Recurrent Neural Network for Language
Modeling Task

Tsuyoshi Okita

Ludwig-Maximilian-Universitat Munich

12 December 2016

Credit: Slides by Kyunghun Cho / Kevin Duh /
Richard Socher

Outline

> Review

» Language Modeling Task

> Feedforward Language Model

> Recurrent Neural Network Language Model
» LSTM / GRU

> Vanishing / Exploding Gradient

Logistic Regression (1-layer Neural Networks)

> f(x)=o(w’ x)

> 0(2) = (grepzy* activation function (non linearity)

» w(e RY) : weight

wl w2 w3 wa

2-layer Neural Networks

Called Multilayer Perceptron (MLP), but more like multilayer logistic
regression

(p.12)

Classification

Input data

Logistic Regression Feedforward NN(1)

Feedforward NN(2)

Feedforward NN(3)

Feadfarward NN(4]

Feadfarward NN(10]

Classification (cont)

N[O
S
N

Expressive Power of Non-linearity

> A deeper architecture is more expressive than a shallow Neural Network
one given same number of nodes [Bishop, 1995]

» 1-layer nets only model linear hyperplanes
» 2-layer nets can model any continuous function (given

sufficient nodes)
» >3-layer nets can do so with fewer nodes

y

X3

= 9H><
=

—

X, X X,

Xy X X

(p.13)

Gradient Descent for Logistic Regression

Neural Network

» Assume Squared-Error*
Loss(w) = 3 32 (o (wTx(m) — y(m)>2
> Gradient:
Viwloss =3, [o(wx(M) — y(M]g!(wTx(m))x(m)
» Define input into non-linearity in(™ = w7 x(m)
> General form of gradient: 3" Error(™ x o/ (in(M) % x(m)
» Derivative of sigmoid o/(z) = 0(2)(1 — 0(2))
» Gradient Descent Algorithm:
1. Initialize w randomly
2. Update until convergence: w + w — y(V, Loss)
» Stochastic gradient descent (SGD) algorithm:

1. Initialize w randomly
2. Update until convergence:
w — w — y(Error™ x ¢’ (in(m) % x(m))

*An alternative is Cross-Entropy loss:
S Y™ log(a(wx™)) + (1 = y™) log(1 — o(w'x(™))

(p.9)

Stochastic Gradient Descent (SGD)

Neural Network

» Gradient Descent Algorithm:
1. Initialize w randomly
2. Update until convergence: w < w — (V,, Loss)
» Stochastic gradient descent (SGD) algorithm:
1. Initialize w randomly
2. Update until convergence:
W= w — v(l—é‘ Y meB Error(™ s o’ (in(m) x x(m))
where minibatch B ranges from e.g. 1-100 samples
> Learning rate ~:
» For convergence, should decrease with each iteration t
through samples
> &g %:ﬁor%:m

(p.10)

SGD Pictorial View

» Loss objective contour plot: Neural Network
1 T 2
3 X m(o(wTxtm) — y(m)2 4 ||w]]
» Gradient descent goes in steepest descent direction
» SGD is noisy descent (but faster per iteration)

(p.11)

Training Neural Nets: Back-propagation

Adjust weights
hj Predict f(x(™)

1. For each sample, compute

F(X™) = o (5 w; - o (5 wix ™))
2. If f(x('")) # y(m), back-propagate error and adjust
weights {wj;, w;}.

(p.14)

Derivatives of the weights

Assume two outputs (y1, y2) per input x,

and loss per sample: Loss = 3", 1 [o(ink) — vil?

Yk

e
e’e SRRO

(®
®

(p.15)

Derivatives of the weights

Assume two outputs (y1, y2) per input x, Neural Network
and loss per sample: Loss =), % [o(ink) — yi]?

OLoss __ Oloss Oin, __ 8(2,— wjkhj) - .
awjk — 0ding 8ij - 6 - 6khj

(p.15)

Derivatives of the weights

Assume two outputs (y1, y2) per input x, Neural Network
and loss per sample: Loss =), % [o(ink) — yi]?

