
Finite State Morphology

Alexander Fraser & Liane Guillou
{fraser,liane}@cis.uni-muenchen.de

CIS, Ludwig-Maximilians-Universität München

Computational Morphology and Electronic Dictionaries

SoSe 2016
2016-05-09

Outline

• Today we will cover finite state morphology
more formally

– We'll review concepts from the first lecture and
from the exercises

– And define operations in finite state more formally

• We will then show how to convert regular
expressions to finite state automata

Exercise

• Please check the website tomorrow for the
exercise location (may also be cancelled)

Credits

• Credits:

– Slides mostly adapted from:

– Finite State Morphology

– Helmut Schmid

– U. Tübingen - Summer Semester 2015

– Thanks also to Kemal Oflazer and Lauri Kartunnen

Review: Computational Morphology

• examines word formations processes

• provides analyses of word forms such as
Tarifverhandlungen:
Tarif<NN>verhandeln<V>ung<SUFF><+NN><Fem><Nom><Pl>

• splits word forms into roots and affixes

• provides information on

– part-of-speech such as NN, V

– canonical forms such as „verhandeln“

– morphosyntactic properties such as Fem, Nom, Pl

Terminology

• word form
word as it appears in a running text: weitergehst

• lemma
citation as listed in a dictionary: weitergehen

• stem
part of a word to which derivational of inflectional affixes are
attached: weitergeh

• root
stem which cannot be further analysed: geh

• morpheme
smallest morphological units (stems, affixes): weiter, geh, en

Word Formation Processes

• Inflection

• Derivation

• Compounding

Inflection

• modifies a word in order to express different grammatical
categories such as tense, mood, voice, aspect, person,
number, gender, case

• verbal inflection: conjugation walks, walked, walking

• nominal inflection: declension computers

• usually realised by
– prefixation

– suffixation

– circumfixation ge+hab+t

– infixation auf+zu+machen (not a perfect example)

– reduplication: orang+orang (plural of „man“ in Indonesian)

Derivation

• creates new words

• Examples: un+translat+abil+ity piti+less-ness

• changes the part-of-speech and/or meaning of the word

• adds prefixes, suffixes, circumfixes

• conversion: changes the part-of-speech without modifying
the word book (N) → book (V) leid(en) (V) → Leid (N)

• templatic morphology in Arabic
ktb + CVCCVC + (a,a) -> kattab (write)

Compounding

• creates new words by combining several stems

• example: Donau-dampf-schiff-fahrts-gesellschaft

• very productive in German

• affixoid
compounding process that turns into a derivation process

 Gas+werk, Stück+werk, Laub+werk

 schul+frei, schulter+frei, schulden+frei

 → no absolute boundary between compounding and derivation

Classification of Languages

• isolating: Chinese, Vietnamese
little or no derivation and inflection

• analytic: Chinese, English
little or no inflection

• synthetic

– agglutinative: Finnish, Turkish, Hungarian, Swahili
morphemes are concatenated with little modification
each affix usually encodes a single feature

– fusional (inflecting): Sanskrit, Latin, Russian, German
inflectional affixes often encode a feature bundle: les+e (1 sg pres)

Productivity

• productive process
new word forms can easily be created
use+less, hope+less, point+less, beard+less

• unproductive process:
morphological process which is no longer active
streng+th, warm+th, dep+th

Morphotactics

Which morphemes can be arranged in which order?

 translat+abil+ity

 *translat+ity+abil

 translat+able

 *translat+able+ity (Allomorphs able-abil)

Orthographic/Phonological Rules

How is a morpheme realised in a certain context?

 city+s → cities

 bake+ing → baking (e-elision)

 crash+s → crashes (e-epenthesis)

 beg+ing → begging (gemination)

 ad+simil+ate → assimilate (assimilation)

 ip+lEr → ipler kız+lEr → kızlar (vowel harmony)

Morphological Ambiguity

 leaves hanged hung

leaf+N+pl leave+N+pl leave+V+3+sg hang+V+past

Ingredients of a Morph. Analyser

• List of roots with part-of-speech

• List of derivational affixes

• morphotactic rules

• orthographic (phonological) rules

Computational Morphology

analyses and/or generates word forms

• analysis
Abteilungen →
Abteilung<NN><Fem><Nom><Pl>
Abteilung<NN><Fem><Acc><Pl> …
ab<VPART>teilen<V>ung<NNSuff><Fem><Acc><Pl> …
Abtei<NN> Lunge<NN><Fem><Nom><Pl> …
Abt<NN> Ei<NN> Lunge<NN><Fem><Nom><Pl> …
Abt<NN> eilen<V> ung<NNSuff><Fem><Nom><Pl> …

• generation
 sichern<+V><1><Sg><Pres><Ind> → sichere, sichre

Implementation

• using a mapping table
works reasonably well for languages such as English, Chinese

• algorithmic
more suitable for languages with complex morphology such as
Turkish or Czech

– finite state transducers
simple, well understood, efficient, bidirectional (analysis &
generation)

Short History

1968 Chomsky & Halle propose ordered context-sensitive rewrite
rules
x → y / w _ z (replace x by y in the context w … z)

1972 C. Douglas Johnson discovers that ordered rewrite rules can be
implemented with a cascade of FSTs if the rules are never
applied to their own output

1961 Schützenberger proved that 2 sequential transducers (where
the output of the first forms the input of the second) can be
replaced by a single transducer.

