
CENTRUM FÜR INFORMATIONSư UND SPRACHVERARBEITUNG
STUDIENGANG COMPUTERLINGUISTIK

Master’s Thesis
in Computational Linguistics

at the Ludwig-Maximilians-Universität München

Faculty of Languages and Literatures

Boosting Performance of a Similarity Detection

System using State of the Art Clustering

Algorithms

Sabine Ullrich

CENTRUM FÜR INFORMATIONSư UND SPRACHVERARBEITUNG
STUDIENGANG COMPUTERLINGUISTIK

Master’s Thesis
in Computational Linguistics

at the Ludwig-Maximilians-Universität München

Faculty of Languages and Literatures

Boosting Performance of a Similarity Detection

System using State of the Art Clustering

Algorithms

submitted by
Sabine Ullrich

Author: Sabine Ullrich
Supervisor: Dr Maximilian Hadersbeck
Examiner: Dr Maximilian Hadersbeck
Work period: 11 March - 12 August 2019

Declaration

I hereby declare that this master’s thesis is my own work, I
have marked all citations and I have documented all sources
and materials used.

Munich, 12 August 2019

. .
Sabine Ullrich

Abstract

This thesis strives to boost the performance of the similarity search WiTTSim that finds
the most relevant sections in Ludwig Wittgenstein’s literary remains to an input query.
This is indispensable due to an average query time of 1940.13 seconds, respectively 32
minutes. Therefore, several experiments have been conducted to find the optimal com-
bination of a dimensionality reduction algorithm and a clustering algorithm. Document
clustering is deployed as a way of organising the data base beforehand such that the clos-
est, i.e. the most similar, documents can be retrieved in a reasonable amount of time. By
selecting the most relevant features by means of Singular Vector Decomposition (SVD)
in the pre-processing, the request time can be decreased to 17.19 seconds. By further
incorporating K-Means clustering with k = 150, the request time can be further reduced
to 5.40 seconds. This involves searching the closest cluster centroid for a given query, and
subsequently only comparing the datapoints in the most relevant cluster. If the input
query is an already known document in the database, a K-Nearest Neighbour search has
been implemented to retrieve the most similar documents, yielding high-quality results in
only 0.37 to 8.23 seconds.

Diese Arbeit strebt eine Performance-Verbesserung der Ähnlichkeitssuche WiTTSim an,
welche die ähnlichsten Abschnitte in Ludwig Wittgensteins Nachlass zu einer bestimm-
ten Suchanfrage ermittelt. Eine Beschleunigung des Prozesses ist zwingend notwendig, da
eine Suchanfrage durchschnittlich 1940,13 Sekunden, respektive 32 Minuten, benötigt. Da-
her wurden mehrere Experimente durchgeführt, um die optimale Kombination zwischen
Dimensionsreduktion und Clustering Algorithmus zu finden. Das Clustering der einzel-
nen Textabschnitte ist dabei eine Vorstrukturierung der Texte, sodass die ähnlichsten
Abschnitte in einer angemessenen Zeit ermittelt werden können. Mit Hilfe einer Dimensi-
onsreduktion mittels Singular Vector Decomposition (SVD) kann die Zeit bereits auf 17,19
Sekunden reduziert werden. Mit der Erweiterung eines K-Means Clustering mit k = 150,
kann die Anfragezeit sogar auf 5,40 Sekunden verringert werden. Dieser Prozess umfasst
die Ermittlung des relevantesten Clusters und einem anschließenden Vergleich mit den
darinliegenden Datenpunkten. Im Falle einer bereits bekannten Suchanfrage, d.h. wenn
das Dokument bereits in der Datenbank vorhanden ist, wurde eine K-Nearest Neighbour
Suche implementiert, um die ähnlichsten Textabschnitte zu ermitteln. Dadurch können
Ergebnisse von höchster Qualität in nur 0,37 bis 8,23 Sekunden bereitgestellt werden.

I

Acknowledgements

I would like to offer my special thanks to my supervisor Dr. Maximilian Hadersbeck for his
outstanding commitment to encouraging students to get involved in science. The research
group around WiTTFind and the Wittgenstein Advanced search tools is truly unique,
connecting computational linguistics with the field of philosophy. I highly appreciate to
be part of this interesting and interdisciplinary project. Thank you for encouraging me
to continue my student research and for the grand opportunity to develop and implement
own ideas. Thank you for the constructive feedback and setting me thinking during our
regular discussions. I am endlessly grateful to have had such a wonderful supervision and
unwavering guidance and support during the entire time.

I am particularly grateful for the assistance by Alois Pichler from the Wittgenstein
Archives at the University of Bergen, and for the valuable and expensively hand-labelled
evaluation data he provided. His expertise and the constructive feedback have been a
great help in developing and evaluating the clustering algorithms.

I would also like to thank everyone at CIS for their kind support and the lively discus-
sions: Dr. Benjamin Roth for his valuable advice concerning useful evaluation criteria, and
Daniel Bruder for the discussions and critical questions that were inspiring in all matters.
A special thanks goes to Thomas Schäfer for providing disk space and working memory
for the calculations.

Above all, I would like to thank my parents with all my heart for their relentless support
during my educational career. I am endlessly grateful for all they have done for me, for all
the encouragement when I needed it most. I want to thank my sister Monika - her advice
and feedback on structuring scientific work have been helpful in all respects. Lastly, I
would like to thank my wonderful friends who helped me to escape from my desk to clear
my mind from time to time. I coudn’t have finished this thesis without knowing all these
wonderful people behind me.

III

Contents

Abstract I

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 3
1.3 Outline . 3

2 Related Work 5
2.1 Partitioning Approaches . 5
2.2 Deep Learning Approaches . 6
2.3 Kohonen Self-Organizing Maps . 8
2.4 Density-based Approaches . 9
2.5 Other Approaches . 10

3 Methodological Overview 13
3.1 Feature Extraction . 13
3.2 Dimensionality Reduction . 14

3.2.1 Singular Value Decomposition . 15
3.2.2 Principal Component Analysis . 15
3.2.3 Linear Discriminant Analysis . 16
3.2.4 Sparse Random Projection . 17
3.2.5 Uniform Manifold Approximation and Projection 17

3.3 Document Clustering Methods . 18
3.3.1 Partitioning Methods . 18
3.3.2 Probabilistic Methods . 21
3.3.3 Density-Based Methods . 23
3.3.4 Hierarchical Methods . 25
3.3.5 Kohonen Self-Organizing Maps . 26
3.3.6 Others . 27

3.4 K-Nearest Neighbour Search . 28
3.4.1 K-d tree . 29
3.4.2 Balltree . 30

3.5 Evaluation Metrics . 31
3.5.1 Unsupervised Methods . 31
3.5.2 Supervised Methods . 32

3.6 Summary . 33

4 Implementation 35
4.1 Data Collection . 35
4.2 Data Preprocessing . 36
4.3 Dimensionality Reduction . 37
4.4 Experimental Setup . 38
4.5 Integration into WiTTSim . 38
4.6 Evaluation . 41

V

Contents

5 Experimental Results and Evaluation 43
5.1 Optimal Feature Space . 43
5.2 Optimal Algorithm . 44

5.2.1 Cluster Algorithm Comparison . 45
5.2.2 K-Nearest Neighbour Search . 48

5.3 Performance Evaluation . 48
5.4 Challenges . 49

5.4.1 Curse of Dimensionality . 49
5.4.2 Parameter Setting . 50
5.4.3 Cluster Structure . 50

5.5 Discussion . 51

6 Conclusions and Future Work 53
6.1 Conclusions . 53
6.2 Future Work . 54

List of Abbreviations 55

Appendices 57
A Dataset Details . 59
B Dimensionality Reduction Results . 67
C Clustering Results . 69
D Detailed Scores . 77

List of Figures 79

List of Tables 83

CD Content 85

Bibliography 87

VI

1 Introduction

“ But is a bluish green similar to a yellowish green or not? In certain
cases we should say they are similar and in others that they are most
dissimilar. ”

Ludwig Wittgenstein [100], Ts-310,87

Defining similarity is not straightforward and may even be defined differently depend-
ing on the given context or situation, as stated by the philosopher Ludwig Wittgenstein
in 1934. Analogical to colours, defining the similarity of textual content is equally chal-
lenging, and is even more difficult to be specified by machines. However, a vast amout
of formal definitions and similarity measures exist that aim to automatically calculate
similarities amongst documents [29, 62, 75]. Concerning Ludwig Wittgenstein’s Nachlass,
searching for similar remarks can be a useful preselection of possible similar remarks, that
serves as a basis for new philosphical interpretations.

The introductory chapter will be further subdivided as follows. Section 1.1 will formulate
the motivational background of the topic, while Section 1.2 will introduce the scientific
aim of this work. The chapter will conclude in Section 1.3 by giving an overview of the
entire structure of the thesis.

1.1 Motivation

With the Wittgenstein Nachlass being added to the UNESCO Memory of the World reg-
ister in October 2017 [117], the electronic accessibility of his literary remains has gained
an increased importance for the common documentary heritage. The open source search
engine WiTTFind1 grants electronic access and searchability and further offers several
features to allow for a deeper analysis on the philosophical texts by incorporating the
Wittgenstein Advanced Search Tools (WAST) [54,79,113,114]. One of the tools that has
been developed is the Wittgenstein Similarity search (WiTTSim), a similarity search for
retrieving the top k similar remarks to a specified input text [132].

The key challenge of WiTTSim is, however, its brute force approach that simply com-
pares all remarks to each other which leads to a tremendously high complexity and makes
the comparison highly inefficient: Retrieving the most similar remarks to a given query
q requires approximately 30 minutes which is why WiTTSim does not extend the WAST
yet. The long computation time can be explained through the high feature quantity and
the large number of approximately 55,000 remarks. Although the Wittgenstein Nachlass
is a limited, closed corpus, the incorporated features and the large number of texts to be
compared in the sparse vector space make a user-friendly search impossible.

1Accessible at http://wittfind.cis.lmu.de

1

http://wittfind.cis.lmu.de

1 Introduction

To overcome this complexity problem, a sophisticated method for diminishing the search
space will be presented. One way of doing so is grouping similar text documents together,
also known as document clustering. This method emerged from the field of data mining to
extract knowledge from data, but can equally be used to summarise a corpus by grouping
together similar topics within a closed corpus [7]. After clustering the documents, only
remarks in the most relevant cluster will have to be taken into account which will diminish
the search space drastically.

For example: Suppose the query is the text given in Ts-228,136[5]2:

Meine Wahl ist frei, heißt nichts anderes als: ich wähle. Und daß ich manchmal wähle,
steht doch nicht im Zweifel. Was man “frei” nennt, ist die Wahl. Zu sagen “Wir
glauben nur, daß wir wählen” ist Unsinn. Der Vorgang, den wir “wählen” nennen,
findet statt, ob man das Resultat der Wahl sich nach Naturgesetzen voraussagen läßt,
oder nicht.

The task of the similarity search is to retrieve the top k elements. Instead of comparing
55,000 elements pairwise, the ideal clustering containing 150 clusters is pre-saved and can
be used for the comparison. In this example, the cluster closest to Ts-228,136[5] contains
762 remarks. Therefore only 912 similarity pairs will be calculated, 150 comparisons with
each cluster centre for retrieving the correct cluster, and 762 points in the retrieved cluster.
This reduces the search space by 98.3% and the search time to 5.40 seconds.

Figure 1.1: Comparison of the brute-force approach and the newly developed methods
incorporating dimensionality reduction and document clustering. Each bucket
represents 1,000 remarks. By applying SVD and K-Means on the data, the
correct cluster is selected and only 912 remarks, i.e. almost one bucket, has to
be searched. This reduces the search time from 32 minutes to 5 seconds.

2Typescript 228, page 136, remark number 5

2

1.2 Contribution

1.2 Contribution

A lot of previous work focuses on classifying documents by incorporating a ground truth
defined by domain experts. However, the task of clustering is to group similar data points
together, which would be redundant if the labels were known beforehand. Therefore, this
work only takes into account unsupervised algorithms that can be applied to any realistic
setting where no ground truth labels are available.

In the first step, the features were reduced to a reasonable amount. The optimal algo-
rithm for this is found to be Singular Value Decomposition (SVD) which reduces the data
in short time and allows for storing the model to be reloaded for the query. In the second
step, the reduced data is clustered. Experiments show that ideally this is done by using
K-Means with k = 150. Being the best fitting combination of reduction and clustering,
the methods are then integrated into WiTTSim such that only the relevant clusters will
be searched and the search space can be drastically reduced.

Furthermore, two K-Nearest Neighbour (KNN) algorithms were tested. These algo-
rithms map the data systematically to a k-d tree and a balltree respectively, such that a
new input query q can be located in the tree and only parts of the tree have to be searched.
The performance is compared with the clustering approach and results show that KNN
yields excellent results when searching for a document that already exists in the database.

1.3 Outline

The remainder of this thesis is structured as follows. Chapter 2 introduces related work
in the field of document clustering. Then, the necessary theoretical background including
used terminology and methodology is provided in Chapter 3. Next, Chapter 4 covers the
entire implementation of the clustering pipeline, including feature extraction, dimension-
aliy reduction, document clustering, integration into WiTTSim, and evaluation techniques
used. The experimental results will be presented in Chapter 5, including an evaluation
of the dimensionality reduction, the clustering methods and parameters, and the KNN
search. The work concludes in Chapter 6 with an overall summary and proposals for
future work.

3

2 Related Work

Over time, an extensive literature has developed on clustering textual documents.1 A
large number of existing studies in the broader literature have developed and tested var-
ious clustering algorithms. A closer look to the literature, however, reveals a number of
gaps and shortcomings. For instance, most of the clustering algorithms have been applied
to artificial textual data where the data points are clearly separated from each other. Also,
a vast majority of algorithms have been evaluated in a supervised way. In more natural
settings, however, data points are not necessarily separated clearly and in many cases no
ground truth labels are available.

In order to get an overview of prior research, this chapter will present existing ap-
proaches in the field of document clustering in order to identify useful algorithms that can
be applied to our underlying database. Please note that the presentation of papers will
be non-exhaustive but will give a good overview of existing research.

The chapter will be further subdivided as follows. Section 2.1 will present partitioning
approaches, and Section 2.2 will explain clustering methods using deep learning tech-
niques. Although they could also be classified as deep learning approaches, Kohonen
self-organizing maps will be covered separately in Section 2.3. Scientific publications us-
ing density-based methods will be introduced in Section 2.4. Other approaches that do
not fall in the above listed categories will be outlined in Section 2.5.

2.1 Partitioning Approaches

Paritioning algorithms partition the datasets into groups of similar data points that are
closer to each other than to points in other clusters. One of the most widely used algo-
rithms is the K-Means algorithm [64]. K-Means was independently discovered by Mac-
Queen (1967) [83], Ball and Hall (1956) [15], Lloyd (1982) [81], and Steinhaus (1955) [124].

The K-Means algorithm partitions the data into k clusters such that the squared error
between the mean of a cluster and the points in the cluster is minimised. Therefore, sev-
eral parameters have to be specified by the user beforehand. These parameters include
the number of clusters k, the cluster initialisations and the distance metric. The cluster
initialisations form the initial cluster centroids, i.e. representative points in the cluster
centres. Each data point is then assigned to its closest centroid and the centroids are re-
estimated. These steps are repeated iteratively until the algorithm converges. A detailed
description of the algorithm will be given in Section 3.3.1.

Partitioning approaches are widely used and have been improved over and over. Two
common variants of K-Means are ISODATA [15] and FORGY [48]. In fuzzy C-Means [42],
the hard clustering from K-Means is replaced by a soft clustering technique where data
points can belong to more than one cluster. Fuzzy C-Means has also been further improved

1About 411,000 hits in 2009, 1,130,000 hits until 2014, and 2,110,000 hits in 2019 on https://scholar.
google.de/ concerning the clustering of text documents. (Last accessed: 23 July 2019)

5

https://scholar.google.de/
https://scholar.google.de/

2 Related Work

over the years [18, 19, 47, 89]. A hierarchical version of K-Means has been presented by
Steinbach et al. with their bisecting K-Means algorithm [123]. Pelleg and Moore accelerate
K-Means using k-d tree2 [97] and find a way to automatically determine the parameter
k presenting the X-Means algorithm [98]. K-Medoid enables non-numerical data to be
clustered [112], while Kernel K-Means [118] allows for clustering nonlinear, arbitrary data.

Practical applications have been presented in various different contexts [7,8,140]. Allah-
yari et al. [8] present, i.a. the application of partitioning clustering methods in biomedical
and health care domains using Latent Semantic Indexing (LSI), Probabilistic Latent Se-
mantic Indexing (PLSA) and topic models. Wei et al. [140] enrich the data beforehand
with semantic features to include word sense disambiguation, along with lexical chains to
address synonym and polysemy problems. Al-Anazi et al. [7] compare K-Means, K-Means
fast, and K-Medoid, along with three different similarity measures namely cosine similar-
ity, Jaccard similarity, and Correlation Coefficient. They find that the best performance
is achieved using K-Means and K-Medoids combined with cosine similarity. Further, they
state that the resulting clusters improve as the value of k increases. Afonso et al. [3]
apply partitioning clustering on graphs representing the Web or social networks, and find
that partitioning approaches are particularly time-efficient and yield good results on graph
data. For accelerating the clustering progress, Schütze et al. [120] suggest to speed up the
distance calculations including LSI and truncation. They find that clustering quality does
not suffer while gaining improved performance. However they do not advise to project
these efficiency measures onto a similarity search since finding similarities is a lot more
fine-grained than classical document clustering.

2.2 Deep Learning Approaches

Xie et al. [145] present Deep Embedded Clustering (DEC), a method that simultaneously
learns feature representations in a space Z and a set of k cluster centres using Deep Neu-
ral Networks (DNNs). Thereby, a mapping from the data space X to a lower-dimensional
feature space Z is required along with a Stochastic Gradiant Descent (SGD) via back-
propagation on a clustering objective to learn the mapping. The unsupervised algorithm
is designed to be applied to real data, since groundtruth labels for supervision are often
not available for hyperparameter cross-validation. DEC runs in two phases: Firstly, the
parameters are initialised with a deep autoencoder. Secondly, the clustering parameters
are optimised by iterating between computing an auxiliary target distribution and min-
imising the Kullback-Leibler divergence. This second phase iteratively refines clusters with
an auxiliary target distribution derived from the current soft cluster assignment. They
compare their own algorithm against K-Means and two spectral-based clustering algo-
rithms (LDMGI and SEC) that use a Laplacian matrix and various transformations to
improve clustering performance. DEC shows significant improvements over state-of-the-
art clustering methods in terms of both accuracy and running time on two image datasets
(MNIST, STL-10) and one textual dataset (REUTERS). It is especially robust with re-
spect to hyperparameter settings which is important when no cross-validation is available
in unsupervised tasks.

A convolutional clustering method for unsupervised learning is introduced by Dundar
et al. [41] presenting an enhanced version of K-Means clustering. In their work, a deep
Convolutional Neural Network (CNN) is trained that combines the strengths of an unsu-

2Please refer to Section 3.4.1 for further details regarding k-d tree.

