Einführung in die Computerlinguistik Fraser: Probabilities

Alexander Fraser and Robert Zangenfeind

Center for Information and Language Processing
2020-01-08

Dieses Foliensatz wurde von Prof. Dr. Andreas Maletti (Leipzig) erstellt.

Fehler und Mängel sind ausschließlich meine Verantwortung.

Today's goals

- Basic notions and intuitive understanding
- Basic laws and computing with probabilities
- Independence
- Conditional probabilities
- Bayes' law
- Modelling complications

Charles M. Grinstead, J. Laurie Snell Introduction to Probability 2nd edition, AMS 1997

- Website

Organization

Please ask questions immediately!

First notions

§1.1 Definition (probability)
 The (theoretical) probability of an event E in an experiment \mathcal{E} is the expected relative frequency of occurrence of the event E in many executions of \mathcal{E}.

Notions:

- Experiment: activity that yields exactly one of a finite number of outcomes
(discrete probability distribution)
- Event: subset of the outcomes

First notions

- Experiment: Dice throw (with a standard fair die)
- Set of outcomes is $\mathcal{E}=\{1, \ldots, 6\} \quad$ (at the same time the safe event)
- the event $E \subseteq \mathcal{E}$ is $E=\{5,6\}$ (roll of a '5' or '6')
- Probability of the event E is $\frac{2}{6}=\frac{1}{3}$

Mathematical formulation

§1.2 Definition (probability measure)

Let \mathcal{E} be a finite set of outcomes.
Then $p: \mathcal{P}(\mathcal{E}) \rightarrow[0,1]$ is a probability measure, if

- $p(\mathcal{E})=1$
(the safe event always occurs)
- $p\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} p\left(E_{i}\right)$ for all $n \in \mathbb{N}$ and all pairwise disjoint events $E_{1}, \ldots, E_{n} \subseteq \mathcal{E}$.

Notes:

- yields the known laws for computing with probabilities
- the values $p(E)$ for singletons $E \subseteq \mathcal{E}$ define p uniquely

Mathematical formulation

- Experiment: 2-fold coin toss, sequential
- Outcomes $\mathcal{E}=\{8,8), 8$
- Probability measure

$$
p\left(\{\&)=p\left(\{\circlearrowleft)=p\left(\{\circlearrowleft)=p\left(\{\Omega)=\frac{1}{4}\right.\right.\right.\right.
$$

What is the probability of the event "at least once tails"?

- Event $E=\{0,0), 0\}$

$$
p(E)=\sum_{e \in E} p(\{e\})=p(\{\circlearrowleft\})+p(\{ \})+p(\{?\})=\frac{3}{4}
$$

Mathematical formulation

- Experiment: Coin toss with 2 equal coins, simultaneously
- Outcomes $\mathcal{E}=\{\{ \},\{刃\},,\{0\}$
- Probability measure

$$
\begin{aligned}
& p\left(\{\}\})=p(\{\{ \}\})=\frac{1}{4}\right. \\
& p(\{\{\circlearrowleft\}\})=\frac{1}{2}
\end{aligned}
$$

What is the probability of the event "no tails"?

- Event $E=\{\{ \}\}$

$$
p(E)=p(\{\{\circlearrowleft\}\})=\frac{1}{4}
$$

Note:
$p\left(\{\}\})=p(\{\{ \}\})=p(\{\{\otimes\}\})=\frac{1}{3}\right.$
also yields a probability measure, but it does not fit the experiment.

First little problems

Problem [Galilei, 17th century]

Does a sum of 10 show up more often than a sum of 9 in a roll of 3 dice?

Hint:
There are 25 and 27 triplets summing to 9 and 10 , respectively.

