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Logistic Regression (1-layer Neural Networks)

◮ f (x) = σ(wT · x)

◮ σ(z) = 1
(1+exp(−z)) : activation function (non linearity)

◮ w(∈ Rd ) : weight

X1 X2 X3 X4

Y

w1 w2 w3 w4
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2-layer Neural Networks

x1 x2 x3 x4

h1 h2 h3

y

xi

wij

hj

wj

w11 w12

w1 w2 w3

f (x) = σ(
∑

j wj · hj) = σ(
∑

j wj · σ(
∑

i wijxi ))

Hidden units hj ’s can be viewed as new ”features” from
combining xi ’s

Called Multilayer Perceptron (MLP), but more like multilayer logistic
regression

(p.12)
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Expressive Power of Non-linearity
I A deeper architecture is more expressive than a shallow

one given same number of nodes [Bishop, 1995]
I 1-layer nets only model linear hyperplanes
I 2-layer nets can model any continuous function (given

sufficient nodes)
I >3-layer nets can do so with fewer nodes

(p.13)
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Gradient Descent for Logistic Regression

I Assume Squared-Error∗

Loss(w) = 1
2

∑
m(σ(wT x (m))− y (m))2

I Gradient:
∇wLoss =

∑
m

[
σ(wT x (m))− y (m)

]
σ′(wT x (m))x (m)

I Define input into non-linearity in(m) = wT x (m)

I General form of gradient:
∑

m Error (m) ∗ σ′(in(m)) ∗ x (m)

I Derivative of sigmoid σ′(z) = σ(z)(1− σ(z))

I Gradient Descent Algorithm:

1. Initialize w randomly
2. Update until convergence: w ← w − γ(∇wLoss)

I Stochastic gradient descent (SGD) algorithm:

1. Initialize w randomly
2. Update until convergence:

w ← w − γ(Error (m) ∗ σ′(in(m)) ∗ x (m))

*An alternative is Cross-Entropy loss:∑
m y (m) log(σ(wT x (m))) + (1 − y (m)) log(1 − σ(wT x (m)))

(p.9)
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Stochastic Gradient Descent (SGD)

I Gradient Descent Algorithm:

1. Initialize w randomly
2. Update until convergence: w ← w − γ(∇wLoss)

I Stochastic gradient descent (SGD) algorithm:

1. Initialize w randomly
2. Update until convergence:

w ← w − γ( 1
|B|
∑

m∈B Error (m) ∗ σ′(in(m)) ∗ x (m))

where minibatch B ranges from e.g. 1-100 samples

I Learning rate γ:
I For convergence, should decrease with each iteration t

through samples
I e.g. γt = 1

λ∗t or γt = γ0

1+γ0∗λ∗t

(p.10)
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SGD Pictorial View

I Loss objective contour plot:
1
2

∑
m(σ(wT x (m))− y (m))2 + ||w ||

I Gradient descent goes in steepest descent direction
I SGD is noisy descent (but faster per iteration)

(p.11)
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Training Neural Nets: Back-propagation

x1 x2 x3 x4

h1 h2 h3

y

xi

wij

hj

wj

Predict f (x (m))

Adjust weights

w11 w12

w1 w2 w3

1. For each sample, compute

f (x (m)) = σ(
∑

j wj · σ(
∑

i wijx
(m)
i ))

2. If f (x (m)) 6= y (m), back-propagate error and adjust
weights {wij ,wj}.

(p.14)
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Derivatives of the weights
Assume two outputs (y1, y2) per input x ,
and loss per sample: Loss =

∑
k

1
2 [σ(ink)− yk ]2

x1 x2 x3 x4

h1 h2 h3

y1 y2

xi

wij

hj

wjk

yk

∂Loss
∂wjk

= ∂Loss
∂ink

∂ink
∂wjk

= δk
∂(

∑
j wjkhj )

∂wjk
= δkhj

∂Loss
∂wij

= ∂Loss
∂inj

∂inj
∂wij

= δj
∂(

∑
j wijxi )

∂wij
= δjxi

δk = ∂
∂ink

(∑
k

1
2 [σ(ink)− yk ]2

)
= [σ(ink)− yk ]σ′(ink)

δj =
∑

k
∂Loss
∂ink

∂ink
∂inj

=
∑

k δk · ∂
∂inj

(∑
j wjkσ(inj)

)
= [
∑

k δkwjk ]σ′(inj)

(p.15)
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Training Neural Nets: Back-propagation
All updates involve some scaled error from output ∗ input
feature:

I ∂Loss
∂wjk

= δkhj where δk = [σ(ink)− yk ]σ′(ink)

I ∂Loss
∂wij

= δjxi where δj = [
∑

k δkwjk ]σ′(inj)

First compute δk from final layer, then δj for previous layer
and iterate.

x1 x2 x3 x4

h1 h2 h3

y1 y2

xi

wij

hj

wjk

yk

δj=h3 = [δk=y1w31 + δk=y2w32]σ′(inh3)

δk=y1 δk=y2

∂Loss
∂wij

w31 w32

(p.16)



Recurrent Neural Networks (Today’s Lecture)

◮ Recurrent Neural Networks (RNN): a recurrent Layer is defined.

