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Abstract

All state of the art statistical machine translation systeand many example-based
machine translation systems depend on an annotation of-keetl translational cor-
respondence between sets of parallel sentences. Such atatzom of two parallel
sentences is called a “word alignment”. The largest numibenanually annotated
word alignments currently available to the research conitydar any pair of lan-
guages consists of alignments for only thousands of paissigtences, even though
there are several orders of magnitude more parallel sesdem@ilable. For instance,
for the task of translating Chinese news articles to Engtisére are currently on the
order of 10 million parallel sentences. This is too many famnmmal alignment, so they
must be automatically word aligned.

Unsupervised word alignment systems generate poor qudiggments, often us-
ing statistical word alignment models developed over 10y@go, but most recent
research into improving word alignments has not led to imedotranslation. There

are several reasons for this:



1. There is no good metric which can be used to automaticadlysure word align-

ment quality for the translation task.

2. Statistical word alignment models are based on assungpébout the structure

of the problem which are incorrect.

3. Itis difficult to add new sources of linguistic knowledgechuse many current

systems must be completely reengineered for each new kdge/kource.

4. Statistical models of word alignment are most often ledrim an unsupervised

training process which is unable to take advantage of atettiata.

This thesis remedies these problems by making contribsitiothe following three

areas:

1. We have found a new method for automatically measurirggalent quality us-
ing an unbalanced F-Measure metric (Fraser & Marcu, 200Wg.have vali-
dated that this metric adequately measures alignmenttgdiatithe translation
task. We have shown that the metric can be used to derive &ulosison for dis-
criminative training approaches, and it is useful for meaguprogress during

the development of new word alignment procedures.

2. We have designed a new statistical model for word aligriwedied LEAF (Fraser

& Marcu, 2007a), which directly models the word alignmemtisture as it is



used for machine translation, in contrast with previous et®evhich make un-

reasonable structural assumptions.

3. We have developed a semi-supervised training algorithen EMD algorithm
(Fraser & Marcu, 2006), which automatically takes advaatafgvhatever quan-
tity of manually annotated data can be obtained. The useedEMD algorithm

allows for the introduction of new knowledge sources witmimial effort.

We have shown that these contributions improve state ofrtretatistical machine

translation systems in experiments on challenging larde skts.

Xi



Chapter 1

Motivation

1.1 The Word Alignment Problem

Word alignment is the problem of determining translatia@lespondence at the word
level given a pair of sentences, one of which is a translaifdhe other. The graph in
Figure 1.1 shows a word alignment of a pair of parallel ses#sriaken from the LDC
Canadian Hansards corpus, which consists of English ancFocuments. In this
dissertation we will consider the task of automatically @ating word alignments.
Automatically aligning word level translational corresglence in parallel sentences
S0 as to be able to learn translation rules of high quality eéhalenging problem in
terms of both accuracy and tractability. Most of the culsesticcessful approaches

used in conjunction with state of the art statistical maehiranslation systems use



20 20

the le them——————— le
prime premier primg=—————————— premier
minister ministre minister =————————— ministre
and et anf=—————— et
the le them——————— le
cabinet cabinet
do ne
naot désirent
want pas

to/dépenser
spend cet

/argent
maney en

colombie
british =
calumbia britannique

Figure 1.1: French/English gold standaréigure 1.2: French/English gold standard
word alignment word alignment (solid lines) and system
hypothesis (dashed lines)

statistical models of carefully crafted generative s®idiich are trained using unsu-
pervised learning methods. The task of automatic word aligmt is very different from
the automatic translation task. In automatic translatieaare trying to generate a rea-

sonable translation, which does not necessarily attempiitiaic all the complexities



of human behavior. In automatic word alignment, on the oftfaerd, we must annotate
an original sentence and whatever humans chose to prodaceasslation.

The research community has recently become very interestegbroving the qual-
ity of automatic word alignment, as evidenced by a large remd§ recent papers
beginning with Al-Onaizan et al. (1999), and in particulaotworkshops featuring
shared word alignment tasks, WPT03 (Mihalcea & Pedersorg)2etd WPTO5 (Mar-
tin et al., 2005). One reason for this is that word alignmemes critical to building
statistical machine translation (SMT) systems. For instathe estimation of phrase-
based SMT models (Koehn et al., 2003) such as those implech@nthe Alignment
Templates system (Och & Ney, 2004) and Moses (Koehn et &.)2®lies on word
alignments. Syntactic SMT models (Galley et al., 2004; &adit al., 2006; Melamed,
2004; Chiang, 2005; Quirk et al., 2005; Zollmann & Venugof24l06) also require
word alignments. Phrase-based and syntactic SMT modeaissent the state of the art
in SMT, and therefore improving automatic word alignmerdansmportant endeavor.

Word alignment techniques are not only used in translatoi,in fact to acquire
knowledge in virtually all trans-lingual tasks: Cross-Lirgg Information Retrieval
(Hiemstra & de Jong, 1999; Xu et al., 2001; Fraser et al., 002ns-lingual Coding
(sometimes referred to as annotation projection) (Yargwetkal., 2001; Hwa et al.,
2002), Document Alignment (Resnik & Smith, 2003), Sententigmnent (Moore,

2002), Extraction of Parallel Sentences from Comparable @arfMunteanu et al.,



2004; Fung & Cheung, 2004), etc. Many approaches to mondingisks also take
advantage of knowledge learned from word alignments. Sommples are summa-
rization (Daung Il & Marcu, 2005), query expansion for monolingual infation
retrieval (Xu et al., 2002; Riezler et al., 2007), paraphm@gPang et al., 2003; Quirk
et al., 2004; Bannard & Callison-Burch, 2005), grammar induc{iKuhn, 2004), etc.
The focus of this dissertation is on improving translatibut it is likely the work de-
scribed here will benefit the other tasks mentioned as wellthA current time, the
word alignment models developed for annotating transiaticorrespondence are the
same models used in approaches to exploiting corpora ofiglasantences for all of
these tasks.

Automatic word alignment is not a solved problem. Many MTteyss are trained
in an alignment process based on the IBM Model 4 word alignmardel (Brown
etal., 1993). This process involves post-processing theubof Model 4 using heuris-
tics. When evaluated on properly annotated gold standartdifigrench data, which
is a relatively easy language pair for automatic word aligntrsystems, this approach
has only69% balanced F-measure. F-measure is a trade-off between ttavgacalled
Precision and Recall. Precision is the percentage of the livik hypothesized which
are actually correct, and Recall is the percentage of thecolinks which we hypoth-
esized. Balanced F-Measure is the geometric mean of theseumbers. The graph

in Figure 1.2 shows a gold standard annotation and a hype#teannotation (marked



by a dashed line). Note the errors. English “do not” shoul@ligned to French “ne”
and “pas” but “not” is aligned to “ne” while “do” is not aligie The words “to spend”
should be aligned to ‘&penser”, but only “spend” is aligned to&denser”. The word
“british” is aligned to “colombie” and “columbia” is aligrteto “brittanique”. The
Precision of this hypothesized alignment, the number ofexbly hypothesized links
over the total number of hypothesized links18/15. The Recall of the hypothesized
alignment, the number of correctly hypothesized links akiemumber of correct links,
is 13/19. Balanced F-Measure (the geometric mean of Precision andIRisc&r %,
meaning that this hypothesis is better than the averagetiggis from this system.
The desire to improve automatic word alignment systemshabthere are less errors
like these and therefore better machine translation padace is obtained, motivates

our work.

1.2 Problems with Current Practices in Word Alignment

1.2.1 Building Translation Systems with Word Alignments

Before we can show the problems with the most widely used wersiged word align-
ment approach for statistical machine translation (SME) need to briefly outline how

SMT systems use word alignments.



SMT systems are usually broken down into two types of modtd, ttanslation
model, which is a model of translational correspondenceéen the source and target
languages, and the language model, which is a model of wetidd sentences in the
target language. To translate a new source sentence, wédoalprobability maxima
of these two models, i.e. we search for a target string whadboth a good mapping
of the source string into a target string and is also a welafx target sentence. The
translation model is estimated using a word alignment otexb{a corpus of aligned
sentences in the source and target languages). The langwatg is estimated from
monolingual target language text. For further details oildimng SMT systems using

alignments see Appendix B.1.

1.2.2 Unsupervised Alignments are Not the Best Alignments Possible
for Translation

We would like to substantiate the claim that improved alignis will lead to improved
MT systems. We show that there exist alignments of a fixeckbitdich are signifi-
cantly better for translation than the alignments gendriayeour unsupervised baseline
system. We generate the improved alignments by using arl&jra system which
tells our alignment system how to improve the alignmentsnaws how to do this by
“cheating”. We measure statistical machine translatiafiopmance both when using
our baseline alignment system, and compare this with usimgeak oracle” in Figure

6
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Figure 1.3: Comparison of baseline with a weak oracle showiagit is possible to
improve MT performance by improving word alignment

1.3. We do this by using the BLEU metric (Papineni et al., 200&)ich is an auto-
matic translation evaluation metric which measures tediwsi quality. BLEU has been
shown to correlate well with human judgments of quality. Tim@roved alignments
from the “weak oracle” result in a BLEU score of 26.36; this i8@points better than
the baseline which is a large improvement. This shows thataring alignments can
improve machine translation performance. See Appendixd.a fletailed explanation
of this experiment. Even determining a good oracle for tinebfem is difficult. Our

“weak oracle” is not the upper bound on performance. Givéimite computational

resources we could find a “strong oracle” which would haveebogierformance. We
graphically depict this in the figure as well but note thatBh&U score such a “strong
oracle” could obtain is unknown. We show later in the disg#eyh how to obtain im-

proved word alignments without using an oracle.



1.2.3 Existing Metrics Do Not Track Translation Quality

There have been many research papers presented at ACL, NAACL.,GOLING,
WPTO03, WPTO5, etc, outlining techniques for attempting toease word alignment
guality. However, although there are many results wherdignraent system has suc-
cessfully increased the score according to intrinsic roewf word alignment quality,
very few of these approaches has been shown to result inedarg in translation per-
formance. We show that this is because the two intrinsic vadighment quality met-
rics commonly used do not measure how useful alignmentsoarteainslation. These
metrics are balanced F-Measure (Melamed, 2000) and AlighiEeor Rate, or AER,
(Och & Ney, 2003). We calculate the correlation betweendhmastrics and the BLEU
metric, and show that this correlation is low. A concise reathtical description of
correlation is the coefficient of determinatiort), which is the square of the Pearson
product-moment correlation coefficient)( For an alignment task using a commonly
studied French/English data set,= 0.16 for the Alignment Error Rate (AER) metric,
showing a low correlation with BLEU. For the same task and &atian, balanced F-
Measuré hasr? = (.20, which also shows a low correlation with BLEU, see Chapter

2 for more details.

IThis metric is referred to as “balanced F-Measure with Rlosgible” later in the
dissertation, see Chapter 2.



Chapter 2 presents a metric which has a high correlation witBUBLT his metric is
shown to allow the derivation of an effective loss function$emi-supervised training

in Chapter 4.

1.2.4 Existing Generative Models Make False Structural Assumptions

Our objective is to automatically produce alignments whiah be used to build high
guality machine translation systems. These are presunoidsg to the alignments that
trained bilingual speakers produce. Human annotatedrabgits often contain M-to-N
alignments, where several source words are aligned toadaeget words and the re-
sulting unit can not be further decomposed. Source or tavgeds in a single unit are
sometimes non-consecutive. Unfortunately, existing ggive alignment models can
not model these alignments, because they make unrealsstiorgotions about align-
ment structure.

Word alignments define minimal single or multi-word unitstwo parallel sen-
tences which correspond to one another, which we will capts” following Brown
et al. (1993). Alignments for two examples (created by song sentences observed
in “development” data) are shown in Figures 1.4 and 1.5. Weentrate on several
interesting minimal translational correspondencesdigteTable 1.6. The first two are
taken from Figure 1.4 and the second two are taken from Figj&eWe now discuss

the different alignment structure assumptions which haenbmade in previous work.
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Figure 1.4: French/English gold standar&igure 1.5: French/English gold standard
word alignment, example 2

word alignment, example 1

dépenser

should

faudrait

take HATTITET
a erieusemernt
hard ette
look "A1S0T1
at

thi

justification

English Cept| French Cept| 1-to-1 | 1-to-N | M-to-1 | phrase-based M-to-N discontinuous
do not ne pas v
to spend dépenser v v v
we should il faudrait v v
take a look at examiner v v

Figure 1.6: The impact of alignment structure assumptions

The use of the 1-to-N assumption is widespread, probablgusecof the success

of the IBM word alignment models (Brown et al., 1993). 1-to-Myaments are align-

ments where one English word is aligned to zero or more Fravwlds, which need

not be consecutive. Consider the 1-to-N alignment columnaiplel 1.6. In the first

row, we see an example alignment which the IBM models are riettalmodel. The

English cept: “do not” is aligned to the French cept: “ne as’p(which is a French

negation construction), this is taken from Example 1 in Fegll.4. This requires a

10



many to many, discontinuous alignment. This can not be neodeécause under the
1-to-N assumption the English cept “do not” can not be matlaka unit. In fact, the
1-to-N assumption can not be used to model any of the multdvpbirase mappings
we have shown in Table 1.6. Of course, we can flip the directrahtrain such that one
French word is aligned to zero or more English words. Howawgon examining the
M-to-1 column of Table 1.6, it becomes obvious that this agstion is also unsatis-
factory. Many other generative models use the 1-to-N assampncluding the HMM
model (Vogel et al., 1996) and other models based on the HMMlatdor example the
work of Toutanova et al. (2002), Lopez and Resnik (2005) antbzand Byrne (2005).
What is done in practice in systems using the 1-to-N assumpfiche IBM mod-
els is that the models are trained in both directions (EhglisFrench and French to
English) and then “symmetrized” using a heuristic (Och & N2§03; Koehn et al.,
2003). If we allow ourselves to consider the best possilbie-ll-and M-to-1 align-
ments in Figures 1.4 and 1.5, can see several ways we mighstieally combine a
1-to-N alignment with a M-to-1 alignment. However, for malisparate language pairs
(or longer French/English sentences), itis increasingficdlt to do this correctly. The
use of a symmetrization heuristic also makes it problentatéalculate the probability
of a final combined alignment as it is unclear how to combimepitobabilities assigned

by the two models.

11



There has also been a large amount of work on generativenadighmodels which
model 1-to-1 word alignment structure (for instance theknafr\Wu (1997), Melamed
(2000), Ahrenberg et al. (2000), Cherry and Lin (2003) anahgiat al. (2006)). None
of the examples we have chosen in Table 1.6 can be modeledhigtstructure. These
models have not been shown to perform for translation at tladity level of heuristic
symmetrization of the 1-to-N and M-to-1 alignments produasing the IBM models.
The claims made about the alignment quality for translatbthese techniques are
not well founded because they are based only on intrinsicicsevhich unfortunately
do not track how useful the generated alignments are foskation (as we discussed
already in Section 1.2.3). 1-to-1 alignments are not géiyaraed in practice to build
machine translation systems.

Another common assumption is the phrase-based assumpftioch) is also used
in translation in phrase-based MT systems (Och & Ney, 200zeh et al., 2003).
This assumption allows multiple word units to align to onether, but enforces the
constraint that all words must be consecutive. For exampége Joint model (Marcu
& Wong, 2002) typically aligns short segments of conseeutiords to each other
obeying this assumption. These models do not model disuomis alignments. As
shown in Table 1.6, this structure cannot be used to aligfirte.. pas” or “take a ...
hard look” cepts in Examples 1 and 2 because they have gagsominuous align-

ments are important to achieve the best possible perforeartcanslation. The strong
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performance of the Hiero SMT model (Chiang, 2005), which s discontinuous
alignments directly in the translation process, offergdlirevidence to support this.
Interestingly, even phrase-based SMT systems, which exad less flexible than hi-
erarchical SMT systems in that they do not allow gaps in ttvamslation rules, fair
poorly when they are built from alignments which obey thegglerbased alignment
assumptiof That even phrase-based SMT systems benefit from discousnalign-
ments offers further evidence that discontinuous aligrtsare important to translation
performance.

Since 2005 there have been a number of discriminative mactetsiuced for the
word alignment problem. Surprisingly, these models hatfersad from the same struc-
tural assumptions. These models have either themsehadlgirequired an unreason-
able structural assumption, such as the work of Ittycheaiadh Roukos (2005), Taskar
et al. (2005), Liu et al. (2005), Fraser and Marcu (2006), Bum and Cohn (2006)
and Lacoste-Julien et al. (2006), or they have used featléged from a generative
model implemented with such a structural assumption inrai@ebtain the best per-

formance, examples include the work of Ayan and Dorr (200Bagoste-Julien et al.

2For example, a phrase-based SMT system can not learn botihéh&nglish cept
“hard” translates as French “serieusement” and that thenmommal “take a hard look
at” translates as “examiner serieusement” in Figure 1.fessnthe alignment is able
to represent the gap in the English cept “take a ... look aliictvviolates the phrasal
alignment assumption.
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(2006) and Moore et al. (2006). We will discuss discrimiwatimodels in detail in
Chapter 4 and focus in particular on the structural assumpticade.

The inability of current generative models to model manyriany discontinuous
alignments is an important deficiency. We correct this pobl Our new genera-
tive model, LEAF, is able to model alignments which consisinany-to-many non-
consecutive minimal translational correspondences ttiretithout the use of heuris-
tics. LEAF is presented in Chapter 3. We show how to derivaufeatfrom LEAF for

use in a discriminative model in Chapter 4.

1.2.5 Many Existing Training Techniques Can Not Take Advantage
of Manually Annotated Data

Until recently, start of the art translation systems weanid using an unsupervised
training process which did not take advantage of manualhotated data. If we have
access to a small amount of annotated word alignment dataawehift from view-
ing alignment as an unsupervised problem to viewing aligritras a semi-supervised
problem. In the last few years, this has become an activeasedo-of word alignment
research, but the advances according to various intringrd alignment metrics have
not been shown to result in increased machine translatidorpgance. Many research

groups have continued to use unsupervised techniques ¢éoagerwvord alignments. As
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we will show in Chapter 2, this is because the loss criteriadpesed do not reflect the
usefulness of the generated alignments for machine ttaosla

In Chapter 4 we show that the alignment quality metric we widlgent in Chapter
2 is useful in the derivation of a loss function for use in senpervised training. If
we have access to a small aligned set (we use up to 1,000 &ethetmntence pairs), we
can train a small number of important parameters direatig,discriminatively smooth
richer sub-modefswhich would otherwise not be robustly estimated. If we haseeas
to even more annotated data (we recently acquired data wesreave up to 25,000
sentences), we can learn more parameters directly, buistlsidl only a fraction of
the total parameters we need to align large corpora (foamt&t, we currently work
on a task which involves aligning 10,000,000 parallel seces which requires a very
large number of parameters, most of which can not be estihieden a small corpus
of 25,000 sentences).

We formulate a new model which is trained in a semi-supedviashion in Chapter
4. This model uses rich features derived from our new geeratodel LEAF, but also
allows for the easy integration of new knowledge sourceskwiiould be difficult to

add to a generative story. This leads to large increasesitalignment accuracy (up

3Sub-models are sometimes also referred to as featuredusdti the literature. We
call them sub-models in our framework as a reminder that thegnselves frequently
have parameters which are estimated empirically.
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to 9 F-score points) and translation accuracy (improvemeitp to 2.8 BLEU points)

over strong baselines.

1.2.6 It is Difficult to Add New Knowledge Sources to Generative

Models

Current generative models depend on complex generativiestohich must be com-
pletely reengineered each time a new knowledge source idadidocking the easy
introduction of new sources of linguistic knowledge to oy translation.

Consider again Figure 1.2. One problem with the hypothesidigdment is that
“british” is aligned to “colombie” and “columbia” is aligreto “brittanique”. If we
were able to easily incorporate a knowledge source whicl ageng similarity into
our alignment model we might be able to overcome this probl@show in Chapter
4 how to integrate a state of the art transliteration modetusr the transliteration
of names from Arabic to English. We also show how to incorpoi@ small fully
supervised model estimated from 25,000 sentences, as wasdes] in the previous
section. Most of the approaches to discriminative wordratignt models presented in
the last two years, for example the work of Liu et al. (2008),cheriah and Roukos
(2005), Taskar et al. (2005), Ayan and Dorr (2006b), Lacdsteen et al. (2006),

Fraser and Marcu (2006), Blunsom and Cohn (2006) and Moore €R@D6), have
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also addressed the problem of integrating disparate kmigelsources, which shows

its importance.

1.3 Dissertation Approaches in Brief

We have shown that improvements in word alignment qualitytegp MT performance
in Section 1.2.2. We present the problems we address anggteaches to solving

them in brief:

1. As we discussed in Section 1.2.3, existing metrics fordvadignment quality do
not predict translation quality. To address this shortemmive describe a method
for automatically measuring alignment quality which isated to improvements
in resulting translation quality. Determining how to me@sword alignment

quality for automatic translation is addressed in Chapter 2.

2. As shown in Sections 1.2.4, existing generative model&évd alignment make
false structural assumptions. To address this problempmwpeave word align-
ment modeling by designing a statistical model which dlyegtodels the full
structure of the word alignment problem. Improving wordyatnent modeling

with better structure is addressed in Chapter 3.
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3. Asdiscussed in Section 1.2.5 and 1.2.6 respectivelgtiegitraining techniques
for word alignment models will not allow us to take advantagmanually anno-
tated word alignments, and do not allow for easy integratibonew knowledge
sources. To address this issue, we develop a new semi-&gxetvaining al-
gorithm. This algorithm automatically takes advantage batever quantity of
manually annotated data can be obtained, allows for thestdkaining of pow-
erful models, and enables an easy integration of new kn@eledurces. Im-
proving word alignment training using semi-supervisedre® is addressed in

Chapter 4.
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Chapter 2

Intrinsic Metrics for Measuring the Quality of Word

Alignment for Translation

Automatic word alignment plays a critical role in statisfimachine translation. Unfor-
tunately the relationship between alignment quality aatisiical machine translation
performance has not been well understood. In the recerdtiites, the alignment task
has frequently been decoupled from the translation taskaasdmptions have been
made about measuring alignment quality for machine tréinslavhich, it turns out,
are not justified. In particular, none of the tens of papetsiphed over the last five
years have shown that significant decreases in Alignmemr Rate, AER (Och &
Ney, 2003), result in significant increases in translatierfgrmance. We explain this
state of affairs and present a method for measuring alighmeality in a way which is

predictive of statistical machine translation performranc
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2.1 Introduction

Automatic word alignment (Brown et al., 1993) is a vital compnt of all statistical
machine translation (SMT) approaches. There were a nunibvesearch papers pre-
sented from 2000 to 2005 at ACL, NAACL, HLT, COLING, WPTO03, WPTO0%;,e
outlining techniques for attempting to increase word atignt quality. Despite this
high level of interest, none of these techniques has beemrstworesult in a large gain
in translation performance as measured by BLEU (Papinerii,é2@01) or any other
translation quality metric. We find this lack of correlatiogtween previous word align-
ment quality metrics and BLEU counter-intuitive, becauseamd other researchers
have measured this correlation in the context of buildinglyistems that have bene-
fited from using the BLEU metric in improving performance ireopevaluations such

as the NIST evaluation's.

1Since in our experiments we use BLEU to compare the performahsystems
built using a common framework where the only differencénesword alignment, we
make no claims about the utility of BLEU for measuring tratislaquality in absolute
terms, nor its utility for comparing two completely diffeiteMT systems. We only
assume that BLEU tracks translation quality differencesediby the effects of dif-
ferent word alignments of a fixed bitext. This is a much lessegal assumption than
assuming that BLEU can be used to compare, for instance, @asked system and
a statistical machine translation system, or two statistitachine translation systems
which were trained on differing bitext and/or monolinguattt We argue that any sys-
tematic changes to the alignments which result in better BE&tses on an unseen test
set (i.e. changes which are made without examination oftésatset) must be viewed
as improvements to the alignments for the automatic tréasléask.
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We confirm experimentally that previous metrics do not preELEU well and de-
velop a methodology for measuring alignment quality whgpredictive of BLEU. We
also show that AER is not correctly derived from F-Measure igrtherefore unlikely

to be useful as a metric.

2.2 Experimental Methodology

2.2.1 Data

To build an SMT system we require a bitext and a word alignroétitat bitext, as well
as language models built from target language data. In @uoexperiments, we will
hold the bitext and target language resources constangrapdary how we construct
the word alignment.

The gold standard word alignment sets we use have been rmaaoabtated us-
ing links between words showing minimal translational espondences. Links which
must be present in a hypothesized alignment are called *8nks. Some of the align-
ment sets also have links which are not “Sure” links but ares$ble” links (Och &
Ney, 2003). “Possible” links which are not “Sufefhay be present but need not be

present.

2“Sure” links are by definition also “Possible”.
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We evaluate the translation performance of SMT systemsdmngkating a held-out
translation test set and measuring the BLEU score of our hgsated translations
against one or more reference translations. We also havedstional held-out transla-
tion set, the development set, which is employed by the MTesygo train the weights
of its log-linear model to maximize BLEU (Och, 2003). We worklwdata sets for
three different language pairs, examining French to Ehghsabic to English, and
Romanian to English translation tasks.

