### Einführung in die Computerlinguistik Machine Translation

#### Alexander Fraser and Robert Zangenfeind

Center for Information and Language Processing

2020-01-20

Noisy channel model Machine translation Language models

Fraser: Machine Translation

Dieses Foliensatz wurde von Prof. Dr. Hinrich Schütze erstellt.

Fehler und Mängel sind ausschließlich meine Verantwortung.







Noisy channel model Machine translation Language models

Fraser: Machine Translation

#### Fred Jelinek



#### IBM Watson approach to NLP

- sequence model
- in most cases: given an observation or evidence, select the most likely sequence that caused the observation
- We will only consider word sequences for now.

```
argmax<sub>word-sequence</sub> P(word-sequence|evidence)
```

 $= \operatorname{argmax}_{word-sequence} \frac{P(\operatorname{evidence}|word-sequence)P(word-sequence)}{P(\operatorname{evidence})}$  $= \operatorname{argmax}_{word-sequence} P(\operatorname{evidence}|word-sequence) P(word-sequence)$ 



Well-known examples of applications of noisy channel model?

#### Decode 788884278



#### Noisy channel: Information theory / telecommunications





#### Noisy channel: Optical character recognition



- Given a sequence of words (a sentence), how do we compute the corresponding (disambiguated) part-of-speech sequence?
- Example:
  - Input: "the representative put chairs on the table"
  - Output: "AT NN VBD NNS IN AT NN"

•  $t_{1,n} = \operatorname{argmax}_{t_{1,n}} P(t_{1,n}|w_{1,n}) = \operatorname{argmax}_{t_{1,n}} P(w_{1,n}|t_{1,n}) P(t_{1,n})$ 



#### Noisy channel: Part-of-speech tagging



#### IBM Watson approach to NLP

- sequence model
- in most cases: given an observation or evidence, select the most likely sequence that caused the observation
- We will only consider word sequences for now.

```
argmax<sub>word-sequence</sub> P(word-sequence|evidence)
```

 $= \operatorname{argmax}_{word-sequence} \frac{P(\operatorname{evidence}|word-sequence)P(word-sequence)}{P(\operatorname{evidence})}$  $= \operatorname{argmax}_{word-sequence} P(\operatorname{evidence}|word-sequence) P(word-sequence)$ 

argmaxword-sequence P(word-sequence|evidence)

= argmaxword-sequence  $\frac{P(\text{evidence}|\text{word-sequence})P(\text{word-sequence})}{P(\text{evidence})}$ = argmaxword-sequence P(evidence|word-sequence) P(word-sequence)

- word sequence: sequence of words
- evidence: acoustic signal
- P(evidence|word-sequence): a model of how humans translate a sequence of (written) words into acoustics

#### Classical approach to optical character recognition

argmaxword-sequence P(word-sequence|evidence)

 $= \operatorname{argmax}_{word-sequence} \frac{P(\operatorname{evidence}|\operatorname{word-sequence})P(\operatorname{word-sequence})}{P(\operatorname{evidence})}$  $= \operatorname{argmax}_{word-sequence} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence})$ 

- word sequence: sequence of words
- evidence: image
- P(evidence|word-sequence): a model of how a machine (e.g., a desktop printer) translates a sequence of words into printed letters/symbols

#### Exercise: Noisy channel model for machine translation?

- word sequence: sequence of words
- evidence: acoustic signal

speech

- P(evidence|word-sequence): a model of how humans translate
  - a sequence of (written) words into acoustics



# Classical approach to machine translation (French $\rightarrow$ English)

 argmaxword-sequence
 P(word-sequence|evidence)

 =
 argmaxword-sequence
 P(evidence|word-sequence)P(word-sequence)

 =
 argmaxword-sequence
 P(evidence|word-sequence)P(word-sequence)

 =
 argmaxword-sequence
 P(evidence|word-sequence)P(word-sequence)P(word-sequence)

- word sequence: sequence of English words
- evidence: sequence of French words
- P(evidence|word-sequence): a model of how humans translate a sequence of English words into a sequence of French words

#### Noisy channel: Information theory / telecommunications





#### Noisy channel: Optical character recognition



#### Noisy channel: French-to-English machine translation



#### Noisy channel: French-to-English machine translation





- Find a parallel corpus a body of text where each sentence is available in two or more languages
- IBM Watson used the Canadian Hansards, the proceedings of the Canadian Parliament.
- Compute a word alignment for the parallel corpus (next slide)
- Estimate a translation model from the word alignment (that is, the model that models how humans generate French sentences from English sentences)

