Word Embeddings for Named Entity Recognition

Fabienne Braune1

1LMU Munich

January 25th, 2016
Outline

1. Named Entity Recognition
2. Feedforward Neural Networks: recap
3. Neural Networks for Named Entity Recognition
4. Example
5. Adding Pre-trained Word Embeddings
6. Word2Vec
Named Entity Recognition
Task

Find segments of entity mentions in input text and tag with labels.

Example inputs:

- *Trump attacks BMW and Mercedes*
- *U.N. official Ekeus heads for Baghdad*

Example labels (coarse grained):

- persons PER
- locations LOC
- organizations ORG
- names NAME
- other MISC
Labeled data

Desired outputs:
- *Trump* PER attacks *BMW* ORG and *Mercedes* ORG
- *U.N.* ORG official *Ekeus* PER heads for *Baghdad* LOC

Example annotations (CoNLL-2003):

<table>
<thead>
<tr>
<th>Surface</th>
<th>POS</th>
<th>Sh-synt</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.N.</td>
<td>NNP</td>
<td>I-NP</td>
<td>I-ORG</td>
</tr>
<tr>
<td>official</td>
<td>NN</td>
<td>I-NP</td>
<td>O</td>
</tr>
<tr>
<td>Ekeus</td>
<td>NNP</td>
<td>I-NP</td>
<td>I-PER</td>
</tr>
<tr>
<td>heads</td>
<td>VBZ</td>
<td>I-VP</td>
<td>O</td>
</tr>
<tr>
<td>for</td>
<td>IN</td>
<td>I-PP</td>
<td>O</td>
</tr>
<tr>
<td>Baghdad</td>
<td>NNP</td>
<td>I-NP</td>
<td>I-LOC</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
Classification-based approaches

Given input segment, train classifier to tell:

- Is this segment a Named Entity?
- Give the corresponding Tag

Classification task:

Trump attacks BMW and Mercedes
Is Trump a named entity?
Yes, it is a person (PER)
Classification-based approaches

- Classifier combination with engineered features (Florian et al. 2003)
 - Manually engineer features
 - Use large (external) gazetteer
 - Combine classifiers (ME, MRR, HMM) trained on annotated data
 - 88.76 F1

- Semi-supervised learning with linear models (Ando and Zhang 2005)
 - Train linear model on annotated data
 - Add non-annotated data
 - 89.31 F1
Classification-based approaches

- Use feedforward neural networks (Collobert et al. 2011):
 - With raw words 81.74
 - With pre-trained word embeddings 88.67
 - Using a gazetteer 89.59

- Use sequential models:
 - Linear Chain CRF (linear)
 - LSTM networks (deep)
 → Achieve best performance but not covered here
Feedforward Neural Networks: Recap
Motivation

Cannot be solved using a linear model
Motivation

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a \text{XNOR} b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Features: \(a, b\)
Feature values: binary

Cannot be solved using a linear model
Motivation

Linear models not suited to learn non-linear decision boundaries.

Neural networks can do that

→ Through composition of *non-linear* functions
→ Learn relevant features from (almost) raw text
 → No need for manual feature engineering
 → learned by network
Feedforward Neural Network

Computation of hidden layer H:
- $A_1 = \sigma(X \cdot \Theta_1)$
- $A_2 = \sigma(X \cdot \Theta_2)$
- $B_0 = 1$ (bias term)

Computation of output unit $h(X)$:
- $h(X) = \sigma(H \cdot \Theta_3)$
Feedforward Neural Network

Feedforward neural network with:

- 1 input layer X (feature vector)
- 2 weight matrices $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$
- 1 hidden layer H composed of:

 - 2 activations $A_1 = \sigma(Z_1)$ and $A_2 = \sigma(Z_2)$ where:
 - $Z_1 = X \cdot \Theta_1$
 - $Z_2 = X \cdot \Theta_2$

- 1 output unit $h(X) = \sigma(Z_3)$ where:

 - $Z_3 = H \cdot \Theta_3$
Non-linear activation function

The **sigmoid function** $\sigma(Z)$ is often used

![Graph of the sigmoid function](image)
Feedforward neural network

Trump attacks *BMW and Mercedes*

Binray NER task: Is the segment from position 1 to 2 a **Named Entity**?

Neural network: \(h(X) = \sigma(H \cdot \Theta_n) \), with:

\[
H = \begin{bmatrix}
B_0 = 1 \\
A_1 = \sigma(X \cdot \Theta_1) \\
A_2 = \sigma(X \cdot \Theta_2) \\
\vdots \\
A_j = \sigma(X \cdot \Theta_j)
\end{bmatrix}
\]

Prediction: If \(h(X) > 0.5 \), yes. Otherwise, no.
Feedforward Neural Network

If weights are all random output will be random
→ Predictions will be bad
→ Get the right weights
Getting the right weights

Training: Find weight matrices $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$ such that $h(X)$ is the **correct answer** as many times as possible.

