Einführung in die Computerlinguistik Machine Translation

Alexander Fraser and Robert Zangenfeind

Center for Information and Language Processing

2020-01-20

Noisy channel mode

Dieses Foliensatz wurde von Prof. Dr. Hinrich Schütze erstellt.

Fehler und Mängel sind ausschließlich meine Verantwortung.

Outline

Noisy channel model

- 2 Machine translation
- 3 Language models

loisy channel model Machine translation Language mod

Outline

Noisy channel model

2 Machine translation

3 Language models

Fred Jelinek

Fred Jelinek

Noisy channel model M. Fraser: Machine Translation

lachine translation

_anguage models

sequence model

Noisy channel model

Machine translation

- sequence model
- in most cases: given an observation or evidence, select the most likely sequence that caused the observation

- sequence model
- in most cases: given an observation or evidence, select the most likely sequence that caused the observation
- We will only consider word sequences for now.

- sequence model
- in most cases: given an observation or evidence, select the most likely sequence that caused the observation
- We will only consider word sequences for now.

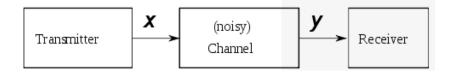
- sequence model
- in most cases: given an observation or evidence, select the most likely sequence that caused the observation
- We will only consider word sequences for now.

```
\begin{split} & \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ &= \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence})P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ &= \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \end{split}
```

Noisy channel

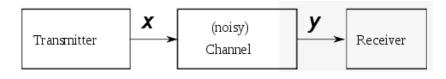
Fraser: Machine Translation

Noisy channel



Noisy channel model Machine translation Language mode

Noisy channel



Well-known examples of applications of noisy channel model?

Noisy channel model Machine translation Language mod

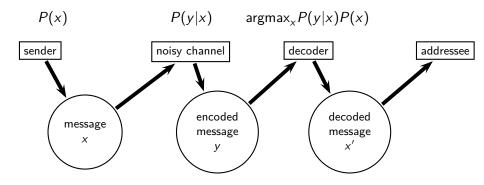
Decode 788884278

Noisy channel model M Fraser: Machine Translation

Machine translation

.anguage models

Noisy channel: Information theory / telecommunications

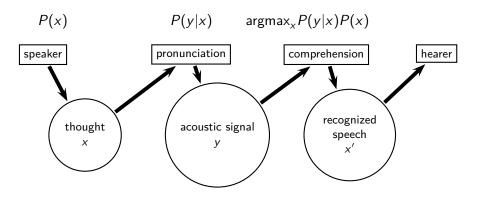


Noisy channel model M Fraser: Machine Translation

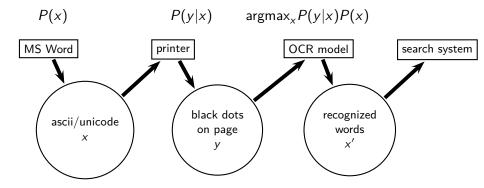
Machine translation

nguage models

Noisy channel: Speech recognition



Noisy channel: Optical character recognition



Fraser: Machine Translation

 Given a sequence of words (a sentence), how do we compute the corresponding (disambiguated) part-of-speech sequence?

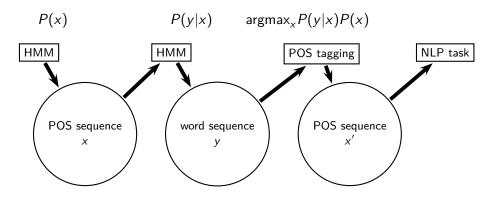
- Given a sequence of words (a sentence), how do we compute the corresponding (disambiguated) part-of-speech sequence?
- Example:

- Given a sequence of words (a sentence), how do we compute the corresponding (disambiguated) part-of-speech sequence?
- Example:
 - Input: "the representative put chairs on the table"