6

2.2 Deep Learning Approaches

pervised clustering algorithm, K-Means, and CNNs when only few labelled data is avail-
able. Thereby, K-Means is modified such that it learns filters that are less redundant at
neighbouring locations. Using CNNs along with clustering algorithms has shown immense
performance problems after the first layer, also known as the curse of dimensionality. The
optimised learning algorithm helps to avoid this replication of similar features and extracts
only distinctive features from the feature space. Although their method has been tested
in the field of image recognition, the convolutional clustering method can also be applied
to textual data in a high-dimensional feature space.

Xu et al. [146] tackle the problem of sparsity in clustering short texts. In short texts
words often appear only once, hence Term Frequency-Inverse Document Frequency (TF-
IDF) will not work. Therefore, they develop a short text clustering system based on deep
feature representation, i.e. semantic representations, learned from via Dynamic CNN
models. The clue is that this model is an entirely self-taught learning framework which
does not rely on any external labels or tags and does not require Natural Language Pro-
cessing (NLP). For these semantic representations, Xu et al. use the original keyword
features and add a locality-preserving constraint. Further, word embeddings, meaning the
distributed representation for each word learnt from an external corpus, are taken into
account using word2vec. They compare the clustering algorithms K-Means, spectral clus-
tering using Laplacian Eigenmaps (LE), and Average Embedding, and find that on search
snippets and StackOverflow data, Spectral Clustering and Average Embedding perform
significantly better than K-Means.

Another DNN-driven method is presented by Yang et al. [148], introducing an algo-
rithm that combines dimension reduction and K-Means in one step, as can be seen in
Algorithm 1. Thereby they map high-dimensional data xi to its representation hi in a
latent space h where K-Means is suitable for clustering. Subsequently, a loss function
measures the reconstruction error.

Initialisation{Perform T epochs over the data}
for t = 1 : T do

1. Update network parameters;
2. Update assignment;
3. Update centroids;

end
Algorithm 1: The alternating Stochastic Gradient Descent (SGD), presented by [148].

An overview is given in Figure 2.1 where the left side of the “bottleneck” illustrates
the forward layers, or encoding, that transform raw data to a low-dimensional space. On
the right side, or the decoding, that data is reconstructed from the latent space. The
K-Means clustering is then applied to the middle, hence the bottleneck layer in the figure.
Both sids are implemented using Rectified Linear Unit activation-based neurons. Yang et
al. include an empirically effective initialisation method and an alternating optimisation-
based algorithm for handling the cost function in their Deep Clustering Network (DCN).
Results show that, compared to many others including basic K-Means, spectral clustering,
and DEC, DCN can outperform existing methods in balanced as well as in unbalanced
scenarios.

7

2 Related Work

Figure 2.1: Proposed deep clustering network from [148].

Simultaneously learning a DNN along with a clustering algorithm can be improved by
learning an embedding space along with subspaces instead of determining the clusters
centroid-based [154]. The proposed algorithm can fit every sample into its corresponding
subspace and update the subspaces accordingly, even from a bad initialisation [154]. In
more detail, k-subspace clustering and convolutional auto-encoder are combined in an end-
to-end paradigm where no layer-wise pre-training is required. The updating of subclusters
is efficient and easy to scale up to large datasets and results show that cluster accuracy
can be increased compared to other algorithms, such as K-Means, DEC, or DCN.

2.3 Kohonen Self-Organizing Maps

The Self-Organizing Map (SOM) is a type of unsupervised feedback neural network that
enables data clustering, pattern recognition, information visualization and data min-
ing [153]. It maps high-dimensional input data onto a two-dimensional output grid while
preserving the original topology of the data. Methodological details will be given in Sec-
tion 3.3.5.

The original idea of self organization has been suggested by Willshaw and von der
Malsburg in 1976 [142], as well as by Takeuchi and Amari in 1978 [9]. Several years later,
Kohonen simplified and optimised their theories and proposed a more practical and ro-
bust SOM in 1982 [66,67,153]. Ever since numerous versions, generalisations, accelerated
learning schemes, and applications of the SOM have been developed [68].3

For example, the SOM-based algorithm WEBSOM allows for organising large document
datasets on the web efficiently [60, 61, 68]. Its idea is to order and organise automatically
arbitrary textual document collections and enable their interactive browsing and explo-
ration [60]. The first step is to encode the texts which is done by histograms retrieved from
so-called “self-organizing semantic maps” [108]. They describe the word context in form of
vectors and can therefore be compared to word embeddings that enable a consideration of
synonymous words. In the next step, results are blurred with a Gaussian convolution ker-
nel to adjust small invariances and the encoding is saved to a hash table for performance
reasons. The resulting SOM reflects the relations between i.a. newsgroup articles, and
other types of similar articles, but can also applied to larger web pages or email messages.
In WEBSOM, categories may overlap, i.e. a web page can address multiple topics.

3A comprehensive list of 5,384 scientific papers that include SOMs in their research has been collected
by Oja et al. [91] and can be accessed at http://www.cis.hut.fi/nnrc/refs/.

8

http://www.cis.hut.fi/nnrc/refs/

2.4 Density-based Approaches

Bação et al. [12] find that a SOM is even less prone to local optima and that the search
space is better explored than in a classical K-Means clustering. To motivate the choice
of SOMs over neural networks, Kangas et al [65] introduce two variants that exceed the
results of conventional methods for clustering and classification. Firstly, they present a
dynamic weighting algorithm that weighs the input data of each input cell for improving
the ordering when the input data is highly unstructured. Secondly, they define the neigh-
bourhoods in the learning algorithm by means of a minimal spanning tree, which assigns
arcs between the nodes so that all nodes are connected through single linkages. Moreover,
the total sum of the lengths of the arcs is minimised, which provides a better and faster
approximation of distinctive structured density functions.

In order to get good insight into the cluster structure, a SOM can be applied as an
intermediate step before performing any other clustering method on the data, such as hi-
erarchical agglomerative clustering or partitive clustering. Therefore, the SOM produces
the prototype set and the second stage produces the actual clustering. This intermediate
step helps to effectively visualise and explore properties of the data [134]. Furthermore,
SOMs can have additional applications in other NLP fields, such as the improvement of
speech recognition and word sense disambiguation [59].

2.4 Density-based Approaches

Ester et al. [43] present a formal model for density-based clusters, as well as a database-
oriented algorithm Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) to find clusters that adhere to this model. Therefore, they apply a simple minimum
density level estimation based on a threshold for the number of neighbours minPts within
a specified radius ε. Objects with more than the number of minPts neighbours within ε
are considered to be a core point [119]. With this method, DBSCAN finds clusters that
satisfy the minimum density, separated by areas of lower density [119]. The methodologi-
cal details of this appraoch will be further explained in Section 3.3.3.

Their algorithm has been adapted and improved ever since [25, 27, 69]. For instance,
the HDBSCAN (Hierarchical DBSCAN) [85] algorithm abandoned the concept of border
points, and considers only core points to be part of a cluster at any time. It defines,
along with LSDBC (Locally Scaled Density Based Clustering) [20], versions of DBSCAN
variants for finding hierarchical clustering results.

Another variant of DBSCAN is OPTICS (Ordering Points To Identify the Clustering
Structure), which does not produce a clustering explicitly. Instead, several distance pa-
rameters are processed at the same time and the density-based clusters with respect to
different densities are constructed simultaneously [10].

Lastly, DenClue (DENsity-based CLUstEring) [58] considers alternative kernels for den-
sity estimation. It should be pointed out that for any of the density-based algorithms the
choice of a suitable value of ε is indispensable, i.e. ε should not be extremely high or low,
and in general, extreme parameter settings should be avoided. Further, evaluation should
be done with respect to the utility of the resulting clusters [51,119].

9

2 Related Work

2.5 Other Approaches

Other approaches not included above comprise for example hashing-based clustering tech-
niques, which are especially useful for large amounts of data and are widely used for
decreasing complexity in the calculation of similar documents [31, 104, 122, 152]. This is
mainly done by using Locality-Sensitive Hashing (LSH) which can reduce the complexity of
n data points with k features from O(n2k) to a complexity proportional to O(nk) [104,152].
The idea of LSH has been introduced by Broder [24] and bases on the use of hash functions
for fingerprinting of very large strings by Rabin [102].

LSH is a randomised and probabilistic algorithm and works as follows: Represent the n
number of data vectors in a d-dimensional space. Then generate a random number k of
hyperplanes and assign binary values to the hash value of each data point depending on
which side on the hyperplane it is located. In other words, each data point in the vector
space is represented by a hash value of length k (see Table 2.1 as hash table for Figure 2.2).
Its goal is to have similar hash codes for nearby points, hence points with similar hash
values should be close in the vector space. Repeat these steps l times to get l different
hash tables. Incorrect hash values, are eliminated by comparing the different hash tables.

Figure 2.2: Separating the vector space by randomly chosen hyperplanes and defining
binary values for the hash value of each data point.

Hash 1 Cluster 1 Hash 2 Cluster 2

100 abd 001 d
001 e 010 b
110 c 001 ace

.. ..

Table 2.1: Calculating the hash values for Figure 2.2. The first value reflects, which data
points lie on the side 1 of the blue line, and 0 of the red and green line, yielding
the cluster a, b, and d. The remaining values are determined equivalently.

An efficient variant of LSH is SimHash [115] where hyperplanes are not stored but re-
created on-the-fly. After the preprocessing, i.e. tokenizing, stopword removal and so forth,
a unique b bit binary hash for every word is computed. Then, all zeros are converted to
−1 and multiplied by the word weight, which is usually done using TF-IDF weighting.
Each of the columns is summed up and set to 1 if the sum is greater than zero, and set
to 0 otherwise. This creates the vector V which forms again the basis of the document
fingerprint.

10

2.5 Other Approaches

Conventional unsupervised clustering methods partition data points in an n-dimensional
space without any relationship information given. However in some cases, additional infor-
mation can be provided, such as cluster labels of some observations, or certain data points
may be known to belong to the same cluster. In these cases, semi-supervised clustering
methods can be applied to partially labelled data which yields better results than applying
supervised data classification on datasets where only a small set of labelled data is pro-
vided [13]. For example, labelled instances can be integrated into the classical K-Means
algorithm, also known as constrained K-Means clustering [13]. In that case, labelled ob-
servations are always assigned to their known cluster even if they are located closer to the
mean of another cluster (see Figure 2.3). As a variant, seeded K-Means clustering [16] uses
the labelled data only for the initial seeding step. Therefore, the labelled data provides
information for the choice of the initial cluster centres, while the following steps do not
differ from the classical K-Means algorithm. Other semi-supervised clustering methods
comprise i.a. the use of kernels [11, 45], silhouette capturing [155], and direct interaction
with domain expert feedback [44,72].

Figure 2.3: Semi-supervised approach to clustering using the constraint K-Means algo-
rithm. The blue circles and red squares represent labelled data. The black
stars show unlabelled data. All data points are clustered with respect to the
predefined class labels.

A preprocessing step based on word frequency is presented by Patki et al. [94], suggest-
ing a custom feature selection method based on documents where each feature is equivalent
to one word. Firstly, unfrequent words are disregarded, i.e. features are only considered
when they occur in at least k documents, where k depends on the number of documents
to be clustered. Secondly, short words are excluded from the feature vector which means
only features whose length l ≥ 3 are considered.

Especially for high dimensional data spaces it can be useful to examine subspaces of
the original dataspace separately. In doing so, relevant features can be unveiled and
clusters can be extracted. Therefore, the data has to be separated into subsets and the
most relevant dimensions determined [135]. It has to be noted that the retrieved clusters
are possibly located in overlapping subspaces [93]. Subspace clustering is divided into
top-down search and bottom-up search. The former includes iterative methods where the
initial clustering is performed onto the full set of dimensions and then the subspaces of each
cluster evaluated. A large number of top-down approaches have been presented, including
PROCLUS [4], ORCLUS [5], FINDIT [144], δ-Clusters [149], and COSA (Clustering On
Subsets of Attributes) [50]. Bottom-up searches on the other hand are grid-based methods,
that means, dense regions in low dimensional space are identified and combined to form
clusters. Algorithms that involve on bottom-up subspace clustering are i.a. CLIQUE [6],
ENCLUS [32], MAFIA [52], Cell-based Clustering (CBF) [30], CLTree [80], and DOC
(Density-based Optimal projective Clustering) [101].

11

3 Methodological Overview

In this work, several clustering techniques will be presented and evaluated for boosting
the performance of WiTTSim. In order to understand the implementation process and
the analysis presented later, a short prelude discussing the underlying methodology and
utilised technical terminology is necessary. A general overview of a common clustering
pipeline is illustrated in Figure 3.1. The pipeline comprises a translation from documents
into vectors, a feature selection and selection of clustering algorithm, a validation of clus-
ters and interpretation, and possible re-selection of algorithms. Subsequently, knowledge
is gained from the clustering outcome and the search room can be restricted.

Figure 3.1: Pipeline for Document Clustering adapted from [147].

This chapter is subdivided as follows: Section 3.1 will overview the feature extraction of
the underlying database. In Section 3.2, dimensionality reduction methods are presented
as a crucial preprocessing step of clustering high-dimensional data accurately. Section 3.3
will explain various types and algorithms in the field of document clustering in more
detail. Further, an efficient organisation algorithm based on KNN trees will be presented
in Section 3.4, which may also be applicable in boosting performance of WiTTSim. The
chapter concludes in Section 3.5 with an overview of common evaluation methods for
document clustering.

3.1 Feature Extraction

For the feature extraction, each of the preprocessed documents is translated into binary
feature vectors, which has been implemented in [132]. This means that the documents can
be represented thereafter in the Vector Space Model (VSM), where each dimension corre-
sponds to one feature of the input vector. The features that have been taken into account
are the words themselves, the lemmas, the Part-of-Speech (POS)-Tags, and the respective
synonyms. For extracting the corresponding synonyms of the words, GermaNet [55, 57]
has been employed in the feature extraction. GermaNet is a lexical-semantic net that
groups lexical units such as nouns, verbs, and adjectives with similar semantic concepts
into so-called synsets by defining their semantic relations. The equivalent synonym ex-
traction for the English language has been implemented using WordNet [46,88].

13

3 Methodological Overview

Technically the document representation can be defined as follows: LetD = d1, d2, ..., dM
be the collection ofM documents where each document d is translated into an n-dimensional
vector in the VSM. Each position of the vector represents different characteristics C =
c1, c2, ..., cn of the text. As explained above, these features comprise the words them-
selves, the lemmas, POS tags, and synonyms. The number of occurence of these features,
i.e. their frequency fd(c), is also denoted in the vector for each document. The symbolical
vectors for two of the documents are depicted in Table 3.1.

remark w1 w2 ... wm l1 l2 ... ln p1 p2 ... po s1 s2 ... sp
Ms-101,IIr[1] 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1

Ms-101,IIr[2] 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0

... 0 1 ... 1 0 ... 0 1 ... 0 1 ... 1 0

Table 3.1: Symbolical vector structure for two remarks in Manuscript 101 – Ms-101,IIr[1]
and Ms-101,IIr[2] – where each vector stores the feature information regard-
ing the occurrence of a word (w), its lemma (l), POS-tag (p), and respective
synonyms (s). (Table adapted from Tan et al. [127])

The most similar documents, i.e. the closest vectors in the n-dimensional vector space,
are determined by computing the cosine distance between the vectors. Since the vector
dimension n is tremendously high for the underlying database and because of the large
number of remarks to be compared, all vectors are computed in advance. This step
is only possible, since the search space is closed and no further documents are added
dynamically. However, the large number of features leads to severe problems for the
clustering process, as high-dimensionality leads to data sparsity where all data points are
far from one another. This is why a dimensionality reduction method will be essential, as
described in the following section.

3.2 Dimensionality Reduction

An important step in data mining is the task of dimensionality reduction. With an in-
crease of dimensionalities, clustering becomes significantly more complex and more time-
consuming compared to clustering data in lower dimensional space. While a larger number
of dimensionalities allows to store many input variables, not all intuitions developed in
spaces of low dimensionality will generalize to spaces of many dimensions, also known
as the curse of dimensionality [23]. In sparse high-dimensional spaces, reducing dimen-
sionalities by eliminating redundant or irrelevant features increases the performance of
clustering, which can either be achieved in a supervised or unsupervised way. This means
that for each document vector with length n, eliminate i unnecessary features in order to
find the minimum set of attributes such that the resulting probability distribution of the
clusters is as close as possible to the original distribution [56,78]. The new vector space is
then of k = n− i dimensions and reduces the space from Rn to Rk.

Various approaches exist for mapping the higher dimensional space to a lower dimen-
sional space. Depending on the information base, either supervised or unsupervised ap-
proaches can be taken into account. Supervised methods can be applied to data where
the classes are known in advance, and the reduction can learn relevant features from the
labelled data basis. A well-known algorithm is for instance Linear Discriminant Analysis
(LDA). Contrarily, unsupervised reduction methods attempt to reduce the dimensionality

14

3.2 Dimensionality Reduction

by retaining as much information as possible without any ground truth labels provided.
Two of most popular unsupervised approaches are SVD and Principal Component Analy-
sis (PCA) [78]. The most significant concepts of dimensionality reduction will be presented
in the following sections.

3.2.1 Singular Value Decomposition

SVD is a generalization of the eigenvalue decomposition. It states that any data matrix
M = m × n in Rm×n with m objects and n dimensions can be decomposed such that
M = UΣV T where U is a m× r column-orthonormal matrix, Σ is a diagonal r× r matrix,
and V is a r × n column-orthonormal matrix, see Figure 3.2.

Figure 3.2: The decomposition used in SVD, taken from [131]. The first rectangle repre-
sents the original space M = m × n with m objects and n dimensions. The
space can be partitioned into M = UΣV T where the singular values in Σ are
set to U such that the corresponding columns in U and rows in V T can be
eliminated.

In order to reduce the number of dimensionalities, the smallest singular values in Σ are
set to U and the corresponding columns in U and rows in V T are eliminated. The number
of dimensions to be eliminated depends on the result accuracy. That is to say, enough
singular values should be retained, such that at least 90% of the energy in Σ is preserved. In
data spaces with a large number of dimensionalities, SVD can yield more accurate results
than other algorithms. This is because of the data sparsity in large dimensions where
determining the largest covariance, as required by other methods, can be problematic. [71]

3.2.2 Principal Component Analysis

Based on SVD, PCA is similarly a linear dimensionality reduction method, first presented
by Pearson [95]. Although various dimensionality reduction methods exist, PCA is the
most popular one [133]. Its goal is to find k dimensions that best fit onto the data and
that maintain a reasonably high variance in the data.

PCA projects m data points x1, x2, ..., xm ∈ Rn from Rn to a lower dimensional space
Rk by computing the following steps: First, the data is normalized to have a mean of 0
and a standard deviation of 1. Then, the covariance matrix is computed by Equation (3.1)
[33,76]:

Σ =
1

m

n∑
i=1

(xi)(xi)
T (3.1)

where T is the transposed vector (that is n× 1→ 1× n).

