the context vector
of that position and determining how close it is to the
cash and sport dimensions of the space. Two such
context vectors are depicted in Figure 2. Vector con-
texty is closer to cash, so probably it is an occurrence
of the PERCENT sense of interest. Vector contexrts 1s
closer to sport, and it is most likely an occurrence of
the CONCERN sense.

A space with only two dimensions, cash and sport,
would be a rather impoverished representation. For
better results, several thousand words should be con-
sidered. It is here that supercomputing becomes cru-
cial. The collocation matrices usually have few zeros
in them because large windows are used and the cor-
pus has a size of more than 50 million words. As a

result, almost every pair of words cooccurs. In prac-
tise, this means that all but about 10% of the cells
are filled. For example, a typical 4000-by-4000 matrix
had less than 10% zeros.

Any systematic work in this framework needs to
use more efficient representations since vectors with
several thousand components take up too much space
and time in processing. Therefore, a dimensionality
reduction by means of a singular value decomposition
is performed. The algorithms from Mike Berry’s SVD-
PACK were used in this paper, mainly the Lanczos
algorithm LAS2.

As will be shown in section 4.3, the vector repre-
sentations have the key properties of the distributed
representations characteristic of parallel distributed
processing [2]. They will therefore be referred to
as sublexical representations in analogy to terms
like “subsymbolic” and “subconceptual” in connec-
tionism.

2 Word Sense Disambiguation

Word sense disambiguation is important for many
areas of language processing. For instance, different
senses of a word have different translations in foreign
languages and they have to be rendered differently in
a text-to-speech system.

The main problem in using sublexical representa-
tions for disambiguation is to find the directions in
the space that correspond best to the various senses of
an ambiguous word. One could imagine many labor-
intensive ways of identifying such directions: for in-
stance finding several dozen typical uses and com-
puting their centroid. A less reliable, but automatic,
method taken here is to cluster a training set of con-
texts, to assign senses to the clusters and to assign new
occurrences the sense of the closest cluster. The clus-
tering programs used are AutoClass [3] and Buckshot
[4]. AutoClass is a Bayesian classification program
based on the theory of finite mixtures. It determines
the number of clusters automatically by imposing a
penalty on each new cluster and thus counterbalanc-
ing the fact that more clusters will necessarily better
account for the data. Due to the computational com-
plexity of high-quality classification, buckshot, a more
efficient, linear algorithm, was used for some of the
large data sets shown in Table 1. Buckshot clusters n
items by applying a quadratic high-quality clustering
algorithm to a random sample of size v/kn (for some
constant k) and extending this classification in linear
time to the rest of the data set.
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capital/s 3 2000 | 1 200 | A| 2| H |66 127 64 191 | 96 92 95
interest/s 2 2955 | 1 501 | A| 3| 15|68 ] 291 165 456 | 94 92 93
motion/s || 18 3101 | 1 200 | B 2 054|107 93 200 | 92 91 92
plant/s 5 4132 | 1 502 | A | 13 | 14 | 66 | 283 188 4711 94 88 92
ruling 18 5966 | 1 200 | B 2| 460|115 78 193 | 90 91 90
space 18 10126 | 1 200 | B | 10| 0] 59| 118 82 200 | 89 90 90
suit/s 18 8206 | 1 498 | B 2|18 | 54| 220 189 409 | 94 95 95
tank/s 5 1780 | 1 336 | A 8116 | 80| 226 56 282 | 97 85 95
train/s 18 47751 1 266 | B | 10 | 2| 76| 200 62 262 | 94 69 89
vessel/s 17 1701 | 2 144 | B 711058 76 23 22 130 |93 91 86 92
Table 1: Ten disambiguation experiments.

Table 1 summarizes the ten disambiguation exper-
iments that have been conducted so far. The first col-
umn contains the word that is to be disambiguated. In

