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1. INTRODUCTION

1.1. Motivation

Human language is ambiguous, so that many words can be interpreted in multiple
ways depending on the context in which they occur. For instance, consider the following
sentences:

(a) I can hear bass sounds.

(b) They like grilled bass.

The occurrences of the word bass in the two sentences clearly denote different mean-
ings: low-frequency tones and a type of fish, respectively.

Unfortunately, the identification of the specific meaning that a word assumes in
context is only apparently simple. While most of the time humans do not even think
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10:2 R. Navigli

about the ambiguities of language, machines need to process unstructured textual in-
formation and transform them into data structures which must be analyzed in order
to determine the underlying meaning. The computational identification of meaning for
words in context is called word sense disambiguation (WSD). For instance, as a result
of disambiguation, sentence (b) above should be ideally sense-tagged as “They like/ENJOY

grilled/COOKED bass/FISH.”
WSD has been described as an AI-complete problem [Mallery 1988], that is, by anal-

ogy to NP-completeness in complexity theory, a problem whose difficulty is equivalent
to solving central problems of artificial intelligence (AI), for example, the Turing Test
[Turing 1950]. Its acknowledged difficulty does not originate from a single cause, but
rather from a variety of factors.

First, the task lends itself to different formalizations due to fundamental questions,
like the approach to the representation of a word sense (ranging from the enumeration
of a finite set of senses to rule-based generation of new senses), the granularity of
sense inventories (from subtle distinctions to homonyms), the domain-oriented versus
unrestricted nature of texts, the set of target words to disambiguate (one target word
per sentence vs. “all-words” settings), etc.

Second, WSD heavily relies on knowledge. In fact, the skeletal procedure of any
WSD system can be summarized as follows: given a set of words (e.g., a sentence or
a bag of words), a technique is applied which makes use of one or more sources of
knowledge to associate the most appropriate senses with words in context. Knowl-
edge sources can vary considerably from corpora (i.e., collections) of texts, either unla-
beled or annotated with word senses, to more structured resources, such as machine-
readable dictionaries, semantic networks, etc. Without knowledge, it would be impos-
sible for both humans and machines to identify the meaning, for example, of the above
sentences.

Unfortunately, the manual creation of knowledge resources is an expensive and time-
consuming effort [Ng 1997], which must be repeated every time the disambiguation
scenario changes (e.g., in the presence of new domains, different languages, and even
sense inventories). This is a fundamental problem which pervades the field of WSD,
and is called the knowledge acquisition bottleneck [Gale et al. 1992b].

The hardness of WSD is also attested by the lack of applications to real-world tasks.
The exponential growth of the Internet community, together with the fast pace develop-
ment of several areas of information technology (IT), has led to the production of a vast
amount of unstructured data, such as document warehouses, Web pages, collections of
scientific articles, blog corpora, etc. As a result, there is an increasing urge to treat this
mass of information by means of automatic methods. Traditional techniques for text
mining and information retrieval show their limits when they are applied to such huge
collections of data. In fact, these approaches, mostly based on lexicosyntactic analysis
of text, do not go beyond the surface appearance of words and, consequently, fail in
identifying relevant information formulated with different wordings and in discarding
documents which are not pertinent to the user needs. Text disambiguation can poten-
tially provide a major breakthrough in the treatment of large-scale amounts of data,
thus constituting a fundamental contribution to the realization of the so-called seman-
tic Web, “an extension of the current Web, in which information is given well-defined
meaning, better enabling computers and people to work in cooperation” [Berners-Lee
et al. 2001, page 2].

The potential of WSD is also clear when we deal with the problem of machine transla-
tion: for instance, the Italian word penna can be translated in English as feather, pen,
or author depending upon the context. There are thousands and thousands of these
cases where disambiguation can play a crucial role in the automated translation of
text, a historical application of WSD indeed.
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WSD is typically configured as an intermediate task, either as a stand-alone module
or properly integrated into an application (thus performing disambiguation implicitly).
However, the success of WSD in real-world applications is still to be shown. Application-
oriented evaluation of WSD is an open research area, although different works and
proposals have been published on the topic.

The results of recent comparative evaluations of WSD systems—mostly concerning a
stand-alone assessment of WSD—show that most disambiguation methods have inher-
ent limitations in terms, among others, of performance and generalization capability
when fine-grained sense distinctions are employed. On the other hand, the increasing
availability of wide-coverage, rich lexical knowledge resources, as well as the construc-
tion of large-scale coarse-grained sense inventories, seems to open new opportunities
for disambiguation approaches, especially when aiming at semantically enabling ap-
plications in the area of human-language technology.

1.2. History in Brief

The task of WSD is a historical one in the field of Natural Language Processing (NLP).
In fact, it was conceived as a fundamental task of Machine Translation (MT) already
in the late 1940s [Weaver 1949]. At that time, researchers had already in mind essen-
tial ingredients of WSD, such as the context in which a target word occurs, statistical
information about words and senses, knowledge resources, etc. Very soon it became
clear that WSD was a very difficult problem, also given the limited means available
for computation. Indeed, its acknowledged hardness [Bar-Hillel 1960] was one of the
main obstacles to the development of MT in the 1960s. During the 1970s the prob-
lem of WSD was attacked with AI approaches aiming at language understanding (e.g.,
Wilks [1975]). However, generalizing the results was difficult, mainly because of the
lack of large amounts of machine-readable knowledge. In this respect, work on WSD
reached a turning point in the 1980s with the release of large-scale lexical resources,
which enabled automatic methods for knowledge extraction [Wilks et al. 1990]. The
1990s led to the massive employment of statistical methods and the establishment
of periodic evaluation campaigns of WSD systems, up to the present days. The in-
terested reader can refer to Ide and Véronis [1998] for an in-depth early history of
WSD.

1.3. Outline

The article is organized as follows: first, we formalize the WSD task (Section 2), and
present the main approaches (Sections 3, 4, 5, and 6). Next, we turn to the evalu-
ation of WSD (Sections 7 and 8), and discuss its potential in real-world applications
(Section 9). We explore open problems and future directions in Section 10, and conclude
in Section 11.

2. TASK DESCRIPTION

Word sense disambiguation is the ability to computationally determine which sense of
a word is activated by its use in a particular context. WSD is usually performed on one
or more texts (although in principle bags of words, i.e., collections of naturally occurring
words, might be employed). If we disregard the punctuation, we can view a text T as
a sequence of words (w1, w2, . . . , wn), and we can formally describe WSD as the task of
assigning the appropriate sense(s) to all or some of the words in T , that is, to identify
a mapping A from words to senses, such that A(i) ⊆ SensesD(wi), where SensesD(wi) is
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the set of senses encoded in a dictionary D for word wi,
1 and A(i) is that subset of the

senses of wi which are appropriate in the context T . The mapping A can assign more
than one sense to each word wi ∈ T , although typically only the most appropriate sense
is selected, that is, | A(i) |= 1.

WSD can be viewed as a classification task: word senses are the classes, and an auto-
matic classification method is used to assign each occurrence of a word to one or more
classes based on the evidence from the context and from external knowledge sources.
Other classification tasks are studied in the area of natural language processing (for an
introduction see Manning and Schütze [1999] and Jurafsky and Martin [2000]), such
as part-of-speech tagging (i.e., the assignment of parts of speech to target words in con-
text), named entity resolution (the classification of target textual items into predefined
categories), text categorization (i.e., the assignment of predefined labels to target texts),
etc. An important difference between these tasks and WSD is that the former use a sin-
gle predefined set of classes (parts of speech, categories, etc.), whereas in the latter the
set of classes typically changes depending on the word to be classified. In this respect,
WSD actually comprises n distinct classification tasks, where n is the size of the lexicon.

We can distinguish two variants of the generic WSD task:

—Lexical sample (or targeted WSD), where a system is required to disambiguate a
restricted set of target words usually occurring one per sentence. Supervised systems
are typically employed in this setting, as they can be trained using a number of
hand-labeled instances (training set) and then applied to classify a set of unlabeled
examples (test set);

—All-words WSD, where systems are expected to disambiguate all open-class words in
a text (i.e., nouns, verbs, adjectives, and adverbs). This task requires wide-coverage
systems. Consequently, purely supervised systems can potentially suffer from the
problem of data sparseness, as it is unlikely that a training set of adequate size is
available which covers the full lexicon of the language of interest. On the other hand,
other approaches, such as knowledge-lean systems, rely on full-coverage knowledge
resources, whose availability must be assured.

We now turn to the four main elements of WSD: the selection of word senses (i.e.,
classes), the use of external knowledge sources, the representation of context, and the
selection of an automatic classification method.

2.1. Selection of Word Senses

A word sense is a commonly accepted meaning of a word. For instance, consider the
following two sentences:

(c) She chopped the vegetables with a chef ’s knife.

(d) A man was beaten and cut with a knife.

The word knife is used in the above sentences with two different senses: a tool (c)
and a weapon (d). The two senses are clearly related, as they possibly refer to the
same object; however the object’s intended uses are different. The examples make it
clear that determining the sense inventory of a word is a key problem in word sense
disambiguation: are we intended to assign different classes to the two occurrences of
knife in sentences (c) and (d)?

A sense inventory partitions the range of meaning of a word into its senses. Word
senses cannot be easily discretized, that is, reduced to a finite discrete set of entries,

1Here we are assuming that senses can be enumerated, as this is the most viable approach if we want to
compare and assess word sense disambiguation systems. See Section 2.1 below.
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knife n. 1. a cutting tool composed of a blade with a sharp point and a handle. 2. an instrument
with a handle and blade with a sharp point used as a weapon.

Fig. 1. An example of an enumerative entry for noun knife.

Fig. 2. An example of a generative entry for noun knife.

each encoding a distinct meaning. The main reason for this difficulty stems from the
fact that the language is inherently subject to change and interpretation. Also, given a
word, it is arguable where one sense ends and the next begins. For instance, consider
the sense inventory for noun knife reported in Figure 1. Should we add a further sense
to the inventory for “a cutting blade forming part of a machine” or does the first sense
comprise this sense? As a result of such uncertainties, different choices will be made in
different dictionaries.

Moreover, the required granularity of sense distinctions might depend on the appli-
cation. For example, there are cases in machine translation where word ambiguity is
preserved across languages (e.g., the word interest in English, Italian, and French).
As a result, it would be superfluous to enumerate those senses (e.g., the financial
vs. the pastime sense), whereas in other applications we might want to distinguish
them (e.g., for retrieving documents concerning financial matters rather than pastime
activities).

While ambiguity does not usually affect the human understanding of language, WSD
aims at making explicit the meaning underlying words in context in a computational
manner. Therefore it is generally agreed that, in order to enable an objective evaluation
and comparison of WSD systems, senses must be enumerated in a sense inventory (enu-
merative approach; see Figure 1). All traditional paper-based and machine-readable
dictionaries adopt the enumerative approach.

Nonetheless, a number of questions arise when it comes to motivating sense distinc-
tions (e.g., based on attestations in a collection of texts), deciding whether to provide
fine-grained or coarse-grained senses (splitting vs. lumping sense distinctions), orga-
nize senses in the dictionary, etc. As an answer to these issues, a different approach
has been proposed, namely, the generative approach (see Figure 2) [Pustejovsky 1991,
1995], in which related senses are generated from rules which capture regularities
in the creation of senses. A further justification given for the latter approach is that
it is not possible to constrain the ever-changing expressivity of a word within a pre-
determined set of senses [Kilgarriff 1997, 2006]. In the generative approach, senses
are expressed in terms of qualia roles, that is, semantic features which structure the
basic knowledge about an entity. The features stem from Aristotle’s basic elements
for describing the meaning of lexical items. Figure 2 shows an example of generative

ACM Computing Surveys, Vol. 41, No. 2, Article 10, Publication date: February 2009.



10:6 R. Navigli

entry for noun knife (the example is that of Johnston and Busa [1996]; see also
Pustejovsky [1995]). Four qualia roles are provided, namely: formal (a superordinate
of knife), constitutive (parts of a knife), telic (the purpose of a knife), and agentive
(who uses a knife). The instantiation of a combination of roles allows for the creation
of a sense. Following the generative approach, Buitelaar [1998] proposed the creation
of a resource, namely, CoreLex, which identifies all the systematically related senses
and allows for underspecified semantic tagging. Other approaches which aim at fuzzier
sense distinctions include methods for sense induction, which we discuss in Section 4,
and, more on linguistic grounds, ambiguity tests based on linguistic criteria [Cruse
1986].

In the following, given its widespread adoption within the research community, we
will adopt the enumerative approach. However, works based on a fuzzier notion of word
sense will be mentioned throughout the survey. We formalize the association of discrete
sense distinctions with words encoded in a dictionary D as a function:

SensesD : L × POS → 2C,

where L is the lexicon, that is, the set of words encoded in the dictionary, POS =
{n, a, v, r} is the set of open-class parts of speech (respectively nouns, adjectives, verbs,
and adverbs), and C is the full set of concept labels in dictionary D (2C denotes the
power set of its concepts).

Throughout this survey, we denote a word w with wp where p is its part of speech
(p ∈ POS), that is, we have wp ∈ L × POS. Thus, given a part-of-speech tagged word
wp, we abbreviate SensesD(w, p) as SensesD(wp), which encodes the senses of wp as
a set of the distinct meanings that wp is assumed to denote depending on the context
in which it cooccurs. We note that the assumption that a word is part-of-speech (POS)
tagged is a reasonable one, as modern POS taggers resolve this type of ambiguity with
very high performance.

We say that a word wp is monosemous when it can convey only one meaning, that
is, | SensesD(wp) |= 1. For instance, well-beingn is a monosemous word, as it denotes a
single sense, that of being comfortable, happy or healthy. Conversely, wp is polysemous
if it can convey more meanings (e.g., racen as a competition, as a contest of speed, as a
taxonomic group, etc.). Senses of a word wp which can convey (usually etimologically)
unrelated meanings are homonymous (e.g., racen as a contest vs. racen as a taxonomic
group). Finally, we denote the ith word sense of a word w with part of speech p as wi

p
(other notations are in use, such as, e.g., w#p#i).

For a good introduction to word senses, the interested reader is referred to Kilgarriff
[2006], and to Ide and Wilks [2006] for further discussion focused on WSD and appli-
cations.

2.2. External Knowledge Sources

Knowledge is a fundamental component of WSD. Knowledge sources provide data which
are essential to associate senses with words. They can vary from corpora of texts, either
unlabeled or annotated with word senses, to machine-readable dictionaries, thesauri,
glossaries, ontologies, etc. A description of all the resources used in the field of WSD
is out of the scope of this survey. Here we will give a brief overview of these resources
(for more details, cf. Ide and Véronis [1998]; Litkowski [2005]; Agirre and Stevenson
[2006]).

—Structured resources:

—Thesauri, which provide information about relationships between words, like syn-
onymy (e.g., carn is a synonym of motorcarn), antonymy (representing opposite
meanings, e.g., uglya is an antonym of beautifula) and, possibly, further relations
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[Kilgarriff and Yallop 2000]. The most widely used thesaurus in the field of WSD is
Roget’s International Thesaurus [Roget 1911]. The latest edition of the thesaurus
contains 250,000 word entries organized in six classes and about 1000 categories.
Some researchers also use the Macquarie Thesaurus [Bernard 1986], which encodes
more than 200,000 synonyms.

—Machine-readable dictionaries (MRDs), which have become a popular source of
knowledge for natural language processing since the 1980s, when the first dictio-
naries were made available in electronic format: among these, we cite the Collins
English Dictionary, the Oxford Advanced Learner’s Dictionary of Current English,
the Oxford Dictionary of English [Soanes and Stevenson 2003], and the Longman
Dictionary of Contemporary English (LDOCE) [Proctor 1978]. The latter has been
one of the most widely used machine-readable dictionaries within the NLP re-
search community (see Wilks et al. [1996] for a thorough overview of research
using LDOCE), before the diffusion of WordNet [Miller et al. 1990; Fellbaum 1998],
presently the most utilized resource for word sense disambiguation in English.
WordNet is often considered one step beyond common MRDs, as it encodes a rich
semantic network of concepts. For this reason it is usually defined as a computa-
tional lexicon;

—Ontologies, which are specifications of conceptualizations of specific domains of in-
terest [Gruber 1993], usually including a taxonomy and a set of semantic relations.
In this respect, WordNet and its extensions (cf. Section 2.2.1) can be considered as
ontologies, as well as the Omega Ontology [Philpot et al. 2005], an effort to reorga-
nize and conceptualize WordNet, the SUMO upper ontology [Pease et al. 2002], etc.
An effort in a domain-oriented direction is the Unified Medical Language System
(UMLS) [McCray and Nelson 1995], which includes a semantic network providing
a categorization of medical concepts.

—Unstructured resources:

—Corpora, that is, collections of texts used for learning language models. Corpora
can be sense-annotated or raw (i.e., unlabeled). Both kinds of resources are used in
WSD, and are most useful in supervised and unsupervised approaches, respectively
(see Section 2.4):

—Raw corpora: the Brown Corpus [Kucera and Francis 1967], a million word bal-
anced collection of texts published in the United States in 1961; the British Na-
tional Corpus (BNC) [Clear 1993], a 100 million word collection of written and spo-
ken samples of the English language (often used to collect word frequencies and
identify grammatical relations between words); the Wall Street Journal (WSJ)
corpus [Charniak et al. 2000], a collection of approximately 30 million words
from WSJ; the American National Corpus [Ide and Suderman 2006], which in-
cludes 22 million words of written and spoken American English; the Gigaword
Corpus, a collection of 2 billion words of newspaper text [Graff 2003], etc.

—Sense-Annotated Corpora: SemCor [Miller et al. 1993], the largest and most used
sense-tagged corpus, which includes 352 texts tagged with around 234,000 sense
annotations; MultiSemCor [Pianta et al. 2002], an English-Italian parallel corpus
annotated with senses from the English and Italian versions of WordNet; the line-
hard-serve corpus [Leacock et al. 1993] containing 4000 sense-tagged examples
of these three words (noun, adjective, and verb, respectively); the interest corpus
[Bruce and Wiebe 1994] with 2369 sense-labeled examples of noun interest; the
DSO corpus [Ng and Lee 1996], produced by the Defence Science Organisation
(DSO) of Singapore, which includes 192,800 sense-tagged tokens of 191 words
from the Brown and Wall Street Journal corpora; the Open Mind Word Expert
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data set [Chklovski and Mihalcea 2002], a corpus of sentences whose instances of
288 nouns were semantically annotated by Web users in a collaborative effort; the
Senseval and Semeval data sets, semantically-annotated corpora from the four
evaluation campaigns (presented in Section 8). All these corpora are annotated
with different versions of the WordNet sense inventory, with the exception of the
interest corpus (tagged with LDOCE senses), and the Senseval-1 corpus, which
was sense-labeled with the HECTOR sense inventory, a lexicon and corpus from a
joint Oxford University Press/Digital project [Atkins 1993].

—Collocation resources, which register the tendency for words to occur regularly with
others: examples include the Word Sketch Engine,2 JustTheWord,3 The British Na-
tional Corpus collocations,4 the Collins Cobuild Corpus Concordance,5 etc. Recently,
a huge dataset of text cooccurrences has been released, which has rapidly gained
a large popularity in the WSD community, namely, the Web1T corpus [Brants and
Franz 2006]. The corpus contains frequencies for sequences of up to five words in
a one trillion word corpus derived from the Web.

—Other resources, such as word frequency lists, stoplists (i.e., lists of undiscrimi-
nating noncontent words, like a, an, the, and so on), domain labels [Magnini and
Cavaglià 2000], etc.

In the following subsections, we provide details for two knowledge sources which
have been widely used in the field: WordNet and SemCor.