15

3 Methodological Overview

After obtaining the covariance matrix, compute the k orthogonal principal eigenvectors
of Σ u1, ..., uk ∈ Rn, which are the orthogonal eigenvectors of the k largest eigenvalues.
Lastly, the eigenvectors are sorted as per increasing eigenvalue to maximize the variance
among all k-dimensional spaces. An illustration for finding the maximum variance is given
in Figure 3.3.

Figure 3.3: Determining the maximum variance among the data points in PCA. The first
principal component (PC1) represents the axis with the highest variance. The
second principal component (PC2) is orthogonal to PC1.

An extension of PCA is the Independent Component Analysis [34] which imposes in-
dependence up to the second order and utilises Mutual Information (MI) as a function of
cumulants of increasing orders. Since data points in a feature space are not necessarily
linear, the methods above can quickly become problematic in many cases.

Therefore, Kernel PCA is introduced, which is another modification of PCA that can
be applied to non-linear data [71,133]. Its idea is to implicitly create a linear space using
the so-called Kernel trick : thereby a kernel function

K(x, y) = φ(x)Tφ(y) (3.2)

which is the scalar product of the two matrices, is calculated pairwise. The function φ is
mutable and stands e.g. for the degree d polynomials:

K(x, y) = (xT y + c)d (3.3)

3.2.3 Linear Discriminant Analysis

Instead of maximising the variance of the data points, LDA maximises the separability
among known categories [14,130,150]. This is done by inserting a new axis and projecting
the data onto it.

In order to find the ideal new axis, two criteria have to be fulfilled. Firstly, the dis-
tance between the means µi of the classes has to be maximized. Secondly, the variation
within each class s2, also known as scatter, has to be minimized within each category.
Equation (3.4) shows how to combine these two criteria for two classes. [14]

(µ1 − µ2)2

s21 + s22
(3.4)

16

3.2 Dimensionality Reduction

An illustration of the algorithm is given in Figure 3.4, depicting the projection of a two
dimensional data space onto a new axis. The two mean values along with the scatter for
each class are also marked.

(a) Finding the best fitting axis
and mapping the data points
onto it.

(b) Projecting the data points
onto the new axis and max-
imising the distance of the
means µ1 and µ2, while min-
imising the scatters s21 and s22.

Figure 3.4: Linear Discriminant Analysis for dimensionality reduction from R2 to R.

3.2.4 Sparse Random Projection

In Random Projection (RP) [1,2,77], the original high-dimensional data is projected onto
a random lower-dimensional subspace using a random matrix whose columns have unit
lengths. The original set of N d-dimensional data points is projected onto a k dimensional
subspace with k < d using a random k × d matrix R, as shown in Equation (3.5). [22]

XRP
x×N = Rk×dXd×N (3.5)

RPs are based on the Johnson-Lindenstrauss lemma [36], that proves that points in high
dimensional Euclidean space can be mapped into a lower dimensional Euclidean space such
that the distance between the points can be nearly preserved. Using random projetions
is computationally significantly less expensive than other linear reduction techniques that
have to expensively compute the orthogonal axes. However, in high-dimensional spaces, a
much larger number of almost orthogonal directions than orthogonal directions exists. As
a specialised version of RP for sparse data regions, Sparse Random Projection (SRP) is
not only computationally efficient, but also yields sufficiently accurate results for reducing
high-dimensional datasets. [22]

3.2.5 Uniform Manifold Approximation and Projection

As opposed to the linear techniques presented above, Uniform Manifold Approximation
and Projection (UMAP) [86] is a manifold learning technique [38] for dimension reduc-
tion that incorporates ideas from topological data analysis. It works similarly to other
manifold techniques such as t-distributed Stochastic Neighbour Embedding (t-SNE) [82],
however, it performs significantly better at maintaining not only the local but also the
global structure of the dataset.

17

3 Methodological Overview

The reduction is computed in two steps. Firstly, the nearest neighbours are extracted
efficiently using RP trees [35] and nearest neigbour descent [40]. After constructing the
weighted k-neighbour graph, a low dimensional layout of this graph is computed by opti-
mising the layout subquadratically with SGD [87] and negative sampling [128]. Further,
UMAP offers supervised dimension reduction, computations among differently combined
metrics, and a combination of different datasets.

3.3 Document Clustering Methods

Once the documents are reduced to a reasonable amount of features, the clustering al-
gorithm can be applied to the data. Prior to introducing the clustering techniques, the
terminology is defined in the following, according to [78]:

Definition 3.3.1 A cluster is a group of objects that are located at the same region.

Definition 3.3.2 The clustering process means grouping a set of data objects into clus-
ters, i.e. collections of data objects, without demanding predifined class labels.

According to the definition, similar objects are in similar clusters, while dissimilar ob-
jects do not share the same cluster. As opposed to classification, clustering is an unsu-
pervised task, since there are no ground truth labels available. Therefore, the instances
are not divided into predicted classes, but are rather divided into natural groups that
bear a stronger resemblance to each other than to objects in other groups [143]. This
makes the evaluation less trivial than evaluating any classification method. Furthermore,
the number of clusters can highly vary depending on the data, while this number is most
likely not known in advance [121]. Moreover, groups can either be exclusive, i.e. each
element belongs to exaclty one cluster, overlapping, i.e. each element can belong to more
than one cluster, or hierarchical, i.e. the top level gives a rough division while each group
is refined further [143]. Since the goal of this thesis comprises the calculation of similarity
among datapoints, a definition for similarity-based clustering is provided in the following
as defined by [73].

Definition 3.3.3 Given is a data set D ∈ Le, a similarity function sim : D × D →
R and a quality criterion q where Le is the language of the examples e. The task of
the similarity-based clustering is to find a set of clusters K ⊆ P(D) that maximizes the
given quality criterion q or minimizes the given error criterion er. For the criterion q,
measures comprise i.a. the average intra-cluster similarity that should be maximised, and
the average inter-cluster distance that should be minimised.

A classification of clustering types and approaches is provided in Figure 3.5. Each of
the methods therein will be further explained in the following subsections.

3.3.1 Partitioning Methods

One of the most widely used partitioning algorithms, due to its simplicity and effective-
ness, is the K-Means algorithm, first published by Lloyd in 1982 [81]. K-Means divides
data points iteratively into k clusters using centroids as representative points. The cen-
troid is the mean value of the data points within one cluster. Its goal is to minimise the
total squared distance from all points to their cluster centres [143]. Thereby the number of
clusters k has to be determined in advance and should be chosen thoroughly, since it has
a high impact on the overall performance. A poorly chosen value can lead to unsatisfying

18

3.3 Document Clustering Methods

Document Clustering

Flat Clustering

Partitioning
Clustering

Density-based
Clustering

Probabilistic
Clustering

Hierarchical Clustering

Divisive
Clustering

Agglomerative
Clustering

Figure 3.5: Classifying document clustering approaches into flat clustering and hierarchical
clustering methods.

results, and the risk of the algorithm converging to a local maximum only, is high [3]. The
pseudo code for K-Means is presented in Algorithm 2.

input : k; D
output: K
arbitrarily choose k examples from D as the initial representative examples
(called seeds)

repeat
1. (re)assign each object to the cluster to which the object is the most
similar, based on the mean value of the objects in the cluster;

2. update the cluster means, i.e. calculate the mean value of the objects for
each cluster;

until no change;
Algorithm 2: Algorithm for classical K-Means clustering, adapted from [156].

An illustration of the algorithm is provided in Figure 3.6: Firstly, k data points are
arbitrarily selected as cluster centroids. Then, the closest points to these centroids are
assigned to be in the same cluster. The centroids are recalculated based on the newly
assigned points such that they present the new centre of the cluster. These two steps are
repeated iteratively until convergence is reached [7, 8].

A major drawback of K-Means is that the final clusters are immensely sensitive to the
initial centroid choice. The algorithm can be drastically improved by selecting the initial
seeds carefully, as done in the K-Means++ algorithm. There, the first seed is chosen
randomly with a uniform probability distribution. Then the second seed is chosen with a
probability that is proportional to the square of the distance to its predecessor. At each
stage the next seed with a probability proportional to the square of the distance from
the closest seed that has already been chosen is defined. This improves both speed and
accuracy compared to the arbitrarily selected seeds in the basic K-Means algorithm. [143]

Another drawback is that semantic data is often not numerical, and similarity and
dissimilarity should be employed rather than distance. However, many algorithms are de-
signed to cluster interval-based, i.e. numerical, data where a centroid represents a cluster.

19

3 Methodological Overview

(a) Start (b) Update (c) Reassign (d) Update

Figure 3.6: K-Means overview: Initially, k random seeds are chosen in the dataspace. Each
of the data points is assigned to its closest seed. Then, the seeds are updated
such that they form the cluster centres of their respective clusters. Next,
the data points are reassigned to the new centres. These steps are repeated
iteratively until the algorithm converges.

For categorical data, a Partitioning Around Medoids (PAM) algorithm, also referred to
as K-Medoid, can be applied instead [73, 121]. Therefore, actual data points represent
clusters directly, instead of incorporating centroids as representatives. This makes the
algorithm less sensitive to outliers than the classical K-Means algorithm. Algorithm 3 de-
scribes the implementation for K-Medoid. Equally, the input k is the number of clusters,
D is the dataset of n examples and output K a set of k clusters.

input : k; D
output: K
arbitrarily choose k examples from D as the initial representative examples
(called seeds)

repeat
1. assign each remaining example e to the cluster Ki that contains the
most similar representative example medoidi;

2. randomly select a nonrepresentative example ej ;
3. compute the total cost er of swapping representative example
medoidi with ej ;
if e > 0 then

swap medoidi with ej to produce a new set of k representative objects;
end

until no change;
Algorithm 3: Algorithm for PAM, presented by [73].

Since K-Means only can be used to cluster numerical data, K-Median and K-Mode can
be equivalently applied to ordinal and categorical data. A short comparison of all three
algorithms and their characteristics is listed in Table 3.2. The respective algorithm is
chosen depending on the type of the underlying dataset.

Since choosing the number of clusters is crucial for the presented approaches, a couple
of methods for determining the ideal cluster size will be given. The first possibility to
determine the ideal number of clusters is trial and error. That is, start from a given
minimum, e.g. k = 1 and work to a small fixed maximum. Evidently, the best results are
achieved in the trivial scenario where each document constitutes of its own cluster, i.e.

20

3.3 Document Clustering Methods

K-Means K-Median K-Mode K-Medoid

data numerical (mean) ordinal categorical metric

efficiency high O(tkn) low O(tk(n− k)2)

sensitivity high low
to outliers

Table 3.2: Comparison of the partitioning methods, presented by [121].

when k equals the number of data points. To tackle this issue, solutions with too many
clusters, meaning clusters that are overfitting to the given data, should be penalised [143].
A commonly applied method is determining the Minimum Description Length (MDL),
which was presented in 1978 by Rissanen [106,107]:

L(T) + L(E|T) (3.6)

where L is the length, T the chosen theory, E the collection of class labels in the training
set, L(T) the number of bits for encoding, and L(E|T) the number of bits given a certain
theory. MDL proposes to select the T that minimises the sum in Equation (3.6). For
clustering, MDL can be especially helpful for the evaluation of clustering and to prevent
a system from preferring overfitted clustering models. This helps in the decision whether
the result of learning proves useful in the application context or not.

The evaluation can be performed as follows. Divide the training set E into k clusters,
measure the averages and distances and encode the cluster centres, i.e. the average value
of each attribute over all instances in the cluster. The best clustering will support the
most efficient encoding E. In other words, the description length will decrease for a strong
clustering result compared to a bad clustering result. [143]

A last possibility is to find clusters e.g. k = 2 and determine whether it is worth
splitting them or not. For example, create a new seed one standard deviation away from
the cluster’s centre in the direction of its greatest variation and create a second seed the
same distance in the opposite direction. Decide with one of the methods from Table 3.3
on page 26 if the split should be retained, if so, proceed iteratively. [143]

3.3.2 Probabilistic Methods

This section will describe and explain statistical approaches to document clustering. Sim-
ilar to partitioning-based methods, probabilistic methods involve a recalculation and re-
assigning of objects to improve parameters iteratively. The result is a soft clustering
outcome where each data point is assigned to all clusters with a certain probability. It
can be extended and artificially adapted by choosing the cluster that yields the highest
probability in order to achive a partitioning of the data space. [151]

The basic methodology for Gaussian Mixture Model (GMM) [105] works as follows.
First, calculate the Gaussian mixture distribution with k components for a d-dimensional
vector x ∈ Rd. In other words, fit k probability distributions (Gaussians) to the data (see
Equation (3.7)) where 0 ≤ πl ≤ 1.

p(x) =

k∑
l=1

πl ×N (x|µl,Σl) (3.7)

21

3 Methodological Overview

Then, recalculate the mean, find the centre of mass and, what differs from K-Means,
calculate the covariance matrices. The most popular approach for doing this is the GMM
using Expectation Maximization (EM) [105]. Its aim is to optimise the log-likelihood of
points being generated by these k distributions. The two EM-steps are finished when the
Maximum Likelihood Estimate (MLE) i.e. the parameters θML with maximum likelihood
are found, see Equation (3.8). In other words, MLE indicates which parameters are best
to fit the model onto the data:

θML = argmax
θ
{p(X|θ} (3.8)

where

p(x|θ) =

n∏
i=1

p(xi|θ) (3.9)

Figure 3.7: EM Probabilistic Clustering: The circles illustrate two random Gaussians to
partition the data points. With each step, the mean and covariance matrices
are re-calculated, where smaller the ellipses describe better clustering. [23]

In the calculation of the log-likelihood in the EM, there are mutual dependencies between
the means µ and the weights γ. These depedencies can be broken by optimizing them
independently in two steps, namely in the expectation and the maximization step. These
operations are repeated iteratively until convergence is reached. The EM algorithm works
as follows: [121]

1. Inizialize means µj , covariance Σj , and mixing coefficiets πj , and evaluate the initial
log-likelihood.

2. E-Step: Evaluate the responsibilities using the current parameter values:

γnewj (xi) =
πj ×N (xi|µj ,Σj)∑k
l=1 πj ×N (xi|µl,Σl)

(3.10)

3. M-Step: Re-estimate the parameters using the current responsibilities:

µnewj =

∑n
i=1 γ

new
j (xi)xi∑n

i=1 γ
new
j (xi)

(3.11)

22

3.3 Document Clustering Methods

Σnew
j =

∑n
i=1 γ

new
j (xi)(xi − µnewj)(xi − µnewj)T∑n

i=1 γ
new
j (xi)

(3.12)

πnew =

∑n
i=1 γ

new
j (xi)∑k

l=1

∑n
i=1 γ

new
l (xi)

(3.13)

4. Evaluate the new log-likelihood log p(X|θnew) and check for convergence of param-
eters | log p(X|θnew) − log p(X|θ)| ≤ ε. If the convergence criterion is not satisfied
yet, set θ = θnew and go back to step 2.

In conclusion, probabilistic methods yield better results for data with varying size of
clusters or clusters having different variances than a classical K-Means approach. For the
sake of complexity, EM is however often combined with partitioning approaches to get the
best of both algorithms. One of its major problems is the selection of a good number k:
If the value is too high, the risk of overfitting is also increased. If the value is too low, the
model may not fit the data at all. The value for k can be determined equivalently to the
methods described in Section 3.3.1.

3.3.3 Density-Based Methods

Partitioning-based methods only work for convex data structures. The basic idea of
density-based clusters is, that a data space does not only consist of a certain number
of data point clusters. Rather it assumes that each data space contains a number of out-
liers, i.e. points in regions of lower density, that separate the existing clusters, i.e. points
in dense data regions. The basic functionality of density-based methods will be explained
by means of DBSCAN.

A partitioning {C1, ...Ck, N} of the database D consists of C1, ..., Ck density-based clus-
ters and the noise N = D \ (C1 ∪ ... ∪ Ck). In order to determine the local point density
at a certain point q, two parameters have to be defined. [121]

1. ε-radius for the neighbourhood of point q

Nε(q) = {p ∈ D|dist(p, q) ≤ ε} (3.14)

2. MinPts, the minimum number of points in the given neighbourhood Nε(q)

The above parameters are determined as follows: First, fix a value for MinPts. The de-
fault is 2d−1 where d is the dimension of the data space. Then compute the k-distance for
all points p ∈ D with k = minPts and create a k-distance plot showing the k-distances of
all objects in decreasing order. Lastly, select the border object o from the MinPts-distance
plot and set ε to MinPts-distance(o). [43, 119,121]

After selecting the parameters, a point q is taken as the core point of initialisation. A
point p in the data space is directly density-reachable from q if p ∈ Nε(q) and q is core
object w.r.t. ε and MinPts. The major concepts of (directly) density-reachability and
density-connectivity are explained in Figure 3.8, and a formal algorithm is provided in
Algorithm 4. [121]

23

3 Methodological Overview

(a) Points that are directly
density-reachable from
the core point q.

(b) p is density-reachable,
i.e. the transive closure
of (a).

(c) p is density-connected
to q where both points
are density-reachable
from a point o.

Figure 3.8: Concept of density-based algorithm: The basic theorem is that each object
in a density-based cluster C is density-reachable from any of its core-objects
while nothing else is density-reachable from core objects [43,121].

forall o ∈ D do
if o is not yet classified then

if o is a core-object then
Collect all objects density-reachable from o and assign them to a
new cluster;

else
Assign o to noise N ;

end

end

end
Algorithm 4: Algorithm for the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [121]

One of the major advantages of density-based methods is the flexibility of data in the
n-dimensional space. In this space, clusters can have any shape and are not restricted to
convex shapes. Also, the number of clusters is determined automatically, hence it is less
prone to poor initialisation, than for instance K-Means. Further, these algorithms have
the ability to separate clusters from surrounding noise, which can be inherently helpful
compared to centroid-based approaches where noise can have a negative impact on the
entire clustering result. [121]

However, DBSCAN and comparable algorithms also have drawbacks. For example, the
result of the clustering highly depends on good input parameters. However, these pa-
rameters are difficult to determine and may therefore negatively influence the clustering
quality. [121]

An alternative density-based algorithm for DBSCAN is the Mean Shift algorithm, where
the iterative mode search is applied for each data point. Points that converge to the same
mode, also referred to as basin of attraction, are subsequently grouped together. Mean
Shift is computed following these steps: [121]

1. Select a window size ε, and a starting position m.

2. Calculate the mean of all points inside the window W (m).

3. Shift the window to that position.

4. Repeat until convergence is reached.

24

3.3 Document Clustering Methods

A extension is the weighted Mean algorithm where different weights for the points in
the window are calculated by some kernel k. A second variant is binning: Therefore, data
points are quantised to a grid and the mode seeking iteratively is applied only once per bin.

A major drawback of Mean Shift is its relatively high complexity. On the positive
side, the algorithm is not restricted to convex shapes, is robust to outliers, and easy to
implement. Furthermore, it only has one single parameter, ε, and the number of clusters
is determined automatically. [121]

3.3.4 Hierarchical Methods

As the name predicts, hierarchical clustering methods build a group of clusters that can be
depicted as a hierarchy of clusters. The clusters are thereby presented hierarchically where
the number of cluster depends on the height chosen in the dendrogram, see Figure 3.9.