© two cases, inflected forms are excluded because they
% o are not ambiguous. (rulings only has the “decision”
Word % | pos | definition sense, spaces cannot mean “outer space.”) For all
capital | 11 N | stock of goods words, the training and test set were taken from the
2 | N | seat of government New York Times News Service. The training sets con-
interest | 1| NV | a feeling of special attention sisted of months from the period May 1989 through
2 | N | acharge for borrowed money October 1990. The test set was in November 1990 ex-
motion | 1| N | movement cept for vesselwhich was trained on June 1989 through
2| N | aproposal for action October 1990 and tested on May 1989 and Novem-
plant 1| N | afactory ber 1990. Columns 3 and 5 show how often the am-
2 | NV | living being biguous word occurred in test and training set. The
ruling 1 | NV | an authoritative decision column “clustering” has “A” for AutoClass and “B”
2 | V| toexert control, or influence for Buckshot. The next column gives the number of
space 1| N | area, volume classes found by AutoClass or the number of classes
2 | N | outer space requested for Buckshot. Usually, classifications with
sutt 1| N | an action or process in a court 2, 5, 7 and 10 classes were tried. The first successful
2 | N | aset of garments trial is reported in the table.
tank 1| N | acombat vehicle Infrequent senses of the ambiguous words were ex-
2 | N | areceptacle for liquids cluded here. The percentage in column 8 (“% rare
train 1| N | aline of railroad cars senses”) indicates how many occurrences are not ac-
2| V | toteach counted for. Tt also includes repetitions of identical
vessel 1 N a ship or plane contexts for tank, plant, interest, suit, and vessel. For
2| N | ablood vessel these words repeated contexts only count once.
3] N | ahollow or concave utensil The column “major sense” shows how dominant the

Table 2: Definition of the senses in Table 1.

major sense of the word is. For instance, 80% of the
frequent uses of tank are “vehicle” uses, 20% “recep-
tacle” uses.

Contexts in the test set were disambiguated accord-
ing to the sense of the closest cluster. For instance, if



word | ten nearest neighbors

absolutely absurd whatsoever totally exactly nothing does understood truly matter anyone
bottomed dip copper drops topped slide trimmed slightly squeeze flat mix

captivating | shimmer stunningly superbly plucky witty melodrama fairy stoppers stylized tale
doghouse dog porch crawling beside downstairs gazed alley sofa crawled upstairs

Makeup repellent lotion glossy sunscreen Skin gel pokes hue mascara dyes

mediating | reconciliation negotiate cease conciliation peace EPLF talks immediate Nations OAS
keeping hoping bring wiping could some would other here rest have

lithographs | drawings Picasso Dali sculptures Gauguin Monet paintings painters Degas artwork
pathogens toxins bacteria organisms bacterial parasites humans microbial parasitic amino microbes
senses grasp psyche truly clumsy naive innate awkward realm somehow instinct

Table 3: Ten randomly selected words and their nearest neighbors in sublexical space.

for a context of fank in the test text the closest clus-
ter in the training set had been assigned the sense tag
VEHICLE, then the context was disambiguated as be-
longing to that sense. The last six columns of Table 1
contain the absolute number of occurrences per sense
and the percentage of correct disambiguation.

Table 2 glosses the major senses of the ten words.
The column “pos” shows the part of speech of the
word. Some senses can be realized as verbs or nouns.
In general, verbs are harder to disambiguate than
nouns, but as the results for plant, interest, ruling
and train show, success in the 90% range is possible.

The senses that occurred in the New York Times
and were excluded are “tank top” and “think tank”
for tank; metaphorical senses such as “to plant a suc-
tion cup Garfield” and “the physical plant of a school”
for plant; the “legal share” sense of interest; the ad-
jectival and sports senses of capital (“capital punish-
ment”, “Washington Capitals”); the verbal sense of
sutt (“to be proper for”), the card game sense and “to
follow suit”; “to rule out” for ruling; and “an orderly
succession” and “drive-train” for train. Many of these
senses occur in fixed expressions and are easy to filter
out in preprocessing.

It is important to note that senses were assigned
to classes on the basis of the training set. In the case
of autoclass, only classes that had at most two errors
among the first 10 members in the training corpus
were assigned. In the case of buckshot, the majority
of the first 10 or 20 members in the training corpus
determined sense assignment. It is always possible to
cluster the occurrences in the test set so finely that
each cluster is homogeneous. In the extreme case, a
classification with as many classes as items in the test
set is guaranteed to be 100% correct. But since classes
were assigned using the training set here, even a high
number of classes seems unproblematic.

3  Word Space

When applied to word sense disambiguation, the
information in sublexical space is reduced to a binary
opposition: Is a particular context an instance of sense
1 or sense 27 But there is much more information in
the sublexical representations of words: They can also
be viewed as constituting a thesaurus by interpreting
proximity in the space as a measure of semantic relat-
edness. Table 3 shows 10 out of 20 randomly selected
words and their ten nearest neighbors. (The set of 20
words also contained proper names like “Chun” and
trademarks like “Cheerios.”) The neighbors are listed
in the order of proximity to the head word.