2.2.1. WordNet. WordNet [Miller et al. 1990; Fellbaum 1998] is a computational lexi-
con of English based on psycholinguistic principles, created and maintained at Prince-
ton University.6 It encodes concepts in terms of sets of synonyms (called synsets). Its
latest version, WordNet 3.0, contains about 155,000 words organized in over 117,000
synsets. For example, the concept of automobile is expressed with the following synset
(recall superscript and subscript denote the word’s sense identifier and part-of-speech
tag, respectively): {

car1
n, auto1

n, automobile1
n, machine4

n, motorcar1
n

}
.

We can view a synset as a set of word senses all expressing (approximately) the same
meaning. According to the notation introduced in Section 2.1, the following function
associates with each part-of-speech tagged word wp the set of its WordNet senses:

SensesW N : L × POS → 2 SYNSETS,

where SYNSETS is the entire set of synsets in WordNet. For example:

SensesW N (carn) = {{
car1

n, auto1
n, automobile1

n, machine4
n, motorcar1

n

}
,{

car2
n, rail car1

n, rail way car1
n, rail road car1

n

}
,{

cable car1
n, car3

n

}
,{

car4
n, gondola3

n

}
,{

car5
n, elevator car1

n

}}
.

2http://www.sketchengine.co.uk.
3http://193.133.140.102/JustTheWord.
4Available through the SARA system from http://www.natcorp.ox.ac.uk.
5http://www.collins.co.uk/Corpus/CorpusSearch.aspx.
6http://wordnet.princeton.edu.
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Fig. 3. An excerpt of the WordNet semantic network.

We note that each word sense univocally identifies a single synset. For instance,
given car1

n the corresponding synset {car1
n, auto1

n, automobile1
n, machine4

n, motorcar1
n}

is univocally determined. In Figure 3 we report an excerpt of the WordNet semantic
network containing the car1

n synset. For each synset, WordNet provides the following
information:

—A gloss, that is, a textual definition of the synset possibly with a set of usage examples
(e.g., the gloss of car1

n is “a 4-wheeled motor vehicle; usually propelled by an internal

combustion engine; ‘he needs a car to get to work’ ”).7

—Lexical and semantic relations, which connect pairs of word senses and synsets, re-
spectively: while semantic relations apply to synsets in their entirety (i.e., to all
members of a synset), lexical relations connect word senses included in the respec-
tive synsets. Among the latter we have the following:
—Antonymy: X is an antonym of Y if it expresses the opposite concept (e.g., good1

a is
the antonym of bad1

a). Antonymy holds for all parts of speech.

—Pertainymy: X is an adjective which can be defined as “of or pertaining to” a noun
(or, rarely, another adjective) Y (e.g., dental1

a pertains to tooth1
n).

—Nominalization: a noun X nominalizes a verb Y (e.g., service2
n nominalizes the verb

serve4
v).

Among the semantic relations we have the following:
—Hypernymy (also called kind-of or is-a): Y is a hypernym of X if every X is a (kind

of) Y (motor vehicle1
n is a hypernym of car1

n). Hypernymy holds between pairs of
nominal or verbal synsets.

7Recently, Princeton University released the Princeton WordNet Gloss Corpus, a corpus of manually and
automatically sense-annotated glosses from WordNet 3.0, available from the WordNet Web site.
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Fig. 4. An excerpt of the WordNet domain labels taxonomy.

—Hyponymy and troponymy: the inverse relations of hypernymy for nominal and
verbal synsets, respectively.

—Meronymy (also called part-of ): Y is a meronym of X if Y is a part of X (e.g., flesh3
n

is a meronym of fruit1
n). Meronymy holds for nominal synsets only.

—Holonymy: Y is a holonym of X if X is a part of Y (the inverse of meronymy).

—Entailment: a verb Y is entailed by a verb X if by doing X you must be doing Y (e.g.,
snore1

v entails sleep1
v).

—Similarity: an adjective X is similar to an adjective Y (e.g., beautiful1
a is similar to

pretty1
a).

—Attribute: a noun X is an attribute for which an adjective Y expresses a value (e.g.,
hot1

a is a value of temperature1
n).

—See also: this is a relation of relatedness between adjectives (e.g., beautiful1
a is

related to attractive1
a through the see also relation).

Magnini and Cavaglià [2000] developed a data set of domain labels for WordNet
synsets.8 WordNet synsets have been semiautomatically annotated with one or more
domain labels from a predefined set of about 200 tags from the Dewey Decimal Clas-
sification (e.g. FOOD, ARCHITECTURE, SPORT, etc.) plus a generic label (FACTOTUM) when no
domain information is available. Labels are organized in a hierarchical structure (e.g.,
PSYCHOANALYSIS is a kind of PSYCHOLOGY domain). Figure 4 shows an excerpt of the domain
taxonomy.

Given its widespread diffusion within the research community, WordNet can be con-
sidered a de facto standard for English WSD. Following its success, wordnets for several
languages have been developed and linked to the original Princeton WordNet. The first
effort in this direction was made in the context of the EuroWordNet project [Vossen
1998], which provided an interlingual alignment between national wordnets. Nowa-
days there are several ongoing efforts to create, enrich, and maintain wordnets for
different languages, such as MultiWordNet [Pianta et al. 2002] and BalkaNet [Tufis
et al. 2004]. An association, namely, the Global WordNet Association,9 has been founded
to share and link wordnets for all languages in the world. These projects make not only
WSD possible in other languages, but can potentially enable the application of WSD to
machine translation.

8IRST domain labels are available at http://wndomains.itc.it.
9http://www.globalwordnet.org.
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As of Sunday1
n night1

n there was4
v no word2

n of a resolution1
n being offered2

v there1
r to rescind1

v
the action1

n. Pelham pointed out1
v that Georgia1

n voters1
n last1

r November1
n rejected2

v a

constitutional1a amendment1
n to allow2

v legislators1
n to vote1

n on pay1
n raises1

n for future1
a

Legislature1
n sessions2

n.

Fig. 5. An excerpt of the SemCor semantically annotated corpus.

2.2.2. SemCor. SemCor [Miller et al. 1993] is a subset of the Brown Corpus [Kucera
and Francis 1967] whose content words have been manually annotated with part-of-
speech tags, lemmas, and word senses from the WordNet inventory. SemCor is composed
of 352 texts: in 186 texts all the open-class words (nouns, verbs, adjectives, and adverbs)
are annotated with these information, while in the remaining 166 texts only verbs are
semantically annotated with word senses.

Overall, SemCor comprises a sample of around 234,000 semantically annotated
words, thus constituting the largest sense-tagged corpus for training sense classifiers
in supervised disambiguation settings. An excerpt of a text in the corpus is reported
in Figure 5. For instance, wordn is annotated in the first sentence with sense #2, de-
fined in WordNet as “a brief statement” (compared, e.g., to sense #1 defined as “a unit
of language that native speakers can identify”). The original SemCor was annotated
according to WordNet 1.5. However, mappings exist to more recent versions (e.g., 2.0,
2.1, etc.).

Based on SemCor, a bilingual corpus was created by Bentivogli and Pianta [2005]:
MultiSemCor is an English/Italian parallel corpus aligned at the word level which
provides for each word its part of speech, its lemma, and a sense from the English and
Italian versions of WordNet (namely, MultiWordNet [Pianta et al. 2002]). The corpus
was built by aligning the Italian translation of SemCor at the word level. The original
word sense tags from SemCor were then transferred to the aligned Italian words.

2.3. Representation of Context

As text is an unstructured source of information, to make it a suitable input to an
automatic method it is usually transformed into a structured format. To this end, a
preprocessing of the input text is usually performed, which typically (but not necessar-
ily) includes the following steps:

—tokenization, a normalization step, which splits up the text into a set of tokens (usually
words);

—part-of-speech tagging, consisting in the assignment of a grammatical category to
each word (e.g., “the/DT bar/NN was/VBD crowded/JJ,” where DT, NN, VBD and JJ
are tags for determiners, nouns, verbs, and adjectives, respectively);

—lemmatization, that is, the reduction of morphological variants to their base form
(e.g. was → be, bars → bar);

—chunking, which consists of dividing a text in syntactically correlated parts (e.g., [the
bar]NP [was crowded]VP, respectively the noun phrase and the verb phrase of the

example).

—parsing, whose aim is to identify the syntactic structure of a sentence (usually in-
volving the generation of a parse tree of the sentence structure).

We report an example of the processing flow in Figure 6. As a result of the
preprocessing phase of a portion of text (e.g., a sentence, a paragraph, a full docu-
ment, etc.), each word can be represented as a vector of features of different kinds or in
more structured ways, for example, as a tree or a graph of the relations between words.
The representation of a word in context is the main support, together with additional
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Fig. 6. An example of preprocessing steps of text.

knowledge resources, for allowing automatic methods to choose the appropriate sense
from a reference inventory.

A set of features is chosen to represent the context. These include (but are not limited
to) information resulting from the above-mentioned preprocessing steps, such as part-
of-speech tags, grammatical relations, lemmas, etc. We can group these features as
follows:

—local features, which represent the local context of a word usage, that is, features of
a small number of words surrounding the target word, including part-of-speech tags,
word forms, positions with respect to the target word, etc.;

—topical features, which—in contrast to local features—define the general topic of a
text or discourse, thus representing more general contexts (e.g., a window of words,
a sentence, a phrase, a paragraph, etc.), usually as bags of words;

—syntactic features, representing syntactic cues and argument-head relations between
the target word and other words within the same sentence (note that these words
might be outside the local context);

—semantic features, representing semantic information, such as previously established
senses of words in context, domain indicators, etc.

Based on this set of features, each word occurrence (usually within a sentence) can
be converted to a feature vector. For instance, Table I illustrates a simple example of a
possible feature vector for the following sentences:
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Table I. Example of Feature Vectors for Two Sentences Targeted on Noun bank
Sentence w−2 w−1 w+1 w+2 Sense tag

(e) - Determiner Verb Adj FINANCE

(f) Preposition Determiner Preposition Determiner SHORE

Table II. Different Sizes of Word Contexts
Context Size Context Example

Unigram . . . bar . . .

Bigrams . . . friendly bar . . .

. . . bar and . . .

Trigrams . . . friendly bar and . . .

. . . bar and a . . .

. . . and friendly bar . . .

Window (size ±n) . . . warm and friendly bar and a cheerful . . . (n=3)
(2n + 1)-grams . . . area, a warm and friendly bar and a cheerful dining room . . . (n=5)

Sentence There is a lounge area, a warm and friendly bar and a cheerful dining
room.

Paragraph This is a very nice hotel. There is a lounge area, a warm and friendly bar
and a cheerful dining room. A buffet style breakfast is served in the dining
room between 7 A.M. and 10 A.M.

(e) The bank cashed my check, and

(f) We sat along the bank of the Tevere river,

where bank is our target word, and our vectors include four local features for the
part-of-speech tags of the two words on the left and on the right of bank and a sense
classification tag (either FINANCE or SHORE in our example).

We report in Table II examples of different context sizes, targeted on the word barn.
Sizes range from n-grams (i.e., a sequence of n words including the target word), specif-
ically unigrams (n = 1), bigrams (n = 2), and trigrams (n = 3), to a full sentence or
paragraph containing the target word. Notice that for n-grams several choices can be
made based on the position of the surrounding words (to the left or right of the target
word), whereas a window of size ±n is a (2n+1)-gram centered around the target word.

More structured representations, such as trees or graphs, can be employed to rep-
resent word contexts, which can potentially span an entire text. For instance, Véronis
[2004] builds cooccurrence graphs (an example is shown in Figure 7), Mihalcea et al.
[2004] and Navigli and Velardi [2005] construct semantic graphs for path and link
analysis, etc.

Flat representations, such as context vectors, are more suitable for supervised dis-
ambiguation methods, as training instances are usually (though not always) in this
form. In contrast, structured representations are more useful in unsupervised and
knowledge-based methods, as they can fully exploit the lexical and semantic interrela-
tionships between concepts encoded in semantic networks and computational lexicons.
It must be noted that choosing the appropriate size of context (both in structured and
unstructured representations) is an important factor in the development of a WSD al-
gorithm, as it is known to affect the disambiguation performance (see, e.g., Yarowsky
and Florian [2002]; Cuadros and Rigau [2006]).

In the following subsection, we present the different classification methods that can
be applied to representations of word contexts.

2.4. Choice of a Classification Method

The final step is the choice of a classification method. Most of the approaches to the
resolution of word ambiguity stem from the field of machine learning, ranging from
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Fig. 7. A possible graph representation of barn.

methods with strong supervision, to syntactic and structural pattern recognition ap-
proaches (see Mitchell [1997] and Alpaydin [2004] for an in-depth treatment of the field
or Russell and Norvig [2002] and Luger [2004] for an introduction). We will not provide
here a full survey of the area, but will focus in the next sections on several methods
applied to the WSD problem. We can broadly distinguish two main approaches to WSD:

—supervised WSD: these approaches use machine-learning techniques to learn a classi-
fier from labeled training sets, that is, sets of examples encoded in terms of a number
of features together with their appropriate sense label (or class);

—unsupervised WSD: these methods are based on unlabeled corpora, and do not exploit
any manually sense-tagged corpus to provide a sense choice for a word in context.

We further distinguish between knowledge-based (or knowledge-rich, or dictionary-
based) and corpus-based (or knowledge-poor) approaches. The former rely on the use of
external lexical resources, such as machine-readable dictionaries, thesauri, ontologies,
etc., whereas the latter do not make use of any of these resources for disambiguation.

In Figure 8 we exemplify WSD approaches on a bidimensional space. The ordinate is
the degree of supervision, that is, the ratio of sense-annotated data to unlabeled data
used by the system: a system is defined as fully (or strongly) supervised if it exclusively
employs sense-labeled training data, semisupervised and weakly (or minimally) super-
vised if both sense-labeled and unlabeled data are employed in different proportions
to learn a classifier, fully unsupervised if only unlabeled plain data is employed. The
abscissa of the plane in the figure represents the amount of knowledge, which concerns
all other data employed by the system, including dictionary definitions, lexicosemantic
relations, domain labels, and so on.

Unfortunately, we cannot position on the plane specific methods discussed in the
next sections, because of the difficulty in quantifying the amount of knowledge and
supervision as a discrete number. Yet we tried to identify with letters from (a) to (i)
the approximate position of general approaches on the space illustrated in Figure 8:
(a) fully unsupervised methods, which do not use any amount of knowledge (not even
sense inventories); (b) and (c) minimally supervised and semisupervised approaches,
requiring a minimal or partial amount of supervision, respectively; (d) supervised ap-
proaches (machine-learning classifiers). Associating other points in space with specific
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Fig. 8. A space of approaches to WSD according to the amount of supervision and knowledge used.

approaches is more difficult and depends on the specific implementation of the sin-
gle methods. However, we can say that most knowledge-based approaches relying on
structural properties (g), such as the graph structure of semantic networks, usually
use more supervision and knowledge than those based on gloss overlap (e) or methods
for determining word sense dominance (f). Finally, domain-driven approaches, which
often exploit hand-coded domain labels, can be placed around point (h) if they include
supervised components for estimating sense probabilities, or around point (i) otherwise.

Finally, we can categorize WSD approaches as token-based and type-based. Token-
based approaches associate a specific meaning with each occurrence of a word depending
on the context in which it appears. In contrast, type-based disambiguation is based on
the assumption that a word is consensually referred with the same sense within a single
text. Consequently, these methods tend to infer a sense (called the predominant sense)
for a word from the analysis of the entire text and possibly assign it to each occurrence
within the text. Notice that token-based approaches can always be adapted to perform
in a type-based fashion by assigning the majority sense throughout the text to each
occurrence of a word.

First, we overview purely supervised and unsupervised approaches to WSD
(Sections 3 and 4, respectively). Next, we discuss knowledge-based approaches to WSD
(Section 5) and present hybrid approaches (Section 6). For several of these approaches
the reported performance is often based on in-house or small scale experiments. We
will concentrate on experimental evaluation in Sections 7 and 8, where we will see
how most WSD systems nowadays use a mixture of techniques in order to maximize
their performance.

3. SUPERVISED DISAMBIGUATION

In the last 15 years, the NLP community has witnessed a significant shift from the
use of manually crafted systems to the employment of automated classification meth-
ods [Cardie and Mooney 1999]. Such a dramatic increase of interest toward machine-
learning techniques is reflected by the number of supervised approaches applied to the
problem of WSD. Supervised WSD uses machine-learning techniques for inducing a
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Table III. An Example of Decision List
Feature Prediction Score

account with bank Bank/FINANCE 4.83
stand/V on/P . . . bank Bank/FINANCE 3.35

bank of blood Bank/SUPPLY 2.48
work/V . . . bank Bank/FINANCE 2.33
the left/J bank Bank/RIVER 1.12

of the bank - 0.01

classifier from manually sense-annotated data sets. Usually, the classifier (often called
word expert) is concerned with a single word and performs a classification task in order
to assign the appropriate sense to each instance of that word. The training set used to
learn the classifier typically contains a set of examples in which a given target word is
manually tagged with a sense from the sense inventory of a reference dictionary.

Generally, supervised approaches to WSD have obtained better results than unsu-
pervised methods (cf. Section 8). In the next subsections, we briefly review the most
popular machine learning methods and contextualize them in the field of WSD. Addi-
tional information on the topic can be found in Manning and Schütze [1999], Jurafsky
and Martin [2000], and Màrquez et al. [2006].

3.1. Decision Lists

A decision list [Rivest 1987] is an ordered set of rules for categorizing test instances
(in the case of WSD, for assigning the appropriate sense to a target word). It can be
seen as a list of weighted “if-then-else” rules. A training set is used for inducing a set
of features. As a result, rules of the kind (feature-value, sense, score) are created. The
ordering of these rules, based on their decreasing score, constitutes the decision list.

Given a word occurrence w and its representation as a feature vector, the decision
list is checked, and the feature with highest score that matches the input vector selects
the word sense to be assigned:

Ŝ = argmaxSi∈SensesD(w) score(Si).

According to Yarowsky [1994], the score of sense Si is calculated as the maximum
among the feature scores, where the score of a feature f is computed as the logarithm
of the probability of sense Si given feature f divided by the sum of the probabilities of
the other senses given feature f :

score(Si) = max
f

log

(
P (Si | f )∑

j �=i P (Sj | f )

)
.

The above formula is an adaptation to an arbitrary number of senses due to Agirre
and Martinez [2000] of Yarowsky’s [1994] formula, originally based on two senses.
The probabilities P (Sj | f ) can be estimated using the maximum-likelihood estimate.
Smoothing can be applied to avoid the problem of zero counts. Pruning can also be
employed to eliminate unreliable rules with very low weight.

A simplified example of a decision list is reported in Table III. The first rule in the
example applies to the financial sense of bank and expects account with as a left context,
the third applies to bank as a supply (e.g., a bank of blood, a bank of food), and so on
(notice that more rules can predict a given sense of a word).

It must be noted that, while in the original formulation [Rivest 1987] each rule in the
decision list is unweighted and may contain a conjunction of features, in Yarowsky’s
approach each rule is weighted and can only have a single feature. Decision lists have
been the most successful technique in the first Senseval evaluation competitions (e.g.,
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Fig. 9. An example of a decision tree.

Yarowsky [2000], cf. Section 8). Agirre and Martinez [2000] applied them in an attempt
to relieve the knowledge acquisition bottleneck caused by the lack of manually tagged
corpora.

3.2. Decision Trees

A decision tree is a predictive model used to represent classification rules with a tree
structure that recursively partitions the training data set. Each internal node of a de-
cision tree represents a test on a feature value, and each branch represents an outcome
of the test. A prediction is made when a terminal node (i.e., a leaf) is reached.

In the last decades, decision trees have been rarely applied to WSD (in spite of some
relatively old studies by, e.g., Kelly and Stone [1975] and Black [1988]). A popular
algorithm for learning decision trees is the C4.5 algorithm [Quinlan 1993], an extension
of the ID3 algorithm [Quinlan 1986]. In a comparative experiment with several machine
learning algorithms for WSD, Mooney [1996] concluded that decision trees obtained
with the C4.5 algorithm are outperformed by other supervised approaches. In fact,
even though they represent the predictive model in a compact and human-readable
way, they suffer from several issues, such as data sparseness due to features with a
large number of values, unreliability of the predictions due to small training sets, etc.