Figure 3.9: Hierarchical representation of document clustering using a dendrogram. [121]

There are two approaches to hierarchical clustering. Firstly, clusters can be built top-
down or divisive where the complete document collection forms one cluster. Then the
cluster is split recursively into sub-clusters. [8] At each step of the process, the dissimilarity
between clusters is calculated in order to decide whether splitting is required or not [143].
Secondly, hierarchies can be build using the bottom-up or agglomerative approach, where
initially each instance, i.e. each data point, constitutes its own cluster respectively, and
then the closest clusters are merged together [8,143]. Hierarchical methods work similarly
to partitioning methods with distance-based algorithms to measure the closeness between
text documents. There are several approaches for measuring the similarity between all
documents in the collection. An overview is given in Table 3.3.

25

3 Methodological Overview

Method Description

single-linkage calculates the minimum distance

complete-linkage calculates the maximum distance

centroid-linkage represent clusters by centroids not for pairwise similarity

average-linkage calculate all pairwise distances to find average

group-average calculate average pairs from the same original cluster

Ward’s calculate the increase in the sum of squares of the distance of
instances from centroid, before and after fusing two clusters

Table 3.3: Strategies for merging the closest clusters in hierarchical clustering approaches,
adapted from [143].

3.3.5 Kohonen Self-Organizing Maps

As opposed to other kinds of neural networks, SOMs consist only of one input layer and
one output layer, while not including any hidden layers. The input layer contains the
raw information, that is a collection of n-dimensional data vectors. The output layer is
the SOM itself, also known as topological map, or feature map. It is usually represented
two-dimensionally in a grid structure, however it can also be one-dimensional or three-
dimensional [12, 67]. Every node in the feature map is associated with a dynamic weight
vector that stores all the learning processing and knowledge and is hence the “memory”
of the SOM. Although invisible to the user, the weight vector has the same structure as
the data input vector, i.e. they have the same dimensionality, share the same attribute
definitions and the same attribute sequence. Each neuron in the topological map is made
up of a high-dimensional weight vector, the weight vectors however cannot determine the
positions of their corresponding nodes in the visual space [153]. In that mapping, topo-
logical relations should be preserved, i.e. patterns that are close in the input space will be
mapped to units that are close in the output space. Supposing that each SOM unit rep-
resents a cluster centre, a k-unit SOM will be able to perform similar tasks to a K-Means
algorithm. An illustration is given in Figure 3.10.

Figure 3.10: The hexagonal structure of a SOM. Mc shows the winning node that has
impacts on its surrounding neurons (Mi) [67].

The iterative training processing works as follows: Firstly, every weight vector w is
initialised, such that 0 < w < 1. Then an input vector is randomly chosen and presented

26

3.3 Document Clustering Methods

to the output feature map. In the output map, every node is examined to calculate the
neuron whose weight vector is the most relevant to the input vector, i.e. calculating its
smallest Euclidean distance. This resulting winning neuron is commonly known as the
Best Matching Unit (BMU). Next, the radius of the neighbourhood of the BMU is cal-
culated. The radius usually starts large such that it has a global impact on the output
grid, and diminishes at each time step. The weights of each node inside the neighbouring
area are adjusted with a high impact on the closest neighbouring nodes and decreasing
impact on nodes farther away within the radius. This process is repeated iteratively until
convergence is reached, which is when the neighbourhood area shrinks to the winning node
itself. A formal algorithm for self-organizing and labelling the grid is given in Algorithm 5.

To help users understand cluster formations, it is inherently useful to label the document
clusters, such that the system allows for searching documents regarding a certain topic.
Therefore, nodes with similar weight vectors can be merged and labelled as one topic area.
This can be done by the following trivial approach for each node: Locate the largest value
in the weight vector and find its corresponding term in the data vector. Then, assign
the term to the node as the winning term, and merge nodes sharing the same term as a
region [153].

input : Collection of raw data vectors
output: SOM
Initialization of the parameters, neighbourhood radius, and weight vectors in
the feature map;

while the converge condition is not satisfied do
1. Randomly pick up a raw data vector as an input vector;
2. Calculate the winning node whose Eucidean
distance is the smallest between the data vector
and the weight vector associated with the node;
for all neighbouring nodes of the winning node do

update their weight vectors;
end

end
foreach raw data vector in the collection do

1. Find its winning node in the feature map;
2. Assign it to the winning node;

end
foreach node in the feature map do

1. Label the selected node;
2. Merge adjacent nodes sharing the same term(s);

end
Algorithm 5: SOM algorithm adapted from [153].

3.3.6 Others

Due to the very limited time frame, not all clustering algorithms can be considered in the
implementation part of this work. However, for the sake of completeness, two additional
clustering methods will be presented in this section: incremental clustering and spectral
clustering. Experiments regarding the effectiveness on our test data will be left for future
work.

27

3 Methodological Overview

Incremental Clustering

As opposed to other methods where the document collection is treated all at once, incre-
mental clustering works instance by instance. The clusters are thereby updated step by
step appropriately, which can also lead to radical reconstruction during the processing of
the next instance. The key process is to maximise the category utility, that is finding the
host that produces the greatest category utility for the split at a certain level in the tree.
The tree is used for clustering where all instances are represented by the leaves and the
root comprises the entire dataset. [143]

Spectral Clustering

Spectral Clustering is a graph-based technique, that represents the data by a similarity
graph and unveils the structural properties with the eigencomposition of an associated
Laplacian matrix [129]. Basically, each vertex in the graph is represented by a vector
of its corresponding components in the eigenvectors and K-Means applied to the first k
eigenvectors.

In more detail, spectral clustering algorithms work as follows: Firstly, a similarity graph
G = (V,E) is constructed, where each vertex vi represents one data point xi. In case G
is a weighted graph, edges in different clusters are weighted with low weights, while edges
within a cluster are assigned higher weights. Two common weighted versions of a sim-
ilarity graph that are regularly used in spectral clustering are the KNN graph and the
fully connected graph. The first is a non-symmetric graph that connects a vertex vi with
vj if vj is among the k nearest neighbours of vi. The latter simply connects all points
with positive similarity and weighs the edges according to their similarity. Note that the
graph does not have to be weighted, as in the ε-neighbourhood graph where all points are
connected whose pairwise distance is smaller than a certain threshold ε [137].

After constructing the graph, its Laplacian L, i.e. the undirected version of a directed
graph, is computed along with the first k eigenvectors u1, ..., uk of L that are ranked in
decreasing order.1 [90] The eigenvectors are presented as a matrix U ∈ Rn×k where each
row in the matrix i, ..., n is a vector yi ∈ Rk that is clustered with a classical algorithm such
as K-Means. Lastly, the output clusters C1, ..., Ck are remapped onto a new dimensional
space yielding the spectral clustering outcome [129]. Opposed to various other algorithms,
the clusters may have arbitrary shape and the algorithm can be implemented in nearly
linear time [28,71].

3.4 K-Nearest Neighbour Search

Another possibility to boost performance of WiTTSim is to integrate a KNN search for
determining the k nearest neighbours of given a point p. The least intuitive approach
simply is a brute-force computation that performs a pairwise search on all datapoints.
For N samples in d dimensions this leads to a complexity of O(dN2) [53]. However this
is only effective on small datasets. For circumventing the costly process of comparing all
datapoints to each other – especially for larger data samples – a number of approaches
exist based on KNN that involve structuring the data beforehand. This can be achieved

1An overview of calculating the eigenvectors in different ways is given in [141].

28

3.4 K-Nearest Neighbour Search

by, for example, using a k-d tree, or creating a balltree of the data. Both algorithms order
the data effectively in advance and will be described in the following subsections.

3.4.1 K-d tree

The k-dimensional k-d tree2 [49] is a multidimensional binary search tree, that is, a data
structure for the storage of k-dimensional data. The k-d tree is structured as follows: The
root in the search tree represents the entire dataset, while each further nonterminal node
is a successor node, representing the subfiles. The tree leaves store the records, called
buckets. In k dimensions a record is represented by k keys [49].

The basic algorithm to create a k-d tree works as follows: Pick a random dimension x,
find the partition value, which is the median value of all data points in that dimension,
and split the data at x. Values that are smaller than the median belong to the left son
node, while values equal to or bigger than the median will belong to the right son. These
steps are repeated iteratively with the next random dimension until all dimensions are
split [49]. An illustration of the algorithm with an example dataset of ten points in two
dimensions is given in Figure 3.11.

(a) K-d tree for a two-dimensional dataset. (b) Datapoints depicted in the two-
dimensional space. Dashed lines
indicate the tree branches.

Figure 3.11: Creating a k-d tree structure from a two-dimensional dataset containing ten
random data points: Points that are located on the left branch are smaller
than the root value, while points located to the right are equally high or
higher than the root. The green input point (7,4) is located in the same
two-dimensional space, and integrated in the search tree accordingly.

Due to the efficient ordering of the tree structure, only the data points closest to the
query point will have to be examined. In more detail, the search algorithm works as fol-
lows: Firstly, the root node is examined. If the node under investigation is not a leaf node,
the node on the same side of the partition as the query record is called recursively. If the
node is a terminal node, all data points in the bucket are examined. After calculating

2The original k-d tree was presented in 1975 by Bentley [17]. For retrieving the m closest matches, they
adapted their algorithm in 1977 [49]. Since the algorithm in this work will be used solely for the KNN
search, only the latter so-called optimized k-d tree will be regarded and be referred to as k-d tree.

29

3 Methodological Overview

the distances to all points in the bucket, a list of m closest data points is created and
maintained during the whole procedure. In case a closer point is found during the tree
search, the priority list will be updated.

In some scenarios however, points in other buckets will be as close as or even closer to
the query point (see point (5,4) in Figure 3.12). Therefore, subsequent to examining the
respective bucket, a control is performed that decides whether the opposite side of the
partition has to be taken into account additionally. This test – also referred to as bounds-
overlap-ball test – draws a circle around the query with a radius equal to the distance
to the closest record encountered so far. If the test fails, none of the datapoints of the
neighbouring bucket belong to the m closest data points to the query point. Conversely,
the test is effective when the radius intersects with a border of another non-termining
node. In that scenario, a ball-within-bound test is performed that examines if any data
points lie withing the radius. If the test retrieves any data points within the radius, the
intersecting bucket will have to be considered as well. If it fails, the current list of m
records is correct and no further datapoints have to be added or replaced.

3.4.2 Balltree

Although the balltree algorithm is based on the k-d tree algorithm, sibling regions in ball-
trees are allowed to intersect [92]. A balltree is a complete binary tree in which each ball,
that is the region bounded by a hypersphere in the n-dimensional Euclidean space Rn,
contains the balls of its children. The most inner balls, i.e. the leaf nodes, hold the data
points themselves.

The top-down algorithm works recursively: Firstly, the dimension with the highest
variance in the data is chosen, and the median value in that direction determined. Again,
the root node holds the entire dataset. At each stage the ball is split into two parts,
becoming the left and right children of the root node. Whether the split ends on the left
or right side depends on their coordinate value in the given dimension. If the value is
smaller than the median value, the data split lands in the left successor, in all other cases
it is grouped with the right successor. These steps are repeated recursively until all data
points form leaf nodes. [92] An example of a binary balltree and its corresponding balls in
the plane is illustrated in Figure 3.12.

(a) Balltree for a two-dimensional dataset. (b) Balls depicted in two-dimensional space.

Figure 3.12: Creating a balltree. The data is separated by means of ellipsoidal hyper-
spheres in the data space, creating the tree with a top-down algorithm. Illus-
tration adapted from [39].

30

3.5 Evaluation Metrics

3.5 Evaluation Metrics

A large number of different evaluation techniques exist in the field of clustering, which
can be grouped into three major categories: Supervised methods rely on available ground
truth labels for the entire dataset in order to assess the quality of the clustering. In natu-
ral settings however, these labels are often not available, because if they were, clustering
the data would be redundant. Conversely, unsupervised algorithms do not rely on any
labels, but the quality of the clustering is only captured externally without any internal
information of the data known. A mixture of both types are so-called semi-supervised
methods, where only a part of the data is manually labelled and the conclusions drawn
on the entire dataset. All types of methods have advantages and drawbacks and will be
presented in further detail in the following subsections.3

3.5.1 Unsupervised Methods

One of the most popular techniques for measuring clustering quality externally is cal-
culating its silhouette coefficient which states how accurate a given cluster is [111, 126].
That is, the coefficient denotes how well the clusters are separated from each other and
can further reveal whether points are assigned to the wrong cluster. In more detail, the
silhouette coefficient measures the average distance between a point p and all its cluster
neighbours. Thereafter, the distance between p and its next cluster is computed. Optimal
results are achieved when the distance to its own centre is minimal while the distance to
the next cluster centre is maximal. By noting a(p) the mean distance between p and all
other points in the same cluster and b(p) the mean distance between p and all other points
in the next nearest cluster, the silhouette coefficient s(p) for a single sample p is defined
as follows [70]:

s(p) =
b(p)− a(p)

max(a(p), b(p))
(3.15)

This yields a result between -1 and 1 where 1 is the perfect classification and -1 fails to
assign the clusters correctly. The silhouette coefficient for all data points is computed by
the average value of all values s(p):

S(p) =
1

|P |
∑
p∈P

s(p) (3.16)

where the total result also lies within the span of -1 and 1.

Another measure to determine the cluster accuracy is determining the Calinski-Harabasz
index [26]. By noting k the number of clusters, Bk and Wk the between and within-
clustering dispersion matrices respectively, the Calinski-Harabasz index s(k) indicates how
well a clustering model defines its clusters, such that the higher the score, the more dense
and well separated the clusters. It is defined as

s(k) =
Tr(Bk)

Tr(Wk)
× N − k

k − 1
(3.17)

3However, due to the large amount of evaluation techniques it is not possible to give an exhaustive list
of all methods. For a larger overview of evaluation methods please refer to Wagner and Wagner [138].

31

3 Methodological Overview

where

Bk =
k∑
j=1

nci(µci − µ)T Wk =
m∑
i=1

(xi − µci)(xi − µci)T (3.18)

As opposed to the two metrics presented above, the Davies-Bouldin index [37] defines
the lowest possible score, that is zero, to be the best cluster separation, while higher results
indicate poorer defined clusters. The index defines the average similarity between each
cluster Ci for i = 1, ..., k clusters and its most similar one Cj . Similarity is defined by Rij :

Rij =
si + sj
dij

(3.19)

where si is the average distance between each point in Ci and dij is the distance between
cluster centroids i and j. The Davies-Bouldin index is then defined as follows [96]:

DB =
1

k

k∑
i=1

max
i 6=j

Rij (3.20)

3.5.2 Supervised Methods

However, unsupervised evaluation criteria presented in the previous subsection, often only
evaluate the clustering on a very theoretical background. In order to evaluate the clustering
results based on their internal structure, a so-called “ground truth” should be determined
for a certain subpart of the data and then the corresponding clustering algorithms com-
pared using precision and recall. The confusion matrix in Table 3.4, shows the comparison
values between the actual class and the class predicted by the system.

Predicted Class

+ –

A
ct

u
a
l

C
la

ss

TP FN

+ True Positives False Negatives

Type II error

FP TN

– False Positives True Negatives

Type I error

Table 3.4: Fourfold table reflecting how the values TP, FN, FP, and TN are determined
by comparing the actual class to the predicted class.

To make the clustering results comparable, the established measures precision and recall
are determined. While the recall value reflects what proportion in the actual class was la-
belled correctly, precision defines what proportion of the output is correct. Equation (3.21)
shows how the values in Table 3.4 are utilised to calulate precision and recall.

Recall (R) =
TP

TP+FN
Precision (P) =

TP

TP+FP
(3.21)

Both values oppose each other, which is why they should not be treated separately but
better be combined using F-measure. The coefficient β is used to either favour precision

32

3.6 Summary

or recall. For calculating F1, i.e. β = 1, both measures are treated equally.

F-measure =
(β2 + 1)PR

β2P+R
⇒ F1 =

2PR

P+R
(3.22)

Other methods based on the fourfold table are for instance the Rand Index [103] which
is defined as

RI =
TP + TN

TP + FP + FN + TN
(3.23)

and the Adjusted Rand Index (ARI) [63,136,139].4

Another evaluation method based on ground truth labels is V-measure, an external
entropy-based cluster evaluation measure that combines homogeneity and completeness.
These two criteria capture a clustering solution’s success by including all and only data
points from a given class in a given cluster. Homogeneity states that each cluster contains
only members of a single class, while completeness reflects whether all members of a given
class are assigned to the same cluster [109].

Lastly, approaches that are based on MI comprise Normalized Mutual Information
(NMI) [84,125] and Adjusted Mutual Information (AMI) [136]. NMI allows for measuring
and comparing results between different clusterings having different number of clusters,
while AMI is a correction of MI that adjusts the score accordingly when the number of
data points is relatively small compared with the number of clusters.5

3.6 Summary

This section summarises the chapter briefly by revising its most essential methods. Be-
fore clustering the high-dimensional dataspace, dimensionality reduction techniques are
reviewed. Several approaches exist. The most common unsupervised linear reduction
techniques comprise SVD, PCA, and SRP. SVD is based on the eigenvalue decomposition
calculating singular values, while PCA computes the covariance matrix of a dataset to
determine a lower dimensional space that maintains as much variance of the original data
space as possible. SRP is especially developed for sparse datasets, projecting the data
onto a random lower dimensional space. A supervised version of linear reduction tech-
niques is the Linear Discriminant Analysis (LDA), where the separability among known
categories is maximised. Manifold reduction techniques include t-SNE and UMAP. The
latter incorporates ideas from topological data analysis and thereby constructs a weighted
k-neighbour graph.

Various clustering methods exist in the field of document clustering. Two major dis-
tinctions can be made, namely flat clustering and hierarchical clustering. Flat clustering
is then again divided into partitioning clustering, density-based clustering, and probabil-
isitic clustering. Partitioning algorithms are for example K-Means or C-Means clustering,
where the latter is a soft clustering technique that allows data points to belong to mul-
tiple classes. Both methods split the data based on random centroids and assign each
data point to its closest centroid. The centroids are then recalculated until the dataset
converges. Density-based clustering methods base on the assumption that dense data
regions should be grouped together, and no cluster centre has to be defined. Examples

4For a detailed definition please refer to Santos and Embrechts [116].
5For a detailed definition please refer to Learned-Miller [74].

33

3 Methodological Overview

include DBSCAN and Mean-Shift clustering. Probabilistic models assign probabilites to
data points, resulting in a soft clustering, where each point belongs to a cluster with a
certain probability. An example for this is the GMM. As for the hierarchical clustering
methods, one distinguishes divisive, i.e. top-down, and agglomerative, i.e. bottom-up
approaches. In divisive approaches, the entire document collection forms a cluster and
is then split recursively into subclusters, whereas in agglomerative algorithms each data
point forms its own cluster and closest clusters are merged together iteratively.

Apart from incorporating document clustering in the similarity search, a structured
KNN search can also be incorporated. Therefore, the datapoints are not only compared
pairwise but structured trees are built from the entire dataset and then only respective
branches searched that match the input query. Two well-known methods are the k-d tree
search and the balltree algorithm. While the former separates the data linearly in each
dimension, the latter allows for separating the data with ellipsoidal hyperspheres in the
data space.