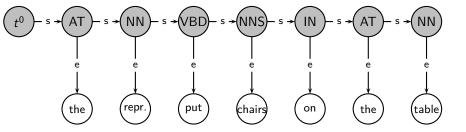
- Given a sequence of words (a sentence), how do we compute the corresponding (disambiguated) part-of-speech sequence?
- Example:
 - Input: "the representative put chairs on the table"
 - Output: "AT NN VBD NNS IN AT NN"

- Given a sequence of words (a sentence), how do we compute the corresponding (disambiguated) part-of-speech sequence?
- Example:
 - Input: "the representative put chairs on the table"
 - Output: "AT NN VBD NNS IN AT NN"
- $t_{1,n} = \operatorname{argmax}_{t_{1,n}} P(t_{1,n}|w_{1,n}) = \operatorname{argmax}_{t_{1,n}} P(w_{1,n}|t_{1,n}) P(t_{1,n})$

Noisy channel: Part-of-speech tagging



Noisy channel: Part-of-speech tagging



Noisy channel model

- sequence model
- in most cases: given an observation or evidence, select the most likely sequence that caused the observation
- We will only consider word sequences for now.

```
\begin{split} & \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ &= \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence})P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ &= \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \end{split}
```

 $\mathsf{argmax}_{\mathsf{word}\text{-}\mathsf{sequence}} P(\mathsf{word}\text{-}\mathsf{sequence}|\mathsf{evidence})$ P(evidence|word-sequence)P(word-sequence)argmaxword-sequence

 $P(\text{evidence}|\text{word-sequence}) \quad P(\text{word-sequence})$ argmaxword-sequence

P(evidence)

Noisy channel model

Fraser: Machine Translation

Machine translation

Language models

```
\begin{array}{ll} \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ \\ = & \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ \\ = & \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \end{array}
```

word sequence: sequence of words

$$\begin{array}{ll} \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ \\ = & \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence})P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ \\ = & \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \end{array}$$

- word sequence: sequence of words
- evidence: acoustic signal

$$\begin{array}{ll} & \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ = & \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ = & \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \end{array}$$

- word sequence: sequence of words
- evidence: acoustic signal
- P(evidence|word-sequence): a model of how humans translate a sequence of (written) words into acoustics

$$\begin{split} & \operatorname{argmax}_{\mathsf{word-sequence}} P(\mathsf{word-sequence}|\mathsf{evidence}) \\ = & \operatorname{argmax}_{\mathsf{word-sequence}} \frac{P(\mathsf{evidence}|\mathsf{word-sequence}) P(\mathsf{word-sequence})}{P(\mathsf{evidence})} \\ = & \operatorname{argmax}_{\mathsf{word-sequence}} P(\mathsf{evidence}|\mathsf{word-sequence}) P(\mathsf{word-sequence}) \end{split}$$

$$\begin{array}{ll} \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ = & \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ = & \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \end{array}$$

word sequence: sequence of words

$$\begin{array}{ll} \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ = & \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ = & \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \end{array}$$

- word sequence: sequence of words
- evidence: image

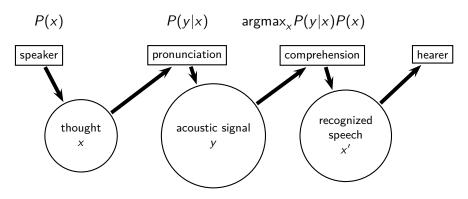
$$\begin{aligned} & \operatorname{argmax}_{\mathsf{word-sequence}} P(\mathsf{word-sequence}|\mathsf{evidence}) \\ &= & \operatorname{argmax}_{\mathsf{word-sequence}} \frac{P(\mathsf{evidence}|\mathsf{word-sequence}) P(\mathsf{word-sequence})}{P(\mathsf{evidence})} \\ &= & \operatorname{argmax}_{\mathsf{word-sequence}} P(\mathsf{evidence}|\mathsf{word-sequence}) P(\mathsf{word-sequence}) \end{aligned}$$

- word sequence: sequence of words
- evidence: image
- P(evidence|word-sequence): a model of how a machine (e.g., a desktop printer) translates a sequence of words into printed letters/symbols