The training data for the French/English data set is takem fihe LDC Canadian
Hansards data set, from which the word aligned data (predéxytOch and Ney (2003))
was also taken. The English side of the bitext is 67.4 milamds. We used a separate
Canadian Hansards data set (released by ISI) as the souheetdnslation test set and
development set. We evaluate two different tasks usingithtis, a medium task where
1/8 of the data (8.4 million English words) is used as the filzgelxt, and a large task
where all of the data is used as the fixed bitext. The 484 seesan the gold standard
word alignments have 4,376 Sure Links and 19,222 Possiiis.liSee alignment set A
in Table 2.1 for the data statistics (note that alignmerg Besind C will be introduced

later).
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Table 2.1: French/English Dataset

FRENCH ENGLISH
SENTENCES 355,273
MEDIUM TRAINING WoRDS | 9,487,633 8,438,050
VOCABULARY 65,239 49,121
SINGLETONS 25,622 19,253
SENTENCES 2,842,184
L ARGE TRAINING WORDS | 75,794,254 67,366,81_9
VOCABULARY 149,568 114,90
SINGLETONS 60,651 47,765
TRANSLATION DEV SENTENCES 833
WORDS 20,562 17,454
TRANSLATION TEST SENTENCES 2,380
WORDS 58,990 49,182
SENTENCES 484
WORDS 8,482 7,681
ALIGNMENT SETA SURE L INKS 4.376
PoOsSIBLELINKS 19,222
SENTENCES 110
ALIGNMENT SET B WoRDS 1888 1,726
SURE LINKS 1,037
POSSIBLELINKS 3,989
SENTENCES 110
ALIGNMENT SETC WORDS 1,888 1,726
SURE LINKS 2,292

The Arabic/English training corpus is the data used for th8TN2004 machine
translation evaluatioh The English side of the bitext is 99.3 million words. Thensa
lation development set is the “NIST 2002 Dry Run”, and the $esis the “NIST 2003
evaluation set”. We have annotated gold standard aligrsrienfL00 parallel sentences
using Sure links, following the Blinker guidelines (Melame&®98) which calls for

Sure links only (there were 2,154 Sure links). Here we alsorere a medium task

Shttp://www.nist.gov/speech/tests/summaries/2004uohton
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Table 2.2: Arabic/English Dataset

ARABIC ENGLISH
SENTENCES 482,965
MEDIUM TRAINING WOoRDS | 11,218,869 12,424,253
VOCABULARY 185,441 77,298
SINGLETONS 81,565 34,645
SENTENCES 3,863,718
L ARGE TRAINING WoRDS | 89,705,083 99,326,492
VOCABULARY 426,746 191,349
SINGLETONS 143,552 77,430
TRANSLATION DEV SENTENCES 203
WORDS 5,039 6.4K10 7.0K
TRANSLATION TEST SENTENCES 663
WORDS 16,491 19.0Kro21.7K
SENTENCES 100
ALIGNMENT SET WORDS 1,747 2,029
SURE LINKS 2,154

2.2 for the data statistics.

using 1/8 of the data (12.4 million English words) and a laegk using all of the data.
Note that we had four references available for the tramsiatest set and translation
development set (used for training Maximum BLEU), which wakal the use of less
test sentences than for the other data sets where we usedamgehtranslation devel-

opment and test sets because we only had access to one cefereatslation. See Table

The Romanian/English training data was used for the tasks omaRian/English
alignment at WPTO03 (Mihalcea & Pederson, 2003) and WPTO5 (Mattal., 2005).
We carefully removed two sections of news bitext to use agrémeslation development

and test sets. The English side of the training corpus isO@®4yords. The gold
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Table 2.3: Romanian/English Dataset

ROMANIAN  ENGLISH
SENTENCES 45,241
SMALL TRAINING WORDS 913,806 963,615
VOCABULARY 44,390 24,918
SINGLETONS 18,865 8,473
TRANSLATION DEV SENTENCES 800
WORDS 15,864 16,896
TRANSLATION TEST SENTENCES 2,400
WORDS 46,740 48,758
SENTENCES 148
ALIGNMENT SET WORDS 2,773 2,875
SURE LINKS 3,181

standard alignment set is the first 148 annotated senteseddar the 2003 task (there

were 3,181 Sure links). For the data statistics see Table 2.3

2.2.2 Measuring Translation Performance Changes Caused By Alignment

In phrased-based SMT (Koehn et al., 2003) the knowledgecsswvhich vary with the
word alignment are the phrase translation lexicon (whicpssurce phrases to target
phrases using counts from the word alignment) and some ofdne level translation
parameters (sometimes called lexical smoothing). Howewany knowledge sources
do not vary with the final word alignment, such as scores assigising IBM Model
1, N-gram language models and the length penalty. In ourrgrpats, we use a state
of the art phrase-based system, similar to (Koehn et al.3200he weights of the

different knowledge sources in the log-linear model usedby system are trained
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using Maximum BLEU (Och, 2003), which we run for 25 iteratiandividually for
each system. Two language models are used, one built ugihgrget language training

data and the other built using additional news data.

2.2.3 Generating Alignments of Varying Quality

We have observed in the past that generative models use@fistisal word alignment
create alignments of increasing quality as they are expimsetbre data. The intuition
behind this is simple; as more co-occurrences of sourceaaigdts words are observed,
the word alignments are better. If we wish to increase thditgjuat a word alignment,
we allow the alignment process access to extra data whiclkdad only during the
alignment process and then removed. If we wish to decreaseguhlity of a word
alignment, we divide the bitext into pieces and align theggeindependently of one
another, finally concatenating the results together.

To generate word alignments we use GIZA++ (Och & Ney, 2003jictvimple-
ments both the IBM Models (Brown et al., 1993) and the HMM woidrahent model
(Vogel et al., 1996). We use Model 1, HMM, and Model 4 in thadear The output
of these models is an alignment of the bitext which projecis language to another.
GIZA++ is run end-to-end twice. In one case we project theamlanguage to the tar-
get language (producing the “1-to-N” alignment), and inakiger we project the target

language to the source language (producing the “M-to-Inatient). The output of

26



GIZA++ is then post-processed using the three “symmetandteuristics” described
by Och and Ney (2003), “Union”, “Intersection” and “Refined\e evaluate our ap-
proaches using these heuristics because we would like tmattor alignments gener-
ated in different fashions. These three heuristics werd asehe baselines in virtually
all recent work on automatic word alignment, and many of tbst ISMT systems use
these techniques as well.

The “Union” heuristic simply combines the links in the 1#tbalignment with the
links in the M-to-1 alignment, and usually has a higher reban either of the starting
alignments. The “Intersection” heuristic takes only thiiskes occurring in both align-
ments, and usually results in a higher precision than edhére starting alignments.
The “Refined” symmetrization heuristic starts from the iséstion of the two align-
ments and adds links from the union, and usually has highesigion than the union
of the 1-to-N and M-to-1 alignments and higher recall tham ititersection of these
alignments.

We describe the “Refined” symmetrization heuristic in furttetail. The first step
in applying the heuristic is to take the intersection of the-IN and M-to-1 alignments
and store the links into a set. We then take the union of the 1-to-N and M-to-1
alignments and subtract, resulting in a setd’ of the links in only one of the two
alignments. Each link id’ is then considered for addition tb A link (4, j) connecting

the source word at positiohwith the target word at position is added toA if a
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“neighboring” link is already inA, and subject to an additional constraint which we
will describe. The “neighboring” links tdi, j) are the links(i,j + 1), (i,7 — 1),
(t+ 1,7) and (i — 1,7). The constraint is that the addition ¢f, j) must not result
in A containing any link(¢’, ) such that both the source word #tand the target
word atj’ are involved in more than one link id. Once no further link addition can be
performedA is returned as the result. In practice, an implementatipaeds outwards
from each link in the intersection, and requires definingplboé order in which the links
in the intersection are visited, and the order in which thghm®ors to a visited link are
checked for addition. The usage of the “Refined” symmetazalieuristic results in a
symmetrized alignment consisting of minimal translati@mmrespondences which are
either 1-to-N or M-to-1 and consist of consecutive words/onl

In this work, when applying the “Union” symmetrization hestic we take the tran-
sitive closure of the bipartite graph created, which resimtfully connected compo-
nents indicating minimal translational correspondéngdl of the alignments in Figure
2.1 are equivalent from a translational correspondencgpetive and the first two will
be mapped to the third in order to ensure consistency betiteenumber of links an

alignment has and the translational equivalences licelbgdidat alignment.

“We have no need to do this for the “Refined” and “Intersectiairistics, because
they only produce alignments in which the components asadir fully connected.
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Figure 2.1: All of these alignments are equivalent from agfational correspondence
perspective

2.3 Word Alignment Quality Metrics

2.3.1 Alignment Error Rate is Not a Useful Measure

We begin our study of metrics for word alignment quality bgtieg Alignment Error
Rate (AER) (Och & Ney, 2003). AER requires a gold standard minaanotated
set of Sure links and Possible links (referred toSaand P). Given a hypothesized

alignment consisting of the link set, three measures are defined:

PrecisionA, P) = |P|2|A| if (JA/ > 0), 1 otherwise (2.1)
RecallA, S) = |S|2|A| if (/S/ >0), 1 otherwise (2.2)
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AER(A, P, S) =1 if ((/S/+/A/) >0), 0 otherwise
(2.3)

Och and Ney’s definition of Precision measures the percertéginks in our hy-
pothesized set which are Possible (note that Precisioredses from 1 only as links
which are not even Possible are hypothesized, and noteltisatra links are by defini-
tion Possible). Recall measures the percentage of the Intkeei Sure set which have
been hypothesized (note that Possible links may either pethgsized or not hypoth-
esized, this does not affect Recall). In order for a hypothesbe 100% correct (i.e.
have Precision=1 and Recall=1), all of the links in the Suteraest be hypothesized,
and any additional links hypothesized must be in the Passit.

In our graphs, we will present— AER so that we have an accuracy measure.

We created alignments of varying quality for the medium EhéEnglish training
set. We broke the parallel text into separate pieces canespg to 1/16, 1/8, 1/4 and
1/2 of the original parallel text to generate degraded atignts, and we used 2, 4, and
8 times the original parallel text to generate enhancedhadgnts. In all cases we use

only the alignment of the original parallel text to build a MYystem for measuring

BLEU. For the “fractional” alignments we report the averageR\of the pieces

SFor example, for 1/16, we perform 16 pairs of alignments (a phalignments
is a 1-to-N alignment and a M-to-1 alignment), each of whietiudes the full gold
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The graph in Figure 2.2 shows the correlationlef AER with BLEU. High cor-
relation would look like a line from the bottom left cornerttze top right corner. As
can be seen by looking at the graph, there is low correlateiwdéenl — AER and
the BLEU score. A concise mathematical description of cati@h is the coefficient
of determination«?), which is the square of the Pearson product-moment ctiogla
coefficient ¢). Here,r? = 0.16, which is low.

The correlation is low because of a significant shortcommghe mathematical
formulation of AER which to our knowledge has not been presly reported. Och
and Ney (2003) state that AER is derived from F-Measure. BuRAl6es not share
a very important property of F-Measure, which is that unbedal precision and recall
are penalized, wherg C P (i.e. when we make the Sure versus Possible distinction,
meaning thasS is a proper subset d?)®. We will show this using an example.

We first define the measure “F-Measure with Sure and Possifsieiy Och and
Ney’'s Precision and Recall formulas together with the stehd&aMeasure formula
(Rijsbergen, 1979). In the F-Measure formula (2.4) thereparametery which sets
the trade-off between Precision and Recall. When an equa-ttids desiredq is set

t0 0.5.

standard text. We perform another 16 pairs of alignmentlowit the gold standard
text. We then apply the symmetrization heuristics to eadsahpairs. We use the
symmetrized alignments including the text from the goleshdtad set to measure AER
and take the average. We concatenate the symmetrized @&iigamot including the
gold standard text to build SMT systems for measuring BLEU.

®Note that if S = P then 1-AER reduces to balanced F-Measure
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1

F-measure with Sure and PossibleP, S, o) = (2.4)

« + (170‘)
Precisions,r) ' Recalla,s)

We compare two hypothesized alignments wHetg the number of hypothesized
alignment links, is the same; for instan¢d| = 100. Let|S| = 100. In the first case,
let|P N A| = 50 and|S N A| = 50. Precision ig).50 and Recall i).50. In the second
case, letP N Al = 75 and|S N A| = 25. Precision i9).75 and Recall ig).25.

The basic property of F-Measure, if we seéqual to0.5, is that unbalanced preci-
sion and recall should be penalized. The first hypothesiigaraent has an F-Measure
with Sure and Possible score®t0, while the second has a worse scargy5s.

However, if we substitute the relevant values into the fdenfar AER (Equation
2.3), we see thdat—AER for both of the hypothesized alignment$is. Therefore AER
does not share the property of F-Measure (wits 0.5) that unbalanced precision and
recall are always penalized. Because of this, it is possiaieaximize AER by favoring
precision over recall, which can be done by simply guessearg few alignment links.
Unfortunately, whert' C P, this leads to strong biases, which makes AER not useful

as a metric.
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Goutte et al. (2004) previously observed that AER could Haidg optimized by
using a bias towards precision which was unlikely to impréwe usefulness of the
alignments. Possible problems with AER were discussed at W8 and WPT 2005.

Examining the graph in Figure 2.3, we see that F-Measure Sutte and Possible
has some predictive power for the data points generated asimgle heuristic, but the
overall correlation is still low;? = 0.20. We need a measure which predicts BLEU

without having a dependency on the way the alignments arergtsd.

2.3.2 Balanced F-Measure is Better, but Still Inadequate

We wondered whether the low correlation was caused by the & Possible distinc-
tion. We re-annotated the first 110 sentences of the Frestisé¢ using the Blinker
guidelines (Melamed, 1998), there were 2,292 Sure linkgs iBhalignment set C in
Table 2.1. We define F-Measure without the Sure versus Ressgiinction (i.e., all
links are Sure) in Equation 2.5, and set= 0.5. This measure has been extensively
used with other word alignment test sets. Figure 2.4 showsdbults. Correlation is
higher,r? = 0.67.

1
F-measured, S, a) =

(2.5)

o] + (l—a)
Precisions,s) ' Recalla,s)
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2.3.3 Varying the Trade-off Between Precision and Recall Works

Well

We then hypothesized that the trade-off between precisidnecall is important. This
is controlled in both formulas by the constantWe searched = 0.1,0.2,...,0.9 for
the best-? value. The best results were:= 0.1 for the original annotation annotated
with Sure and Possible (see Figure 2.5), and- 0.4 for the first 110 sentences as
annotated by us (see Figure Z.6Yhe relevant-? scores wer®.80 and0.85 respec-
tively. With a gooda setting, we are able to predict the machine translationltsesu
reasonably well. For the original annotation, recall isyMeighly weighted, while for
our annotation, recall is still more important than premii Our results also suggest
that better correlation will be achieved when using Surg-annotation than with Sure
and Possible annotation.

We then tried the medium Arabic training set. Results are shawigure 2.8, the
best setting ofy = 0.1, andr? = 0.93. F-Measure is effective in predicting machine
translation performance for this set.

We also tried the larger tasks, where we can only decreagenadint quality as we

have no additional data. For the large French/English cotpe best results are with

"We also checked the first 110 sentences using the originaitation to ensure
that the differences observed were not an effect of restgatur annotation to these
sentences, see alignment set B in Table 2.1

8« less thar).5 weights recall higher, whiler greater thar).5 weights precision
higher, see the F-Measure formulas.
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a = 0.2 for the original annotation of 484 sentences and 0.4 for the new annotation
of 110 sentences with only Sure links (see Figure 2.7). Raetevascores werd.62
and0.64 respectively. Disappointingly, our measures are not abfelty explain MT
performance for the large French/English task.

For the large Arabic/English corpus, the results were hetite best correlation
was ato = 0.1, for whichr? = 0.90 (see Figure 2.9). We can predict MT performance
for this set. It is worth noting that the Arabic/English tstation task and data set
has been tested in conjunction with our translation systeen a long period, but the
French/English translation task and data has not. As atrdbere may be hidden
factors that affect the performance of our MT system whidly appear in conjunction
with the large French/English task.

One well-studied task on a smaller data set is the Romanigh#arshared word
alignment task from the Workshop on Parallel Text at ACL 20@artin et al., 2005).
We only decreased alignment quality and used 5 data poingsafth symmetrization
heuristic due to the small bitext. The best setting @fasa = 0.2, for whichr? = 0.94

(see Figure 2.10), showing that F-Measure is again efeeatipredicting BLEU.

2.4 Previous Work

Most previous work on measuring alignment quality has fedusn comparison of a

hypothesis with a gold standard word alignment using some tf distance metric,
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much as our work does. The differences between these stuaiiesfocused primarily

on the weighting of the links in a single minimal translaaboorrespondence, exam-

ining how each of the word level links should be weighted .(espould the link in

a 1-to-1 correspondence be considered to have equal weitthbne of the links in

a 1-to-2 correspondence, or should it have the same weigtwtascombined? How

should the links in a 2-to-2 correspondence, which invofees links at the word level,

be weighted?). Based on our investigations this does notaagpebe as important
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as the trade-off between the loss involved in predictingirect links versus the loss
involved in not predicting correct links which is tuned wsin in the F-Measure for-
mula. Melamed (2000) has a formula for weighting the linkdairge minimal units
of translation to avoid giving these units too much weighteDasic idea of this met-
ric is that the sum of all links to a word should have a constagight. Och and Ney
(2003) claim that using the Sure and Possible links defineB-foeasure with Sure and
Possible helps determine how to correctly weight non-catijpmal links, but our ex-
periments cast doubt on whether this is necessary becausawashown evidence that
F-Measure with Sure and Possible is not more effective thmaple F-Measure. Other
approaches to dealing with non-compositional links havenliged. Davis (2002) has
a metric similar to Melamed’s which implements the same g idea of words
having constant weight, but in a simpler fashion. Ahrenletrgl. (2000) develop sim-
ple link precision/recall as the basis for a metric to eveduhe alignment of multiple
English words to the large compound words which are comm@eimanic languages
such as Swedish and German. None of these metrics have men &hbe useful ex-
trinsically, for measuring machine translation perforeeor measuring performance
for any other task. These metrics do have one advantage eMeasure, which is that
they do not require tuning the parameter for each new task. However, our results

show that the best trade-off between Precision and Recaés/ay alignment task,

38



so varying this trade-off will likely be required in any sessful approach involving
comparison of hypothesized word links with a gold standard.

There are also approaches to measuring word alignmentywdiich do not in-
volve using a gold standard word alignment of a small samigba@llel sentences, but
instead building a translation lexicon from the whole atiggnt. Wu and Xia (1995)
sample the translation lexicon and uses both manual andnatitofilters to measure
precision. Melamed (2000) takes a sample from the transld¢ixicon and measures
probability weighted precision manually, and then he ubestb estimate probability
weighted recall. Koehn and Knight (2002) evaluate a traimsidexicon by count-
ing how many of the entries are found in a dictionary, whichfimd interesting as it
is automatic, but it is limited as dictionary entries wikdily only exist for matches
between the frequent senses of content words (without geaonymg function words).
The commonality of these approaches lies in using an albgtmpticit context, whether
that used for the translation dictionary or that used in auabavaluation, where the
evaluators directly judge translational correspondenitieont observing the context in
which the presumed correspondence occurs. Our approaapesiar, at least for the
task of data driven machine translation, in that it evalsi@é&@nment accuracy in the
observed context of parallel sentences where many of themairtranslational corre-
spondences are only contextually motivated and would nplyap all contexts. We

expect our translation system to learn not only idealizaddiations applicable in any
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context, which are what is found in a translation dictionamyt also translations which
are contextually motivated and may apply only in certainterts. If we do not learn
the latter type of translations we are failing to take fulNadtage of our (limited) train-
ing data.

Appearing somewhat later than our study, two recent papers looked at the re-
lationship between alignment accuracy and translatiofopaance. Lopez and Resnik
(2006) looked at the impact of alignments on phrase-baseddvid Chinese/English
task using 30M words of English and 27M words of Chinese. Waddhis study inter-
esting in that it showed evidence that phrase-based MTregsbecome less sensitive
to alignment quality as training size increases, which e &und in our study. This
appears to be due to a saturation of the parameters in basisgphased MT models
which do not model context as richly as newer approachesasibierarchical models
and supervised syntactic models. Ayan and Dorr (2006a)ed@it the same trade-off
between Precision and Recall that we examined. They studly aligament tasks for
Chinese/English (4.1 M English words) and Arabic/Englisi (1 English words).
This work only considered a single lower recall alignmerd arsingle lower precision
alignment along with three other alignments. One of the rifmutions is the defini-
tion of an error metric called CPER, which equally weights Bien and Recall over
phrases extracted from the hypothesized alignment withetso phrases extracted

from the gold alignment, but unfortunately they were unablghow that this metric is
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an effective predictor of MT performance. Both of these stadire limited to gener-
alizations about phrase-based MT models for small to mediaed tasks. As we will
show in Chapter 4, our metric can be used to derive a loss umtdiproduce not only
improved alignments for phrase-based MT but also improligdments for hierarchi-
cal and supervised syntactic MT models, which use richetesttrand more structure
than phrase-based MT and are therefore more likely to betatfdoy alignment quality
at large training data sizes. Additionally, we have showvat there is not a single best
trade-off between Precision and Recall for all alignmenkgabut instead there is a
significant difference in the best trade-off depending antésk. For instance, our re-
search shows that the best results for large Chinese/Engtikhk tend to favor balanced
Precision and Recall, a finding which is not inconsistent whth observation of Ayan
and Dorr (2006a) on small Chinese/English data tasks. Hawel&ining the best re-
sults for large Arabic/English tasks requires stronglyfawy Recall, which is opposite
the conclusion for small Arabic/English tasks reached bgiAgnd Dorr (2006a).

Our work invalidates some of the conclusions of recent atignt work which pre-
sented only evaluations based on metrics like AER or bathReeasure, and explains
the lack of correlation in the few works which presented k&tbh a metric and final
MT results. A good example of the former are our own resultagér & Marcu, 2005).
The work presented there had the highest balanced F-Measares for the Roma-

nian/English WPTO05 shared task, but based on the findingsiher@ossible that a
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different alignment algorithm tuned for the correct ciiverwould have had better MT
performance. Other work includes many papers working amatent models where
words are allowed to participate in a maximum of one link. S&henodels generally
have higher precision and lower recall than IBM Model 4 symimet! using the “Re-
fined” or “Union” heuristics. But we showed that AER is brokena way that favors
precision in Section 2.3.1. It is therefore likely that tlesults reported in these papers
are affected by the AER bias and that the corresponding wepnents in AER score
do not correlate with increases in phrasal SMT performaWéewill show further ev-
idence that F-Measure with a tuned trade-off between Roecesd Recall is effective
by using this metric to derive a loss criterion in discrininv@ modeling in Chapter 4.
While we have addressed measuring alignment quality forgahr@MT, similar
work is now required to see how to measure alignment quadityother tasks. For
an evaluation campaign the organizers should pick a speaffic such as improving
phrasal SMT, and calculate an appropriat® be used. Individual researchers working
on the same phrasal SMT tasks as those reported on here yasinelar tasks) could

use the values af we calculated.
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2.5 Summary

We have presented an empirical study of the use of simpleatrah metrics based on
gold standard alignment of a small number of sentences thqin@achine translation

performance. Based on our experiments we can now draw tlesvial) conclusions:

1. We measured the correlation between our unbalanced Btieanetric and
BLEU. Good correlation was obtained for the medium French Arabic data
sets, the large Arabic data set and the small Romanian dataMethave ex-
plained most of the effect of alignment quality on these,s®td if we are given
the F-measure of a hypothesized word alignment for the toitexcan make a

reasonable prediction as to what the resulting BLEU scorebwil

2. We recommend using the Blinker guidelines as a startingf pai new alignment
annotation efforts, and that Sure-only annotation be uéedarger gold standard
is available and was already annotated using the Sure vieosssble distinction,

this is likely to have only slightly worse results.

3. When we make the distinction between Sure and Possiblg, IAER does not
share the important property of F-Measure that unequaligoecand recall are
penalized, making it easy to obtain good AER scores by sirgplssing less
alignment links. As a result AER is a misleading metric whitlould no longer

be used.
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We suggest comparing alignment algorithms by measurinfgpeance in an iden-
tified final task such as machine translation. F-Measure wittappropriate setting
of o will be useful during the development process of new alignihmeodels, or as a
maximization criterion for discriminative training of ghment models. We will return
to the topic of discriminative training in Chapter 4, where wi# use our new metric
to derive a loss function in conjunction with a semi-supsedi training algorithm, and

show that this improves translation quality.

2.6 Research Contribution

We found an automatic intrinsic metric which measures wdigthenent quality for the
translation task in a better fashion than the currently usettics.
In addition, this metric will be shown to be useful to derivdéoas function for

semi-supervised training in Chapter 4.
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Chapter 3

Improving Structural Assumptions with a New
Many-to-Many Discontinuous Generative Alignment

Model

Previous generative word alignment models have made wmabke assumptions about
the desired word alignment structure, which do not matclatiggment structure used
to build statistical machine translation systems. Previdiscriminative models have
either made such an assumption directly or used featur@gederom a generative
model making one of these assumptions.

Two incorrect word alignment structures are particuladynenon. The first is the
1-to-N assumption, meaning that each source word geneetesr more target words,
which requires heuristic techniques in order to obtainratgnts suitable for training

a SMT system. The second is the consecutive word-basedsg8MT” assumption.
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This does not allow gaps in minimal translation correspocds. We discussed the
problems with these word alignment structure assumptio8gction 1.2.4, and we will
discuss these issues further in Section 3.6, which outpr@sous work on generative
models of word alignment.

Our objective is to automatically produce alignments wtieln be used to build
high quality machine translation systems. These are prallyrolose to the alignments
that trained bilingual speakers produce. Human annotdgahaents often contain M-
to-N alignments, where several source words are aligneeMveral target words and the
resulting unit can not be further decomposed. Source oetavgrds in a single unit
are sometimes non-consecutive.

We describe a new generative model, LEAF, which directly et®d/-to-N non-

consecutive word alignments.

3.1 Introduction

For ease of exposition, the source language for the tramslgdsk is referred to as
“French”, and the target language is referred to as “Englethough these can be any
language pairs in practice. The translation problem is ddfas given a French string

f, find the English string, and is presented in Equation 3.1.
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¢ = argmax Pr(e|f) = argmax Pr(e) * Pr(f|e) (3.1)

The variablee represents any potential English string made up of Englistds:
Pr(e) represents the true distribution over English strings( f|e) represents the true
distribution over French strings generated from Englisings.

ConsiderPy(f|e) to be a model ofPr(f|e). If we introduce a hidden variable
representing word alignments, we can sum over all possiigleraents, as in Equation

3.2.

Py(fle) =Y _ Py(f,ale) (3.2)

For our task, which is word alignment annotation, we havedfisgingsf ande,
and we wish to select the best alignment according to the ladevhich we do in

Equation 3.3. This alignment is called the Viterbi alignmen

a = argmax FPy(ale, f) = argmax Py(f, ale) (3.3)

a a

We will subsequently drop theesubscript when calculating probabilities according
to the model. Note that generative word alignment modetnaftodel the probability
of stochastically generating the French string from theliShgtring. This is the reverse

direction of the translation task, and is motivated by thesy@hannel formulation
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which is the right-most term in Equation 3.1. For this reaserwill refer to English as
the “source” language and French as the “target” langualgeesjwently in this chapter,

as is standardly done in the word alignment literature.

3.2 LEAF: A Generative Word Alignment Model

3.2.1 Generative Story

We introduce a new generative story which enables the leguafinon-consecutive M-
to-N alignment structure. We use the same notation as thergere story for Model
4 (Brown et al., 1993), which we are extending, where this ssfile. The reader may
find it useful to consult Appendix A for a discussion of Model 4

The LEAF generative story describes the stochastic gaorrat a target stringf
(sometimes referred to as the French string, or foreigngtiirom a source string
(sometimes referred to as the English string), consistfigamrds. The variablen is
the length off. We generally use the indexo refer to source words:{is the English
word at positiori), and; to refer to target words.

Our generative story makes the distinction between diffieygoes of source words.
There are head words, non-head words, and deleted wordsai®mior target words,
there are head words, non-head words, and spurious wordsadword is associated

with zero or more non-head words; each non-head word is $sdavith exactly one
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head word. The purpose of head words is to try to provide astalepresentation of the
semantic features necessary to determine translationaspmndence. This is similar
to the use of syntactic head words in statistical parsersodge a robust representation
of the syntactic features of a parse sub-tree. However, aoritant difference is that
in current training approaches the head words are not detedwsing supervision
(annotated training data) or hand-written rules, but exdtestimated in an unsupervised
fashion.

A minimal translational correspondence consists of a lyekaetween a source head
word and a target head word (and by implication, the non-hears which they
are associated with). Each head word is involved in exaatly such link. Deleted
source words are not involved in a minimal translationategpondence, as they were
“deleted” by the translation process. Spurious target wanme also not involved in a
minimal translational correspondence, as they spontatgappeared during the gen-
eration of other target words.

Figure 3.1 shows a simple example of the stochastic genaratia French sentence
from an English sentence, annotated with the step numblee igeénerative story, which
we present next.