Lastly, evaluation metrics have been presented, namely supervised and unsupervised
methods. Supervised methods rely on the ground truth labels available, however labelling
large amounts of data is immensely time-consuming and costly. Also, retrieving the labels
is in most cases the goal and original purpose of clustering, which is why they are mostly
not available in natural tasks. In other words, with labels available, the task of clustering
becomes fairly redundant. In that case, unsupervised methods allow for an evaluation
without any ground truth provided. However, results should be treated with caution since
only external parameters are considered, and the internal structure of the data is not taken
into account.

34

4 Implementation

The implementation of the relevant methods from Chapter 3 will be explained in the
following sections. This includes the data preprocessing to be carried out prior to the
clustering task itself (Section 4.2) and the feature selection or dimensionality reduction that
is necessary for an efficient search process (Section 4.3). In addition, the implementation
of the experiments will be shown (Section 4.4) and the final integration of the presented
clustering into WiTTSim will be explained in further detail.

4.1 Data Collection

The underlying data for the dimensionality reduction and document clustering are the
literary remains of the philosopher Ludwig Wittgenstein, his Nachlass, which has been
provided by the Wittgenstein Archive Bergen (WAB) in cooperation with the Center for
Information and Speech Processing (CIS). The Nachlass comprises approximately 18,000
pages. Most of them were unpublished after Wittgenstein’s death, now however they are
openly accessible1 [99, p. 4]. The corpus has been subdivided into 55,000 logical para-
graphs, so-called remarks, that form the database of this work. Each remark is labelled
with a unique identifier which is its siglum.

The data, meaning all the remarks, has already been tagged and underlies the XML
structure that encodes various information about the original manuscript or typescript,
respectively, such as the date of writing, deletions, insertions, and alternatives. An exem-
plary file is shown in Source Code 4.1.

<?xml version="1.0" encoding="UTF-8"?>
<body>

<ab n="Ts-230b,11[3]" ana="abnr:44" date_norm="1945-08-01?-1945-08-31?">
<w t="PIS" l="man">Man</w>
<w t="VMFIN" l="können">könnte</w>
<w t="PRF" l="sich">sich</w>
<w t="NN" l="Mensch">Menschen</w>
<w t="VVINF" l="denken">denken</w>
...

</ab>
<ab n="Ts-230c,11[3]" ana="abnr:44" date_norm="1945-08-01?-1945-08-31?">

...
</ab>

</body>

Source Code 4.1: XML structure required for generating the feature vectors. The required
information contains the anonymous blocks (ab) that contain the siglum,
and the words (w) containing the tags (t) and lemmas (l) that are re-
quired for calculating the dictionaries and subsequently the vectors.

1Transcriptions accessible at http://wab.uib.no/transform/wab.php?modus=opsjoner

35

http://wab.uib.no/transform/wab.php?modus=opsjoner

4 Implementation

The preprocessing has already been implemented in previous work in WiTTSim [132]
and has been improved by Tan et al. [127] later for a more efficient handling of XML
formatting instead of processing plain text files. The preprocessing includes punctuation
removal, tokenization, lemmatization, stop word filtering, and POS-tagging. Every remark
is treated as a single document for the clustering. For training purposes, the data has been
split to smaller sets which enables a more accurate evaluation. Also, for a small subpart
of the remarks, ground truth labels are available.

4.2 Data Preprocessing

Prior to clustering the data, some preprocessing steps are carried out. This is because
WiTTSim demands a representation in form of vectors containing certain features, such
as synonymous words or POS-tags. For a more detailed description of the feature set
please refer to Section 3.1. Since there are multiple different setups for the experiments,
several files will be created, one for each setup. The files contain dictionaries where each
key stores the source information, i.e. the siglum of each remark, and each value stores
the vector itself in the format siglum:vector in the binary files. The binarisation has been
implemented in previous work using the python library Pickle2 and is used again in this
work for retrieving the input data.

For building the binary files, several preprocessing steps need to be carried out. Firstly,
the datafile path for all normalised remarks has to be specified. All required remarks for
one dataset are specified in an Excel spreadsheet, along with their ground truth labels if
they are available. Then, the remarks in the Excel are extracted from the entire Nachlass
and saved to an output folder.

After extracting the remarks in the required formatting, some of the words still contain
XML tags, such as separated words containing a newline tag. For all those words, some
further manipulation is necessary, such as simple post-processing methods that remove
newline tags:

<w t="NN" l="Schweigen">Schwei<lb rend="shyphen"/>gen</w>

<w t="NN" l="Schweigen">Schweigen</w>

Once the clean XML files are created, the megavectors can be extracted. This is done
in WiTTSim by creating the dictionaries for all features, translating these dictionaries
into vectors and saving them into a binary file. The binary file stores all remarks as
keys in a dictionary structure along with their megavectors as values. Note that the
megavector size varies from dataset to dataset. As for all 54,930 remarks, the megavector
size comprises 115,601 elements long with 45,337 words, 22,739 lemmas, 38 POS-tags, and
47,487 synonyms.

2https://docs.python.org/3/library/pickle.html

36

https://docs.python.org/3/library/pickle.html

4.3 Dimensionality Reduction

4.3 Dimensionality Reduction

At the beginning of the experiments, the dimension of the feature space is relatively high,
depending on the size and complexity of the dataset. In other words, by incorporating
remarks with a vocabulary that is rich in variety, more vector positions will be necessary
in order to map the higher number of words and synonyms to positions in the vector than,
say, a very short text with only few different words. Evidently, the largest dimension in the
Wittgenstein Nachlass will be attained when processing the entire document collection:
with regard to all features, the megavector for each remark then stores 115,601 features.

Clustering datapoints in a 115,601-dimensional space is not only tremendously ineffi-
cient but will also fail to retrieve appropriate clusters due to the data sparsity in high
dimensions. Therefore, the dimensions will be reduced beforehand to a more reasonable
amount of features. However, different reduction techniques will yield different results
and not all methods will be equally applicable to our datasets. For determining a suitable
algorithm, four different dimensionality reductions will be tested and briefly evaluated.
The resulting reduced data will be utilised for the following clustering approaches.

Please note that not all of the methods presented in Section 3.2 will be tested. This is on
the one side due to time restrictions of this work, and on the other side due to the limited
access to ground truth labels that are essential for any supervised dimensionality reduc-
tion method. In the experiments, only very few ground truth labels are available while a
vast majority of roughly 99% of the data is unlabelled. Hence semi-supervised or entirely
supervised methods such as LDA are not suitable for the experiments and will not be
considered further in the comparison of reduction approaches. Instead, four unsupervised
methods will be examined, namely PCA, SVD, SRP, and UMAP. The dimensionality re-
duction methods will be implemented using scikit-learn3 [96], a SciPy toolkit for machine
learning implementations and the python package UMAP4 [86], for the UMAP dimension-
ality reduction.

PCA is a linear dimensionality reduction algorithm using SVD to project the data to a
lower dimensional space. The optimal number of dimensions for PCA is determined as de-
picted in Section 3.2.2. Ideally, after the reduction with the optimal number of dimensions,
still 80-90% of the variance is kept [71]. Since PCA can be tricky for sparse feature spaces,
SVD for high-dimensional sparse feature spaces will be compared additionally. The ideal
number of dimensions can be found by visualising the variance in a chart, also known as
scatter. When the scatter shows a step in the data, the optimal number of dimensions is
reached. In case no step can be taken from the illustration, ideally a variance of 80-90%
should be kept. Especially for the large feature vectors of the entire Nachlass, SRP can be
useful and should therefore be tested and evaluated furthermore. Moreover, UMAP will
be taken into account, comparing the linear techniques above to a manifold technique for
general non-linear dimension reduction.

Beside the methods listed above, another possibility is to apply hierarchical clustering
on the feature space for dimensionality reduction to group together features that behave
similarly, also known as feature agglomeration [71]. Due to limited evaluation possibilities
in terms of determining an appropriate number of features, this method is skipped in the
experiments.

3https://scikit-learn.org/stable/modules/decomposition.html#decompositions
4https://umap-learn.readthedocs.io/en/latest/index.html

37

https://scikit-learn.org/stable/modules/decomposition.html##decompositions
https://umap-learn.readthedocs.io/en/latest/index.html

4 Implementation

4.4 Experimental Setup

Because different clustering algorithms can lead to entirely different results, it is important
to run the algorithms on small subparts of the dataset in a (semi-)supervised way such
that the clustering quality can be measured. It is crucial to emphasise that there is no
perfect algorithm that can be applied to any kind of data. Hence the best algorithm for the
underlying data, the Wittgenstein corpus, is still to be determined. In order to define the
most suitable clustering algorithm, five experiments are carried out on several subsets of
the dataset. Subsequently, the optimal algorithms should be applied to the entire Nachlass.

First, a toy corpus has been created to be able to evaluate the dimensionality reduction
and clustering results in a supervised way. The corpus consists of 20 remarks that can be
grouped into three clusters. Their semantic connectivity has been presented by Biesen-
bach [21]. For sake of the experiments, each of those remarks has been adapted in three
different ways. Variant A substitutes words with their synonyms, variant B deletes words
or sentences, and variant C permutes the sentences within the remark. This leads to a
total of 80 remarks in the toy corpus with three clusters. A comprehensive and detailed
list of utilised documents can be found in the appendices, Table A.1.

The data points in the toy corpus are distributed artificially, that is, the data groups are
very clearly separated from one another. In order to avoid overfitting, more natural smaller
datasets should be considered for the comparison and evaluation of the clustering algo-
rithms. Therefore, the main works of Ludwig Wittgenstein have been included, namely the
Prototractatus, the Big Typescript, the Philosophical Investigations, the Brown Book, and
a test set of Wittgensteins Kringelbuch [110]. Each of the datasets is of different size and
varying complexity, that is feature size, such that the dimensionality reduction methods
and clustering algorithms can be evaluated on a higher variety of databases. All datasets
are presented in further detail in Table 4.1.

For determining the most suitable clustering algorithm for each dataset, several different
clustering algorithms are taken into account. Apparently, due to the large amount of ex-
isting clustering algorithms, not every algorithm can be tested on the datesets. However,
algorithms of each category have been tested: K-Means for representing the partitioning
algorithms, Mean-Shift and DBSCAN for density-based clustering, agglomerative cluster-
ing as a hierarchical clustering algorithm, and the GMM representing the probabilistic
clustering approaches.

4.5 Integration into WiTTSim

Currently, the WiTTSim pipeline works as follows. The entire Nachlass is read in, trans-
formed into feature vectors, and saved to disk. For each query, the query text is also
transformed into a vector with the same features and dimensions as the precalculated
dataset. Then the query vector is compared pairwise with each of the pre-saved 54,930
vectors. For retrieving the top k similar remarks, more than 30 minutes of computation
time are required due to the immensely large number of features.

The dimensionality reduction and clustering can help to decrease the time drastically.
That means, the results from previous sections are stored such that they can help boosting
performance of WiTTSim and making it integrable into the WAST. An overview of the
entire new pipline including the clustering beforhand is given in Figure 4.1 on page 40 and

38

4.5 Integration into WiTTSim

Test set Remarks Dimensions Samples Clusters

Toy Corpus Selected remarks of
Ms-109a, Ms-124, Ms-
129, Ms-165, Ts-211b,
Ts-212, Ts-213, Ts-
227a,b, Ts-228, Ts-
230a,b,c

250 80 3

Prototractatus Ms-104 6,618 881 unknown

Big Typescript Ts-213 28,130 2,763 unknown

Philosophical
Investigations

Ts-227a,b 18,481 1,434 unknown

Brown Book Ts-310 8,832 325 unknown

Kringelbuch Selected remarks of
Ms-107, Ms-108

555 17 2

Full Nachlass Ms-101 - Ts-310 (all) 115,601 54,904 unknown
a Manuscript
b Typescript

Table 4.1: Test sets used in the experiments along with their properties, i.e. what
manuscrips or typescripts are included, their number of dimensions in the fea-
ture space, the number of samples, i.e. remarks, and their number of clusters
if given.

the steps described in further detail in the following paragraphs.

In the first place, the dimensionality reduction model is applied to the dataset and saved
to disk. This step is crucial in order to apply the same dimensions onto the query vector
later. Next, the entire dataset is clustered and the clustering is saved beforehand into a
dictionary (Source Code 4.2), where the key is the cluster ID and the value is a list of all
the remarks that belong together. Note that the cluster ID is indispensable in order to
map the cluster centroids to the clusters themselves containing the remarks later.

clusters = {
Cluster_0:[’Ts-230a,11[3]’, ..., ’Ts-230c,11[3]’],
Cluster_1:[’Ts-211,398[2]’, ..., ’Ms-109,224[3]’],
Cluster_2:[’Ts227a,243[3]’, ..., ’Ts-228,71[3]’]
}

Source Code 4.2: Presaved Clusters in dictionaries.

When a user starts a query, the query is then projected onto the same dimensional space
as the presaved datapoints. This is done by fitting the input vector to the same model
and its parameters used for the entire dataset that has been saved in the previous step.
Then the query input vector is transformed.

Instead of comparing the resulting vector to the entire data points, leading to an ex-
haustive search of the dataspace, only the distances from the vector to each of the cluster’s
centres is calculated (Source Code 4.3). Subsequently, the centroid with the smallest dis-
tance is returned, representing the cluster with the highest relevance (Equation (4.1)).

39

4 Implementation

Figure 4.1: Integration of the dimensionality reduction and text clustering as preprocessing
steps in the similarity search. The pipeline shows the feature reduction before
clustering and the distance calculation to the centroids instead of the entire
database. Then the respective cluster is retrieved and the top x similar remarks
are retrieved.

Finally, the query is only compared to the remarks in the resulting cluster and an exhaus-
tive search of the entire search space can be avoided. Again, the algorithm retrieves the
points with the smallest distance to the query vector (Equation (4.2)).

centroids = {
centroid_0:array([4.74749527e+00, -1.88144787e-01, -9.12357693e-01,
1.81894323e+00, 3.04414634e+00, 3.05437675e-01, 1.76643242e-01,
... -5.27249285e-48]),
...
centroid_k:array([5.25351076e+00, -7.28835828e-02, 3.82454004e+00,
-2.64636965e-01, -8.37106511e-02, -1.23938670e-02, -2.84600658e-02,
... 7.14589766e-47])

}

Source Code 4.3: Centroids saved in dictionary structure.

determine cluster = arg min
x∈centroids

(dist(q, x)) (4.1)

closest = arg min
y∈clusters

(dist(q, y)) (4.2)

In case the best fitting algorithm does not imply a centroid-based approach, the closest
clusters cannot be determined. Therefore, KNN will be applied onto the reduced dataset
for the determination of the n closest data points. The clustering algorithm is in that case
solely used for data exploration and knowledge discovery and treated separately to the
similarity search. Moreover, KNN can be deployed for determining the closest remarks for
a data point in the database.

40

4.6 Evaluation

4.6 Evaluation

For the sake of completeness, both unsupervised and supervised methods have been pre-
sented in the methodological overview of this work in Section 3.5. However in consequence
of the scarce ground truth available, that means there exists few if any ground truth la-
bels, not all types of evaluation metrics are eligible for evaluating the clustering results.
Before going into more detail, the available data will be presented such that the following
algorithms can be suited onto the present situation.

The basis for the evaluation form solely the properties of the clustering outcomes them-
selves, which will allow for applying the following unsupervised metrics:

• Silhouette Coefficient

• Davies-Bouldin index

• Calinski-Harabasz index

Additionally, a list of 471 remarks that are each similar to up to 15 other remarks is
given. The total number of likewise “labelled” texts comprise 1,670 remarks. Since this
is accounts only for 3% of the total document collection, it would be naive to say that
solely up to 15 remarks are allowed in one cluster. Hence, other remarks that are placed
in the same cluster should be not punished by the evaluation algorithm. However, based
on classical algorithms such as the fourfold table, a lot of false positives would be classified
which would lead to poor results. Therefore, the only possibility is to reward clusterings
that achieve to place correct remarks together in clusters, and to punish clusterings that
fail to locate these “labelled” documents in the same buckets.

For incorporating the little ground truth available, the recall will be calculated for each
of the available labels and the average value taken. The value between 0 and 1 will then
indicate whether the known 1,670 remarks are correctly grouped, where 0 is the worst and
1 is the best clustering. Note that a calculation of precision and F-measure is elided due
to reasons listed above.

41

5 Experimental Results and Evaluation

The following chapter will present the experimental results of the introduced methodolo-
gies in Chapter 4. The experimental results will be presented and evaluated in detail.

The chapter is further subdivided as follows. Section 5.1 will present the optimal feature
space of the Wittgenstein corpus. Section 5.2 finds the best suitable clustering algorithm
with the optimal number of clusters respectively. Next, the performance will be evaluated
in Section 5.3. Furthermore, KNN results will be presented by comparing different pa-
rameters. Section 5.4 will explain arisen challenges and problems. The chapter concludes
in Section 5.5, discussing the results and methods.

5.1 Optimal Feature Space

Obviously, the number of essential dimensionalities strongly depends on the original dataset
and its respective number of features. This means that there is no perfect number of di-
mensions that fits on all presented datasets. Therefore, the optimal number of dimensions
will be determined in dependence of each dataset. The critical point showing the optimal
number of dimension is illustrated by a “knee” in the data graph. In case no breaking
point can be detected, a maintained variance of about 80% should be strived for. Thereby
a high spread in the data can be kept and the clustering algorithms can be applied onto the
data properly. Note that this number highly varies and tends to increase as the datasets
become more natural and the clusters are not created artificially. This can be explained
through the fact that in most natural settings the data points will be separated less clearly
from each other. This results in a larger number of features that have to be kept in order
to guarantee a high variance overall.

Since not all dimensionality reduction methods are suitable for large and sparse datasets,
an evaluation of the tested algorithms is given. The algorithms tested were PCA, SVD,
SRP, and UMAP. PCA was however not applicable to our datasets because it allows only
for reducing to a number of dimensionalities that is smaller than the number of samples.
That means any number higher than the number of samples could not be tested.1 For
example, the Brown Book comprises 325 samples and 8,832 dimensions. Any dimension
higher 325 could not be examined using PCA. However, for a small number of dimensions,
PCA and SVD yield the exact same results, which is why the final results have been com-
puted using SVD. All outcomes using SVD as the dimensionality reduction technique on
all datasets are documented in Table 5.1 and will be explained later in further detail. A
visualisation of the data graphs is presented in the appendices in Figures B.1 to B.3.

The subsequent method tested is SRP. Visualised in a two-dimensional space it seems
that it fails to project the data onto a lower dimension. However, the 2D projection
does not necessarily capture the most important dimensionalities. Performing SRP on the
dataset however, yields slightly poorer results on the dataset than the results obtained
using SVD. Detailed results are provided in Table D.1 on page 77.

1For a recapitulation of samples and dimensions, please refer again to Table 4.1 on page 39.