1980 Kaplan & Kay rediscover the findings of Johnson and
Schützenberger

1983 Kimmo Koskenniemi invents 2-level-morphology
1987 Karttunen & Koskenniemi implement the first FST compiler

based on Kaplan’s implementation of the finite-state calculus

Finite State Automaton

directed graph with labelled transitions, a start state
and a set of final states

 w a l k i n g

recognises walk, walks, walked, walking, talk, talks, talked,
talking

s

e d t

Finite State Automaton

FSAs are isomorphic to regular expressions and regular
grammars. All of them define a regular language.

regular expression: (w|t)alk(s|ed|ing)?

regular grammar:

 S → w A B → s B →

 S → t A B → e d

 A → a l k B B → i n g

both equivalent to the automaton on the previous slide

Finite State Automaton

FSAs are isomorphic to regular expressions and regular
grammars. All of them define a regular language.

regular expression: (w|t)alk(s|ed|ing)?

regular grammar:

 S → w A B → s

 S → t A B → e d

 A → a l k B B → i n g

 B →

Both are equivalent to the automaton on the previous slide

regular

context-
sensitive

context-free

type 0

Operations on FSAs

• Concatenation A B

• Optionality A? = (|A)

• Kleene‘s star A* = (|A|AA|AAA|…)

• Disjunction A | B

• Conjunction A & B

• Complement !A

• Subtraction A – B = A & !B

• Reversal

From Regular Expressions to FSAs

single symbol a

• Create a new start state and a new end state

• Add a transition from the start to the end state labelled „a“

1 2
a

From Regular Expressions to FSAs

Concatenation A B

• add epsilon transition from final state of A to start state of B

• make final state of B the new final state

1 2

3 4

1 3 4 2
ε

From Regular Expressions to FSAs

Optionality A?

• add an epsilon transition from start to end state

1 2 1 2

ε

From Regular Expressions to FSAs

Kleene‘ star A*

• add an epsilon transition from end to start state

• make start state the new end state

1 2 2 1

ε

From Regular Expressions to FSAs

Disjunction A B

• new start state with epsilon transitions to the old start states

• new final state with epsilon transitions from the old final
states

1 2

3

5

2

4

1

3

6

4

ε
ε

ε ε

From Regular Expressions to FSAs

Reversal

• reverse all transitions

• swap start and end state

1 2 2 1

From Regular Expressions to FSAs

Conjunction A & B

• I'm skipping the details of conjunction (see the Appendix for
the algorithm)

• Basically, we can automatically create a new FSA that
essentially runs both acceptors in parallel

• Our new FSA only accepts if both FSAs are in the accept state

• Clearly the FSA A&B then only accepts strings that are in the
regular languages accepted by both FSAs (FSA A and FSA B)

Properties of FSAs

• epsilon-free
no transition is labelled with the empty string epsilon

• deterministic
epsilon-free and no two transitions originating in the
same state have the same label

• minimal
no other automaton has a smaller number of states

Properties of FSAs II

• We can algorithmically construct a new FSA
from the old FSA such that it is:

– epsilon-free

– deterministic

– minimal

• See the Appendix for the algorithms

Conclusion: Finite State Acceptors

• Any regular expression can be mapped to a finite
state acceptor

– However, "regexes" in Perl are misnamed!

• "Regexes" contain more powerful constructs than
mathematical regular expressions

– For instance /(.+)\1/

– However, these constructs are not used much

• See EN Wikipedia page on regular expressions, subsection
"Regular expressions in programming languages" for details

• We will now move on to finite state transducers

Finite State Transducers

• FSTs are FSAs whose transitions are labelled with symbol pairs

• They map strings to (sets of) other strings

• maps walk, walks, walked, walking to walk

• and talk, talks, talked, talking to talk (in generation mode)

• can also map walk to walk, walks, walked, walking in analysis
mode

s:

e: d: t:t

a:a w:w l:l k:k i: n: g:

FSTs and Regular Expressions

Single symbol mapping a:b

Operations on FSTs
• Concatenation, Kleene's star, disjunction, conjunction,

complement (from FSAs)

• composition A || B
The output of transducer A is the input of transducer B.