Galileo Galilei (* 1564; ${ }^{\dagger} 1641$)

- Italian polymath
- Founder of exact natural sciences
- had "beef" with Catholic church

First little problems

Historical experiments:

- Buffon, 18th century: 4,040 coin tosses
- Wolf, approx. 1884: 100,000 dice rolls
- Weldon, 1894: 26,306 rolls of 12 dice

Georges-Louis Leclerc, Comte de Buffon (* 1707; † 1788)

Johann Rudolf Wolf
(* 1816; ${ }^{\dagger}$ 1893)

Walter Frank Raphael Weldon
(* 1860; † 1906)

First little problems

Problem [Tversky, 1982]

In a large hospital 45 babies are born each day, and in a smaller hospital 15 babies are born each day. The overall proportion (over the year) of boys is about 50%. Which hospital will have the greater number of days in a year, on which more than 60% of the babies born were boys?

Approach: 60% of 45 and 15 are 27 and 9 , respectively. The probability for at least 27 times tails in 45 coin tosses is $11,6 \%$, whereas at least 9 times tails in 15 tosses is more probable at $30,4 \%$.
Amos Tversky (* 1937; † 1996)

- Israeli psychologist
- systematic analysis of human risk behavior
- would have received the Nobel prize in 2002

A more difficult problem

Problem

We toss a coin 40 times. Every time heads comes up, you give me a cent, and every time tails comes up, I give you a cent.
(a) What is the most likely amount of cents won by me at the end?
(b) What is the most likely number of times I am in the lead?

Basic laws

§l. 3 Theorem

For every probability measure $p: \mathcal{E} \rightarrow[0,1]$:
(1) $p(E) \geq 0$ for every event $E \subseteq \mathcal{E}$
(2) $p(E) \leq p\left(E^{\prime}\right)$ for all $E \subseteq E^{\prime} \subseteq \mathcal{E}$
(3) $p(\mathcal{E} \backslash E)=1-p(E)$ for every event $E \subseteq \mathcal{E}$
(a) $p(E)=\frac{|E|}{|\mathcal{E}|}$ if $p(\{e\})=\frac{1}{|\mathcal{E}|}$ for every outcome $e \in \mathcal{E}$

Notes:

- If $p(\{e\})=\frac{1}{|\mathcal{E}|}$ for every outcome $e \in \mathcal{E}$, then p is uniform
- In this case the probability of an event is the relation of positive outcomes to all outcomes.

A dice problem

Problem [Chevalier de Méré, Pascal, Fermat, 1654]

What is the probability of at least one ' 6 ' in 4 rolls of a die?

Answers:

(a) $\left[0, \frac{1}{3}\right]$
(b) $\left(\frac{1}{3}, \frac{1}{2}\right)$
(c) $\frac{1}{2}$
(d) $\left(\frac{1}{2}, \frac{2}{3}\right) \quad$ It is 52%.
(e) $\left[\frac{2}{3}, 1\right]$

Antoine Gombaud, Chevalier de Méré (* 1607; ${ }^{\dagger}$ 1684)
 (* $^{*} 1601 ;{ }^{\dagger} 1665$)

Independence

§1.4 Definition (independence)

Two events $E, E^{\prime} \subseteq \mathcal{E}$ are independent if

$$
p\left(E \cap E^{\prime}\right)=p(E) \cdot p\left(E^{\prime}\right)
$$

Notes:

- Independence is often obvious
- but can also be tricky

Independence

- Dice rolling: 2 rolls of a die Events "no ' 6 ' on 1st roll" and "no ' 6 ' on 2nd roll" are independent.
- Coin toss: 2 tosses of a fair coin
E_{1} : "1st toss is heads" and E_{2} : "Both tosses yield same result"

$$
\begin{aligned}
p\left(E_{1} \cap E_{2}\right) & =p(\{\circlearrowleft\}) & =\frac{1}{4} \\
p\left(E_{1}\right) & =p(\{\circlearrowleft\})+p(\{\circlearrowleft\}) & =\frac{1}{2} \\
p\left(E_{2}\right) & =p(\{\circlearrowleft\})+p(\{?\}) & =\frac{1}{2}
\end{aligned}
$$

E_{1} and E_{2} are independent.

Independence

- Linguistics: 1 English sentence from a standard volume E_{1} : "first word is 'l'" and E_{2} : "second word is 'are'"

Not independent, because the individual events are reasonably likely whereas it is extremely unlikely that both occur at the same time.

$$
p\left(E_{1} \cap E_{2}\right) \neq p\left(E_{1}\right) \cdot p\left(E_{2}\right)
$$

Back to the dice problem

Problem [Chevalier de Méré, Pascal, Fermat, 1654]

What is the probability of at least one ' 6 ' in 4 rolls of a die?