43

5 Experimental Results and Evaluation

Next, UMAP is applied to the entire dataset. Because it is not a linear reduction tech-
nique, no variance calculation is possible. However, UMAP allows only for reducing the
dataset to any dimension between 2 and 100, which is why the largest number is chosen in
order to maintain as much information as possible. Already by reducing the data to 100
dimensions, the results look promising, as shown in Table D.2 on page 78. Being more
sophisticated than linear models, it is however not possible to save the model because it
is too large to be dumped into a file. Therefore the method is discarded, because without
storing the model, it is impossible to reload it to apply it to further query data.

For these reasons, SVD is selected to be the best fitting algorithm. The major reasons
were the promising results in combination with the clustering techniques and the simplicity
of saving and restoring the model. Table 5.1 shows that for all underlying databases, only
3.06% to 10.28% of the features have to be maintained in order to keep 99% of variance.
As opposed to the smaller datasets, a small loss of information for the entire Nachlass
can not be avoided due to the large number of features. However, choosing the number
of dimensions d = 1, 000, already a high variance is kept, enabling a clustering on a
reasonable number of features. Figure 5.1 shows that by keeping choosing d = 1, 600, 80%
of the original variance can be maintained.

Testset Original Reduceda Maintainedb

Toy Corpus 391 36 9.21%

Prototractatus 6,618 680 10.28%

Big Typescript 28,130 2,050 7.29%

Philosophical
Investigations

18,481 700 3.79%

Brown Book 8,832 300 3.40%

Kringelbuch 555 17 3.06%

Full Nachlass 115,601 1,600c 1.38%
a reduced dimension such that 99% of variance is kept
b maintained proportion after dimensionality reduction
c for 80% variance

Table 5.1: Compared algorithms for dimensionality reduction and their results. All di-
mensions are calculated using SVD and are presented in relation to their original
number of features.

5.2 Optimal Algorithm

Since there is no perfect algorithm that separates any dataset into perfect clusters, several
clustering algorithms will be compared. For evaluation and performance reasons, the
parameters will be determined first on the smaller datasets before clustering the entire
Wittgenstein Nachlass of approximately 55,000 data points. However, since the dimensions
and the type of data vary, multiple outcomes are likely. That is, well-separated datasets
may be perfectly clustered by one algorithm while the same algorithm fails to separate
more dense data regions. The experiments will comprise clustering techniques, as well
as KNN approaches. A detailed comparison of the utilised algorithms on the presented
dataset collection will be given in the following sections.

44

5.2 Optimal Algorithm

Figure 5.1: Scree plot 1000 dimensions over the entire Nachlass: the x-achsis shows the
number of dimensions while the y-achsis represents the maintained variance.

5.2.1 Cluster Algorithm Comparison

Prior to clustering the entire Nachlass, the smaller datasets are examined. Measuring the
quality with the external metrics, it can be seen that mainly smaller numbers of clusters
are preferred. Table 5.2 shows the ideal number of clusters according to the metrics used.
Slashes indicate that two metrics yield divergent results.

Dataset K-Means Mean Shift DBSCAN GMM Ward

Toy Corpus 3 5 3 3 3

Prototractatus 2 / 4 – 2 2 2

Big Typescript 2 / 6 – 2 2 2 / 5

PI 2 / 5 – 2 2 5

Brown Book 2 / 5 – 2 2 2

Kringelbuch 2 3 – 4 / 5 2 / 5

Full Nachlass 300 – 2 250 300

Table 5.2: Compared algorithms and their outcome.

Since no information about the number of clusters is given in advance, the first two
algorithms tested are DBSCAN and Mean-Shift. For these two algorithms, no number of
clusters k has to be provided by the user. Because the data regions in the entire dataset are
very dense, Mean-Shift fails to retrieve any clusters and classifies the data to be one single
cluster. This makes it impossible to calculate the evaluation metrics properly. Moreover,
clustering the data into a single group will not solve the present problem of making the
similarity search more time-efficient. Mean-Shift is therefore excluded from further exper-
iments. Similarly, DBSCAN yields poor results on our dataset, because it only retrieves
one cluster and several outliers in the margin regions. Even by merging the outliers to a
second cluster, the results are not applicable for boosting performance of WiTTSim.

As for the remaining algorithms tested, the specifying of the number of clusters relies on
the user. The number of clusters is however crucial for the clustering outcome quality as

45

5 Experimental Results and Evaluation

well as for the later performance of the similarity search. Moreover, the number is highly
dependent on the dataset, which is difficult to determine in an unsupervised setting. The
clusters should be of a size such that the performance of the similarity comparison is sig-
nificantly increased so that it can be provdided in a user-friendly way. The most efficient
number of clusters is determined in Figure 5.2, which shows that for 234 clusters, only
468 elements will have to be compared as opposed to comparing 54,930 elements in the
original brute-force search.

Figure 5.2: The graph shows the number of points that will have to be compared when
clustering into the respective number of clusters, assuming a balanced cluster
size. In terms of performance, the minimum value of points to be compared
yields the ideal cluster size. This means, the best number of clusters is 234
where 468 elements have to be compared.

After obtaining a rough idea of the cluster quantity, the algorithms depending on these
numbers can be evlauated. For the K-Means, GMM, and Ward algorithm, the dataset is
clustered starting with 50 clusters to 300 by steps of 50. Table 5.3 presents all scores for
each of the steps and for all algorithms. The silhouette coefficient determined is equally
poor for all tests, yielding results between -0.08 and -0.04. The Calinski-Harabasz score
yields the best results with K-Means and k = 50, while the Davies-Bouldin index favours
the Ward algorithm with 300 clusters. Most interestingly, although the unsupervised
evaluation algorithms rate the clustering results fairly poor, all algorithms of all sizes
manage to classify the 471 clusters from the labelled corpus correctly. This yields a recall
value of 1.00 for each of the algorithms, showing that for our purposes – which is grouping
similar remarks together to reduce the search space – any algorithm could be chosen to
be integrated. This latter fact is especially crucial for clustering the data prior to the
similarity search: Although the clustering step is added beforehand, the overall results
do not change. That means, the same top n documents are retrieved regardless whether

46

5.2 Optimal Algorithm

searching only the clusters or the entire search space. In terms of yielding optimal results,
the best clustering algorithm with optimal parameters is found precisely when the exact
same results are calculated in both cases:

1. Brute force search: entire data space is searched

2. Cluster-based search: only closest cluster is searched

After evaluating the results on a random basis, the partition into 300 clusters yields too
fine-grained results and not all relevant documents could be retrieved. Hence, a smaller
value for k should be chosen.

k Algorithm Silhouette Calinski-Harabasz Davies-Bouldin Recall

2 DBSCAN 0.16 1929.07 – 1.00

50 K-Means -0.06 210.70 5.70 1.00

Ward -0.09 128.41 5.62 1.00

GMM -0.06 184.48 5.80 1.00

100 K-Means -0.05 122.07 4.61 1.00

Ward -0.08 79.67 4.45 1.00

GMM -0.06 106.71 4.74 1.00

150 K-Means -0.05 90.83 4.15 1.00

Ward -0.08 62.25 3.78 1.00

GMM -0.06 78.50 4.64 1.00

200 K-Means -0.05 73.42 3.88 1.00

Ward -0.07 52.91 3.45 1.00

GMM -0.06 64.66 4.11 1.00

250 K-Means -0.04 63.43 3.55 1.00

Ward -0.07 47.04 3.22 1.00

GMM -0.05 56.42 3.43 1.00

300 K-Means -0.04 56.42 3.31 1.00

Ward -0.07 42.93 3.09 1.00

GMM -0.05 49.91 3.55 1.00

Table 5.3: Detailed evaluation score results for the entire Nachlass. Dashes indicate that
the algorithm was not able to compute the respective score.

For the integration it is indispensable that the algorithm supports a saving of the cluster
centres such that the query point can be compared to all centres and, subsequently, the
correct cluster can be determined. This excludes the hierarchical Ward algorithm from
the integration, leading to two possible algorithms to be examined: K-Means and the
GMM. K-Means allows for storing the cluster centroids while equivalently, GMM permits
an extraction of the mean values of each cluster. Since the results for K-Means are slightly
better than the GMM scores, K-Means in conjunction with SVD will be utilised. As the
partition into 300 clusters yields too fine-grained results and not all relevant documents
could be retrieved, K-Means with 150 clusters will be integrated.

47

5 Experimental Results and Evaluation

5.2.2 K-Nearest Neighbour Search

Document clustering is especially useful when determining similar remarks to an unknown
input query. When finding similar results to an already existing remark, however, KNN
can be integrated, where a clustering beforehand is redundant. This saves memory and
time because the query does not have to be located in a certain cluster and then has to
be compared to all documents in the cluster. Rather, a data tree is constructed and the
most relevant, i.e. the closest, data points are retrieved.

In the KNN experiments the dataset is also reduced to 1,600 features beforehand. Then,
for all reduced remarks, the closest k documents are determined using three different
parameters: the brute-force KNN, k-d tree, and balltree. All three approaches retrieve
the most similar remarks in a reasonable time, while, surprisingly, the brute-force search
is the fastest algorithm in our experiments. This may trace back to the fact that the trees
have to be built before searching. Pre-saving the k-d tree and the balltree and loading
them from disk can make the search even more efficient for the two tree structures. This
yields very accurate and fast results, as shown in Table 5.4.

Dataset Exhaustive search KD-Tree Balltree

(Time in s) (Time in s) (Time in s)

Full Nachlass 0.37 6.95 8.23

Table 5.4: Compared KNN performance on different datasets without clustering included.

Also, with further analysis, KNN could be integrated when chosing a non-centroid based
algorithm for data exploration and boosting performance by constructing a k-d tree of the
entire dataset. Moreover, a classification to the wrong cluster can be avoided. This is a
critical point of the above described methods, because if a cluster centroid of data points
further away is selected, the results will be misleading and fail to retrieve the closest data
points.

5.3 Performance Evaluation

Once the ideal combination of dimensionality reduction and clustering algorithm has been
determined, the performance of the new methods extending WiTTSim will be evaluated
in three steps. Note that the performance evaluation is only carried out on the entire
Nachlass, since comparing a small amount of data points is not only already time-efficient
in advance but also not relevant for WiTTSim.

For comparing the performance, the original time was measured. That is, how long
does it take to retrieve the top k similar remarks by searching the entire data space and
without clustering the remarks beforehand. Secondly, the dimensionalities are drastically
reduced from 115,601 to 1,600 features using SVD while maintaining as much information
as necessary. Thirdly, a combination of reducing the dimensionalities to d = 1, 600 using
SVD and incorporating the clustering for searching only respective clusters, is presented.
The clustering algorithm used is a K-Means algorithm with k = 150. Results show that
already reducing the features can drastically improve the results from 1940.13 seconds to
17.19. By integrating the clusters, the search time can be further reduced to 5.40 seconds.
The runtime comparison of all three experiments is given in Table 5.5.

48

5.4 Challenges

Dataset Exhaustive search Reduced Features Reduced + clusters

Full Nachlass 1940.13 s 17.19 s 5.40 s

(32.34 mins)

Table 5.5: Compared performance on different datasets, before and after clustering.

Depending on the input query, times can vary. For searching the exhaustive space for all
features, the required working memory is very high such that the computation had to be
outsourced to a high performance computer with 1 terabyte RAM. This emphasises again
the necessity of reducing the dimensions such that the calculations can be performed on
any system.

Compared to the results retrieved by the KNN algorithm presented in Section 5.2.2
on page 48, the resulting times are still slower using the clustering approach. However,
the clustering enables unknown data points to be located in the d-dimensional space and
retrieves the most relevant remarks in a reasonable time. Because in many cases, the input
query is not part of the database, the clustering algorithm is chosen to be the optimal
method of searching and visualising the data. However, for retrieving similar remarks to a
remark saved in the database, the KNN search can be helpful. Furthermore, because the
most similar results from known remarks will not change, they can be saved in advance
and read from file. Due to the limited time frame, however, this is left for future work. All
prestored similar remarks are stored in a .csv file and Excel spreadsheet and are provided
on the CD attached to this work.

5.4 Challenges

During the different steps of preprocessing, clustering, and integration, several challenges
occurred on various levels. Some of these challenges are on technical level, such as reducing
the dimensionality and finding the appropriate clustering technique, others are on data
level, such as fitting the algorithms onto the Wittgenstein data and considering Wittgen-
stein data specific properties and needs. The following subsections will describe each of
these challenges in further detail.

5.4.1 Curse of Dimensionality

The incorporation of a large number of semantic and syntactic features brings many ad-
vantages and opens up new possibilities for retrieving similar remarks. However the high
number of dimensions rises also a series of problems and challenges. A major drawback
is the complexity: the Nachlass consists of approximately 55,000 remarks with a feature
vector of approximately 100,000 features each. This leads to a total number of features
of 5.5 × 109 that have to be compared. However not all of these 100,000 features are
crucial for determining the similarity among documents. Since the feature space in high
dimensions is very sparse, features that occur only once or twice will not contribute to the
clustering because they have no significant impact on the entire data space. Therefore,
the data space can be reduced drastically while maintaining a high number of distinctive
features.

The challenge is to find an appropriate dimensionality reduction method, then reduces
to the smallest but best possible number of dimensions. However after enriching the
feature vectors with a large number of features, the algorithm should only discard the

49

5 Experimental Results and Evaluation

unnecessary features that do not convey any meaning important for determining cluster
similarities. However most algorithms work in an unsupervised way such that it is nearly
impossible to survey the reduction process. The problem can be tackled by re-examining
the results on a random bases and discarding all reduction methods that fail to keep the
variance sufficiently high.

Further, most algorithms rely on a dimensionality reduction method for a closed data
set. For projecting the user query onto the same number of dimensions, the parameters of
fitting the data have to be saved such that the exact same process can be applied to the
incoming user query. Projecting the user query into the wrong data space will lead to the
query point being in the wrong data space and the system fails to determine the correct
distance in the data space.

5.4.2 Parameter Setting

A vast majority of the algorithm require a manual parameter setting beforehand. In an
unsupervised setting, the number of clusters is not known in advance. The number is
however crucial for attaining good and satisfying clustering results. This is especially es-
sential in algorithms such as K-Means that require a user-specified seeding. The clustering
quality depends on these seeds, since a poor seeding can only converge to a local maxi-
mum. Moreover, algorithms such as DBSCAN require a pre-calculation of a parameter ε.
Similarly, determining the number of clusters k has a high impact on the overall clustering
result, where a too large value defines the entire dataset to be one single cluster, and an
extremely low value clusters every data point to its own cluster. Summarising, a sensitive
choice of user-defined parameters is absolutely indispensable but challenging.

5.4.3 Cluster Structure

Next to choosing appropriate parameters, the resulting cluster structure of each algo-
rithm will also be crucial for considering an integration into WiTTSim. For instance, an
algorithm cannot mark data points as outliers. This is because when an outlier is not
considered in the clustering list, a user query will never find that data point even if it is
exact copy and paste. In other words, the algorithm will be adapted such that it only
searches first the cluster centroids and then the cluster points. All data points that do not
belong to any cluster will be disregarded which leads to a massive information loss and
decrease of accuracy. This excludes certain (well-performing) algorithms to be applicible
to our approach, such as DBSCAN or CLIQUE. However the underlying data structure
may reveal outliers that will have to be “forced” to belong to a certain cluster even if it is
located further away in the data space.

Furthermore, the structure of the Wittgenstein Nachlass in some cases demands for a
soft clustering technique. That is, remarks should be allowed to be within two different
clusters. This is the case when for example the first paragraph in a remark is similar to
remarks a, b and c while the second paragraph resembles remarks d and e. Through all
six remarks into the same cluster could be problematic since remark a and remark e may
not have a single overlapping neither in syntactic features nor in semantics. To address
this issue, remarks will have to be treated on sentence level instead of remark level. An
illustration is given in Figure 5.3.

A third challenge in the cluster structure is the inter-cluster distance and the intra-
cluster distance. In an artificial corpus, intra-cluster distance is very small while the

50

5.5 Discussion

Figure 5.3: Two sentences in the same remark where the first sentences is similar to
remarks A, B, and C, while the second sentences shares similar features with
remarks D, E, and F. However there is no connection between [A,B,C] and
[D,E,F].

inter-cluster distance is large, simply because the clusters are clearly separated from each
other. In a more realistic setting, as in the entire Nachlass, the distance between clusters
may be relatively small because there is no clear separation or grouping of the points but
a more gradual transition between the data points. However the similarity search relies
on a well-performing clustering algorithm such that still the closest (and most similar)
remarks are retrieved and not discarded simply because they belong to another cluster.

5.5 Discussion

A lot of factors contribute to a functioning clustering algorithm that is sufficiently per-
formant in order to be integrated into the similarity search. A vast amount of dimen-
sionality reduction methods in combination with clustering techniques has been tested
and evaluated. The following section will discuss advantages and drawbacks, along with
a justification of the integrated methods.

Dimensionality reduction on a large number of features has been proven to be complex
for some of the methods presented. PCA was not designed for storing a larger amount
of features than the data sample size, which is why it has not been further considered
in the experiments. UMAP has proven to produce well-separated clusters, however, the
underlying model is too extensive to be stored in a file and be re-used for reducing the
input vector. Nevertheless, this is indispensive for mapping the input vector onto the
same space as the underlying database. In further studies, UMAP is well-suited for data
exploration, while less suitable for our purposes. Next, SRP and SVD have been applied
to the original database in order to reduce the database to 532 and 1,600 features, re-
spectively. Although both methods score relatively low in the unsupervised evaluation
metrics, SVD seems more promising because of its higher scores in combination with the
document clustering.

After reducing the databasis to a reasonable amount of features, the dataset was clus-
tered using five different clustering algorithms. The Mean-Shift algorithm was unable to
retrieve any clusters on the SVD-reduced data and on the SRP-reduced data. On the
UMAP-reduced data it automatically detects 40 clusters, which shows the importance of
choosing a good combination of reduction and clustering algorithm. DBSCAN detects
between two and four clusters which is why taking it into account it is negligible in the
further experiments. A reduction to only four clusters would still lead to approximately
13,000 data points in a cluster which is too high to be worth considering. K-Means, Ward,

51

5 Experimental Results and Evaluation

and GMM all three yield accurate results, all classifying the small amount of labelled data
correctly, leading to a recall value of 1.0. Since only centroid-based algorithms are worth
considering for the integration, only K-Means and GMM are possible solutions, where
K-Means is chosen for its slightly better evaluation results.

For examining the appropriate number of clusters, clustering sizes between 50 and 300
have been selected for efficiency reasons. A cluster size of 300 seems promising, however,
results are already too fine-grained to retrieve satisfying results. Therefore, the final
integration is a K-Means clustering algorithm, where k = 150 and the data has been
reduced to 1,600 features beforehand using SVD.

52

6 Conclusions and Future Work

The main goal of the current study was to boost performance of the similarity search
WiTTSim such that the top k similar remarks are retrieved in a reasonable time. This
was achieved in two different ways: Firstly, by incorporating a clustering technique, i.e.,
clustering the data in advance, comparing the query data point only to the cluster cen-
troids, and subsequently comparing it to all data points in the cluster of the closest
centroid. Secondly, for retrieving similar documents to an already known document in the
database, the datasets were organised beforehand in form of a k-d tree or balltree, and
then only respective branches were searched.