Exercise: Noisy channel model for machine translation?

speech

- word sequence: sequence of words
- evidence: acoustic signal
- P(evidence|word-sequence): a model of how humans translate a sequence of (written) words into acoustics



Fraser: Machine Translation

Classical approach to machine translation (French→English)

$$\frac{\text{argmax}_{\text{word-sequence}}P(\text{word-sequence}|\text{evidence})}{P(\text{evidence}|\text{word-sequence})P(\text{word-sequence})}}{P(\text{evidence})}$$

$$\frac{P(\text{evidence}|\text{word-sequence})}{P(\text{evidence})}P(\text{word-sequence})$$

$$\frac{P(\text{evidence}|\text{word-sequence})}{P(\text{evidence}|\text{word-sequence})}P(\text{word-sequence})$$

Fraser: Machine Translation

Classical approach to machine translation (French→English)

```
\begin{array}{ll} \operatorname{argmax}_{\mathsf{word-sequence}} P(\mathsf{word-sequence}|\mathsf{evidence}) \\ \\ = \operatorname{argmax}_{\mathsf{word-sequence}} \frac{P(\mathsf{evidence}|\mathsf{word-sequence}) P(\mathsf{word-sequence})}{P(\mathsf{evidence})} \\ \\ = \operatorname{argmax}_{\mathsf{word-sequence}} P(\mathsf{evidence}|\mathsf{word-sequence}) P(\mathsf{word-sequence}) \end{array}
```

• word sequence: sequence of English words

Noisy channel model M Fraser: Machine Translation

Classical approach to machine translation (French→English)

```
\begin{array}{ll} \operatorname{argmax}_{\mathsf{word}\text{-}\mathsf{sequence}} P(\mathsf{word}\text{-}\mathsf{sequence}|\mathsf{evidence}) \\ = \operatorname{argmax}_{\mathsf{word}\text{-}\mathsf{sequence}} \frac{P(\mathsf{evidence}|\mathsf{word}\text{-}\mathsf{sequence})P(\mathsf{word}\text{-}\mathsf{sequence})}{P(\mathsf{evidence})} \\ = \operatorname{argmax}_{\mathsf{word}\text{-}\mathsf{sequence}} P(\mathsf{evidence}|\mathsf{word}\text{-}\mathsf{sequence}) \quad P(\mathsf{word}\text{-}\mathsf{sequence}) \end{array}
```

- word sequence: sequence of English words
- evidence: sequence of French words

Fraser: Machine Translation

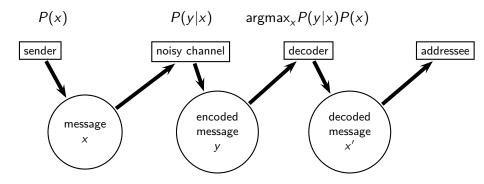
Classical approach to machine translation $(French \rightarrow English)$

```
\operatorname{argmax}_{word\text{-sequence}} P(\operatorname{word\text{-sequence}}|\operatorname{evidence})
                                  P(\text{evidence}|\text{word-sequence})P(\text{word-sequence})
argmaxword-sequence
                                                         P(evidence)
                                    P(\text{evidence}|\text{word-sequence}) \quad P(\text{word-sequence})
argmaxword-sequence
```

- word sequence: sequence of English words
- evidence: sequence of French words
- P(evidence|word-sequence): a model of how humans translate a sequence of English words into a sequence of French words

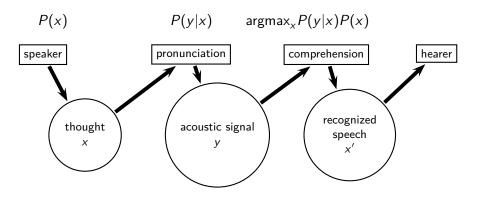
Noisy channel model Machine translation Fraser: Machine Translation