In specifying the generative story we will introduce somesmetation. We use the
three word classes classlass, and clasgto reduce the dimensionality of the English

vocabulary, the French vocabulary and the French head warabulary respectively.
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To define the distortion model we use two notational toplss the previous English
head word to the English head wordigandc, is the “center” of the French cept, the
average of the positions of the words in the cept, whose head s linked with the

English head word at position
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1. Choose the source word type.

for eachi = 1,2,...,1 choose a word typg; = —1 (non-head word)y; = 0

(deleted word) or¢; = 1 (head word) according to the distributigtiy;|e;)

Iet Xo = 1

2. Choose for each non-head word the identity of the head w@associated with

foreachi = 1,2, ..., if y; = —1 choose the position of the associated head word

w; for the non-head word; according to the distributiom_; (u; — i|class(e;))
foreachi =1,2,....lif y, =1letu, =1
foreachi = 1,2,...,lif y;,=0letu; =0

*foreach: = 1,2, ..., [ if x,, # 1 return “failure”

3. Choose the identity of the generated target head word &br ®aurce head word

foreachi = 1,2, ..., if x; = 1 chooser;; according to the distributioty (71 |e;)

4. Choose the number of words in each target cept. This is tton€éd on the
identity of the source head word from which the target heatiwas generated
and the source cept size s 1 if the cept size is 1, and 2 if the cept size is greater

than 1)
for eachi = 1,2,....1 if xy; = 1 choose a target cept sizg according to the
distributions(t;|e;, v;)
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foreachi = 1,2,....1if y; < 1lety; =0

5. Choose the number of spurious words.
chooseyy according to the distributiosy (¢ >, ;)
letm = ¢y + 22:1 (U8
6. Choose the identity of the spurious words.
for eachk = 1,2, ..., 1, choosery, according to the distributioty (7o)
7. Choose the identity of the target non-head words assdaiatke each target head
word.
for eachi = 1,2,...,1 and for eachk = 2,3, ..., ¢, chooser;, according to the
distributiont~. (7;x|e;, class (1))
8. Choose the position of the target head and non-head words.
for each: = 1,2,...,1 and for eachk = 1,2,...,¢; choose a position;, as
follows:
e if k = 1 chooser;; according to the distributiod, (7;; —c,, |class(e,, ), clasg (1))
e if £ = 2 chooser;, according to the distributiod, (7;2 — m;1|class(7;1))

e if & > 2 chooser;;, according to the distributiog. » (7, —7;x—1|Class (7:1))

* if any position was chosen twice, return “failure”
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9. Choose the position of the spuriously generated words.

foreachk = 1,2, ..., v, choose a position, from ¢y — k£ + 1 remaining vacant

positions inl, 2, ..., m according to the uniform distribution

let f be the stringfm;, = 7

We note that the steps which return “failure” (the two ste@skad with a “*” in
the generative story) are required because the model isatgfi©eficiency means that
a portion of the probability mass in the model is allocateslai@s generative stories
which would result in infeasible alignment structures. @udel has deficiency in the
non-spurious target word placement, just as Model 4 dodgsliadditional deficiency
in the source word linking decisions. Och and Ney (2003)¢mted results suggesting
that the additional parameters required to ensure that @hmdot deficient result in
inferior performance, but we plan to study whether this & ¢hse for our generative

model in future work.

3.2.2 Mathematical Formulation

Givene, f and a candidate alignmemtwhich represents both the links between source
and target head words and the head word connections of tAkeadhwords, we would

like to calculateP( f, ale). The formula for this is:
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P(f,ale) :[ﬁg(h"ez')]
[i]j1 0(xs, =Dw-1 (i — ilclass(e;))]
[iﬁ 0 (x> Dtr(Tiales)]
[g 0(xi, 1)s(Wilei, i)l
[s0(tol Zzl;wi)]

o
(] [ to(7or)]
L i

I T]t1(7iklei class (7))

i=1 k=2

L
TTTT Daw(ran)]

i=1 k=1

where:
d(i,4") is the Kronecker delta function which is equal to 1 # ¢’ and O otherwise.
pi 1S the position of the closest English head word to the lethefword at or O if

there is no such word.
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class(e;) is the word class of the English word at positiorlass ( f;) is the word
class of the French word at positignclass( f;) is the word class of the French head
word at position;.

po andp; are parameters describing the probability of not genegatid of gener-

ating a single target spurious word from each non-spuriangget wordp, + p; = 1.

!
m' = (3.4)
i=1
%WWM—(Z)ﬁdwﬁ 3.5)
0

(

di(j — cp,|class(e,,), class (7))

if k=1
do(j — min|class (7))
Dix(j) = (3.6)
if k=2

dso(j — mip—1|class (7))

if &k >2

l

i = min(2, > 6(u, 1)) (3.7)

=1
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ceiling(>-0, min /b)) if b #0

3.2.3 Other Alignment Structures are Special Cases

The alignment structure used in many other approaches caroteled using special
cases of this framework. We can express the 1-to-N struofuredels like Model 4 by
disallowingy; = —1. For 1-to-1 structure we both disalloyy = —1 and deterministi-
cally sety; = ;. We can also specialize our generative story to the consecubrd
M-to-N alignments used in “phrase-based” models, thoughiscase the condition-
ing of the generation decisions would be quite differentisTivolves adding checks
on source and target connection geometry to the generatiige $hese checks would
check whether the phrase-based constraint is violatetlislviolated, “failure” would

be returned. Naturally this would be at the cost of additickediciency.

3.2.4 Symmetricity

The LEAF generative story is symmetric, and so the same rakgm structure can be
used to evaluate the model in the French to English, or in tigdigh to French direc-
tion. In practice, we will estimate the model in both direas, and in unsupervised

training we will maximize likelihood in both directions. Wheletermining the Viterbi
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alignment, we sum the log costs of the model in both direstidife discuss unsuper-

vised training in the next section.

3.3 Unsupervised Training

3.3.1 Training LEAF Using Expectation-Maximization
3.3.1.1 Introduction

In this section we present the training of LEAF using the Etggon-Maximization
algorithm. Expectation-Maximization (Dempster et al.7IQ or EM, is an algorithm
for finding parameter settings of a model which maximize tkgeeted likelihood of
the observed and the unobserved data (this is called theletegata likelihood; the
incomplete data likelihood is the likelihood of only the ebged data). Intuitively, in
statistical word alignment, the E-step corresponds toutating the probability of all
alignments according to the current model estimate, whieM-step is the creation
of a new model estimate given a probability distributionrogkgnments (which was

calculated in the E-step).

3.3.1.2 E-step

In the E-step we would ideally like to enumerate all possabignments and label them

with P(f,ale). However, this is not possible when using a word alignmentiehas
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complex as LEAF. As we will see below in the discussion of thetgp, we would at
least like to find the most likely alignment of a paiand f given the model. This is

the Viterbi alignmentg in this formula:

a = argmax FPy(ale, f) = argmax Py(f, ale) (3.9)

This is a repeat of equation 3.3 which represents the taskdihfj an approximate
Viterbi alignment to output as the final alignment outputirthe alignment process.
Here, in Equation 3.9 we are referring to the search for agjnalent during training.
We can vary this to be, for instance, the search for the 10 pradtable alignments
(where a posterior distribution over the 10 alignments wdaé used for updating the
model in the M-step).

Unfortunately, there is no known polynomial time algoritifon finding the Viterbi
alignment of LEAF, or even for determining that a particidignment is the Viterbi
alignment. We assume that this is intractable. A similabpm (the calculation of
the Viterbi alignment for IBM Model 4) was proven to be NP-hasdUdupa and Maiji
(2006). So we take the most probable alignment we can find,agedme it is the
Viterbi alignment. The algorithms used to solve this segnablem are discussed in

Section 3.4.
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3.3.1.3 M-step

For the M-step, we would like to take a sum over all possibignahents for each
sentence pair, weighted by(ale, f) which we calculated in the E-step (note that the
alignments labeled with probabilities in the E-step mustdrermalized to sum to 1
for eache, f pair, as they are estimates Bf f, a|e), and we would like estimates of
P(ale, f)). As we mentioned, this is not tractable.

We make the assumption that the Viterbi alignment can be tecseddate our esti-
mate in the M-step (which we cally, (ale, f), the probability of the alignment given

the sentence and the sentencg):

1 ifa=a
pulale, f) = (3.10)
0 ifa#a
Note that we are abusing the term “Viterbi alignment” to méaabest alignment
according to the model that we can find, not the best alignmectrding to the model
that exists.
Although in our experiments we use Viterbi training, neighiood estimation (Al-
Onaizan et al., 1999; Och & Ney, 2003) , “pegging” (Brown et 4B93) or some

other means of creating a set of candidate alignments (whadmbilities are then

normalized to sum to one) could be used instead in the M-step.

60



co(xiles) source word type

cu(Ad|class(e;)) head word links (collected if; = —1)

e, (filei) head word translation

cs(Vilei, i) number of words in target cept

Cso (Yol D25 00) number of unaligned target words

cto (f5) identity of unaligned target words

i, (filei, class (1)) non-head word translation

ca, (Ajlclass(e,), class(f;)) | movement of target head words

car (Ajlclass(f;)) movement of left-most target non-head
word

Cd-, (DjlClass(f;)) movement of subsequent target non-head
words

(same counts, other direction)...

Table 3.1: Counts used in unsupervised training of LEAF

We estimate new parameters from the Viterbi alignmentsdaluring the E-step
by simply counting events in the Viterbi alignments, sifogytare assumed in equation
3.10 to be the only alignments of non-zero probability. Weiaterested in the counts
in Table 3.1 which we simply count im. After collecting the counts, for each condi-
tion, we normalize these counts so that the conditionalgitities sum to one, which
provides us with the model estimate which is the result oMhstep.

The Viterbi training approximation is related to EM traigirwhich tries to maxi-
mize the complete data log likelihood. Neal and Hinton ()%@&alyze approximate
EM training and motivate this general variant. In future kvare would like to try us-

ing a probability estimate over a larger set of hypothes&gphments to reestimate the
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model, but finding a set to use which helps performance of stismated models is an

open research problem.

3.3.2 Bootstrapping

The term “bootstrapping” refers to how we initialize the rebdin order to perform
unsupervised training of our new model we require an ingir@bability distribution
over alignments. In practice, instantiations of the EM alton (including approximate
variants) start with a pseudo-M step, where we estimate ifialifiteration 0” model
estimate, before the first full iteration of EM. For examlee IBM Models (Brown
et al., 1993) were originally specified as a sequence of asingly complex models
which bootstrap from one another in this fashion. The itered estimate is calculated
using the counts necessary for our current model. Howedwesgetcounts are collected
over the alignment distribution (the set of alignments drairtprobabilities) estimated
using the previous model in the bootstrapping chain. In oarkwwe use Model 1
to start with, bootstrap the HMM Model (Mogel et al., 1996)rfr Model 1, and then
bootstrap LEAF from the HMM Model.

To initialize the parameters of the generative model forfitst iteration, we use
bootstrapping from a 1-to-N and a M-to-1 alignment. We ugeittersection of the 1-

to-N and M-to-1 alignments to provide likely candidatestfue head word relationship,
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the 1-to-N alignment to delineate likely target word cepts] the M-to-1 alignment to
delineate likely source word cepts.

A key concept in our bootstrapping algorithms is whetherratiai alignment is
feasible under the new model or not. Feasible means that uld set the parameter
settings for the model such that this alignment will havebplulity greater than zero
under the model. Infeasible means that no such parameteigsagxist.

A problem arises when we encounter infeasible alignmeuntstre where, for in-
stance, a source word generates target words but no linkeketthe target words and
the source word appears in the intersection, so it is not @&ch target word is the
target head word. To address this, we consider each of thendrgted target words as

the target head word in turn and assign this configurationof ANe counts.

3.4 Search

For each iteration of training we search for the Viterbi atgent for millions of sen-
tence pairs. Evidence that inference over the space of afliple alignments is in-
tractable has been presented, for a similar problem, by &duma Maji (2006). Left-
to-right hypothesis extension using a beam decoder (agisatfy implemented in
phrase-based SMT decoders) is unlikely to be effectivelssa word alignment re-
ordering can not be limited to a small local window and so teeassary beam would

be very large. We are not aware of admissible or inadmissidech heuristics which
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have been shown to be effective when used in conjunctionasarch algorithm sim-
ilar to A* search for a model predicting over a structure Ildkas. Therefore we use a
simple local search algorithm which operates on complepoatineses.

Brown et al. (1993) defined two local search operations far théo-N alignment
models 3, 4 and 5. All alignments which are reachable viaetlogerations from the
starting alignment are considered. One operation is togdhéime generation decision
for a French word to a different English word (move), and thigeois to swap the
generation decision for two French words (swap). All pdsesiiperations are tried and
the best is chosen. This is repeated. The search is termiwéien no operation results
in an improvement. Och and Ney (2003) discussed efficientementation.

In our model, because the alignment structure is richer, efene the following

operations:

move French non-head word to new head

move English non-head word to new head

swap heads of two French non-head words

swap heads of two English non-head words

swap English head word links of two French head words

link English word to French word making new head words
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e unlink English and French head words

These operations are defined and discussed further in theseetton. Germann
et al. (2004) and Marcu and Wong (2002) introduce some siroparations without

the head word distinction.

3.4.1 Implementing the Search Operations

We now define the seven operations which transform an alighm& an alignment
a’. For each operation we begin by copyiago «’ and then apply the operation ah
as specified. The four operations which are applied to n@ateords are in Figure
3.2 and the three operations applied to head word links dfegures 3.3 and 3.4. Note
that the operations applied to non-head words are simikietavord level operations in
Model 4. The operations applied to head-word links are liledperations in phrase-
based alignment such as those defined by Marcu and Wong (2002)

In implementing the search algorithm, we represent an adégrta as a vectoy:, a
vectorb and a vector. b; is used to indicate the target head word for the target word
at positiony, just asy; indicates the source head word for the source word at positio
i. h; indicates which source head word at positiagenerated the target head word at
positionj. h; = 0 if the word at positiory is not a head word. If the source word at

position: is deleted we sei; = 0. Likewise, if the target word at positighis spurious,
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we seth; = 0. We also define the function is) which returns the positiop for which
h; = i or returns) if there is no such position.

For comparison we note that for 1-to-N models an alignméatoften represented
as a vectow wherev; indicates the position of the source word which generated th
target word at positiori, andv; = 0 if the target word is spuriously generated.

We try all possible values of the parameters (see the line€'@iin each operation).
Note that “unlink source and target head words”, Operatiam Figure 3.4, has 3 pa-
rameters, rather than 2. To control complexity we resthettotal number of modified
alignments considered reachable from an alignmebt applying this operation. This
is done by placing restrictions on the parameteasdj, which specify the location of
the head-words with which to associate the former head w@ntd non-head words
previously associated with these former head words). W alldw for association
with nearby head words, or for changing the type of affectadee words to “deleted”

source word, or affected target words to “spurious” targetdy

3.4.2 Search Algorithms

Any search algorithm trying to find the Viterbi alignment aading to the LEAF model
is trying to solve a problem which is most likely intractabiide must align as many as
10,000,000 sentence pairs for a single iteration of trgifgiven the data sets we have

at the present time).

66



OPERATION 1: move French non—-head word
Given: target word positiong, j’
if b; # j andb; = j' then
let bj = j/
end if

OPERATION 2: move English non—head word
Given: source word positiong i’
if u; #1¢anduy; =4 then
let u; = ¢
end if

OPERATION 3: swap French head word decisions of two French nonkead
words
Given: target word positiong, j’
if b; # j andb; # j' then
swapb,; andb;/
end if

OPERATION 4: swap English head word decisions of two English nonkead
words
Given: source word positiong i’
if u; #1andu; # ' then
swap; andp;
end if

Figure 3.2: LEAF search operations: move and swap non-headisw
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OPERATION 5: swap English head word links of two French head words
Given: target word positiong, j’
if b; = j andb; = j' then
swaph,; andh
end if

OPERATION 6: link English word to French word

{after this operation is performed, source wordnd target word are both head
words}

Given: source word position, target word position

letj/ = inv(:), leti’ = h;

if i' £ 0 then
for /" =1..1do
if M = 7 then
let Wi =1
end if
end for
end if
if 7/ # 0then
for j” =1..m do
if b]'// = j/ then
let bj// :j
end if
end for
end if
leth, =i

Figure 3.3: LEAF search operations: swap and link head words
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OPERATION 7: unlink the link between an English head word and a French
head word
{non-head words whose head words are Frefiobr Englishk; would be “or-
phaned}
{parameter is the English head word (or NULL) to which to attach the Esigli
head-word at;; and any non-head words attached:}c
{parametey is the French head word (or NULL) to which to attach the Fremed-
word atj’ and any non-head words attachedig
Given: target word positior)’, source word position, target word position
lets = hj
if / # 0 andy; = ¢ andb; = j then

let 4 = 7 andb; = j andh; =0

for /" =1..1do
if i = 7 then
let Wi =1
end if
end for
for j” = 1..m do
if bj// = j/ then
let bj// Zj
end if
end for
end if

Figure 3.4: LEAF search operation: unlink head words

To control memory usage, which would be a problem with anyctealgorithm,
we have developed a technique where we restrict the memenytosthe parameters
we need for a small number of parallel sentences at a costilbérag the parameters

each time we load a small group of parallel sentences to.align
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Because of the time tractability issues, we use a hillcligbotal search. Local
search does have one advantage over search algorithms sehjabn hypothesis ex-
tension, which is that we are always operating on a complgtethesis. This makes
integration of new knowledge sources easier, and in pdati@allows for knowledge
sources which can only be scored over a complete hypothesish would be difficult

to use if our search involved partial hypothesis extension.

3.4.2.1 Basic Search Algorithm

In the basic search algorithm, we start the search from arsjalignment (for which
we use the best alignment from the previous iteration) ahadestively try each of the
operations in Figures 3.2, 3.3 and 3.4 with all possible eslior the parameters. We
remember which resulting hypothesis was the best, to useeastarting point in the
next iteration of search. We terminate the search when noowvepent in model score

via the search operations in Figures 3.2, 3.3 and 3.4 islgessi

3.4.2.2 New Alignment Search Algorithm

We developed a new alignment algorithm to reduce the nursesearch errotsmade

by the basic search algorithm and directly control the tiakeh:

1A search error in a word aligner is a failure to find the begratient according to
the model, i.e. in our case a failure to maximize Equation 3.3
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e The alignment search operates by considering completethgpes so it is an
“anytime” algorithm (meaning that it always has a currenttlgpiess). Timers
can therefore be used to control processing, and we setlthgsd on the product

of the source and target sentence lengths.

e Alignments which are selected as the starting point at @mgtibn during a single
run of the search algorithm are marked so that they can nottihened to at a

future point in the same search run.

e We perform a hillclimbing search (as in the baseline algonit but as we search
we construct a priority queue of possible other candidaggalents to consider
(i.e. the second, third, etc best alignments seen). Thelsearestarted by draw-
ing the best candidate from this queue after a timer expivésen calculating
Viterbi alignments for the entire training corpus we haverfd it effective to set

such a timer 5 or more times, increasing the time limit eaclei

The first improvement is important for restricting total &msed when producing
alignments for large training corpora. The latter two imments are related to the

well-known Tabu local search algorithm (Glover, 1986).
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3.4.2.3 Comparing the Two Search Algorithms

One issue of major importance in using local search is thefalcontrol of search
errors. A search error is a failure to find the Viterbi aligmmhender the current model
estimate and in a basic hillclimbing search it means thatst#ach ended in a local
probability maxima.

We present an experiment comparing our two search algasifiomthe Model 4
search task. We apply it a French/English task and to an éfiabglish task. The
directions evaluated are the French to English and Arabientglish generational di-
rections. We apply both algorithms using the Model 4 seapgrations described in
Appendix A. For each corpus we sampled 1000 sentence pausmay, with no sen-
tence length restriction. Model 4 parameters are estinfededthe final HMM Viterbi
alignment of these sentence pairs. We then search to trydahas Model 4 Viterbi
alignment with both the new and old algorithms, allowingnthieoth to process for the
same amount of time.

Our experiment evaluates the number of search errors madg tie baseline
search algorithm and the new search algorithm. The pemgertaknown search er-
rors is the percentage of sentences from our sample in whiclveve able to find a

more probable candidate by applying our new algorithm ugthpgours of computation

2A search error could also mean that we had an error in the mgaiéation of our
search algorithm, but we are confident that over the coursgmdrimentation we have
effectively removed such errors.
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SYSTEM KNOWN SEARCH ERRORS%
ARABIC/ENGLISH OLD 19.4
ARABIC/ENGLISH NEW 8.5
FRENCHENGLISH OLD 32.5
FRENCHENGLISH NEW 13.7

Table 3.2: Comparison of New Search Algorithm with Old Sea#gorithm for Model
4 Alignment

for just the 1000 sample sentences. Table 3.2 presents shksreshowing that our
new algorithm reduced known search errors$ &% for Arabic to English and 3.7%
for French to English. This shows that the new algorithm igereffective than the

baseline search algorithm.

3.5 Experiments

3.5.1 Data Sets

We perform experiments on two large alignments tasks, fabAYEnglish and French/English
data sets. Statistics for these sets are shown in Table 8.8f the data used is avail-
able from the Linguistic Data Consortium except for the Frékaglish gold standard

alignments which we annotated ourselves (and are availairteus).
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ARABIC/ENGLISH FRENCHENGLISH
A | E F | E
SENTS 6,609,162 2,842,184
TRAINING WoRDS | 147,165,003 168,301,29075,794,254 67,366,81_
VOCAB 642,518 352,357 149,568 114,90
SINGLETONS 256,778 158,544 60,651 47,765
SENTS 1,000 110
ALIGN DIscR. WORDS 26,882 37,635 1,888 1,726
LINKS 39,931 2,292
SENTS 83 110
ALIGN TEST WORDS 1,510 2,030 1,899 1,716
LINKS 2,131 2,176
TRANS. DEV SENTS 728 (AREFERENCES 833 (1REFERENCH
WORDS 18,255 22.0Kro 24.6K 20,562 17,454
TRANS. TEST SENTS 1,056 (AREFERENCES 2,380 (LREFERENCH
' WORDS 28,505 35.8Kro38.1K 58,990 49,182

Table 3.3: Data sets

3.5.2 Experimental Results

To build both our baseline and the contrastive alignmertesys, we start with 5 itera-

tions of Model 1 followed by 4 iterations of HMM (Vogel et al996), as implemented

in GIZA++ (Och & Ney, 2003).

For the LEAF word classes, we use the same set of classes aaghkne sys-

tem. 50 classes are used for each language. The classestenmided using the

“mkcls” program which is supplied with GIZA++. This prograstarts with a random

assignment of the words in a monolingual text to the 50 mogoial classes and then

greedily maximizes the likelihood of the monolingual tegtarding to a class-based

bigram model by moving words to different classes as desdrdy Och (1999). In our
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experiments the classes used for the head classes, ¢lemsethe same as those used
for all French words, classgs

For non-LEAF systems, we take the best performing of the 6dthi “Refined”
and “Intersection” symmetrization heuristics (Och & Ne@03) to combine the 1-to-
N and M-to-1 directions resulting in a M-to-N alignment. Basa these systems do
not output fully linked alignments, we fully link the resulgy alignments. The reader
should recall that this does not change the set of rules @seisrthat can be extracted
using the alignment.

We compare the unsupervised LEAF system with GIZA++ Modea give some
idea of the performance of the unsupervised model. We maefa@mto optimize the
free parameters of GIZA++, while for unsupervised LEAF thare no free parame-
ters to optimize. A single iteration of unsupervised LEAFE@npared with heuristic
symmetrization of GIZA++’s extension of Model 4 (which wasrfor four iterations).
LEAF was bootstrapped as described in Section 3.3.2 fronHti&/ Viterbi align-
ments. Note that the timings for the first E-Step of the Fréablish experiments are
presented in Appendix C.1. The current (unoptimized) LEA&rsle implementation is
slow; speeding up search is discussed in the same appendix.

Results for the experiments on the French/English data setienwn in Table 3.4.
We ran GIZA++ for four iterations of Model 4 and used the “Redfihbeuristic (line

1). We observe that LEAF unsupervised (line 2) is competitwth GIZA++ (line 1).
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FRENCHENGLISH ARABIC/ENGLISH
SYSTEM F-MEASURE(a = 0.4) | F-MEASURE (o = 0.1)
GIZA++ 73.5 75.8
LEAF UNSUPERVISED 74.5 72.3

Table 3.4: Experimental Results

Results for the Arabic/English data set are also shown ineTd@bl. We used a
large gold standard word alignment set available from th€L/e ran GIZA++ for
four iterations of Model 4 and used the “Union” heuristic. Wempare GIZA++ (line
1) with one iteration of the unsupervised LEAF model (line A}he unsupervised
LEAF system is worse than four iterations of GIZA++ Model 4 e \kelieve that the
features in LEAF are too high dimensional to use for the Aséinglish task (which
is more difficult than the French/English task) without treclk-offs available in the
semi-supervised model which we will discuss in Chapter 4.

We will return to these experiments in Chapter 4 to comparednrmance of our
unsupervised systems with the semi-supervised systerssrgesl there. In particular,
we will present a discriminative model based on sub-modeéstly derived from the

LEAF generative story which we will train using a semi-swypeed training algorithm.
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3.6 Previous Work

The LEAF model is inspired by the literature on generativedelimg for statistical
word alignment and particularly by IBM Model 4 (Brown et al.,98). Because of
this, we begin our discussion of previous work in generatnageling with the most
widely used alignment structure, the 1-to-N structure,olhis that used by the IBM
Models and the HMM word alignment model. We then continudwiher structures,

discuss additional issues and conclude.

3.6.1 Generative Models of 1-to-N Structure

The 1-to-N structure is not the best alignment structure t8e discussion in Section
1.2.4 and patrticularly Table 1.6 on Page 10 for an analysisvofexample parallel
sentences which shows that there are interesting minianasiational correspondences
which can not be modeled using this structure.

Most 1-to-N models have the advantage that their paramegerde robustly es-
timated from relatively small amounts of data. While such gledcan not directly
account for M-to-N discontinuous correspondence, theyusenword deletion, where
a source word generates nothing (sometimes referred toeas fertility” for reasons
which will become apparent in the discussion), to try to medthe effect of this by

allowing all of the source words which should appear in a MNteelationship to be
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deleted except for one source word which generates the Bttaxards$. Often models
with this structure do a good job of accounting for the ceptshie target language,
by robustly decomposing the probabilities associated thidse cepts into word level
probabilities, and in practice these models can even délaldiscontinuous target cepts
well. Given decisions about target cepts taken from a 1-t@liyhment, and source
cepts taken from a N-to-1 alignment, heuristics can be agplihich attempt to gener-
ate a M-to-N discontinuous alignment of reasonable quality

In practice, the main disadvantage of this alignment stineds the need for heuris-
tic symmetrization in order to obtain M-to-N discontinuoalkgnments. Heuristic
symmetrization was introduced by Och and Ney (2003) anchebete by Koehn et al.
(2003). The choice of symmetrization heuristic which is trefgective changes from
task to task. It is not only dependent on the language pamgbaigned, as well as the
translation direction of the final translation task, busialso dependent on the training
data size (for instance, see the graphs in Chapter 2 on pag@gpgndix A contains
further information on heuristic symmetrization, incladispecific details of how it is
used in our baseline. LEAF does not require use of thesediesti

We now discuss specific 1-to-N alignment models, beginniitiy the IBM models.

3However, In general many variants approximating an M-toiNimal translational
correspondence will be possible. For instance if M=N suclodehwill often align the
words 1-to-1. But it is important to remember that none of ¢hesriants is correct and
it is easy to find contexts where the translation rules liedrsy such variants would be
harmful.
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3.6.1.1 The IBM Models

Brown et al. (1993) developed five statistical models of ti@itn, IBM Models 1
through 5, and parameter estimation techniques for thenesdimodels all use the
1-to-N alignment structure. The models were designed tcskd tn a pipeline, where
each model is bootstrapped from the previous model.