More detailed summaries and outlooks will be given in the following sections: Section 6.1
will recap the obtained results and will bring together the main areas covered in this thesis.
Finally, Section 6.2 will address open issues and suggestions for future work.

6.1 Conclusions

Summarising can be captured that selecting an appropriate combination of a dimension
reduction algorithm and a clustering technique is indispensible for achieving good results
in the similarity search. This is because the performance boost strongly depends on a well-
suited combination and, most importantly, not every clustering algorithm is appropriate
for every data setting. Combining unsuitable algorithms will fail to detect any clusters
at all in the data, and is hence useless to be integrated. For example, density-based al-
gorithms, which determine the number of clusters automatically, were not suitable for
the underlying database with 1,600 features after the SVD reduction, and 100 features
after the UMAP reduction, respectively. Because of the dense data space, both examined
algorithms Mean-Shift and DBSCAN failed to detect the clusters adequatly.

Optimal results could be achieved using K-Means after reducing the dimensions by
means of UMAP. However, the dimensionality reduction algorithms need to be suited for
saving pre-trained models such that a user query can be fit with the same model and
subsequently retrieving the correct projection onto a lower dimensional space. Since the
UMAP model is too large to be stored for transforming the query vector, SVD was chosen
in the subsequent step, being a simple model that can be stored and restored effectively
while at the same time achieving equally good results.

Selecting the features beforehand and diminishing them to a reasonable amount of di-
mensions had an immense impact on the efficiency of the similarity search. Reducing the
features from 115,601 to 1,600 increased the efficiency drastically: The search time could
be reduced from 1940.13 seconds to 17.19 seconds. Further, by incorporating clustering
additionally, the performance could be even more boosted, handling a user query in solely
5.40 seconds.

For searching similar remarks to already existing remarks in the database, document
clustering is not necessary. Instead, the features are again reduced and a KNN search has

53

6 Conclusions and Future Work

been implemented to increase performance, retrieving high-quality results in 0.37 up to
8.23 seconds only. The time thereby depends on the organisation of the data, that means,
whether the data is searched in a brute-force manner, or if the data is organised as a k-d
tree or balltree. Surprisingly, for our dataset, the KNN brute-force approach achieved the
fasted results.

6.2 Future Work

Due to the restricted time of this work, only very few algorithms could be tested and
still many experiments and implementations remain to be carried out. There is abundant
room for further progress in determining the optimal combination between dimensionality
reduction method and clustering algorithm by testing even more different algorithms, as
described in the following paragraphs.

As an additional reduction technique to be tested, feature agglomeration can be evalu-
ated. Basically, feature agglomeration clusters features by means of hierarchical clustering,
and in this way groups together similar features. Future work should examine, how much
information can be maintained, while drastically reducing the complexity of the dataset.

Further attempts could be made to implement DNN-driven approaches, such as cluster-
ing the data space using a SOM, or implementing a DEC or DCN that have been presented
in Chapter 2. Comparing these algorithms with approaches in this work may reveal the
optimal baseline for the integration of the clustering as well as for exploratory purposes
of the data space.

Moreover, it is desirable for future work to apply the algorithms directly on lower
dimensional vectors, for instance retrieving word embeddings from Word2Vec, Doc2Vec,
or FastText1 and entirely skipping the dimension reduction. Furthermore, future research
might apply a TF-IDF weighting to the newly obtained vectors in order to weigh the
different features accordingly.

1see for example https://radimrehurek.com/gensim/models/word2vec.html

54

https://radimrehurek.com/gensim/models/word2vec.html

List of Abbreviations

AMI Adjusted Mutual Information. 33

ARI Adjusted Rand Index. 33

BMU Best Matching Unit. 27

CNN Convolutional Neural Network. 6, 7

DBSCAN Density-Based Spatial Clustering of Applications with Noise. 9, 23, 24, 34, 38, 45, 50, 51,
53

DCN Deep Clustering Network. 7, 8, 54

DEC Deep Embedded Clustering. 6–8, 54

DNN Deep Neural Network. 6–8, 54

EM Expectation Maximization. 22, 23

GMM Gaussian Mixture Model. 21, 22, 34, 38, 46, 47, 52

KNN K-Nearest Neighbour. 3, 13, 28, 29, 34, 40, 43, 44, 48, 49, 53, 54, 83

LDA Linear Discriminant Analysis. 14, 16, 37

LSH Locality-Sensitive Hashing. 10

LSI Latent Semantic Indexing. 6

MDL Minimum Description Length. 21

MI Mutual Information. 16, 33

MLE Maximum Likelihood Estimate. 22

NLP Natural Language Processing. 7, 9

NMI Normalized Mutual Information. 33

PAM Partitioning Around Medoids. 20

PCA Principal Component Analysis. 15, 16, 33, 37, 43, 51, 79

PLSA Probabilistic Latent Semantic Indexing. 6

55

List of Abbreviations

POS Part-of-Speech. 13, 14, 36

RP Random Projection. 17, 18

SGD Stochastic Gradiant Descent. 6, 18

SOM Self-Organizing Map. 8, 9, 26, 27, 54, 79

SRP Sparse Random Projection. 17, 33, 37, 43, 51, 77

SVD Singular Value Decomposition. 3, 15, 33, 37, 43, 44, 47, 48, 51–53, 69, 77, 79

t-SNE t-distributed Stochastic Neighbour Embedding. 17

TF-IDF Term Frequency-Inverse Document Frequency. 7, 10, 54

UMAP Uniform Manifold Approximation and Projection. 17, 18, 37, 43, 44, 53, 69, 77

VSM Vector Space Model. 13, 14

WAST Wittgenstein Advanced Search Tools. 1, 38

WiTTSim Wittgenstein Similarity search. 1, 3, 13, 28, 35, 36, 38, 45, 48, 50, 53

56

Appendices

57

A Dataset Details

All utilised datasets are parts of Ludwig Wittgenstein’s literary remains. While the toy
corpus is created artificially for evaluation purposes, all other sets are natural texts without
any manipulation required. The remarks can be accessed at the Wittgenstein Ontology
Explorer of the Wittgenstein Archives at the University of Bergen (WAB) at http:
//wab.uib.no/sfb/ or via the transcriptions at http://wab.uib.no/transform/
wab.php?modus=opsjoner. The latter also provides information about the language
of the texts and the times the texts were published. The table in Table A.1 shows the
detailed list or remarks and class labels, if available. For the smaller and mixed datasets,
i.e. the toy corpus and the selection from Wittgenstein’s Kringelbuch, the remark texts
are also provided.

Data Set Siglum Class Texts

Toy Corpus Ms-165,18[3]
et19[1]et20[1]

1 Wir sind durch eine bestimmte Abrich-
tung, Erziehung, so konditioniert eingestellt ,
daß wir unter bestimmten Umständen Wun-
schäußerungen von uns geben. (Ein solcher
‘Umstand’ ist natürlich nicht der Wunsch.)
Eine Frage ob ich weiß was ich wünsche ehe
mein Wunsch erfüllt ist kann in diesem Spiele
gar nicht auftreten. Und daß ein Ereignis
meinen Wunsch zum Schweigen bringt be-
deutet in diesem Sinne nicht daß es den Wun-
sch erfüllt hat. Ich kann z.B. sagen: Ich
bin jetzt befriedigt, aber wäre mein Wun-
sch befriedigt worden, so wäre ich nicht be-
friedigt. Anderseits wird auch das Wort
“Wünschen” so gebraucht: Man sagt “Ich
weiß selbst nicht, was ich mir wünsche”. H. &
D: “Denn die Wünsche verhüllen uns selbst
das Gewünschte”.)

59

http://wab.uib.no/sfb/
http://wab.uib.no/sfb/
http://wab.uib.no/transform/wab.php?modus=opsjoner
http://wab.uib.no/transform/wab.php?modus=opsjoner

Data Set Siglum Class Texts

Ms-129,105[4]
et106[1]

1 Wir sind durch eine bestimmte Abrichtung,
Erziehung, so eingestellt, daß wir unter bes-
timmten Umständen Wunschäußerungen von
uns geben. (Ein solcher ‘Umstand’ ist
natürlich nicht der Wunsch.) Eine Frage, ob
ich weiß, was ich wünsche, ehe mein Wun-
sch erfüllt ist, kann in diesem Spiele gar nicht
auftreten. Und daß ein Ereignis meinen Wun-
sch zum Schweigen bringt, bedeutet zeigt
nicht, daß es die Wunscherfüllung ist. den
Wunsch erfüllt. Ich wäre vielleicht nicht
befriedigt, wäre mein Wunsch befriedigt
worden. Anderseits wird auch das Wort
“wünschen” so gebraucht: Man sagt “Ich
weiß selbst nicht, was ich mir wünsche”. Und
in Herman & Dorothea : “Denn die Wünsche
verhüllen uns selbst das Gewünschte.”

Ts-230a,64[4]
et65[1]

1 Wir sind durch eine bestimmte Abrichtung,
Erziehung, so eingestellt, daß wir unter bes-
timmten Umständen Wunschäußerungen von
uns geben. (Ein solcher ‘Umstand’ ist
natürlich nicht der Wunsch.) Eine Frage,
ob ich weiß, was ich wünsche, ehe mein
Wunsch erfüllt ist, kann in diesem Spiele
gar nicht auftreten. Und daß ein Ereignis
meinen Wunsch zum Schweigen bringt, be-
deutet nicht, daß es den Wunsch erfüllt. Ich
wäre vielleicht nicht befriedigt, wäre mein
Wunsch befriedigt worden. Anderseits wird
auch das Wort “wünschen” so gebraucht:
“Ich weiß selbst nicht, was ich mir wünsche.”
(“Denn die Wünsche verhüllen uns selbst das
Gewünschte.”) ()

60

Data Set Siglum Class Texts

Ts-230b,64[4]
et65[1]

1 Wir sind durch eine bestimmte Abrichtung,
Erziehung, so eingestellt, daß wir unter bes-
timmten Umständen Wunschäußerungen von
uns geben. (Ein solcher ‘Umstand’ ist
natürlich nicht der Wunsch.) Eine Frage,
ob ich weiß, was ich wünsche, ehe mein
Wunsch erfüllt ist, kann in diesem Spiele
gar nicht auftreten. Und daß ein Ereignis
meinen Wunsch zum Schweigen bringt, be-
deutet nicht, daß es den Wunsch erfüllt. Ich
wäre vielleicht nicht befriedigt, wäre mein
Wunsch befriedigt worden. Anderseits wird
auch das Wort “wünschen” so gebraucht:
“Ich weiß selbst nicht, was ich mir wünsche.”
(“Denn die Wünsche verhüllen uns selbst das
Gewünschte.”) ()

Ts-230c,64[4]
et65[1]

1 Wir sind durch eine bestimmte Abrichtung,
Erziehung, so eingestellt, daß wir unter bes-
timmten Umständen Wunschäußerungen von
uns geben. (Ein solcher ‘Umstand’ ist
natürlich nicht der Wunsch.) Eine Frage,
ob ich weiß, was ich wünsche, ehe mein
Wunsch erfüllt ist, kann in diesem Spiele
gar nicht auftreten. Und daß ein Ereignis
meinen Wunsch zum Schweigen bringt, be-
deutet nicht, daß es den Wunsch erfüllt. Ich
wäre vielleicht nicht befriedigt, wäre mein
Wunsch befriedigt worden. Anderseits wird
auch das Wort “wünschen” so gebraucht:
“Ich weiß selbst nicht, was ich mir wünsche.”
(“Denn die Wünsche verhüllen uns selbst das
Gewünschte.”) ()

61

Data Set Siglum Class Texts

Ts-227a,243[3] 1 441. Wir sind von Natur und durch
eine bestimmte Abrichtung, Erziehung,
so eingestellt, daß wir unter bestimmten
Umständen Wunschäußerungen machen.
(Ein solcher ‘Umstand’ ist natürlich nicht
der Wunsch.) Eine Frage, ob ich weiß, was
ich wünsche, ehe mein Wunsch erfüllt ist,
kann in diesem Spiele gar nicht auftreten.
Und daß ein Ereignis meinen Wunsch zum
Schweigen bringt, bedeutet nicht, daß es
den Wunsch erfüllt. Ich wäre vielleicht
nicht befriedigt, wäre mein Wunsch be-
friedigt worden. Anderseits wird auch
das Wort “wünschen” so gebraucht: “Ich
weiß selbst nicht, was ich mir wünsche.”
(“Denn die Wünsche verhüllen uns selbst
das Gewünschte.”) Wie, wenn man fragte:
“Weiß ich, wonach ich lange, ehe ich es
erhalte?” Wenn ich sprechen gelernt habe,
so weiß ich’s.

Ts-227b,243[3] 1 441. Wir sind von Natur und durch
eine bestimmte Abrichtung, Erziehung,
so eingestellt, daß wir unter bestimmten
Umständen Wunschäußerungen machen.
(Ein solcher ‘Umstand’ ist natürlich nicht
der Wunsch.) Eine Frage, ob ich weiß, was
ich wünsche, ehe mein Wunsch erfüllt ist,
kann in diesem Spiele gar nicht auftreten.
Und daß ein Ereignis meinen Wunsch zum
Schweigen bringt, bedeutet nicht, daß es
den Wunsch erfüllt. Ich wäre vielleicht
nicht befriedigt, wäre mein Wunsch be-
friedigt worden. Anderseits wird auch
das Wort “wünschen” so gebraucht: “Ich
weiß selbst nicht, was ich mir wünsche.”
(“Denn die Wünsche verhüllen uns selbst
das Gewünschte.”) Wie, wenn man fragte:
“Weiß ich, wonach ich lange, ehe ich es
erhalte?” Wenn ich sprechen gelernt habe,
so weiß ich’s.

Ms-124,169[6]
et170[1]

2 “Mit Zungen reden”. Könnte man sich auch
denken, daß das die ganze Sprache der Men-
schen wäre? Wäre so eine Sprache dann ähn-
lich wie die von Tieren?

62

Data Set Siglum Class Texts

Ms-129,173[4]
et174[1]

2 Man könnte sich Menschen denken Es könnte
Menschen geben , die etwas einer Sprache
nicht ganz unähnliches, besäßen: Laut-
gebärden; ohne Wortschatz oder Grammatik.
(‘Mit Zungen reden’?)

Ts-228,96[3] 2 Man könnte sich Menschen denken, die et-
was einer Sprache nicht ganz unähnliches
besäßen: Lautgebärden; ohne Wortschatz
oder Grammatik. (‘Mit Zungen reden’)

Ts-230a,11[3] 2 Man könnte sich Menschen denken, die et-
was einer Sprache nicht ganz unähnliches
besäßen: Lautgebärden, ohne Wortschatz
oder Grammatik. (‘Mit Zungen reden’) ()

Ts-230b,11[3] 2 Man könnte sich Menschen denken, die et-
was einer Sprache nicht ganz unähnliches
besäßen: Lautgebärden, ohne Wortschatz
oder Grammatik. (‘Mit Zungen reden’) ()

Ts-230c,11[3] 2 Man könnte sich Menschen denken, die et-
was einer Sprache nicht ganz unähnliches
besäßen: Lautgebärden, ohne Wortschatz
oder Grammatik. (‘Mit Zungen reden’) ()

Ts-227a,268[3]
et269[1]

2 528. Man könnte sich Menschen denken, die
etwas einer Sprache nicht ganz unähnliches
besäßen: Lautgebärden, ohne Wortschatz
oder Grammatik. (‘Mit Zungen reden’)

Ts-227b,268[3]
et269[1]

2 528. Man könnte sich Menschen denken, die
etwas einer Sprache nicht ganz unähnliches
besäßen: Lautgebärden, ohne Wortschatz
oder Grammatik. (‘Mit Zungen reden’)

Ms-109,224[3] 3 Warum die grammatischen Probleme so hart
& scheinbar unausrottbar sind – weil sie mit
den ältesten Denkgewohnheiten d.h. mit den
ältesten Bildern, die in unsere Sprache selbst
geprägt sind, zusammenhängen.

Ts-211,398[2] 3 Warum die grammatischen Probleme so hart
und scheinbar unausrottbar sind – weil sie
mit den ältesten Denkgewohnheiten, d.h. mit
den ältesten Bildern, die in unsere Sprache
selbst geprägt sind, zusammenhängen.

Ts-212,1175[1] 3 39860?2Warum die grammatischen Probleme
so hart und anscheinend unausrottbar sind
– weil sie mit den ältesten Denkgewohn-
heiten, d.h. mit den ältesten Bildern, die in
unsere Sprache selbst geprägt sind, zusam-
menhängen. ((Lichtenberg.))

63

Data Set Siglum Class Texts

Ts-213,422r[5]
et423r[1]

3 Warum die grammatischen Probleme so hart
und anscheinend unausrottbar 423bar sind
– weil sie mit den ältesten Denkgewohn-
heiten, d.h. mit den ältesten Bildern, die in
unsere Sprache selbst geprägt sind, zusam-
menhängen. ((Lichtenberg.))

Prototractatus Ms-104 - all remarks of Ms-104

Big Typescript Ts-213 - all remarks of Ts-213

Philosophical
Investigations

Ts-227a, Ts-
227b

- all remarks of Ts-227a and Ts-227b

Brown Book Ts-310 - all remarks of Ts-310

Kringelbuch Ms-107,266[4] o (Es ist oft nicht erlaubt in der Philosophie
gleich Sinn zu reden, sondern man muß oft
zuerst den Unsinn sagen weil man gerade ihn
überwinden soll.)

Ms-
107,267[4]et268[1]

o (Wie man manchmal eine Musik nur im
inneren Ohr reproduzieren kann aber sie
nicht pfeifen weil das Pfeifen schon die in-
nere Stimme übertönt, so ist manchmal die
Stimme eines philosophischen Gedankens so
leise daß sie vom Lärm des gesprochenen
Wortes schon übertönt wird & nicht mehr
gehört werden kann wenn man gefragt wird
& reden sprechen soll.)

Ms-107,269[3] o Ich erwarte daß A zur Tür hereinkommt, aber
wie wenn es einen Doppelgänger gibt?

Ms-107,269[4] o Zwei Doppelgänger in einem Zimmer die
beide das selbe von sich behaupten & mit
einander übereinstimmen denn wenn der eine
von sich etwas sagt etwa

”
Ich habe . . . ”, sagt

der andere
”
ganz richtig ich habe . . . ”.

Ms-108,126[3] o Ist es nicht klar daß es bestimmter sein muß
zu sagen 26 durch 5 geben den Rest 1 als zu
sagen es sei durch 5 nicht teilbar. D.h. ist es
damit nicht klar daß ich in gewissem Sinne
unbestimmte Sätze in der Arithmetik haben
kann?

Ms-108,126[4] o Daß 26 durch 5 nicht teilbar ist kann man
ja daraus erkennen daß 26 an der Einerstelle
keine 5 hat und hier haben wir wieder einen
unbestimmten Satz.

64

Data Set Siglum Class Texts

Ms-108,126[5]
et127[1]

o Aber haben wir hier nicht was ich früher
einmal sagte daß nämlich die Negation oder
die Ungleichungen in der Arithmetik nur
in einer gewissen Allgemeinheit auftreten
können, denn zu sagen daß 26 an der Ein-
erstelle keine 5 hat scheint doch blödsinnig
unmöglich , nicht aber, zu sagen, es stehe hier
eine Zahl die nicht 5 als Einerstelle hat.