- Our model is a generative model: The French sentence is generated based on the English sentence.
- Every French word is "caused" by an English word.
- causation = alignment
- But many French words are not aligned, i.e., they have no plausible English word they correspond to.
- To cover these unaligned French words, we introduce the "empty cept" *e*<sub>0</sub>.
- The empty cept e<sub>0</sub> is an artificial English word that all unaligned French words are aligned with.
- Now every French word is "caused" by an English word.

#### Exercise: Estimating word translation probabilities



Estimate:  $P(e_i | \text{nouvelles})$   $P(f_j | \text{fees})$   $P(f_j | \text{the})$  $P(f_j | e_0)$ 

Noisy channel model Machine translation Language models

Fraser: Machine Translation

#### "Linguistic" word/phrase alignment of a parallel corpus



Fraser: Machine Translation

#### Basic translation model

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence,  $e_i$ :  $i^{th}$  word in e
- I: length of English sentence
- f: French sentence,  $f_j$ :  $j^{th}$  word in f
- m: length of French sentence
- *e*<sub>aj</sub> is the English word that *f<sub>j</sub>* is aligned with this assumes that the alignment is a (total) function:
   *a*: {1,2,...,*m*} → {0,1,...,*l*}
- There is a special word *e*<sub>0</sub>, the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_i})$  is the probability of  $e_{a_i}$  being translated as  $f_j$ .
- $P(\langle a_1, \ldots, a_m \rangle)$  is the probability of alignment

 $< a_1, \ldots, a_m >$ .

#### Exercise: Estimating word translation probabilities



Estimate:  $P(e_i | \text{nouvelles})$   $P(f_j | \text{fees})$   $P(f_j | \text{the})$  $P(f_j | e_0)$ 

Noisy channel model Machine translation Language models

Fraser: Machine Translation

#### Basic translation model

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence,  $e_i$ :  $i^{th}$  word in e
- I: length of English sentence
- f: French sentence,  $f_j$ :  $j^{th}$  word in f
- m: length of French sentence
- *e*<sub>aj</sub> is the English word that *f<sub>j</sub>* is aligned with this assumes that the alignment is a (total) function:
   *a*: {1,2,...,*m*} → {0,1,...,*l*}
- There is a special word *e*<sub>0</sub>, the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_i})$  is the probability of  $e_{a_i}$  being translated as  $f_j$ .
- $P(\langle a_1, \ldots, a_m \rangle)$  is the probability of alignment

 $< a_1, \ldots, a_m >$ .

#### Formalization of alignment

| e <sub>0</sub>            |                       | $e_1$          | е                     | 2              |                |   |       |                |                |
|---------------------------|-----------------------|----------------|-----------------------|----------------|----------------|---|-------|----------------|----------------|
| empty cept they descended |                       |                |                       |                |                |   |       |                |                |
| $f_1$                     | <i>f</i> <sub>2</sub> |                | <i>f</i> <sub>3</sub> |                |                |   |       |                |                |
| runter gingen             |                       | sie            |                       |                |                |   |       |                |                |
| a <sub>1</sub>            | a <sub>2</sub>        | a <sub>3</sub> | a <sub>1</sub>        | a <sub>2</sub> | a <sub>3</sub> |   | $a_1$ | a <sub>2</sub> | a <sub>3</sub> |
| 0                         | 0                     | 0              | 1                     | 0              | 0              | - | 2     | 0              | 0              |
| 0                         | 0                     | 1              | 1                     | 0              | 1              |   | 2     | 0              | 1              |
| 0                         | 0                     | 2              | 1                     | 0              | 2              |   | 2     | 0              | 2              |
| 0                         | 1                     | 0              | 1                     | 1              | 0              |   | 2     | 1              | 0              |
| 0                         | 1                     | 1              | 1                     | 1              | 1              |   | 2     | 1              | 1              |
| 0                         | 1                     | 2              | 1                     | 1              | 2              |   | 2     | 1              | 2              |
| 0                         | 2                     | 0              | 1                     | 2              | 0              |   | 2     | 2              | 0              |
| 0                         | 2                     | 1              | 1                     | 2              | 1              |   | 2     | 2              | 1              |
| 0                         | 2                     | 2              | 1                     | 2              | 2              |   | 2     | 2              | 2              |