OLoss __ OLoss Qing __ 5 8(2,— wikhj) Sihi
- J

awjk - aink 8ij - awjk
OLloss __ OLoss Oin; 66(21 wiiXi) 5:x:
8W,'j - H:nj aWU - aWU A

(p.15)

Derivatives of the weights

Assume two outputs (y1, y2) per input x, Neural Network
and loss per sample: Loss =), % [o(ink) — yi]?

OLoss __ Oloss Oin, __ 8(2,— wjkhj) - .

awjk — Oing 8ij =90 awjk - 5khj

dloss __ Oloss Jinj __ 66(21 wiixi) 5:x:

BW,'J' - H:nj aWU - 7 aWU Y

- O 1 . 2 . I(-
0 = 5 (S 3 [oline) = yil?) = [oink) = yil o' (i)

(p.15)

Derivatives of the weights

Assume two outputs (y1, y2) per input x, Neural Network
and loss per sample: Loss =), % [o(ink) — yi]?

OLoss __ OLoss Qing __ 5 8(2,— wikhj) S.h:
owjx — Jding Owy — Owjy = Okl
dloss __ Oloss 9inj __ 66(21 Wijx;) — §:x:
BW,'J' - Hlnj aWU - 7 aWU Y

0 = 5 (S 3 [oline) = yil?) = [oink) = yil o' (i)

5j _ Zk OLoss Jiny _ Zk Ok - #)nj (ZJ ijko'(inj)> — [Zk 5ijk]

diny 0in;

(p.15)

Training Neural Nets: Back-propagation
All updates involve some scaled error from output * input
feature:

> %LTOJS: = 0xhj where 6, = [o(ink) — yi] o' (ink)

> Gho= = djx; where 0; = [32, dkwy o' (inj)

Neural Network

First compute 0, from final layer, then §; for previous layer
and iterate.

Yk

(p.16)

Recurrent Neural Networks (Today's Lecture)

> Recurrent Neural Networks (RNN): a recurrent Layer is defined.

» We want to treat RNN like feed-forward NN!

» To unfold the recursion.

Outline

> Review

» Language Modeling Task

> Feedforward Language Model

> Recurrent Neural Network Language Model
» LSTM / GRU

> Vanishing / Exploding Gradient

Language Modeling Task

» Language Modeling Task

» Given a sequence of words (sentences),
» Obtain Ppy: language model
» Notation: x;: word in a sentence position t

> language model: probability distribution over sequences of words.

» Prm(x:) = P(x¢|xc—1) (1-gram language model)
> Piav(x:) = P(xe|xt—1, Xe—2) (2-gram language model)
> Pimv(xe) = P(xe|xe—1, Xt—2, Xt—3) (3-gram language model)

» Used in machine translation, speech recognition, part-of-speech
tagging, information retrieval, ...

Language Models: Sentence probabilities

T
p($17x27 R 7xT) — Hp('rt‘xl) . 7$t—1>

[Chain rule]

There are way too many histories once you’re
into a sentence a few words! Exponentially many.

37

Traditional Fix: Markov Assumption

An nt" order Markov assumption assumes each
word depends only on a short linear history

T
p(fEl,CIZ'Q, s 733T) :Hp(xt‘xlv s 73315—1)
1

t
~ Hp(xt‘xt—na ey 1)

T
t=1

38

Problems of Traditional Markov
Model Assumptions (1): Sparsity

Issue: Very small window gives bad prediction;
statistics for even a modest window are sparse

Example:
P(wy|lw_s, w_,, w_;) |V|=100,000 = 10% contexts

Most have not been seen

The traditional answer is to use various backoff
and smoothing techniques, but no good solution

39

Problems of Traditional Markov
Model Assumptions (2): Context

Issue: Dependency beyond the window is ignored

Example:

the same stump which had impaled the car of
many a guest in the past thirty years and which he
refused to have removed

44

Outline

> Review

» Language Modeling Task

> Feedforward Language Model

> Recurrent Neural Network Language Model
» LSTM / GRU

> Vanishing / Exploding Gradient

Neuval Lanauaﬁe ModelS

The vneuval ageroach Chengio, Duchavme,
Vincent & Jauvin TMLK 100%7] TQ?TQQQn+9
wovdS a5 dense distvibuted vectovs So
theve can e %av'm3 o€ statistical
WQKSM’ between Similav wovds