Noisy channel: Information theory / telecommunications



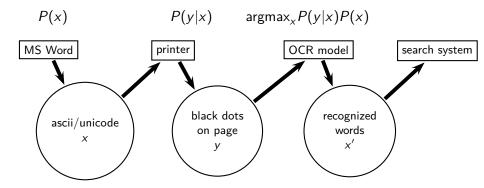
Noisy channel model Machine translation
Fraser: Machine Translation

Noisy channel: Speech recognition



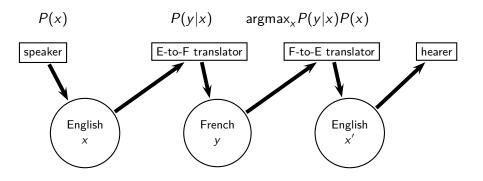
Noisy channel model M Fraser: Machine Translation

Noisy channel: Optical character recognition



Noisy channel model Machine translation Fraser: Machine Translation

Noisy channel: French-to-English machine translation



Noisy channel model Machine translation Fraser: Machine Translation

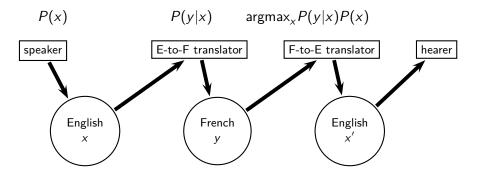
Outline

Noisy channel model

- 2 Machine translation
- 3 Language models

Noisy channel model Machine translation Language mod

Noisy channel: French-to-English machine translation



Noisy channel model Machine translation Fraser: Machine Translation

```
\begin{split} & \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ &= \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ &= \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \end{split}
```

Noisy channel model Machine translation Language models

```
\begin{array}{ll} \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ = \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence})}{\Gamma(\operatorname{idence})} \\ = \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \\ & \operatorname{translation\ model} \end{array}
```

Noisy channel model Machine translation Language

```
\begin{array}{ll} \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ = \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ = \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \end{array}
```

language model

Noisy channel model

Fraser: Machine Translation

Machine translation

Language models

```
\begin{array}{ll} \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ = \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence})}{\Gamma(\operatorname{idence})} \\ = \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \\ & \operatorname{translation\ model} \end{array}
```

Noisy channel model Machine translation Language

Fraser: Machine Translation

• Find a parallel corpus – a body of text where each sentence is available in two or more languages

Machine translation

- Find a parallel corpus a body of text where each sentence is available in two or more languages
- IBM Watson used the Canadian Hansards, the proceedings of the Canadian Parliament.

- Find a parallel corpus a body of text where each sentence is available in two or more languages
- IBM Watson used the Canadian Hansards, the proceedings of the Canadian Parliament.
- Compute a word alignment for the parallel corpus (next slide)

- Find a parallel corpus a body of text where each sentence is available in two or more languages
- IBM Watson used the Canadian Hansards, the proceedings of the Canadian Parliament.
- Compute a word alignment for the parallel corpus (next slide)
- Estimate a translation model from the word alignment (that is, the model that models how humans generate French sentences from English sentences)

• Our model is a generative model: The French sentence is generated based on the English sentence.

- Our model is a generative model: The French sentence is generated based on the English sentence.
- Every French word is "caused" by an English word.

- Our model is a generative model: The French sentence is generated based on the English sentence.
- Every French word is "caused" by an English word.
- causation = alignment

- Our model is a generative model: The French sentence is generated based on the English sentence.
- Every French word is "caused" by an English word.
- causation = alignment
- But many French words are not aligned, i.e., they have no plausible English word they correspond to.

Fraser: Machine Translation

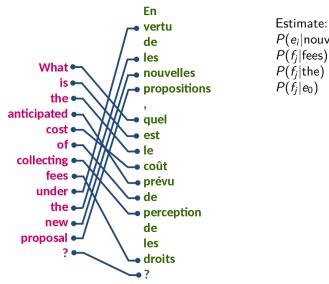
- Our model is a generative model: The French sentence is generated based on the English sentence.
- Every French word is "caused" by an English word.
- causation = alignment
- But many French words are not aligned, i.e., they have no plausible English word they correspond to.
- To cover these unaligned French words, we introduce the "empty cept" e_0 .