◮ We want to treat RNN like feed-forward NN!

◮ To unfold the recursion.
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Language Modeling Task

◮ Language Modeling Task

◮ Given a sequence of words (sentences),
◮ Obtain PLM : language model
◮ Notation: xt : word in a sentence position t

◮ language model: probability distribution over sequences of words.

◮ PLM(xt) = P(xt |xt−1) (1-gram language model)
◮ PLM(xt) = P(xt |xt−1, xt−2) (2-gram language model)
◮ PLM(xt) = P(xt |xt−1, xt−2, xt−3) (3-gram language model)

◮ Used in machine translation, speech recognition, part-of-speech
tagging, information retrieval, ...



Language Models: Sentence probabilities

There are way too many histories once you’re 
into a sentence a few words! Exponentially many.
37

p(x1, x2, . . . , xT ) =
TY

t=1

p(xt|x1, . . . , xt�1)

…The crude force science

[Chain rule]



Traditional Fix: Markov Assumption

2016-08-0738

An nth order Markov assumption assumes each 
word depends only on a short linear history 

p(x1, x2, . . . , xT ) =
TY

t=1

p(xt|x1, . . . , xt�1)

⇡
TY

t=1

p(xt|xt�n, . . . , xt�1)



Problems of Traditional Markov 
Model Assumptions (1): Sparsity
Issue: Very small window gives bad prediction; 
statistics for even a modest window are sparse

Example:
P(w0|w−3, w−2, w−1)   |V| = 100,000 à 1015 contexts

The traditional answer is to use various backoff
and smoothing techniques, but no good solution
39

Most have not been seen



Problems of Traditional Markov 
Model Assumptions (2): Context
Issue: Dependency beyond the window is ignored

Example:

the same stump which had impaled the car of 
many a guest in the past thirty years and which he 
refused to have removed

44
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Neural Language Models

The neural approach [Bengio, Ducharme, 
Vincent & Jauvin JMLR 2003] represents 
words as dense distributed vectors so 
there can be sharing of statistical 
weight between similar words

Doing just this solves the sparseness 
problem of conventional n-gram models



Neural (Probabilistic) Language Model 
[Bengio, Ducharme, Vincent & Jauvin JMLR 2003]

41



Neural (Probabilistic) Language Model 
[Bengio, Ducharme, Vincent & Jauvin JMLR 2003]

42



Neural (Probabilistic) Language Model 
[Bengio, Ducharme, Vincent & Jauvin JMLR 2003]

43
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A Non-Markovian Language Model

Can we directly model the true conditional probability?

Can we build a neural language model for this?

1. Feature extraction:

2. Prediction:

How can f take a variable-length input?

45

ht = f(x1, x2, . . . , xt)

p(xt+1|x1, . . . , xt�1) = g(ht)

p(x1, x2, . . . , xT ) =
TY

t=1

p(xt|x1, . . . , xt�1)



A Non-Markovian Language Model

Can we directly model the true conditional probability?

Recursive construction of f

1. Initialization

2. Recursion

We call        a hidden state or memory

summarizes the history

2016-08-07

46

h0 = 0
h

f
ht

ht

p(x1, x2, . . . , xT ) =
TY

t=1

p(xt|x1, . . . , xt�1)

ht = f(xt, ht�1)

xt
(x1, . . . , xt)



A Non-Markovian Language Model

2016-08-0747

Example:  

(1) Initialization: 

(2) Recursion with Prediction:

(3) Combination:

p(the, cat, is, eating)

Read, Update and Predict

h0 = 0

h1 = f(h0, hbosi) ! p(the) = g(h1)

h2 = f(h1, cat) ! p(cat|the) = g(h2)

h3 = f(h2, is) ! p(is|the, cat) = g(h3)

h4 = f(h3, eating) ! p(eating|the, cat, is) = g(h4)

p(the, cat, is, eating) = g(h1)g(h2)g(h3)g(h4)



A Recurrent Neural Network Language 
Model solves the second problem!

48

Example: p(the, cat, is, eating)

Read, Update and Predict



Inputs
i. Current word 
ii. Previous state

Parameters
i. Input weight matrix
ii. Transition weight matrix
iii. Bias vector

Building a Recurrent Language Model

49

Transition Function

ht�1 2 Rd

W 2 R|V |⇥d

U 2 Rd⇥d

b 2 Rd

ht = f(ht�1, xt)

xt 2 {1, 2, . . . , |V |}



Naïve Transition Function

Building a Recurrent Language Model

50

Transition Function

Trainable word vector

Element-wise nonlinear 
transformation Linear transformation of

previous state

ht = f(ht�1, xt)

f(ht�1, xt) = tanh(W [xt] + Uht�1 + b)