Oo'm3 WSt This Solves the Spavseness
problewm o€ conventional N~g4Fam wodelS

Neural (Probabilistic) Language Model
[Bengio, Ducharme, Vincent & Jauvin JMLR 2003]

W3
r 1.'3']'5'-;' oh
f l\tj
W”Z u1 A’y
is !
Ore"\

W

now

41

Neural (Probabilistic) Language Model
[Bengio, Ducharme, Vincent & Jauvin JMLR 2003]

N&;S'I'v-it"bh

W»z‘ —>
i$

Wy ™7

now

y.* “l\\\‘

AV N

£ach

]

dx 1

42

Concdlendle du] *oxrp;:r V1 vy
1 Add we P (we
4)
x + {‘- bias /o0 A ‘ 1
) " . st 8 ~
:1 RS oo i) [& ~ x:: \:\ : AR
TS : u[‘:"’;'::\J {4:]—7 [:})G I - = :("‘.r1M$
i :—i. <o - = S T : - l
- e - < Open
// lf:J dx 34 Flmeitwise |- --~| [{ g ?
Muﬂirlr +anh _7‘4‘ e | I I
3dx] V] x 4 _]..] Settmax
O Plwlwa W-zw**):
Y: Qﬂ:
= ——
- Zi,' e V¢
. : Bias
§ Sl
vix 1

Neural (Probabilistic) Language Model
[Bengio, Ducharme, Vincent & Jauvin JMLR 2003]

du] Ocfpat WVIx1 |y[x)

o f
Lockup Y Concilendle 27 add ‘ Wdr:lr Y.
2o B ! {: N N R
Ni;S'I'lr-lj"Dh * 1"1 - o _.\ £ ~-

e s SR OO ol I o (I
e R B B
i = S g -

T -~ = - open

s Elm’\'w"Se, -e=> @ { g ¥

w-) ;_‘ "’Q"L‘% l__, v ". 1’/“
now Ea;]\ NG an l\ll X J +] 55“H'Mq,(
ol 1 ﬁ c . P(W,l Wa W-;“—n):.‘
ol A1 1= ikt
WOVJ VCffN"S = -)}f ; ,2_;'_;_‘.3;
:-‘) \ : 6- MQk{S 'ﬂL
= ' [:) " \as postjh.:l'-b
"(% 1V) J \) <J uom«’uu ron

" 1y .
W1, il
\/“wg ~ ‘:‘i“:‘"" “2 -_— - \.,J \) CG\'\ °n‘¥" ‘“dke' O‘

43

Outline

> Review

» Language Modeling Task

> Feedforward Language Model

> Recurrent Neural Network Language Model
» LSTM / GRU

> Vanishing / Exploding Gradient

Language Modeling Task

» Language Modeling Task

» Given a sequence of words (sentences),
» Obtain Ppy: language model
» Notation: x;: word in a sentence position t

> language model: probability distribution over sequences of words.

» Prm(x:) = P(x¢|xc—1) (1-gram language model)
> Piav(x:) = P(xe|xt—1, Xe—2) (2-gram language model)
> Pimv(xe) = P(xe|xe—1, Xt—2, Xt—3) (3-gram language model)

» Used in machine translation, speech recognition, part-of-speech
tagging, information retrieval, ...

Problems of Traditional Markov
Model Assumptions (2): Context

Issue: Dependency beyond the window is ignored

Example:

the same stump which had impaled the car of
many a guest in the past thirty years and which he
refused to have removed

44

A Non-Markovian Language Model

Can we directly model the true conditional probability?
T
p($17$27 R 7IT) — Hp(ajt‘mlv R 7$t—1)
t=1

Can we build a neural language model for this?

1. Featureextraction: h; = f(x1,22,...,%¢)
2. Prediction: p(xia1|T1,...,2e-1) = g(ht)
How can f take a variable-length input?

45

A Non-Markovian Language Model

Can we directly model the true conditional probability?