The sample turns out to be representative: In gen-
eral, the nearest neighbors of about 50% of the words
in the space are as intuitive as the ones shown for
Makeup or lithographs, but there is also a significant
number of words like keeping that are not character-
ized well by their spatial neighborhood. The charac-
terization is the better, the more clearly the set of
typical topics of the word in question 1s delineated
by other topics. Makeup, mediating, lithographs, and
pathogens are all in topic areas with clear boundaries.
Therefore, their nearest neighbors are other terms ap-
propriate for describing this topic area. (EPLF stands
for “Eritrean People’s Liberation Front.”) absolutely,
bottomed, captivating, and senses have less clearly
delineated topics. Therefore, their nearest neighbor
sets contain some counterintuitive words. (bottomed
1s mainly used in financial contexts in the New York
Times: “The market bottomed on April 27.”) keeping
can be used for almost any topic. For this reason, its
nearest neighbors seem rather random. Finally, dog-
house shows the limitations of the way the word space
was computed. The key article in which the otherwise
infrequent word doghouse occurs is a report on an ex-
hibition of designer doghouses in New York: “New
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Figure 3: The semantic field of supercomputing in sublexical space.
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York museum lands architects in ‘The Doghouse’
(June 6, 1990). It contains many architectural terms
and that 1s probably the reason that porch, down-
statrs, and alley ended up close to doghouse. Here,
one article which was not very representative for the
general usage of the word dominated the computation
of its vector. This problem is likely to disappear if a
larger corpus is used.

The word space and a classical thesaurus such as
Roget’s differ in that Roget’s concentrates on syn-
onyms or near synonyms whereas the nearest neigh-
bors in sublexical space include mostly collocates,
terms frequently used with the word in question. To
illustrate, Roget’s gives words like dielemma, nut to
crack, and Gordian knot for problem. The most
prominent neighbors in word space are solve, recur-
ring, panacea, beset, grips. These are words that are
important for using problem or for expressing a con-
tent similar to those that problem is used for, but they
are not synonyms.

Table 3 is good for evaluating how well proxim-
ity in meaning and proximity in the space correlate,
but it doesn’t show the fine structure of the space at
a particular location. The word supercomputing was
chosen for a closer examination of a small region of
the space. Figure 3 shows principal components 2 and
3 of the matrix of correlation coefficients of the 200
nearest neighbors of supercomputing.! The center of

1 The vectors are all very similar since they are from the same
neighborhood. Principal component 1 captures that similarity,
but no interesting variation in the data.

each word is plotted at the position determined by
its projections on the second and third major axis of
variation as computed by a principal component anal-
ysis. If several words have the same position, only one
is shown. Some words were moved up to 4 points to
make the figure more legible.

As can be seen from the figure, the representations
are highly corpus-dependent. For instance, if the col-
location matrix had been based on these proceedings,
minicomputers would not be part of the semantic field
of supercomputing. But in the New York Times, the
topic of supercomputing is not clearly distinct from
general computer science and the manufacturing of
computing machinery. For many applications, it is
an asset rather than a liability that the representa-
tions are corpus-dependent. Consider the example
of information retrieval. If the New York Times is
the document collection, 1t is likely to be used for fi-
nancial queries. In such a context, fine distinctions
between different branches of the computer industry
don’t seem necessary. On the other hand, a sublexi-
cal space based on a collection of articles devoted to
research and development in computer science would
have a much richer structure at the location of super-
computing and no articles on microcomputers would
be retrieved by a query on supercomputing. Since lit-
tle manual labor is involved in inducing the space, a
representation that is finely tuned to the document
collection in question could be a promising basis for
many applications in information processing.



4 Analyzing Sublexical Space

How can the disambiguation results in Table 1 be
improved? There are many parameters that had to
be fixed rather arbitrarily and they may have gotten
suboptimal settings. This section investigates three of
them: the size of the window; the weighting of the
dimensions of the space; and the selection of different
sets of dimensions.

4.1 Window Size

In Table 1, window sizes of 1000 or 1200 charac-
ters were used for computing the context vector. It
makes more sense to limit the window by the number
of characters than by the number of words because
few long words are as good as (or even better) than
many short words which tend to be high-frequency
function words. How does window size influence dis-
ambiguation performance? To answer this question
one could cluster context sets that are computed with
varying window sizes. However, there’s some variabil-
ity in the results of clustering and the best window
size may yield mediocre disambiguation results by ac-
cident. An average over several clusterings could be
taken, but that would be time-consuming. A deter-
ministic, less expensive method is therefore needed.