Inputs
i. Current state

Parameters
i. Softmax matrix
ii. Bias vector

Building a Recurrent Language Model

51

ht 2 Rd

R 2 R|V |⇥d

c 2 R|V |

Prediction Function p(xt+1 = w|xt) = gw(ht)



p(xt+1 = w|xt) = gw(ht) =
exp(R [w]

>
ht + cw)

P|V |
i=1 exp(R [i]

>
ht + ci)

Building a Recurrent Language Model

52

Exponentiate

Compatibility between 
trainable word vector 
and hidden state

Normalize

Prediction Function p(xt+1 = w|xt) = gw(ht)



Training a recurrent language model

Having determined the model form, we:

1. Initialize all parameters of the models, including the 
word representations with small random numbers

2. Define a loss function: how badly we predict actual 
next words [log loss or cross-entropy loss]

3. Repeatedly attempt to predict each next word

4. Backpropagate our loss to update all parameters

5. Just doing this learns good word representations 
and good prediction functions – it’s almost magic53
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2016-08-07

58

• Log-probability of one training sentence

• Training set

• Log-likelihood Functional

log p(x

n
1 , x

n
2 , . . . , x

n
Tn) =

TnX

t=1

log p(x

n
t |xn

1 , . . . , x
n
t�1)

D =
�
X1, X2, . . . , XN

 

L(✓, D) =

1

N

NX

n=1

TnX

t=1

log p(x

n
t |xn

1 , . . . , x
n
t�1)

Minimize             !! �L(✓, D)

Training a Recurrent Language Model



2016-08-0759

• Move slowly in the steepest descent direction

• Computational cost of a single update: 
• Not suitable for a large corpus

✓  ✓ � ⌘rL(✓, D)

Gradient Descent

O(N)



2016-08-0760

• Estimate the steepest direction with a minibatch

rL(✓, D) ⇡ rL(✓,
�
X1, . . . , Xn

 
)

• Until the convergence (w.r.t. a validation set)

|L(✓, Dval)� L(✓ � ⌘L(✓, D), Dval)|  ✏

Stochastic Gradient Descent
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• Not trivial to build a minibatch

2016-08-0761

Sentence 1
Sentence 2

Sentence 3
Sentence 4

1. Padding and Masking: suitable for GPU’s, but wasteful
• Wasted computation

Sentence 1
Sentence 2

Sentence 3
Sentence 4

0’s
0’s

0’s

Stochastic Gradient Descent



2016-08-0762

1. Padding and Masking: suitable for GPU’s, but wasteful
• Wasted computation

Sentence 1
Sentence 2

Sentence 3
Sentence 4

0’s
0’s

0’s

2. Smarter Padding and Masking: minimize the waste
• Ensure that the length differences are minimal.
• Sort the sentences and sequentially build a minibatch

Sentence 1
Sentence 2

Sentence 4
Sentence 3

0’s
0’s

0’s

Stochastic Gradient Descent



2016-08-0763

How do we compute               ? 

• Per-sample cost as a sum of per-step cost functions

rL(✓, X) =

TX

t=1

r log p(xt|x<t, ✓)
log p(xt|x<t)

Backpropagation through Time

• Cost as a sum of per-sample cost function

rL(✓, D)

rL(✓, D) =
X

X2D

rL(✓, X)



2016-08-0764

How do we compute                         ?

• Compute per-step cost function from time 

1. Cost derivative
2. Gradient w.r.t.      :
3. Gradient w.r.t.      :
4. Gradient w.r.t.      :
5. Gradient w.r.t.     and       :

and
6. Accumulate the gradient and 

log p(xt|x<t)

@ log p(xt|x<t)/@g

R ⇥@g/@R
ht ⇥@g/@ht + @ht+1/@ht

U ⇥@ht/@U
b W

⇥@ht/@b ⇥@ht/@W

t = T

t t� 1

Backpropagation through Time
r log p(xt|x<t, ✓)



@ log p(xt+n|x<t+n)

@ht
=

@ log p(xt+n|x<t+n)

@g

@g

@ht+n

@ht+n

@ht+n�1
· · · @ht+1

@ht

2016-08-0765

Intuitively, what’s happening here?

1. Measure the influence of the past on the future

2. How does the perturbation at   affect                     ?

xt

p(xt+n|x<t+n)

✏

?
t

Backpropagation through Time



2016-08-0766

Intuitively, what’s happening here?

1. Measure the influence of the past on the future

2. How does the perturbation at   affect                     ?

3. Change the parameters to maximize 

p(xt+n|x<t+n)t

xt
✏

?

p(xt+n|x<t+n)

@ log p(xt+n|x<t+n)

@ht
=

@ log p(xt+n|x<t+n)

@g

@g

@ht+n

@ht+n

@ht+n�1
· · · @ht+1

@ht

Backpropagation through Time
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Intuitively, what’s happening here?