Answer:

$$
p(E)=1-p\left(E^{\prime}\right)=1-p\left(E_{1}^{\prime}\right) \cdot p\left(E_{2}^{\prime}\right) \cdot p\left(E_{3}^{\prime}\right) \cdot p\left(E_{4}^{\prime}\right)=1-\left(\frac{5}{6}\right)^{4}
$$

- E^{\prime} : never a ' 6 '
- E_{1}^{\prime} : no ' 6 ' on 1st roll
- E_{2}^{\prime} : no ' 6 ' on 2 nd roll

Back to the dice problem

Problem [Chevalier de Méré, Pascal, Fermat, 1654]

How many rolls of 2 dice are needed for a favorable game, when we expect to see at least once a pair of sixes?

Answer:

$$
0.5 \geq\left(\frac{35}{36}\right)^{n} \quad \rightarrow \quad n \geq \log _{\frac{35}{36}} 0.5=\frac{-\log 2}{\log 35-\log 36} \approx 24.6
$$

- Although 4 rolls are sufficient for a single six and a pair of sixes is exactly 6 times less likely
- $4 \cdot 6=24$ rolls are still insufficient for a favorable game
- as Chevalier de Méré determined empirically
\rightarrow Failure of Mathematics

Conditional probability

Problem

The fridge does not work.

Analysis:

Reason	probability
not plugged	0,40
fuse blown	0,20
motor broken	0,1
coolant leak	0,1
cable or plug broken	0,10
alien sabotage	0,05
\ldots	\ldots

Observation: The inside light still works.

Conditional probability

§1.5 Definition (conditional probability)

Given events $E, E^{\prime} \subseteq \mathcal{E}$, the probability of E given that E^{\prime} already happened is

$$
p\left(E \mid E^{\prime}\right)=\frac{p\left(E \cap E^{\prime}\right)}{p\left(E^{\prime}\right)}
$$

$$
\left(p\left(E^{\prime}\right) \neq 0\right)
$$

1 die:

- $E=\{6\}$ (roll of a ' 6 ')
- $E^{\prime}=\{4,5,6\}$

$$
\text { (roll of ' } 4 \text { ' or more) }
$$

$$
p\left(E \mid E^{\prime}\right)=\frac{p\left(E \cap E^{\prime}\right)}{p\left(E^{\prime}\right)}=\frac{1 / 6}{1 / 2}=\frac{1}{3}
$$

Conditional probability and independence

§1.6 Theorem

Two events $E, E^{\prime} \subseteq \mathcal{E}$ are independent if and only if

- both $p(E)$ and $p\left(E^{\prime}\right)$ are positive and $p\left(E \mid E^{\prime}\right)=p(E)$, or
- $p(E)=0$ or $p\left(E^{\prime}\right)=0$.

Intuition:

The occurrence of an independent event E^{\prime} does not influence the probability of the event E.

Another problem

Example

A sick woman sees the doctor, who runs 2 positive tests $(++)$ and then looks up his clinical studies:

disease	affected	++	+-	-+	--
d_{1}	3,215	2,110	301	704	100
d_{2}	2,125	396	132	1,187	410
d_{3}	4,660	510	3,568	73	509
total	10,000	3,016	4,001	1,964	1,019

Estimations:

$$
\begin{aligned}
& p\left(d_{1}\right)=32.15 \% \quad p\left(d_{2}\right)=21.25 \% \quad p\left(d_{3}\right)=46.60 \% \\
& p\left(++\mid d_{1}\right)=\frac{2,110}{3,215}=65.63 \% \quad p\left(++\mid d_{2}\right)=\frac{396}{2,25}=18.64 \% \\
& p\left(++\mid d_{3}\right)=\frac{510}{4,660}=10.94 \%
\end{aligned}
$$

What is the most likely disease of the woman?

