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Event Extraction 

• We'll now discuss event extraction, as defined 
in state-of-the-art statistical systems 

• This is an extension of the ideas in relation 
extraction (as discussed by Matthias) to events 

• Event extraction offers a good opportunity to 
think about cross-sentence and cross-document 
extraction 

• The lecture on Ontologies and Open IE will be 
next week 

• Later in this lecture we'll briefly discuss 
multimodal extraction (speech, images, etc) 

• Just to give a basic idea about what is possible 
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• An Event is a specific occurrence involving participants.  

• An Event is something that happens.  

• An Event can frequently be described as a change of state. 

General Event Definition 

Chart from (Dölling, 2011) 

Most of current NLP 

work focused on this   

Slide from Heng Ji 



• An event is specific occurrence that implies a change of states 

• event trigger: the main word which most clearly expresses an event occurrence 

• event arguments: the mentions that are involved in an event (participants) 

• event mention: a phrase or sentence within which an event is described, including 
trigger and arguments 

• Automatic Content Extraction defined 8 types of events, with 33 subtypes 

 

 
ACE event type/subtype                              Event Mention Example 
 

Life/Die   Kurt Schork died in Sierra Leone yesterday 

^ 

Transaction/Transfer            GM sold the company in Nov 1998 to LLC  

Movement/Transport Homeless people have been moved to schools   

Business/Start-Org  Schweitzer founded a hospital in 1913  

Conflict/Attack   the attack on Gaza killed 13 

Contact/Meet    Arafat’s cabinet met for 4 hours 

Personnel/Start-Position  She later recruited the nursing student 

Justice/Arrest                       Faison was wrongly arrested on suspicion of murder 

Event Mention Extraction: Task 

trigger Argument, role=victim 
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• Staged classifiers 

• Trigger Classifier 

• to distinguish event instances from non-events, to classify event 

instances by type 

• Argument Classifier 

• to distinguish arguments from non-arguments 

• Role Classifier 

• to classify arguments by argument role 

• Reportable-Event Classifier 

• to determine whether there is a reportable event instance 

• Can choose any supervised learning methods such as MaxEnt and 

SVMs 

Supervised Event Mention Extraction: Methods 

(Ji and Grishman, 2008) 
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Typical Event Mention Extraction Features 
 Trigger Labeling 

 Lexical 
 Tokens and POS tags of candidate 

trigger and context words 

 Dictionaries 
 Trigger list, synonym gazetteers 

 Syntactic 
 the depth of the trigger in the parse tree 

 the path from the node of the trigger to 

the root in the parse tree 

 the phrase structure expanded by the 

parent node of the trigger 

 the phrase type of the trigger 

 Entity 
 the entity type of the syntactically nearest 

entity to the trigger in the parse tree 

 the entity type of the physically nearest 

entity to the trigger in the sentence 

 Argument Labeling 

 Event type and trigger 
 Trigger tokens 

 Event type and subtype 

 Entity 
 Entity type and subtype 

 Head word of the entity mention 

 Context 
 Context words of the argument 

candidate 

 Syntactic 
 the phrase structure expanding the 

parent of the trigger 

 the relative position of the entity 

regarding to the trigger (before or after) 

 the minimal path from the entity to the 

trigger 

 the shortest length from the entity to 

the trigger in the parse tree 
 

(Chen and Ji, 2009) 

Slide from Heng Ji 



Why Trigger Labeling is so Hard? 
 A suicide bomber detonated explosives at the 

entrance to a crowded 

 medical teams carting away dozens of 

wounded victims 

 dozens of Israeli tanks advanced into 

thenorthern Gaza Strip 

 Many nouns such as “death”, “deaths”, “blast”, 

“injuries” are missing 
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Why Argument Labeling is so Hard? 
 Two 13-year-old children were among those killed in the Haifa 

bus bombing, Israeli public radio said, adding that most of the 

victims were youngsters 

 Fifteen people were killed and more than 30 wounded 

Wednesday as a suicide bomber blew himself up on a student 

bus in the northern town of Haifa 

 Two 13-year-old children were among those killed in the Haifa 

bus bombing 
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State-of-the-art and Remaining Challenges 
 State-of-the-art Performance (F-score) 

 English: Trigger 70%, Argument 45% 

 Chinese: Trigger 68%, Argument 52% 

 Single human annotator: Trigger 72%, Argument 62% 

 Remaining Challenges 
 Trigger Identification 

 Generic verbs 

 Support verbs such as “take” and “get” which can only represent an event mention together with 

other verbs or nouns 

 Nouns and adjectives based triggers 

 Trigger Classification 
 “named” represents a “Personnel_Nominate” or “Personnel_Start-Position”? 

