Seminar Topics: Large Language Models

Faeze Ghorbanpour

faeze.ghorbanpour@lmu.de
Outline

1. Importance of Data Understanding
2. Data Pruning for LLMs Training
3. Neural Network Pruning for LLMs Training
Importance of Data Understanding

- Large text corpora are the **backbone of language models**
- What do we know about the content of these corpora? such as their **statistics, quality, social factors, and contamination**
- How can large-scale corpora be analyzed? **Mechanisms and tools**
- What are the **effect of the data on model behavior**? What would a model have learned from the given data?
What’s In My Big Data?

Yanai Elazar1,2, Akshita Bhagia1, Ian Magnusson1, Abhilasha Ravichander1, Dustin Schwenk1, Alane Suhr3, Pete Walsh1, Dirk Groeneveld1, Luca Soldaini1, Sameer Singh4, Hanna Hajishirzi1,2, Noah A. Smith1,2, Jesse Dodge1

1Allen Institute for AI
2Paul G. Allen School of Computer Science & Engineering, University of Washington
3University of California, Berkeley
4University of California, Irvine

Does more data lead to better performance?

The data is scraped raw web pages, leading to a substantial portion of the text being noisy and of low quality!

How can we remove the least impactful examples from a pretraining dataset? How to measure the quality of pretraining data?

Data pruning isolates a subset of a larger training dataset so that a model trained on the subset preserves or improves performance.
When Less is More: Investigating Data Pruning for Pretraining LLMs at Scale

Max Marion
Cohere for AI
maxwell@cohere.com

Ahmet Üstün
Cohere for AI
ahmet@cohere.com

Luiza Pozzobon
Cohere for AI
luiza@cohere.com

Alex Wang
Cohere
alexwang@cohere.com

Marzieh Fadaee
Cohere for AI
marzieh@cohere.com

Sara Hooker
Cohere for AI
sarahooker@cohere.com

LLMs model size presents significant challenges in deployment, inference, and training stages.

Neural network compression is independent of the original training data.

How to remove non-critical parts of LLMs while preserving most of their functionality?

Unstructured pruning removes individual weights from the network based on some criteria, resulting in sparse weight matrices that can be stored and processed more efficiently.

Structured pruning eliminates whole components, such as neurons, channels, or blocks, leading to smaller architectures to reduce end-to-end inference latency.
LLM-Pruner: On the Structural Pruning of Large Language Models

Xinyin Ma Gongfan Fang Xinchao Wang*
National University of Singapore
maxinyin@u.nus.edu, gongfan@u.nus.edu, xinchao@nus.edu.sg