Fraser: Machine Translation

- Our model is a generative model: The French sentence is generated based on the English sentence.
- Every French word is "caused" by an English word.
- causation = alignment
- But many French words are not aligned, i.e., they have no plausible English word they correspond to.
- To cover these unaligned French words, we introduce the "empty cept" e_0 .
- The empty cept e_0 is an artificial English word that all unaligned French words are aligned with.

- Our model is a generative model: The French sentence is generated based on the English sentence.
- Every French word is "caused" by an English word.
- causation = alignment
- But many French words are not aligned, i.e., they have no plausible English word they correspond to.
- To cover these unaligned French words, we introduce the "empty cept" e₀.
- The empty cept e_0 is an artificial English word that all unaligned French words are aligned with.
- Now every French word is "caused" by an English word.

Exercise: Estimating word translation probabilities



Estimate:

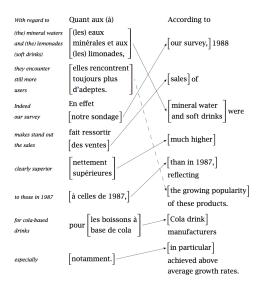
 $P(e_i|\text{nouvelles})$

 $P(f_i|\text{the})$

 $P(f_i|e_0)$

Noisy channel model Machine translation

"Linguistic" word/phrase alignment of a parallel corpus



Machine translation Fraser: Machine Translation

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

Noisy channel model Machine translation

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

ullet e: English sentence, e_i : i^{th} word in e

Noisy channel model M Fraser: Machine Translation

Machine translation

Language models

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i : i^{th} word in e
- 1: length of English sentence

Noisy channel model Machine translation Language models

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- 1: length of English sentence
- f: French sentence, f_j : j^{th} word in f

Noisy channel model Machine translation La

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- 1: length of English sentence
- f: French sentence, f_j : j^{th} word in f
- m: length of French sentence

Fraser: Machine Translation

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- 1: length of English sentence
- f: French sentence, f_j : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \dots, m\} \mapsto \{0, 1, \dots, l\}$$

Noisy channel model

Fraser: Machine Translation

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- 1: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

• There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- 1: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:
 - $a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$
- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_j})$ is the probability of e_{a_j} being translated as f_j .

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

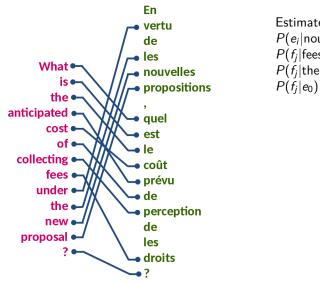
- e: English sentence. ei: ith word in e
- I: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_i} is the English word that f_i is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_i|e_{a_i})$ is the probability of e_{a_i} being translated as f_i .
- $P(\langle a_1, \ldots, a_m \rangle)$ is the probability of alignment $< a_1, \ldots, a_m >$.

Fraser: Machine Translation

Exercise: Estimating word translation probabilities



Estimate: $P(e_i|\text{nouvelles})$ $P(f_i|\text{fees})$ $P(f_i|\text{the})$

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- 1: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_j})$ is the probability of e_{a_j} being translated as f_j .
- $P(\langle a_1, \ldots, a_m \rangle)$ is the probability of alignment $\langle a_1, \ldots, a_m \rangle$.

Formalization of alignment

00		<i>e</i> ₁	e]			
e_0									
empty cept they descended									
f_1	f_1 f_2		f_3						
runter gingen		gingen	sie						
a_1	a_2	<i>a</i> ₃	a_1	a_2	<i>a</i> ₃		a_1	a_2	<i>a</i> ₃
0	0	0	1	0	0		2	0	0
0	0	1	1	0	1		2	0	1
0	0	2	1	0	2		2	0	2
0	1	0	1	1	0		2	1	0
0	1	1	1	1	1		2	1	1
0	1	2	1	1	2		2	1	2
0	2	0	1	2	0		2	2	0
0	2	1	1	2	1		2	2	1
0	2	2	1	2	2		2	2	2

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence. ei: ith word in e
- I: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_i} is the English word that f_i is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_i|e_{a_i})$ is the probability of e_{a_i} being translated as f_i .
- $P(\langle a_1, \ldots, a_m \rangle)$ is the probability of alignment $< a_1, \ldots, a_m >$.