Model 1 is the first model in the pipeline. It makes very strangditional indepen-
dence assumptions on word placement and generation (altrreords are generated
and placed independently). Three probability distribugi@re involved in generat-
ing a French sentence from a English sentence using steph déifine an alignment.
These are a distribution over the length of the French seatendistribution over the
alignment decision for each French word position (denotivg position of the En-
glish word which generated it), and a distribution over tamslation decision (which
stochastically selects the lexical identity of the Frenatrdvgiven the English word
which generated it).

The formula in Model 1 for the joint probability of an alignmteand a French
string, given an English string, is in Equation 3.11. Note three components of the
model. The length distribution is the numerator of the temfobe the product. The
alignment position model is simply/ (I + 1)™, a uniform distribution over the English

positions (including positio® which if selected would indicate that the French word
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is spuriously generated). The translation model is indigeproduct so it is evaluated

once for each of the: French words.

m

p(mll)
P(f,ale) = 2™ p(f;lea,) (3.11)
I

When Model 1 is trained to maximize likelihood using EM theelikood is convex,
but in practice Och and Ney (2003) suggest that stopping é&fanvergence increases
performance. The estimation of the parameters for a sit@iation can solved without
a complex search operation, and the calculation of the Miedignment for a fixed
and f is trivial (the highest generation probability for each iale word is selected).
This makes Model 1 a popular choice for applications whicmdbrequire a strong
model of translational correspondence but instead a roogjicdation of whether two
sentences should be considered parallel, such as senteymaent (Moore, 2002).
Model 1 is also used as a smoothing method for higher ordeslaion models (Och
et al., 2004).

Model 2 relaxes one of the assumptions of Model 1, by makieddhation of the
English word which generated each French word dependeheatisolute locations of
the two words. The equation for Model 2 is in Equation 3.12e Titst term is again the
length distribution. Within the product, the first term igthlignment position model
(the conditional probability that the French word at pasitj is generated by the En-
glish word at positior;). The translation model is identical with Model 1. Like Mdde
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1, the estimation of the parameters for a single iterationstdved without a complex
search operation, and the calculation of the Viterbi aligntns also simple (the prod-
uct of the alignment position model and the translation rhizd&@mply maximized for

each French word in turn).

P(f,ale) = p(ml|l) [ [ p(a;l5, 1, m)p(f;lea,) (3.12)
J=1

Models 1 and 2 are both weak models of translational corresgace which were
designed to be used for bootstrapping Models 3, 4 and 5. Thensabe of these
models is the tractability of both estimating the models araking predictions using
the models.

Models 3, 4 and 5 are considerably more complex. These madgdeldiscussed
in detail in Appendix A. They are referred to as the “feryilitmodels. An English
word’s fertility is the number of French words generated thyTihe use of a fertility
model requires inverting the alignment position model. ElsdB and 4 use a simple
alignment position model which introduces deficiency irite estimation. Deficiency
means that the model wastes probability mass on predictvbich are impossible. In
this case the deficiency lies in the placement decisionsremdh words (an example
is that the probability that two French words are placed @ thme position can be
non-zero). Och and Ney (2003) presented evidence thatahis éf deficiency is not a
problem in practice.
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Model 3 introduces the “fertility” distribution. The aligment model still uses abso-
lute positions as in IBM Model 2, but is inverted so that we akdte the probability of
placing a French word given an English word’s position (gatihan vice versa, as was
the case for Model 2). Model 3 is not generally used in practithe reader interested
in Model 3 is referred to the Model 3 tutorial (Knight, 199@ich is also good back-
ground for understanding Model 4 (as well as providing a gastlview of statistical
word alignment and SMT in general).

The good performance of Model 4 is the basis for the work onetiogd in this
thesis, and Model 4 is used in much of the work in StatisticalchMne Translation
published in the last several years. Model 4 is a generalizatf Model 3 where the
alignment model uses relative positions rather than absglositions. The alignment
model is again inverted from that used by Model 1 and Modell# feader is referred
to Appendix A for a full presentation of Model 4 including asdussion of the gen-
erative story with examples. LEAF suffers from the same d&iy as Model 4 and
introduces additional deficiency in the source non-headlwoking decisions, but we
have seen no evidence that this causes problems in practice.

Model 5 is the last model in the chain of IBM models. Model 5 iaitar to Model
4, except that Model 5 is not deficient. Model 5 is not typigalted because avoiding

the deficiency of Model 4 requires a much larger number ofrpatars than Model 4
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has, and because Model 5 has not been shown to perform lietteModel 4, despite
Model 4's deficiency (Och & Ney, 2003).

The advantages of Model 4 over Model 1 and Model 2 come fronmibie power-
ful model which better captures translational correspandgbut this comes at a high
price. Both estimation and search over the full distributtbalignments becomes in-
tractable. In practice, a local hillclimbing search is udadng the E-step (as discussed
for Model 4 in Appendix A.2.5.2, note that this is similar keet‘basic” search algorithm
used with LEAF discussed in Section 3.4), to find a small sg@robable alignments,
and the model is re-estimated using only this set (i.e. Withassumption that align-
ments outside this set have probabili)y LEAF also requires local hillclimbing search
and re-estimation from a small set of probable alignments.

The unsupervised baseline in this thesis involves firgtitngiModel 1, then training
the HMM word alignment model (the HMM has similarities to MB@ but performs
better than Model 2; it is described in the next section), weth Model 4. Appendix
Aincludes a presentation of the baseline unsuperviseémsyshich uses the GIZA++
implementation of Model 4 in both directions (the 1-to-Netition and the M-to-1
direction), followed by the application of symmetrizatioauristics to produce the final

M-to-N discontinuous alignment.
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LEAF improves on Model 4 by providing a generative story whatlows the mod-
eling of M-to-N discontinuous alignment structure ratheart the 1-to-N structure mod-
eled by the IBM Models. This is a better structure of tranelzdi correspondence than
that modeled in the IBM models. In practice, this means tha[EBas the important
advantage that it does not require heuristic symmetrigatial is able to model the full
range of translational correspondences we are interasticeictly. LEAF can provide
a posterior distribution over likely M-to-N discontinuoabgnment hypotheses, which
is impossible to obtain from Model 4 without using both syntinzation heuristics and

heuristic combination of the 1-to-N and M-to-1 posterioolpebilities.

3.6.1.2 HMM Word Alignment Models

Much of the additional work on generative modeling of 1-toadrd alignments is
based on the HMM word alignment model (Vogel et al., 1996)icWlis itself a gener-
alization of ideas presented by Dagan et al. (1993). The HMivbvalignment model
uses an alignment model which has relative positions, B Model 4, rather than
using an alignment model involving absolute positions Wlace used with models like
IBM Model 2. We observe the French words, which are the emmssad the HMM,

and we know that there alestates, the English words. The transition parameters are
tied by distance. For example, suppose we already emiteeBrémch word at position

j from statei. The transition probability of transitioning from statt® i’ (which would
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mean that we would emit the French word at positjoa 1 from ') is conditioned on
the signed distancé — i.

Many research groups are interested in the HMM because itbeaefficiently
trained using the Forward-Backward algorithm, and infeeeiscalso tractable. One
important difference with Model 4 is that the HMM does not @avfertility distribu-
tion. The fertility distribution is important to the good gpermance of Model 4, and
there have been several attempts to at least partially onerdhe lack of a fertility
distribution in the HMM (without losing the benefits of trable inference) as we will
discuss further below.

Och and Ney (2003) presented extensions to the HMM word eyt model
which allow NULL (which emits spurious target words) to bedeted using addi-
tional states (recall thatis the length of the English sentence). The choice of thige sta
encodes the positionof the previous non-NULL English word (the state from which
we transitioned into a NULL state). This allows the appramiNULL state to “re-
member” the previous non-NULL English word, so that traosiprobabilities out of
the NULL states can be based on the previous English worHidftere not done, and
we have only one NULL state, this state would “forget” wharelie English sentence
the last non-spurious word was emitted from. This formalaadds one additional free
parameter, the probability of a jump to the appropriate isprisrword state (in fact, the

formulation requireg free parameters, but in practice these are tied). An additioee
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parameter is used to control an interpolation of the redgpgsition alignment model
with a uniform position alignment model, which is used to sthothe relative posi-
tion alignment model. These two parameters must be optaroreheld out data. In
practice, we have found the parameter controlling the juonihé NULL states to be
particularly important for good performance. Och and Ne§0O@ also proposed lex-
icalizing the non-NULL jump probabilities with word class® create a class-based
HMM.

Toutanova et al. (2002) and Lopez and Resnik (2005) presantadety of refine-
ments of the HMM word alignment model particularly effeetior low data conditions.
Toutanova et al. (2002) reported on extending the HMM woighahent model in three
ways: using POS-based translation probabilities, makiegump to NULL dependent
on the identity of the English word and conditioning the gatien of spurious French
words on the following French word. Lopez and Resnik (2008pofuced syntactically
motivated jump distance features based on the distancenwaittiependency parse and
improved initialization of both the translation and aligemt position models.

The model which was presented by Deng and Byrne (2005) is am&®h of the
HMM which modifies the HMM to be able to emit a phrase of wordeath state
(recall that a state is an English word). Optionally, a wiaeel bigram formulation
can be used to model which words are in a phrase, otherwiser@lexel unigram

model is used. A free parameter is used to tune whether lomgshorter phrases
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are desired. Like the extension of the HMM presented by OchNey (2003), the
state space is multiplied by two to model spurious targeegsion (though here we
are referring to spurious phrases rather than spurioussj)oathd the probability of
outputting a spurious phrase is a free parameter. To moustigbmodel the alignment
position distribution a linear interpolation of the usudViMl relative position model
is performed with an absolute position model (like Model &ignment model) and a
simple uniform position model. This interpolation of thekeee quantities introduces
another two free parameters. These four free parametersbaugptimized against
held out data, which, given our experience with the HMM, kely to be important
to performance. The structure modeled by Deng and Byrne {2806to-N. When
trained in both training directions (using different sags for the free parameters of
the two directions), the improvements in the model were catitipe with Model 4 (for
the special case of monotone translation). However, tigesarimprovements were
obtained by using a technique which “second guesses” tHesfimanetrized alignment,
which is easier to do with models which support exact infeeefike the HMM) than
with LEAF or Model 4. This “second guessing” provides tratisins for phrases which
were not covered by the symmetrized alignment, we will disdhis in detail in Section

3.6.7.
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3.6.1.3 Discussion

Model 4 and the HMM share one important characteristic. Boedering models (also
called “distortion” models) use relative positions, ileatithere is a greater than zero or-
der dependency on word placement. The “homogeneous” HMM atignment model
has a first order dependency (the position of the next placed 8 conditioned only
on the position of the previously placed word). The extend&M word alignment
model of Och and Ney (2003) remembers the location of theiqusly placed non-
NULL word. Model 4 conditions the alignment model on the loga of the previous
“cept center” for the first word (from the left) generatednran English word, on the
position of the previous word generated from an English witte word being placed
is not the first word generated, and also uses word classe#\(ggendix A for more
details). These models appear to be successively more fudWelEAF uses a similar
ordering model to Model 4 with the important difference ttrag distortion is relative
to explicitly chosen head worfls

The lack of fertility in the HMM is a strong difference with Mel 4. Toutanova
argues for using a probability of “staying” in a source woodry to indirectly model
fertility. Deng and Byrne use phrase length probabilitiesgach emission. Both of

these can not directly model fertility because the statédbeaneturned to multiple times,

4The placement of the third and subsequent words in a cepiis/eeto the place-
ment of the previous word, which is more similar to the mauebf distortion in Model
4.
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but they may provide a useful bias which partially makes ughe lack of an explicit
fertility model. Model 4’s fertility model is its main strgth over the HMM, as it
provides a more robust global model of generation (e.g. d@eiofor an English word
to generate words in two very different parts of the sentenpays both a distortion
cost and a fertility cost; for the HMM this is just a distoricost which is easily offset
by avoiding a low probability translation). LEAF has an egplmodel of fertility
which is similar to Model 4's but is also conditioned 9mwhich indicates whether the
source cept is a single word. We have experimented with tiondig this decision as
well on the word class of the target head word, but found tleafiopmance degraded,
indicating that such a distribution can not be robustlyneated with the amount of data
we currently have available

In general, LEAF improves on the HMM by providing a generattory which al-
lows the modeling of M-to-N discontinuous alignment stuetrather than the 1-to-N
alignment structure modeled by the HMM. As in the case of Mddé¢he predictions
of the HMM word alignment model are 1-to-N, which requiresihgtic symmetriza-
tion of predictions in both training directions. Howeven, important difference with
both LEAF and Model 4 is that HMM word alignment models suppactable exact

estimation and prediction, which explains their intereghie research community. We

>One approach to remedying this might be to use fewer head vlas$es, we
currently use 50.
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bootstrap both LEAF and our baseline Model 4 system from thid/Has implemented
in GIZA++.

A disadvantage which both Model 4 and the HMM variants haveammon is
the existence of several free parameters which must be @zptihon held out data
in an expensive end-to-end heuristic search which is eittenually done, or often
simply not done at all (in which case parameters optimizedafdifferent task are
used). Unsupervised LEAF has the advantage that it reqnodsee parameters, but
this lack of direct control over important parameters dbotes to poor performance
if the bootstrap distributions are not well estimated (dppears to be the case for the
unsupervised Arabic/English experiment we reported irti®&e8.5). In Chapter 4 we
show how a small number of parameters can be trained usirepaad 100 sentences
of annotated data as an integral part of a semi-supervis@drtg process. This can
be viewed as a practical way to avoid the manual optimizgtimcess required when

using such free parameters while still obtaining the benefisuch an optimization.

3.6.1.4 Other Generative Models of 1-to-N Structure

Moore (2004) reported on modifications to the training of IBMbd&! 1, which serve
to improve the quality of the Viterbi alignment of Model 1. M@ noted that using
techniques which may reduce the accuracy of the full distidim over possible align-

ments in favor of strongly sharpening the Viterbi estimatay be counter productive
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if the model is subsequently used to bootstrap, as is dorte lwath LEAF and our
baseline. However, Moore motivated his work by discussimglieations other than
word alignment which use Model 1, including sentence aligntr(Moore, 2002) in
particular.

Och and Ney (2003) presented “Model 6”, which is a log-lineambination of
Model 4 and the HMM. The motivation for this combination istlthe distortion (re-
ordering) model for the HMM is in the inverse direction of tled Model 4, and so
combining their predictions may be more robust. In practMedel 6 is not used to
create alignments for state of the art SMT systems. SymendAF calculates a rela-
tive distortion model in both directions, and uses a difiéseparameterized model for
determining source non-head word to head word links (agaboth directions), so it

captures this same effect in a stronger fashion.

3.6.2 Generative Models of 1-to-1 Structure

Another popular choice has been to use the 1-to-1 alignnterdtgre. The discussion
in Section 1.2.4 and patrticularly Table 1.6 on Page 10 shbatsthis structure is inad-
equate in accounting for translational correspondenceveder, search over this type
of structure is simple. Wu (1997) and Melamed (2000) and Ghend Lin (2003) all

used this structure. It is possible that 1-to-1 alignmemnicstire may be of some inter-

est for applications other than machine translation wittt@ag emphasis on precision,
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such as the extraction of single word translation lexicamsuse in Cross-Lingual In-
formation Retrieval (Xu et al., 2001), but further study i®ded to determine whether
this is in fact the case or whether the low recall of 1-to-§jranent approaches causes
problems.

Wu (1997) invented hierarchical alignment, using operetion parallel binary
trees, which were modeled as hidden variables, and a woedl llExicon to establish
translational correspondence. This allows for highlytabte estimation and inference,
but has not been used effectively to improve translation.

Melamed (2000) introduced “competitive linking” which isheuristically moti-
vated combined modeling/search approach which involveeady 1-to-1 matching
of English and French words. Cherry and Lin (2003) used a flyibstic model sim-
ilar to Melamed (2000) and two constraints, the 1-to-1 a@amst and the no crossing
dependencies (“cohesion”) constraint. Two sets of featare used in their model,
“adjacency” features (which rewards groups of words fostdting together) and “de-
pendency” features (a word movement penalty based on dependrees generated
using the MiniPar dependency parser). LEAF’s placementaisoehcode knowledge
similar to Cherry and Lin’s non-syntactic features here,thatsyntactic features may
capture a generalization that is of interest in the semesuged approach we present

in Chapter 4.
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Yamada and Knight (2001) presented a tree-to-string alegirmodel. The model
is trained using English syntactic trees generated frongh quality syntactic parser
and Japanese strings. A particular generative story apmpierations to the English tree
to generate the Japanese string, and this induces an ahgnifiee operations on the
tree allowed by the generative story include three kindgefations, the reordering of
English constituents within an English constituent phrasaslation actions mapping
English to Japanese, and insertion of NULL words. This meded not used to try
to generate a good Viterbi alignment, but instead to diydetirn a good estimate for
p(fstring|etrep) which is then applied during translation (translation is tacovery of
an English tree given a Japanese string), in conjunction avianguage model which
models the probability of an English tree. This model usest@-1 structure for the
majority of the translation actions, which are translagiar the leaves of the English
parse tree, but was later extended to allow phrasal tramstadf constituents in the
parse tree (however, this was not implemented in the aligmmedel). Gildea (2003)
extended this model to tree-to-tree alignment and enhaatidree-to-string and tree-
to-tree generative stories with an operation called “clomeich allows models to be
more powerful and less tied to the original tree structures{auctures). LEAF induces
a roughly dependency-like relationship in the links betweesingle head word and
multiple non-head words, but this is more semantically watéid than syntactically

motivated.
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1-to-1 alignments make very few predictions, so they haves toward high pre-
cision but low recall. Estimation (and prediction) usingotl alignment structure is
highly tractable, but unfortunately this structure is n@jamd choice for building MT
systems. As we showed in Chapter 2, the AER metric unfairlprahigh precision
alignments, which has encouraged research using thisisteudut none of this re-

search has been shown to improve machine translation yualit

3.6.3 Generative Models of “Phrase-based” Structure

The phrase-based (consecutive word) alignment strucagalso been used in several
alignment models, though it is more often used in trangtatmdels. The discussion
in Section 1.2.4 and particularly Table 1.6 on Page 10 shtwasthe phrase-based
assumption is also not a good choice of alignment structmd, we mention again
that even phrase-based SMT models do not perform ideallyalignments generated

using a phrase-based alignment structure.

3.6.3.1 General consecutive word alignment models

Marcu and Wong (2002) defined the Joint model, which modetewsecutive word
M-to-N alignments. When used as a translation model, thet doadel is interesting
because it uses a distribution over phrase translatiossttyiy rather than estimating it

from a Viterbi alignment. The model has a strong memorizetapability and seems to
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match the assumptions behind phrase-based SMT closelyeWoythis memorization
capability leads to problems in generalization and in &iitity. In the Joint model,
unlike in LEAF, overlapping phrases do not share paramekensinstance, the proba-
bility of the French cept “homme” translating to the Englegpt “man” is not directly
related to the probability of the French cept “homme” tratisy as the English cept
“the man”. This leads to a large blow-up in the number of pat@mrs, causing the in-
tractability problems, and leads to poor generalizatione Joint model also does not
have the ability to deal with non-parallelism (which is atated using NULL align-
ments in most other translation models). Kumar et al. (2Q@@d the phrase-based
version of the alignment templates translation framewdrlOoch and Ney (2004) to
build an alignment model which is similar to the Joint model.

The problem with the blow-up in parameter space involved adets like the Joint
model is addressed in LEAF by using the head word structuatidw the phrase prob-
abilities to decompose into smaller units. In particullars appears to provide a good
trade-off between robustness and expressiveness givamibent of training data cur-
rently available. The M-to-N discontinuous alignment stase using the head word
assumption is also faster to search than a pure phrase-btigetiire as the transla-
tion dependencies on one side are only dependent on the lerddow the other side
(and~ which is a flag indicating whether the cept on the other sideains just one

word). The decomposition of costs using the head word assommeans that adding
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a non-head word to a head word is an operation which incuriiaclal cost but does
not cause all of the other costs incurred by that cept to beaheated. In phrase-based
models any change to a cept causes all costs to be reevalu&i/&# also provides us
with a path to easily increase the power of the model by simgdiucing reliance on

word classes and further relaxing conditional independessumptions.

3.6.3.2 Other “phrasal” models

Other alignment structures have been tried which are lgggehsal. Wang and Waibel
(1998) introduced a generative story based on extensioheofyenerative story of
Model 4. The alignment structure modeled was “consecutiveo Mon-consecutive
N”, and the parameters were trained using EM. LEAF has somdasities with this
model in that they are both based on generative stories venelextensions of Model
4. However, LEAF allows the full range of M-to-N discontigigalignments.
Tiedemann (2003) created an algorithm similar to Melamedispetitive linking
algorithm, but allowing adjacent word connections. This&ure has similarities to the
“Refined” heuristic symmetrization metric of Och and Ney (2D&hich we discussed
in Chapter 2. A variety of features were used including fesguased on POS tags
and similarity heuristics. We will propose a semi-supegdigraining algorithm which

could use these types of features in Chapter 4.
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3.6.4 Generative Models of 1-to-N and M-to-1 Structure

Matusov et al. (2004) presented a model capable of modeliogNLand M-to-1 align-
ments (but not M-to-N alignments) which was bootstrappedifiModel 4. The tech-
nique used for bootstrapping is to use state occupatiorapilities. State occupation
probabilities can be exactly determined for the HMM but oapyproximately deter-
mined for Model 4; this involves using a sample of the Modelb4tprior distribution
which is calculated over a small set of alignments which aygefully near to the best
alignment. We suspect that this is not more powerful tharplirastimating a model
directly from the Model 4 Viterbi alignment (and could evemnihferior), but these two
options have never been directly compared. The state ottongaobabilities are then
used in combination with the Hungarian algorithm to solv@atiite covering problem
which derives a 1-to-N and M-to-1 alignment. However theislens made are based

only on the state occupation probabilities which don't mdHe global context wefl

This is easiest to illustrate with an example. Suppose amatst of Model 4
prefers to assign the French word at the beginning of a pdatti¢-rench sentence to
the first English word 50% of the time and the French word atethe of the French
sentence to the same English word 50% of the time. This caly éascaptured in the
state occupation probabilities. But this fails to capturg sweraction between these
two alignment decisions. If the highly probable alignmemksch have the first French
word aligned to the first English word never contain an aligntof the last French
word to the first English word (because the distortion prdhsds involved in making a
placement at the beginning of the French sentence and atd& éhe French sentence
of words generated from the same English word are low), titesaction would be lost
using state occupation probabilities.
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Because of this, we doubt that using HMM or Model 4 state octopgrobabilities

would be as effective as bootstrapping LEAF from the HMM.

3.6.5 Generative models of M-to-N Discontinuous Structure

LEAF is the only general purpose alignment model which me#d&lto-N discontinu-
ous structure which we are aware of. However, May and Kni2®®7) defined a model
which can be used to re-align given a high quality word aligntrand an English parse
tree. This work uses the GHKM translation model (Galley et20)06) as an alignment
model.

May and Knight (2007) used this model to re-align from a stgralignment and a
fixed parse tree. The parse tree is treated as a fixed hardaohsFEirst an inventory
of treelet/alignment pairs is created from the startingratient and the fixed parse tree.
Then EM is used to find better treelet/alignment pairs for imé&ing the likelihood of
the training data then were originally used (note that athef treelet/alignment pairs
considered for a particular sentence must have been olosertke starting minimal
Viterbi derivation of either the sentence in question or ffecgnt training sentence).
Finally the Viterbi treelet/alignment derivation is foufar each sentence pair. This
work allows a generative model to take advantage of symtadiormation. However,
it has some of the same issues with overlapping rules asasgstems do. This is

partially addressed by adding a “rule size” distributioniethis analogous to a fertility
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distribution (but is over rule size rather than the numbevarfds generated). We would
be interested in taking advantage of syntactic informatidtEAF, but as the parse tree
is not perfect (it is generated by a probabilistic parsernctvimakes errors) we think
the appropriate way to do this would be to define syntacticalbtivated sub-models

in our semi-supervised formulation, which will be discusgeChapter 4.

3.6.6 Symmetrization

One important aspect of LEAF is its symmetry. Och and Ney 80@vented heuristic
symmetrization of the output of a 1-to-N model and a M-to-Idelaesulting in a M-to-
N alignment, this was extended by Koehn et al. (2003). Zeias €2004) introduced
symmetrized lexicon training. Liang et al. (2006) showed botrain two HMM word
alignment models, a 1-to-N model and a M-to-1 model, to agreeedicting all of the
links generated, resulting in a 1-to-1 alignment with ocwaal rare 1-to-N or M-to-1
links. We have used insights from these works to help deterthe structure of our
generative model.

Various models have attempted to gain the advantages df tis#se symmetriza-
tion heuristics, but most have been required to deal witkgt-predictions (or with state
occupation probabilities). LEAF uses the head word stineciin a symmetric fashion

inside of the generative story, which seems to be a bettertwaodel the desired
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structure. In particular, this allows for a posterior disition over more than the 1-best

alignment without the use of heuristics.

3.6.7 Different Rule/Phrase Extraction

The work reported in this thesis used translation systenshagxtract translation rules
from a single word alignment (Koehn et al., 2003). One pramgisirea of translation
modeling research is work on extracting translations riri@® richer representations
than a single word alignment. The IBM models (Brown et al., 2993 the Joint
model (Marcu & Wong, 2002) were designed to estimate parmétor 1-to-N and
phrase-based translation models respectively) direciliyont requiring the use of a
Viterbi alignment. Venugopal et al. (2003) invented a gaheed technique for using
lower order alignment models such as Model 1 to generatesphpairs given a source
language test set and an unaligned bitext.

Deng and Byrne (2005) described an approach which is used astgqmcess
for finding translations of phrases in a translation testwgdth did not have trans-
lation candidates indicated in the symmetrized alignmdihis is a form of “second
guessing” the symmetrized alignment. It involves using aified Forward algo-
rithm for estimating the posterior probability of each pbksphrase pair (according
to symmetrically trained phrase-based HMM models). Thesduhis approach to-

gether with symmetrized phrase-based HMM alignments tainbtnproved BLEU

100



scores over just using the symmetrized phrase-based HMviraknts. They also ob-
tained improved BLEU scores when using the posteriors caledlover symmetric
phrase-based HMM models to extract translations for plsragech were not covered
in symmetrized Model 4 alignments. The implementation of #pproach requires the
calculation of quantities similar to the state occupatioobpbilities of Matusov et al.
(2004). This relaxation of the Viterbi alignment assumptior phrasal or hierarchical
rule extraction seems to us to be a logical extension of otrentiapproach. Imple-
menting this for LEAF would require modifications to the mbieallow it to generate
the most probable alignment subject to the constraint thigiaat one translation of a

certain phrase can be extracted; we will discuss this furth€hapter 5.

3.6.8 Discussion

We have outlined some of the important previous work on wdigheent. We chose
to break this work down by the alignment structure modelsdyu choice of a better
alignment structure was critical to the design of LEAF.

However, there are other dimensions on which we could exp@né very impor-
tant dimension is the treatment of syntactic phenomenaesigding LEAF, we were
not only inspired by Model 4, but also by dependency-basgdment models. We dis-
cussed some of the dependency-based word alignment modeéssections on 1-to-1,

phrase-based and M-to-N discontinuous structures. Irrasinivith their approaches,
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we have a very flat, one-level notion of dependency, whictemantically motivated
and learned automatically from the parallel corpus. Thesidf dependency has some

similarity with hierarchical SMT models such as the Hierodalb(Chiang, 2005).