1. Measure the influence of the past on the future

2. With a naïve transition function

We get

@ log p(xt+n|x<t+n)

@ht
=

@ log p(xt+n|x<t+n)

@g

@g

@ht+n

@ht+n

@ht+n�1
· · · @ht+1

@ht

@Jt+n

@ht
=

@Jt+n

@g

@g

@ht+N

NY

n=1

U>diag

✓
@ tanh(at+n)

@at+n

◆

| {z }

f(ht�1, xt�1) = tanh(W [xt�1] + Uht�1 + b)

Problematic!

Backpropagation through Time

[Bengio, IEEE 1994]
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Gradient either vanishes or explodes

• What happens?

1. The gradient likely explodes if 

2. The gradient likely vanishes if 

@Jt+n

@ht
=

@Jt+n

@g

@g

@ht+N

NY

n=1

U>diag

✓
@ tanh(at+n)

@at+n

◆

| {z }

e

max

� 1

max tanh

0
(x)

= 1

e

max

<

1

max tanh

0
(x)

= 1

: largest eigenvalue of e
max

U

Backpropagation through Time

[Bengio, Simard, Frasconi, TNN1994; 
Hochreiter, Bengio, Frasconi, Schmidhuber, 2001]

, where



Vanishing/Exploding Gradient (Intuition Only)

◮ long-term dependencies

◮ Suppose that the backpropagation involves repeated
multiplication of matrix W .

◮ After t steps, this becomes W t .
◮ Suppose W allows eigendecomposition, W = V diag(λ)V−1.
◮ Then W

t = (V diag(λ)V−1)t = V diag(λ)tV−1.

◮ When eigenvalues which are greater than 1, this will explode.

◮ When eigenvalues which are less than 1, this will vanish.

◮ Exploding gradients: this makes learning unstable.
◮ Vanishing gradients: it is difficult to know which direction the

parameters should move to improve the cost function
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Addressing Exploding Gradient

• “when gradients explode so does the curvature 
along v, leading to a wall in the error surface”

• Gradient Clipping
1. Norm clipping

2. Element-wise clipping

On the di�culty of training Recurrent Neural Networks

Figure 6. We plot the error surface of a single hidden unit

recurrent network, highlighting the existence of high cur-

vature walls. The solid lines depicts standard trajectories

that gradient descent might follow. Using dashed arrow

the diagram shows what would happen if the gradients is

rescaled to a fixed size when its norm is above a threshold.

explode so does the curvature along v, leading to a
wall in the error surface, like the one seen in Fig. 6.

If this holds, then it gives us a simple solution to the
exploding gradients problem depicted in Fig. 6.

If both the gradient and the leading eigenvector of the
curvature are aligned with the exploding direction v, it
follows that the error surface has a steep wall perpen-
dicular to v (and consequently to the gradient). This
means that when stochastic gradient descent (SGD)
reaches the wall and does a gradient descent step, it
will be forced to jump across the valley moving perpen-
dicular to the steep walls, possibly leaving the valley
and disrupting the learning process.

The dashed arrows in Fig. 6 correspond to ignoring
the norm of this large step, ensuring that the model
stays close to the wall. The key insight is that all the
steps taken when the gradient explodes are aligned
with v and ignore other descent direction (i.e. the
model moves perpendicular to the wall). At the wall, a
small-norm step in the direction of the gradient there-
fore merely pushes us back inside the smoother low-
curvature region besides the wall, whereas a regular
gradient step would bring us very far, thus slowing or
preventing further training. Instead, with a bounded
step, we get back in that smooth region near the wall
where SGD is free to explore other descent directions.

The important addition in this scenario to the classical
high curvature valley, is that we assume that the val-
ley is wide, as we have a large region around the wall
where if we land we can rely on first order methods
to move towards the local minima. This is why just
clipping the gradient might be su�cient, not requiring
the use a second order method. Note that this algo-

rithm should work even when the rate of growth of the
gradient is not the same as the one of the curvature
(a case for which a second order method would fail
as the ratio between the gradient and curvature could
still explode).

Our hypothesis could also help to understand the re-
cent success of the Hessian-Free approach compared
to other second order methods. There are two key dif-
ferences between Hessian-Free and most other second-
order algorithms. First, it uses the full Hessian matrix
and hence can deal with exploding directions that are
not necessarily axis-aligned. Second, it computes a
new estimate of the Hessian matrix before each up-
date step and can take into account abrupt changes in
curvature (such as the ones suggested by our hypothe-
sis) while most other approaches use a smoothness as-
sumption, i.e., averaging 2nd order signals over many
steps.

3. Dealing with the exploding and
vanishing gradient

3.1. Previous solutions

Using an L1 or L2 penalty on the recurrent weights can
help with exploding gradients. Given that the parame-
ters initialized with small values, the spectral radius of
W

rec

is probably smaller than 1, from which it follows
that the gradient can not explode (see necessary condi-
tion found in section 2.1). The regularization term can
ensure that during training the spectral radius never
exceeds 1. This approach limits the model to a sim-
ple regime (with a single point attractor at the origin),
where any information inserted in the model has to die
out exponentially fast in time. In such a regime we can
not train a generator network, nor can we exhibit long
term memory traces.