Canonical Discriminant Analysis (CDA) or linear
discrimination is such a method [5]. It finds the best
weighting or linear combination of the dimensions of
the space so that the ratio of the sum of between-group
distances to the sum of the within-group distances is
maximized. This task is slightly different from clas-
sification. Tt could be that, say, forty dimensions are
sufficient for clustering, but that more are needed to
tease the two words apart on a linear scale as CDA
does. Conversely, even though giving large weights
to few dimensions with very low values in the origi-
nal space can result in a nice separation, a clustering
procedure may not be able to take advantage of this
situation because the distance measure is the cosine
and it concentrates on dimensions with high values.
So the results below have to be interpreted with some
caution.

Linear discrimination is a supervised learning
method: the items in the training set have to be la-
belled. Since labelling thousands of instances of an
ambiguous word is not feasible, a simple trick was
employed here. Instead of discriminating an am-
biguous word for which the sense tags in the cor-
pus are unknown, three artificially ambiguous words
were created: author/baby, gianis/politicians, and
train [tennis. These pairs were selected because the

# contexts in
pair word training set  test set
Jun90-0ct90  Nov90
pair 1 author 1552 312
baby 1544 349
pair 2 {rain 1089 219
tennis 1072 136
pair 3 giants 1544 707
politicians 1530 364

Table 4: Frequency of the words used in CDA.

words in each pair are comparable in frequency in the
corpus and they are as distinct semantically as the dif-
ferent senses of ambiguous words like suit or capital.
All six words are nouns because the meaning of verbs
often depends on their arguments rather than on the
general context. However, about twenty percent of the
occurrences of train are verbs (see above). Table 4 lists
the frequencies of the CDA words in training and test
set.

Figure 4 shows how generalization to the test set
depends on the number of dimensions and the win-
dow size. The solid line is 1200 characters, the dense
dotted line 1000 characters and the sparse dotted line
800 characters. FEach point in the graph was com-
puted as follows: For a given window size, a linear dis-
crimination analysis was performed for the 3096 data
points in the training set using the first n dimensions,
where the value of n is indicated on the horizontal
axis. The computed weighting was used to project
the 3096 points onto one dimension. The optimal cut-
ting point was determined. The projection and the
cutting point were then applied to the test set. The
graph shows how many contexts in the test set were
discriminated correctly (in percent).

Apparently, 1000 characters i1s the ideal window
size for discriminating author/baby. The results
for train/tennis were similar in that 1000 charac-
ters seemed the optimal size most of the time al-
though 800 and 1200 characters produced generaliza-
tions very close in quality for many dimensions. For
giants/politicians, the graphs for the three window
sizes were almost identical for most dimensions. This
suggests that 1000 characters is a good window size
for computing the context vector.

Figure 4 also suggests that using more than 97 di-
mensions could improve the disambiguation results.
Unfortunately, only 97 dimensions were extracted
when computing the singular value decomposition, so
it could not be tested whether the curve keeps rising or
flattens out fast beyond dimension 96. The discrimi-
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nation graph for giants/politicians has a very clear ris-
ing tendency, so an improvement in perfomance with
more dimensions seems likely.

4.2 Dimension Weights

The second question 1s whether all dimensions are
important for some distinctions or whether there are
some that are never relevant. A preliminary answer
can be found in Figure 5. Tt shows the optimal weights
as computed by the CDA algorithm if all 97 dimen-
sions are used. Dimensions 0, 10, 20, 30, 40, 50, 60,
70, 80, and 90 are marked on the horizontal axis in
both figures. The height of each rectangle shows the
relative weight of the corresponding dimension. The
weightings were very stable when new dimensions were
added, with each incoming dimension dampening the
weights of the others without changing the “gestalt”
of the weight graph.

Different weightings seem to be necessary for dif-
ferent word pairs. For instance, dimension 10 (the
second marked dimension from the left) has weight
zero for author/baby, but a high positive weight for
train/tennis. Dimensions 70 and 80 (the second and
third marked dimensions from the right) have weights
with the same signs for author/baby and weights with
different signs for train/tennis. So whereas high pos-
itive values on both 70 and 80 will strongly favor one
sense over the other in discriminating author/baby,
they cancel each other out for train/tennis. The opti-
mal weights for giants/politicians display yet another
pattern. This evidence indicates that different dimen-
sions are important for different semantic distinctions
and that all are potentially useful.