3.7 Summary

Our new generative model, LEAF, is able to model alignmeriigkvconsist of M-to-N
non-consecutive minimal translational correspondentés.presented the generative
story and mathematical formulation.

We then discussed the training of LEAF using an approximapeEtation-Maximization
training algorithm. We discussed the E-step, the M-steg pamotstrapping (performing
the initial M-step).

We use a local search algorithm to search for likely alignimeWe presented the
permutation operators used and discussed how to use thetasi@ahillclimbing al-
gorithm. We also derived an improved hillclimbing algonitlusing “Tabu” alignments
and restarts, and performed a simple experiment showingt ikaeffective.

We conducted experiments on large French/English and &li@&bglish data sets
which show that LEAF is comparable with our baseline, GIZA+hen LEAF is
trained in an unsupervised fashion.

We then discussed the extensive body of previous work onrgéve modeling of

word alignment. We broke the discussion down by the alignmsrncture modeled,
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with the two most important structures being the “1-to-NUusture as used in the IBM
models and the HMM, and the “phrase-based” (consecutive gtructure as used in
phrase-based models. We contrasted LEAF’s M-to-N nonemirts/e alignment struc-

ture with both of these structures and discussed the adyestaf the head word as-
sumption, and in particular how this approach solves thagairsegmentation problem
of phrase-based models, where overlapping phrases caldems with both tractabil-

ity and robustness. We also discussed two other issues, syioity and approaches
to building translation systems which use more than juswitexbi word alignment.

In conclusion, we have found a new structure over which werobauastly predict
which directly models translational correspondence consugte with how it is used
in hierarchical SMT systems. Surprisingly, this is also arénsuitable structure for
general phrase-based SMT systems than the phrase-bagechatit structure. Our
model, LEAF, is comparable with a strong baseline when raigied in an unsupervised
fashion. In Chapter 4 we will decompose LEAF to derive the swdalels of a powerful
semi-supervised model and show that this model has signifychetter performance

than two strong baselines.
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3.8 Research Contribution

We designed a new generative model which models the steuofihe word alignment
problem directly.

We also developed a high performance distributed locatkesigorithm.
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Chapter 4

Minimum Error / Maximum Likelihood Training for

Automatic Word Alignment

4.1 Introduction

The technique of using labeled data and unlabeled datahgdr training is called

semi-supervised training. We are interested in developisgmi-supervised training
technique for the word alignment problem: we have a largeberrmof parameters to
estimate, a large amount of unlabeled data, and a small anoblmbeled data. We
have a structured generative model, LEAF, which can beddhin an unsupervised
fashion on the unlabeled data, and now we would like to takarmdge of the labeled
data.

When we refer to labeled data for the automatic word alignrpsstilem, we mean

parallel sentences for which a correct word alignment has la@notated by humans.
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Unlabeled data refers to a pair of sentences which we assunpaallel (as they were
chosen using a sentence alignment program which is knowmave high accuracy
in making this determination). Unlabeled data do not havendiu annotated word
alignments associated with them, which is why we call thetahgied.

We first show how to discriminatively rerank the output of aagetive model to
minimize the errors on the labeled data. We then present @eesupervised training
approach called Minimum Error / Maximum Likelihood traiginvhich incorporates
steps which alternatively minimize error with respect te timal performance criterion

and maximize the likelihood of the underlying generativedelo

4.2 Discriminative Reranking for Generative Word Alignment

Models

The idea behind applying discriminative training to getieeamodels is to enable us to
use a discriminative criterion to access knowledge whichrezt be directly integrated
into the generative model (because of the need to reengimegenerative story).
Discriminative reranking of the output of a generative magees a representation
of the guesses of the generative model. If this representatiplicitly enumerates the
best N complete hypotheses, it is called an N best list. Tipotmgses are ranked by

their probabilities. Discriminatively reranking an N bést allows the use of additional
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knowledge which would be difficult to incorporate directhto the generative model
to produce a new ranking (i.e. different probability scdi@sthe hypotheses in the N
best list). If additional knowledge sources are effecyivambined with the knowledge
sources in the original generative model, this ranking béllbetter than (or at least as
good as) the ranking output by the original model.

We present a new discriminative reranking method which Wieapply to an N best
list generated using LEAF. After presenting relevant pvasiwork on discriminative

reranking, we will generalize this to a new semi-supervisathing approach.

4.2.1 Reinterpreting LEAF as a Log-Linear Model

In this section we will reinterpret LEAF as a log-linear mbd&his form of model
will allow us to use the distributions which make up LEAF iniaatiminatively trained
model, as we will explain in the next two sections.

We use the term “sub-model” to refer to the components of canlets. This em-
phasizes that most of these “sub-models” are in fact modeishnare estimated from
data. These “sub-models” often have parameters and relyhah we normally think
of as “features” for their parameterization. However, nboé our sub-models will
have parameters (for instance, we could imagine definindparsadel which is simply
the percentage of the French words which are unaligned). bAnsadel is simply a

function applied to an alignment which outputs a real nunfiyerhope that the reader
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who prefers to call this a “feature function” or “feature”lisimply mentally translate

“sub-model” to their preferred term). An effective sub-rebdan be used to tell us
whether to prefer one hypothesized alignment over anotieve view the numbers

output by a sub-model as negative log probabilities, theigla humber (cost) assigns
the alignment a low probability, while a low number assidgresalignment a high prob-
ability.

In this section we reinterpret the probability distribuisoof LEAF listed in Table
4.1 as sub-models of a log-linear model and estimate thehteeagssociated with each
sub-model. The model formulation is given in Equation 4.1e #interpret the new
generative model as having ten sub-models in the sourcegdettdirection, and ten
sub-models in the target to source direction, for a totaMefity sub-models, which are
listed in Table 4.1. Each sub-modelhas an associated weigky,. Our approach can
also be applied to additional sub-models which are not datieoriginal generative
model, which will be discussed in Section 4.8.1.

exp(d_; Aihi(f, a,e))

pala, fle) = Ef/ﬂ/ exp(X, Nihi(f!,d€)) (4.2)

Given a vector of weightg, the alignment search problem, i.e. the search to return

the best alignmernit of e and f according to the model, is in Equation 4.2.
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so(Yol 22, ¥i)

to(f;)
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di(Aj|class(e,),
da(Ajlclass (f5))
d>2(Ajlclasg (f;))

Boo~v~ouobwnpek

11-20

clasg (f;))

source word type

choosing a head word

head word translation

1; 1S number of words in target cept

number of unaligned target words

identity of unaligned target words

non-head word translation

movement for target head words

movement for left-most target non-head word
movement for subsequent target non-head wo
(same features, target to source direction)

rds

Table 4.1: Sub-models derived from LEAF

a = argmax p(a|f,e) = argmax p,(a, fle) = argmax exp(z Aihi(f,a,e)) (4.2)

a

)

4.2.2 Discriminative Training Algorithm

Given a hypothesized alignmemnt a gold standard alignment and the English and

French sentences, we can calculate an error funcfiga, g, ¢, f). We would like to

minimize the error function by finding the bessettings. This is a supervised learning

problem, the discriminative training problem, listed inu&gjon 4.3.

argmin E(a, g, e, f) wherea is as defined in Equation 4.2 (
A

4.3)

Because this is a structured learning problem over the ensssmace ok vectors,

exact inference is intractable. We will instead developtarative process for solving
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Equation 4.3. We will learn optimal weights over a (growisg}t of hypotheses for a
small number of parallel sentences for which we have golddstad alignments. We
usel — F-measuréy) as our error function, comparing hypothesized word aligmisie
for the discriminative training set (often referred to as tevelopment” or “dev” set)
with the gold standard.

The discriminative reranking algorithm is initialized Wwithe parameters of the sub-
models# (which are the final distributions estimated during unsugged training of
the generative model), an initial choice of theector, gold standard word alignments
(labels) for the alignment discriminative training set ttonstant N specifying the size
of the N best list, and an empty master set of hypothesized alignments. Thoeithig

consists of repeatedly running a loop which consists oftinnain steps:

LOOP:

1. Produce an N best list usingby solving Equation 4.2). If all of the hypotheses
in the N best list are already in the master set of hypothékesalgorithm has
converged, so terminate the loop. Otherwise add new hypeth® the master

set of hypotheses.

2. In this step, we choose the besvector to minimize error from a set of candi-

dates. The candidates are our currgnector, any\ vectors which were chosen

LN = 128 for our experiments
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previously in Steps 2 and 3, and 999 randomly generated ngec@iven these
candidate\ vectors we apply each of them to the master set of hypotheseder

to determine the top ranked alignmenhtand and then evaluate the error function
E(d,g,e, f). We seth to the A vector which resulted in the alignments with the
lowest error (i.e. the highest F-measurgscore since we use— F-measuréy)

as our error criterion), so we have solved Equation 4.3.

3. Run a “city block” error minimization step which resultsamew vector\. This
minimization also involves solving Equation 4.3, but is emeomplex than sim-
ply evaluating the error of several candidates. The implementation of “city

block” minimization for our problem is discussed in detaaldowv.

Step 3 of the algorithm tries to find the bessetting over the set of hypotheses
for the sentences in the discriminative training set usimgerical optimization. This
is an M-dimensional optimization problem (where M is the m@mof sub-models).
Minimizing error for all of the weights at once is not compudaally feasible. We
initially applied Powell's Method (Press et al., 2002), ngsiBrent's Method (Press
et al., 2002) for line minimization, but found this to be ifetive. This is might be
because the assumption that the error surface is quadraiocvivlated and the line
minimization was then quickly trapped in local error minimbkich were much worse

than the global error minima.
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Och (2003) has described an efficient exact one-dimensimal minimization
technique for a similar search problem, which we will adapbur problem. This
involves calculating a piecewise constant function. Thisction, which is calculated
for a fixed sub-model, is a function of one variable. The function directly evaluates
the error of the hypotheses which would be picked by equdtidif we hold all weights
constant, except for the weight,{ for somem) under consideration, which is set to
x. The formula for such a function for sub-mode| which we callf,,(z) is given in

Equation 4.4.

fm(x) = E(argmax exp(x * hy,(f, a,€e) + Z Nihi(f.a,€)), g€, f) (4.4)
a i#Em

We implement “city block” minimization by first calculatirte M functions. Once
we have calculated an explicit representation of each offihetions f,,, we can
quickly find the error minima (the value resulting in lowest error) for eagh,. We
then choose the sub-modeland the value: resulting in the lowest error minima and
set),, = z. We iterate this process until no further reduction in ecam be found.

We can in fact generalize Equation 4.4 to calculate a fundio any line in the
M-dimensional space (not just the M unit vectors). It woudes obvious that we

should use exact line minimizations in place of Brent's mdtand apply Powell's
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method. However, counter-intuitively, we have found tmapractice Powell’s method
is quickly trapped in local error minima even with the exaneIminimizations. We
have instead found it more effective to perform “city blockinimization over just the
M unit vectors.

In automatic word alignment problems using a large humbesubfmodels, the
outcome of Step 3 is sensitive to the starting point. If westder just steps 2 and 3, then
we can define a search error as a failure to find the bealue for minimizing the error
of the hypothesis chosen from the current master set of hgget using Equation 4.2.
Performing step 2, which vets both thevectors which were found useful previously
and a large number of randomvectors, and then using the best result as the starting
point of the “city block” minimization in step 3 seems to regusearch errors to an

acceptable level, but we believe that in future work we wdldble to improve on this.

4.3 Previous Work in Discriminative Training

Discriminative reranking has been used successfully inynaa@as of NLP. A good ex-
ample area is syntactic parsing. For parsing, discrimieagranking was introduced
by (Collins, 2000). He starts with an underlying generativadei which models the
joint generation of a sentence and its parse-tree. Giverwaseatence to parse, he
first selects the best N parse-trees according to his géreerabdel. Then he scores

new features, which could not be easily integrated into a gemerative story because
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their roles in generation would overlap, and learns disicrattively how to rerank the
parses in his N best list. He uses a greedy feature sele@amigue to determine
which features are important. Recently a very large numbdiftgrent approaches to
discrimininative reranking have been applied to syntgaéicsing, and there have also
been a large number of more general discriminative traialggrithms used. One dis-
criminative training algorithm of particular interest te is training using the averaged
perceptron (Collins, 2002), which was refined and applieddahalignment by Moore
(2005); this will be discussed in Section 4.4.3.

Discriminative reranking has also been applied to machimestation. Och et al.
(2003) and Och et al. (2004) used a large number of featuctituns and the discrim-
inative training technique defined by Och (2003) to rerankeitltists of hypothesized
English translations for Chinese sentences to improve thbtguf translations. Shen
and Joshi (2005) evaluated maximum margin approachesdaaime task.

Other approaches to discriminative training based on aenlyidg generative model
have been applied in NLP. We present work in the area of madhémslation, as it is
relevant to the discriminative training approach we wikkda Och and Ney (2002)
introduced a log-linear model for translation composed oblkection of sub-models
which are estimated using various techniques. These iadlsdveral sub-models es-
timated by taking the relative frequency of consecutivedvoinrases extracted from

the one-best output of symmetrized Model 4 alignments asaliatluded sub-models
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which backed off estimation of phrase-to-phrase trarsiagirobabilities to a word-
level translation lexicon. Both the maximum mutual inforrmat(MMI) and the mini-
mum classification error (MCE) criteria were tried. Och (2p®8roduced direct error
minimization for statistical machine translation using gtame log-linear model, and
showed that discriminative training to the final performadterion, BLEU, is supe-
rior to training using MMI or MCE. Other optimization techuigs are possible with
log-linear models. For instance Zens and Ney (2004) usediaeahill simplex method
to train weights for both phrase-based and alignment-tategdased translation, and
Cettolo and Federico (2004) used the downhill simplex metbadain weights for a
log-linear model involving a reinterpretation of the Modedub-models for translation.
The approaches to discriminative reranking and discritiiearaining for Machine
Translation which we have discussed use a log-linear modetégrate sub-models of
widely varying granularity. The log-linear model is tratheither to a criterion which
maximizes entropy, or to directly maximize the final perfame criterion. Och (2003)
showed that the latter performs well in practice. When tragrio the final performance
criterion is chosen, two approaches to discriminativentrgj are generally used. The
simpler approach is to generate candidate vectors of wegyd evaluate the results;
the down simplex optimization method (Press et al., 2002bmmmonly applied here.
We apply this type of approach in step 2 of our discriminatlgorithm in an even

simpler fashion, by simply generating random vectors amduating them. The other
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approach, introduced for translation by Och (2003), is tbnoge over N best lists
using exact line minimizations. This puts the performanceon inside the opti-
mization. We use exact line minimizations in the “city bldeckinimization which is

performed in step 3 of our algorithm.

4.4  Previous Work in Discriminative Modeling for Word

Alignment

Previous work on discriminative modeling for word-alignmeliffers most strongly
from the log-linear approach in that it generally views watdjnment as a supervised
task. However, all of the state of the art approaches depangsimg features from
an unsupervised generative model in order to obtain theit t@sults because of the
small amount of gold standard word alignments availabla @tial., 2005; Ittycheriah
& Roukos, 2005; Taskar et al., 2005; Ayan & Dorr, 2006b; Laeehilien et al., 2006;
Fraser & Marcu, 2006; Blunsom & Cohn, 2006; Moore et al., 2006).

We are most interested in discriminative models which allbe/use of many-to-
many non-contiguous alignment structure. We are lesseasted in discriminative
models using 1-to-N structure, as the use of 1-to-N requarésuristic step follow-
ing the discriminative training to obtain the M-to-N dis¢iguous alignments actually

used to build SMT systems. The use of such a heuristic stemgribat alignment
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quality can not be directly optimized. We will show in Sectid.8 that optimizing
F-measurgy) for 1-to-N and M-to-1 alignment models separately (and tbembin-
ing their predictions using a symmetrization heuristictsas “Union”) is inferior to
directly optimizing F-measute/) for our M-to-N alignment model.

We are not aware of previous work on discriminative modeth wi“phrase-based”
contiguous M-to-N structure, and given the recent succeserarchical SMT models
(which support gaps in the translation rules) we doubt ghigauld have strong perfor-
mance for most data sets. However, it would be simple to impld this to test this
assumption. As we discussed in Section 3.2.3, phrase-lsasmdure can be modeled
as a special case of LEAF (however, it is important to remertiis the conditioning
of the generation decisions would be on the head words rttharon the full phrase).
EMD could then be applied without modification to a log-lineaodel using the sub-

models derived from this special LEAF model.

4.4.1 Discriminative Models of 1-to-1 Structure

After Brown et al. (1993), much of the initial work on genevatmodeling was done
using 1-to-1 structure. This structure is not a good chacerfaximizing SMT perfor-

mance, but is an interesting starting point for researcivis then go on to work on
more highly structured output spaces. In particular, $elardted to a 1-to-1 alignment

structure is fairly simple even for models which use very ptan features.
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Taskar et al. (2005) took a similar approach to the models efamed (2000)
and Cherry and Lin (2003), but in a discriminative contexsticey the word alignment
problem as a maximum weighted bipartite matching problehickvis estimated within
the large margin framework using a quadratic program. Tlseysuich features as DICE
score, orthographic similarity and proximity of (absolypesitions.

Liu et al. (2005) built a log-linear model using the IBM ModehBgnment score in
both directions and discriminatively reranked it. Additéd sub-models were a POS-
based lexicon model, and a dictionary based lexicon modeéy Ehowed small im-
provements in balanced F-measure with Sure/Possible granstrized Model 4, but
did not show what the effect is on translation quality. Thlgcriminative reranking
approach is similar to ours, but with important differencBisey did not decompose the
underlying generative model, which is IBM Model 3. Insted\t used two features
based on the score of the full model. These features modeihiany and many-to-1
alignments respectively, so they can not directly modelyytarmany alignments. One
of these two feature functions must have a value of zero steshypothesized align-
ment is a 1-to-1 alignment. The other main difference is they trained to the Maxi-
mum Entropy criterion rather than maximizing the final periance criterion, though
they indicate interest in doing this and they use heurigtidsy to pick local maxima
of the Maximum Entropy training which are better accordiogtte final performance

criterion.
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4.4.2 Discriminative Models of 1-to-N Discontinuous Structure

The 1-to-N structure, used initially in the generative nlediefined by Brown et al.
(1993), has a long and distinguished history. Discrimugatipproaches which adopt
the 1-to-N structure are a logical extension of this.

Berger et al. (1996) defined a word level lexicon model whigdusarying amounts
of context up to 3 words in each direction from the word beiramslated, and dis-
cussed how to train this representation. Ga\darea et al. (2002) implemented this
in an alignment package. This work defined the lexicon uswoty kvord contexts and
word class contexts. The system was built by first compldtaiping the IBM models
to obtain both the 1-to-N Viterbi alignments in a single diren and the sub-models
representing fertility and distortion. The weights of tleatures for the special lexicon
were trained using the Viterbi alignments as training daid the maximum entropy
criterion. The fertility and distortion models were thetragned, holding the special
lexicon model fixed. Finally the presumed Viterbi alignmeas calculated, and this
was returned as the final discriminatively reranked redthis work resulted in small
gains in balanced F-measure over Model 4 and has not beemgsbamprove transla-
tion quality.

Kumar and Byrne (2002) presented a framework for searchingitomize the
Bayes Risk, applied to word alignment. The work presented LB&idModel 3 with-

out a reordering model (i.e., translation and fertility evenodeled as in Model 3, but
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distortion was modeled as a uniform distribution). Theghss in this work could be
applied in our framework in the future, once we have a bettstgrior distribution over
word alignments.

Ittycheriah and Roukos (2005) presented a 1-to-N discrinvaanodel trained us-
ing the Maximum Entropy criterion specifically for the taskArabic/English word
alignment. They showed balanced F-Measure results which a@mnpetitive with 1-
to-N GIZA++, and are one of the few works which also compahedresulting MT per-
formance, where they had inconsistent gains over 1-to-NAG#Z(unfortunately there
was no comparison with heuristically symmetrized GIZA+-hieh would have been a
stronger baseline). They invested significant effort in-suxel engineering (produc-
ing both sub-models specific to Arabic/English alignmermt sulb-models which would
be useful for other language pairs), while we use sub-moaleish are derived from
LEAF and a few heuristic features. In contrast to their walkpf the sub-models we
have presented are language independent.

Blunsom and Cohn (2006) created a Conditional Random Field (CRé&g¢har the
1-to-N alignment task, and trained it to minimize AER. The mictructure was similar
to the HMM model in that there was a first-order Markov assuompbut because they
were using a CRF they were able to integrate overlapping feat{lexica based on
string similarity, words and POS tags were all scored forsidm@e link), which would

have been difficult to integrate into a generative story.
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Previous to our work with LEAF, we used 1-to-N structure witthe work we did
on training a log-linear model using a mix of features deatifrdm IBM Model 4 and
heuristics (Fraser & Marcu, 2006). In this work we optimizeé F-Measurgy) of
models in both directions independently, but at each i@mnaif training we estimated
additional word-level lexicons by heuristically symmeinig the Viterbi alignments
taken from both training directions. This is similar to tlyesnetrized lexicon training
of Zens et al. (2004). We will compare the current approaamgusub-models derived
from LEAF with our previous approach using sub-models @stiirom Model 4 in the

experiments in Section 4.8.

4.4.3 Discriminative Models of 1-to-N and M-to-1 Discontinuous
Structure

Lacoste-Julien et al. (2006) created a discriminative rhoeltricted to 1-to-1, 1-to-2
and 2-to-1 alignments. This work extends the framework sk@aet al. (2005) to the
“‘quadratic” case, where there are features on pairs of edtfes than individual edges,
allowing them to robustly model 1-to-2 and 2-to-1 alignngenParameter estimation
can be solved exactly as a quadratic assignment problencaouélso be relaxed to
be solvable as a quadratic program. Prediction is solvea asteger linear program,
but can this also be relaxed. The (relative) tractabilitseérch in this framework is
attractive, but this is at the cost of the unreasonable 2 d4ad 2-to-1 assumptions and
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weaker features than the features derived from LEAF. Thiskwalued tractability
over the richness of the features, which is at odds with opragch. The approach
also requires the use of Hamming loss as the training aiteriHamming loss has
been shown to be effective in reducing AER, but no work has lbeae to show that
it is effective for optimizing a metric which correlates Wwelith machine translation
performance. The best results were obtained using feabames] on intersected Model
4 and symmetric HMMs trained to agree (Liang et al., 2006k génerated alignments
were not evaluated in a statistical machine translatiotesys

Moore et al. (2006) introduced a sequence of two discrimiaanhodels called
Stage 1 and Stage 2. The final alignments generated are,1tt#e12, 1-to-3, 2-to-1
or 3-to-1 alignments. Unlike the work of Lacoste-Julien let@006), there is noth-
ing in the framework which inherently restricts the N and Miahles in the 1-to-N
and M-to-1 alignments modeled, and we assume that the chb®éor both of these
variables was a good choice to minimize AER for the FrencbliEh alignment task
considered. The Stage 1 model is estimated from the unaedofall training data
and the annotated discriminative training set. The Stagedetris estimated using the
predictions of Stage 1. The features used in Stage 1 incliglex@ent geometry, exact
string match, lexical features (for words occurring two armtimes in the small dis-
criminative training set), and a ranking induced from thepligelihood ratio calculated

over cooccurences of words occurring in parallel senteindbe full training data. The
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stage 2 model uses statistics taken from the stage 1 modedigcfions on the full train-
ing set, in particular an empirically estimated featurechhmnodels the probability of a
single source word being aligned to a bag of up to 3 target svdvice versa) and an
empirically estimated jump distance feature. The modeaiaméd using the averaged
perceptron which requires a heuristic search to find the prosable alignment just as
ours does, but a beam decoder is used rather than a hilldghggiarch. The averaged
perceptron training was compared with using a support vaotchine formulation
which is designed for structured prediction, and the twaepghes had similar perfor-
mance. The conclusion of this work, that the richness of éla¢uires is more important
than the discriminative training technique, matches otition. Similarly to the work
of Lacoste-Julien et al. (2006) the best results were obthirsing intersected Model 4
and HMM s trained to agree, and MT performance was not evaduat/e view both of
these works as providing an interesting study of featu@s,esof which we intend to

try adding to our model in future work.

4.4.4 Discriminative Models of M-to-N Discontinuous Structure

Ayan et al. (2005) used transformation based learning tamrcphe 1-to-1 and 1-to-
N discontinuous alignments generated from generativesstatl alignment models to
general M-to-N discontiguous alignments. They used a sg@d word alignment

set to learn effective transformations (additions or dehet to the alignment) which
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used context modeled using closed-class words, POS tatjslependency trees. This
work integrates interesting features which we will considging in the future in our
semi-supervised approach.

Ayan and Dorr (2006b) used a Maximum Entropy classifier tolnioenthe predic-
tions of several alignment systems. Based on features ogénplit alignment set ge-
ometry and POS tags, they learned to classify whether aphatilink that is predicted
by at least one of the input alignments should be includelarfibal alignment. These
decisions were made for each link independently as theyardittoned only on the
input and not the output. The experiments performed indwbenbining Model 4 and
the HMM extensions of Lopez and Resnik (2005). They showeuifsignt improve-
ments in MT quality over heuristic symmetrization for snita sets. Our approach, in
contrast, involves a powerful model where alignment lintesreot considered indepen-
dently, but maximizing this model requires a search ovesies alignment bigraphs
of the whole sentence. We could add the predictions of otloelets into our model in
a similar fashion to their work. We have in fact tried comhgpinformation in a sim-
ilar fashion using alignments generated from the HMM Vitadignments (which are
also what we bootstrap from) in conjunction with using thineeristic symmetrization
metrics and found this to be ineffective when using sub-rsderived from LEAF
(although we note that these same sub-models were effentiver previous 1-to-N

log-linear model (Fraser & Marcu, 2006)).
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4.5 Semi-Supervised Learning

During our discussion of semi-supervised training, we daastinction between dis-
criminative training and semi-supervised training, asliapgto generative models. In
discriminative training we rerank the predictions of a gatige model to obtain pre-
dictions of higher quality. There is no mechanism so thatdiseriminative criterion
can affect the estimates of the underlying generative mobB&criminative training
(when applied to an underlying generative model) can be etkas a weak form of
semi-supervised learning which is missing this importaetback loop.

Most approaches to semi-supervised learning require hledabeled data be suffi-
cient to make a good initial estimate which is then refinedgisinlabeled data (Seeger,
2000). In fact, the problem of semi-supervised learningtesodefined as “using unla-
beled data to help supervised learning” (Seeger, 2000)t ok on semi-supervised
learning uses underlying generative models which haveildligions with a relatively
small number of parameters. An initial model is estimateal sapervised fashion using
the labeled data, and this supervised model is used to diiaels (or a probability dis-
tribution over labels) to the unlabeled data, then a newrsigeel model is estimated,
and this is iterated.

For instance, both Nigam et al. (2000) and Miller and Brown{2@03) train an
initial supervised classifier and then use EM to improve tiitgai estimate of posterior
class membership probabilities. In cases where there &@a@mall number of labels
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available but a very large number of parameters must be &®tnsuch as when the
number of parameters increases as training data increages not practical. If this
technique is applied in these cases, it will lead to the dleatdoverconfident pseudo-
labeling problem” (Seeger, 2000), where the initial lalwélgery poor quality assigned
to the unlabeled data will at the best have no effect, andewtrst dominate the
initial model estimated in the M-step causing convergenca kocal minima of very
poor quality (with respect to the final performance critajio

We present the following alternative, which alternativednimizes error and max-
imizes likelihood. Our new approach applies in cases wheraimount of labeled data
is not sufficient to do supervised estimation of an initialdalof reasonable quality, but
we have large amounts of unlabeled data and a generativel mbié can be trained
in an unsupervised fashion. We call our training approacmiidum Error / Maximum
Likelihood Training”, and we introduce the “EMD” semi-supesed training algorithm

to perform the training.