Doya (1993) proposes to pre-program the model (to
initialize the model in the right regime) or to use
teacher forcing. The first proposal assumes that if
the model exhibits from the beginning the same kind
of asymptotic behaviour as the one required by the
target, then there is no need to cross a bifurcation
boundary. The downside is that one can not always
know the required asymptotic behaviour, and, even if
such information is known, it is not trivial to initial-
ize a model in this specific regime. We should also
note that such initialization does not prevent cross-
ing the boundary between basins of attraction, which,
as shown, could happen even though no bifurcation
boundary is crossed.

Teacher forcing is a more interesting, yet a not very
well understood solution. It can be seen as a way of
initializing the model in the right regime and the right

˜r  
⇢ c

krkr ,if krk � c

r ,otherwise

Backpropagation through Time

[Pascanu, Mikolov, Bengio, ICML 2013]

ri  min(c, |ri|)sgn(ri), for all i 2 {1, . . . , dimr}
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Vanishing gradient is super-problematic

• When we only observe

,

• We cannot tell whether
1. No dependency between t and t+n in data, or
2. Wrong configuration of parameters: 

e

max

(U) <

1

max tanh

0
(x)

����
@ht+N

@ht

���� =

�����

NY

n=1

U>diag

✓
@ tanh(at+n)

@at+n

◆����� ! 0

Backpropagation through Time
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GRU/LSTM Ideas

◮ Model that operates at multiple time scales

◮ some parts of the model operate at fine-grained time scales
and can handle small details.

◮ other parts operate at coarse time scales and transfer
information from the distant past to the present more
efficiently.

◮ Strategies

◮ addition of skip connections across time
◮ “leaky units” which integrate signals with different time

constraints
◮ removal of some of the connections used to model fine-grained

time sclae.
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• Is the problem with the naïve transition function?

• With it, the temporal derivative is 

• It implies that the error must be backpropagated
through all the intermediate nodes:

@ht+1

@ht
= U> @ tanh(a)

@a

Gated Recurrent Unit

f(ht�1, xt) = tanh(W [xt] + Uht�1 + b)
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• It implies that the error must backpropagate through 
all the intermediate nodes:

• Perhaps we can create shortcut connections.

Gated Recurrent Unit
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• Perhaps we can create adaptive shortcut connections.

• Candidate Update 
• Update gate 

Gated Recurrent Unit

f(ht�1, xt) = ut � h̃t + (1 + ut)� ht�1

ut = �(Wu [xt] + Uuht�1 + bu)
h̃t = tanh(W [xt] + Uht�1 + b)

�: element-wise multiplication
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• Let the net prune unnecessary connections adaptively.

• Candidate Update 
• Reset gate
• Update gate  

Gated Recurrent Unit

f(ht�1, xt) = ut � h̃t + (1 + ut)� ht�1

h̃t = tanh(W [xt] + U(rt � ht�1) + b)

rt = �(Wr [xt] + Urht�1 + br)
ut = �(Wu [xt] + Uuht�1 + bu)
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tanh-RNN ….

Execution
Registers

1. Read the whole register

h

2. Update the whole register 

h

h tanh(W [x] + Uh+ b)

Gated Recurrent Unit
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GRU …

Execution
Registers

1. Select a readable subset

h

r
r � h2. Read the subset

3. Select a writable subset u
4. Update the subset

h u� h̃+ (1� ut)� h

Clearly gated recurrent units are much more realistic.

Gated Recurrent Unit



Gated Recurrent Unit
[Cho et al., EMNLP2014; 
Chung, Gulcehre, Cho, Bengio, DLUFL2014]

Long Short-Term Memory 
[Hochreiter&Schmidhuber, NC1999; 
Gers, Thesis2001]

78

Gated Recurrent Unit

ht = ut � h̃t + (1� ut)� ht�1

h̃ = tanh(W [xt] + U(rt � ht�1) + b)

ut = �(Wu [xt] + Uuht�1 + bu)

rt = �(Wr [xt] + Urht�1 + br)

h

t

= o

t

� tanh(c
t

)

c

t

= f

t

� c

t�1 + i

t

� c̃

t

c̃

t

= tanh(W
c

[x
t

] + U

c

h

t�1 + b

c

)

o

t

= �(W
o

[x
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] + U
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i

t
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i
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t
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[x
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f

h
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f

)

Two most widely used gated recurrent units
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A few well-established + my personal wisdoms

1. Use LSTM or GRU: makes your life so much simpler

2. Initialize recurrent matrices to be orthogonal

3. Initialize other matrices with a sensible scale

4. Use adaptive learning rate algorithms: Adam, Adadelta, …

5. Clip the norm of the gradient: “1” seems to be a reasonable 

threshold when used together with adam or adadelta.

