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Outline 

• Today we will cover finite state morphology 
more formally 

– We'll review concepts from the first lecture and 
from the exercises 

– And define operations in finite state more formally 

• We will then show how to convert regular 
expressions to finite state automata 



Exercise 

• Please check the website tomorrow for the 
exercise location (may also be cancelled) 



Credits 

• Credits:  

– Slides mostly adapted from: 

– Finite State Morphology 

– Helmut Schmid 

– U. Tübingen - Summer Semester 2015 

– Thanks also to Kemal Oflazer and Lauri Kartunnen 



Review: Computational Morphology 

• examines word formations processes 

• provides analyses of word forms such as 
Tarifverhandlungen: 
Tarif<NN>verhandeln<V>ung<SUFF><+NN><Fem><Nom><Pl> 

• splits word forms into roots and affixes 

• provides information on  

– part-of-speech    such as NN, V 

– canonical forms   such as „verhandeln“ 

– morphosyntactic properties  such as Fem, Nom, Pl 



Terminology 

• word form 
word as it appears in a running text:  weitergehst 

• lemma 
citation as listed in a dictionary:   weitergehen 

• stem 
part of a word to which derivational of inflectional affixes are 
attached: weitergeh 

• root 
stem which cannot be further analysed: geh 

• morpheme 
smallest morphological units (stems, affixes): weiter, geh, en 

 



Word Formation Processes 

 

• Inflection 

• Derivation 

• Compounding 



Inflection 

• modifies a word in order to express different grammatical 
categories such as tense, mood, voice, aspect, person, 
number, gender, case 

• verbal inflection: conjugation     walks, walked, walking 

• nominal inflection: declension   computers 

• usually realised by 
– prefixation 

– suffixation 

– circumfixation    ge+hab+t 

– infixation     auf+zu+machen  (not a perfect example) 

– reduplication:  orang+orang  (plural of „man“ in Indonesian) 



Derivation 

• creates new words 

• Examples:  un+translat+abil+ity   piti+less-ness 

• changes the part-of-speech and/or meaning of the word 

• adds prefixes, suffixes, circumfixes 
 

• conversion: changes the part-of-speech without modifying 
the word      book (N) → book (V)   leid(en) (V) → Leid (N) 

• templatic morphology in Arabic 
ktb + CVCCVC + (a,a) -> kattab (write) 



Compounding 

• creates new words by combining several stems 

• example:  Donau-dampf-schiff-fahrts-gesellschaft 

• very productive in German 
 

• affixoid 
compounding process that turns into a derivation process 

 Gas+werk, Stück+werk, Laub+werk 

 schul+frei, schulter+frei, schulden+frei 

 → no absolute boundary between compounding and derivation 



Classification of Languages 

• isolating:  Chinese, Vietnamese 
little or no derivation and inflection 

• analytic:  Chinese, English 
little or no inflection 

• synthetic 

– agglutinative:  Finnish, Turkish, Hungarian, Swahili 
morphemes are concatenated with little modification 
each affix usually encodes a single feature 

– fusional (inflecting):  Sanskrit, Latin, Russian, German 
inflectional affixes often encode a feature bundle: les+e  (1 sg pres) 



Productivity 

 

• productive process 
new word forms can easily be created 
use+less, hope+less, point+less, beard+less 
 

• unproductive process:  
morphological process which is no longer active 
streng+th, warm+th, dep+th 



Morphotactics 

 

Which morphemes can be arranged in which order? 
 

 translat+abil+ity 

 *translat+ity+abil 

 translat+able 

 *translat+able+ity   (Allomorphs able-abil) 



Orthographic/Phonological Rules 

How is a morpheme realised in a certain context? 
 

 city+s  →  cities 

 bake+ing → baking    (e-elision) 

 crash+s →  crashes     (e-epenthesis) 

 beg+ing →  begging     (gemination) 

 ad+simil+ate → assimilate     (assimilation) 

 ip+lEr → ipler      kız+lEr → kızlar     (vowel harmony) 