An example of a decision tree for WSD is reported in Figure 9. For instance, if the
noun bank must be classified in the sentence “we sat on a bank of sand,” the tree is
traversed and, after following the no-yes-no path, the choice of sense bank/RIVER is made.
The leaf with empty value (-) indicates that no choice can be made based on specific
feature values.

3.3. Naive Bayes

A Naive Bayes classifier is a simple probabilistic classifier based on the application of
Bayes’ theorem. It relies on the calculation of the conditional probability of each sense
Si of a word w given the features f j in the context. The sense Ŝ which maximizes the
following formula is chosen as the most appropriate sense in context:

Ŝ = argmax
Si∈SensesD(w)

P (Si | f1, . . . , fm) = argmax
Si∈SensesD(w)

P ( f1, . . . , fm | Si)P (Si)

P ( f1, . . . , fm)

= argmax
Si∈SensesD(w)

P (Si)

m∏
j=1

P ( f j | Si),
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Fig. 10. An example of a Bayesian network.

where m is the number of features, and the last formula is obtained based on the naive
assumption that the features are conditionally independent given the sense (the de-
nominator is also discarded as it does not influence the calculations). The probabilities
P (Si) and P ( f j | Si) are estimated, respectively, as the relative occurrence frequencies
in the training set of sense Si and feature f j in the presence of sense Si. Zero counts
need to be smoothed: for instance, they can be replaced with P (Si)/N where N is the
size of the training set [Ng 1997; Escudero et al. 2000c]. However, this solution leads
probabilities to sum to more than 1. Backoff or interpolation strategies can be used
instead to avoid this problem.

In Figure 10 we report a simple example of a naive bayesian network. For instance,
suppose that we want to classify the occurrence of noun bank in the sentence The bank
cashed my check given the features: {w−1 = the, w+1 = cashed, head = bank, subj-verb =
cash, verb-obj = −}, where the latter two features encode the grammatical role of noun
bank as a subject and direct object in the target sentence. Suppose we estimated from
the training set that the probability of these five features given the financial sense of
bank are P (w−1 = the | bank/FINANCE) = 0.66, P (w+1 = cashed | bank/FINANCE) = 0.35,
P (head = bank | bank/FINANCE) = 0.76, P (subj-verb = cash | bank/FINANCE) = 0.44,
P (verb-obj = − | bank/FINANCE) = 0.6. Also, we estimated the probability of occurrence
of P (bank/FINANCE) = 0.36. The final score is

score(bank /FINANCE) = 0.36 · 0.66 · 0.35 · 0.76 · 0.44 · 0.6 = 0.016.

In spite of the independence assumption, the method compares well with other su-
pervised methods [Mooney 1996; Ng 1997; Leacock et al. 1998; Pedersen 1998; Bruce
and Wiebe 1999].

3.4. Neural Networks

A neural network [McCulloch and Pitts 1943] is an interconnected group of artificial
neurons that uses a computational model for processing data based on a connectionist
approach. Pairs of (input feature, desired response) are input to the learning program.
The aim is to use the input features to partition the training contexts into nonover-
lapping sets corresponding to the desired responses. As new pairs are provided, link
weights are progressively adjusted so that the output unit representing the desired
response has a larger activation than any other output unit. In Figure 11 we report
an illustration of a multilayer perceptron neural network (a perceptron is the sim-
plest kind of feedforward neural network), fed with the values of four features and
which outputs the corresponding value (i.e., score) of three senses of a target word in
context.
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Fig. 11. An illustration of a feedforward neural network for WSD with four features and three responses,
each associated to a word sense.

Neural networks are trained until the output of the unit corresponding to the desired
response is greater than the output of any other unit for every training example. For
testing, the classification determined by the network is given by the unit with the largest
output. Weights in the network can be either positive or negative, thus enabling the
accumulation of evidence in favour or against a sense choice.

Cottrell [1989] employed neural networks to represent words as nodes: the words
activate the concepts to which they are semantically related and vice versa. The acti-
vation of a node causes the activation of nodes to which it is connected by excitory links
and the deactivation of those to which it is connected by inhibitory links (i.e., compet-
ing senses of the same word). Véronis and Ide [1990] built a neural network from the
dictionary definitions of the Collins English Dictionary. They connect words to their
senses and each sense to words occurring in their textual definition. Recently, Tsatsaro-
nis et al. [2007] successfully extended this approach to include all related senses linked
by semantic relations in the reference resource, that is WordNet. Finally, Towell and
Voorhees [1998] found that neural networks perform better without the use of hidden
layers of nodes and used perceptrons for linking local and topical input features directly
to output units (which represent senses).

In several studies, neural networks have been shown to perform well compared to
other supervised methods [Leacock et al. 1993; Towell and Voorhees 1998; Mooney
1996]. However, these experiments are often performed on a small number of words.
As major drawbacks of neural networks we cite the difficulty in interpreting the results,
the need for a large quantity of training data, and the tuning of parameters such as
thresholds, decay, etc.

3.5. Exemplar-Based or Instance-Based Learning

Exemplar-based (or instance-based, or memory-based) learning is a supervised algo-
rithm in which the classification model is built from examples. The model retains ex-
amples in memory as points in the feature space and, as new examples are subjected
to classification, they are progressively added to the model.

In this section we will see a specific approach of this kind, the k-Nearest Neighbor
(kNN) algorithm, which is one of the highest-performing methods in WSD [Ng 1997;
Daelemans et al. 1999].
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Fig. 12. An example of kNN classification on a bidimensional plane.

In kNN the classification of a new example x = (x1, . . . , xm), represented in terms of
its m feature values, is based on the senses of the k most similar previously stored exam-
ples. The distance between x and every stored example xi = (xi1 , . . . , xim) is calculated,
for example, with the Hamming distance:

�(x, xi) =
m∑

j=1

wj δ
(
x j , xi j

)
,

where wj is the weight of the j th feature and δ(x j , xi j ) is 0 if x j = xi j and 1 otherwise.
The set of the k closest instances is selected and the new instance is predicted to belong
to the class (i.e., the sense) assigned to the most numerous instances within the set.

Feature weights wj can be estimated, for example, with the gain ratio measure [Quin-
lan 1993]. More complex metrics, like the modified value difference metric (MVDM)
[Cost and Salzberg 1993], can be used to calculate graded distances between feature
values, but usually they are computationally more expensive.

The number k of nearest neighbors can be established experimentally. Figure 12 vi-
sually illustrates an example of how a new instance relates to its kth nearest neighbors:
instances assigned to the same sense are enclosed in polygons, black dots are the kth
nearest neighbors of the new instance, and all other instances are drawn in gray. The
new instance is assigned to the bottom class with five black dots.

Daelemans et al. [1999] argued that exemplar-based methods tend to be superior
because they do not neglect exceptions and accumulate further aid for disambiguation
as new examples are available. At present, exemplar-based learning achieves state-of-
the-art performance in WSD [Escudero et al. 2000b; Fujii et al. 1998; Ng and Lee 1996;
Hoste et al. 2002; Decadt et al. 2004] (cf. Section 8).

3.6. Support Vector Machines (SVM)

This method (introduced by Boser et al. [1992]) is based on the idea of learning a
linear hyperplane from the training set that separates positive examples from negative
examples. The hyperplane is located in that point of the hyperspace which maximizes
the distance to the closest positive and negative examples (called support vectors). In
other words, support vector machines (SVMs) tend at the same time to minimize the
empirical classification error and maximize the geometric margin between positive
and negative examples. Figure 13 illustrates the geometric intuition: the line in bold
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Fig. 13. The geometric intuition of SVM.

represents the plane which separates the two classes of examples, whereas the two
dotted lines denote the plane tangential to the closest positive and negative examples.
The linear classifier is based on two elements: a weight vector w perpendicular to
the hyperplane (which accounts for the training set and whose components represent
features) and a bias b which determines the offset of the hyperplane from the origin. An
unlabeled example x is classified as positive if f (x) = w ·x+b ≥ 0 (negative otherwise).

It can happen that the hyperplane cannot divide the space linearly. In these cases
it is possible to use slack variables to “adjust” the training set, and allow for a linear
separation of the space.

As SVM is a binary classifier, in order to be usable for WSD it must be adapted to mul-
ticlass classification (i.e., the senses of a target word). A simple possibility, for instance,
is to reduce the multiclass classification problem to a number of binary classifications
of the kind sense Si versus all other senses. As a result, the sense with the highest
confidence is selected.

It can be shown that the classification formula of SVM can be reduced to a function of
the support vectors, which—in its linear form—determines the dot product of pairs of
vectors. More in general, the similarity between two vectors x and y is calculated with
a function called kernel which maps the original space (e.g., of the training and test
instances) into a feature space such that k(x, y) = �(x) ·�(y), where � is a transforma-
tion (the simplest kernel is the dot product k(x, y) = x · y). A nonlinear transformation
might be chosen to change the original representation into one that is more suitable for
the problem (the so-called kernel trick). The capability to map vector spaces to higher
dimensions with kernel methods, together with its high degree of adaptability based
on parameter tuning, are among the key success factors of SVM.

SVM has been applied to a number of problems in NLP, including text categorization
[Joachims 1998], chunking [Kudo and Matsumoto 2001], parsing [Collins 2004], and
WSD [Escudero et al. 2000c; Murata et al. 2001; Keok and Ng 2002]. SVM has been
shown to achieve the best results in WSD compared to several supervised approaches
[Keok and Ng 2002].

3.7. Ensemble Methods

Sometimes different classifiers are available which we want to combine to improve the
overall disambiguation accuracy. Combination strategies—called ensemble methods—
typically put together learning algorithms of different nature, that is, with significantly
different characteristics. In other words, features should be chosen so as to yield signif-
icantly different, possibly independent, views of the training data (e.g., lexical, gram-
matical, semantic features, etc.).

ACM Computing Surveys, Vol. 41, No. 2, Article 10, Publication date: February 2009.



10:22 R. Navigli

Ensemble methods are becoming more and more popular as they allow one to over-
come the weaknesses of single supervised approaches. Several systems participating
in recent evaluation campaigns employed these methods (see Section 8). Klein et al.
[2002] and Florian et al. [2002] studied the combination of supervised WSD methods,
achieving state-of-the-art results on the Senseval-2 lexical sample task (cf. Section
8.2). Brody et al. [2006] reported a study on ensembles of unsupervised WSD methods.
When employed on a standard test set, such as that of the Senseval-3 all-words WSD
task (cf. Section 8.3), ensemble methods overcome state-of-the-art performance among
unsupervised systems (up to +4% accuracy).

Single classifiers can be combined with different strategies: here we introduce major-
ity voting, probability mixture, rank-based combination, and AdaBoost. Other ensemble
methods have been explored in the literature, such as weighted voting, maximum en-
tropy combination, etc. (see, e.g., Klein et al. [2002]). In the following, we denote the
first-order classifiers (i.e., the systems to be combined, or ensemble components) as
C1, C2, . . . , Cm.

3.7.1. Majority Voting. Given a target word w, each ensemble component can give one
vote for a sense of w. The sense Ŝ which has the majority of votes is selected:

Ŝ = argmaxSi∈SensesD(w) | { j : vote(Cj ) = Si} |,
where vote is a function that, given a classifier, outputs the sense chosen by that clas-
sifier. In case of tie, a random choice can be made among the senses with a majority
vote. Alternatively, the ensemble does not output any sense.

3.7.2. Probability Mixture. Supposing the first-order classifiers provide a confidence
score for each sense of a target word w, we can normalize and convert these scores
to a probability distribution over the senses of w. More formally, given a method Cj and

its scores {score(Cj , Si)}|SensesD(w)|
i=1 , we can obtain a probability PCj (Si) = score(Cj ,Si )

maxk score(Cj ,Sk )

for the ith sense of w. These probabilities (i.e., normalized scores) are summed, and the
sense with the highest overall score is chosen:

Ŝ = argmaxSi∈SensesD(w)

m∑
j=1

PCj (Si).

3.7.3. Rank-Based Combination. Supposing that each first-order classifier provides a
ranking of the senses for a given target word w, the rank-based combination consists
in choosing that sense Ŝ of w which maximizes the sum of its ranks output by the
systems C1, . . . , Cm (we negate ranks so that the best ranking sense provides the highest
contribution):

Ŝ = argmaxSi∈SensesD(w)

m∑
j=1

−RankCj (Si),

where RankCj (Si) is the rank of Si as output by classifier Cj (1 for the best sense, 2 for
the second best sense, and so on).

3.7.4. AdaBoost. AdaBoost or adaptive boosting [Freund and Schapire 1999] is a gen-
eral method for constructing a “strong” classifier as a linear combination of several
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“weak” classifiers. The method is adaptive in the sense that it tunes subsequent clas-
sifiers in favor of those instances misclassified by previous classifiers. AdaBoost learns
the classifiers from a weighted training set (initially, all the instances in the data set
are equally weighted). The algorithm performs m iterations, one for each classifier.
At each iteration, the weights of incorrectly classified examples are increased, so as
to cause subsequent classifiers to focus on those examples (thus reducing the overall
classification error). As a result of each iteration j ∈ {1, . . . , m}, a weight α j is acquired
for classifier Cj which is typically a function of the classification error of Cj over the
training set. The classifiers are combined as follows:

H(x) = sign

(
m∑

j=1

α j Cj (x)

)
,

where x is an example from the training set, C1, . . . , Cm are the first-order classifiers
that we want to improve, α j determines the importance of classifier Cj , and H is the
resulting “strong” classifier. H is the sign function of the linear combination of the
“weak” classifiers, which is interpreted as the predicted class (the basic AdaBoost works
only with binary outputs, −1 or +1). The confidence of this choice is given by the
magnitude of its argument. An extension of AdaBoost which deals with multiclass
multilabel classification is AdaBoost.MH [Schapire and Singer 1999].

AdaBoost has its roots in a theoretical framework for studying machine learning
called the Probably Approximately Correct (PAC) learning model. It is sensitive to noisy
data and outliers, although it is less susceptible to the overfitting problem than most
learning algorithms. An application of AdaBoost to WSD was illustrated by Escudero
et al. [2000a].

3.8. Minimally and Semisupervised Disambiguation

The boundary between supervised and unsupervised disambiguation is not always
clearcut. In fact, we can define minimally or semisupervised methods which learn
sense classifiers from annotated data with minimal or partial human supervision, re-
spectively. In this section we describe two WSD approaches of this kind, based on the
automatic bootstrapping of a corpus from a small number of manually tagged examples
and on the use of monosemous relatives.

3.8.1. Bootstrapping. The aim of bootstrapping is to build a sense classifier with lit-
tle training data, and thus overcome the main problems of supervision: the lack of
annotated data and the data sparsity problem. Bootstrapping usually starts from few
annotated data A, a large corpus of unannotated data U , and a set of one or more basic
classifiers. As a result of iterative applications of a bootstrapping algorithm, the an-
notated corpus A grows increasingly and the untagged data set U shrinks until some
threshold is reached for the remaining examples in U . The small set of initial examples
in A can be generated from hand-labeling [Hearst 1991] or from the automatic selection
with the aid of accurate heuristics [Yarowsky 1995].

There are two main approaches to bootstrapping in WSD: cotraining and self-
training. Both approaches create a subset U ′ ⊂ U of p unlabeled examples chosen at
random. Each classifier is trained on the annotated data set A and applied to label the
set of examples in U ′. As a result of labeling, the most reliable examples are selected
according to some criterion, and added to A. The procedure is repeated several times
(at each iteration U ′ includes a new subset of p random examples from U ). Within this
setting, the main difference between cotraining and self-training is that the former
alternates two classifiers, whereas the latter uses only one classifier, and at each
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Fig. 14. An example of Yarowsky’s algorithm. At each iteration, new examples are labeled with class a or b
and added to the set A of sense tagged examples.

iteration retrains on its own output. An example of use of these methods in WSD was
presented by Mihalcea [2004], where the two classifiers for cotraining use local and
topical information, respectively, and a self-training single classifier combines the two
kinds of information.

Yarowsky’s [1995] boostrapping method is also a self-training approach. It relies on
two heuristics:

—one sense per collocation [Yarowsky 1993]: nearby words strongly and consistently
contribute to determine the sense of a word, based on their relative distance, order,
and syntactic relationship;

—one sense per discourse [Gale et al. 1992c]: a word is consistently referred with the
same sense within any given discourse or document.

The approach exploits decision lists to classify instances of the target word. A decision
list is iteratively trained on a seed set of manually tagged examples A. To comply with
the first heuristic, the selection of the initial seed set relies on the manual choice of a
single seed collocation for each possible sense of a word of interest. For instance, given
that our target word is plantn, we may want to select {life, manufacturing} as a seed
set, as this pair allows it to bootstrap the flora and the industry senses of the word.

The examples in U , that is, our set of unlabeled examples, are classified according to
the rules in the decision list. Then, we add to A those instances in U that are tagged with
a probability above a certain threshold and we proceed to next iteration by retraining
the classifier on the growing seed set A. To comply with the second heuristic, the labels
of newly added instances are adjusted according to those possibly occurring in the same
texts which were already present in A during previous iterations. We report in Figure 14
an example of three iterations with Yarowsky’s algorithm: initially we select a small set
A of seed examples for a word w with two senses a and b. During subsequent iterations,
new examples sense-labeled with the decision list trained on A are added to the set A.
We stop when no new example can be added to A.

An evaluation of Yarowsky’s bootstrapping algorithm leads to very high performance
over 90% accuracy on a small-scale data set, where decisions are made on a binary basis
(i.e., words are assumed to have two meanings). Given the small size of the experiment,
this figure is not comparable to those obtained in the recent evaluation campaigns (cf.
Section 8). A number of variations of the original Yarowsky’s algorithm were presented
by Abney [2004].

As a major drawback of co- and self-training, we cite the lack of a method for selecting
optimal values for parameters like the pool size p, the number of iterations and the
number of most confident examples [Ng and Cardie 2003].

One of the main points of boostrapping is the selection of unlabeled data to be added
to the labeled data set. A similar issue is addressed in active learning [Cohn et al. 1994],
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Table IV. Topic Signatures for the Two Senses of waitern
Sense Topic Signature

waiter1
n restaurant, waitress, dinner, bartender, dessert, dishwasher, aperitif, brasserie, . . .

waiter2
n hospital, station, airport, boyfriend, girlfriend, sentimentalist, adjudicator, . . .

where techniques for selective sampling are used to identify the most informative unla-
beled examples for the learner of interest at each stage of training [Dagan and Engelson
1995]. Both bootstrapping and active learning address the same problem, that is, la-
beling data which is costly or hard to obtain. However, the two approaches differ in
the requirement of human effort during the training phase. In fact, while the objective
of bootstrapping is to induce knowledge with no human intervention (with the exclu-
sion of the initial selection of manually annotated examples), active learning aims at
identifying informative examples to be manually annotated at subsequent steps.

3.8.2. Monosemous Relatives. The Web is an immense ever-growing repository of mul-
timedia content, which includes an enormous collection of texts. Viewing the Web as
corpus [Kilgarriff and Grefenstette 2003] is an interesting idea which has been and is
currently exploited to build annotated data sets, with the aim to relieve the problem of
data sparseness in training sets. We can annotate such a large corpus with the aid of
monosemous relatives (i.e., possibly synonymous words with a unique meaning) by way
of a bootstrapping algorithm similar to Yarowsky’s [1995], starting from a few num-
ber of seeds. As a result, we can use the automatically annotated data to train WSD
classifiers.

First, unique expressions U (S) for sense S of word w are identified. This can be
done using different heuristics [Mihalcea and Moldovan 1999; Agirre and Martinez
2000] that look for monosemous synonyms of w, and unique expressions within the
definition of S in the reference dictionary (mostly based on Leacock et al.’s [1998]
pioneering technique for the acquisition of training examples from general corpora, in
turn inspired by Yarowsky’s [1992] work). Then, for each expression e ∈ U (S), a search
on the Web is performed and text snippets are retrieved. Finally, a sense annotated
corpus is created by tagging each text snippet with sense S.