• projection
– upper language replaces transition label a:b by b:b

– lower language replaces transition label a:b by a:a

The result corresponds to an automaton

a:b

Weighted Transducers

• A weighted FST assigns a numerical weight to each transition

• The total weight of a string-to-string mapping is the sum of the
weights on the corresponding path from start to end state.

• Weighted FSTs allow disambiguation between different
analyses by choosing the one with the smallest (or largest)
weight

Working with FSTs

• FSTs can be specified by means of regular expressions (like
FSAs). The translation is performed by a compiler.

• Using the same algorithms as for FSA
– FSTs can be made epsilon-free in the sense that no transition is labelled

with ε:ε (a pair of empty string symbols)

– FSTs can be made deterministic in the sense that no two transitions
originating in the same state have the same label pair

– FSTs can be minimised in the sense that no other FST which produces
the same regular relation with the same input-output alignment is
smaller. (There might be a smaller transducer producing the same
relation with a different alignment.)

• FSTs can be used in both directions (generation and analysis)

FST Toolkits

Some FST toolkits

• Xerox finite-state tools xfst and lexc
well-suited for building morphological analysers

• foma (Mans Hulden)
open-source alternative to xfst/lexc

• AT&T tools
weighted transducers for tasks such as speech recognition
little support for building morphological analysers

• openFST (Google, NYU)
open-source alternative to the AT&T tools

• SFST
open-source alternative to xfst/lexc but using a more general and flexible
programming language

SFST

• programming language for developing finite-state
transducers

• compiler which translates programs to transducers

• tools for

– applying transducers

– printing transducers

– comparing transducers

SFST Example Session

> echo "Hello\ World\!" > test.fst storing a small test program
> fst-compiler test.fst test.a calling the compiler
test.fst: 2

> fst-mor test.a interactive transducer usage
reading transducer... transducer is loaded
finished.
analyze> Hello World! input
Hello World! recognised
analyze> Hello World another input
no result for Hello World not recognised
analyze> q terminate program

SFST Programming Language

Colon operator a:b

empty string symbol <>

Example: m:m o:i u:<> s:c e:e

identity mapping a (an abbreviation for a:a)

Example: m o:i u:<> s:c e

{abc}:{AB} is expanded to a:A b:B c:<>

Example: {mouse}:{mice}

Disjunction

John | Mary | James

accepts these three strings and maps them onto themselves

mouse | {mouse}:{mice}

analyses mouse and mice as mouse

note that analysis here maps lower language (mice) to upper
language (mouse), i.e., implements lemmatization

Generation goes in the opposite direction

Multi-Character Symbols

strings enclosed in <…> are treated as a single unit.

{mouse<N><pl>}:{mice}

analyzes mice as mouse<N><pl>

Multi-Character Symbols

A more complex example:

schreib {<V><pres>}:{} (\
{<1><sg>}:{e} |\
{<2><sg>}:{st} |\
{<3><sg>}:{t} |\
{<1><pl>}:{en} |\
{<2><pl>}:{t} |\
{<3><pl>}:{en})

The backslashes (\) indicate that the expression continues in the next line

What is the analysis of schreibst and schreiben?

Conclusion: Finite State Morphology

• Talked about finite state morphology in a
more formal way

• Showed how to convert regular expressions to
finite state automata

• Talked about finite state transducers for
computational morphology

– Morphological analysis and generation

• Thank you for your attention

Appendix

• Details of Conjunction of FSAs

• Algorithms for Determinisation, Composition
and Minimisation of FSAs

From Regular Expressions to FSAs

Conjunction A & B

• The new state space Q is the Kartesian product of the old
state spaces Q1 and Q2, i.e. Q = {(a,b)| a Q1 &bQ2}

• The new start state is the pair of the old start states.

• The new final state is the pair of the old final states

• A transition labelled a exists from new state (a,b) to new state
(c,d) iff a transition labelled a exists from a to c in A and from
b to d in B, i.e. (a,b) → (c,d) iff a → c and b → d

Determinisation of FSAs

• The new state set is the powerset of the old state set (set of
all subsets).

• The new start state is the epsilon-closure of the old start state
(i.e. the start state + all states reachable from it via epsilon
transitions)

• There is a transition from state q to r labelled a iff there is a
transition labelled a from some old state a in q to some old
state b in r.

• The set of final states comprises all states q which contain an
old final state a.

Composition of FSAs

• First, make the two FSAs deterministic.

• The new state set is then the Kartesian product of the two old
state sets

• The new start state is the pair consisting of the two old start
states

• There is a transition from state (a,b) to state (c,d) labelled x:z
iff there is some transition labelled x:y from state a to state c
and a transition labelled y:z from state b to state d

• The final state set comprises all state pairs (a,b) where both a
and b are old final states.

Minimisation of FSAs

Minimisation of A

a simple (but inefficient) minimisation algorithm

1. determinise

2. reverse

3. determinise

4. reverse