 



Morphological Ambiguity 

 

 

   leaves   hanged hung 

 

 

leaf+N+pl  leave+N+pl  leave+V+3+sg         hang+V+past 



Ingredients of a Morph. Analyser 

 

• List of roots with part-of-speech 

• List of derivational affixes 

• morphotactic rules 

• orthographic (phonological) rules 

 



Computational Morphology 

analyses and/or generates word forms 

• analysis 
Abteilungen →  
Abteilung<NN><Fem><Nom><Pl> 
Abteilung<NN><Fem><Acc><Pl> … 
ab<VPART>teilen<V>ung<NNSuff><Fem><Acc><Pl> … 
Abtei<NN> Lunge<NN><Fem><Nom><Pl> … 
Abt<NN> Ei<NN> Lunge<NN><Fem><Nom><Pl> … 
Abt<NN> eilen<V> ung<NNSuff><Fem><Nom><Pl> … 

• generation 
 sichern<+V><1><Sg><Pres><Ind> →  sichere, sichre 

 



Implementation 

• using a mapping table 
works reasonably well for languages such as English, Chinese 

• algorithmic 
more suitable for languages with complex morphology such as 
Turkish or Czech 

– finite state transducers 
simple, well understood, efficient, bidirectional (analysis & 
generation) 



Short History 

1968 Chomsky & Halle propose ordered context-sensitive rewrite 
rules 
x → y  / w _ z   (replace x by y in the context w … z) 

1972 C. Douglas Johnson discovers that ordered rewrite rules can be 
implemented with a cascade of FSTs if the rules are never 
applied to their own output 

1961 Schützenberger proved that 2 sequential transducers (where 
the output of the first forms the input of the second) can be 
replaced by a single transducer. 

1980 Kaplan & Kay rediscover the findings of Johnson and 
Schützenberger 

1983 Kimmo Koskenniemi invents 2-level-morphology 
1987 Karttunen & Koskenniemi implement the first FST compiler 

based on Kaplan’s  implementation of the finite-state calculus 



Finite State Automaton 

directed graph with labelled transitions, a start state 
and a set of final states 

 

                                                   

             w         a       l       k       i      n      g 

                       

 

recognises walk, walks, walked, walking, talk, talks, talked, 
talking 

 

s 

e d t 



Finite State Automaton 

FSAs are isomorphic to regular expressions and regular 
grammars. All of them define a regular language. 

 
regular expression:  (w|t)alk(s|ed|ing)? 

regular grammar: 

 S → w A B → s  B → 

 S → t A  B → e d 

 A → a l k B B →  i n g 

 

both equivalent to the automaton on the previous slide 



Finite State Automaton 

FSAs are isomorphic to regular expressions and regular 
grammars. All of them define a regular language. 

 
regular expression:  (w|t)alk(s|ed|ing)? 
 

regular grammar: 

 S → w A B → s   

 S → t A  B → e d 

 A → a l k B B →  i n g 

   B → 

 

Both are equivalent to the automaton on the previous slide 

regular 

context- 
sensitive 

context-free 

type 0 



Operations on FSAs 

• Concatenation  A B 

• Optionality A? = (|A) 

• Kleene‘s star A* = (|A|AA|AAA|…) 

• Disjunction A | B 

• Conjunction A & B 

• Complement !A 

• Subtraction A – B = A & !B 

• Reversal 



From Regular Expressions to FSAs 

single symbol a 

 

 

 

 
• Create a new start state and a new end state 

• Add a transition from the start to the end state labelled „a“ 

1 2 
a 



From Regular Expressions to FSAs 

Concatenation  A B 

 

 

 

 
• add epsilon transition from final state of A to start state of B 

• make final state of B the new final state 

1 2 

3 4 

1 3 4 2 
ε 



From Regular Expressions to FSAs 

Optionality A? 