T
p($17$27 s ,ZE‘T) — Hp(ajt‘mla s 7$t—1)
t=1

Recursive construction of f h
1. Initialization hg = 0

2. Recursion ht = f($t, ht—l) f

We call h; a hidden state or memory

@E:B_.

ht summarizes the history (21, ..., Z)

46

A Non-Markovian Language Model

Example: p(the, cat, is, eating)
(1) Initialization: hg = 0

(2) Recursion with Prediction:

h1 = f(hoa (bos)) — p(the) = g(h1)
f(hy,cat) — p(cat|the) = g(ho)
f(hg,is) — p(is|the, cat) = g(hg3)
f(

h4 = f(hs,eating) — p(eating|the, cat,is) = g(h4)

(3) Combination:
p(the, cat, is, eating) = g(h1)g(h2)g(hs)g(ha)

s Read, Update and Predict

A Recurrent Neural Network Language
Model solves the second problem!

Example: p(the, cat, is, eating)

p(the) p(cat| .. p(is|...) p(eating|..
(bos the cat

Read, Update and Predict

48

Building a Recurrent Language Model

Transition Function hy = f(hs_1,x¢)

Inputs
i. Currentword z; € {1,2,...,|V|}
ii. Previousstate hyi_1 € R
Parameters

I. Inputweight matrix W & RIVI*d

ii. Transition weight matrix U € R%x¢

iii. Biasvector p ¢ R
p(the) p(cat|.. p(is|...) p(eating]..

@—@—@—@—6

T |

49 (bos the cat

Building a Recurrent Language Model

Transition Function hy = f(hs_1,x¢)

Naive Transition Function
f(ht—la CI?t) — tanh(W [Q?t] + Uht_l + b)
Element-wise nonlinear \

transformation Linear transformation of

. previous state
Trainable word vector

p(the) p(cat].. p(is|...) p(eating|..

SRRy

T

50 cat

Building a Recurrent Language Model

Prediction Function p(T¢y+1 = W|T<¢) = Guw(ht)

Inputs
i. Currentstate h; € R?
Parameters
i. Softmax matrix R € RIVI*d
i. Biasvector ¢ € RV

p(the) p(cat].. p(is|...) p(eating|..
the cat

51

Building a Recurrent Language Model

Prediction Function p(T¢y+1 = W|T<¢) = Guw(ht)

Rlw]" hy + cy)
7;:|1 exp (R [@]T he + ¢;)

/

P(Tey1 = wlr<t) = gu(he) =

Compatibility between
trainable word vector Normalize
and hidden state
EXponentiate p(the) p(cat|...) p(s|...) p(eating]...)

the cat is

52

Training a recurrent language model

Having c

etermined the model form, we:

1. Initia
word

ize all parameters of the models, including the
representations with small random numbers

2. Define a loss function: how badly we predict actual
next words [log loss or cross-entropy loss]

3. Repeatedly attempt to predict each next word

4. Backpropagate our loss to update all parameters

5. Just doing this learns good word representations

53

and good prediction functions - it’s almost magic

Outline

> Review

» Language Modeling Task

> Feedforward Language Model

> Recurrent Neural Network Language Model
» LSTM / GRU

> Vanishing / Exploding Gradient

Training a Recurrent Language Model

 Log-probability of one training sentence
log p(af, 25, 2) =) _logp(aplay,... a1 1)

+ Trainingset D ={X" X* ... X"}
 Log-likelihood Functional

1
£0.D) = + 3 Y logplaflat..... a7)
p(the) p(cat|...) p(is|...) p(eating|...)

Minimize —L(0,D)
@M D@

58 the cat

Gradient Descent

« Move slowly in the steepest descent direction

0« 6 —nVL(®O,D

« Computational cost of a single update: O(N
« Not suitable for a large corpus

- SGD
= Momentum

e p(the) p(cat|...) p(is|...) p(eating|...)

7
///”I/’/Ilf qr
// /,,,’,’///l/,l/ll /l, /Ill, f
ity Ayt s
/st Adadelta
,,':;,' ",""",'a""," Rmsprop
2252550, 7
s ST,
555 & Y)
ety
e, i,
SEAK
1.0 .