A similar procedure was proposed by Agirre et al. [2001] for the construction of topic
signatures, that is, lists of closely related words associated with each word sense. A
special signature function, χ2, is used to determine which words appear distinctively
in the documents retrieved for a specific word sense in contrast with the collections
associated with the other senses of the same word. Filtering techniques are then used
to clean signatures. An excerpt of the topic signatures extracted for the two senses of
noun waiter (“a person who serves at table” and “a person who waits”) is reported in
Table IV.

The outcome of these methods can be assessed either by manual inspection or in
the construction of better classifiers for WSD (which is also one of the main objectives
for building such resources). Mihalcea [2002a] compared the performance of the same
WSD system trained with hand-labeled data (WordNet and SemCor) and with a boot-
strapped corpus of labeled examples from the Web. As a result, a +4.2% improvement
in accuracy is observed. Agirre et al. [2001] studied the performance of topic signatures
in disambiguating a small number of words and found out that they do not seem to
provide a relevant contribution to disambiguation. In contrast, in a recent study on
large-scale knowledge resources, Cuadros and Rigau [2006] showed that automatically
acquired knowledge resources (such as topic signatures) perform better than hand-
labeled resources when adopted for disambiguation in the Senseval-3 lexical sample
task (see Section 8.3).
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4. UNSUPERVISED DISAMBIGUATION

Unsupervised methods have the potential to overcome the knowledge acquisition bot-
tleneck [Gale et al. 1992b], that is, the lack of large-scale resources manually annotated
with word senses. These approaches to WSD are based on the idea that the same sense
of a word will have similar neighboring words. They are able to induce word senses from
input text by clustering word occurrences, and then classifying new occurrences into the
induced clusters. They do not rely on labeled training text and, in their purest version,
do not make use of any machine–readable resources like dictionaries, thesauri, ontolo-
gies, etc. However, the main disadvantage of fully unsupervised systems is that, as they
do not exploit any dictionary, they cannot rely on a shared reference inventory of senses.

While WSD is typically identified as a sense labeling task, that is, the explicit as-
signment of a sense label to a target word, unsupervised WSD performs word sense
discrimination, that is, it aims to divide “the occurrences of a word into a number of
classes by determining for any two occurrences whether they belong to the same sense
or not” [Schütze 1998, page 97]. Consequently, these methods may not discover clus-
ters equivalent to the traditional senses in a dictionary sense inventory. For this reason,
their evaluation is usually more difficult: in order to assess the quality of a sense clus-
ter we should ask humans to look at the members of each cluster and determine the
nature of the relationship that they all share (e.g., via questionnaires), or employ the
clusters in end-to-end applications, thus measuring the quality of the former based on
the performance of the latter.

Admittedly, unsupervised WSD approaches have a different aim than supervised and
knowledge-based methods, that is, that of identifying sense clusters compared to that
of assigning sense labels. However, sense discrimination and sense labeling are both
subproblems of the word sense disambiguation task [Schütze 1998] and are strictly
related, to the point that the clusters produced can be used at a later stage to sense tag
word occurrences.

Hereafter, we present the main approaches to unsupervised WSD, namely: methods
based on context clustering (Section 4.1), word clustering (Section 4.2), and cooccurrence
graphs (Section 4.3). For further discussion on the topic the reader can refer to Manning
and Schütze [1999] and Pedersen [2006].

4.1. Context Clustering

A first set of unsupervised approaches is based on the notion of context clustering. Each
occurrence of a target word in a corpus is represented as a context vector. The vectors
are then clustered into groups, each identifying a sense of the target word.

A historical approach of this kind is based on the idea of word space [Schütze 1992].
that is, a vector space whose dimensions are words. A word w in a corpus can be
represented as a vector whose j th component counts the number of times that word wj
cooccurs with w within a fixed context (a sentence or a larger context). The underlying
hypothesis of this model is that the distributional profile of words implicitly expresses
their semantics.

Figure 15(a) shows two examples of word vectors, restaurant = (210, 80) and money =
(100, 250), where the first dimension represents the count of cooccurrences with word
food and the second counts the cooccurrences with bank.

The similarity between two words v and w can then be measured geometrically, for
example, by the cosine between the corresponding vectors v and w:

sim(v, w) = v · w
| v || w | =

∑m
i=1 viwi√∑m

i=1 v2
i
∑m

i=1 w2
i

,
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Fig. 15. (a) An example of two word vectors restaurant = (210, 80) and money = (100, 250). (b) A context
vector for stock, calculated as the centroid (or the sum) of the vectors of words occurring in the same context.

where m is the number of features in each vector. A vector is computed for each word in
a corpus. This kind of representation conflates senses: a vector includes all the senses of
the word it represents (e.g., the senses stock as a supply and as capital are all summed
in its word vector).

If we put together the set of vectors for each word in the corpus, we obtain a cooc-
currence matrix. As we might deal with a large number of dimensions, latent semantic
analysis (LSA) can be applied to reduce the dimensionality of the resulting multidimen-
sional space via singular value decomposition (SVD) [Golub and van Loan 1989]. SVD
finds the major axes of variation in the word space. The dimensionality reduction has
the effect of taking the set of word vectors in the high-dimensional space and represent
them in a lower-dimensional space: as a result, the dimensions associated with terms
that have similar meanings are expected to be merged. After the reduction, contextual
similarity between two words can be measured again in terms of the cosine between
the corresponding vectors.

Now, our aim is to cluster context vectors, that is, vectors which represent the context
of specific occurrences of a target word. A context vector is built as the centroid (i.e., the
normalized average) of the vectors of the words occurring in the target context, which
can be seen as an approximation of its semantic context [Schütze 1992, 1998]. An
example of context vector is shown in Figure 15(b), where the word stock cooccurs with
deposit, money, and account. These context vectors are second-order vectors, in that
they do not directly represent the context at hand. In contrast to this representation,
Pedersen and Bruce [1997] model the target context directly as a first-order vector of
several features (similar to those presented in Section 2.3).

Finally, sense discrimination can be performed by grouping the context vectors of a
target word using a clustering algorithm. Schütze [1998] proposed an algorithm, called
context-group discrimination, which groups the occurrences of an ambiguous word into
clusters of senses, based on the contextual similarity between occurrences. Contextual
similarity is calculated as described above, whereas clustering is performed with the
Expectation Maximization algorithm, an iterative maximum likelihood estimation pro-
cedure of a probabilistic model [Dempster et al. 1977]. A different clustering approach
consists of agglomerative clustering [Pedersen and Bruce 1997]. Initially, each instance
constitutes a singleton cluster. Next, agglomerative clustering merges the most simi-
lar pair of clusters, and continues with successively less similar pairs until a stopping
threshold is reached. The performance of the agglomerative clustering of context vec-
tors was assessed in an unconstrained setting [Pedersen and Bruce 1997] and in the
biomedical domain [Savova et al. 2005].

A problem in the construction of context vectors is that a large amount of (unlabeled)
training data is required to determine a significant distribution of word cooccurrences.
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This issue can be addressed by augmenting the feature vector of each word with the
content words occurring in the glosses of its senses [Purandare and Pedersen 2004]
(note the circularity of this approach, which makes it semisupervised: we use an existing
sense inventory to discriminate word senses). A further issue that can be addressed is
the fact that different context clusters might not correspond to distinct word senses. A
supervised classifier can be trained and subsequently applied to tackle this issue [Niu
et al. 2005].

Multilingual context vectors are also used to determine word senses [Ide et al. 2001].
In this setting, a word occurrence in a multilingual corpus is represented as a con-
text vector which includes all the possible lexical translations of the target word w,
whose value is 1 if the specific occurrence of w can be translated accordingly, and zero
otherwise.

4.2. Word Clustering

In the previous section we represented word senses as first- or second-order context
vectors. A different approach to the induction of word senses consists of word clustering
techniques, that is, methods which aim at clustering words which are semantically
similar and can thus convey a specific meaning.

A well-known approach to word clustering [Lin 1998a] consists of the identification
of words W = (w1, . . . , wk) similar (possibly synonymous) to a target word w0. The
similarity between w0 and wi is determined based on the information content of their
single features, given by the syntactic dependencies which occur in a corpus (such as,
e.g., subject-verb, verb-object, adjective-noun, etc.). The more dependencies the two
words share, the higher the information content. However, as for context vectors, the
words in W will cover all senses of w0. To discriminate between the senses, a word
clustering algorithm is applied. Let W be the list of similar words ordered by degree of
similarity to w0. A similarity tree T is initially created which consists of a single node
w0. Next, for each i ∈ {1, . . . , k}, wi ∈ W is added as a child of wj in the tree T such
that wj is the most similar word to wi among {w0, . . . , wi−1}. After a pruning step, each
subtree rooted at w0 is considered as a distinct sense of w0.

In a subsequent approach, called the clustering by committee (CBC) algorithm [Lin
and Pantel 2002], a different word clustering method was proposed. For each target
word, a set of similar words was computed as above. To calculate the similarity, again,
each word is represented as a feature vector, where each feature is the expression of a
syntactic context in which the word occurs. Given a set of target words (e.g., all those
occurring in a corpus), a similarity matrix S is built such that Sij contains the pairwise
similarity between words wi and wj .

As a second step, given a set of words E, a recursive procedure is applied to determine
sets of clusters, called committees, of the words in E. To this end, a standard clustering
technique, that is, average-link clustering, is employed. In each step, residue words not
covered by any committee (i.e., not similar enough to the centroid of each committee)
are identified. Recursive attempts are made to discover more committees from residue
words. Notice that, as above, committees conflate senses as each word belongs to a
single committee.

Finally, as a sense discrimination step, each target word w ∈ E, again represented as
a feature vector, is iteratively assigned to its most similar cluster, based on its similarity
to the centroid of each committee. After a word w is assigned to a committee c, the
intersecting features between w and elements in c are removed from the representation
of w, so as to allow for the identification of less frequent senses of the same word at a
later iteration.
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CBC was assessed on the task of identifying WordNet word senses, attaining 61%
precision and 51% recall. In contrast to most previous approaches, CBC outputs a flat
list of concepts (i.e., it does not provide a hierarchical structure for the clusters). Re-
cently, a novel approach has been presented which performs word sense induction based
on word triplets [Bordag 2006]. The method relies on the “one sense per collocation” as-
sumption (cf. Section 3.8.1) and clusters cooccurrence triplets using their intersections
(i.e., words in common) as features. Sense induction is performed with high precision
(recall varies depending on part of speech and frequency).

4.3. Cooccurrence Graphs

A different view of word sense discrimination is provided by graph-based approaches,
which have been recently explored with a certain success. These approaches are based
on the notion of a cooccurrence graph, that is, a graph G = (V , E) whose vertices V
correspond to words in a text and edges E connect pairs of words which cooccur in a
syntactic relation, in the same paragraph, or in a larger context.

The construction of a cooccurrence graph based on grammatical relations between
words in context was described by Widdows and Dorow [2002] (see also Dorow and Wid-
dows [2003]). Given a target ambiguous word w, a local graph Gw is built around w. By
normalizing the adjacency matrix associated with Gw, we can interpret the graph as a
Markov chain. The Markov clustering algorithm [van Dongen 2000] is then applied to
determine word senses, based on an expansion and an inflation step, aiming, respec-
tively, at inspecting new more distant neighbors and supporting more popular nodes.

Subsequently, Véronis [2004] proposed an ad hoc approach called HyperLex. First,
a cooccurrence graph is built such that nodes are words occurring in the paragraphs
of a text corpus in which a target word occurs, and an edge between a pair of words
is added to the graph if they cooccur in the same paragraph. Each edge is assigned a
weight according to the relative cooccurrence frequency of the two words connected by
the edge. Formally, given an edge {i, j } its weight wij is given by

wij = 1 − max{P (wi | wj ), P (wj | wi)},
where P (wi | wj ) = f reqi j

f req j
, and freqi j is the frequency of cooccurrence of words wi and wj

and freq j is the frequency of wj within the text. As a result, words with high frequency

of cooccurrence are assigned a weight close to zero, whereas words which rarely occur
together receive weights close to 1. Edges with a weight above a certain threshold are
discarded. Part of a cooccurrence graph is reported in Figure 16(a).

As a second step, an iterative algorithm is applied to the cooccurrence graph: at
each iteration, the node with highest relative degree in the graph is selected as a hub
(based on the experimental finding that a node’s degree and its frequency in the original
text are highly correlated). As a result, all its neighbors are no longer eligible as hub
candidates. The algorithm stops when the relative frequency of the word corresponding
to the selected hub is below a fixed threshold. The entire set of hubs selected is said to
represent the senses of the word of interest. Hubs are then linked to the target word
with zero-weight edges and the minimum spanning tree (MST) of the entire graph is
calculated (an example is shown in Figure 16(b)).

Finally, the MST is used to disambiguate specific instances of our target word. Let
W = (w1, w2, . . . , wi, . . . , wn) be a context in which wi is an instance of our target word.
A score vector s is associated with each wj ∈ W ( j �= i), such that its kth component sk
represents the contribution of the kth hub as follows:

sk =
⎧⎨
⎩

1

1 + d (hk , wj )
if hk is an ancestor of wj in the MST

0 otherwise,
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Fig. 16. (a) Part of a cooccurrence graph. (b) The minimum spanning tree for the target word barn.

where d (hk , wj ) is the distance between root hub hk and node wj (possibly, hk ≡ wj ).
Next, all score vectors associated with all wj ∈ W ( j �= i) are summed up and the hub
which receives the maximum score is chosen as the most appropriate sense for wi.

An alternative graph-based algorithm for inducing word senses is PageRank [Brin
and Page 1998]. PageRank is a well-known algorithm developed for computing the
ranking of web pages, and is the main ingredient of the Google search engine. It has
been employed in several research areas for determining the importance of entities
whose relations can be represented in terms of a graph. In its weighted formulation,
the PageRank degree of a vertex vi ∈ V is given by the following formula:

P (vi) = (1 − d ) + d
∑

vj →vi

w j i∑
vj →vk

w j k
P (vj ),

where vj → vi denotes the existence of an edge from vj to vi, wji is its weight, and d
is a damping factor (usually set to 0.85) which models the probability of following a
link to vi (second term) or randomly jumping to vi (first term in the equation). Notice
the recursive nature of the above formula: the PageRank of each vertex is iteratively
computed until convergence.

In the adaptation of PageRank to unsupervised WSD (due to Agirre et al. [2006]), wji
is, as for HyperLex, a function of the probability of cooccurrence of words wi and wj . As
a result of a run of the PageRank algorithm, the vertices are sorted by their PageRank
value, and the best ranking ones are chosen as hubs of the target word.

HyperLex has been assessed by Véronis [2004] in an information retrieval experi-
ment, showing high performance on a small number of words. Further experiments
on HyperLex and PageRank have been performed by Agirre et al. [2006], who tuned a
number of parameters of the former algorithm, such as the number of adjacent vertices
in a hub, the minimum frequencies of edges, vertices, hubs, etc. Experiments conducted
on the nouns from the Senseval-3 lexical sample and all-words data sets (see Section
8.3) attained a performance close to state-of-the-art supervised systems for both algo-
rithms. To compare with other systems, hubs were mapped to the word senses listed in
WordNet, the reference computational lexicon adopted in the Senseval-3 competition.

5. KNOWLEDGE-BASED DISAMBIGUATION

The objective of knowledge-based or dictionary-based WSD is to exploit knowledge
resources (such as dictionaries, thesauri, ontologies, collocations, etc.; see Section 2.2)
to infer the senses of words in context. These methods usually have lower performance
than their supervised alternatives, but they have the advantage of a wider coverage,
thanks to the use of large-scale knowledge resources.
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Table V. WordNet Sense Inventory for the First Three Senses of keyn
Sense Definition and Examples

ke y1
n Metal device shaped in such a way that when it is inserted into the appropriate lock

the lock’s mechanism can be rotated

ke y2
n Something crucial for explaining; “the key to development is economic integration”

ke y3
n Pitch of the voice; “he spoke in a low key”

The first knowledge-based approaches to WSD date back to the 1970s and 1980s when
experiments were conducted on extremely limited domains. Scaling up these works
was the main difficulty at that time: the lack of large-scale computational resources
prevented a proper evaluation, comparison and exploitation of those methods in end-
to-end applications.

In this section, we overview the main knowledge-based techniques, namely: the over-
lap of sense definitions, selectional restrictions, and structural approaches (semantic
similarity measures and graph-based methods). Most approaches exploit information
from WordNet or other resources, which we introduced in Section 2.2. A review of
knowledge-based approaches can be found also in Manning and Schütze [1999] and
Mihalcea [2006].

5.1. Overlap of Sense Definitions

A simple and intuitive knowledge-based approach relies on the calculation of the word
overlap between the sense definitions of two or more target words. This approach is
named gloss overlap or the Lesk algorithm after its author [Lesk 1986]. Given a two-
word context (w1, w2), the senses of the target words whose definitions have the highest
overlap (i.e., words in common) are assumed to be the correct ones. Formally, given
two words w1 and w2, the following score is computed for each pair of word senses
S1 ∈ Senses(w1) and S2 ∈ Senses(w2):

scoreLesk(S1, S2) =| gloss(S1) ∩ gloss(S2) |,
where gloss(Si) is the bag of words in the textual definition of sense Si of wi. The senses
which maximize the above formula are assigned to the respective words. However, this
requires the calculation of | Senses(w1) | · | Senses(w2) | gloss overlaps. If we extend the
algorithm to a context of n words, we need to determine

∏n
i=1 | Senses(wi) | overlaps.

Given the exponential number of steps required, a variant of the Lesk algorithm is
currently employed which identifies the sense of a word w whose textual definition has
the highest overlap with the words in the context of w. Formally, given a target word
w, the following score is computed for each sense S of w:

scoreLeskV ar (S) =| context(w) ∩ gloss(S) |,

where context(w) is the bag of all content words in a context window around the target
word w.

As an example, in Table V we show the first three senses in WordNet of keyn and
mark in italic the words which overlap with the following input sentence:

(g) I inserted the key and locked the door.

Sense 1 of key has 3 overlaps, whereas the other two senses have zero, so the first
sense is selected.

The original method achieved 50–70% accuracy (depending on the word), using a rel-
atively fine set of sense distinctions such as those found in a typical learner’s dictionary

ACM Computing Surveys, Vol. 41, No. 2, Article 10, Publication date: February 2009.



10:32 R. Navigli

[Lesk 1986]. Unfortunately, Lesk’s approach is very sensitive to the exact wording of
definitions, so the absence of a certain word can radically change the results.

Further, the algorithm determines overlaps only among the glosses of the senses
being considered. This is a significant limitation in that dictionary glosses tend to
be fairly short and do not provide sufficient vocabulary to relate fine-grained sense
distinctions.

Recently, Banerjee and Pedersen [2003] introduced a measure of extended gloss over-
lap, which expands the glosses of the words being compared to include glosses of con-
cepts that are known to be related through explicit relations in the dictionary (e.g.,
hypernymy, meronymy, pertainymy, etc.). The range of relationships used to extend the
glosses is a parameter, and can be chosen from any combination of WordNet relations.
For each sense S of a target word w we estimate its score as10

scoreExtLesk(S) = ∑
S′:S →rel

S′ or S≡S′
| context(w) ∩ gloss(S′) |,

where context(w) is, as above, the bag of all content words in a context window around
the target word w and gloss(S′) is the bag of words in the textual definition of a sense
S′ which is either S itself or related to S through a relation rel . The overlap scoring
mechanism is also parametrized and can be adjusted to take into account gloss length
(i.e. normalization) or to include function words.

Banerjee and Pedersen [2003] showed that disambiguation greatly benefits from the
use of gloss information from related concepts (jumping from 18.3% for the original
Lesk algorithm to 34.6% accuracy for extended Lesk). However, the approach does not
lead to state-of-the-art performance compared to competing knowledge-based systems.