6. Be patient!

Training an RNN

[Saxe et al., ICLR2014; 
Ba, Kingma, ICLR2015; 

Zeiler, arXiv2012; 
Pascanu et al., ICML2013]
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The	vanishing/exploding	gradient	problem

• Multiply	the	same	matrix	at	each	time	step	during	backprop

4/21/16Richard	SocherLecture	1,	Slide	 15

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1



The	vanishing	gradient	problem	- Details

• Similar	but	simpler	RNN	formulation:

• Total	error	is	the	sum	of	each	error	at	time	steps	t

• Hardcore	chain	rule	application:

4/21/16Richard	SocherLecture	1,	Slide	 16



The	vanishing	gradient	problem	- Details

• Similar	to	backprop but	less	efficient	formulation
• Useful	for	analysis	we’ll	look	at:

• Remember:
• More	chain	rule,	remember:

• Each	partial	is	a	Jacobian:

4/21/16Richard	SocherLecture	1,	Slide	 17



The	vanishing	gradient	problem	- Details

• From	previous	slide:	

• Remember:

• To	compute	Jacobian,	derive	each	element of	matrix:	

• Where:

4/21/16Richard	SocherLecture	1,	Slide	 18

ht−1 ht

Check	at	home	
that	you	understand
the	diag matrix	
formulation



The	vanishing	gradient	problem	- Details

• Analyzing	the	norms	of	the	Jacobians,	yields:

• Where	we	defined	̄ ‘s	as	upper	bounds	of	the	norms
• The	gradient	is	a	product	of	Jacobianmatrices,	each	associated	

with	a	step	in	the	forward	computation.	

• This	can	become	very	small	or	very	large	quickly	[Bengio et	al	
1994],	and	the	locality	assumption	of	gradient	descent	breaks	
down.	à Vanishing	or	exploding	gradient

4/21/16Richard	SocherLecture	1,	Slide	 19



Why	is	the	vanishing	gradient	a	problem?

• The	error	at	a	time	step	ideally	can	tell	a	previous	time	step	
from	many	steps	away	to	change	during	backprop

4/21/16Richard	SocherLecture	1,	Slide	 20

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1



The	vanishing	gradient	problem	for	language	models

• In	the	case	of	language	modeling	or	question	answering	words	
from	time	steps	far	away	are	not	taken	into	consideration	when	
training	to	predict	the	next	word

• Example:	

Jane	walked	into	the	room.	John	walked	in	too.	It	was	late	in	the	
day.	Jane	said	hi	to	____

4/21/16Richard	SocherLecture	1,	Slide	 21



IPython Notebook	with	vanishing	gradient	example

• Example	of	simple	and	clean	NNet implementation	

• Comparison	of	sigmoid	and	ReLu units

• A	little	bit	of	vanishing	gradient

4/21/16Richard	SocherLecture	1,	Slide	 22



4/21/16Richard	SocherLecture	1,	Slide	 23



Trick	for	exploding	gradient:	clipping	trick

• The	solution	first	introduced	by	Mikolov is	to	clip	gradients
to	a	maximum	value.	

• Makes	a	big	difference	in	RNNs.

24

On the di�culty of training Recurrent Neural Networks

region of space. It has been shown that in practice
it can reduce the chance that gradients explode, and
even allow training generator models or models that
work with unbounded amounts of memory(Pascanu
and Jaeger, 2011; Doya and Yoshizawa, 1991). One
important downside is that it requires a target to be
defined at every time step.

In Hochreiter and Schmidhuber (1997); Graves et al.
(2009) a solution is proposed for the vanishing gra-
dients problem, where the structure of the model is
changed. Specifically it introduces a special set of
units called LSTM units which are linear and have a
recurrent connection to itself which is fixed to 1. The
flow of information into the unit and from the unit is
guarded by an input and output gates (their behaviour
is learned). There are several variations of this basic
structure. This solution does not address explicitly the
exploding gradients problem.

Sutskever et al. (2011) use the Hessian-Free opti-
mizer in conjunction with structural damping, a spe-
cific damping strategy of the Hessian. This approach
seems to deal very well with the vanishing gradient,
though more detailed analysis is still missing. Pre-
sumably this method works because in high dimen-
sional spaces there is a high probability for long term
components to be orthogonal to short term ones. This
would allow the Hessian to rescale these components
independently. In practice, one can not guarantee that
this property holds. As discussed in section 2.3, this
method is able to deal with the exploding gradient
as well. Structural damping is an enhancement that
forces the change in the state to be small, when the pa-
rameter changes by some small value�✓. This asks for
the Jacobian matrices @xt

@✓

to have small norm, hence
further helping with the exploding gradients problem.
The fact that it helps when training recurrent neural
models on long sequences suggests that while the cur-
vature might explode at the same time with the gradi-
ent, it might not grow at the same rate and hence not
be su�cient to deal with the exploding gradient.

Echo State Networks (Lukoševičius and Jaeger, 2009)
avoid the exploding and vanishing gradients problem
by not learning the recurrent and input weights. They
are sampled from hand crafted distributions. Because
usually the largest eigenvalue of the recurrent weight
is, by construction, smaller than 1, information fed in
to the model has to die out exponentially fast. This
means that these models can not easily deal with long
term dependencies, even though the reason is slightly
di↵erent from the vanishing gradients problem. An
extension to the classical model is represented by leaky
integration units (Jaeger et al., 2007), where

x

k

= ↵x

k�1 + (1� ↵)�(W
rec

x

k�1 +W

in

u

k

+ b).