0 o
9%
o 0, %
SRS
MK
SIS
-2 K
e XK

v

S5
5
o

5 the cat

-15

Stochastic Gradient Descent

Estimate the steepest direction with a minibatch

VLO,D)~VLO{X ..., X"

Until the convergence (w.r.t. a validation set)
|£ HaDval — L 9—77£ H,D 7Dval ’ S €

- SGD
= Momentum

E el p(the) p(cat[...) p(is|...) p(eating|...)
A —— agrad

Y
V.,
S 7
W) Adadelta
4 1l R
) — Rmserop
e et
2 : oK
& "o":"::':":"l)
oSS
0 e e 0)
S
= 9520, 0% %
-2 SRR
= ¢ SKAKIKAA %
-4 <
: X 1.0
N .

6 the cat

-15

Outline

> Review

» Language Modeling Task

> Feedforward Language Model

> Recurrent Neural Network Language Model
» LSTM / GRU

> Vanishing / Exploding Gradient

Stochastic Gradient Descent

e Nottrivial to build a minibatch

Sentence 1
Sentence 2

Sentence 3
Sentence 4

1. Padding and Masking: suitable for GPU'’s, but wasteful
e Wasted computation

Sentence 1 0’s
Sentence 2 0’s
Sentence 3
Sentence 4 0’s

61

Stochastic Gradient Descent

1. Padding and Masking: suitable for GPU'’s, but wasteful
 Wasted computation

Sentence 1 0’s
Sentence 2 0’s
Sentence 3
Sentence 4 0’s

2. Smarter Padding and Masking: minimize the waste
e Ensure that the length differences are minimal.
e Sortthe sentences and sequentially build a minibatch

Sentence 1 0’s
Sentence 2 0’s
Sentence 3 0’s
o2 Sentence 4

Backpropagation through Time

How do we compute VL(0,D)?

« Cost as a sum of per-sample cost function
VL@, D)= Y VL(6,X)

XeD

« Per-sample cost as a sum of per-step cost functions

log p(x4|x
VLO,X) = Viogp(wi|z,0) BP(Te|T<t)

t=1 g
'R
@ U
+H——b

63 TW

Backpropagation through Time

How do we compute YV logp(xi|r<t,0)?

« Compute per-step cost function from time t =T

1. Cost derivative dlog p(x¢|x<;)/0g

2. Gradientw.r.t. R :x0dg/0R

3. Gradient w.r.t. hy :x9g/0hs + Ohyy1/0hy
4. Gradient w.r.t. /' :x0h;/0U

5. Gradientw.r.t. p and W : log p(x¢|x
X Ohy /Ob and xdh; /OW i)

r
6. Accumulate the gradient and ¢ <t — 1 ?R
U

| »(h
math a lot
abusing EI‘* b

“ Note! g IW

Backpropagation through Time

Intuitively, what’s happening here?

1. Measure the influence of the past on the future
0log p(Tt4n|T<ttn) _ Olog p(Tiin|T<tyn) 09 Ohyin Ol i1
ﬁht 8g 8ht+n 8ht+n_1 8ht

2. How does the perturbation at t affect P(Tt+n|T<tin)?

- --->?
i
(\‘\/\ﬁ} I

i p(the) p(cat|...) p(is|...) p(eating|...)

@ID () —()
the cat 1S

= C
Lt

65

Backpropagation through Time

Intuitively, what’s happening here?

1. Measure the influence of the past on the future
0log p(Tt4n|T<ttn) _ Olog p(Tiin|T<tyn) 09 Ohyin Ol i1
aht 89 8ht+n 8ht+n_1 8ht

2. How does the perturbation at taffect P(Tt4n|T<tin)?

¥

= ¢
Lt

3. Change the parameters to maximize P(ZT¢tn|T<tin)

66

Backpropagation through Time

Intuitively, what’s happening here?