4.3 Distributed Representation

Three experiments were conducted to find out
whether some groups of dimensions were more impor-
tant than others. In general, a singular value decom-
position yields a space in which the leading dimension
1s most important, the second dimension is the sec-
ond most important etc. But this doesn’t seem to
be the case here as the disambiguation results in Ta-
ble 5 show. Data set 1 (contexts of suit) in Table 5
was first classified using only dimensions 1 through 30.
The error rate on the test set was 6%. Then a clas-
sification with the last 38 dimensions was computed,
again yielding an error rate of 6%. Finally, all 97 di-
mensions except for the very first one were classified.
Here, the error rate was 5%. This suggests that the
vector representations are highly redundant and that

dimensions used | error rate
data set 1 130 6%
59 96 6%
1-96 5%
dataset 2 | 1,2,3,...,29,30 9%
1,3)5,...,27,29 14%
2,4,6,...,28,30 13%

Table 5: Sublexical representations are distributed.

the singular value decomposition computed here is dif-
ferent from other SVD applications in that the first
one hundred dimensions are all equally meaningful for
the disambiguation task. This hypothesis is confirmed
by the classification of the second data set in Table 5
(also contexts of suit). Using all 30 dimensions, the
error rate is 9%. Deleting either all even dimensions or
all odd dimensions increases the error rate, but there’s
still enough information to find a classification of mod-
erate quality.

It is also instructive to repeat the linear discrim-
ination experiments for sets of final dimensions (as
opposed to sets of initial dimensions as in Figure 4).
There is evidence that the leading dimensions may ac-
tually have less relevant information in them than the
immediately following ones. It was found that dis-
ambiguation on the basis of dimensions 51-96 attains
almost optimal performance and adding dimensions
0-50 only leads to minor improvements. Only 30 final
dimensions (67-96) are necessary for 80% correctness
whereas almost 50 dimensions (0-48) are needed for
the same level of performance in Figure 4. The curve
for final dimensions also is initially much steeper than
its counterpart in Figure 4. Further research is neces-
sary to find out whether dimensions 100-200 are even

better than 50-100.

5 Discussion

The approach to semantic representation proposed
here bears some similarity to Latent Semantic Index-
ing (LSI) in information retrieval in that a singular
value decomposition is used [6]. However, there is
an important difference: In LSI, the main purpose
of the space reduction is to improve the quality of
the representations, thereby achieving better perfor-
mance. The initial term-by-document matrix is noisy
because it contains many small counts which are in-
herently unreliable. Using SVD as a smoothing tech-
nique removes this noise. However, the term-by-term
matrices described in this paper are dense and mostly



contain high counts, due to the size of the corpus. As
mentioned above, the matrices typically contain less
than 10% zeros, and more than 50% of the elements
are greater than 100. So no smoothing is necessary to
deal with the “bumpiness” of small counts.

The detection of term dependencies is another mo-
tivation for using SVD in LSI. Two documents may
have a low similarity score in the original term space
because they use different terms to express the same
concept. For instance, document d; may use coast,
where document ds uses shoreline. The truncated
vectors of di; and ds computed by the singular value
decomposition will be more similar than the original
term vectors since coast and shoreline occur together
in many documents. Loosely speaking, the singu-
lar value decomposition will assign them to the same
prinicipal component. As a result, recall and precision
improve when the truncated vectors from the SVD are
used instead of the full term vectors. Again, the appli-
cation of SVD presented here is different: The original
vectors of coast and shoreline in the collocation ma-
trix are already very similar since coast and shoreline
coccur with the same words.

In order to test the prediction that noise and the
detection of term dependencies do not play an im-
portant role in this application, one disambiguation
experiment was repeated with the unreduced vectors.
The columns of about one thousand words in the col-
location matrix that cooccur with interest were nor-
malized after the counts had been dampened by appli-
cation of square root. 2954 context vectors of interest
in June and July 1990 were computed by summing up
the vectors of all words in a bl-word window around
the occurrence of interest. This set of 2954 context
vectors was then clustered into two classes using buck-
shot, and applied to the context vectors of the first
501 occurrences of interest in November 1990. Sense
prediction was correct for 93% of the CONCERN con-
texts and 93% of the PERCENT contexts. This result is
almost identical to the one with truncated vectors de-
scribed above (94% for CONCERN, 92% for PERCENT).
This indicates that, in contrast to LSI, the application
of SVD does not influence performance in the case of
sublexical representations.

