Seminar Topics: Information Extraction

English topics!

Viktor Hangya

hangyav@cis.lmu.de
1. Parallel sentence extraction

- There are 7000+ languages on the world
- Most IE approaches focus on a few of them only, e.g. English
- Parallel sentences are useful to transfer information from one language to another
 - Machine translation
 - Annotated data projection
 - Multilingual text representations
- Parallel sentences are expensive to create but we can mine them from the web automatically
1. Parallel sentence extraction

1. Introduction, feature based model:
 - Smith and Toutanova, 2010, Extracting Parallel Sentences from Comparable Corpora using Document Level Alignment Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL

2. Neural models:
 - Grégoire and Langlais, 2017, A Deep Neural Network Approach To Parallel Sentence Extraction arXiv
 - Artetxe and Schwenk, 2019, Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

3. Unsupervised model:
 - Keung et al., 2020, Unsupervised Bitext Mining and Translation via Self-Trained Contextual Embeddings arXiv
2. Target-level sentiment analysis

- Sentiment analysis: extract sentiment polarity of opinions:
 - Positive: I’m happy.
 - Negative: I’m sad.
 - Neutral: The sky is blue.

- Target-level: Opinions can be different given the target entity:
 - Android is better than iOS.
 - The food was great but the service was awful.
2. Target-level sentiment analysis

1. Introduction, feature based model:
 ▶ Kiritchenko et al., 2014, NRC-Canada-2014: Detecting Aspects and Sentiment in Customer Reviews *Proceedings of the 8th International Workshop on Semantic Evaluation*

2. Neural models:

3. Target specific word meanings:
 ▶ Li et al., 2018, *Transformation Networks for Target-Oriented Sentiment Classification Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics*
3. Relation Extraction and Classification in Scientific Documents

- Automatically identify relevant domain-specific semantic relations in a corpus of scientific publications
 - a new method is proposed for a task
 - a phenomenon is found in a certain context
 - results of different experiments are compared to each other

- Used for e.g.:
 - build knowledge-graphs
 - do a more detailed search

- The topic covers one shared-task:
 - SemEval-2018 Task 7
3. Relation Extraction and Classification in Scientific Documents

1. Overview:

2. ClaiRE + UC3M-NII:

3. ETH-DS3Lab + Bf3R:
4. Novel and Emerging Entity Recognition

- NER systems perform well on data similar to what they were trained on and can detect frequent well behaving NEs.

- New NEs emerge day-by-day which are often hard to detect for humans as well:
 - Tweet: so.. kktny in 30 mins?!
 - kktny: Kourtney and Kim Take New York (TV series)

- The topic covers one shared-task:
 - WNUT 2017
4. Novel and Emerging Entity Recognition

1. Overview:
 ▶ Derczynski et al., 2017, Results of the WNUT2017 Shared Task on Novel and Emerging Entity Recognition Proceedings of the 3rd Workshop on Noisy User-generated Text

2. Arcada + FLYTXT:

3. Drexel-CCI + SJTU-Adapt:
 ▶ Williams and Santia, 2017, Context-Sensitive Recognition for Emerging and Rare Entities Proceedings of the 3rd Workshop on Noisy User-generated Text
 ▶ Lin et al., 2017, Multi-channel BiLSTM-CRF Model for Emerging Named Entity Recognition in Social Media Proceedings of the 3rd Workshop on Noisy User-generated Text
5. Rumor verification

- A large amount of information is shared on social media real-time.
- But not all of them are true or verified.
- Automatic rumor detection can help moderate social media platforms.
5. Rumor verification

1. Introduction:
 ▶ Zubiaga et al., 2018, Detection and Resolution of Rumours in Social Media: A Survey ACM Computing Surveys

2. Approaches for the individual subtasks:
 ▶ Zubiaga et al., 2017, Exploiting Context for Rumour Detection in Social Media International Conference on Social Informatics

3. Joint approach:
 ▶ Kochkina et al., 2018, All-in-one: Multi-task Learning for Rumour Verification Proceedings of the 27th International Conference on Computational Linguistics