Fraser: Machine Translation

Exercise

What's bad about this model? What type of linguistic phenomenon will not be translated correctly?

Noisy channel model Machine translation Langu

Machine translation

Noisy channel model

_anguage models

• Collocations, noncompositional combinations: "piece of cake"

Noisy channel model Machine translation Language n

37 / 50

- Collocations, noncompositional combinations: "piece of cake"
 - Assumption violated: Each English word generates German translations independent of the other words.

Machine translation

- Collocations, noncompositional combinations: "piece of cake"
 - Assumption violated: Each English word generates German translations independent of the other words.
- Compounds: "Kirschkuchen" vs. "cherry pie"

Noisy channel model Machine translation Language n
Fraser: Machine Translation

- Collocations, noncompositional combinations: "piece of cake"
 - Assumption violated: Each English word generates German translations independent of the other words.
- Compounds: "Kirschkuchen" vs. "cherry pie"
 - Assumption violated: For each German/French word there is a single English word responsible for it.

Noisy channel model Machine translation

Fraser: Machine Translation

- Collocations, noncompositional combinations: "piece of cake"
 - Assumption violated: Each English word generates German translations independent of the other words.
- Compounds: "Kirschkuchen" vs. "cherry pie"
 - Assumption violated: For each German/French word there is a single English word responsible for it.
- Unlikely alignments: "siehst Du" vs. "(do) you see"

- Collocations, noncompositional combinations: "piece of cake"
 - Assumption violated: Each English word generates German translations independent of the other words.
- Compounds: "Kirschkuchen" vs. "cherry pie"
 - Assumption violated: For each German/French word there is a single English word responsible for it.
- Unlikely alignments: "siehst Du" vs. "(do) you see"
 - Assumption violated: The probability of a particular alignment is independent of the words.

Noisy channel model

Machine translation

anguage models

Morphology: "Kind" – "Kindes"

Noisy channel model Machine translation
Fraser: Machine Translation

38 / 50

- Morphology: "Kind" "Kindes"
- Gender and case

Fraser: Machine Translation

- Morphology: "Kind" "Kindes"
- Gender and case
- Syntax: which types of differences between German syntax and English syntax could be a problem?

Fraser: Machine Translation

Google Translate

Outline

Noisy channel model

2 Machine translation

3 Language models

The two key components of the model

```
argmax_{word-sequence} P(word-sequence|evidence)
                    P(evidence|word-sequence)P(word-sequence)
argmax<sub>word-sequence</sub>
                      P(evidence|word-sequence)
                                                     P(word-sequence)
translation mo
```

Machine translation

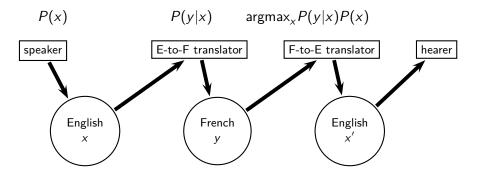
The two key components of the model

```
\begin{array}{ll} \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ = \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ = \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \end{array}
```

language model

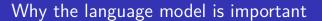
Noisy channel model Machine translation La Fraser: Machine Translation

Noisy channel: French-to-English machine translation



Noisy channel model Machine translation

Fraser: Machine Translation



Noisy channel model

• Classical example from speech recognition

Noisy channel model Machine translation Language models

- Classical example from speech recognition
- The following two are almost indistinguishable acoustically.