1. Measure the influence of the past on the future

01og p(Zitn|T<tn) _ Olog p(Tiin|T<tin) 09 Ohyin Oy
8ht 8_9 aht—l—n 8ht—|—n—1 8ht

2. With a naive transition function
f(ht—la th—l) — tanh(W [ZI?t_l] + Uht_l -+ b)

N
(’9Jt+n o 8Jt+n 89 H Uleag ((’9tanh(at+n)>

W t =
©g¢ 8ht 89 ahH_N 8at+n

n=1
A\ 4

~"

Problematic!

67 [Bengio, IEEE 1994]

Backpropagation through Time

Gradient either vanishes or explodes

 What happens?

8Jt+n 8Jt+n 69 al T 4. ((9 tanh(at+n))
— U ' dia
8ht 89 ahH_N };[1 5 8at+n

\ . J/
N

1. The gradient likely explodes if

1
€max Z =1
7 maxtanh'(z)
2. The gradient likely vanishes if
1
Emax < ; — 1, where €max : largest eigenvalue of [J
max tanh’ (x)

[Bengio, Simard, Frasconi, TNN1994;
Hochreiter, Bengio, Frasconi, Schmidhuber, 2001]

68

Vanishing/Exploding Gradient (Intuition Only)

> long-term dependencies

» Suppose that the backpropagation involves repeated
multiplication of matrix W.

» After t steps, this becomes W.

» Suppose W allows eigendecomposition, W = Vdiag(\)V 1.

» Then Wt = (Vdiag(\)V ™)t = Vdiag(\)!V 1.

» When eigenvalues which are greater than 1, this will explode.
» When eigenvalues which are less than 1, this will vanish.

» Exploding gradients: this makes learning unstable.
» Vanishing gradients: it is difficult to know which direction the
parameters should move to improve the cost function

Backpropagation through Time

Addressing Exploding Gradient

“when gradients explode so does the curvature
along v, leading to a wall in the error surface”

« Gradient Clipping
1. Norm clipping 0.30
_Cc . 0.20§
gl Y AtIVIi=e > [0
V ,otherwise 0.05

-2.0
_ —2.4 —2.2
-2.8 2'6\,3\”9 of b

2. Element-wise clipping
V,; < min(c, |V;|)sgn(V;), for alli € {1,...,dim V}

N [Pascanu, Mikolov, Bengio, ICML 2013]

Backpropagation through Time

Vanishing gradient is super-problematic

« When we only observe

(9ht+N . al T 1. 8tanh(at+n)
|| Bh |— HU dlag(—0
« We cannot tell whether

0&t+n
1. No dependency between t and t+n in data, or
2. Wrong configuration of parameters:

1

max tanh’(z)

n=1

emax(U) <

70

Outline

> Review

» Language Modeling Task

> Feedforward Language Model

> Recurrent Neural Network Language Model
» LSTM / GRU

> Vanishing / Exploding Gradient

GRU/LSTM ldeas

» Model that operates at multiple time scales

» some parts of the model operate at fine-grained time scales
and can handle small details.

» other parts operate at coarse time scales and transfer
information from the distant past to the present more
efficiently.

> Strategies

» addition of skip connections across time

» “leaky units” which integrate signals with different time
constraints

» removal of some of the connections used to model fine-grained
time sclae.

Gated Recurrent Unit

Is the problem with the naive transition function?
f(hi_1,x¢) = tanh(W |z¢] + Uhy_1 + b)
With it, the temporal derivative is
Ohiy1 UTc?ta,nh(a)

Ght aCL

It implies that the error must be backpropagated
through all the intermediate nodes:

T I\ T T

72

Gated Recurrent Unit

It implies that the error must backpropagate through
all the intermediate nodes:

U’ U' U’ U'
@T’ U U U

Perhaps we can create shortcut connections.

@ﬁg g§ e

Gated Recurrent Unit

Perhaps we can create adaptive shortcut connections.

OGEO= >0

f(hi—1,2¢) —ut@ht—l- (14 ut) © heq

Candidate Update h; = tanh(W [z] + Uhs_1 + b)
Update gate w; = o(W,, [x¢] + Uyhi—1 + by)

74
(+): element-wise multiplication

Gated Recurrent Unit

75

Let the net prune unnecessary connections adaptively.

