SMT/NMT: OSM and OOV

Alexander Fraser
Lecture Today

- I will present two pieces of further work by the group today
 - Operation Sequence Model (OSM)
 - Competitor to PBSMT
 - Widely combined with PBSMT (as a set of feature functions)
 - Using Bilingual Word Embeddings for Domain Adaptation of NMT
 - This involves modeling Out-Of-Vocabulary (OOV) words
 - OOV words are words we want to translate that do not occur in the parallel training data

- Next Tuesday, I will present the first of four exercises (which you will do offline)

- The week of ACL (July 5th to July 10th) everything will be cancelled
 - BTW: ACL is online and less expensive this year!

- End of the semester: review, mini practice exam, online exam
A Short Introduction to the Operation Sequence Model

Alexander Fraser
(slides mostly from Nadir Durrani)
Improving the modeling of syntax in SMT

• Novel model: **Operation Sequence Model**

• New model overcoming problems with phrase-based model

• Joint work with Durrani and Schmid
 – Numerous papers at *ACL conferences
Motivation: Long Distance Reordering in German-to-English SMT

• Er hat ein Buch gelesen \(\rightarrow\) He read a book

• Er hat gestern Nachmittag mit seiner kleinen Tochter, die aufmerksam zugehört hat, und seinem Sohn, der lieber am Computer ein Videogame gespielt hätte, ein spannendes Buch gelesen

• We want a model that
 – captures "hat ... gelesen = read"
 – captures the generalization that an arbitrary amount of stuff can occur between hat and gelesen (in the so-called "mittelfeld")
 – is a simple left-to-right model
Example

Sie würden gegen Sie stimmen

They would vote against you

• Rules:
 – Simultaneous generation of bilingual sentence pair through a sequence of operations
 – Generation is done in order of the target (English) sentence
 – Idea behind operations: either Translate or Reorder
Example

Sie würden gegen Sie stimmen

\[\text{They would vote against you} \]

Operations

\[o_1: \text{Generate (Sie – They)} \]
Example

Sie würden gegen Sie stimmen

They *would* vote against you

Operations

\[o_1 \text{ Generate (Sie, They)} \]

\[o_2 \text{ Generate (würden, would)} \]
Example

Sie würden gegen Sie stimmen

They would vote against you

Operations

\(o_1 \) Generate (Sie, They)

\(o_2 \) Generate (würden, would)

\(o_3 \) Insert Gap

Sie würden

They would
Example

Sie würden gegen Sie stimmen

They would vote against you

Operations

\[o_1 \text{ Generate (Sie, They)} \]
\[o_2 \text{ Generate (würden, would)} \]
\[o_3 \text{ Insert Gap} \]
\[o_4 \text{ Generate (stimmen, vote)} \]
Example

Sie würden gegen Sie stimmen

They would vote against you

Operations

\[o_1 \text{ Generate (Sie, They)} \]
\[o_2 \text{ Generate (würden, would)} \]
\[o_3 \text{ Insert Gap} \]
\[o_4 \text{ Generate (stimmen, vote)} \]
\[o_5 \text{ Jump Back (1)} \]
Example

Sie würden gegen Sie stimmen

They would vote against you

Operations

- o_1: Generate (Sie, They)
- o_2: Generate (würden, would)
- o_3: Insert Gap
- o_4: Generate (stimmen, vote)
- o_5: Jump Back (1)
- o_6: Generate (gegen, against)
Example

Sie würden gegen Sie stimmen

They would vote against you

Operations

\(o_1 \) Generate (Sie, He)
\(o_2 \) Generate (würde, would)
\(o_3 \) Insert Gap
\(o_4 \) Generate (stimmen, vote)
\(o_5 \) Jump Back (1)
\(o_6 \) Generate (gegen, against)
\(o_7 \) Generate (Sie, you)
Model

- Joint probability model over operation sequences

\[
p_{osm}(F, E, A) = p(o_1^J) = \prod_{j=1}^{J} p(o_j | o_{j-n+1}, \ldots, o_{j-1})
\]

Context window: 9-gram model
Example of a learned pattern

- Operations
 - Generate (würden, would)
 - Insert Gap
 - Generate (stimmen, vote)

- Can generalize to
 - Die Menschen würden dafür stimmen
 - Die Menschen würden gegen meine Außenpolitik stimmen
 - Die Menschen würden für die Legalisierung der Abtreibung in Kanada stimmen

- Equivalent to hierarchical phrase “würden X stimmen – would vote X”

- Gaps can be created recursively
 - Multiple gaps can occur simultaneously
Results and outlook

• Operation sequence model overcomes problems with the phrase-based model
 • Models minimal translation units well that are highly dependent on one another but not contiguous, unlike phrase-based
 • Reordering is integrated with lexical generation
• Operation sequence model is available as a feature function in the latest version of Moses (open-source statistical machine translation toolkit)
• The model is widely acknowledged to lead to actual improvements in systems in large scale evaluation campaigns such as WMT and IWSLT
 • Standardly used in all competitive PBSMT systems
• What I didn't talk about: our related work on synchronous grammars, particularly Synchronous Context-Free Grammars (SCFG), Synchronous Tree Substitution Grammars (STSG)
• Thank you!