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Schein in this course 

• Referat (next slides) 

• Hausarbeit 

– 6 pages (an essay/prose version of the material in 
the slides), due 3 weeks after the Referat 

• Please send me an email to register for the course (I 
am not registering everyone who filled out the 
questionnaire, as some have decided not to attend) 

– Include your Matrikel 

 



Referat - I 

• Last time we discussed topics: literature review vs. 
project 

• We should have about 6 literature review topics and 
4-6 projects  
– Projects will hold a Referat which is a mix of literature 

review/motivation and own work 

 

 

 

 



Referat - II 

• Literature Review topics 

– Dictionary-based Word Sense Disambiguation 

– Supervised Word Sense Disambiguation 

– Unsupervised Word Sense Disambiguation 

– Semi-supervised Word Sense Disambiguation 

– Detecting the most common word sense in a new 
domain 

– Wikification 

 

 

 



• Project 1: Supervised WSD 

– Download a supervised training corpus 

– Pick a small subset of words to work on (probably 
common nouns or verbs) 

– Hold out some correct answers 

– Use a classifier to predict the sense given the 
context 



• Project 2: Cross-Lingual Lexical Substitution 

– Cross-lingual lexical substitution is a translation 
task where you given a full source sentence, a 
particular (ambiguous) word, and you should pick 
the correct translation 

– Choose a language pair (probably EN-DE or DE-EN)  

– Download a word aligned corpus from OPUS 

– Pick some ambiguous source words to work on 
(probably common nouns) 

– Use a classifier to predict the translation given the 
context 

 



• Project 3: Predicting case given a sequence of 
German lemmas 

– Given a German text, run RFTagger (Schmid and 
Laws) to obtain rich part-of-speech tags 

– Run TreeTagger to obtain lemmas 

– Pick some lemmas which frequently occur in 
various grammatical cases 

– Build a classifier to predict the correct case, given 
the sequence of German lemmas as context 

– (see also my EACL 2012 paper) 



• Project 4: Wikification of ambiguous entities 

– Find several disambiguation pages on Wikipedia which 
disambiguate common nouns, e.g. 
http://en.wikipedia.org/wiki/Cabinet 

– Download texts from the web containing these nouns 

– Annotate the correct disambiguation (i.e., correct 
Wikipedia page, e.g. 

    http://en.wikipedia.org/wiki/Cabinet_(furniture) or (government) 

– Build a classifier to predict the correct disambiguation 
• You can use the unambiguous Wikipedia pages themselves as your 

only training data, or as additional training data if you annotate 
enough text 

 

http://en.wikipedia.org/wiki/Cabinet_(furniture)


Referat 

• Tentatively (MAY CHANGE!): 
• 25 minutes 

• Start with what the problem is, and why it is interesting to solve it (motivation!) 

• It is often useful to present an example and refer to it several times 

• Then go into the details 

• If appropriate for your topic, do an analysis 

• Don't forget to address the disadvantages of the approach as well as the advantages (be aware that 
advantages tend to be what the original authors focused on) 

• List references and recommend further reading 

• Have a conclusion slide! 



References 

• Please use a standard bibliographic format for your references 

• In the Hausarbeit, use *inline* citations 

• If you use graphics (or quotes) from a research paper, MAKE SURE THESE ARE 
CITED ON THE *SAME SLIDE* IN YOUR PRESENTATION! 
• These should be cited in the Hausarbeit in the caption of the graphic 

• Web pages should also use a standard bibliographic format, particularly 
including the date when they were downloaded 

• This semester I am not allowing Wikipedia as a primary source 

• After looking into it, I no longer believe that Wikipedia is reliable, for most articles 
there is simply not enough review (mistakes, PR agencies trying to sell particular 
ideas anonymously, etc.) 



• Back to SMT... 

• Last time, we discussed Model 1 and 
Expectation Maximization 

• Today we will discuss getting useful 
alignments for translation and a translation 
model 



Slide from Koehn 2008 



Slide from Koehn 2009 



Slide from Koehn 2009 



HMM Model 

• Model 4 requires local search (making small 
changes to an initial alignment and rescoring) 

• Another popular model is the HMM model, 
which is similar to Model 2 except that it uses 
relative alignment positions (like Model 4) 

• Popular because it supports inference via the 
forward-backward algorithm 



Overcoming 1-to-N 

• We'll now discuss overcoming the poor 
assumption behind alignment functions 



Slide from Koehn 2009 
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IBM Models: 1-to-N Assumption 

• 1-to-N assumption 

• Multi-word “cepts” (words in one language translated as a unit) only allowed 
on target side. Source side limited to single word “cepts”. 

• Forced to create M-to-N alignments using heuristics 



Slide from Koehn 2008 



Slide from Koehn 2009 



Slide from Koehn 2009 



Discussion 

• Most state of the art SMT systems are built as I presented 
• Use IBM Models to generate both: 

– one-to-many alignment 
– many-to-one alignment 

• Combine these two alignments using symmetrization heuristic 
– output is a many-to-many alignment  
– used for building decoder 

• Moses toolkit for implementation: www.statmt.org 
– Uses Och and Ney GIZA++ tool for Model 1, HMM, Model 4 
 

• However, there is newer work on alignment that is interesting! 

http://www.statmt.org/


Where we have been 

• We defined the overall problem and talked 
about evaluation 

• We have now covered word alignment 

– IBM Model 1, true Expectation Maximization 

– Briefly mentioned: IBM Model 4, approximate 
Expectation Maximization 

– Symmetrization Heuristics (such as Grow) 

• Applied to two Viterbi alignments (typically from Model 
4) 

• Results in final word alignment 



Where we are going 

• We will define a high performance translation 
model 

• We will show how to solve the search problem 
for this model (= decoding) 



Outline 

• Phrase-based translation 

– Model 

– Estimating parameters  

• Decoding 



• We could use IBM Model 4 in the direction 
p(f|e), together with a language model, p(e), 
to translate 

 

 

argmax  P( e | f )  =   argmax  P( f | e )  P( e )  

     e                      e 

 
 

 



• However, decoding using Model 4 doesn’t 
work well in practice 

– One strong reason is the bad 1-to-N assumption 

– Another problem would be defining the search 
algorithm 

• If we add additional operations to allow the English 
words to vary, this will be very expensive 

– Despite these problems, Model 4 decoding was 
briefly state of the art 

• We will now define a better model… 
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Language Model 

• Often a trigram language model is used for p(e) 
– P(the man went home) = p(the | START) p(man | 

START the) p(went | the man) p(home | man went) 

• Language models work well for comparing the 
grammaticality of strings of the same length 
– However, when comparing short strings with long 

strings they favor short strings 
– For this reason, an important component of the 

language model is the length bonus 
• This is a constant > 1 multiplied for each English word in the 

hypothesis 
• It makes longer strings competitive with shorter strings 



Modified from Koehn 2008 
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Slide from Koehn 2008 

z^n 