5.2. Selectional Preferences

A historical type of knowledge-based algorithm is one which exploits selectional pref-
erences to restrict the number of meanings of a target word occurring in context. Selec-
tional preferences or restrictions are constraints on the semantic type that a word sense
imposes on the words with which it combines in sentences (usually through grammat-
ical relationships). For instance, the verb eat expects an animate entity as subject and
an edible entity as its direct object. We can distinguish between selectional restrictions
and preferences in that the former rule out senses that violate the constraint, whereas
the latter (more typical of recent empirical work) tend to select those senses which
better satisfy the requirements.

The easiest way to learn selectional preferences is to determine the semantic appro-
priateness of the association provided by a word-to-word relation. The simplest measure
of this kind is frequency count. Given a pair of words w1 and w2 and a syntactic rela-
tion R (e.g., subject-verb, verb-object, etc.), this method counts the number of instances
(R, w1, w2) in a corpus of parsed text, obtaining a figure Count(R, w1, w2) (see, e.g.,
Hindle and Rooth [1993]). Another estimation of the semantic appropriateness of a
word-to-word relation is the conditional probability of word w1 given the other word w2

and the relation R: P (w1 | w2, R) = Count(w1,w2,R)
Count(w2,R)

.

To provide word-to-class or class-to-class models, that is, to generalize the knowledge
acquired to semantic classes and relieve the data sparseness problem, manually crafted
taxonomies such as WordNet can used to derive a mapping from words to conceptual
classes. Several techniques have been devised, from measures of selectional association
[Resnik 1993, 1997], to tree cut models using the minimum description length [Li and
Abe 1998; McCarthy and Carroll 2003], hidden markov models [Abney and Light 1999],

10The scoring function presented here is a variant of that presented by Banerjee and Pedersen [2003].
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class-based probability [Clark and Weir 2002; Agirre and Martinez 2001], Bayesian
networks [Ciaramita and Johnson 2000], etc. Almost all these approaches exploit large
corpora and model the selectional preferences of predicates by combining observed
frequencies with knowledge about the semantic classes of their arguments (the latter
obtained from corpora or dictionaries). Disambiguation is then performed with different
means based on the strength of a selectional preference towards a certain conceptual
class (i.e., sense choice).

A comparison of word-to-word, word-to-class, and class-to-class approaches was pre-
sented by Agirre and Martinez [2001], who found out that the coverage grows as we
move from the former to the latter methods (26% for word-to-word preferences, 86.7%
for word-to-class, 97.3% for class-to-class methods), and that precision decreases ac-
cordingly (from 95.9% to 66.9% to 66.6%, respectively).

In general, we can say that approaches to WSD based on selectional restrictions have
not been found to perform as well as Lesk-based methods or the most frequent sense
heuristic (see Section 7.2.2).

5.3. Structural Approaches

Since the availability of computational lexicons like WordNet, a number of structural
approaches have been developed to analyze and exploit the structure of the concept
network made available in such lexicons. The recognition and measurement of pat-
terns, both in a local and a global context, can be collocated in the field of structural
pattern recognition [Fu 1982; Bunke and Sanfeliu 1990], which aims at classifying data
(specifically, senses) based on the structural interrelationships of features. We present
two main approaches of this kind: similarity-based and graph-based methods.

5.3.1. Similarity Measures. Since the early 1990s, when WordNet was introduced, a
number of measures of semantic similarity have been developed to exploit the network
of semantic connections between word senses. Given a measure of semantic similarity
defined as

score : SensesD × SensesD → [0, 1],

where SensesD is the full set of senses listed in a reference lexicon, we can define a gen-
eral disambiguation framework based on our similarity measure. We disambiguate a
target word wi in a text T = (w1, . . . , wn) by choosing the sense Ŝ of wi which maximizes
the following sum:

Ŝ = argmax
S∈SensesD(wi )

∑
wj ∈T :wj �=wi

max
S′∈SensesD(wj )

score(S, S′).

Given a sense S of our target word wi, the formula sums the contribution of the
most appropriate sense of each context word wj �= wi. The sense with the highest sum
is chosen. Similar disambiguation strategies can be applied (e.g., thresholds can be
introduced; cf. Pedersen et al. [2005]). We now turn to the most well-known measures
of semantic similarity in the literature.

Rada et al. [1989] introduced a simple metric based on the calculation of the shortest
distance in WordNet between pairs of word senses. The hypothesis is that, given a pair
of words w and w′ occurring in the same context, choosing the senses that minimize the
distance between them selects the most appropriate meanings. The measure is defined
as follows:

scoreRada(Sw, Sw′ ) = d (Sw, Sw′ ),

ACM Computing Surveys, Vol. 41, No. 2, Article 10, Publication date: February 2009.



10:34 R. Navigli

where d (Sw, Sw′ ) is the shortest distance between Sw and Sw′ (i.e., the number of edges
of the shortest path over the lexicon network). The shortest path is calculated on the
WordNet taxonomy, so it is intended to include only hypernymy edges.

Sussna’s [1993] approach is based on the observation that concepts deep in a taxon-
omy (e.g., limousinen and carn) appear to be more closely related to each another than
those in the upper part of the same taxonomy (e.g., locationn and entityn). An edge in
the WordNet noun taxonomy is viewed as a pair of two directed edges representing
inverse relations (e.g., kind-of and has-kind). The measure is defined as follows:

scoreSussna(Sw, Sw′ ) = wR(Sw, Sw′ ) + wR−1 (Sw′ , Sw)

2D
,

where R is a relation, R−1 its inverse, D is the overall depth of the noun taxonomy, and
each relation edge is weighted based on the following formula:

wR(Sw, Sw′ ) = maxR − maxR − minR

nR(Sw)
,

where maxR and minR are a maximum and minimum weight that we want to assign
to relation R and nR(Sw) is the number of edges of kind R outgoing from Sw.

Inspired by Rada et al. [1989], Leacock and Chodorow [1998] developed a similarity
measure based on the distance of two senses Sw and Sw′ . They focused on hypernymy
links and scaled the path length by the overall depth D of the taxonomy:

scoreLch(Sw, Sw′ ) = −log
d (Sw, Sw′)

2D
.

One of the issues of distance-based measures is that they do not take into account
the density of concepts in a subtree rooted at a common ancestor. Agirre and Rigau
[1996] introduced a measure called conceptual density, which measures the density of
the senses of a word context in the subhierarchy of a specific synset. Given a synset
S, a mean number of hyponyms (specializations) per sense nhyp, and provided that
S includes in its subhierarchy m senses of words to be disambiguated, the conceptual
density of S is calculated as follows:

CD(S, m) =
∑m−1

i=0 nhypi0.20

descendants(S)
,

where descendants(S) is the total number of descendants in the noun hierarchy of S
and 0.20 is a smoothing exponent, whereas i ranges over all possible senses of words
in the subhierarchy of S.

The conceptual density of S is calculated for all hypernyms of all senses of the
nouns in context. The highest conceptual density among all the synsets determines
a set of sense choices: the senses included in its subhierarchy are chosen as interpreta-
tions of the respective words in context. The rest of senses of those words are deleted
from the hierarchy, and the procedure is then iterated for the remaining ambiguous
words.

In Figure 17 we show the basic idea of conceptual density. We indicate the four senses
of our target word w with big dots, and the senses of context words with small dots. In
the example, each sense of w belongs to a different subhierarchy of the WordNet noun
taxonomy.

Resnik [1995] introduced a notion of information content shared by words in context.
The proposed measure determines the specificity of the concept that subsumes the
words in the WordNet taxonomy and is based on the idea that, the more specific the
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Fig. 17. An example of conceptual density for a word context, which includes a target word with four senses.
Senses of words in context are represented as small dots, senses of the target word as big dots.

concept that subsumes two or more words, the more semantically related they are
assumed to be. His measure is defined as

scoreRes(Sw, Sw′ ) = −log (p(lso(Sw, Sw′ ))),

where lso(Sw, Sw′ ) is the lowest superordinate (i.e., most specific common ancestor in
the noun taxonomy) of Sw and Sw′ , and p(S) is the probability of encountering an
instance of sense S in a reference corpus. We note that this measure, together with the
measures that we present hereafter, does not only exploit the structure of the reference
dictionary, but also incorporates an additional kind of knowledge, which comes from
text corpora.

Jiang and Conrath’s [1997] approach also uses the notion of information content, but
in the form of the conditional probability of encountering an instance of a child sense
given an instance of an ancestor sense. The measure takes into account the information
content of the two senses, as well as that of their most specific ancestor in the noun
taxonomy:

scoreJcn(Sw, Sw′ ) = 2 log(p(lso(Sw, Sw′ ))) − (log(p(Sw)) + log(p(Sw′ ))).

Finally, Lin’s [1998b] similarity measure is based on his theory of similarity between
arbitrary objects. It is essentially Jiang and Conrath’s [1997] measure, proposed in a
different fashion:

scoreLin(Sw, Sw′ ) = 2log(p(lso(Sw, Sw′)))

log(p(Sw)) + log(p(Sw′ ))
.

Different similarity measures have been assessed in comparative experiments to de-
termine which prove to be most effective. Budanitsky and Hirst [2006] found that Jiang
and Conrath’s [1997] measure is superior in the correction of word spelling errors com-
pared to the measures proposed by Leacock and Chodorow [1998], Lin [1998b], Resnik
[1995], and Hirst and St-Onge [1998] (the latter is introduced in the next section).
Pedersen et al. [2005] made similar considerations and found that Jcn, together with
the extended measure of gloss overlap presented in Section 5.1, outperforms the other
measures in the disambiguation of 1754 noun instances of the Senseval-2 lexical sam-
ple task (see Section 8.2). We report the results of this latter experiment in Table VI.
Most of the above-mentioned measures are implemented in the WordNet::Similarity
package [Pedersen et al. 2004].

5.3.2. Graph-Based Approaches. In this section we present a number of approaches
based on the exploitation of graph structures to determine the most appropriate senses
for words in context. Most of these approaches are related or inspired by the notion of
lexical chain. A lexical chain [Halliday and Hasan 1976; Morris and Hirst 1991] is a
sequence of semantically related words w1, . . . , wn in a text, such that wi is related to
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Table VI. Performance of Semantic Similarity Measures
and a Lesk-Based Gloss Overlap Measure on 1754 Noun

Instances from the Senseval-2 Lexical Sample Data Set (cf.
Section 8.2)

Res Jcn Lin Lch Hso Lsk

Accuracy 29.5 38.0 33.1 30.5 31.6 39.1

Note: Res = Resnik [1995]; Jcn = Jiang and Conrath
[1998]; Lin = Lin [1998b]; Lch = Leacock and Chodorow
[1998]; Hso = Hirst and St-Onge [1998]; Lsk = Lesk [1986].

Fig. 18. Some lexical chains in a portion of text.

wi+1 by a lexicosemantic relation (e.g., is-a, has-part, etc.). Lexical chains determine
contexts and contribute to the continuity of meaning and the coherence of a discourse.
For instance, the following are examples of lexical chains: Rome → city → inhabitant,
eat → dish → vegetable → aubergine, etc.

These structures have been applied to the analysis of discourse cohesion [Morris
and Hirst 1991], text summarization [Barzilay and Elhadad 1997], the correction of
malapropisms [Hirst and St-Onge 1998], etc. Algorithms for computing lexical chains
often perform disambiguation before inferring which words are semantically related.

We can view lexical chains as a global counterpart of the measures of semantic simi-
larity (presented in previous subsection) which, in contrast, are usually applied in local
contexts. Figure 18 illustrates a portion of text with potential lexical chains between
related words.

A first computational model of lexical chains was introduced by Hirst and St-Onge
[1998]. The strength of a lexical chain connecting two word senses Sw and Sw′ of words
w and w′, respectively, is computed as:

scoreHso(Sw, Sw′ ) = C − d (Sw, Sw′ ) − k · turns(Sw, Sw′ ),

where C and k are constants, d is the shortest distance between the two senses in the
WordNet taxonomy (as above), and turns is the number of times the chain “changes
direction.” A change of direction is due to the use of an inverse relation (e.g., passing from
generalization to specialization with the alternation of a kind-of and has-kind relation).
For instance, the left chain in Figure 19 does not contain any change of direction, in
contrast to the right chain, which contains one (from kind-of to its inverse has-kind).

The latter chain scores as follows: scoreHso(apple1
n, carrot1

n) = C − 4 − k · 1.
The algorithm, however, suffers from inaccurate WSD, since a word is immediately

disambiguated in a greedy fashion the first time it is encountered. Barzilay and El-
hadad [1997] dealt with the inaccuracy of the original approach by keeping all possible
interpretations until all the words to be chained have been considered. The computa-
tional inefficiency of this approach, due to the processing of many possible combinations
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Fig. 19. Two examples of lexical chains.

of word senses in the text, was overcome by Silber and McCoy [2003] who presented an
efficient linear-time algorithm to compute lexical chains.

Based on these works, Galley and McKeown [2003] developed a method consisting of
two stages. First, a graph is built representing all possible interpretations of the target
words in question. The text is processed sequentially, comparing each word against
all words previously read. If a relation exists between the senses of the current word
and any possible sense of a previous word, a connection is established between the
appropriate words and senses. The strength of the connection is a function of the type
of relationship and of the distance between the words in the text (in terms of words,
sentences, and paragraphs). Words are represented as nodes in the graph and semantic
relations as weighted edges.

In the disambiguation stage, all occurrences of a given word are collected together.
For each sense of a target word, the strength of all connections involving that sense are
summed, giving that sense a unified score. The sense with the highest unified score is
chosen as the correct sense for the target word. In subsequent stages the actual connec-
tions comprising the winning unified score are used as a basis for computing the lexical
chains. Galley and McKeown [2003] reported a 62.1% accuracy in the disambiguation
of nouns from a subset of SemCor.

Among the approaches inspired by the notion of lexical chains, we cite Harabagiu
et al. [1999] (and subsequent works), where a set of lexicosemantic heuristics are used
to disambiguate dictionary glosses: each heuristic deals with a specific phenomenon of
language (e.g., monosemy, linguistic parallelism, etc.), some of which can be configured
as specific kinds of lexical chains.

Mihalcea et al. [2004] presented an approach based on the use of the PageRank
algorithm (cf. Section 4.3) to study the structure of the lexicon network and identify
those nodes (senses) which are more relevant in context. The method builds a graph that
represents all the possible senses of words in a text and interconnects pairs of senses
with meaningful relations. Relations include those from WordNet plus a coordinate
relation (which connects concepts having the same hypernym). After the application of
PageRank to the graph, the highest-ranking sense of each word in context is chosen.

Navigli and Velardi [2005] recently proposed the Structural Semantic Interconnec-
tions (SSI) algorithm, a development of lexical chains based on the encoding of a context-
free grammar of valid semantic interconnection patterns. First, given a word context
W , SSI builds a subgraph of the WordNet lexicon which includes all the senses of
words in W and intermediate concepts which occur in at least one valid lexical chain
connecting a pair of senses in W . Second, the algorithm selects those senses for the
words in context which maximize the degree of connectivity of the induced subgraph
of the WordNet lexicon. A key feature of the algorithm is that it outputs justifications
for sense choices in terms of semantic graphs which can be used as a support for the
validation of manual and automatic sense annotations [Navigli 2006a, 2006b]. SSI out-
performs state-of-the-art unsupervised systems in the Senseval-3 all-words and the
Semeval-2007 coarse-grained all-words competition (cf. Section 8).
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6. OTHER APPROACHES

6.1. Determining Word Sense Dominance

It has been noted that, given a word, the frequency distribution of its senses is highly
skewed in texts [Kilgarriff and Rosenzweig 2000], thus affecting the performance of
WSD. Methods for the determination of word sense dominance perform type-based
disambiguation (cf. Section 2.4) based on this observation.

McCarthy et al. [2004, 2007] proposed an unsupervised method for automatically
ranking the senses of ambiguous words from raw text. Key in their approach is the
observation that distributionally similar neighbors often provide cues about the senses
of a word. Assuming that a set of neighbors is available for a target word, sense ranking
is equivalent to quantifying the degree of similarity among the neighbors and the sense
descriptions of the polysemous target word.

Let N (w) = {n1, n2, . . . , nk} be the k most (distributionally) similar words to an am-
biguous target word w and SensesD(w) = {S1, S2, . . . , Sn} the usual set of senses for w.
Distributional similarity of neighbors in N (w) is calculated with Lin’s [1998a] method
for the automatic construction of thesauri (as described in Section 4.2; see also Lee
[1999] for an overview).

For each sense Si of w and for each neighbor nj , the algorithm selects the neighbor’s
sense which has the highest WordNet similarity score (simWN) with regard to Si. The
similarity simWN between pairs of senses is calculated with a measure of semantic
similarity which weights the contribution that each neighbor provides to the various
senses of the target word (Jcn was found to perform best among different similarity
measures; cf. Section 5.3.1).

The ranking score of sense Si is then determined as a function of the semantic sim-
ilarity score and the distributional similarity score (simdist) between the target word
and the neighbors:

scorePrev(Si) =
∑

n∈N (w)

simdist(w, n)
simWN(Si, n)∑

S j ∈SensesD(w)

simWN(Sj , n)
,

where

simWN(Si, n) = max
Nx∈SensesD(n)

simWN(Si, Nx).

For example, given a target word starn, let us assume that the set of neigh-
bors N (starn) = {actorn, footballern, planetn} (a simplified version of the example
in McCarthy et al. [2007]). Suppose the distributional similarity was calculated
as follows: simdist(starn, actorn) = 0.22, simdist(starn, footballern) = 0.12, and

simdist(starn, planetn) =0.08. Now, we can calculate the score for each sense of starn
(here we show the calculation of the two best-ranking senses):

scorePrev
(
star1

n

) = 0.22 · 0.01

0.48
+ 0.12 · 0.01

0.57
+ 0.08 · 0.68

0.93
= 0.068,

scorePrev
(
star5

n

) = 0.22 · 0.42

0.48
+ 0.12 · 0.53

0.57
+ 0.08 · 0.02

0.93
= 0.314,

where star1
n denotes the sense of celestial body and star5

n the celebrity sense of starn (the
values of simWN are taken from the original example of McCarthy et al. [2007]). As a re-
sult, the predominant sense is simply the sense with the highest-ranking scorePrev (star5

n
in the example) and can be consequently used to perform type-based disambiguation.
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Mohammad and Hirst [2006] presented a different approach to the acquisition of the
predominant sense. Rather than building a thesaurus from an unlabeled corpus, they
relied on a preexisting thesaurus, namely, the Macquarie Thesaurus [Bernard 1986].
Given the categories encoded in the thesaurus, they built a word-category cooccurrence
matrix M , such that Mij is the number of times word wi occurs in a text corpus in
a predetermined window around a term in the thesaurus category Cj . The strength
of association between a sense of a target word and its cooccurring words (i.e., its
neighbors) is not calculated with the aid of WordNet, as McCarthy et al. [2004] did.
The degree of similarity is rather calculated by applying a statistic on the contingency
table M (the authors experimented on a number of measures, such as Dice, cosine, odds,
etc.). Finally, given a target word w, they proposed four different measures to determine
which sense is predominant in a text based on implicit or explicit disambiguation and
weighted or unweighted voting of cooccurring words. The best-performing measure,
which combines explicit disambiguation with weighted voting of cooccurring words, is
defined as follows:

scorePrev(Ci) = | {W ∈ Xw : Sense(W, w) = Ci} |
| Xw | ,

where W is the set of words cooccurring in a window around a specific occurrence of w,
Xw is the set of all such W , Ci is a category in the thesaurus which includes the target
word w (i.e., a “sense” of w), and Sense(W, w) is the category C of the target word w
which maximizes the sum of the strengths of association of C with the co-occurring
words in W .

Finally, we cite a third approach to the determination of predominant senses which
relies on word association [Lapata and Keller 2007]. Given a sense S of a word w, the
method counts the cooccurrences in a given corpus of w with the other synonyms of S
(according to WordNet). As a result, a ranking of the senses of w is obtained and the
best-ranking sense can be used as the predominant sense in the corpus.