 

 

 

 
• add an epsilon transition from start to end state 

1 2 1 2 

ε 



From Regular Expressions to FSAs 

Kleene‘ star A* 

 

 

 

 
• add an epsilon transition from end to start state 

• make start state the new end state 

1 2 2 1 

ε 



From Regular Expressions to FSAs 

Disjunction A B 

 

 

 

 
• new start state with epsilon transitions to the old start states 

• new final state with epsilon transitions from the old final 
states 

1 2 

3 

5 

2 

4 

1 

3 

6 

4 

ε 
ε 

ε ε 



From Regular Expressions to FSAs 

Reversal 

 

 

 

 
• reverse all transitions 

• swap start and end state 

1 2 2 1 



From Regular Expressions to FSAs 

Conjunction A & B 
 

• I'm skipping the details of conjunction (see the Appendix for 
the algorithm) 

• Basically, we can automatically create a new FSA that 
essentially runs both acceptors in parallel 

• Our new FSA only accepts if both FSAs are in the accept state 

• Clearly the FSA A&B then only accepts strings that are in the 
regular languages accepted by both FSAs (FSA A and FSA B) 



Properties of FSAs 

• epsilon-free 
no transition is labelled with the empty string epsilon 

• deterministic 
epsilon-free and no two transitions originating in the 
same state have the same label 

• minimal 
no other automaton has a smaller number of states  
 



Properties of FSAs II 

• We can algorithmically construct a new FSA 
from the old FSA such that it is: 

– epsilon-free 

– deterministic 

– minimal 

• See the Appendix for the algorithms 



Conclusion: Finite State Acceptors 

• Any regular expression can be mapped to a finite 
state acceptor 

– However, "regexes" in Perl are misnamed! 

• "Regexes" contain more powerful constructs than 
mathematical regular expressions 

– For instance /(.+)\1/ 

– However, these constructs are not used much 

• See EN Wikipedia page on regular expressions, subsection 
"Regular expressions in programming languages" for details 

• We will now move on to finite state transducers 

 



Finite State Transducers 

• FSTs are FSAs whose transitions are labelled with symbol pairs 

• They map strings to (sets of) other strings 

 

 

 

 
• maps walk, walks, walked, walking to walk 

• and talk, talks, talked, talking to talk  (in generation mode) 

• can also map walk to walk, walks, walked, walking in analysis 
mode 

s: 

e: d: t:t 

a:a w:w l:l k:k i: n: g: 



FSTs and Regular Expressions 

Single symbol mapping    a:b 
 

Operations on FSTs 
• Concatenation, Kleene's star, disjunction, conjunction, 

complement (from FSAs) 

• composition  A || B 
The output of transducer A is the input of transducer B. 

• projection 
– upper language   replaces transition label a:b by b:b 

– lower language    replaces transition label a:b by a:a 

The result corresponds to an automaton 

a:b 







Weighted Transducers 

 

• A weighted FST assigns a numerical weight to each transition 

• The total weight of a string-to-string mapping is the sum of the 
weights on the corresponding path from start to end state. 

• Weighted FSTs allow disambiguation between different 
analyses by choosing the one with the smallest (or largest) 
weight 



Working with FSTs 

• FSTs can be specified by means of regular expressions (like 
FSAs). The translation is performed by a compiler. 

• Using the same algorithms as for FSA 
– FSTs can be made epsilon-free in the sense that no transition is labelled 

with ε:ε (a pair of empty string symbols) 

– FSTs can be made deterministic in the sense that no two transitions 
originating in the same state have the same label pair 

– FSTs can be minimised in the sense that no other FST which produces 
the same regular relation with the same input-output alignment is 
smaller. (There might be a smaller transducer producing the same 
relation with a different alignment.) 