4.6 Minimum Error / Maximum Likelihood Training

We extend approximate EM training to perform a new type dahing which we call
Minimum Error / Maximum Likelihood Training. The intuitiobehind this approach
to semi-supervised training is that we wish to obtain theaathges of both discrimi-

native training (error minimization) and approximate EMhfeh allows us to estimate

126



a large numbers of parameters effectively even though we twvfew gold standard
word alignments to do this in a supervised fashion). We duoe the EMD algorithm,
in which discriminative training is used to control the admitions of sub-models
(thereby minimizing error), and a procedure similar to oteeattion of approximate
EM is used to estimate the large number of sub-model paraséteusing steps which
increase likelihood.

Intuitively, in approximate EM training for word alignme(Brown et al., 1993),
the E-step corresponds to calculating the probability ldlednments according to the
current model estimate, while the M-step is the creationreda model estimate given
the probability distribution over alignments calculatadhe E-step.

In the E-step ideally all possible alignments should be esmaed and labeled with
p(ale, f), butthisis intractable. For the M-step, we would like to bover all possible
alignments for each sentence pair, weighted by their pribtyadccording to the model
estimated at the previous step. Because this is not tractablenake the assumption
that the single assumed Viterbi alignment can be used totepma estimate in the
M-step. This approximation is called Viterbi training. Nead Hinton (1998) analyze
approximate EM training and motivate this type of variant.

The basic intuition behind our approach to semi-superisaching is that we wish

to obtain the advantages of both discriminative trainind approximate EM. We use
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discriminative training to control the contributions otsmodels, which vary in gran-
ularity from large numbers of parameters to a single paranf#is can be a single pa-
rameter in the original generative model, which we are ingiliscriminatively here).
We use a sub-procedure very similar to approximate EM to titaé often very large
numbers of parameters of the sub-models themselves.

Here is an initial brief outline of the approach. We first detime a decomposition
of the generative model into sub-models. We then add additisub-models which
were not in the generative model.

A single iteration of EMD training consists of a step whiclsembles the E-step
in EM, followed by a step which resembles the M-step in EM|diekd by a “dis-
criminative step”, which we call the D-step. In the step Wwhiesembles the E-step,
we use the weighta and the estimates of all sub-models (both the sub-modelsein t
generative model and those sub-models which are not in thergiéve model) to pre-
dict alignments for the entire training set. In the step Whiesembles the M-step, we
reestimate the sub-models dependent on the hypothesigadaints (for example, the
sub-models which are distributions from the generative @jod’he D-step estimates
the weight vector\ which minimizes error. It does this by repeatedly rerankimg
output of the generative model for a small set of sentenaewliicch we have labels.

This completes one iteration of training.
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We start the EMD algorithm by estimating the sub-modelsrdkam the generative
model by bootstrapping as in the unsupervised case. We #mgnaut an initial D-step.
After this “iteration 0”, complete iterations of EMD traimg are performed, starting

with iteration 1.

4.6.1 EMD Algorithm

A sketch of the EMD algorithm applied to our extended modgresented in Figure
4.1. Parameters have a supersaripresenting their value at iterationThe parame-
ters of the iteration dependent sub-moudeht timet ared? , while the parameters of the
sub-modeln which is iteration independent is denot#d. We initialize the algorithm
with the gold standard word alignments (labels) of the wdighanent discriminative
training set, an initiah, N, the starting alignments (the final HMM Viterbi alignmgnt
and the parameters of the heuristic sub-models which aadida independent(). In
line 2, we make iteration O estimates of the sub-models wpassemeters are estimated
from the current Viterbi alignment (these are sub-modets /t, and include the sub-
models based on distributions used in LEAF). In line 3, wediseriminative training
using the algorithm from Section 4.2.2. In line 4, we meashieserror of the resulting
A vector. In the main loop in line 7 we align the full training $similar to the E-step

of EM), and in line 8 we estimate the iteration-dependentmsgdels (similar to the
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Algorithm EMD(labels, N, N, starting
alignmentsg’)
bootstrag?, for m = 1to M’
Y = Discrim@°, ¢', X', labels, N)
e’ = Error(\°)
t=1
loop
align full training set using!~*, 1
and¢’
8: estimate®’ form = 1to M’
9: A\ =Discrim@’, ', X!, labels, N)
10: ' =Error(\Y)
11:  if e/ >= ¢!~ then
12: terminate loop
13: endif
14: t=t+1
15: end loop
16: return hypothesized alignments of ful
training set

NoaRWN

Figure 4.1: Sketch of the EMD algorithm
M-step of EM). Then we perform discriminative rerankingiimmel 9 and check for con-

vergence in lines 10 and 11 (convergence has been reachedrifvas not decreased
from the previous iteration). The output of the algorithrhypothesized alignments of
the entire training corpus (calculated in line 7).

In the general word alignment problem, the entire searchespan not be enumer-
ated, which is the reason we have to do multiple iteratiorte@foop of the “Discrim”
subroutine (which was presented in Section 4.2.2). For gawdtion: of the the “Dis-
crim” subroutine, we find a new vectarwhich then causes us to enumerate a different
portion of the search space in Step 1 of the “Discrim” subneut We could run this

process until we no longer search a different portion of #erch space (i.e., we find
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no new N best list entries), at which point we would assume e ttonverged. In
practice we stop when the error does not decrease. NoteftBMD is used for a
different problem where the entire search space can becéipénumerated, the code
inside the loop of the “Discrim” algorithm would only need bbe executed once per
outer loop iteratiort.

When re-estimating the generative model we use the hypattesabels for the
discriminative training set, rather than the gold standabels. Otherwise we would
overfit the labels on the discriminative set and so we wouldri@ble to continue using
predictions to determine good weights.

It is important to emphasize that we are not presenting jdsg@&iminative rerank-
ing step but instead a fully integrated approach, takingaathge of the fact that the
power of each sub-model changes over the training processf(om iteration to iter-
ation of training). It is the ability to determine how distinative each sub-model is
at each iteration of semi-supervised training and thetglidi directly train a few sub-
model parameters directly at each iteration of semi-supeavraining which gives us
performance superior to discriminative reranking (whéese two things can only be

done once, after the estimation of the generative model).
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4.7 Previous Work on Semi-Supervised Learning

Previous approaches for using EM for combining labeled antaleled data have often
been applied to unstructured classification. An initiakslfer is learned from labeled
data, and then this classifier is used to label unlabeledwd#tigposterior class mem-
bership probabilities. EM is then used to improve the ih#g&timate of posterior class
membership probabilities. For labeled data, the prolagiwfithe correct class is max-
imized, and this improves estimates of class membershith®unlabeled data. For
unlabeled data the maximum a posteriori (MAP) solution iscted.

There is a large body of work on semi-supervised learning parameterized dis-
tributions that are described by a small number of parametee present a few ex-
amples. Miller and Uyar (1997) used unlabeled data and EMutpreent a mixture
of experts. Miller and Browning (2003) used an extension efM algorithm for a
task modeled as a mixture of Gaussians. Their algorithmnidiagi to the algorithm
we propose in that they extended the EM algorithm by incafog an additional sep-
arate optimization for training a small number of parangtéut they trained these
parameters to maximize complete data log likelihood rattien the final performance
criterion.

There has also been some work on semi-supervised learniag aimuch larger
number of parameters must be estimated. Nigam et al. (2@@bgssed a text classifi-

cation task where each class is modeled as multiple mixawesthe entire vocabulary.
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They estimated a Naive Bayes classifier over the labeled ddtased it to provide ini-
tial MAP estimates for unlabeled documents. They then ranaSMescribed above.
They introduced a single mixing parameter to attempt torobptroblems with the es-
timates from the unlabeled data washing out the estimates tihe labeled data. Their
approach would not work if applied to our scenario as the remoblabeled examples
is small, so the initial labellings of the unlabeled data leldee very poor, causing the
“overconfident pseudo-labeling problem” we already merdtbin Section 4.5.
Callison-Burch et al. (2004) performed a preliminary studytha issue of semi-
supervised training for word alignment. They addressent thek of manually anno-
tated data by using automatically annotated data as a epld for human annotated
data and looking at the effect of semi-supervised learnmigath AER and BLEU, fol-
lowing the work of Nigam et al. (2000). However, their simteld supervised data was
annotated using GIZA++, which, as we have already shownpeafurther improved
substantially, so we do not believe that they succeedealistieally simulating having
large amounts of manually annotated data. However, the@erxents on combining
higher and low quality automatically generated alignmelidisresult in an important
finding. They showed that it is important to ensure that tihgdaamount of low qual-
ity annotations do not “wash out” the parameters estimatenh fthe higher quality

annotations, which is an insight we will use in the experitaksection.
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Figure 4.2: Two alignments with the same translationalespondence

Two approaches that are more similar in spirit to our worlolag the use of labels
in reinforcement learning and the use of labels in clusteritvanov et al. (2001)
used discriminative training in a reinforcement learnimgtext in a similar way to
our adding of a discriminative training step to an unsugaEdicontext. A large body
of work uses semi-supervised learning for clustering byasipg constraints on the
clusters. Basu et al. (2004) is a good example, where thersystes supplied with
lists of pairs of instances labeled as belonging to the sani#fferent clusters. Our
work can be motivated in a similar fashion to theirs, but tetads are quite different.
We are solving a difficult structured prediction problem @¥involves a search over

bigraphs for each parallel sentence pair.

4.8 EXxperiments

We perform experiments on the two large alignments tasks f@hapter 3, for Ara-
bic/English and French/English data sets. Statisticsifesé sets are shown in Table

3.3 on page 74. All of the data used is available from the ListgriData Consortium
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except for the French/English gold standard alignmentshvhre available from the
authors.

We showed that F-Measure is effective in predicting BLEU in @Ba2. There-
fore, we usel — F-Measuréx) as our error criterion in discriminative training. We
established that it is important to tungthe trade-off between Precision and Recall) to
maximize performance.

We remind the reader of the problem we discovered in Chaptarhigh is that
two alignments which have the same translational corredgmee can have different
F-Measures. An example is shown in Figure 4.2. To overcongeptioblem we fully
interlinked the transitive closure of the undirected bgjrdormed by each alignment
hypothesized by our baseline alignment systerithis operation maps the alignment
shown to the left in Figure 4.2 to the alignment shown to tiyatri Recall that this op-
eration does not change the collection of phrases or rutesat&d from a hypothesized
alignment.

The best settings af werea = 0.1 for the Arabic/English task and = 0.4 for
the French/English task, , see Chapter 2 for details of thegsoused to choose these

constants.

2All of the gold standard alignments were fully interlinkesl distributed. We did
not modify the gold standard alignments.
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1 | g(xile;) source word type 9 da2(Aj|clasg (f;)) movement for left-
most target non-head word

2 | w_q1(i — pilclass(e;)) choosing a| 10 | dsao(Ajlclass(f;)) movement for
head word subsequent target non-head words

3 | t1(fjles) head word translation 11 | t(fjle;) translation without depen
dency on word-type

4 | s(2piles,vi) i is number of words in| 12 | t(fjle;) translation table from fina

target cept HMM iteration

5| so(to| >_; %) number of unaligned] 13 | s(v4|y;) target cept size without de-
target words pendency on source head waerd

6 | to(f;) identity of unaligned targef 14 | s(¢;le;) target cept size without de-
words pendency ony;

7 | t>1(fjles, clasg,(ri1)) non-head word| 15 | target spurious word penalty
translation

8 | di(Aj|class(e,),class(f;)) move-|| 16-30 | (same features, other direction)
ment for target head words

Table 4.2: Sub-models used together with the EMD algorithm

4.8.1 Evaluating EMD+LEAF

We present an experiment which evaluates the efficacy of ke Eaining algorithm
when applied to a log-linear model. We decompose LEAF, mteskin Section 3.2,
in both translation directions to provide the initial festdunctions for the log-linear
model, features 1 to 10 and 16 to 25 in Table 4.2.

To provide additional robustness, we use back-offs forrduesiation decisions (fea-
tures 11 and 26), the HMM translation tables (features 1230&nd back-offs for the
target cept size distributions (features 13, 14, 28 and ZPabie 4.2). We also use
heuristics which directly control the number of unaligneards we generate (features
15 and 30 in Table 4.2), which allows us to control the trattd&»etween Precision and
Recall which is required to optimize any particutaused with F-Measufe).
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We perform one main comparison, which is of semi-supervggetems. This is
also what we will use to produce alignments for evaluatingfgMrformance. We com-
pare semi-supervised LEAF with our previous state of thesamti-supervised system
(Fraser & Marcu, 2006) which also uses the EMD algorithm leyiasately optimizes
1-to-N and M-to-1 translation performance using sub-medigrived from Model 4
and a larger number of heuristic models than are used withH_EYe perform transla-
tion experiments on the alignments generated using separgised training to verify
that the improvements in F-Measure result in increases inWBINbte that the timings
for the first E-Step of the French/English experiments aesgmted in Appendix C.1.
The current (unoptimized) LEAF search implementationasvskpeeding up search is
discussed in the same appendix.

In order to have the results in a single table, we also comiteeainsupervised
LEAF system with GIZA++ Model 4. This gives an idea as to thefgrenance of
the unsupervised model, and is a repeat of the results fratio8e3.5. The reader is
referred there for further explanation.

To build all alignment systems, we start with 5 iterationgvaddel 1 followed by
4 iterations of HMM (Mogel et al., 1996), as implemented inZ&#+ (Och & Ney,
2003), and use the final iteration of HMM to perform the baaist To generate the
final output for all non-LEAF systems, we take the best penfiog of the “Union”,

“Refined” and “Intersection” symmetrization heuristics (C& Ney, 2003) to combine
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the 1-to-N and M-to-1 directions resulting in a M-to-N noorRsecutive alignment.
Because these systems do not output fully linked alignmemt$ully link the resulting
alignments. Once again, the reader should recall that thes dot change the set of
rules or phrases that can be extracted using an alignment.

Results for the experiments on the French/English data setienwn in Table 4.3.
We ran GIZA++ for four iterations of Model 4 and used the “Refihkeuristic (line 1).
We ran the baseline semi-supervised system for two iteraifline 2), and in contrast
with Fraser and Marcu (2006) we found that the best symnagioiz heuristic for this
system was “Union”, which is most likely due to our use ofyudihked alignments. We
observe that LEAF unsupervised (line 3) is competitive V@iZA++ (line 1), and is
in fact competitive with the baseline semi-supervisedltéioe 2). We ran the LEAF
semi-supervised system for two iterations (line 4). Thd besult is the LEAF semi-
supervised system, with a gain of 1.8 F-Measure over the LEAdtipervised system
and a gain of 2.8 F-Measure over GIZA++.

For French/English translation we use a state of the artspHbased MT system
similar to those of Och and Ney (2004) and Koehn et al. (2008 translation test
data is described in Table 3.5.1. We use two trigram languaggels, one built using
the English portion of the training data and the other b@ilhg additional English news
data. The BLEU scores reported are calculated using lowedcaisd tokenized data.

For semi-supervised LEAF the gain of 0.46 BLEU over the sampesvised baseline is
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FRENCHENGLISH ARABIC/ENGLISH
SYSTEM F(e=04) | BLEU | F(«=0.1) | BLEU
GIZA++ 73.5 30.63 75.8 51.55
FRASER AND MARCU (2006) 74.1 31.40 79.1 52.89
LEAF UNSUPERVISED 74.5 72.3
LEAF SEMI-SUPERVISED 76.3 31.86 84.5 54.34

Table 4.3: Experimental Results

not statistically significant (a gain of 0.78 BLEU would be weaqd), but LEAF semi-

supervised compared with GIZA++ is significant, with a gaii @3 BLEU. We note

that a gain of 1.23 BLEU shows a large gain in translation ¢ypaler that obtained
using GIZA++ because for the French/English task BLEU isualed using only a
single reference (a gain of 1.23 BLEU using a single referéneelarger gain than a
gain of 1.23 BLEU when using four references).

Results for the Arabic/English data set are also shown ineléld. We used a large
gold standard word alignment set available from the LDC. We@#ZA++ for four
iterations of Model 4 and used the “Union” heuristic. We camgGIZA++ (line 1)
with one iteration of the unsupervised LEAF model (line 3heTunsupervised LEAF
system is worse than four iterations of GIZA++ Model 4. Weidnad that the features
in LEAF are too high dimensional to use for the Arabic/Engliask without the back-
offs available in the semi-supervised models. The basel@mi-supervised system
(line 2) was run for three iterations and the resulting atignts were combined with

the “Union” heuristic. We ran the LEAF semi-supervised sysfor two iterations. The
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best result is the LEAF semi-supervised system (line 41 wigain of 5.4 F-Measure
over the baseline semi-supervised system and a gain of Bl@dsure over GIZA++.

For Arabic/English translation we train the state of thehagtarchical model Hiero
(Chiang, 2005) using our Viterbi alignments. The transtatest data used is described
in Table 3.5.1. We use two trigram language models, oneisiitig the English portion
of the training data and the other built using additional Isfgnews data. The test set
is from the NIST 2005 translation task. LEAF had the bestqgrernce scoring 1.43
BLEU better than the baseline semi-supervised system amohgca79 BLEU better
than GIZA++, both of which are statistically significant.

The success of training our new log-linear model, based bAnsodels derived
from LEAF, to minimize thel —F-Measuréx) error criterion using the semi-supervised
EMD training algorithm combines the main contributions leistthesis. The BLEU
score increases achieved by this system are large for sk t&Ve now have a princi-
pled model over the alignment structure in which we are éstsd, and we can obtain
a posterior probability distribution over likely alignmsrrather than being restricted
to heuristically combining the 1-best predictions of a N@nd M-to-1 model as was
previously done, which will enable new directions for flduesearch. We have shown
that the predictions of our new model substantially impretage of the art machine

translations systems on some of the largest, most chafigndata sets available.

3We remind the reader that the French/English result is base8l EU calculated
using only a single reference, for which a gain of 1.2 BLEU%argé.
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4.8.2 Giving GIZA++ Access to Human Annotated Alignments

We performed an additional experiment for the French/Bhgdilignment task aimed
at understanding the potential contribution of the wordradid data without the new
model and training algorithm. Like Ittycheriah and Rouko8(®), we converted the
alignment discriminative training corpus links into a sipécorpus where the parallel
“sentences” consist only of the single English and Frenchdwavolved in each link.

We found that the information in the links was “washed out’thg rest of the data
and resulted in no change in the alignment test set’s F-Meagiallison-Burch et al.
(2004) showed in their work on combining alignments of lo@ed higher quality that
the alignments of higher quality should be given a much highegght than the lower
guality alignments. Using this insight, we found that addit0,000 copies of this
special corpus to our training data resulted in the highlegtraent test set gain, which
was a small gain 0d.3 F-Measure. This result suggests that while the link infaroma

is directly useful for improving F-Measure, our semi-syp&ed training method is

producing much larger improvements.

4.8.3 Integrating an Arabic Name Transliteration Model

We report in this section on integrating an Arabic Name tiifseration model, devel-

oped by Ulf Hermjakob. This model reads parallel sentenoelscaitputs any likely
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transliteration matches between a single Arabic token &edoo more English tokens
along with a confidence score.

The interesting aspect of integrating this as a sub-mod#lasit can not be di-
rectly integrated as a phrase to phrase matching. This @useceven when there is
a likely transliteration match, this match often does ndlyyfaccount for the complete
translational correspondence involved.

For instance, suppose that in the Arabic sentence of a pbfatibic/English sen-
tence pair the Arabic word “Mohammed” occurs. If the Enghetrd “Mohammed”
occurs twice in the English sentence, a transliterationegh@lunable to determine
which one to match or whether to match both. We solve thislprolby providing
a constraint on the alignment. We say that the alignment mligrh at least one of
the English “Mohammed” tokens with the Arabic “Mohammedkéa, or a penalty is
paid. We train a penalty sub-model in the log-linear modekcWipays a fixed cost for
violating such constraints, which has the effect of setéimpcrease in cost which must
be obtained from other sub-models in order for an alignmenthich the constraint is
violated to more probable than one obeying the constraiote fthat this type of “OR”
constraint would be very difficult to specify in the LEAF geatve story.

A similar case occurs where the combination of an Englishsiigeration of an
Arabic content word and one or more English function wordsusth be aligned as a

unit to the single Arabic content word. The transliteratioodel has a limited ability to
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determine where English function words should be alignetifdr more complicated
decisions the decision requires knowledge which can bedfauthe other sub-models
which can determine whether alignment geometry is probhdikkdy non-head words
to attach to the English head word, etc. This is again impigeteas a constraint,
which is placed on the alignment of the content word.

Adding constraints determined by the transliteration pgeklead to an increase of
0.2 F-Measure over the system without these constraints.fiTbn the development
corpus was 0.5 F-Measure better, indicating that some tuagflikely occurred.

The transliteration model only suggests a constraint foeva Words in each of
roughly one quarter of the parallel sentences in our trgimiorpus. The sub-model
added a constant for each constraint violation. We alsd trggng one minus the con-
fidence score as the penalty which did not improve performanc

The successful integration of a feature of this type shows dhr approach is not
limited to sub-models which are similar to those in the gatieg story but can in fact
be used with any sub-model which can be scored over a hypo#idealignment of
a parallel sentence pair. We believe that improving thebdlty of the confidence
score and decreasing overfitting will increase the perfocaabtained by adding this

sub-model further.
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4.8.4 Integrating Supervised Sub-models

The EMD algorithm can also integrate supervised knowledge recently obtained a
larger hand aligned alignment set from LDC for Arabic/EslgliAfter eliminating pos-
sible overlap with our discriminative training and testssehere were hand generated
alignments for 25,930 new sentences. We decided to estitwatemall supervised
sub-models directly from this data and add these sub-madoélee EMD+LEAF sys-
tem.

We estimated translation tables directly from this dataeréhwere about 230,000
entries in the translation tables, which are tables comgian English word, an Arabic
word, and a probability. This is a low number of parameterst iRstance, compare
this with the HMM translation tables, where each table hasiaB4,000,000 entries,
(these tables are features 12 and 27 in the semi-superviséel nisee Table 4.2).

We added the two supervised translation table sub-modelgtoaseline LEAF+EMD
alignment system. This lead to an increase of 1.8 F-Measgeaosystem without this
supervised knowledge. This shows that it is possible tolyeasiegrate supervised

knowledge into the system.
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4.9 Discussion

The literature on semi-supervised learning generally egklrs how to augment super-
vised learning tasks with unlabeled data. Here we augmenhanpervised learning
task with labeled data. This is useful in a wide diversityasids where we do not have
enough unlabeled data for supervised estimation of amimitodel.

We have presented an algorithm applicable in the case thdiawe few labels
and a generative model with acceptable performance wherettén an unsupervised
fashion. We determine a decomposition of the generativeeiiatb sub-models and
then reinterpret these sub-models as being combined irdg-Bnear model. We can
add additional sub-models which were not in the originalegative story, and we use
this to add both backed off forms of the sub-models derivechfthe original generative
story, and heuristic sub-models which are not directlytesldo the original generative
story.

It is important to note that with this training algorithm weeanot taking steps to
strictly maximize likelihood, even though the vast majpof parameters are estimated
in the likelihood maximization framework. Instead we areling local maxima of
likelihood which are better with respect to the final perfarmoe criterion. These are
better than other reachable maxima with respect to the ferdbpnance criterion, but
they could possibly be worse with respect to likelihood urttie original generative
model.

145



We have shown that the reinterpretation of our new model ag-inear model and
the derivation of a semi-supervised training algorithmaktsan be used to train it is an
excellent way forward to integrating knowledge sourcesciidould not be captured
in the original generative model.

The semi-supervised learning literature generally adéieaugmenting supervised
learning tasks with unlabeled data (Seeger, 2000). In asfitwwe augmented an un-
supervised learning task with labeled data. We hope thainim Error / Maximum
Likelihood training using the EMD algorithm can be used favide diversity of tasks
where there is not enough labeled data to allow supervigadadfon of an initial model

of reasonable quality.

4,10 Summary

We began this chapter by redefining LEAF as a log-linear modé& showed how to
discriminatively rerank N best lists which are taken fronstmodel. We then gener-
alized this to a semi-supervised training algorithm calleMD” which implements
“Minimum Error / Maximum Likelihood” training. We trained D using the original
sub-models of LEAF along with more robust backed off sub-et®@dnd heuristically
derived sub-models which directly control the trade-otfidmen Precision and Recall.
The EMD algorithm, when coupled with features derived froomn bEAF model

and trained to maximize F-Measure, leads to increases bat@and 9 F-score points
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in alignment accuracy and 1.2 and 2.8 BLEU points in trarnsfediccuracy over strong
French/English and Arabic/English baselines. This stiyonglidates all three main
contributions of the thesis. We additionally performed exxments showing that we

can add sub-models which are very different from those ddrivom LEAF.

4.11 Research Contribution

We developed an effective semi-supervised training algorfor automatic word align-
ment which is capable of using manually annotated data aimdegfrating sub-models

which are not in our original generative model.
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Chapter 5

Conclusion

We present the contributions of the thesis, discuss ledsansed, and then present a

section combining shortcomings and suggested future work.

5.1 Contributions

1. We have found a new method for automatically measurirggalent quality us-
ing an unbalanced F-Measure metric (Fraser & Marcu, 200vthgh has a good
correlation with BLEU. We have experimentally validatedttttas metric ade-

guately measures alignment quality for the translatiok.tas

2. We have designed a new statistical model for word aligrimeailed LEAF
(Fraser & Marcu, 2007a), which directly models the word @iigent problem

without making unreasonable assumptions about the steuctuthe resulting
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alignments. When LEAF is trained in an unsupervised fashgnguapproxi-
mate EM, it is comparable with our baseline. Unlike our basglunsupervised
LEAF does not require the use of heuristics to generate taédlignment which
is used to build a SMT system. The LEAF model can be decompogachvide
rich sub-models which can be used in a log-linear model foni-supervised

training.

. We have developed a semi-supervised training algorithen, EMD algorithm

(Fraser & Marcu, 2006), which automatically takes advaataigvhatever quan-
tity of manually annotated data can be obtained. This algorallows for the in-

troduction of new knowledge sources with minimal effort. ¥Wemulated a new
log-linear model using the original sub-models of LEAF @awth more robust
backed off sub-models and two heuristically derived sulge®which directly

control the important trade-off between Precision and RedAk applied the
EMD algorithm to train this model using a loss function dedvrom our unbal-
anced F-Measure metric. The EMD algorithm, when couplet sitb-models
derived from our LEAF model, leads to increases between 3dndcore points
in alignment accuracy and 1.2 and 2.8 BLEU points in trarmtegiccuracy over

strong French/English and Arabic/English baselines.
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5.2 Lessons Learned

5.2.1 Quality

The most widely used error metric in word alignment, Alignmh&rror Rate, (AER)
(Och & Ney, 2003) is not correctly derived from F-Measure ahduld not be used.

The trade-off between Precision and Recall is very importéfg have shown that
the setting of the parameter controlling this trade-off, varies with the task.