6.2. Domain-Driven Disambiguation

Domain-driven disambiguation [Gliozzo et al. 2004; Buitelaar et al. 2006] is a WSD
methodology that makes use of domain information. The sense of a target word is chosen
based on a comparison between the domains of the context words and the domain
of the target sense. To this end, WordNet domain labels are typically employed (cf.
Section 2.2.1).

This approach achieves good precision and possibly low recall, due to the fact that
domain information can be used to disambiguate mainly domain words. Domain infor-
mation is represented in terms of domain vectors, that is, vectors whose components
represent information from distinct domains. Given a word sense S, a synset vector is
defined as S = (R(D1, S), R(D2, S), . . . , R(Dd , S)), where Di are the domains available
(i ∈ {1, . . . , d }) and R(Di, S) is defined as follows:

R(Di, S) =
⎧⎨
⎩

1/ | Dom(S) | if Di ∈ Dom(S),

1/d if Dom(S) = { FACTOTUM },
0 otherwise,

where Dom(S) is the set of labels assigned to sense S in the WordNet domain labels
resource and the FACTOTUM label represents the absence of domain pertinence. For in-

stance, Dom(authority1
n) = { ADMINISTRATION, LAW, POLITICS}; thus the vector associated

to authority1
n is (0, . . . , 0, 1/3, 0, . . . , 0, 1/3, 0, . . . , 0, 1/3, 0, . . . , 0). Given a target word
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w occurring in a text T , the most appropriate sense Ŝ of w is selected as follows:

Ŝ = argmax
Si∈SensesD(w)

P (Si | w)sim(Si, T)∑
S∈SensesD(w) P (S | w)sim(S, T)

,

where sim is the measure of cosine similarity (cf. Section 4.1), P (Si | w) describes the
probability of sense Si for word w based on the distribution of sense annotations in the
SemCor corpus (cf. Section 2.2.2), and T is a domain vector of a window of T around word
w, estimated with an unsupervised method, namely, the Gaussian mixture approach.
Specific parameters are estimated from a large-scale corpus using the Expectation
Maximization (EM) algorithm.

The use of P (Si | w) makes this approach supervised, as it exploits a sense-labeled
corpus to determine the probability of sense Si for word w. A modified, unsupervised
version of this approach [Strapparava et al. 2004] performed best among unsupervised
systems in the Senseval-3 all-words task (see Section 8.3).

The interesting aspect of domain-driven disambiguation as well as methods for de-
termining word sense dominance is that they shift the focus from the linguistic under-
standing to a domain-oriented type-based vision of sense ambiguity. We believe that
this direction will be further explored in the future, especially with the aim of enabling
semantic-aware applications (see also Section 10).

6.3. WSD from Cross-Lingual Evidence

Finally, we introduce an approach to disambiguation based on the evidence from trans-
lation information. The strategy consists of disambiguating target words by labeling
them with the appropriate translation.

The main idea behind this approach is that the plausible translations of a word in
context restrict its possible senses to a subset [Resnik and Yarowsky 1997, 1999]. For
instance, the English word sentence can be translated to the French peine or phrase
depending on the context. However, this method does not necessarily performs a full
disambiguation, as it is not uncommon that different meanings of the same word have
the same translation (e.g., both the senses of wing as an organ and as part of a building
translate to the Italian ala). In their seminal article, Resnik and Yarowsky [1997]
proposed that only senses which are lexicalized cross-linguistically in a minimum set
of languages should be considered. For instance, table is translated as table in French
and tavola in Italian, both in the sense of piece of furniture, and a company of people at
a table. This regular polysemy is preserved across the three languages, and allows for
the identification of a single sense. To implement this proposal, Ide [2000] suggested
the use of a coherence index for identifying the tendency to lexicalize senses differently
across languages.

Several methods have been described in the literature based on cross-lingual evi-
dence. Brown et al. [1991] proposed an unsupervised approach which, after performing
word alignment on a parallel corpus, determines the most appropriate translation for a
target word according to the most informative feature from a set of contextual features.

Gale et al. [1992d] proposed a method which uses parallel corpora for the automatic
creation of a sense-tagged data set. Given a target word, each sentence in the source
language is tagged with the translation of the word in the target language. A naive
Bayes classifier is then trained with the resulting data set and applied in a WSD task.
Experiments show a very high accuracy (above 90%) on a small number of words.

More recently, Diab [2003] presented an unsupervised approach for sense tagging
parallel corpora which clusters source words translating to the same target word and
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disambiguates them based on a measure of similarity. Finally, the method assigns the
most similar sense tag to the target word occurring in the source corpus (and possibly
projects the sense assignment to the corresponding word in the target corpus).

Ide et al. [2002] and Tufis et al. [2004] presented a knowledge-based approach which
exploits EuroWordNet (cf. Section 2.2.1). Given two aligned words in a parallel corpus,
they sense tag them with those synsets of the two words which are mapped through
EuroWordNet’s interlingual index. The most frequent sense baseline is used as a backoff
in case more than one sense of the word in the source language maps to senses of the
word in the target language. 75% accuracy is achieved in disambiguating a manually
tagged portion of Orwell’s 1984.

In recent studies, it has been found that approaches that use cross-lingual evidence
for WSD attain state-of-the-art performance in all-words disambiguation (e.g., Ng et al.
[2003]; Chklovski et al. [2004]; Chan and Ng [2005]). However, the main problem of
these approaches lies in the knowledge acquisition bottleneck: there is a lack of parallel
corpora for several languages, which can potentially be relieved by collecting corpora
on the Web [Resnik and Smith 2003]. To overcome this problem, Dagan and Itai [1994]
proposed the use of a bilingual lexicon to find all possible translations (considered as
the set of target senses) of an ambiguous word occurring in a syntactic relation, and
then use statistics on the translations in a target corpus to perform disambiguation.

7. EVALUATION METHODOLOGY

We present here the evaluation measures and baselines employed for in vitro evalu-
ation of WSD systems, that is, as if they were stand-alone, independent applications.
However, one of the real objectives of WSD is to demonstrate that it improves the per-
formance of applications such as information retrieval, machine translation, etc. The
evaluation of WSD as a module embedded in applications is called in vivo or end-to-end
evaluation. We will discuss this second kind of evaluation in later sections.

7.1. Evaluation Measures

The assessment of word sense disambiguation systems is usually performed in terms of
evaluation measures borrowed from the field of information retrieval, that we introduce
hereafter.

Let T = (w1, . . . , wn) be a test set and A an “answer” function that associates with
each word wi ∈ T the appropriate set of senses from the dictionary D (i.e., A(i) ⊆
SensesD(wi)). Then, given the sense assignments A′(i) ∈ SensesD(wi) ∪ {ε} provided by
an automatic WSD system11 (i ∈ {1, . . . , n}), we can define coverage C as the percentage
of items in the test set for which the system provided a sense assignment that is:

C = # answers provided

# total answers to provide
= | {i ∈ {1, . . . , n} : A′(i) �= ε} |

n
,

where we indicate with ε the case in which the system does not provide an answer
for a specific word wi (i.e., in that case we assume that A′(i) = ε). The total number of
answers is given by n =| T |. The precision P of a system is computed as the percentage
of correct answers given by the automatic system, that is:

P = # correct answers provided

# answers provided
= | {i ∈ {1, . . . , n} : A′(i) ∈ A(i)} |

| {i ∈ {1, . . . , n} : A′(i) �= ε} | .

11We assume that the annotations to be assessed assign to each word a single sense from the inventory. We
note that more than one annotation can be allowed by extending this notation.
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Precision determines how good are the answers given by the system being assessed.
Recall R is defined as the number of correct answers given by the automatic system
over the total number of answers to be given:

R = # correct answers provided

# total answers to provide
= | {i ∈ {1, . . . , n} : A′(i) ∈ A(i)} |

n
.

According to the above definitions, we have that R ≤ P . When coverage is 100%, we
have that P = R. In the WSD literature, recall is also referred to as accuracy, although
these are two different measures in the machine learning and information retrieval
literature.

Finally, a measure which determines the weighted harmonic mean of precision and
recall, called the F1-measure or balanced F -score, is defined as

F1 = 2P R
P + R

.

The F1-measure is a specialization of a general formula, the Fα-score, defined as

Fα = 1

α 1
P + (1 − α) 1

R

= (β2 + 1)P R
β2 P + R

,

where α = 1/(β2 + 1). The F1-measure is obtained by choosing β = 1 (or, equivalently,

α = 1
2
), thus equally balancing precision and recall. F1 is useful to compare systems

with a coverage lower than 100%. Note that an easy-to-build system with P = 100% and
almost-zero recall would get around 50% performance if we used a simple arithmetic
mean ( P+R

2
), whereas a harmonic mean such as F1 is dramatically penalized by low

values of either precision or recall.
It has been argued that the above measures do not reflect the ability of systems to

output a degree of confidence for a given sense choice. In this direction, Resnik and
Yarowsky [1999] proposed an evaluation metric which weighs misclassification errors
by the distance between the selected and correct senses. As a result, if the chosen
sense is a fine-grained distinction of the correct sense, this error will be penalised less
heavily than between coarser sense distinctions. Even more refined metrics, such as
the receiver operation characteristic (ROC), have been proposed [Cohn 2003]. How-
ever these metrics are not often used, also for reasons of comparison with previously
established results, mostly measured in terms of precision, recall, and F1.

7.2. Baselines

A baseline is a standard method to which the performance of different approaches is
compared. Here we present two basic baselines, the random baseline (Section 7.2.1)
and the first sense baseline (Section 7.2.2). Other baselines have also been employed
in the literature, such as the Lesk approach (cf. Section 5.1).

7.2.1. The Random Baseline. Let D be the reference dictionary and T = (w1, w2,
. . . , wn) be a test set such that word wi (i ∈ {1, . . . , n}) is a content word in the cor-
pus. The chance or random baseline consists in the random choice of a sense from
those available for each word wi. Under the uniform distribution, for each word wi the

probability of success of such a choice is 1
|SensesD(wi )| .
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The accuracy of the random baseline is obtained by averaging over all the content
words in the test set T :

AccChance = 1

n

n∑
i=1

1

| SensesD(wi) | .

7.2.2. The First Sense Baseline. The first sense baseline (or most frequent sense baseline)
is based on a ranking of word senses. This baseline consists in choosing the first sense
according to such a ranking for each word in a corpus, independent of its context.

For instance, in WordNet, senses of the same word are ranked based on the frequency
of occurrence of each sense in the SemCor corpus (cf. Section 2.2.2). Let SC be the
SemCor corpus, ASC(i) the set of manual annotations for the ith word in the corpus,
and let Count(w j

p) be a function that counts the number of occurrences of sense w j
p in

SC, such that

Count
(
w j

p

) = | {i ∈ {1, . . . , | SC |} : w j
p ∈ ASC(i)} |

| SC | .

Given a word sense w j
p, the counts determine the following ranking:

RankF S
(
w j

p

) = Count
(
w j

p

)
∑|SensesD(wp)|

i=1 Count
(
wi

p

) .

Now let us assume that word senses are ordered by a ranking based on occurrence
counts, that is, w1

p occurs equally or more frequently than w2
p, and so on (possibly

remaining senses with no occurrence are ordered randomly). Let T = (w1, w2, . . . , wn)
be a test set and A be the set of sense tags manually assigned to T by one or more
annotators, that is, A(i) ⊆ SensesD(wi). The accuracy of the first sense baseline is
calculated as follows:

AccF S = | {i ∈ {1, . . . , n} : w1
i ∈ A(i)} |

n
.

In other words, this is the accuracy of assigning the sense of each word which is most
frequent in SemCor (or, analogously, in another reference sense-tagged data set).

7.3. Lower and Upper Bounds

Lower and upper bounds are performance figures that indicate the range within which
the performance of any system should fall. Specifically, a lower bound usually measures
a performance obtained with an extremely simple method and which any system should
be able to exceed. A typical lower bound is the random baseline. Gale et al. [1992a]
proposed the selection of the most likely sense as a lower bound (i.e., the first sense
baseline). This baseline poses serious difficulties to WSD systems as it is often hard to
beat, as we will discuss in the next section.

An upper bound specifies the highest performance reasonably attainable. In WSD,
a typical upper bound is the interannotator agreement or intertagger agreement (ITA),
that is, the percentage of words tagged with the same sense by two or more human
annotators. The interannotator agreement on coarse-grained, possibly binary, sense
inventories is calculated around 90% [Gale et al. 1992a; Navigli et al. 2007], whereas
on fine-grained, WordNet-style sense inventories the inter-annotator agreement is esti-
mated between 67% and 80% [Chklovski and Mihalcea 2003; Snyder and Palmer 2004;
Palmer et al. 2007].
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As Gale et al. [1992a] stated, it is unclear how to interpret a performance which beats
the interannotator agreement: if humans cannot agree more than a certain percentage
of times, what does it mean if a system overcomes that figure and is more accurate? A
possible answer might be that some sense assignments in a data set or some distinctions
in the adopted sense inventory are disputable. This poses a problem especially for fine-
grained WSD: it might be that the task itself needs to be rethought (we further discuss
this point in Sections 8.4 and 8.5).

Another upper bound that turns out to be useful is the oracle. An oracle is a hypothetic
system which is always supposed to know the correct answer (i.e., the appropriate sense
choice) among those available. An oracle constitutes a good upper bound to compare
the performance of ensemble methods (cf. Section 3.7). Its accuracy is determined by
the number of word instances for which at least one of the systems output the correct
sense. As a result, given the output of first-order WSD systems, the oracle performance
provides the maximum hypothetical performance of any combination method aiming
at improving the results of the single systems.

Another use of the oracle is in calculating the impact of WSD on applications: in
fact, an oracle which performs 100% accurate disambiguation (e.g., in disambiguat-
ing queries, document bases, translations, etc.) allows it to determine the maximum
(theoretical) degree of impact of WSD on the application of interest (for instance, what
is the maximum improvement when performing 100%-accurate disambiguation in an
information retrieval task?).

8. EVALUATION: THE SENSEVAL/SEMEVAL COMPETITIONS

Comparing and evaluating different WSD systems is extremely difficult, because of
the different test sets, sense inventories, and knowledge resources adopted. Before
the organization of specific evaluation campaigns, which we introduce in this section,
most systems were assessed on in-house, often small-scale, data sets. Therefore, most
of the pre-Senseval results are not comparable with subsequent approaches in the
field.

Senseval12 (now renamed Semeval) is an international word sense disambiguation
competition, held every three years since 1998. The objective of the competition is to
perform a comparative evaluation of WSD systems in several kinds of tasks, including
all-words and lexical sample WSD for different languages, and, more recently, new
tasks such as semantic role labeling, gloss WSD, lexical substitution, etc. The systems
submitted for evaluation to these competitions usually integrate different techniques
and often combine supervised and knowledge-based methods (especially for avoiding
bad performance in lack of training examples). The Senseval workshops are the best
reference to study the recent trends of WSD and the future research directions in the
field. Moreover, they lead to the periodic release of data sets of high value for the
research community.

We now review and discuss the four competitions held between 1998 and 2007. A
review of the first three Senseval competitions can also be found in Martinez [2004]
and Palmer et al. [2006].

8.1. Senseval-1

The first edition of Senseval took place in 1998 at Herstmonceux Castle, Sussex
[Kilgarriff 1998; Kilgarriff and Palmer 2000]. The importance of this edition is given
by the fact that WSD researchers joined their efforts and discussed several issues

12http://www.senseval.org.
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Table VII. Performance of the Highest-Ranking Systems Participating in the Lexical Sample and
All-Words Task at Senseval-2 (When two figures are reported, they stand for precision/recall (see

Section 7.1). U/S stand for unsupervised and supervised, respectively.)
Lexical Sample All Words

Accuracy System U/S Accuracy System U/S

64.2 JHU S 69.0 SMUaw S
63.8 SMUI S 63.6 CNTS-Antwerp S
62.9 KUNLP S 61.8 Sinequa-LIA S
61.7 Stanford—CS224N S 57.5/56.9 UNED—AW-U2 U
59.4 TALP S 55.6/55.0 UNED—AW-U U

47.6 MFS BL S 57.0 MFS BL S

concerning the lexicon to be adopted, the annotation of training and test sets, the eval-
uation procedure, etc.

Senseval-1 consisted of a lexical-sample task for three languages: English, French,
and Italian. A total of 25 systems from 23 research groups participated in the compe-
tition. Annotation for the English language was performed with respect to the HECTOR

sense inventory (cf. Section 2.2). The English test set contained 8400 instances of 35
target words. The best systems performed with between 74% and 78% accuracy (cf.
Section 7.1 for an introduction to evaluation measures). The baseline, based on the
most frequent sense (cf. Section 7.2.2), achieved a 57% accuracy. The best performing
systems were

—JHU [Yarowsky 2000]. This system was a supervised algorithm based on hierarchies
of decision lists. It exploits a full set of collocational, morphological, and syntactic
features to classify the examples and assigns weights to different kinds of features.
This system obtained the best score after resubmission (78.1%).

—Durham [Hawkins and Nettleton 2000]. This system consisted of a hybrid approach
relying on different types of knowledge: the frequency of senses in training data,
manually crafted clue words from the training context, and contextual similarity
between senses. The system learns contextual scores from ancestor nodes in the
WordNet hierarchy to disambiguate all words in a given sentence. Together with
contextual information, frequency information is used to measure the likelihood of
each possible sense appearing in the text. The system achieved the best score after
the first submission of systems (77.1%).

—Tilburg [Veenstra et al. 2000]. This method used memory-based learning (cf. Section
3.5), obtaining a 75.1% accuracy. A word expert was learned for each target word
in the test set. The word experts were built on training data by using 10-fold cross-
validation.

Decision lists with the addition of some hierarchical structure were the most suc-
cessful approach in the first edition of the Senseval competition. Notice that, although
a figure of 78% accuracy is a relatively high achievement, the task concerned the dis-
ambiguation of a limited number of words (35) in a lexical sample style evaluation.

8.2. Senseval-2

Senseval-2 [Edmonds and Cotton 2001] took place in Toulouse (France) in 2001. Two
main tasks were organized in 12 different languages: all-words and lexical sample
WSD (see Section 2). Overall, 93 systems from 34 research groups participated in the
competition. The WordNet 1.7 sense inventory was adopted for English.

In Table VII we report the performance of the highest-ranking systems participating
in the two tasks. The performance was generally lower than in Senseval-1, probably due
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to the fine granularity of the adopted sense inventory. Supervised systems outperformed
unsupervised approaches. The best-performing systems in the English lexical sample
task (over 4300 test instances) were

—JHU [Florian et al. 2002]. This system was an ensemble combination of heteroge-
neous classifiers (vector cosine similarity, Bayesian models, and decision lists). Dif-
ferent combination strategies were adopted: equal weight, probability interpolation,
rank-averaged, etc. The classifiers used a set of features extracted from the context,
including grammatical relations, regular expressions over part-of-speech tags in a
window around the target word, etc. This system scored best with a 64.2% accuracy.
The use of voting schemes is common to the Stanford-CS224N system, ranking fourth.

—SMUI [Mihalcea 2002b]. Similar to the Tilburg system [Veenstra et al. 2000], this
approach is based on instance-based learning for classifying a target word. The orig-
inal aspect of this system is in the feature selection phase, performed using cross-
validation in the training set: for each word, only the features that contribute to a
performance increase are kept. This system ranked second, with 63.8% accuracy.