Noisy channel model Machine translation Language models
Fraser: Machine Translation

- Classical example from speech recognition
- The following two are almost indistinguishable acoustically.
- "wreck a nice beach"

- Classical example from speech recognition
- The following two are almost indistinguishable acoustically.
- "wreck a nice beach"
- "recognize speech"

Fraser: Machine Translation

- Classical example from speech recognition
- The following two are almost indistinguishable acoustically.
- "wreck a nice beach"
- "recognize speech"
- If we had only the translation model P(y|x), then we would not be able to make a good decision.

- Classical example from speech recognition
- The following two are almost indistinguishable acoustically.
- "wreck a nice beach"
- "recognize speech"
- If we had only the translation model P(y|x), then we would not be able to make a good decision.
- We need the language model for this decision.

- Classical example from speech recognition
- The following two are almost indistinguishable acoustically.
- "wreck a nice beach"
- "recognize speech"
- If we had only the translation model P(y|x), then we would not be able to make a good decision.
- We need the language model for this decision.
- $P(\text{"wreck a nice beach"}) \ll P(\text{"recognize speech"})$

- Classical example from speech recognition
- The following two are almost indistinguishable acoustically.
- "wreck a nice beach"
- "recognize speech"
- If we had only the translation model P(y|x), then we would not be able to make a good decision.
- We need the language model for this decision.
- $P(\text{"wreck a nice beach"}) \ll P(\text{"recognize speech"})$
- We'll choose "recognize speech" based on this.

Bigram language model

Noisy channel model

Bigram language model

$$P(w_{1,2,...,n}) = \prod_{i=1}^{n} P(w_i|w_{i-1})$$

Noisy channel mode

Bigram language model

$$P(w_{1,2,...,n}) = \prod_{i=1}^{n} P(w_i|w_{i-1})$$

• Key problem: How do we estimate the parameters?

Noisy channel mode

Fraser: Machine Translation

Machine translation

Bigram language model

$$P(w_{1,2,...,n}) = \prod_{i=1}^{n} P(w_i|w_{i-1})$$

- Key problem: How do we estimate the parameters?
- $P(w_i|w_{i-1})$?

Noisy channel model

Maximum likelihood = Relative frequency

Noisy channel model

Language models

Machine translation

Maximum likelihood = Relative frequency

$$P_{ML}(w_2|w_1) = \frac{C(w_1w_2)}{C(w_1)}$$

where C(e) is the number of times the event e occurred in the training set.

Noisy channel model

Maximum likelihood = Relative frequency

$$P_{ML}(w_2|w_1) = \frac{C(w_1w_2)}{C(w_1)}$$

where C(e) is the number of times the event e occurred in the training set.

Example:

$$p_{\mathrm{ML}}(\mathsf{be}|\mathsf{would}) = \frac{C(\mathsf{would}|\mathsf{be})}{C(\mathsf{would})} = \frac{18454}{83735} \approx 0.22$$

Noisy channel model

• Suppose that "Dr." and "Cooper" are frequent in our corpus. Frequency of "Dr." = 10000

Machine translation

- Suppose that "Dr." and "Cooper" are frequent in our corpus.
 Frequency of "Dr." = 10000
- But suppose that the sequence "Dr. Cooper" does not occur in the corpus.

- Suppose that "Dr." and "Cooper" are frequent in our corpus.
 Frequency of "Dr." = 10000
- But suppose that the sequence "Dr. Cooper" does not occur in the corpus.
- What is the maximum likelihood estimate of P(Cooper|Dr.)?

- Suppose that "Dr." and "Cooper" are frequent in our corpus. Frequency of "Dr." = 10000
- But suppose that the sequence "Dr. Cooper" does not occur in the corpus.
- What is the maximum likelihood estimate of P(Cooper|Dr.)?

•

$$P_{ML}(\mathsf{Cooper}|\mathsf{Dr.}) = \frac{C(\mathsf{Dr. Cooper})}{C(\mathsf{Dr.})} = \frac{0}{10000} = 0$$

- Suppose that "Dr." and "Cooper" are frequent in our corpus.
 Frequency of "Dr." = 10000
- But suppose that the sequence "Dr. Cooper" does not occur in the corpus.
- What is the maximum likelihood estimate of P(Cooper|Dr.)?