Using fully connected alignments is important, see Figuteoh Page 29. Without
using fully connected components we have unnecessary aityighere two align-
ments which have the same translational correspondencesltierent scores accord-
ing to most intrinsic metrics of quality.

Extrinsic evaluation is important. Some word alignmenteesh directed towards
minimizing AER, such as research on 1-to-1 alignment modeglapt useful for in-
creasing translation performance. This is an importargdeedor Natural Language
Processing systems which are not generally extrinsicalligated. An example is sta-
tistical parsing where, at least until recently, a highaontty has been assigned to
increasing performance on the Section 23 test set of the Pevgbank than to en-

suring robust performance in clearly identified tasks. Tateef would almost always
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involve parsing sentences which are drawn from a distidloutvhich is not well cor-
related with that of the Penn Treebank, and gains in the tobas required to do this

accurately may not be well correlated with small gains ortiSe@3.

5.2.2 Modeling

M-to-N discontiguous alignments allow us to learn the ttaimsnal correspondences
we are interested in. These are the most general correspogsl@hich can be used by
current hierarchical translation systems such as Hiera(i)i2005) and GHKM (Gal-
ley et al., 2006). Even phrase-based (consecutive word) 8dels can benefit from
alignments which do not make the consecutive word alignrseeatture assumption.

The quality of search is an important consideration whereaveeunable to do
tractable inference. It is important to both directly cohtsearch errors and directly
control the time taken.

The beam decoding algorithm, widely used in phrase-bassmtiées, does not work
for word alignment models with complex structure. Unlikegde-based decoding, left-
to-right hypothesis extension using a beam decoder iselglik be effective because in
word alignment reordering is not limited to a small local danv and so the necessary
beam would be very large. We are not aware of admissible amissible search
heuristics which have been shown to be effective when usemmjunction with a

search algorithm similar to A* search for a model prediciivgr a structure like ours.
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The problem with the blow-up in parameter space involvedirape-based models
such as the Joint model (Marcu & Wong, 2002) is partially edby using the head
word structure. In particular, this appears to be a realestsumption given the amount
of data we now have, and we also have a straight-forward patittease the richness
of the sub-models, in response to additional training dataimply reducing reliance
on word classes and further relaxing conditional indepeodeassumptions. The M-
to-N discontiguous alignment structure using the head vasslimption is also faster
to search than a pure phrase-based structure as the ti@mslependencies on one side
are only dependent on the head word on the other sidey(avtdch is a flag indicating
whether the cept on the other side contains just one worg)hiase based approaches
translational correspondence is calculated using theidalitity of both cepts. The
decomposition of costs using the head word assumption nieahadding a non-head
word to a head word is an operation which incurs additionat bat does not cause all
other costs incurred by that cept to be reevaluated. In pHrased models any change

to a cept causes all costs to be reevaluated.

5.2.3 Semi-supervised Training

Combining discriminative training in a loop with steps dedfrom EM which increase
likelihood is an effective approach to semi-supervisething of models which were

traditionally trained in an unsupervised fashion using EM.
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Symmetrization heuristics are surprisingly powerful, &re no longer required for
LEAF, which directly models the desired alignment struetu¥We were initially sur-
prised that the predictions of the symmetrization hewsstvere no longer useful as
a sub-model, but in retrospect it makes sense as they aredtagb of simple rules
which are effectively subsumed in the LEAF model.

Deriving an appropriate training criterion is importants we showed in Chapter
2 AER is not a good training criterion, which shows why outialiexperiments in
discriminative training, (Fraser & Marcu, 2005), failedgoduce an improvement in
BLEU.

Backing off the rich features of LEAF is important, partialjafor difficult lan-
guage pairs like Arabic/English, and combining the orignzh feature with a backed
off version in a log-linear model is an effective way of doihgs.

Directly tuning the trade-off between Precision and Resatiportant when work-
ing with F-Measure. This has an analogue in translationckving the optimization
of the BLEU length penalty (Koehn et al., 2003), which is regdito obtain good
performance using BLEU.

Scoring full hypotheses allows for the integration of vaphrfeatures scored over
the full alignment, a subject we have only scratched theaserbf with the integration

of the name transliteration feature.
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The search performance dramatically affects the perfoceahnour discriminative
algorithm. We have found that search performance is mucle mngportant during the
D-step than it is when predicting Viterbi alignments for #wire training corpus. For-
tunately we only have to execute search for the discrimuaatevelopment set during
discriminative training. For instance, we search for theeNdi alignment for only the
1,000 sentences in the development set for the Arabic/&mgdisk (the search is per-
formed once for each iteration of the loop inside of the Dpssee Figure 4.1). Because
of this we can spend a significantly longer time on each seetpair during discrim-
inative training than when we perform the E-step (which mexgufinding the Viterbi

alignment of 6.6 million sentence pairs in the Arabic/Eslgicase).

5.3 Shortcomings and Future Work

5.3.1 Problem Definition: What is a Word?

We have implicitly specified that a word is a space-separttieein output by a tok-
enizer. The tokenizer’s primary purpose is to separate tpation from words. The
tokenizer additionally performs light deterministic pessing of morphological phe-
nomena. For instance, the French tokenizer we use sepafatiesis clitics from the
words they are attached to (e.g. “n’est” is mapped to “ne)estd maps masculine

and feminine articles to a single token (which is accepté&tgranslation to English
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which does not make this distinction). However this apphoadoo simple for many
language pairs.

The LEAF generative story generalizes well to the case thfarmation in one
language is expressed lexically and not present in an easdgssible fashion in the
other language. For instance, for the application of Chitfigggish machine transla-
tion LEAF’s “head-word” concept seems to work well. An Estiliphrase such as “the
man” is often translated as a single Chinese word meaning *ménle the definite-
ness of this word is usually marked by syntactic phenomeriehaliould be difficult
to model. A good LEAF alignment would be a head-word link begw English “man”
and the Chinese word for “man”, and then an association frogli€@nnon-head word
“the” to English head word “man”. The distribution in LEAF is capable of modeling
that the word “the” has a high probability of being a non-heaxtd, while thew_,
distribution can model that non-head words in the word clésigh “the” is in have a
high probability of being associated with a head word whgcbne word to the right.

Chinese (and other Asian languages such as Japanese) raltiti@quire word
segmentation, which separates short sequences of Chiresetrs into “words” (this
is because Chinese is written without the use of spaces toatepaords). Automatic
word segmentation is itself an active area of research. A&3giword segmenter is
typically trained in a supervised fashion from a gold staddgegmentation specified

by human annotators, butitis not been carefully studieddreexisting segmentations
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are a good choice for machine translation purposes. Inifangy be possible to create
a new generative story by adding a few steps to the LEAF ganestory which allow
the Chinese word segmentation to be modeled simultaneousiywerd alignment,
rather than handled as a preprocess as is currently dorewdhid have the interesting
effect of allowing word segmentation choices to be infornbgdthe English words
in the parallel text. Most likely an initial segmentatiorr @egmentation knowledge
source) would need to be initialized using supervised kadgé, but the segmentation
could then be allowed to vary during the alignment process this might determine a
final segmentation which is more useful for translation thristing segmentations.
Unfortunately, the LEAF generative story does not modeltf@mation systemat-
ically present in “pieces” of words (e.g. morphological pbmena, including particu-
larly clitics). Such generalization would require a sous€enorphological knowledge.
For instance, consider again English “the man”, but thistconsider how it should
be aligned with Arabic. English “the man” might be alignediwihe single Arabic
token “al-rajul”, where the prefix “al-" is “the”, and “rajuimeans “man”. Here again
the ¢ distribution in LEAF is capable of modeling that words likéhé” have a high
probability of being non-head words; again, the; distribution can model that non-
head words in the word class of “the” are often associated gtad words one word
to the right. But LEAF can not learn that the “al-" in this casdicates that it is more

likely that “the” should be in the English cept aligned wital-tajul”’. Modeling this
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in a language independent fashion would be difficult. Itgridh and Roukos (2005)
defined sub-models which model this type of information fa Arabic/English word
pair case and showed that this is effective. We could sityildefine language pair
specific sub-models to do this. However, we would be moreested in finding a
general framework to solve this problem. Such a frameworkld/aeally be language
independent, but might require supervised training datéh@ same way that integrat-
ing Chinese segmentation might require access to a supekssviedge source, as
we already discussed). We would be interested in develapiagguage independent
extension of the LEAF generative story which is able to cdeisphenomena like the
“al-" in “al-rajul” (and possibly align such morphemes segialy), but we recognize
that this is both conceptually and computationally diffieithout access to very highly

accurate sources of morphological knowledge.

5.3.2 Quality

One shortcoming of our work on quality metrics is that we hanar/ided a metric with
a tunable parameter. This necessitates experimentatidatésmine how to evaluate
with each new task. We would be interested in understantieglépendency of the
parameter more fully. For instance, we could study whetheretis something about

the language pairs involved, the quality and style of thel godndard annotation, or
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even the quantity of training data which helps to explain vaehgarticulara setting
works best.

Ideally we would like to derive a metric which does not haveirable parameter
but has the same performance as unbalanced F-Measure dees:\ighappropriately
tuned. CPER (Ayan & Dorr, 2006a) is an interesting step indimsction. CPER cal-
culates balanced F-Measure over the phrase pairs extriaoted hypothesized align-
ment (these are the same phrase pairs as are extracted farthedranslation model
of a phrase-based MT system), comparing them with the plpaise extracted from
a gold standard alignment. Unfortunately, CPER has not beewrsto predict MT
performance. It seems likely to us that there should be &todidbetween Precision
and Recall in comparing phrases extracted as well, but ggdsils trade-off will be
less important than in the case of word links. We would besatl if we were able to
use a singlev parameter in conjunction with a CPER-like metriaifvere constant for
all of our tasks.

Another shortcoming of our work is that we only tested the BLEetric. The
BLEU metric shows that is likely that our noise and oracle nidesed for artificially
degrading and improving alignments, produce regular chairgthe quality of machine
translation systems built from these alignments, but wédcohtain even stronger ev-
idence. Ideally we would like to use human annotators to guttge output of MT

systems built using the alignments, but this would be prititaddy expensive and is
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probably not necessary in this case. Instead, METEOR (Bam&jLavie, 2005) is

a promising automatic metric which we would be interestetiying as it has been
shown to have better correlation with human judgments thaBUAL

Our work on quality is dependent on measuring the quality single predicted

alignment, such as the Viterbi alignment of the LEAF modebwidver, there are ap-
proaches to building MT systems which are trying to utilie full distribution over

alignments rather than the most likely single alignmenttiAs body of work matures,
we would be interested in deriving a quality criterion foristdbution over alignments
which is finer grained than simply taking the most likely potidn and scoring it. This

new quality criterion should allow us to evaluate the qyaditthe entire distribution.

5.3.3 Modeling

One large disadvantage of the LEAF model is the intractgitoli exact search. Model
4 has the same problem. We need to solve search problemg dhartim parameter esti-
mation and prediction of the final Viterbi alignment. As wevdaliscussed previously,
existing models with tractable exact search make unreaéssumptions about align-
ment structure which do not model the word alignment probieth sufficient fidelity.

We have defined a local search algorithm which results in gédteasure scores, by
taking steps to apply some of the knowledge gained by thearelsecommunity in

solving problems such as the Traveling Salesman Problerarimgplementation of a
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restarting “Tabu” search (Glover, 1986). However, our entimplementation is very
slow (see Appendix C.1 for detailed timings and a discussiohow to program a
faster implementation). We are also hopeful that we coutdeudynamic programming
approach which would consider many more alignments (seedgig C.2).

Another disadvantage of the LEAF model is the Viterbi appration used to carry
out the M-step. In previous experiments using GIZA++ we hiaumd that using the
Viterbi assumption is usually not worse than using the “hbayhood” assumption,
which involves calculating the probabilities of alignmemthich are one search oper-
ation away from the Viterbi alignment. However, there iss@ato believe that this
might not be the best we could do. In our work with LEAF we haigmi$icantly re-
duced search errors, which means that the alignments werknaf digher quality. It
is likely that the N best lists we generate are a better apmation of the search space
than the neighborhood of the Viterbi used by GIZA++. In thersherm, it would be
interesting to try estimating LEAF using a normalized N bsstof a large size similar
to those generated during the D-step (but in this case eémlibver the entire training
corpus). In the longer term, it would be interesting to eatenLEAF by solving the
alignment problem such that very large N best lists or anratéve efficient represen-

tation of many hypotheses can be used.
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One aspect of the LEAF model we have not fully investigatethésuse of word
classes. We use source word classes derived using a greedyiradion of the prob-
ability of the monolingual source corpus (Och, 1999), arlibfothe same procedure
to derive word classes for the monolingual target corpuses€&hare the same word
classes as are used in our baseline. We would be interestit@nducting a study to
see if better word classes, for instance derived from Ha8peech tags, might help the

performance of LEAF.

5.3.4 Semi-supervised Training

Our approach to semi-supervised training, Minimum Error &xvhum Likelihood
training using the EMD algorithm, has been shown to work waitt it could be fur-
ther improved. We would be interested in conducting stutietetermine the point at
which the current algorithm begins to overfit the discrinivetraining set. It would
also be helpful to determine at which point adding additi@ud-models begins to tax
the current optimization’s ability to find a local maxima seaably close to the global
maxima.

A closely related problem is the problem of feature selectim our current im-
plementation several of the features receive very low scanel sometimes the 1 best
choice (taken by rescoring the final hypothesis list from Ehetep) is not changed

by removing these features. A principled approach to feasalection would mark
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these features as ineffective earlier in the process asdrlght systematically result
in convergence to better solutions for the discriminatreening problem.

One obvious area of improvement for our semi-superviseghaient model is to
use language specific sub-models as we already mentiongghrticular, interesting
work has been done for morphology in connection with wordgratient. Corston-
Oliver and Gamon (2004) describes an approach for normglitie inflectional mor-
phology of German and English to gain an improvement in afignt quality mea-
sured by AER. We documented a simple approximative stemnigagitnm, (Fraser
& Marcu, 2005), which was used to gain an improvement in AEResSen and Ney
(2004) provides an interesting approach to integratingpmaiogy in word alignment
by interpolating lemma and inflected word probabilities iprancipled fashion. The
IBM research group has used Model 1 training combined witthistipated morpho-
logical segmentation of Arabic to train Arabic/English Walignments (Lee, 2004),
and more recently defined a discriminative word alignmendehspecifically for Ara-
bic integrating morphological components (lttycheriah &iRos, 2005). These works
and several others point to the possibility of integratingrpimological modeling with
word alignment. One could integrate features either justtime word alignment model,
or possibly into both the word alignment model and the ti@ieh model in a coordi-

nated fashion.

162



We are also interested in the integration of more powerfolswdels which can
be drawn from other areas covered in the natural languageegsmg literature. We
suggest three examples here. Drabek and Yarowsky (200djeshibiat syntactic rules
can be used to reorder the corpus so as to decrease problaligsing syntactic clause
level phenomena, and Collins et al. (2005) has generalize@fproach further. Our
model is likely to benefit from the use of dependency parsdwlp determine likely
head word relationships in a manner similar to work repdoe@herry and Lin (2003),
but instead implemented as a sub-model added to semi-sspehvEAF. Work on de-
termining multi-word units, which is often done using unsppsed models, may pro-
vide interesting features for helping to inform which wordgyht be grouped together
as a translational unit, though this decision is ultimagebilingual decision which will
be made differently for different language pairs (e.g. timglish words grouped to-
gether would differ for the English/Arabic and English/@an cases). Work of this
type can be easily integrated into our framework as we alwaygese complete hypothe-
ses, and so no limitations requiring the decomposing otifeatover small pieces of
the alignment are necessary.

Finally, we would like to apply the EMD algorithm to probleroatside of word
alignment. There is a tremendous interest in algorithmslwiaork well with very
small quantities of labeled data and larger quantities te#heled data. EMD solves this

problem, butin its current formulation is tied to the worgjament problem. We would
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be interested in providing a more general formulation of EMIDother application of
EMD, perhaps outside of the area of natural language primggss an opportunity we

would be very interested in pursuing.

5.3.5 Using Word Alignment

We would be interested in applying the EMD algorithm in comgion with LEAF to
generate alignments for applications other than MT. Twoi@ls applications which
come to mind are Cross-Lingual Information Retrieval (CLIR)diitra & de Jong,
1999; Xu et al., 2001; Fraser et al., 2002) and paraphrasiagd et al., 2003; Quirk
et al., 2004; Bannard & Callison-Burch, 2005). It would be iagting to see if the
F-Measure criterion derived for translation tasks is usifiuthese tasks as well. Our
intuition tells us it that it should be, but this must be engailly verified. We would
need to calculate an appropriatdor each task. As an example, we were interested to
observe that in work by Riezler et al. (2007) the authors regothat they needed to
manually increase the number of NULL alignments on one sidespecialized corpus
they were aligning for use in query expansion. We expect tthege sort of trade-
offs could be handled automatically in our framework by paovy a small number of
gold standard word alignments and appropriately adjustindt would also be very

interesting to try using alignments generated following&pproach to build resources
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for CLIR and paraphrasing, and these applications mightigeognother source of
extrinsic validation for our work.

We also envision modifying LEAF’s generative story to bettedel other appli-
cations. For instance, LEAF could be modified to directly eldtie problem of sum-
marization, in a fashion similar to work by Da@nil and Marcu (2005). This requires
a generative story which allows large amounts of deletioaligning the document to
the summary. A similar problem is the modeling of the genenadf closed captions
for television.

The present best practice of extracting translation rueplirase pairs in a phrase-
based SMT system) from a single alignment (such as the LEA&rhiialignment) is
well established. But as we discussed in Section 3.6.7 reséas begun into estimat-
ing the translation model from a distribution over alignisenA first approximation
of this approach might be to estimate rules from the N beist i@ can currently gen-
erate, weighted by the posterior probability of the alignmeNe might also want to
“second-guess” the extraction of phrase-pairs from thd fiB&AF Viterbi alignment
in a fashion similar to the work of Deng and Byrne (2005). Gigemew test set, they
used their alignment model to try to determine probablestedions for phrases which
occurred in the training data but were aligned in such a wayéRtracting a transla-
tion rule was impossible. This revisiting of the alignmeiven a test set is a form of

inexpensive transductive learning. As work in the area tifreding from more general
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output distributions than the Viterbi alignment progressee envision the modification
of LEAF to output a distribution over alignments which assignon-zero probabilities
to a large portion of the probable alignments. This will restiate the modification of
translation systems to estimate rules from this distrdyuti

A closely related advance would be to refine LEAF itself intinaanslation model.
The success of the Hiero hierarchical translation modeld@i 2005) suggests that
this would be possible. However this would be an ambitioseaech program as we
would need to create a decoder integrating language magde#ipability, and most
likely we would have to create a very different search atponi We would also need
to add new sub-models to the model to score translations.atticplar it would be
important to allow the model to memorize more of the conteeintis necessary in
word alignment. A less ambitious project which could be uasd stepping stone
towards this final goal would be to score the LEAF alignmentielas a feature in
a hierarchical decoder in a similar fashion to the “lexicalosthing” (scoring of the
alignment links used to generate translation rules) ajreaghlemented in Hiero, or
even as “lexical smoothing” in a phrase-based decoderi¢péatly if it were a more

general phrase-based decoder which supported gaps inridesegh
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Appendix A

IBM Model 4

A.1 Introduction

The definitive work on early generative models of word aligminfor machine trans-
lation is by Brown et al. (1993), which describes a group of etedalled the IBM
Models. We focus on IBM Model 4 in particular. An overview ohet generative

models for word alignment is given in Section 3.6.

A.2 The IBM Models

Brown et al. (1993) developed five statistical models of ti@ien (IBM Models 1
through 5) and parameter estimation techniques for thers. mddels were designed

to be used in a pipeline, where each model is bootstrappedtfie previous model.
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For ease of exposition, the source language for the tramsltsk is referred to as
“French”, and the target language is referred to as “Englethough these can be any
language pairs in practice. The translation problem is ddfas given a French string

f, find the English string according to Equation A.1.

¢ = argmax Pr(e|f) = argmax Pr(e) « Pr(f|e) (A.1)

wheree represents any potential English string made up of Englistds: Pr(e)
represents the true distribution over English strings( f |e) represents the true distri-
bution over French strings generated from English strings.

ConsiderFy(f|e) to be a model ofPr(f|e). If we introduce a hidden variable

representing word alignments, we can sum over these vasiaddée Equation A.2.

Py(fle) =Y Po(f,ale) (A2)

For our task, which is word alignment annotation, we havedfiggingsf ande,
and we wish to select the best alignment according to the made/hich we do in

Equation A.3.

a = argmax FPy(ale, f) = argmax Py(f, ale) (A.3)
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The only alignments in the IBM models which can have non-zeobability in-
volve links from one English word to zero or more French wone call alignments
which can have non-zero probability within a model “feasih that model. Not alll
French words must be aligned with an English word which apgpeathe sentence;
those that aren't are considered to be spontaneously dedergor reasons of nota-
tional convenience we consider them to be aligned to a deecAlULL word which

we will denotee,.

A.2.1 Introduction to Model 4

We concentrate on Model 4, presenting the generative stoeymathematical formu-
lation, and the unsupervised training algorithm for the elagsing a variant of the
Expectation Maximization (EM) algorithm. We also outlinevhModel 4 is used in
practice, including the heuristic steps applied to theralignts predicted by the model
in order to produce a final word alignment.

Brown et al. (1993) defined a model &f-(f|e) called Model 4. IBM Model 4 is
a generative model, which is a model of how a French stfing generated given an
English stringe. The steps followed determine a unique alignment

To generatef from e (using steps which determing, the following generative
story is used. We first pick for each English word a fertiligiwe, which is the number

of French words which will be generated from it. Then we cleoagertility value for
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Figure A.1: French/English example, gold standard (soheéd) and best possible
Model 4 decisions (dashed lines)

the NULL English word conditioned on the total number of Frenvords generated
from the non-NULL English words. For each English word irthg the NULL word
we pick the identity of the French words that are generateh it. Finally, we choose

the position of each French word in the French sentence.

A.2.2 Example of Model 4 Generative Story

We start with an English sentence. We will use a shorter segtsimilar to our example
from the introduction which is shown in Figure A.1. The gotdrglard decisions are

the solid lines, while the best alignment which is feasibl®liodel 4 is indicated with
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dashed lines. Here are the Fertility and Translation dexsswhich we would like the

model to make for our example:

e “They” is Fertility 1. It generates French “ils”.

e “do” is Fertility O.

e “not” is Fertility 2. It generates French “ne” and French §pa

e “want” is Fertility 1. It generates French édirent”.

e “t0” is Fertility O.

e “spend” is Fertility 1. It generates Frenchépenser”.

e “that” is Fertility 1. It generates French “cet”.

e “money” is Fertility 1. It generates French “argent”.

e The English period is Fertility 1. It generates the Frenatiqoe

The English NULL word does not generate any spurious Frerariasv

Because of the 1 to many assumption, we can not draw links fratim Bnglish
“do” and “not” to French: “ne” and “pas”. We also can not dramnkk from both “to”
and “spend” to “@penser”. This is a serious problem. We present a new motiedica

LEAF in Chapter 3 which overcomes the 1-to-many assumption.
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A.2.3 Model 4 Generative Story

We present the full Model 4 generative story, following thixgesition of Brown et al.
(1993) very closely. We do make one assumption differemtgnfBrown et al. (1993),
which is that the placement position is only dependent orptBgious placement po-
sition (in IBM Model 4 there is an additional conditioning ontamatically derived
word classes, but we omit this to simplify the presentatid¥te that there is a non-
zero probability of “failure”, i.e. there is a non-zero padiility that the generative story
fails to generate anything. This means the model is deficreartting some probability
mass.

The variablel refers to the length of the English sentergceandm refers to the
length of the generated French sentefice, is the number of French words generated
by the English word at position i. The identity of these waids;, (k ranges from 1 to
¢;), and their French position is;. The termp; refers to the previous English word to
the English word at positionwhich has fertility greater than zero,, is the “center” of
the words placed by the previous English word of non-zerilifgrto the English word
at position i. The calculation af, for a non-zero-fertility English word at position z is
described in equation A.4, below.

The Model 4 generative story:

1. For each = 1,2,...,] choose a fertility value); according to the distribution

n(¢ile:).
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2. Choose a fertility value, according to the distributiong(¢y| 2221 bi)-

3. Letm :¢0 + Zi’:l ¢l

4. Foreach = 0,1,...,l and eachk = 1,2, ..., ¢;, choose a French word, ac-

cording to the distribution(7;|e;).
5. Foreach =1, ...,land eachk = 1,2, ..., ¢;, choose a position;; as follows:

e If £ =1, chooser;; according to the distributiod, (r;1 — ¢,;)

e If £ > 1, chooser;;, according to the distributiod.. (7;; — m;,_1) Subject

to the constraint that;,._; < 7
6. If any position has been chosen more than once, returirédi

7. Foreachk = 1,2, ..., ¢ choose a position, from ¢, — k£ 4+ 1 remaining vacant

positions inl, 2, ..., m according to the uniform distribution.
8. Let f be the string withfm;;, = 7,

The calculation of the “center” of the French words genetdtem a non-zero

fertility English word at positiori in the English sentence is shown in Equation A.4.

bi
¢; = ceiling( ~ min /) (A.4)
k=1
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We call French words generated from English words (not ohicly the special
English NULL word) “non-spurious”, as their generation xpkined by the English
words we observe. The number of non-spurious words’jswvhich is the sum of the

fertilities of the non-null English words, as shown in EqoatA.5.

l
m'=) ¢ (A.5)
i=1

For notational reasons we annotate unexplained Frenchsvaxdeing generated
from the English NULL word, but this does not directly refléoe generative process.
These French words are called “spurious”, as they aremigogénerated by the English
words we observe. In the generative story, these words arergied as a part of the
process of generating non-spurious French words. The gdeam represents the
probability that as we generate a non-spurious French werdlso generate a single
spurious French word, whilg, is the probability that as we generate a non-spurious
French word we don’t generate any spurious French weyé f; = 1). The number of
spurious words generated is modeled using a binomial bligioin where the number
of trials ism’ and the chance of trial success (generating a spurious wsyd)(the

chance of trial failure i3 — p; = py). The equation is given in Equation A.6.

no(Golm’) = (Z)w’%o (A6)
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The decisions made in a particular generative story can hgpethto a unique
alignmenta. When working with 1 to many alignments, a compact represienta
of an alignment which is sometimes used is a vector of lemgt{the length of the
French sentence), which indicates for each French viptte position of the English
word which generated it (i.e., the values in the vector rainge 0, ..,/). The reader
can verify that given the particular generative story otti for our example (with the
addition of distortion operations to specify the placenddthe words) we generate the
unique French string and unique alignment shown in A.1. UtlkeModel 4 generative
story, given a starting English strirgand the decisions made (which did not result in
“failure”), we generate a unique French strifigand a unique alignmemnt, and this is

always the cade

A.2.4 Model 4 Mathematical Formulation

Given an English string, a French string’ and a candidate alignmemtwe would like
to look upp(f, ale). The formula for Model 4 is in Equation A.7. See Equation A0B f

the expansion of the simplified distortion calculation wiwee abbreviaté;(j).

l l L ¢ I ¢
[H n(¢i’ei)] no(¢ol Z i) H H t(7ile:) H H Dik(mir) (A7)
i=1 i=1 =0 k=1 i=1 k=1

The inverse is not generally true; given an English stin@ French stringf,
and an alignment, there is not only one particular generative story that wddve
generated anda from e unlessp, = 0 (such as in our example).
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dl(j—Cpl.) if k=1
Dik(j> = (A.8)

d>1(j — Wikfl) if k>1
A.2.5 Training Model 4 Using Expectation-Maximization
A.2.5.1 Introduction

In this section we present the training of Model 4 using thpdexation-Maximization
(EM) algorithm. EM is an algorithm for finding parameter segs of a model which
maximize the expected likelihood of the observed and thebsmiwed data (this is
called the complete data likelihood; the incomplete datelilhood is the likelihood
of only the observed data). Intuitively, in statistical walignment, the E-step corre-
sponds to calculating the probability of all alignmentsading to the current model
estimate, and the M-step is the creation of a new model etigiaen a probability
distribution over alignments (which was calculated in thst&p).