While these units can be used to solve the standard
benchmark proposed by Hochreiter and Schmidhu-
ber (1997) for learning long term dependencies (see
(Jaeger, 2012)), they are more suitable to deal with
low frequency information as they act as a low pass
filter. Because most of the weights are randomly sam-
pled, is not clear what size of models one would need
to solve complex real world tasks.

We would make a final note about the approach pro-
posed by Tomas Mikolov in his PhD thesis (Mikolov,
2012)(and implicitly used in the state of the art re-
sults on language modelling (Mikolov et al., 2011)).
It involves clipping the gradient’s temporal compo-
nents element-wise (clipping an entry when it exceeds
in absolute value a fixed threshold). Clipping has been
shown to do well in practice and it forms the backbone
of our approach.

3.2. Scaling down the gradients

As suggested in section 2.3, one simple mechanism to
deal with a sudden increase in the norm of the gradi-
ents is to rescale them whenever they go over a thresh-
old (see algorithm 1).

Algorithm 1 Pseudo-code for norm clipping the gra-
dients whenever they explode

ĝ @E
@✓

if kĝk � threshold then

ĝ threshold

kĝk ĝ

end if

This algorithm is very similar to the one proposed by
Tomas Mikolov and we only diverged from the original
proposal in an attempt to provide a better theoretical
foundation (ensuring that we always move in a de-
scent direction with respect to the current mini-batch),
though in practice both variants behave similarly.

The proposed clipping is simple to implement and
computationally e�cient, but it does however in-
troduce an additional hyper-parameter, namely the
threshold. One good heuristic for setting this thresh-
old is to look at statistics on the average norm over
a su�ciently large number of updates. In our ex-
periments we have noticed that for a given task and
model size, training is not very sensitive to this hyper-
parameter and the algorithm behaves well even for
rather small thresholds.

The algorithm can also be thought of as adapting
the learning rate based on the norm of the gradient.
Compared to other learning rate adaptation strate-
gies, which focus on improving convergence by col-
lecting statistics on the gradient (as for example in



Gradient	clipping	intuition
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• Error	surface	of	a	single	hidden	unit	RNN,	

• High	curvature	walls

• Solid	lines:	standard	gradient	descent	trajectories	

• Dashed	lines	gradients	rescaled	to	fixed	size

On the di�culty of training Recurrent Neural Networks

Figure 6. We plot the error surface of a single hidden unit

recurrent network, highlighting the existence of high cur-

vature walls. The solid lines depicts standard trajectories

that gradient descent might follow. Using dashed arrow

the diagram shows what would happen if the gradients is

rescaled to a fixed size when its norm is above a threshold.

explode so does the curvature along v, leading to a
wall in the error surface, like the one seen in Fig. 6.

If this holds, then it gives us a simple solution to the
exploding gradients problem depicted in Fig. 6.

If both the gradient and the leading eigenvector of the
curvature are aligned with the exploding direction v, it
follows that the error surface has a steep wall perpen-
dicular to v (and consequently to the gradient). This
means that when stochastic gradient descent (SGD)
reaches the wall and does a gradient descent step, it
will be forced to jump across the valley moving perpen-
dicular to the steep walls, possibly leaving the valley
and disrupting the learning process.

The dashed arrows in Fig. 6 correspond to ignoring
the norm of this large step, ensuring that the model
stays close to the wall. The key insight is that all the
steps taken when the gradient explodes are aligned
with v and ignore other descent direction (i.e. the
model moves perpendicular to the wall). At the wall, a
small-norm step in the direction of the gradient there-
fore merely pushes us back inside the smoother low-
curvature region besides the wall, whereas a regular
gradient step would bring us very far, thus slowing or
preventing further training. Instead, with a bounded
step, we get back in that smooth region near the wall
where SGD is free to explore other descent directions.

The important addition in this scenario to the classical
high curvature valley, is that we assume that the val-
ley is wide, as we have a large region around the wall
where if we land we can rely on first order methods
to move towards the local minima. This is why just
clipping the gradient might be su�cient, not requiring
the use a second order method. Note that this algo-

rithm should work even when the rate of growth of the
gradient is not the same as the one of the curvature
(a case for which a second order method would fail
as the ratio between the gradient and curvature could
still explode).

Our hypothesis could also help to understand the re-
cent success of the Hessian-Free approach compared
to other second order methods. There are two key dif-
ferences between Hessian-Free and most other second-
order algorithms. First, it uses the full Hessian matrix
and hence can deal with exploding directions that are
not necessarily axis-aligned. Second, it computes a
new estimate of the Hessian matrix before each up-
date step and can take into account abrupt changes in
curvature (such as the ones suggested by our hypothe-
sis) while most other approaches use a smoothness as-
sumption, i.e., averaging 2nd order signals over many
steps.