B0 SO =56
_/'

f(hi—1,2) = ur © he + (1+u) ©hea
Candidate Update h¢ = tanh(W [z;] + U(ry ® hy—1) + b)

Reset gate r;, = o(W, 2] + U,.hs—1 + b,)
Update gate v, = o(W,, [x¢] + Uyhi—1 + by)

Gated Recurrent Unit

tanh-RNN

Registers h
e A Execution

— 1. Read the whole register h
— 2. Update the whole register

h < tanh(W [z] + Uh + b)

76

Gated Recurrent Unit

GRU ...

Registers h,

e Execution
1. Select a readable subset r

» 2. Read the subset r ® h
3. Select a writable subset U
e 4. Update the subset
_ heu®h+(1—u)Oh

Clearly gated recurrent units are much more realistic.

77

Gated Recurrent Unit

Two most widely used gated recurrent units

Gated Recurrent Unit Long Short-Term Memory
[Cho et al., EMNLP2014; [Hochreiter&Schmidhuber, NC1999;
Chung, Gulcehre, Cho, Bengio, DLUFL2014] Gers, Thesis2001]

ht = U ©® Bt + (]_ — ut) O) ht—l]’Lt =0+ ©® tanh(ct)

h=tanh(W 2] + U(ry @ he_y) +0) G =[tOc-1+1iO&

up = o (W [24] + Uyhi—1 + by,) ¢t = tanh(We [x¢] + Uchy—1 + be)
re = o(Wy [2e] + Uphyy + by) o0 = 0(Wo [ze] + Ushu—1 + bo)

1y = U(Wi [iUt] + Uhy—1 + bi)
fe = oWy |z + Ushy 1 + by)

78

Training an RNN

A few well-established + my personal wisdoms

vl b~ W N

79

Use LSTM or GRU: makes your life so much simpler

Initialize recurrent matrices to be orthogonal

Initialize other matrices with a sensible scale

Use adaptive learning rate algorithms: Adam, Adadelta, ...
Clip the norm of the gradient: “1” seems to be a reasonable
threshold when used together with adam or adadelta.

Be patient!
[Saxe et al., ICLR2014;

Ba, Kingma, ICLR2015;
Zeiler, arXiv2012;
Pascanu et al., ICML201 3]

Outline

> Review

» Language Modeling Task

> Feedforward Language Model

> Recurrent Neural Network Language Model
» LSTM / GRU

> Vanishing / Exploding Gradient

The vanishing/exploding gradient problem

e Multiplythe same matrix at each time step during backprop

Vi Vi Vir
ht—l T ht T ht+1 T
® W o W [
—> o 5“‘ —> ® —
0 e e
—>| @ O O
Xt-1 Xt Xt+1

Lecture 1, Slide 15 Richard Socher 4/21/16

The vanishing gradient problem - Details

e Similar but simpler RNN formulation:

]’Lt = Wf(ht_l) + W(hw)l'[t]
g = WO f(hy)

e Total error isthe sum of each error at time stepst

OB _ <~ 0B,
OW &= oW

t=1

e Hardcore chain rule application°

8Et Z 8Et 8yt 8ht 8hk

Lecture 1, Slide 16 Richard Socher 4/21/16

The vanishing gradient problem - Details

Similar to backprop but less efficient formulation

Useful for analysis we’ll Iook at:
8Et Z 8Et é?yt aht ahk
8yt 8ht 8hk ow

e Remember: he = WF(hi—1) + W(’“”):c[t]
e More chain rule, remember:
Ohy ‘o Oh,

6hk ki1 8hj_1
* Each partial is a Jacobian: (o0 Of1T
o _for o) U
dx 0xq ox,, % 8]‘%
| 01 ox,,
4/21/16

Lecture 1, Slide 17 Richard Socher

The vanishing gradient problem - Details

t

* From previousslide: % = (;Zhj
ko1 It
e Remember: h;, = Wf(ht—1)+W(hm)m[t]

e To computelacobian, derive each element of matrix:

t t

oy
Ohy

Oh,

(9hj_1 -

J:k+1 j:k:—|—1

L0

* Where: diag(z) =

Lecture 1, Slide 18 Richard Socher

he

= =][w"diag[f'(h;-1)]