Successful approaches used voting and rich, possibly weighted or selected, features.
The highest-ranking systems in the English all-words task (2473 words) were

—SMUaw [Mihalcea 2002b]. This system achieved an outstanding 69% accuracy and
was based on pattern learning from a few examples. The system has a preprocessing
phase, which includes named entity recognition and collocation extraction. The exam-
ples used for pattern learning are collected from SemCor, WordNet definitions, and
GenCor, the outcome of a Web-based bootstrapping algorithm for the construction of
annotated corpora (cf. Section 3.8.2);

—Ave-Antwerp [Hoste et al. 2002]. This system uses memory-based learning to build
word experts. Each word expert consists of multiple classifiers, each focusing on dif-
ferent information sources. The classifiers are then combined in a voting scheme. 10-
fold cross-validation is performed to optimize the parameters of the memory-based
learning classifiers used by the team and to optimize the voting scheme. The method
scored second in the task, with a 63.6% performance;

—LIA-Sinequa [Crestan et al. 2001]. This system uses binary decision trees trained on
the examples of the training sets from both the lexical sample and the all-words task.

8.3. Senseval-3

The third edition of the Senseval competition [Mihalcea and Edmonds 2004] took place
in Barcelona in 2004. It consisted of 14 tasks, and, overall, 160 systems from 55 teams
participated in the tasks. These included lexical sample and all-words tasks for seven
languages as well as new tasks such as gloss disambiguation, semantic role labeling,
multilingual annotations, logic forms, and the acquisition of subcategorizations. Table
VIII shows the performance of the highest-ranking systems participating in the lexical
sample and all-words tasks.

Regarding the English lexical sample task (3944 test instances), WordNet 1.7.1 was
adopted as a sense inventory for nouns and adjectives, and WordSmyth for verbs.13

Most of the systems were supervised. The performance of the best 14 systems ranged
between 72.9% and 70.9%, suggesting that this task seems to have reached a ceiling
which is difficult to overcome. Moreover, during a panel at Senseval-3 it was agreed that
this task is becoming less and less interesting as the disambiguation of a single target
word in a sentence is not useful in most human language technology applications. Most

13http://www.wordsmyth.net.
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Table VIII. Performance of the Highest-Ranking Systems Participating in the Lexical Sample and
All-Words Tasks at Senseval-3 (When two figures are reported, they stand for precision/recall (see

Section 7.1). U/S stand for unsupervised and supervised, respectively. The baseline for the all-words
task achieves 60.9% or 62.4% depending on the treatment of multiwords and hyphenated words)

Lexical sample All words

Accuracy System U/S Accuracy System U/S

72.9 htsa3 S 65.1 GAMBL-AW S
72.6 IRST-Kernels S 65.1/64.2 SenseLearner S
72.4 nusels S .

.

.
.
.
.

.

.

.72.4 htsa4 S
72.3 BCU comb S 58.3/58.2 IRST-DDD-00 U

55.2 MFS BL S 60.9-62.4 MFS BL S

of the top systems used kernel methods (cf. Section 3.6). Other approaches include the
voted combination of algorithms and the use of a rich set of features, comprising domain
information and syntactic relations. We outline here the two top-ranking systems:

—Htsa3 [Grozea 2004]. This system obtained the best performance (72.9% accuracy)
by applying the regularized least-squares classification (RLSC), a technique based
on kernels and Tikhonov regularization. The features used include collocations and
lemmas around the target word. Htsa3 used a linear kernel: its weight values were
normalized with the frequency of the senses in the training set. A normalization step
is performed to deal with the implicit bias of RLSC which favours frequent senses.
The regularization parameter and a further parameter for smooth normalization
were estimated using the previous Senseval corpora.

—IRST-Kernels [Strapparava et al. 2004]. This system ranked second with 72.6% ac-
curacy and is based on SVM (see Section 3.6). The kernel function combines hetero-
geneous sources of information and is the result of the combination of two different
kernels, a paradigmatic and a syntagmatic kernel.

—The syntagmatic kernel determines the similarity of two contexts based on the
number of word sequences they have in common. It is implemented in terms of two
other kernels which take into account collocation information and part-of-speech
sequences.

—The paradigmatic kernel exploits information about the domain of the input text
and combines again two other kernels: a bag of words kernel and a latent semantic
indexing kernel. The latter aims to relieve the problem of data sparseness of the
former kernel.

The English all-words task [Snyder and Palmer 2004] saw the participation of 26 sys-
tems from 16 teams. The test set included 2037 sense-tagged words. The best system
attained a 65.1% accuracy, whereas the first sense baseline (cf. Section 7.2.2) achieved
60.9% or 62.4% depending on the treatment of multiwords and hyphenated words. In
Table VIII we report the best two supervised systems together with the best unsuper-
vised system (IRST-DDD):

—GAMBL-AW [Decadt et al. 2004]. GAMBL is a supervised method that learns word
experts from extensive corpora. The training corpus includes SemCor, the previous
Senseval corpora, usage examples in WordNet, etc. The features extracted from the
resulting training set include a local context and contextual keywords. GAMBL is
based on memory-based learning, with an additional optimization of features and
parameters performed with genetic algorithms. The system classified first in the all-
words task with 65.1% accuracy.

—SenseLearner [Mihalcea and Faruque 2004]. SenseLearner classified second in the
task, with 65.1% precision and 64.2% recall. This approach uses a small number of
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hand-tagged examples, and heavily relies on SemCor and the WordNet taxonomy. It
performs two main steps:

—First, a semantic model for each part of speech is learned from SemCor based
on cooccurrence features (memory-based learning is employed). Then, the model
makes a prediction for each instance in the test set. This method leads to 85.6%
coverage;

—Second, a semantic generalization step is applied with the aid of WordNet and
the use of syntactic dependencies: during a training phase, all the dependency
pairs in SemCor are acquired (e.g. (drinkv, watern)). Each pair is generalized with
the hypernyms of the nouns and verbs involved, thus creating generalized feature
vectors. During testing, for each dependency pair, and for all possible combinations
of senses, feature vectors are created. Memory-based learning is applied to each
vector, thus obtaining a positive or negative value for each of them. Finally, a sense
choice is made based on these values.

—IRST-DDD [Strapparava et al. 2004]. The approach basically compares the domain
of the context surrounding the target word w with the domains of each sense of
w (cf. Section 6.2) and uses a version of WordNet augmented with domain labels
(e.g., ECONOMY, GEOGRAPHY, etc.; cf. Section 2.2.1).

8.4. Semeval-2007

The fourth edition of Senseval, held in 2007, has been renamed Semeval-2007 [Agirre
et al. 2007b], given the presence of tasks of semantic analysis not necessarily related
to word sense disambiguation. Some of the tasks proposed for Semeval-2007 dealt
with the observations and conclusions drawn during the discussion and panels in the
Senseval-3 workshop. Among the 18 tasks organized, those related to WSD can be
classified as follows:

—explicit WSD tasks, that is, tasks requiring an explicit assignment of word senses to
target words. These include

—lexical sample and all-words coarse-grained WSD tasks (discussed below), aiming
at understanding the impact of sense granularity on WSD accuracy;

—a preposition disambiguation task [Litkowski and Hargraves 2007];

—the evaluation of WSD on Cross-Language Information Retrieval [Agirre et al.
2007a], which constitutes an important effort towards in vivo evaluation;

—the resolution of metonymies [Markert and Nissim 2007], that is, the substitution
of the attribute or feature of a thing for the thing itself (e.g., glass to express the
content of a glass, rather than the container itself).

—implicit WSD tasks, that is, tasks where the system output implies some kind of
implicit disambiguation. These include

—word sense induction and discrimination [Agirre and Soroa 2007], for a comparative
assessment of unsupervised systems among themselves and with supervised and
knowledge-based systems;

—a lexical substitution task [McCarthy and Navigli 2007], aiming at the objective
evaluation of both supervised and unsupervised systems, and applicable in the
future to the evaluation of knowledge resources.

The coarse-grained English lexical sample task [Pradhan et al. 2007] saw the partic-
ipation of 13 systems. The test set contained 4851 tagged instances of 100 words. The
best system attained an 88.70% accuracy, whereas the first sense baseline achieved
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Table IX. Performance of the Highest-Ranking Systems Participating in the
Coarse-Grained Lexical Sample and All-Words Tasks at Semeval (When two

figures are reported, they stand for precision/recall (see Section 7.1). U/S
stand for unsupervised and supervised, respectively.)

Coarse-grained Lexical sample Coarse-grained All words

Accuracy System U/S Accuracy System U/S

88.7 NUS-ML S 82.5 NUS-PT S
86.9 UBC-ALM S 81.6 NUS-ML S
86.4 I2R S .

.

.
.
.
.

.

.

.85.4 USP-IBM2 S
85.1 USP-IBM1 S 70.2 TKB-UO U

78.0 MFS BL S 78.9 MFS BL S

78%. In Table IX we report the best-performing systems. We briefly outline the best
three systems here:

—NUS-ML [Cai et al. 2007]. This approach is based on a supervised algorithm called
Latent Dirichlet Allocation (LDA), a probabilistic model which can be represented as
a three-level hierarchical Bayesian model [Blei et al. 2003]. Lexical, syntactic, and
topic features are employed to represent target instances.

—UBC-ALM [Agirre and Lopez de Lacalle 2007]. This system combines several k-
nearest neighbor classifiers (cf. Section 3.5), each adopting a distinct set of features:
local, topical, and latent features, the latter learned from a reduced space using sin-
gular value decomposition (cf. Section 4.1).

—I2R [Niu et al. 2007]. This system is based on the label propagation algorithm, where
label information of any vertex in a graph is propagated to nearby vertices through
weighted edges until convergence.

Concerning the all-words task, both a fine-grained [Pradhan et al. 2007] and a coarse-
grained [Navigli et al. 2007] disambiguation exercise were organized. In the former,
(465 tagged words), state-of-the-art performance of 59.1% [Tratz et al. 2007] and 58.7%
[Chan et al. 2007b] accuracy were obtained (compared to 51.4% first sense baseline).
The coarse-grained English all-words task (2269 sense-tagged words) saw the partici-
pation of 14 systems from 12 teams. The best participating system attained an 82.50%
accuracy. The SSI system (cf. Section 5.3.2), participating out of competition, reached
an accuracy of 83.21% (with the highest performance on a domain text, which penalized
most supervised systems). The first sense baseline achieved 78.89%. In Table IX we re-
port the best two supervised participating systems together with the best unsupervised
system (TKB-UO):

—NUS-PT [Chan et al. 2007b]. This system participated both in the coarse-grained and
fine-grained English all-words tasks. It is based on SVM, using traditional lexico-
syntactic features. Training examples were gathered from parallel corpora, SemCor
and DSO.

—NUS-ML [Cai et al. 2007]. This is the same system described above for lexical sample
WSD.

—TKB-UO [Anaya-Sánchez et al. 2007]. This system performs an iterative disambigua-
tion process consisting of two steps: a clustering of senses of the context words, and a
filtering step which identifies the clusters which best match the context and selects
the senses of previously uncovered words.

The interested reader can refer to Agirre et al. [2007b] for a description of the 18 tasks
and the systems participating in the Semeval-2007 competition. In the next section we
comment on the four competitions.
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8.5. Remarks on the Senseval/Semeval Competitions

Admittedly, it is very difficult to compare the performance of state-of-the-art systems
across the four evaluation campaigns for several reasons. First, different dictionar-
ies have been adopted (HECTOR in Senseval-1, WordNet 1.7 in Senseval-2, WordNet
1.7.1 in Senseval-3, WordNet 2.1 and coarse-grained inventories in Semeval-2007): the
adoption of WordNet caused a substantial drop in performance (from 78% to 64% ac-
curacy in the lexical sample task from Senseval-1 to Senseval-2). Second, it is hard
to extrapolate the contribution of single techniques in most systems, as they usually
combine different approaches. Third, supervised systems are trained on different cor-
pora, and knowledge-based systems exploit different resources. Finally, Semeval-2007
shifted the focus toward coarse-grained WSD. However, we want to comment on the
following points:

—the performance variations are quite consistent with the baseline changes across the
competitions: for the lexical sample task, there is a general decrease in performance
between Senseval-1 and -2 and a general increase between Senseval-2 and -3 for both
supervised and unsupervised systems; for the all-words task, with the exception of
SMUaw (which did not participate in Senseval-3), there is a general increase in
performance from Senseval-2 to Senseval-3; however, we note that for the lexical
sample task the best systems increase of +21 (Senseval-1), +16.6 (Senseval-2), +17.7
points (Senseval-3), over the first sense baseline, while for the fine-grained all-words
task, the difference changes from +12 (Senseval-2) to just +3 (Senseval-3), and +7.7
(Semeval-2007);

—performance in the lexical sample task seems to have reached a plateau around 73%
accuracy when a fine-grained lexicon such as WordNet was adopted: this is a clear
clue that supervised systems, specifically trained on a set of words, cannot exceed
that performance within this setting;

—performance in the fine-grained all-words task can be established between 65%
and 70% when WordNet is adopted, whereas better results, between 78% and 81%,
have been reported in the literature when coarse-grained senses are used (see, e.g.,
Kohomban and Lee [2005]; Navigli [2006c]); the latter results are also confirmed by
the state-of-the-art performance of 82–83% accuracy obtained in the Semeval-2007
coarse-grained all-words task; potentially, these figures might be even improved given
the fact that to date most supervised systems have not been retrained on a full-fledged
coarse-grained sense inventory;

—among supervised methods, memory-based learning and SVM approaches proved to
be among the best systems in several competitions: systems based on the former
ranked third in Senseval-1 lexical sample [Veenstra et al. 2000], second in both the
Senseval-2 lexical sample and all-words tasks [Mihalcea 2002b; Hoste et al. 2002],
first and second in Senseval-3 all-words [Decadt et al. 2004; Mihalcea and Faruque
2004], second in the Semeval-2007 lexical sample [Agirre and Lopez de Lacalle 2007];
SVM approaches to WSD also proved to perform best, when applied both in the lexical
sample [Grozea 2004; Strapparava et al. 2004] and all-words exercises [Chan et al.
2007b]; these supervised methods definitely proved superior to other approaches;

—the first sense baseline is a real challenge for all-words WSD systems: only few sys-
tems are able to exceed it; this fact does not recur in lexical sample WSD, as usually
more training data is available and the task is less likely to reflect the real distri-
bution of word meanings within texts (e.g., consider the extreme case of an equally
balanced frequency of the meanings of a word: the first sense baseline would per-
form with accuracy equal to the random baseline); the fact that most methods find it
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difficult to overcome the first sense baseline is an indicator that most of the efforts
seem to be of little use; in this respect, knowledge-based methods, and specifically
structural approaches, which achieve performance close or equal to the first sense
baseline, have the advantage of providing justifications for their sense choices in
terms of semantic graphs, patterns, lexical chains, etc; as a result, and in contrast to
the output of the baseline and most supervised systems, the output of these methods
can be exploited to (graphically) support humans in tasks such as the semantic an-
notation and validation of texts [Navigli 2006a, 2008], semiautomatic acquisition of
knowledge resources, lexicography, and so on;

—the organization of coarse-grained tasks at Semeval-2007 allowed for the assessment
of state-of-the-art systems on sense inventories with a lower granularity than Word-
Net; as a result, the performance obtained was much higher: 88.7% in the lexical
sample, and 82–83% accuracy in the all-words task; this is very good news for the
field of WSD, thus showing that the problem of word sense representation is a rel-
evant one to obtain performance in the 80%–90% accuracy range and, at the same
time, maintain meaningful distinctions between word senses;

—finally, the organization of other evaluation exercises, like those introduced in Section
8.4, can potentially open new research directions in the field of WSD, such as the objec-
tive assessment of unsupervised systems (also in comparison with their supervised
and knowledge-based alternatives), the development of frameworks for end-to-end
evaluation, etc.

9. APPLICATIONS

Unfortunately, to date explicit WSD has not yet demonstrated real benefits in human
language technology applications. Nevertheless, the lack of end-to-end applications is
a consequence of the current performance of WSD, and will not prevent more accurate
disambiguation systems (or even oracles, for theoretical assessments) to possibly se-
mantically enable NLP applications in the future. We note that a higher accuracy may
not only derive from innovative methods, but also from different settings for the dis-
ambiguation task (e.g., sense granularity, evaluation setting, disambiguation coverage,
etc.).

Here we summarize a number of real-world applications which might benefit from
WSD and on which experiments have been (and are being) conducted (see Ide and
Véronis [1998] and Resnik [2006] for a thorough account).

9.1. Information Retrieval (IR)

State-of-the-art search engines do not use explicit semantics to prune out documents
which are not relevant to a user query. An accurate disambiguation of the document
base, together with a possible disambiguation of the query words, would allow it to
eliminate documents containing the same words used with different meanings (thus
increasing precision) and to retrieve documents expressing the same meaning with
different wordings (thus increasing recall).

Most of the early work on the contribution of WSD to IR resulted in no performance
improvement (e.g. Salton [1968]; Salton and McGill [1983]; Krovetz and Croft [1992];
Voorhees [1993]). Krovetz and Croft [1992] and Sanderson [2000] showed that only a
small percentage of query words are not used in their most frequent (or predominant)
sense (cf. Section 7.2.2), indicating that WSD must be very precise on uncommon items,
rather than on frequent words. Sanderson [1994] concluded that, in the presence of
queries with a large number of words, WSD cannot benefit IR. He also pointed out that
very short queries can be potentially very ambiguous. The experiments were conducted
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with the aid of pseudowords [Schütze 1992; Yarowsky 1993], that is, artificial words
created by replacing in the test collection the occurrences of two or more words (e.g., the
occurrences of pizza and window are substituted with the pseudoword pizza/window).
As a result, lexical ambiguity is introduced and the IR performance can be assessed
at various levels of WSD accuracy. Sanderson [1994] indicated that improvements in
IR performance would be observed only if WSD could be performed with at least 90%
accuracy. However, as discussed in Schütze and Pedersen [1995], the general validity
of this result is debated, due to arguable experimental settings.

Clear, encouraging evidence of the usefulness of WSD in IR has come from Schütze
and Pedersen [1995] and Stokoe et al. [2003] (the latter provided a broad overview of
past research in this field). Assuming a WSD accuracy greater than 90%, Schütze and
Pedersen [1995] showed that the use of WSD in IR improves the precision by about
4.3% (from 29.9% to 34.2%). With lower WSD accuracy (62.1%), Stokoe et al. [2003]
showed that a small improvement (1.73% on average) can still be obtained.

9.2. Information Extraction (IE)

In specific domains it is interesting to distinguish between specific instances of concepts:
for example, in the medical domain we might be interested in identifying all kinds of
drugs across a text, whereas in bioinformatics we would like to solve the ambiguities
in naming genes and proteins. Tasks like named-entity recognition (NER), acronym
expansion (e.g., MP as member of parliament or military police), etc., can all be cast
as disambiguation problems, although this is still a relatively new area (e.g., Dill et al.
[2003]).

Jacquemin et al. [2002] presented a dictionary-based method which consists of the
application of disambiguation rules at the lexical, domain, and syntactic and semantic
level. Malin et al. [2005] proposed the application of a link analysis method based
on random walks to solve the ambiguity of named entities. Hassan et al. [2006] used a
link analysis algorithm in a semisupervised fashion to weigh entity extraction patterns
based on their impact on a set of instances. Finally, Ciaramita and Altun [2006] proposed
the use of a supersense tagger, which assigns a class selected from a restricted set of
WordNet synsets to words of interest. The approach, based on sequence labeling with
hidden Markov models, needs a training step.

Some tasks at Semeval-2007 more or less directly dealt with WSD for information ex-
traction. Specifically, the metonymy task [Markert and Nissim 2007] required systems
to associate the appropriate metonymy with target named entities. For instance, in the
sentence the BMW slowed down, BMW is a car company, but here we refer to a specific
car instance produced by BMW. Similarly, the Web People Search task [Artiles et al.
2007] required systems to disambiguate people names occurring in Web documents,
that is, to determine the occurrence of specific instances of people within texts.