→ Given a set T of training examples $t_1, \cdots t_n$ with **correct labels** y_i, find $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$ such that $h(X) = y_i$ for as many t_i as possible.

→ Computation of $h(X)$ called **forward propagation**

→ $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$ with error **back propagation**
Multi-class classification

- More than two labels
- Instead of “yes” and “no”, predict $c_i \in C = \{c_1, \cdots, c_k\}$
- **NER**: Is this segment a location, name, person ...

Use k output units, where k is number of classes

- Output layer instead of unit
- Use softmax to obtain value between 0 and 1 for each class
- Highest value is right class
Neural Networks for NER
Classification-based NER

Given input segment, train classifier to tell:
- Is this segment a Named Entity?
- Give the corresponding Tag

Classification task:

Trump attacks BMW and Mercedes

Is *Trump* a named entity?
Yes, it is a *person* (PER)
Labeled data

Desired outputs:
- *Trump PER attacks BMW ORG and Mercedes ORG*
- *U.N. ORG official Ekeus PER heads for Baghdad LOC*

Annotation:

<table>
<thead>
<tr>
<th>Surface</th>
<th>POS</th>
<th>Sh-synt</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.N.</td>
<td>NNP</td>
<td>I-NP</td>
<td>I-ORG</td>
</tr>
<tr>
<td>official</td>
<td>NN</td>
<td>I-NP</td>
<td>O</td>
</tr>
<tr>
<td>Ekeus</td>
<td>NNP</td>
<td>I-NP</td>
<td>I-PER</td>
</tr>
<tr>
<td>heads</td>
<td>VBZ</td>
<td>I-VP</td>
<td>O</td>
</tr>
<tr>
<td>for</td>
<td>IN</td>
<td>I-PP</td>
<td>O</td>
</tr>
<tr>
<td>Baghdad</td>
<td>NNP</td>
<td>I-NP</td>
<td>I-LOC</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
Feedforward Neural Network for NER

Training example: *Trump attacks BMW (ORG) and Mercedes*

Neural network input:

Look at word window around BMW

→ Trump_{-2} attacks_{-1} BMW and_{1} Mercedes_{2}

→ Lookup feature representation (LT_i) for window

Give LT_i as input to Feedforward Neural Network

Neural network training:

Predict corresponding label (forward propagation)

→ should be *organization (ORG)*

Train weights by backpropagating error
Feedforward Neural Network for NER

Input: word features LT_i
Output: predicted label

Note: Bias terms omitted for simplicity
Feedforward Neural Network

Input layer \((X)\): Word features \(LT1, LT2, LT3, LT4\)

Weight matrices \(U, V\)

Hidden layer \((H)\): \(\sigma(X \cdot U + d)\)

Output layer \((0)\): \(H \cdot V + b\)

Prediction: \(h(X) = \text{softmax}(0)\)

- Predicted class is the one with highest probability (given by softmax)
Weight training

Training: Find weight matrices U and V such that $h(X)$ is the **correct answer** as many times as possible.

\rightarrow Given a set \(T \) of training examples \(t_1, \cdots t_n \) with **correct labels** \(y_i \), find U and V such that $h(X) = y_i$ for as many t_i as possible.

\rightarrow Computation of $h(X)$ with **forward propagation**

\rightarrow C, U and V with error **back propagation**
Training data

<table>
<thead>
<tr>
<th>Training example</th>
<th>POS</th>
<th>Sh-synt</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.N.</td>
<td>NNP</td>
<td>I-NP</td>
<td>I-ORG</td>
</tr>
<tr>
<td>official</td>
<td>NN</td>
<td>I-NP</td>
<td>O</td>
</tr>
<tr>
<td>Ekeus</td>
<td>NNP</td>
<td>I-NP</td>
<td>I-PER</td>
</tr>
<tr>
<td>heads</td>
<td>VBZ</td>
<td>I-VP</td>
<td>O</td>
</tr>
<tr>
<td>for</td>
<td>IN</td>
<td>I-PP</td>
<td>O</td>
</tr>
<tr>
<td>Baghdad</td>
<td>NNP</td>
<td>I-NP</td>
<td>I-LOC</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
Forward Propagation

```
\begin{align*}
\text{input} & \rightarrow U \rightarrow \text{hidden} \rightarrow V \rightarrow \text{output} \\
LT1 & \rightarrow A_1 \\
LT2 & \rightarrow \ldots \\
LT3 & \rightarrow A_{100} \\
LT4 & \rightarrow \ldots \\
\end{align*}
```

Forward propagation:

→ Perform all operations to get $h(X)$ from input LT.