Model 4 is a generative model with carefully controlled coexgy. In Model 4,
given strings: and f, every particular generative story which explains hbwas gen-
erated frome represents + 2m decisions. There aréfertility decisions over the
English string and there is a generation decision and a plectedecision for each of
them French words. It is important in EM to control complexity.cimplexity is not
carefully controlled, there can be a bias towards simpleictire, by which we mean

solutions where less decisions are made. If this is the t@&sehteuristics must be used
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to compensate. It is difficult to craft an effective genematinodel of word alignment

which has a constant number of decisions for use with EM.

A.25.2 E-step

In the E-step we would ideally like to enumerate all possdbignments and label them
with p( f, a|e). However, this is not possible when using an alignment maslebmplex
as Model 4. As we will see below in the discussion of the M-ste@ would at least
like to find the most likely alignment given the model. Thise¢erred to as the Viterbi

alignmentga in this formula:

a = argmax FPy(ale, f) = argmax Py(f, ale) (A.9)

This is a repeat of equation A.3 which represents the taskdiifg an approximate
Viterbi alignment to output as the final alignment outputirthe alignment process.
Here, in Equation A.9 we are referring to the search for agnatient during training.
We can vary this to be, for instance, the search for the 10 praétable alignments
(where a probability distribution over the 10 alignmentanddbe used for the M-step).

The calculation of the Viterbi alignment for IBM Model 4 wasopen to be NP-
hard by Udupa and Maji (2006). So we take the most probalj@mient we can find,

and assume it is the Viterbi alignment.
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A local hillclimbing search algorithm is used (Brown et aB9B). The search starts
from the presumed Viterbi alignment found during the prasidteration of training.
Brown et al. (1993) recommends instead starting the seavahtite Viterbi alignment
of IBM Model 2, but we do not believe this is more effective. Alignments which
are reachable by two search operations from the currenabgsment are considered.
One search operation is to change the generation decisi@aRoench word to a dif-
ferent English word, and the other search operation is t@sh& generation decision
for two French words. The two search operations are apphkéduestively, and the
best resulting alignment is chosen; this is iterated. Thaeckeis terminated when no

improved alignment can be found.

A.2.5.3 M-step

For the M-step, we would like to take a sum over all possibignahents for each
sentence pair, weighted byale, f) which we calculated in the E-step (note that the
labels labeled in the E-step must be renormalized to sumao dafche, f pair, as they
are estimates of( f, ale), and we would like estimates pfale, f)). As we mentioned,
this is not tractable.

We make the assumption that the single assumed Viterbi casdzkto update our
estimate in the M-step (which we cali; (ale, f), the probability of the alignment given

the sentence and the sentencg):
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1 ifa=a
pul(ale, f) = (A.10)
0 ifa#a

Note that when discussing “Viterbi training”, we are abgsihe term “Viterbi
alignment” to mean the best alignment according to the mtdslwe can find, not
the best alignment according to the model that exists.

We estimate new parameters from the assumed Viterbi aligterfeund during
the E-step by simply counting events in the assumed Vitdipn@ments, since they
are assumed in equation A.10 to be the only alignments ofzeoo-probability. We
collect the counts listed in Figure A.2. After collectingetbounts, for each condition,

we normalize these counts so that they sum to one, whichgeewis with the model

estimate for the next E-step, listed in the following eqomast

t(fle) = ai(fle)/ D al(fle) (A.11)
f’
n(gle) = cu(dle)/ Y en(d'le) (A.12)
d;/
di (D)) = car (D)) Y car(D) (A.13)
N1
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c(fle) translation countsf is a French word andis an English word
cn(dle) fertility counts, ¢ is the number of words generated by the English word
€

ca1(Ayg) | distortion (movement) counts of the first French word trates] from a
single English word (looking from left to right in French sence)
ca=1(Aj) | distortion (movement) counts of other French words traadl&rom a
single English word

Figure A.2: Counts collected in unsupervised Model 4 trgjnin

do1(D]) = cas1 (D)) D casa (D)) (A.14)

N

Clearly the Viterbi training approximation is related to EMihing, which tries to
maximize the complete data log likelihood. Neal and Hintb®98) analyzed approx-
imate EM training and motivates this general variant. We ldidike to eventually try
using a probability estimate over a larger set of hypotleesaignments to reestimate
the model, but finding a set to use which will help the perfamoeof the estimated

models is an open research problem.
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A.2.6 How Model 4 is Used in Practice

A.2.6.1 Open Parameters Used with Model 4

In practice,p, is not usually trained using likelihood (see (Brown et al.93pfor
details of count collection). Insteagg is set to a fixed value which produces good
quality alignments.

The GIZA++ Model 4 implementation used in our experiments twe smoothing
parameters to smooth the fertility distribution which acg part of the original Model
4 formulation.

We set these three open parameters based on final trangjaadity, in an expen-
sive grid-search process which involves building a full S&§Btem for each parameter
setting we would like to try. In our work on semi-supervisediriing presented in
Chapter 4 we overcome this difficulty and show how to efficketithin such parame-

ters using a small amount of hand annotated word alignmeat da

A.2.6.2 Heuristic Symmetrization for the IBM Models

All of the IBM Models assign zero probability to alignmentsvitnich more than one
English word is aligned to a single French word. This is a ppssumption. Ideally,
we would like a model to be able to assign non-zero probadslib all of the possible

alignments, which includes alignments that violate thetonaany assumption.
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In practice, in current state of the art machine translasigstems, heuristic tech-
niques are used to obtain M-to-N discontinuous alignmdtas1-to-N models like the

IBM Models, the following approach is used:

We are supplied with a bitext to be aligned, a 1-to-N alignhsstem, and a

symmetrization heuristic.

e Generate the predicted 1 to many alignment in the directiogligh to French.
In this alignment one English word aligns to zero or more Ehenords. Call the

resulting alignment A1l.

e Generate the predicted 1 to many alignment in the directi@eméh to English.
In this alignment one French word aligns to zero or more EBhghords. Call the

resulting alignment A2.

e Combine Al and A2 into a many to many alignment using a symuaegion

heuristic. Call this many to many discontinuous alignment A3

Return A3

We briefly discuss the three symmetrization heuristics ddfiny Och and Ney

(2003). For discussion of other heuristics the reader exred to Koehn et al. (2003).
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e The “Union” symmetrization heuristic involves taking theion of the links in
the A1 and A2 alignments. This results in an alignment hawhtp-N discon-

tinuous structure.

e The “Intersection” symmetrization heuristic involves itak the intersection of
the links in the A1 and A2 alignments. This will result in ad alignment

structure.

e The “Refined” symmetrization heuristic starts from the “hstection” 1-to-1 align-
ment, and adds some of the links present in the “Union” M-tdidtontinuous
alignment following the algorithm defined by Och and Ney @00T his results
in an alignment containing 1-to-N and M-to-1 correspon@snbut importantly
the words in the minimal translational correspondenced tmeisonsecutive, so
this is not as general as the “Union” heuristic. This heuristdescribed in fur-

ther detail in Section 2.2.3.

Use of these heuristics is undesirable. We would ideally aiseodel which is
able to assign non-zero probability to many to many disomatiis alignments directly,
without requiring the use of heuristics. We present the LEAdelel in Chapter 3 which

is able to do this.
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A.2.7 Discussion

We have presented the important issues behind the work of iBetval. (1993). We
have shown how Model 4 works in detail, and have discussestithetural assumptions
that were used in all of the IBM models. In addition, we havedssed how Model 4
is used in practice. We hope that the reader now has an uadéisg of the previous
state of the art unsupervised solution for word alignmerdtsome idea of its strengths
and weaknesses.

For the baselines in this thesis, we directly compare resuth the freely available
GIZA++ software package, which is used to generate the mlégris for many MT
systems.

However, we have also reimplemented the Model 4 alignmerdemoWe have
implemented our code so that we can calculate presumedVvakgnments for Model
4 on many servers using a small memory footprint, which isrgeladvantage over

GIZA++ which has a large memory footprint and can only use serger.
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Appendix B

Details of Introductory Experiments

B.1 Building Translation Systems with Word Alignments

SMT systems are usually broken down into two types of modelttanslation model,
which is a model of translational correspondence betweerstlurce and target lan-
guages, and the language model, which is a model of wellddrsentences in the
target language.

The translation model is estimated using a bitext of pdratterce language sen-
tences and target language sentences and an alignment bitthd. The model es-
timated from the bitext is called the translation model lsesit models the mapping
of a source phrase to a target phrase. The language modéhiaeesl only from the

target language text, this is a model of well-formed targagluage sentences. We can
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use additional target language text which is not from thexbito help us build a better
language model.

In the experiments presented in this section, we use theriflementation of the
alignment templates system (Och & Ney, 2004), which is a ggHzased SMT trans-
lation system (Koehn et al., 2003). This is a log-linear station model (Och & Ney,
2002). The log-linear model is trained to maximize an autmerisganslation quality
metric called BLEU (Papineni et al., 2001). BLEU is an automatialuation metric
which measures translation quality. BLEU has been shownnelede well with hu-
man judgments of quality. To maximize BLEU we use the MaximunEBLtraining
algorithm (Och, 2003). This algorithm uses the translata®v” set as training data to
train the weights of the log linear model so as to maximize BLEU

In phrase-based SMT, we estimate the phrase lexicon (theimpsrtant part of
the translation model) using a word alignment of the trajrbitext. We will vary how
we construct this word alignment. This is the only factoriediin all experiments in
this thesis. We will always compare two or more systems using the sanguke
models and the same bitext, but the two alignments of thathit#l be different.

For all of our experiments, we use a language model built erntdaihget language

training data and a large language model built on news data.

INote that because we only allow the final alignment to vastifees based on IBM
Model 1 (a lower order alignment model) are also held cortstan
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We evaluate an alignment by building a machine translatymtesn, translating
a machine translation test set and evaluating it using BLEW.dase of reading we
multiply the BLEU score by 100, and for this reason we report EBL%" in our
results.

We present our own word alignment systems in Chapters 3 amdtHislsection we
present results based on our baseline, a widely used unssgralignment procedure,
which is used as the baseline in most papers on word alignmiém approach uses
a freely available software package called GIZA++ (Och & N2§03), which imple-
ments several alignment models. GIZA++ implements botHBM Models (Brown
et al., 1993) and the HMM word alignment model (Mogel et &@98). In our baseline,
we use heuristic post-processing of the output of GIZA+#sasandardly done.

GIZA++ implements both Model 4 and the HMM using a few extensi which
were not in the original formulations. We use IBM Model 1, thachen HMM, and
IBM Model 4 in that order (these models “bootstrap” from onether, see Appendix
A for more details). The output of these models is an aligrinoénthe bitext which
projects one language to another. GIZA++ is run end-to-&ndet In one case we
project the source language to the target language, and othier we project the target
language to the source language. The output of GIZA++ is fust-processed using
so-called “symmetrization heuristics” to produce a siralgnment by combining the

source to target alignment and the target to source wordrakgt output by the models.
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We describe Model 4 and the heuristic symmetrization allgors in more detail in

Appendix A.

B.2 Experimental Details for the Romanian/English Weak

Oracle Experiment

We would like to substantiate the claim that improved alignits will lead to improved
MT systems. We show that there exist alignments of a fixeckiwdich are signifi-
cantly better for translation than the alignments gendrbyeour baseline system. We
generate the improved alignments by using an “oracle”, #&esysvhich (in an un-
fair fashion) tells our alignment system how to improve thigraments. We measure
phrase-based statistical machine translation perforenbath when using our baseline
alignment system, and using the “oracle”. We show that atigmts can be improved
by showing that the “oracle” alignments lead to higher perfance than the baseline.
Experiment overview: We report on a “weak oracle” experiment. We select a
training bitext (parallel sentences in Romanian and Enptisibe aligned under three
different experimental conditions. For the baseline, we the current state of the art
alignment system to align the training bitext and then bailtachine translation sys-
tem and translate a held out test set. The second experincentdtion is to show that

our reimplementation of the baseline has identical peréoree (this is only necessary
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because we need to use our reimplementation for the wealepr&or the “weak or-
acle”, we allow the word alignment system access to golddstahalignments of the
test data to force it to make better alignment decisions ertrtining bitext. The dif-
ference with the baseline is that a “weak oracle” told thgrahent system how to align
the training bitext well (for this test set). We show that ttenslations of the test data
generated by an MT system using this alignment is of highatityuthan the transla-
tion which was generated by the baseline system. This shmsvexistence of better
alignments than those generated by our baseline system.

Experiment details: We build SMT systems for three distinct experimental condi-
tions which we list below. See Table B.1 for statistics of théd

We use the training data originally supplied for the WPTO5retigask (Martin
etal., 2005) on word alignment. For the machine translatien” set, which is used for
Maximum BLEU training, we use the WPTO05 alignment test set,fanthe machine
translation “test” set, we use the WPTO03 alignment test set.

The first system, “Symmetrized GIZA++", is the result of rimm 5 iterations of
running GIZA++ IBM Model 1, 5 iterations of GIZA++ HMM Model, ral 4 itera-
tions of GIZA++ Model 4 where one alignment was generatechi&n Romanian to
English direction and one alignment was generated in théigfngp Romanian direc-

tion. The second system, “Symmetrized Model 47, is the tesubootstrapping our
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implementation of Model 4 using the GIZA++ HMM Model outputanning 4 itera-
tions of Model 4 in both directions using our implementataon is otherwise identical
to “Symmetrized GIZA++".

The first system, “Symmetrized GIZA++", is the result of rimnGIZA++ Model
4 and post-processing the output with heuristics. “SymizedrModel 4” is our im-
plementation of Model 4, also post-processed with the samestics. The third sys-
tem, “Weak Oracle” is generated by concatenating the tigidata together with 1000
copies of the manually annotated gold standard word aligisrfer both the machine
translation “dev” set and the machine translation “test’esch time parameters are
estimated for use in our implementation of Model 4. Thesel gtdndard alignments
are removed before the alignments are used to build the madkanslation system.
The effect these gold standard alignments have on the nmadttanslation system is
indirect; they force the decisions made in the alignmenhefttaining data to be good
decisions for the translation of the development and test(®énich is why this is an
oracle experiment).

Using gold standard word alignments for a fraction of theapp@r sentences in our
augmented training+dev+test corpus is easy to do in ourpleimentation of Model
4 but not implemented in GIZA++, which is why we use our impétation to im-
plement the “Weak Oracle”. A preliminary comparison is resaey to show that our

alignment package is equivalent in performance to GIZA+ie BLEU scoresinline 1
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(GIZA++) and line 2 (our implementation) of Table B.2 showttbar implementation
has equivalent performance.

The main comparison directly addresses the existence trbaignments. We
compare “Symmetrized Model 4” (line 2 of Table B.2) with “We@kacle” (line 3 of
Table B.2). The “Weak Oracle” is 3.30 BLEU points better thagrinetrized Model
4”. This shows the existence of alignments which give usshétanslation performance
than the best we can obtain with our baseline.

Note that this is only a weak oracle experiment because ibssiple to find even
better alignments. For instance, if a word is translatedvaswords in the gold stan-
dard in one context, it will translate as two words in evergteat. This will damage the
quality of other alignments of that word in other contextsahttould affect translation
decisions and adversely affect translation quality. Initaald the oracle is weak be-
cause it is constrained to the alignment structure whichadeted by the IBM Models
which is not the correct alignment structure (see Secti@m ). If we were given infi-
nite resources to search all alignments exhaustively blyatrag them in a translation
system directly, it would be possible to find better aligntsemith even larger BLEU
improvements (which would be a strong oracle).

Experiment Results Summary: Table B.2 shows that the current state of the art
(line 1) and our reimplementation (line 2) have the sameogpetince. Line 2 is the

baseline for the main experiment, the BLEU score is 23.06e Bishows the existence
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Table B.1: Romanian/English Weak Oracle Data

ROMANIAN  ENGLISH

SENTENCES 48222
TRAINING WORDS 971525 1024321
VOCABULARY 45782 25507
SINGLETONS 19328 8567

TRANSLATION DEV SENTENCES 200
WORDS 4365 4562

TRANSLATION TEST SENTENCES 248
WORDS 5495 5639

Table B.2: Romanian/English Weak Oracle Results

SYSTEM BLEU %
SYMMETRIZED GIZA++ 22.85
SYMMETRIZED MODEL 4 23.06
WEAK ORACLE 26.36

of alignments which give us better translation performathea the best we can cur-
rently obtain with our baseline. These improved alignmeessilt in a BLEU score of
26.36; this is 3.30 points better than the baseline whichlgsge improvement. This
experiment is evidence that MT quality can be improved bylpoing improved word
alignments. We will show how to obtain such improved wordmathents (without using

an oracle) in the main part of the dissertation.

202



Appendix C

Search Implementation Details

C.1 Comparing the Current LEAF Search Implementation

with Model 4

Our current implementation of the LEAF search (used in bbth@d-step and the E-
step) is unoptimized. We compare it with an unoptimized ieerof Model 4 (our
implementation) and a highly optimized implementation obdél 4 (GIZA++, Och
and Ney (2003)). We will discuss how the search for the LEAEENI alignment
can be improved (using the same techniques implementeddA+£3) to be about 12
times slower than the time required by the GIZA++ Model 4 iempéntation. GIZA++
is implemented such that only a single processor can be uBeth of our current

LEAF and Model 4 search implementations are fully parakdi and can be run on
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Table C.1: Average milliseconds per sentence pair in E-Step

SYSTEM ETOF | FTOE | FINAL M-TO-N
UNOPTIMIZED MODEL 4 (UNSUPERVISED 336 493 829
GIZA++ MODEL 4 (UNSUPERVISED 8 10 18
UNOPTIMIZED LEAF (UNSUPERVISED NA NA 10151
UNOPTIMIZED LEAF (SEMI-SUPERVISED NA NA 11810

any number of processors; this is what has enabled us to oatrgxperimentation
without implementing the optimizations.

The number of milliseconds used per sentence pair in theeg-IStpresented in
Table C.1. We calculated this on the French data set which8422184 sentences,
67,366,819 English words (see Table 3.3 on Page 74 for thetétistics). This data
set contains sentences of length up to 254 words, whichasergethe average search
time required, versus other data sets where the sentergih lemt-off is significantly
shorter.

We have already shown that our implementation of Model 4 aiAG&+ have
the same performance (as measured by BLEU) in Appendix B.2.ufrdiscussion
of Model 4 alignment search implementations we restricselves to the “baseline”
search algorithm, as described by Brown et al. (1993), whsels @ hillclimbing search
from only one starting point to converge to a local prob&piihnaxima; no restarts are
used, see Section 3.4.2.1.

The first line of Table C.1 shows that we spend an average of 8#9anonds per
sentence pair (column 3) for our unoptimized Model 4 impletagon (we sum the
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two directions in columns 1 and 2 to determine this numbet,assume that applying
the “Union” or “Refined” symmetrization heuristic to theseotalignments to obtain
the final alignment takes a negligible amount of time).

We consider Model 4 in the English to French alignment dioectOur unoptimized
implementation of Model 4 uses a representation of the algmt as a vector of
lengthm (the number of French words) whergis the position of the English word
which generated the French word at positiopnThe two search operations, “move”
and “swap” (described in Appendix A.2.5.2), copy this aliggnt vector, and change
one position (for “move”; two positions are changed for “pi)a and then score the
new alignment created by calling a function which returng@ability for the new
alignment.

The second line of Table C.1 shows that the Model 4 implemientét GIZA++
is much faster, an average of 18 milliseconds is used peeseatpair, which is 46
times faster than our unoptimized Model 4 implementatiome Teason for this is that
GIZA++ has two optimizations which are not yet implementedur implementation
of Model 4.

The first optimization is described by Brown et al. (1993), wi e@all it the “In-
cremental Probability Calculation” optimization. Given alignmenta, from which
we obtain the alignment’ by applying a particular search operation, we can obtain

p(d’, fle) by a constant small number of steps. This involves startiomf(a, f|e),
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dividing out just the probabilities of the generative asianade to arrive at which
were not made in arriving at’, and multiplying in the probabilities of the generative
actions made to arrive at but not made in arriving at. This is much faster than cal-
culatinga’ from scratch by looking up the probabilities of all of the geative actions
used to obtain/’ (including particularly those which were the same as thasl uo
arrive ata). The cost of looking up all of the probabilities (I + m) (wherel is the
length of the English sentence andis the length of the French sentence).

In LEAF, such procedures for updating in a constant numbestegs can also be
defined. We will present a very simple example in which we amswe are calculating
LEAF in just the English to French direction (for ease of esifion). Suppose we have
an alignment: in which an English non-head word at positiois in a three word En-
glish cept headed by the English head word at posijiofhe “move English non-head
word to new head” search operation is used to chantebe of word type “deleted”,
resulting in a new alignment. The probability: of «’ can be quickly determined given

the probability ofa. This is done by performing the following calculations:

e z=p(a, fle)

¢ // divide the probability of the non-head word to head worsbasation

z = Z/wfl(y — Z’C|aS$(€Z)
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e // divide the probability ok; being type—1 (non-head word)

z=z/g(—1le)

¢ // multiply the probability ofe; being type0 (deleted)

z=2z%g(0]e;)

e // z is the probability ofa’

returnz

For LEAF, as in the case of Model 4, this allows us to calcuthte probability
of a’ from a in a small constant number of steps, rather usingéh+ m) lookup
of the probabilities for all of the actions. We expect that 8peed up from using
this optimization with LEAF is analogous to the speed up imleteh when using this
optimization with Model 4.

The second optimization is from the appendix of the work by @aed Ney (2003).
This optimization is called “Fast Hill Climbing”. If we staftom an alignment;, we
can keep a single matrix for each search operation, whidlcadhep(a’, fle)/p(a, fle)
for alignments:’ reachable by applying the search operation.té-or instance, if we
have a search operation with two argumerasd;, a matrix)\/ indexed by the possible
1 andj values is defined. The probability of an alignmehgenerated by applying this

search operation using argumen®nd is Mj; ; times the probability of the original
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alignmenta. Initially, all of the cells of this matrix must be calculatexplicitly by cal-
culating the costs of the alignments (using the first optatian). However, the speed
up of the “Fast Hill Climbing” optimization is obtained bes®uupdating/ when the
starting alignment is changed does not require revisiting all of the cells. Qhbse
columns and rows for which the ratio changes need to be updaiel this is a small
number of rows and columns. This means that after the matace initially created,
search simply consists of scanning these matrices for thevitle the best probability
multiplier, updating the alignment using that search op@naand updating a few of
the columns and rows of the matrices. Och and Ney report a 20 times speed up in
local search using this optimization.

This “Fast Hill Climbing” optimization can also be applied t&AF. Six of the
seven search operations in LEAF also have two argumentseapdre matrices of
similar size to those required for Model 4. The seventh dpmra“unlink the link
between an English head word and a French head word” (operatin Table 3.4 on
Page 69) has three parameters, but two of these parameteesaicted to three values
each, so this will be a small matrix which can be rapidly updaihe matrices required
for the first six operations are- m, m? or [? in size, and it is easy to see that the cost to
update them will be similar to the cost to update the matnitsesl with Model 4. We
believe search using the “Fast Hill Climbing” optimizatiexdominated by the time to

calculate the initial matrices, where each cell must beedsi LEAF will require the
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calculation of six matrices, while each Model 4 directioquiges the calculation of two

matrices, for a total of four matrices. Therefore we belithat the speed up obtained
by using this optimization with LEAF will be about 1.5 timessk than that obtained
for Model 4.

By implementing these two optimizations it is clearly possiio speed up our im-
plementation of Model 4 to match the speed of the GIZA++ im@atation of Model
4. According to our empirical measurements comparing ooptimized Model 4 im-
plementation with GIZA++ it will be at least a 46 times spe@d, which is close to the
estimate of Och and Ney.

The third line of Table C.1 shows that the unoptimized unstiped LEAF imple-
mentation is very slow. It is about 12 times slower than theptimized Model 4 im-
plementation. The fourth line of Table C.1 shows that the tiroped semi-supervised
LEAF implementation is about 14 times slower than the umojied Model 4 imple-

mentation.

Un fact, it is likely that this speed up would be more than a et speed up
as long as we continue to use the Viterbi approximation imitng. GIZA++ uses the
“neighborhood” training approximation (Al-Onaizan et d4999; Och & Ney, 2003) by
default (we used “neighborhood” training in all of our exipeents using GIZA++). Us-
ing the neighborhood approximation requires incurringiiattal computational costs
to those incurred in Viterbi training, see the appendix & work by Och and Ney
(2003) for the details.
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As we have already discussed the optimizations requiredE& are very similar
to those used with Model 4. For LEAF, the results use the nanchealgorithm of Sec-
tion 3.4.2.2, because the baseline search algorithm isceptably slow to converge.
The speed ups gained by implementing the two optimizatics®idsed in this section
apply equally to both the baseline search algorithm and #we search algorithm as
the optimizations make the search operations faster arghthe search operations are
used in both algorithms.

In summary, we expect that the first optimization would resulan analogous
speed up for LEAF search to the speed up obtained for Modehé. speed up from
applying the second optimization to LEAF would be 1/1.5 sntlee speed up gained
for Model 4. The unoptimized Model 4 search can be sped up l®aat 46 times. This
implies that we can obtain at least a 30 times speed up forEHAd-Lsearch process by
implementing these optimizations. We plan to implemenséhgptimizations in future

work.

C.2 LEAF Search and Dynamic Programming

In this section we briefly consider other search algoritheported on in the literature
which we consider directly relevant to the search for the EBAterbi alignment. They

share the commonality that they are all based on dynamiag@naging.
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Germann (2003) produced an impressive speed-up in lodelitnibing search for
machine translation by segmenting the starting hypothe&isoverlapping local areas
(called tiles) which can be independently searched, andriiategrating these partial
solutions into a complete solution using dynamic prograngnSuch a decomposition
appears to be possible for the LEAF model (though it might beensomplicated in the
semi-supervised case if global features such as the nansditieaation sub-model are
used). If such decomposition is possible this would leadrtauah higher performance
in search, particularly when applied in combination withr sgarch advances and the
optimizations discussed in the previous section.

We can also consider search algorithms which are quiterdiftefrom the local
hillclimbing search algorithms we currently use. Udupa &Maji (2005) defined a
search algorithm for Model 4 which considers an exponentiaiber of alignments in
polynomial time. Eisner and Tromble (2006) presented ackealgorithm for “very
large neighborhood” search in machine translation whighlwa used to consider an
exponential number of reorderings for translation in polymal time. Both of these
approaches use dynamic programming to examine a much Ispgee of alignments
than our current search algorithms can examine. We spectiiat it is possible to
produce a dramatically improved search algorithm for figdime LEAF Viterbi align-
ment by inventing a similar approach based on dynamic progriag which allows the

consideration of exponentially many LEAF alignments inyo@mial time.
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