Bayes' rule

§1.7 Theorem (Bayes' rule)

For two events $E, E^{\prime} \subseteq \mathcal{E}$, we call $p\left(E^{\prime}\right)$ the prior (probability of E^{\prime} before E) and $p\left(E^{\prime} \mid E\right)$ the posterior (probability of E^{\prime} after E).

$$
p\left(E^{\prime} \mid E\right)=\frac{p\left(E \mid E^{\prime}\right) \cdot p\left(E^{\prime}\right)}{p(E)} \quad\left(p(E) \neq 0, p\left(E^{\prime}\right) \neq 0\right)
$$

Thomas Bayes (* 1701; ${ }^{\dagger} 1761$)

- English statistician and minister
- Bayes' rule not published by him
- Fellow of the Royal Society

Back to the sick woman

$$
\begin{aligned}
& p\left(d_{1} \mid++\right)=\frac{p\left(++\mid d_{1}\right) \cdot p\left(d_{1}\right)}{p(++)}=\frac{2,110 / 3,215 \cdot 0.3215}{0.3016}=69.96 \% \\
& p\left(d_{2} \mid++\right)=\frac{p\left(++\mid d_{2}\right) \cdot p\left(d_{2}\right)}{p(++)}=\frac{396 / 2,125 \cdot 0.2125}{0.3016}=13.13 \% \\
& p\left(d_{3} \mid++\right)=\frac{p\left(++\mid d_{3}\right) \cdot p\left(d_{3}\right)}{p(++)}=\frac{510 / 4,660 \cdot 0.4660}{0.3016}=16.91 \%
\end{aligned}
$$

Most likely she suffers from disease d_{1}.

Beware of low priors

Problem

A doctor tests for a specific cancer that 1 in a 1,000 people suffer from with a test that is 99% sensitive and 95% specific．
What is the probability of cancer given a positive test result？
Analysis： $\mathcal{E}=\{($ ®，-$),($ ®,+$),(\checkmark,-),(\checkmark,+)\}$
Events：
－ᄅ $=\{($ 厄,-$),($ ®,+$)\}$
－．．．
Interpretation：
－ 99% sensitive $\rightarrow p(+\mid$ © $)=0.99$
－ 95% specific $\rightarrow p(-\mid \checkmark)=0.95$

$$
\begin{aligned}
p(\text { 巳 } \mid+) & =\frac{p(+\mid \text { 巳 }) \cdot p(\text { e })}{p(+)} \\
& =\frac{p(+\mid \text { 巳 }) \cdot p(\text { 巳 })}{p(+\mid \text { 巳 }) \cdot p(\text { e })+p(+\mid \checkmark) \cdot p(\checkmark)}
\end{aligned}
$$

Beware of low priors

Problem

A doctor tests for a specific cancer that 1 in a 1,000 people suffer from with a test that is 99% sensitive and 95% specific.
What is the probability of cancer given a positive test result?

So the test is useless?

$$
\begin{aligned}
p(\checkmark \mid-) & =\frac{p(-\mid \checkmark) \cdot p(\checkmark)}{p(-)} \\
& =\frac{p(-\mid \checkmark) \cdot p(\checkmark)}{p(-\mid \text { }) \cdot p(\complement)+p(-\mid \checkmark) \cdot p(\checkmark)} \\
& =\frac{0.95 \cdot 0.999}{0.01 \cdot 0.001+0.95 \cdot 0.999}=0.999989
\end{aligned}
$$

Based on a negative test result you can be 99.9989% sure to be unaffected.

Final problem

Problem [vos Savant, 1996]

On the night before the final exam, two students were partying in another state and did not get back until it was over. Their excuse was that they had a flat tire, and they asked if they could take a make-up test. The professor agreed, wrote out a test and sent them to separate rooms. The first question was worth 5 points, and they answered it easily. The second question, worth 95 points, was: 'Which tire was it?'

What is the probability that both students answer equally?

Answers:
(a) $\frac{1}{16}(6.25 \%)$
(b) $\frac{1}{4}(25 \%)$
(c) $\frac{1}{2}(50 \%)$

Marilyn vos Savant (* 1946)

- American author
- Highest Guinness book IQ (228)
- Category suspended since

Thank you for the attention.