Fabienne Braune (CIS)
Word Embeddings for Named Entity Recognition
January 25th, 2016
Backpropagation

Goal of training: adjust weights such that correct label is predicted

→ Error between correct label and prediction is minimal

Compute error at output:

Compare output unit with y^i

- y^i vector with 1 in correct class, 0 otherwise

$$E = \frac{1}{2} \sum_{i=1}^{n} (y_i - o_i)^2 \text{ (mean squared)}$$

Search influence of weight on error:

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial O_j} \frac{\partial O_j}{\partial Z_j} \frac{\partial Z_j}{\partial w_{ij}}$$

w_{ij}: single weight in weight matrix
Backpropagation:

→ E needs to go through output neuron.

→ Chain rule: $\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial O_j} \frac{\partial O_j}{\partial Z_j} \frac{\partial Z_j}{\partial w_{ij}}$
Backpropagation

Search influence of weight on error:

\[
\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial O_j} \frac{\partial O_j}{\partial Z_j} \frac{\partial Z_j}{\partial w_{ij}}
\]

\[
\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial O_j} \frac{\partial O_j}{\partial Z_j} x_i, \text{ where } x_i \text{ is input to neuron}
\]

\[
\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial O_j} \sigma'(Z_i) x_i \text{ if output neuron}
\]

\[
\frac{\partial E}{\partial w_{ij}} = (O_j - y^i_j)\sigma'(Z_j) x_i \text{ if output neuron}
\]

\[
\delta_j x_i \text{ if output neuron}
\]
Backpropagation

Compute error for weights leading to output unit
Compute all other weights
Backpropagation

Search influence of weight on error:

Compute error for weights leading to output unit

Compute all other weights

\[
\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial H_j} \frac{\partial H_j}{\partial Z_j} \frac{\partial Z_j}{\partial w_{ij}}
\]

→ Use recursion:

\[
\frac{\partial E}{\partial w_{ij}} = \sum_k \delta_k w_{jk} \sigma'(Z_i) x_i
\]

\(\delta_k\) is error of preceding unit.
Backpropagation

\[
\frac{\partial E}{\partial w_{ij}} = \sum_k \delta_k w_{jk} \sigma'(Z_i)x_i
\]

\(\delta_k\) is error of preceding unit.
Weight training

Training: Find weight matrices U and V such that $h(X)$ is the **correct answer** as many times as possible.

- Computation of $h(X)$ with **forward propagation**
- U and V with error **back propagation**

For each batch of training examples

1. Forward propagation to get predictions
2. Backpropagation of error
 - Gives gradient of E given **input**
3. Modify weights (gradient descent)
4. Goto 1 until convergence
Lookup Layer

\[E(h(X), y^i) \]
Lookup Layer

- Each word encoded into index vector \(w_i = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \)

- \(LT_i \) is dot product of weight matrix \(C \) with index of \(w_i \)
 \[\rightarrow C \text{ is } \text{shared} \text{ among all words} \]
Dot product with (trained) weight vector

\[W = \{ \text{the, cat, on, table, chair} \} \]

\[w_{\text{table}} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \]

\[C = \begin{bmatrix} 0.02 & 0.1 & 0.05 & 0.03 & 0.01 \\ 0.15 & 0.2 & 0.01 & 0.02 & 0.11 \\ 0.03 & 0.1 & 0.04 & 0.04 & 0.12 \end{bmatrix} \]

\[LT_{\text{table}} = w_{\text{table}} \cdot C^T = \begin{bmatrix} 0.03 \\ 0.02 \\ 0.04 \end{bmatrix} \]

Words get mapped to lower dimension
→ Hyperparameter to be set
Dot product with (initial) weight vector

\[W = \{ \text{the, cat, on, table, chair} \} \]

\[w_{\text{table}} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad C = \begin{bmatrix} 0.01 & 0.01 & 0.01 & 0.01 & 0.01 \\ 0.01 & 0.01 & 0.01 & 0.01 & 0.01 \\ 0.01 & 0.01 & 0.01 & 0.01 & 0.01 \end{bmatrix} \]

\[LT_{\text{table}} = w_{\text{table}} \cdot C^T = \begin{bmatrix} 0.01 \\ 0.01 \\ 0.01 \end{bmatrix} \]

Feature vectors same for all words.
Feedforward Neural Network with Lookup Table

Note: Bias terms omitted for simplicity
Weight training

Training: Find weight matrices C, U and V such that $h(X)$ is the **correct answer** as many times as possible.