#### Basic translation model

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence,  $e_i$ :  $i^{th}$  word in e
- I: length of English sentence
- f: French sentence,  $f_j$ :  $j^{th}$  word in f
- m: length of French sentence
- *e*<sub>aj</sub> is the English word that *f<sub>j</sub>* is aligned with this assumes that the alignment is a (total) function:
   *a*: {1,2,...,*m*} → {0,1,...,*l*}
- There is a special word *e*<sub>0</sub>, the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_i})$  is the probability of  $e_{a_i}$  being translated as  $f_j$ .
- $P(\langle a_1, \ldots, a_m \rangle)$  is the probability of alignment

 $< a_1, \ldots, a_m >$ .

## What's bad about this model? What type of linguistic phenomenon will not be translated correctly?

- Collocations, noncompositional combinations: "piece of cake"
  - Assumption violated: Each English word generates German translations independent of the other words.
- Compounds: "Kirschkuchen" vs. "cherry pie"
  - Assumption violated: For each German/French word there is a single English word responsible for it.
- Unlikely alignments: "siehst Du" vs. "(do) you see"
  - Assumption violated: The probability of a particular alignment is independent of the words.

- Morphology: "Kind" "Kindes"
- Gender and case
- Syntax: which types of differences between German syntax and English syntax could be a problem?

#### Google Translate

Noisy channel model Machine translation Language models

Fraser: Machine Translation



#### Noisy channel: French-to-English machine translation



#### Why the language model is important

- Classical example from speech recognition
- The following two are almost indistinguishable acoustically.
- "wreck a nice beach"
- "recognize speech"
- If we had only the translation model P(y|x), then we would not be able to make a good decision.
- We need the language model for this decision.
- *P*("wreck a nice beach")  $\ll$  *P*("recognize speech")
- We'll choose "recognize speech" based on this.

$$P(w_{1,2,...,n}) = \prod_{i=1}^{n} P(w_i|w_{i-1})$$

Key problem: How do we estimate the parameters?
P(w<sub>i</sub>|w<sub>i-1</sub>)?

$$P_{ML}(w_2|w_1) = rac{C(w_1w_2)}{C(w_1)}$$

where C(e) is the number of times the event e occurred in the training set.

Example:

$$p_{ ext{ML}}( ext{be}| ext{would}) = rac{C( ext{would be})}{C( ext{would})} = rac{18454}{83735} pprox 0.22$$

#### Why maximum likelihood does not work

- Suppose that "Dr." and "Cooper" are frequent in our corpus. Frequency of "Dr." = 10000
- But suppose that the sequence "Dr. Cooper" does not occur in the corpus.
- What is the maximum likelihood estimate of *P*(Cooper|Dr.)?

$$P_{ML}(\text{Cooper}|\text{Dr.}) = rac{C(\text{Dr. Cooper})}{C(\text{Dr.})} = rac{0}{10000} = 0$$

- This means that in machine translation, any English sentence containing "Dr. Cooper" would be deemed impossible and could not be output by the translator.
- This problem is called sparseness.
- Ideally, we would need knowledge about events and their probability that never occurred in our training corpus.

۲

$$P_L(w_2|w_1) = \frac{C(w_1w_2) + 1}{C(w_1) + |V|}$$

where C(e) is the number of times the event e occurred in the training set, V is the vocabulary of the training set and  $w_{i,j}$  is the sequence of words  $w_i, w_{i+1}, \ldots, w_{j-1}, w_j$ .

Better estimator:

$$P_L( ext{Cooper}| ext{Dr.}) = rac{0+1}{10000+256873} pprox 0.0000037 > 0$$

So now our machine translation system has a chance of finding a good English translation that contains the phrase "Dr. Cooper".

the three women saw the small mountain behind the large mountain

Compute maximum likelihood and laplace estimates for: P(three|the) and P(saw|the)

- Noisy channel model
- Translation models
- Estimation of translation models
- Language models
- Estimation of language models

- *P*(*e*)
- *P*(*f*|*e*)
- empty cept
- $\operatorname{argmax}_{e} P(f|e)P(e)$