 $P_{ML}(\mathsf{Cooper}|\mathsf{Dr.}) = \frac{C(\mathsf{Dr. Cooper})}{C(\mathsf{Dr.})} = \frac{0}{10000} = 0$

 This means that in machine translation, any English sentence containing "Dr. Cooper" would be deemed impossible and could not be output by the translator.

Fraser: Machine Translation

•

- Suppose that "Dr." and "Cooper" are frequent in our corpus.
 Frequency of "Dr." = 10000
- But suppose that the sequence "Dr. Cooper" does not occur in the corpus.
- What is the maximum likelihood estimate of P(Cooper|Dr.)?

•

$$P_{ML}(\mathsf{Cooper}|\mathsf{Dr.}) = \frac{C(\mathsf{Dr. Cooper})}{C(\mathsf{Dr.})} = \frac{0}{10000} = 0$$

- This means that in machine translation, any English sentence containing "Dr. Cooper" would be deemed impossible and could not be output by the translator.
- This problem is called sparseness.

Noisy channel model

- Suppose that "Dr." and "Cooper" are frequent in our corpus.
 Frequency of "Dr." = 10000
- But suppose that the sequence "Dr. Cooper" does not occur in the corpus.
- What is the maximum likelihood estimate of P(Cooper|Dr.)?

•

$$P_{ML}(\mathsf{Cooper}|\mathsf{Dr.}) = rac{C(\mathsf{Dr.\ Cooper})}{C(\mathsf{Dr.})} = rac{0}{10000} = 0$$

- This means that in machine translation, any English sentence containing "Dr. Cooper" would be deemed impossible and could not be output by the translator.
- This problem is called sparseness.
- Ideally, we would need knowledge about events and their probability that never occurred in our training corpus.

Laplace = Add-one smoothing

$$P_L(w_2|w_1) = \frac{C(w_1w_2) + 1}{C(w_1) + |V|}$$

where C(e) is the number of times the event e occurred in the training set, V is the vocabulary of the training set and $w_{i,j}$ is the sequence of words $w_i, w_{i+1}, \ldots, w_{i-1}, w_i$.

Noisy channel model Machine translation

Laplace = Add-one smoothing

$$P_L(w_2|w_1) = \frac{C(w_1w_2) + 1}{C(w_1) + |V|}$$

where C(e) is the number of times the event e occurred in the training set, V is the vocabulary of the training set and $w_{i,j}$ is the sequence of words $w_i, w_{i+1}, \ldots, w_{j-1}, w_j$.

Better estimator:

$$P_L(\text{Cooper}|\text{Dr.}) = \frac{0+1}{10000+256873} \approx 0.0000037 > 0$$

Noisy channel mode

Laplace = Add-one smoothing

$$P_L(w_2|w_1) = \frac{C(w_1w_2) + 1}{C(w_1) + |V|}$$

where C(e) is the number of times the event e occurred in the training set, V is the vocabulary of the training set and $w_{i,j}$ is the sequence of words $w_i, w_{i+1}, \ldots, w_{j-1}, w_j$.

Better estimator:

$$P_L(\text{Cooper}|\text{Dr.}) = \frac{0+1}{10000+256873} \approx 0.0000037 > 0$$

So now our machine translation system has a chance of finding a good English translation that contains the phrase "Dr. Cooper".

Noisy channel model M Fraser: Machine Translation

Exercise

the three women saw the small mountain behind the large mountain

Compute maximum likelihood and laplace estimates for: P(three|the) and P(saw|the)

Noisy channel model M Fraser: Machine Translation

Besonders klausurrelevant

- Noisy channel model
- Translation models
- Estimation of translation models
- Language models
- Estimation of language models

Besonders klausurrelevant

- *P*(*e*)
- P(f|e)
- empty cept
- $\operatorname{argmax}_{e}P(f|e)P(e)$

Noisy channel mode