3. Dealing with the exploding and
vanishing gradient

3.1. Previous solutions

Using an L1 or L2 penalty on the recurrent weights can
help with exploding gradients. Given that the parame-
ters initialized with small values, the spectral radius of
W

rec

is probably smaller than 1, from which it follows
that the gradient can not explode (see necessary condi-
tion found in section 2.1). The regularization term can
ensure that during training the spectral radius never
exceeds 1. This approach limits the model to a sim-
ple regime (with a single point attractor at the origin),
where any information inserted in the model has to die
out exponentially fast in time. In such a regime we can
not train a generator network, nor can we exhibit long
term memory traces.

Doya (1993) proposes to pre-program the model (to
initialize the model in the right regime) or to use
teacher forcing. The first proposal assumes that if
the model exhibits from the beginning the same kind
of asymptotic behaviour as the one required by the
target, then there is no need to cross a bifurcation
boundary. The downside is that one can not always
know the required asymptotic behaviour, and, even if
such information is known, it is not trivial to initial-
ize a model in this specific regime. We should also
note that such initialization does not prevent cross-
ing the boundary between basins of attraction, which,
as shown, could happen even though no bifurcation
boundary is crossed.

Teacher forcing is a more interesting, yet a not very
well understood solution. It can be seen as a way of
initializing the model in the right regime and the right

Figure	 from	paper:	
On	the	difficulty	of	
training	Recurrent	Neural	
Networks,	Pascanuet	al.	
2013



For	vanishing	gradients:	Initialization	+	ReLus!

4/21/16Richard	Socher26

• Initialize	W(*)‘s	to
identity	matrix	I
and
f(z)		=

• à Huge	difference!

• Initialization	idea	first	introduced	in	Parsing	with	Compositional	
Vector	Grammars,	Socher	et	al.	2013

• New	experiments	with	recurrent	neural	nets	2	weeks	ago	(!)	in	
A	Simple	Way	to	Initialize	Recurrent	Networks	of	Rectified	
Linear	Units,	Le	et	al.	2015

T LSTM RNN + Tanh IRNN
150 lr = 0.01, gc = 10, fb = 1.0 lr = 0.01, gc = 100 lr = 0.01, gc = 100

200 lr = 0.001, gc = 100, fb = 4.0 N/A lr = 0.01, gc = 1

300 lr = 0.01, gc = 1, fb = 4.0 N/A lr = 0.01, gc = 10

400 lr = 0.01, gc = 100, fb = 10.0 N/A lr = 0.01, gc = 1

Table 1: Best hyperparameters found for adding problems after grid search. lr is the learning rate, gc
is gradient clipping, and fb is forget gate bias. N/A is when there is no hyperparameter combination
that gives good result.

4.2 MNIST Classification from a Sequence of Pixels

Another challenging toy problem is to learn to classify the MNIST digits [21] when the 784 pixels
are presented sequentially to the recurrent net. In our experiments, the networks read one pixel at a
time in scanline order (i.e. starting at the top left corner of the image, and ending at the bottom right
corner). The networks are asked to predict the category of the MNIST image only after seeing all
784 pixels. This is therefore a huge long range dependency problem because each recurrent network
has 784 time steps.

To make the task even harder, we also used a fixed random permutation of the pixels of the MNIST
digits and repeated the experiments.

All networks have 100 recurrent hidden units. We stop the optimization after it converges or when
it reaches 1,000,000 iterations and report the results in figure 3 (best hyperparameters are listed in
table 2).
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Figure 3: The results of recurrent methods on the “pixel-by-pixel MNIST” problem. We report the
test set accuracy for all methods. Left: normal MNIST. Right: permuted MNIST.

Problem LSTM RNN + Tanh RNN + ReLUs IRNN
MNIST lr = 0.01, gc = 1 lr = 10

−8, gc = 10 lr = 10
−8, gc = 10 lr = 10

−8, gc = 1

fb = 1.0

permuted lr = 0.01, gc = 1 lr = 10
−8, gc = 1 lr = 10

−6, gc = 10 lr = 10
−9, gc = 1

MNIST fb = 1.0

Table 2: Best hyperparameters found for pixel-by-pixelMNIST problems after grid search. lr is the
learning rate, gc is gradient clipping, and fb is the forget gate bias.

The results using the standard scanline ordering of the pixels show that this problem is so difficult
that standard RNNs fail to work, even with ReLUs, whereas the IRNN achieves 3% test error rate
which is better than most off-the-shelf linear classifiers [21]. We were surprised that the LSTM did
not work as well as IRNN given the various initialization schemes that we tried. While it still possi-
ble that a better tuned LSTM would do better, the fact that the IRNN perform well is encouraging.
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Conclusion

◮ Language Modeling Task

◮ Feedforward Language Model

◮ Recurrent Neural Network Language Model

◮ LSTM / GRU

◮ Vanishing / Exploding Gradient



◮ Thank you for your attention!!
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