 “hacked to death” represents a “Life_Die” or “Conflict_Attack”? 

 Argument Identification 

 Capture long contexts 

 Argument Classification 

 Capture long contexts 

 Temporal roles 

 

 
(Ji, 2009; Li et al., 2011) 
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IE 

Information Networks 

Authors Venues Texts 
Time/Location/ 

Cost Constraints 

IE in Rich Contexts 

Human Collaborative Learning 

Slide from Heng Ji 



Capture Information Redundancy 
• When the data grows beyond some certain size, IE task is 

naturally embedded in rich contexts; the extracted facts 
become inter-dependent  

• Leverage Information Redundancy from: 
• Large Scale Data (Chen and Ji, 2011) 

• Background Knowledge (Chan and Roth, 2010; Rahman and Ng, 2011) 

• Inter-connected facts (Li and Ji, 2011; Li et al., 2011; e.g. Roth and Yih, 2004; 
Gupta and Ji, 2009; Liao and Grishman, 2010; Hong et al., 2011) 

• Diverse Documents (Downey et al., 2005; Yangarber, 2006; Patwardhan and 
Riloff, 2009; Mann, 2007; Ji and Grishman, 2008) 

• Diverse Systems (Tamang and Ji, 2011) 

• Diverse Languages (Snover et al., 2011) 

• Diverse Data Modalities (text, image, speech, video…) 

 

• But how? Such knowledge might be overwhelming… 
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Cross-Sent/Cross-Doc Event Inference 
Architecture 

Test 

Doc 

Within-Sent 

Event 
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Baseline Within-Sentence  
Event Extraction 

1. Pattern matching 
• Build a pattern from each ACE training example of an event 

• British and US forces reported gains in the advance on Baghdad 

              PER report gain in advance on LOC 
 

2. MaxEnt models 
① Trigger Classifier 

• to distinguish event instances from non-events, to classify event instances 
by type 

② Argument Classifier 
• to distinguish arguments from non-arguments 

③ Role Classifier 
• to classify arguments by argument role 

④ Reportable-Event Classifier 
• to determine whether there is a reportable event instance 

Slide from Heng Ji 



Global Confidence Estimation 

Within-Sentence IE system produces local confidence 
 

IR engine returns a cluster of related docs for each test doc 
 

Document-wide and Cluster-wide Confidence 
• Frequency weighted by local confidence 

• XDoc-Trigger-Freq(trigger, etype): The weighted frequency of string 
trigger appearing as the trigger of an event of type etype across all 
related documents 

• XDoc-Arg-Freq(arg, etype): The weighted frequency of arg appearing 
as an argument of an event of type etype across all related 
documents  

• XDoc-Role-Freq(arg, etype, role): The weighted frequency of arg 
appearing as an argument of an event of type etype with role role 
across all related documents  

• Margin between the most frequent value and the second most 
frequent value, applied to resolve classification ambiguities 

• …… 
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Cross-Sent/Cross-Doc Event  
Inference Procedure 
Remove triggers and argument annotations with local or cross-doc 

confidence lower than thresholds 
• Local-Remove: Remove annotations with low local confidence 

• XDoc-Remove: Remove annotations with low cross-doc confidence 

 

Adjust trigger and argument identification and classification to 
achieve document-wide and cluster-wide consistency 
• XSent-Iden/XDoc-Iden: If the highest frequency is larger than a threshold, 

propagate the most frequent type to all unlabeled candidates with the 
same strings 

• XSent-Class/XDoc-Class: If the margin value is higher than a threshold, 
propagate the most frequent type and role to replace  

    low-confidence annotations 

Slide from Heng Ji 



Experiments: Data and Setting 

 Within-Sentence baseline IE trained from 500 English 
ACE05 texts (from March – May of 2003) 
 

 Use 10 ACE05 newswire texts as development set to 
optimize the global confidence thresholds and apply them 
for blind test 
 

 Blind test on 40 ACE05 texts, for each test text, retrieved 
25 related texts from TDT5 corpus (278,108 texts, from 
April-Sept. of 2003) 
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Experiments: Trigger Labeling 

Performance 

System/Human 

Precision Recall F-Measure 

Within-Sent IE (Baseline) 67.6 53.5 59.7 

After Cross-Sent Inference 64.3 59.4 61.8 

After Cross-Doc Inference 60.2 76.4 67.3 

Human Annotator 1 59.2 59.4 59.3 

Human Annotator 2 69.2 75.0 72.0 

Inter-Adjudicator Agreement 83.2 74.8 78.8 

Slide from Heng Ji 



Experiments: Argument Labeling 

Performance 

 

 