On the other hand, the compact representation
without loss of information that is made possible by
the singular value decomposition is less important in
LSI since document vectors in information retrieval
are sparse and can be efficiently stored and processed
in unreduced form. However, this compactness prop-
erty of a principal component analysis is crucial for
this paper. If 20,000 words were to be represented with

5000-component vectors each, a 100-megaword mem-
ory would be required, and any application program,
for instance for word sense disambiguation, would be
prohibitively slow. Sublexical representation therefore
depends on high performance computing for any ap-
plication that aims to be efficient enough for real world
use.

Although the technical motivation for the dimen-
sionality reduction is different, sublexical representa-
tion is very close to LSI as far as the interpretation
of the dimensions of the reduced space is concerned.
There is a long tradition in the social sciences of using
principal component analyses to understand variation
in large data sets. For instance, a survey of “The El-
derly at Home” with 20 variables is subjected to a
principal component analysis in [7]. The first eleven
principal components are then interpreted as corre-
sponding to elderly people living alone vs. those that
share accommodations with others etc. The approach
taken here follows LSI in that there 1s no interest in in-
terpreting the dimensions, gaining additional insights
as to the structure of the data, or rotating the space in
order to position the axes in an intuitive way. All di-
rections in the space are treated equally. The only im-
portant information is the measure of similarity that
can be obtained for any two words or contexts by com-
puting their correlation coefficient.

The disambiguation results achieved here compare
favorably with those reported for other approaches.
For instance, the methods in [8, 9] perform slightly
better than the average of 92% in Table 1. However,
they rely on thesauri and bilingual corpora. For many
technical domains and foreign languages, thesauri or
bilingual corpora are not available. Word sense dis-
ambiguation on the basis of sublexical representation
only needs raw text as input, so there is virtually no
limitation to its application.

Representations that are derived by means of a di-
mensionality reduction differ from other statistical ap-
proaches in that a small number of parameters (on the
order of a few thousand) is estimated. Trigram-based
models such as the one presented in [10] have to es-
timate millions or even billions of parameters. Even
the largest corpus is not sufficient to estimate such a
large number of parameters reliably. In contrast, a
couple of hundred principal components can be easily
justified with a corpus of 10 million words, resulting
in robust estimates of statistical parameters.

The approach to word sense disambiguation pro-
posed here is also different from knowledge-intensive
methods. In classical AI; word sense disambiguation
is based on knowledge representation and logical infer-



ence. The challenge is to encode all items of knowledge
that may be relevant for tasks like disambiguation and
to integrate them into a system that will respond ap-
propriately. This goal has not been achieved yet and
systems like Cyc [11] still seem far from coming close
to it. The application of principal component analy-
ses in this paper can be seen as a tool for integrating
a large number of constraints, each word imposing a
constraint as to which sense is more likely in its neigh-

borhood.

6 Conclusion

The basic idea of this paper is to take the notion
of semantic similarity seriously. In order for the “di-
mensions of meaning” and the vector representations
of words to reflect closeness in meaning faithfully, a
global optimization of cooccurrence constraints is nec-
essary, an operation so complex that only a supercom-
puter can perform it. Semantic similarity underlies
many processes in linguistics (for instance metonymy:
the replacement of the name of one thing by a closely
related one) and psychology (for instance priming: af-
ter the presentation of a concept to a subject, reaction
times are short for semantically related terms and long
for unrelated ones). A host of recent papers on mutual
information (for instance [12]) is witness to its impor-
tance in computational linguistics and lexicography.

Still, even if semantic similarity is important, a
more intricate set of lexical relations is needed for more
ambitious natural language processing and linguistics,
relations such as hyponymy or antonomy. These re-
lations cannot be read off sublexical space as easily
as semantic relatedness, but the space could be the
basis of representation for semantic theories dealing
with them. Representations and processes tend to
go hand in hand; the way knowledge is represented
largely fixes appropriate processes and vice versa. The
novel approach to semantic representation presented
here, an approach made possible by the availability of
supercomputers to linguistic research, may thus lead
to theories of semantics that look very different from
today’s.
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