→ Given a set T of training examples $t_1, \cdots t_n$ with **correct labels** y_i, find C, U and V such that $h(X) = y_i$ for as many t_i as possible.

→ Computation of $h(X)$ with **forward propagation**

→ C, U and V with error **back propagation**
Dot product with (trained) weight vector

\[W = \{ \text{the, cat, on, table, chair} \} \]

\[
\begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
0
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
0.02 & 0.1 & 0.05 & 0.03 & 0.01 \\
0.15 & 0.2 & 0.01 & 0.02 & 0.11 \\
0.03 & 0.1 & 0.04 & 0.04 & 0.12
\end{bmatrix}
\]

\[
L T_{\text{table}} = w_{\text{table}} \cdot C^T = \begin{bmatrix}
0.03 \\
0.02 \\
0.04
\end{bmatrix}
\]

Each word gets a specific feature vector
Training data

<table>
<thead>
<tr>
<th>Training example</th>
<th>POS</th>
<th>Sh-synt</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.N.</td>
<td>NNP</td>
<td>I-NP</td>
<td>I-ORG</td>
</tr>
<tr>
<td>official</td>
<td>NN</td>
<td>I-NP</td>
<td>O</td>
</tr>
<tr>
<td>Ekeus</td>
<td>NNP</td>
<td>I-NP</td>
<td>I-PER</td>
</tr>
<tr>
<td>heads</td>
<td>VBZ</td>
<td>I-VP</td>
<td>O</td>
</tr>
<tr>
<td>for</td>
<td>IN</td>
<td>I-PP</td>
<td>O</td>
</tr>
<tr>
<td>Baghdad</td>
<td>NNP</td>
<td>I-NP</td>
<td>I-LOC</td>
</tr>
<tr>
<td>.</td>
<td></td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

- **Lookup vector** C **trained with NER training data**
- **Word feature vectors are** trained towards NER
Example
Example

Trump PER attacks BMW ORG and Mercedes ORG

\[W = \{ \text{Trump, BMW, Mercedes, attacks, and} \} \]

\[
W_{\text{Trump}} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad W_{\text{attacks}} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \quad W_{\text{BMW}} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \\
W_{\text{and}} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \quad W_{\text{Mercedes}} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}
\]
Example

Window: Trump attacks **BMW** and Mercedes

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.01 & 0.8 & 0.05 & 0.02 & 0.01 \\
0.03 & 0.2 & 0.08 & 0.01 & 0.02 \\
0.04 & 0.1 & 0.04 & 0.02 & 0.04
\end{bmatrix}
\]

\(C \) is **randomly initialized**

\[
LT = \mathbf{w}_{\text{window}} \cdot C^T
\]
Example

Output of lookup table given as input
Note: Bias terms omitted for simplicity
Example

$$LT = \begin{bmatrix}
0.01 & 0.03 & 0.04 \\
0.05 & 0.08 & 0.04 \\
0.01 & 0.02 & 0.04 \\
0.8 & 0.2 & 0.1 \\
0.02 & 0.01 & 0.4
\end{bmatrix}$$

$$U = \begin{bmatrix}
0.04 & 0.6 & 0.01 & 0.02 & 0.06 & 0.03 \\
0.01 & 0.9 & 0.02 & 0.05 & 0.03 & 0.05 \\
0.02 & 0.3 & 0.05 & 0.07 & 0.09 & 0.01 \\
0.02 & 0.4 & 0.02 & 0.03 & 0.04 & 0.02 \\
0.01 & 0.8 & 0.01 & 0.01 & 0.03 & 0.07
\end{bmatrix}$$

U is randomly initialized

$$Z = LT^T \cdot U^T$$

$$A = \sigma(Z)$$
Output of lookup table given as input
Note: Bias terms omitted for simplicity
Example

- Repeat same procedure for each hidden layer
- Apply softmax on output (last) layer
- Predict label
Example

- Compute error between prediction (e.g. LOCATION) and true label
 → Given in training data (BMW is ORG)
- Backpropagate error through network and adjust weights
- Redo same procedure with adjusted weights
- Stop at convergence
 → Or early stopping on held-out dataset
Adding Pre-trained Word Embeddings
Word Embeddings

- Representation of words in vector space
Word Embeddings

- Similar words are close to each other
 - Similarity is the cosine of the angle between two word vectors
Learning word embeddings

Count-based methods:
- Compute cooccurrence statistics
- Learn high-dimensional representation
- Map sparse high-dimensional vectors to small dense representation