• FSTs can be used in both directions (generation and analysis) 



FST Toolkits 

Some FST toolkits 
 

• Xerox finite-state tools xfst and lexc 
well-suited for building morphological analysers 

• foma (Mans Hulden) 
open-source alternative to xfst/lexc 

• AT&T tools 
weighted transducers for tasks such as speech recognition 
little support for building morphological analysers 

• openFST  (Google, NYU) 
open-source alternative to the AT&T tools 

• SFST 
open-source alternative to xfst/lexc but using a more general and flexible 
programming language 



SFST 

 

• programming language for developing finite-state 
transducers 

• compiler which translates programs to transducers 

• tools for 

– applying transducers 

– printing transducers 

– comparing transducers 



SFST Example Session 

> echo "Hello\ World\!" > test.fst storing a small test program 
> fst-compiler test.fst test.a calling the compiler 
test.fst: 2 
 
> fst-mor test.a interactive transducer usage 
reading transducer... transducer is loaded 
finished. 
analyze> Hello World! input 
Hello World! recognised 
analyze> Hello World another input 
no result for Hello World not recognised 
analyze> q terminate program 
 



SFST Programming Language 

Colon operator a:b  

empty string symbol  <>  

Example: m:m o:i u:<> s:c e:e 

 

identity mapping  a  (an abbreviation for a:a) 

Example: m o:i u:<> s:c e 

 

{abc}:{AB}  is expanded to a:A b:B c:<> 

Example: {mouse}:{mice} 



Disjunction 

 

John | Mary | James 

accepts these three strings and maps them onto themselves 

 

mouse | {mouse}:{mice} 

analyses mouse and mice as mouse 

 

note that analysis here maps lower language (mice) to upper 
language (mouse), i.e., implements lemmatization 

 

Generation goes in the opposite direction 

 

 



Multi-Character Symbols 

strings enclosed in <…> are treated as a single unit. 

 

{mouse<N><pl>}:{mice} 

analyzes mice as mouse<N><pl> 



Multi-Character Symbols 

A more complex example: 

schreib {<V><pres>}:{} (\ 
{<1><sg>}:{e} |\ 
{<2><sg>}:{st} |\ 
{<3><sg>}:{t} |\ 
{<1><pl>}:{en} |\ 
{<2><pl>}:{t} |\ 
{<3><pl>}:{en}) 

 
The backslashes (\) indicate that the expression continues in the next line 

What is the analysis of schreibst and schreiben? 



Conclusion: Finite State Morphology 

• Talked about finite state morphology in a 
more formal way 

• Showed how to convert regular expressions to 
finite state automata 

• Talked about finite state transducers for 
computational morphology 

– Morphological analysis and generation 



• Thank you for your attention 



 



Appendix 

• Details of Conjunction of FSAs 

• Algorithms for Determinisation, Composition 
and Minimisation of FSAs 



From Regular Expressions to FSAs 

Conjunction A & B 
 

• The new state space Q is the Kartesian product of the old 
state spaces Q1 and Q2, i.e. Q = {(a,b)| a Q1 &bQ2} 

• The new start state is the pair of the old start states. 

• The new final state is the pair of the old final states 

• A transition labelled a exists from new state (a,b) to new state 
(c,d) iff a transition labelled a exists from a to c in A and from 
b to d in B, i.e. (a,b) → (c,d) iff a → c and b → d 



Determinisation of FSAs 

• The new state set is the powerset of the old state set (set of 
all subsets). 

• The new start state is the epsilon-closure of the old start state 
(i.e. the start state + all states reachable from it via epsilon 
transitions) 

• There is a transition from state q to r labelled a iff there is a 
transition labelled a from some old state a in q to some old 
state b in r. 

• The set of final states comprises all states q which contain an 
old final state a. 



Composition of FSAs 

• First, make the two FSAs deterministic. 

• The new state set is then the Kartesian product of the two old 
state sets 

• The new start state is the pair consisting of the two old start 
states 

• There is a transition from state (a,b) to state (c,d) labelled x:z 
iff there is some transition labelled x:y from state a to state c 
and a transition labelled y:z from state b to state d 

• The final state set comprises all state pairs (a,b) where both a 
and b are old final states. 



Minimisation of FSAs 

Minimisation of A 

 

a simple (but inefficient) minimisation algorithm 

1. determinise 

2. reverse 

3. determinise 

4. reverse 