A 4
0000

Ohj.m

8hj_1,n

Check at home

that you understand
the diag matrix
formulation

4/21/16

The vanishing gradient problem - Details

* Analyzing the norms of the Jacobians, yields:
Oh;
ahj_l
e Where we defined ‘s as upper bounds of the norms

< W ||| diag[f'(hj—]Il < Bw Bn

e The gradient is a product of Jacobian matrices, each associated
with a step in the forward computation.

ohy
Ohy,

— || < (Bwpn) "

e This can become very small or very large quickly [Bengio et al
1994], and the locality assumption of gradient descent breaks
down. =2 Vanishing or exploding gradient

Lecture 1, Slide 19 Richard Socher 4/21/16

Why is the vanishing gradient a problem?

e The error at a time step ideally can tell a previous time step
from many steps away to change during backprop

Yi-1 Vi Vir1

ht—l 1 Wht 1 ht+1 /1/
DA o W — @ .

e S e N

L o @

(0o00e| (0000| (0000

Lecture 1, Slide 20 Richard Socher 4/21/16

The vanishing gradient problem for language models

* |nthe case of language modeling or question answering words
from time steps far away are not taken into consideration when
training to predict the next word

e Example:

Jane walked into the room. John walked in too. It was late in the
day. Jane said hito

Lecture 1, Slide 21 Richard Socher 4/21/16

IPython Notebook with vanishing gradient example

e Example of simple and clean NNet implementation
e Comparison of sigmoid and ReLu units

e Alittle bit of vanishing gradient

Lecture 1, Slide 22 Richard Socher 4/21/16

In [21]: plt.plot(np.array(relu array[:6000]),color="blue’)
plt.plot(np.array(sigm array[:6000]),color="green')
plt.title('Sum of magnitudes of gradients -- hidden layer neurons')

Out[21]: <matplotlib.text.Text at 0x10a331310>

10 Sum of magnitudes of gradients -- hidden layer neurons

T

0

0 1000 2000 3000 4000 5000 6000

Lecture 1, Slide 23 Richard Socher 4/21/16

Trick for exploding gradient: clipping trick

e The solutionfirst introduced by Mikolov is to clip gradients
to a maximum value.

Algorithm 1 Pseudo-code for norm clipping the gra-

dients whenever they explode
88

g <
if ||g|] > threshold then
threshold ~
&< gl 8
end if

e Makes a bigdifference in RNNs.

24

Gradient clipping intuition

25

Figure from paper:
On the difficulty of
'0.35 training Recurrent Neural
'0.30 Networks, Pascanu et al.
'0.25 L 2013
'0.20 £
Q
0.15

'0.10
'0.05

Error surface of a single hidden unit RNN,

High curvature walls

Solid lines: standard gradient descent trajectories

Dashed lines gradients rescaled to fixed size
Richard Socher 4/21/16

For vanishing gradients: Initialization + RelLus!

Pixel-by—pixel permuted MNIST
100 T T T T T

—‘LSTM‘
e 1 *)e Pl T A ot

* I|nitialize W")'s to wol| —— i
identity matrix |
and

f(z) =rect(z)=max(z,0) &

e = Huge difference! i’[;?‘““" '

0 1 2 3 4 5 6 7 8 9 10

* |Initializationidea first introduced in Parsing with Compositional
Vector Grammars, Socher et al. 2013

 New experiments with recurrent neural nets 2 weeks ago (!) in
A Simple Way to Initialize Recurrent Networks of Rectified
Linear Units, Le et al. 2015

26 Richard Socher 4/21/16

Conclusion

v

Language Modeling Task

v

Feedforward Language Model

v

Recurrent Neural Network Language Model

LSTM / GRU

v

v

Vanishing / Exploding Gradient

» Thank you for your attention!!

References

» Richard Socher’s ipython code for vanishing gradient problem:
http://cs224d.stanford.edu/notebooks/vanishing grad_ example

> Various optionsation algorithms (Alec Radford):
http://www.denizyuret.com/2015/03/alec-radfords-animations—f