Neural networks:
- Predict a word from its neighbors
- Learn (small) embedding vectors
Word vectors with Neural Networks

- LM Task: Given k previous words, predict the current word
 - For each word w in V, model $P(w_t|w_{t-1}, w_{t-2}, \ldots, w_{t-n})$
 - Learn embeddings C of words
 - Input for task

- Task: Given k context words, predict the current word
 - Learn embeddings C of words
Given words w_{t-2}, w_{t-1}, w_{t+1} and w_{t+2}, predict w_t

Note: Bias terms omitted for simplicity
Network architecture

We want the context vectors \rightarrow embed words in shared space
Note: Bias terms omitted for simplicity
Getting the Word Embeddings

Same as lookup table but trained on a language model task (predict w_t)
NER lookup table was trained on NER task (predict NE label)
Train word embeddings using language model task:
→ Labels are words w_t
→ No need for NER training data
→ Use large amounts of non-annotated data

Replace lookup table C (randomly initialized) with C (pre-trained)
Example

Window: Trump attacks BMW and Mercedes

\[w_{\text{window}} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix} \quad C = \begin{bmatrix}
0.01 & 0.8 & 0.05 & 0.02 & 0.01 \\
0.03 & 0.2 & 0.08 & 0.01 & 0.02 \\
0.04 & 0.1 & 0.04 & 0.02 & 0.04
\end{bmatrix}\]

\(C \) is randomly initialized

Before NER training, word embeddings are very bad.
After NER training, word embeddings are good for NER.
Example

Window: Trump attacks BMW and Mercedes

\[
W_{\text{window}} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
0.01 & 0.8 & 0.05 & 0.02 & 0.01 \\
0.03 & 0.2 & 0.08 & 0.01 & 0.02 \\
0.04 & 0.1 & 0.04 & 0.02 & 0.04
\end{bmatrix}
\]

C is pre-trained on LM task

Before NER training, word embeddings are good word embeddings.
NER trained word embeddings

Word embeddings trained on **NER task**

- (Collobert et al. 2011)

→ *Small* amount of **annotated** data.

- Closest words to **France**
 - Persuade
 - Faw
 - Blackstock

- Closest words to **XBOX**
 - Decadent
 - Divo
 - Versus
NER trained word embeddings

Word embeddings trained on LM task
→ Large amount of non-annotated data.

- Closest words to France
 - Austria
 - Belgium
 - Germany

- Closest words to XBOX
 - Amiga
 - Playstation
 - MSX
Results

Feedforward Neural Networks for NER (Collobert et al. 2011):

- With raw words 81.74
- With pre-trained word embeddings 88.67
- Using a gazetteer 89.59

Classifier combination with engineered features (Florian et al. 2003)

- 88.76 F1

Semi-supervised learning with linear models (Ando and Zhang 2005)

- 89.31 F1
Results

- **Pre-trained** word embeddings yield comparable results to state of the art NER systems

- To beat the best system, **additional features** are needed
 - Indicate if word is in Gazetteer or not
Word2Vec
Word2Vec

- Software train word embeddings (Mikolov. 2013)
 \[\rightarrow \text{very fast} \]

- Two models:
 - **Skip-gram model:**
 - Input is \(w_t \)
 - Prediction is \(w_{t+2}, w_{t+1}, w_{t-1} \) and \(w_{t-2} \)
 - **BOW model:**
 - Input is \(w_{t+2}, w_{t+1}, w_{t-1} \) and \(w_{t-2} \)
 - Prediction is \(w_t \)
Fast computation of Word Embeddings

- Inner workings of BOW same as language model architecture
- Some components are changed to speed up computation
 - Remove hidden layer
 - Sum over all projections
 - Replace softmax by logistic unit with negative sampling
Simplifications

Remove hidden layer and sum over context
Note: Bias terms omitted for simplicity
Simplifications

- Single **logistic unit** instead of output layer
 - No need for distribution over words (only vector representation)
 - Task as binary classification problem:
 - Given input and weight matrix say if w_t is current word
 - We know the correct w_t, how do we get the wrong ones?
 - negative sampling
Simplifications

Remove hidden layer and sum over context
Note: Bias terms omitted for simplicity
Word2Vec for NER

- Quickly train word embeddings on very large amounts of non-annotated data
- Give pre-trained word embeddings as input to NER network
Recap

- Using neural networks for NER yields good results using (almost) raw representations of words
- Example feedforward neural network for NER
- Word embeddings can be learned automatically on large amounts of non-annotated data
- Giving pre-trained word embeddings as input to neural networks improve end-to-end task
Thank you!