System/Human 

Argument 

Identification 

Argument 

Classification 

Accuracy 

Argument 

Identification 

+Classification 

P R F P R F 

Within-Sent IE 47.8 38.3 42.5 86.0 41.2 32.9 36.3 

After Cross-Sent 

Inference 

54.6 38.5 45.1 90.2 49.2 34.7 40.7 

After Cross-Doc 

Inference 

55.7 39.5 46.2 92.1 51.3 36.4 42.6 

Human Annotator 1 60.0 69.4 64.4 85.8 51.6 59.5 55.3 

Human Annotator 2 62.7 85.4 72.3 86.3 54.1 73.7 62.4 

Inter-Adjudicator 

Agreement 

72.2 71.4 71.8 91.8 66.3 65.6 65.9 
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Summary 

• Event extraction is an interesting topic 
which has recently started to undergo 
significant changes 
• In these slides we talked about cross-

document reference 

• One can go further and include the web 
and/or ontologies (next lecture) 

• It is a very difficult problem but clearly 
necessary if we want to reason about 
changes of state, rather than facts that 
hold over long periods of time 
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Multimodal Extraction 

• The purpose of these slides is to give a 

basic idea about what can be done in 

a multimodal setting 

• Details of how the systems work in 

detail is out of scope here (i.e., don't 

worry about this) 
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Extraction from Speech 

• Extraction from speech is typically addressed by 
adapting text-based NLP tools to ASR (Automatic 
Speech Recognition) output 
• Neural systems are typically used for ASR 

• Some significant challenges using ASR output as 
input to NLP 
• ASR errors (in recognizing speech) 

• No or little punctuation in ASR output 

• Disfluencies (e.g., when people, are, um, sp..., 
speaking) 

• Some new work tries to train end-to-end systems 
to do tasks like ASR and NER at the same time 
• Make sense, because many names are likely to be 

out-of-vocabulary items to the ASR system 

• Allow use of specialized ASR sub-model 
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Extraction from Images 

• Approaches for image classification and 

related problems have been 

dramatically changed by deep learning 

• Current explosion of new work and 

dramatically different problems being 

addressed 

• First let's look at accuracies on the 

ImageNet task (next slide) 

• The let's look at image captioning (just a 

brief look, do not worry about details!) 
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Slide modified from Andrej Karpathy 

Example Error 
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Can go even further... 

• Deep learning enabled addressing 
image caption generation in a much 
more natural way 
• Also, cross-fertilization of ideas with machine 

translation (!) 

• Framework is actually very similar to neural 
machine translation 

• Deep learning also enables solving new 
problems 
• For instance, there is now work on breaking 

images down into regions (next slide) 
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Putting it all together for IE 

• Near term: gains in (static) image 
processing performance will continue, 
video processing and ASR will make 
big improvements 

• IE: Here is an example of a state-of-
the-art system for indexing multimodal 
news streams 
• Primarily working with speech and text 

though, only limited support for images 
and video (at least in the 2013 version I 
looked at) 
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• An example system for multimodal extraction is the BBN 
M3S system (version here from 2013) 

• Features: 
• Automatic multi-lingual data collection and mirroring of 

user-identified Web sites, broadcast media, and social 
media (Twitter and Facebook) 

• Automatic extraction and translation of text 

• Search across multi-lingual sites, channels, and posts 
• Visualization tools and automatic topic detection for 

enhanced analysis 

• Collected media archived for later use 

• Browser-based user interface with personalized user 
dashboards 

• Story segmentation of broadcast media 

 

(From BBN website) 

44 

BBN Multimedia Monitoring System 
(M3S) 



BBN Multimedia Monitoring 

System (M3S) 
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Discussion 

• Another prominent system: Europe Media 
Monitor 
• Check out their website (free access to a good 

amount of functionality, also free tablet and 
smartphone apps; and a special medical system) 

• Overall: multimodal processing approaches 
are changing rapidly due to better modeling 
and new sub-tasks 

• Deep learning approaches should enable IE 
systems to reason in a more deep way about 
video/audio streams 
• Much new academic work appearing here in 

many different venues 
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Slides 

• The slides for event extraction are from 

Heng Ji, who is a IE researcher at RPI 

• The slides on image captioning are 

from Andrej Karpathy (PhD student of 

Fei-Fei Li), now at OpenAI 
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• Thank you for your attention! 
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LeNet-5 

• convolutional neural network use sequence of 3 layers: 
convolution, pooling, non-linearity –> This may be the key 
feature of Deep Learning for images since this paper! 

• use convolution to extract spatial features 
• subsample using spatial average of maps 

• non-linearity in the form of tanh or sigmoids 

• multi-layer neural network (MLP) as final classifier 

• sparse connection matrix between layers to avoid large 
computational cost 

49 
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LeNet-5 recognizing "3" 

(Graphic from Yann LeCun (and world4jason??)) 