9.3. Machine Translation (MT)

The automatic identification of the correct translation of a word in context, that is,
machine translation (MT), is a very difficult task. Word sense disambiguation has been
historically conceived as the main task to be solved in order to enable machine transla-
tion, based on the intuitive idea that the disambiguation of texts should help translation
systems choose better candidates. In fact, depending on the context, words can have
completely different translations. For instance, the English word line can be trans-
lated in Italian as linea, riga, verso, filo, corda, etc. Unfortunately, WSD has been much
harder than expected, as we know after years of comparative evaluations. As mentioned
in Section 1.2, the initial failure of WSD during the 1960s led to an acute crisis of the
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field of MT. Nowadays, there is contrasting evidence that WSD can benefit MT: for in-
stance, Carpuat and Wu [2005] claimed that WSD cannot be integrated into present
MT applications, while Dagan and Itai [1994] and Vickrey et al. [2005] show that the
proper use of WSD leads to an increase in the translation performance.

More recently, Carpuat and Wu [2007] and Chan et al. [2007a] showed that word
sense disambiguation can help improve machine translation. In these works, predefined
sense inventories were abandoned in favor of WSD models which allow it to select the
most likely translation phrase. However, these results leave the research field open to
hypotheses on the contribution of classical WSD to the success of machine translation.

9.4. Content Analysis

The analysis of the general content of a text in terms of its ideas, themes, etc., can
certainly benefit from the application of sense disambiguation. For instance, the classi-
fication of blogs has recently been gaining more and more interest within the Internet
community: as blogs grow at an exponential pace, we need a simple yet effective way
to classify them, determine their main topics, and identify relevant (possibly semantic)
connections between blogs and even between single blog posts. A second related area
of research is that of (semantic) social network analysis, which is becoming more and
more active with the recent evolutions of the Web.

Although some works have been recently presented on the semantic analysis of con-
tent (e.g., on semantic blog analysis with the aid of structural WSD [Berendt and Navigli
2006], on the disambiguation of entities in social networks [Aleman-Meza et al. 2006],
etc.), this is an open and stimulating research area.

9.5. Word Processing

Word processing is a relevant application of natural language processing, whose impor-
tance has been recognized for a long time [Church and Rau 1995]. Word sense disam-
biguation can aid in correcting the spelling of a word [Yarowsky 1994], for case change,
or to determine when diacritics should be inserted (e.g., in Italian for changing da (=
from) to dà (= gives), or Papa (= Pope) to papà (= dad), based on semantic evidence
in context about the correct spelling). Given the increasing interest in Arabic NLP,
WSD might play an increasingly relevant role in the determination and correction of
diacritics.

9.6. Lexicography

WSD and lexicography (i.e., the professional writing of dictionaries) can certainly ben-
efit from each other: WSD can help provide empirical sense groupings and statistically
significant indicators of context for new or existing senses. Moreover, WSD can help cre-
ate semantic networks out of machine-readable dictionaries [Richardson et al. 1998].
On the other side, a lexicographer can provide better sense inventories and sense-
annotated corpora which can benefit WSD (see, e.g., the HECTOR project [Atkins 1993]
and the Sketch Engine [Kilgarriff et al. 2004]).

9.7. The Semantic Web

Finally, the semantic Web vision [Berners-Lee et al. 2001] can potentially benefit from
most of the above-mentioned applications, as it inherently needs domain-oriented and
unrestricted sense disambiguation to deal with the semantics of (Web) documents,
and enable interoperability between systems, ontologies, and users. WSD has been
used in semantic Web-related research fields, like ontology learning, to build domain
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taxonomies [Navigli et al. 2003; Navigli and Velardi 2004; Cimiano 2006] and enrich
large-scale semantic networks [Navigli and Velardi 2005; Pennacchiotti and Pantel
2006; Snow et al. 2006].

10. OPEN PROBLEMS AND FUTURE DIRECTIONS

In this section we sum up the main open problems, partially discussed throughout the
survey, and outline some future directions for the field of WSD.

10.1. The Representation of Word Senses

The choice of how to represent word senses is a foundational problem of WSD that
we introduced in Section 2.1. On the one hand, an enumerative lexicon seems the
most viable approach for an objective assessment of WSD systems. On the other hand,
unsupervised algorithms can be more easily evaluated in vivo, that is, in end-to-end
applications. In this respect, tasks such as WSD evaluation in cross-lingual information
retrieval and lexical substitution held at Semeval-2007 shed some light on the real
necessity for discrete sense inventories.

As a consequence of the widespread adoption of the enumerative approach, the prob-
lem of how to divide senses immediately arises [Ide and Véronis 1998]. Several re-
searchers (e.g., Wilks and Slator [1989], Fellbaum et al. [2001], Palmer et al. [2004],
Ide and Wilks [2006]) have remarked that the sense divisions in most dictionaries are
often too fine-grained for most NLP applications. As discussed throughout this survey,
this especially holds for WordNet, which is widely adopted within the NLP community.

One of the objectives of establishing an adequate level of granularity is to exceed
the ceiling of ∼70% accuracy of state-of-the-art fine-grained disambiguation systems
[Edmonds and Kilgarriff 2002]. While this is still an open problem and in spite of
skeptical positions like Kilgarriff’s [1997], there are several past and ongoing efforts
toward the identification of different levels of granularity for specific application needs.
Among these we cite works on sense clustering [Dolan 1994; Agirre and Lopez de Lacalle
2003; Chklovski and Mihalcea 2003; McCarthy 2006; Ide 2006; Navigli 2006c; Palmer
et al. 2007], and word sense induction from text (see Section 4). An interesting feature
of algorithms which are able to rank the strength of the relationship between senses
of the same word is that the granularity of the sense inventory can be tuned for the
specific application at hand (see, e.g., McCarthy [2006]).

The tasks of coarse-grained lexical sample and all-words WSD organized at Semeval-
2007 also aimed at attacking the granularity problem. The two tasks were based on
the works by Hovy et al. [2006] and Navigli [2006c], respectively. Hovy et al. [2006]—in
the context of the OntoNotes project—created coarse senses for the Omega Ontology
[Philpot et al. 2005], starting with the WordNet sense inventory, and iteratively par-
titioning senses until an interannotator agreement of 90% was reached in the sense
annotation task (see also Duffield et al. [2007]). In contrast, Navigli [2006c] created
WordNet sense clusters via an automatic mapping to sense entries in the Oxford Dictio-
nary of English, which encodes a hierarchy of word senses, thus distinguishing between
homonyms, polysemous senses, and, possibly, microdistinctions.

A clear position on the granularity issue was taken by Ide and Wilks [2006], who sug-
gested that the level of sense distinctions required by applications corresponds roughly
to that of homonyms, with the exception of some etimologically related senses (i.e.,
polysemous distinctions) which are actually perceived as homonyms by humans (e.g.,
paper as material made of cellulose, and paper as a newspaper).

A further problem which concerns the representation of senses is their ever-changing
nature: the adoption of an enumerative lexicon leads inevitably to the continuous
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discovery of missing senses in the sense inventory. A sense might be missing due to
a new usage, a new word, a usage in a specialized context that the lexicographers did
not want to cover, or simply an omission.

Unsupervised systems such as those described in Section 4 can be employed in the
detection of emerging senses from a corpus of documents. Mapping a sense inventory
to a different dictionary can also help identify missing senses (e.g., Navigli [2006c]).
Sense discovery techniques can help lexicographers in the difficult task of covering the
full range of meanings expressed by a word. As a result, WSD approaches can rely on
wider-coverage sense inventories.

10.2. The Knowledge Acquisition Bottleneck

Virtually all WSD methods heavily rely on knowledge, either corpora or dictionaries.
Therefore, the so-called knowledge acquisition bottleneck is undoubtedly one of the
most important issues in WSD. We already discussed in previous sections a number
of techniques for alleviating this problem: bootstrapping and active learning (Section
3.8.1), the automatic acquisition of training corpora (Section 3.8.2), the use of cross-
lingual information (Section 6.3), etc. We discuss here a further trend aiming at re-
lieving the knowledge acquisition bottleneck: the automatic enrichment of knowledge
resources, specifically of machine-readable dictionaries and computational lexicons.

Knowledge enrichment dates back to pioneering works by Amsler [1980] and
Litkowski [1978] on the structure of dictionary definitions. Methods for extracting in-
formation from definitions were developed (e.g., Chodorow et al. [1985]; Rigau et al.
[1998]). The intuitive approach to extracting taxonomic information is based on three
steps: (i) definition parsing to obtain the genus (i.e., the concept hypernym); (ii) genus
disambiguation; (iii) taxonomy construction. However, idiosyncrasies and inconsisten-
cies have been identified that make the task harder than it appears [Ide and Véronis
1993]. In recent years dating from the seminal article by Hearst [1992], a large body
of work on the enrichment of knowledge resources has focused on the use of corpora
for extracting collocations and relation triples of different kinds [Etzioni et al. 2004;
Chklovski and Pantel 2004; Ravichandran and Hovy 2002; Girju et al. 2003], acquiring
lists of concepts [Lin and Pantel 2002], inducing topically related words from the Web
[Agirre et al. 2001], etc.

In order to enrich existing resources such as WordNet with new semantic relations,
collocations and relation triples need to be disambiguated (ontologization of relations,
e.g., transforming (carn, drivern) into (car1

n, driver1
n)). To this end, Pantel [2005] pro-

posed a method for the creation of ontological cooccurrence vectors. Navigli [2005] and
Pennacchiotti and Pantel [2006] presented methods for disambiguating relation triples.
Harabagiu et al. [1999] (and subsequent works) also aimed at augmenting WordNet
with morphological and semantic information, based on a set of structural heuristics.
Supervised machine learning approaches have also been used for the disambiguation
of relation triples [Girju et al. 2003], although they usually require a strong endeavor
in the annotation of training sets.

Finally, we cite two manual efforts to relieve the knowledge acquisition bottleneck.
One is a collaborative platform for knowledge acquisition, namely, the Open Mind Word
Expert [Chklovski and Mihalcea 2002], where human volunteers on the Web are asked
to sense annotate words in context. The approach relies on the agreement between (pos-
sibly unskilled) Web annotators. A wide agreement is exploited to determine the most
likely sense assignment for a target word instance. A second effort, presently ongoing
at Princeton, concerns the enrichment of WordNet with semantically annotated glosses
and the semiautomatic addition of semantic relations based on concept evocation (e.g.,
egg-bacon, yell-voice, etc.) in the WordNetPlus project [Boyd-Graber et al. 2006].
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We strongly believe that recent, large-scale efforts in knowledge acquisition and en-
richment will enable wide coverage, and more accurate WSD systems (see, e.g., Cuadros
and Rigau [2006] and Navigli and Lapata [2007]).

10.3. Domain-Oriented WSD

The successful use of WSD in applications is one of the most important objectives of this
research field. Applications are often focused on a specific domain of interest. However,
little attention has been paid to domain-oriented disambiguation, that is, WSD which
focuses on a specific branch of knowledge. The main hypothesis is that the knowledge of
a domain of interest can help disambiguate words in a domain-specific text. Works on
the identification of the predominant sense (cf. Section 6.1), as well as domain-driven
disambiguation (cf. Section 6.2) and domain tuning, that is, the automated selection of
senses which are most appropriate to a target domain [Basili et al. 1997; Cucchiarelli
and Velardi 1998; Buitelaar and Sacaleanu 2001], go in this direction.

The importance of domain-based WSD is determined by the increasing demand for
domain-oriented applications, for example, in the domains of biomedicine, computer
science, tourism, and so on. Also, the semantic Web vision requires the ability to deal
with domain-specific ontologies (cf. Section 9). Therefore, the ability to work in specific
fields of knowledge will be more and more critical for the success of semantic-aware
domain-oriented applications.

11. CONCLUSIONS

In this article we surveyed the field of word sense disambiguation. WSD is a hard task
as it deals with the full complexities of language and aims at identifying a semantic
structure from apparently unstructured sources of text. Research in the field of WSD
has been conducted since the early 1950s. A broad account of the history and literature
in the field can be found in Ide and Véronis [1998] and Agirre and Edmonds [2006] (see
also Hirst [1987] for a basic introduction to the issues involved in WSD and Manning
and Schütze [1999] and Jurafsky and Martin [2000] for a review of WSD approaches).

The hardness of WSD strictly depends on the granularity of the sense distinctions
taken into account. Yarowsky [1995] and Stevenson and Wilks [2001] showed that an
accuracy above or around 95% can be attained in the disambiguation of homonyms. The
problem gets much harder when it comes to a more general notion of polysemy, where
sense granularity makes the difference both in the performance of disambiguation
systems and in the agreement between human annotators.

Supervised methods undoubtedly perform better than other approaches. However, re-
lying on the availability of large training corpora for different domains, languages, and
tasks is not a realistic assumption. Ng [1997] estimated that, to obtain a high-accuracy
wide-coverage disambiguation system, we probably need a corpus of about 3.2 million
sense-tagged words. The human effort for constructing such a training corpus can be
estimated to be 27 person-years, at a throughput of one word per minute [Edmonds
2000]. It might well be that, with such a resource at hand, supervised systems would
perform with a significantly higher accuracy than the current state of the art. However,
this is just a hypothesis.

On the other hand, knowledge-based approaches seem to be most promising in
the short-medium term for several reasons: first, it has been shown that the more
(especially structured) knowledge is available, the better the performance [Cuadros
and Rigau 2006; Navigli and Lapata 2007]; second, the resources they rely on are
increasingly enriched (for instance, consider the evolution over time of WordNet
and other wordnets, and the future release of WordNetPlus; cf. Section 10.2); third,
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applications in the semantic Web need knowledge-rich methods which can exploit the
potential of domain ontologies and enable semantic interoperability between users,
enterprises, and systems.

We are not arguing against supervised approaches in general. Consider, for exam-
ple, the importance they have for part-of-speech tagging, where supervision is critical
to achieve very high performance. It is interesting to note that, while part-of-speech
tagging requires words to be labeled with a fixed set of predefined tags, in WSD sense
tags vary for each word. As a result, WSD supervised systems require vast amounts
of annotated data which are not usually available for all the words of interest (thus
leading to the phenomenon of data sparseness). This is why in all-words settings, su-
pervised approaches are often integrated with first sense or knowledge-based back-off
strategies, which are used in lack of training instances. However, it must be noted that
virtually all systems recur to these strategies, including knowledge-based ones, as often
the knowledge encoded in lexical resources is not sufficient to constrain the senses of
all words in context.

There is a general agreement that WSD needs to show its relevance in vivo, that is, in
applications such as information retrieval or machine translation. On the one hand, the
community must not discontinue in vitro (i.e., stand-alone) evaluations of WSD, as there
are still unclear points to be settled. On the other hand, full-fledged applications should
be built including WSD either as an integrated or a pluggable component. Some of the
tasks in the Semeval competition went in this direction. Also, theoretical experiments
could be performed to determine more precisely which minimum WSD performance
(90%, 95%, 100% accuracy?) is needed to enable which application.

Although some contrasting works have been published on the topic, no conclusive
result has been reported in favor or against the use of sense inventories and their
granularity in applications. Unsupervised approaches might prove successful, showing
that we do not need to rely on predefined lists of senses. However, it might be as well
that the use of sense inventories with a certain granularity (not too fine-grained nor
trivially coarse) allow knowledge-rich and supervised methods to provide a decisive
contribution.

The usefulness of all-words disambiguation in an applicative perspective is quite
evident. Nonetheless, we think that disambiguating all content words sometimes proves
to be an academic exercise. For instance, almost 8% of the Senseval-3 all-words test set
is composed of word tokens lemmatized as bev. We doubt that in Information Retrieval
applications such a common verb can have a strong influence in the success of user
queries. Moreover, sentences such as Phil was like that, thanks anyhow or I’m just
numb (again from the Senseval-3 all-words test set) do not convey enough meaning for
being disambiguated at a fine-grained level even by human annotators (more context
does not necessarily help). Including these sentences in the in vitro assessment of
WSD systems needlessly lowers their performance and does not provide additional
insights into the benefits for end-to-end applications. We note that several systems, both
supervised or knowledge-based, can perform with high precision (sometimes beyond
90%) and low recall, even when fine-grained sense distinctions are adopted. This setting
might also prove useful to foster a WSD vision of the semantic Web: the availability of
systems able to disambiguate textual resources on the Web would certainly enable some
degree of semantic interoperability. Again, it might not be necessary to disambiguate
all the words in a Web page, but rather a substantial subset of them, that is, those
conveying the real content of the resource. Words might be disambiguated with respect
to computational lexicons and domain ontologies, depending on the meaning they can
convey. We believe that performance tuning (“disambiguate less, disambiguate better”)
should be further investigated in the future in applicative settings and in comparative
tasks during the evaluation campaigns to come.
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VÉRONIS, J. AND IDE, N. 1990. Word sense disambiguation with very large neural networks extracted from
machine readable dictionaries. In Proceedings of the 13th International Conference on Computational
Linguistics (COLING, Helsinki, Finland). 389–394.

VICKREY, D., BIEWALD, L., TEYSSIER, M., AND KOLLER, D. 2005. Word sense disambiguation for machine trans-
lation. In Proceedings of the 2005 Conference on Empirical Methods in Natural Language Processing
(EMNLP, Vancouver, B.C., Canada). 771–778.

VOORHEES, E. M. 1993. Using wordnet to disambiguate word senses for text retrieval. In Proceedings of
the 16th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (Pittsburgh, PA). 171–180.

VOSSEN, P., Ed. 1998. EuroWordNet: A Multilingual Database with Lexical Semantic Networks. Kluwer,
Dordrecht, The Netherlands.

WEAVER, W. 1949. Translation. In Machine Translation of Languages: Fourteen Essays (written in 1949,
published in 1955), W. N. Locke and A. D. Booth, Eds. Technology Press of MIT, Cambridge, MA, and
John Wiley & Sons, New York, NY, 15–23.

WIDDOWS, D. AND DOROW, B. 2002. A graph model for unsupervised lexical acquisition. In Proceedings of the
19th International Conference on Computational Linguistics (COLING, Taipei, Taiwan). 1–7.

WILKS, Y. 1975. Preference semantics. In Formal Semantics of Natural Language, E. L. Keenan, Ed.
Cambridge University Press, Cambridge, U.K., 329–348.

ACM Computing Surveys, Vol. 41, No. 2, Article 10, Publication date: February 2009.



Word Sense Disambiguation: A Survey 10:69

WILKS, Y. AND SLATOR, B. 1989. Towards semantic structures from dictionary entries. In Proceedings of the
2nd Annual Rocky Mountain Conference on AI (Boulder, CO). 85–96.

WILKS, Y., SLATOR, B., AND GUTHRIE, L., Eds. 1996. Electric Words: Dictionaries, Computers and Meanings.
MIT Press, Cambridge, MA, USA.

WILKS, Y. A., FASS, D. C., GUO, C.-M., MCDONALD, J. E., PLATE, T., AND BRIAN, B. M. 1990. Providing machine-
tractable dictionary tools. Mach. Transl. 5, 99–154.

YAROWSKY, D. 1992. Word-sense disambiguation using statistical models of Roget’s categories trained
on large corpora. In Proceedings of the 14th International Conference on Computational Linguistics
(COLING, Nantes, France). 454–460.

YAROWSKY, D. 1993. One sense per collocation. In Proceedings of the ARPA Workshop on Human Language
Technology (Princeton, NJ). 266–271.

YAROWSKY, D. 1994. Decision lists for lexical ambiguity resolution: Application to accent restoration in
Spanish and French. In Proceedings of the 32nd Annual Meeting of the Association for Computational
Linguistics (Las Cruces, NM). 88–95.

YAROWSKY, D. 1995. Unsupervised word sense disambiguation rivaling supervised methods. In Proceedings
of the 33rd Annual Meeting of the Association for Computational Linguistics (Cambridge, MA). 189–196.

YAROWSKY, D. 2000. Hierarchical decision lists for word sense disambiguation. Comput. Human. 34, 1-2,
179–186.

YAROWSKY, D. AND FLORIAN, R. 2002. Evaluating sense disambiguation across diverse parameter spaces. J.
Nat. Lang. Eng. 9, 4, 293–310.

Received December 2006; revised January 2008; accepted March 2008

ACM Computing Surveys, Vol. 41, No. 2, Article 10, Publication date: February 2009.