Ms-108,130[2] o Die Division liefert ein Zahlenpaar. Ist ein
Grund einer der beiden Zahlen den Vorzug
zu geben? Das heißt in sofern nichts als man
nicht statt 13/5 schreiben könnte (2,3) son-
dern nur 2 + 35.

Ms-108,130[4] o Eine Ungleichung kann so gut auf ihre
Richtigkeit geprüft werden, wie eine Gle-
ichung.

Ms-108,133[4] o Wovon drei Striche ein Bild sind, als dessen
Bild können sie dienen.

Ms-107,199[2] * Warum nenne ich Zahnschmerzen
”
meine

Zahnschmerzen”?

Ms-107,199[3] * Wenn ich von dem Anderen sage, er habe
Zahnschmerzen so meine ich mit

”
Zahn-

schmerzen” gleichsam einen Abstrakt von
dem was ich gewöhnlich

”
meine Zahn-

schmerzen” nenne.

Ms-107,203[4] * Hier trifft man auf das Problem des Wieder-
erkennens. Wenn ich sage

”
ich habe jetzt

keine Zahnschmerzen werde aber bald welche
haben” so setzt das voraus daß ich das Gefühl
der Zahnschmerzen als solches wiedererkenne
wenn es eintritt.

Ms-107,203[5] * Man könnte das Problem auch so fassen: Mit
dem Wort Schmerz meine ich etwas was jetzt
nicht existiert. Ist dann das Wort Schmerz
nicht Unsinn, es sei denn daß es im Rus-
sellschen Sinne eine Beschreibung ist mit
Hilfe von Termen die jetzt existieren?

Ms-107,266[2] * Erdichtete Erzählung, gelesenes & gespieltes
Theaterstück. Eine erdichtete Erzählung die
nicht in der Zeit & im Ort lokiert ist, ist of-
fenbar auf derselben Stufe wie eine falsche
die nach Zeit & Ort bestimmt ist. (Märchen,
Sage)

65

Data Set Siglum Class Texts

Ms-107,271[5] * Wenn ich jemanden der Zahnschmerzen hat
bemitleide so setze ich mich in Gedanken an
seine Stelle. Aber ich setze mich an seine
Stelle.

Ms-107,285[4] * Wenn wir plötzlich vom Nebenzimmer in
einer uns unbekannten Stimme den Satz

”
ich

habe Zahnschmerzen” hören, so verstehen
wir ihn nicht.

Full Nachlass Ms-101 – Ts-
310 (all)

-

Table A.1: List of test sets and remarks used for the experiments.

66

B Dimensionality Reduction Results

The number of essential features, i.e. dimensions, highly depends on the type of dataset
used. A smaller sample size with a smaller vocabulary will evidently require less dimensions
than, say, a large corpus that is rich in vocabulary. The scree plots for each test set show
the essential number of dimensions desired for the respective testset. Ideally, the scree plot
shows a step in the visualisation to represent the ideal number of features, however, if no
step can be detected, at least 80% variance should be maintained. The result for the two
smaller test sets, namely the toy corpus and the Kringelbuch, is presented in Figure B.1.

Figure B.1: The scree plot for the artifically created toy corpus and for Wittgenstein’s
Kringelbuch. The ideal number of features are 36 and 17, respectively. By
reducing to the respective number of dimensions, the full variance can be
maintained in both cases.

As for the larger datasets, the scree plots are represented in the following. The scree
plot for the Prototractatus, the Philosophical Investigations, and the Brown Book is given
in Figure B.2 on page 68. For the remaining datasets, namely the Big Typescript and the
entire literary remains, i.e. the full Nachlass, Figure B.3 gives an overview of the required
number of dimensions.

67

Figure B.2: The scree plot for the Prototractatus, the Brown Book, and the Philosoph-
ical Investigations. The smallest dataset, i.e. the Brown Book, should be
reduced to 300 dimensions, while the Prototractatus and the Philosophical
Investigations can be reduced to 680 and 700 dimensions respectively. In each
reduction, a variance of 100% is maintained.

Figure B.3: The scree plot for the two largest datasets, that is, the Big Typescript and the
entire Nachlass. Scree plot 1000 dimensions over the full Nachlass. The Big
Typescript can be reduced to 2,050 features in order to preserve the entire
variance of the data. Due to its complexity, the entire Nachlass is reduced
to only 1,600 features maintaining 80% of the original variance. Maintaining
the full variance is not efficient, since the curve rises only by 0.1 after each
reduction step with a number of dimensions larger than 1,000.

68

C Clustering Results

This chapter contains the most relevant clustering plots produced in this work. Please
note that the data was not clustered in two dimensions. All of the plots however are two-
dimensional. This means that although two points look as if they belonged to the same
cluster, this is not necessarily the case. They could lie farther away in other dimensions
while being close in the first two principal components. For the sake of clarity, this chapter
overviews the entire Nachlass, while HTML files are provided on the enclosed CD for all
of the clusterings.

Initially, SVD and K-Means clustering with k = 150 for the entire Nachlass is illustrated
in Figure C.1. The figure shows that using SVD as a dimensionality reduction method,
the clusters do not appear well-separated in two-dimensional space. For hovering over the
data points and showing the siglums, please refer to the equivalent HTML version on the
CD.

Figure C.1: SVD and K-Means applied on entire dataset for k = 150. Although for this
combination, the data points are located close in the data space, the cluster
structure can be illustrated clearly.

Reducing dimensionalities using UMAP shows the partition into two groups in the vi-
sualisation (Figure C.2). For exploratory purposes, Figure C.3 zooms in and shows the
the left data group in more detail. Three random clusters are selected, illustrated by the
orange, blue, and green box, respectively. Again, the HTML version allows a hovering for
more detailed information.

69

Figure C.2: UMAP and K-Means applied on entire dataset for k = 150. The two-
dimensional visualisation reveals a data partition into two groups, while fur-
ther analyses can only be carried out by zooming in.

Figure C.3: Selecting three random data groups, represented by differently coloured boxes.
The boxes can then be evaluated by examining the texts behind the data points
in further detail.

The boxes drawn in Figure C.3 are further described in the following tables. Each table
describes one of the boxes and lists the siglums and texts, respectively. Table C.1 shows
the results for the green box, while Table C.2 presents the data points that are located in
the orange box, and Table C.3 lists remarks in the blue box.

Remarks Text

Ts-228,136[5] Meine Wahl ist frei, heißt nichts anderes als: ich wähle. Und daß
ich manchmal wähle, steht doch nicht im Zweifel. Was man “frei”
nennt, ist die Wahl. Zu sagen “Wir glauben nur, daß wir wählen”
ist Unsinn. Der Vorgang, den wir “wählen” nennen, findet statt,
ob man das Resultat der Wahl sich nach Naturgesetzen voraus-
sagen läßt , oder nicht.

70

Remarks Text

Ts-230b,145[3] Meine Wahl ist frei, heißt nichts anderes, als: ich wähle. Und daß
ich manchmal wähle, steht doch nicht im Zweifel. Was man “frei”
nennt, ist die Wahl. Zu sagen “Wir glauben nur, daß wir wählen”
ist Unsinn. Der Vorgang, den wir “wählen” nennen, findet statt,
ob das Resultat der Wahl sich nach Naturgesetzen voraussagen
läßt, oder nicht. (

Ts-230c,145[3] Meine Wahl ist frei, heißt nichts anderes, als: ich wähle. Und daß
ich manchmal wähle, steht doch nicht im Zweifel. Was man “frei”
nennt, ist die Wahl. Zu sagen “Wir glauben nur, daß wir wählen”
ist Unsinn. Der Vorgang, den wir “wählen” nennen, findet statt,
ob das Resultat der Wahl sich nach Naturgesetzen voraussagen
läßt, oder nicht. (

Ms-115,110[5]et111[1] Meine Wahl ist frei, heißt nichts anderes als: ich kann wählen
wähle manchmal. Und daß ich manchmal wähle, steht doch nicht
in Zweifel. Was man “frei” nennt, ist nur die Wahl an sich. Zu
sagen, “wir glauben nur, daß wir wählen”, ist Unsinn. Der Vor-
gang, den 111 wir “wählen” nennen, findet statt, ob man das
Resultat der Wahl nach Naturgesetzen vorraussagen kann, oder
nicht.

Ms-157a,11r[2]et11v[1] Meine Wahl ist frei heißt nichts anderes als: ich kann wählen.
Und daß ich manchmal wähle, darüber kann doch kein Zweifel
sein. Was man frei nennt, ist nur die Wahl an sich. Zu sagen:
“wir glauben nur daß wir wählen” ist Unsinn. Der Vorgang den
wir ‘wählen’ nennen findet statt ob man das Resultat der Wahl
nach Naturgesetzen voraussagen kann oder nicht.

Table C.1: Detailed information about the data points that are located in the green box
in Figure C.3.

Remarks Text

Ts-230b,23[3] Denken wir, ich fragte: Zeigt es sich uns klar, wenn wir die Sätze
aussprechen “Dieser Stab ist 1m lang” und “Hier steht 1 Soldat”,
daß wir mit “1” Verschiedenes meinen, daß “1” verschiedene Be-
deutungen hat?– Es zeigt sich uns gar nicht. Sag etwa einen Satz,
wie “Auf je 1m steht ein Soldat, auf je 2m also 2 Soldaten”.
Gefragt, “Meinst du dasselbe mit den beiden Einsern?”– würde
man etwa antworten: “Freilich meine ich dasselbe: eins!” (wobei
man etwa einen Finger in die Höhe hebt). ()

Ts-230c,23[3] Denken wir, ich fragte: Zeigt es sich uns klar, wenn wir die Sätze
aussprechen “Dieser Stab ist 1m lang” und “Hier steht 1 Soldat”,
daß wir mit “1” Verschiedenes meinen, daß “1” verschiedene Be-
deutungen hat?– Es zeigt sich uns gar nicht. Sag etwa einen Satz,
wie “Auf je 1m steht ein Soldat, auf je 2m also 2 Soldaten”.
Gefragt, “Meinst du dasselbe mit den beiden Einsern?”– würde
man etwa antworten: “Freilich meine ich dasselbe: eins!” (wobei
man etwa einen Finger in die Höhe hebt). ()

71

Remarks Text

Ts-230a,23[3] Denken wir, ich fragte: Zeigt es sich uns klar, wenn wir die Sätze
aussprechen “Dieser Stab ist 1m lang” und “Hier steht 1 Soldat”,
daß wir mit “1” Verschiedenes meinen, daß “1” verschiedene Be-
deutungen hat?– Es zeigt sich uns gar nicht. Sag etwa einen Satz,
wie “Auf je 1m steht ein Soldat, auf je 2m also 2 Soldaten”.
Gefragt, “Meinst du dasselbe mit den beiden Einsern?”– würde
man etwa antworten: “Freilich meine ich dasselbe: eins!” (wobei
man etwa einen Finger in die Höhe hebt). ()

Ts-227a,267[4] “Nachdem er das gesagt hatte, verließ er sie wie am vorigen
Tage.”– Verstehe ich diesen Satz? Verstehe ich ihn ebenso, wie ich
es täte, wenn ich ihn im Verlaufe einer Mitteilung hörte? Steht
er isoliert da, so würde ich sagen, ich weiß nicht, wovon er han-
delt. Ich wüßte aber doch, wie man diesen Satz etwa gebrauchen
könnte; ich könnte selbst einen Zusammenhang für ihn erfinden.
(Eine Menge wohlbekannte Pfade führen von diesen Worten aus
in alle Richtungen.)

Ts-222,139[2] Denken wir Denke , ich fragte: Zeigt es sich uns klar, wenn wir
die Sätze aussprechen “dieser Stab ist 1m lang” und “hier steht 1
Soldat”, daß wir mit ‘1’ verschiedenes meinen, daß ‘1’ verschiedene
Bedeutungen hat? – Es zeigt sich uns garnicht. Besonders, wenn
wir einen Satz sagen wie: “Auf je 1m steht 1 Soldat, auf 2m 2
Soldaten u.s.w.”. Gefragt, “ Meinst Du dasselbe mit den beiden
Einsern”, würde man etwa antworten: “freilich meine ich dasselbe:
– eins!” (wobei man etwa einen Finger in die Höhe hebt).

Ts-228,123[2] Denken wir, ich fragte: Zeigt es sich uns klar, wenn wir die Sätze
aussprechen “Dieser Stab ist 1m lang” und “Hier steht 1 Soldat”,
daß wir mit “1” Verschiedenes meinen, daß “1” verschiedene Be-
deutungen hat? – Es zeigt sich uns gar nicht. Sag etwa einen
Satz wie “Auf je 1m steht ein Soldat, auf je 2m also 2 Soldaten.”
Gefragt, “Meinst du dasselbe mit den beiden Einsern?” würde
man etwa antworten: “Freilich meine ich dasselbe: eins!” (wobei
man etwa einen Finger in die Höhe hebt).

Ts-221a,259[2] Denken wir, ich fragte: Zeigt es sich uns klar, wenn wir die Sätze
aussprechen “dieser Stab ist 1 m lang” und “hier steht 1 Soldat”,
daß wir mit ‘1’ verschiedenes meinen, daß ‘1’ verschiedene Bedeu-
tungen hat? – Es zeigt sich uns garnicht. Besonders, wenn wir
einen Satz sagen wie: “auf je 1 m steht 1 Soldat, auf 2 m 2 Soldaten
u.s.w.”. Gefragt, “meinst Du dasselbe mit den beiden Einsern”,
würde man etwa antworten: “freilich meine ich dasselbe: – eins!”
(wobei man etwa einen Finger in die Höhe hebt).

72

Remarks Text

Ms-147,2r[2]et2v[1] Denken wir ich fragte: “Zeigt es sich uns klar wenn wir die Sätze
aussprechen ‘dieser Stab ist 1m lang’ & ‘hier steht 1 Soldat’ daß wir
mit ‘1’ verschiedenes meinen, daß ‘1’ verschiedene Bedeutungen
hat?” Es zeigt sich uns gar nicht. Besonders wenn wir etwa sagen:
“dieses Stück ist 1m lang & es steht ein Soldat hier . . . ”. Gefragt
“meinst Du dasselbe” würde man etwa antworten “freilich meine
ich dasselbe: eins” (wobei man etwa einen Finger in die Höhe
hebt). Meinst Du dasselbe mit “nicht” wenn Du sagst ‘2 2 ist nicht
4’ & ‘dieses Zimmer ist nicht groß’, ‘freilich meine ich dasselbe:
nicht!’ (mit einer verneinenden Geste).

Ms-115,63[2]et64[1] Denken wir, ich fragte: Zeigt es sich uns klar, wenn wir die Sätze
aussprechen “dieser Stab ist 1 m lang” & “hier steht 1 Soldat”,
daß wir mit ‘1’ verschiedenes meinen, daß ‘1’ verschiedene Bedeu-
tungen hat? – Es zeigt sich uns gar nicht. Besonders Gar, wenn
wir einen Satz sagen wie etwa sagen einen Satz sagen wie: “auf je
1 m steht 1 Soldat, auf 2 m 2 Soldaten usw.”

Table C.2: Detailed information about the data points that are located in the orange box
in Figure C.3.

Remarks Text

Ts-228,18[4] Wenn man auch den Satz als Bild eines möglichen Sachverhalts
auffaßt und sagt, er zeige die Möglichkeit des Sachverhalts, so
kann doch der Satz bestenfalls tun, was ein gemaltes, oder ein
plastisches Bild, oder ein Film tut; und er kann also jedenfalls nicht
hinstellen, was nicht der Fall ist. Also hängt es ganz von unserer
Grammatik ab, was (logisch) möglich genannt wird, und was nicht,
– nämlich eben was sie zuläßt? Aber das ist doch willkürlich! –
Ist es willkürlich? – Nicht mit jeder satzähnlichen Bildung kann
ich etwas anfangen, nicht jedes Spiel ist nützlich, und wenn ich
versucht bin, etwas ganz Unnützes als Satz zuzulassen, so geschieht
es meistens, weil ich mir seine Anwendung nicht genügend überlegt
habe. (“Unendlich lange Baumreihe” – wie ist es zu verifizieren,
daß eine solche Reihe unendlich lang ist?).

Ts-230c,42[2] Wenn man auch den Satz als Bild eines möglichen Sachverhalts
auffaßt und sagt, er zeige die Möglichkeit des Sachverhalts, so
kann doch der Satz bestenfalls tun, was ein gemaltes, oder ein
plastisches Bild, oder ein Film tut; und er kann also jedenfalls
nicht hinstellen, was nicht der Fall ist. Also hängt es ganz von un-
serer Grammatik ab, was (logisch) möglich genannt wird, und was
nicht, nämlich eben was sie zuläßt? Aber das ist doch willkürlich!–
Ist es willkürlich?– Nicht mit jeder satzähnlichen Bildung kann ich
etwas anfangen, nicht jedes Spiel ist nützlich; und wenn ich ver-
sucht bin, etwas ganz Unnützes als Satz zuzulassen, so geschieht es
meistens, weil ich mir seine Anwendung nicht genügend überlegt
habe. (“Unendlich lange Baumreihe” – wie ist es zu verifizieren,
daß eine solche Reihe unendlich lang ist?) ()

73

Remarks Text

Ts-212,336[2]et337[1] Wenn man auch den Satz als Bild des beschriebenen Sachverhalts
auffaßt & sagt der Satz zeige eben wie es ist, wenn er wahr wäre, er
zeige also die Möglichkeit des behaupteten Sachverhalts, so kann
der Satz doch bestenfalls tun was ein gemaltes oder modelliertes
Bildtun kann tut, & er kann also jedenfalls nicht das hinstellen
[erzeugen] was nun eben nicht der Fall ist. a Also hängt es ganz
von unserer Grammatik ab was möglich genannt wird & was nicht,
nämlich eben, was sie zuläßt. Aber das ist doch willkürlich! –
Gewiß, aber nicht mit jedem Gebilde kann ich etwas anfangen;
d.h.: nicht jedes Spiel ist nützlich & wenn ich versucht verleitet
versucht bin etwas ganz Nutzloses als Satz zuzulassen so geschieht
es weilich ich mich durch eine Analogie dazu verleiten lasse & nicht
sehe daß mir für meinen Satz noch die wesentlichen Regeln der
Anwendung fehlen. So ist es z.B. wenn man von einer unendlichen
Baumreihe redet & sich fragt, wie es denn zu verifizieren sei, daß
eine Baumreihe unendlich ist & was etwa die Beziehung dieser
Verifickation zu der des Satzes

”
die Baumreihe hat 100 Bäume”

ist.

Ts-213,99r[2]et98v[1] Wenn man auch den Satz als Bild des beschriebenen Sachverhalts
auffassßt und sagt, der Satz zeige eben wie es ist, wenn er wahr
wäre, er zeige also die Möglichkeit des behaupteten Sachverhalts,
so kann der Satz doch bestenfalls tun, was ein gemaltes oder
modelliertes Bild tut, und er kann also jedenfalls nicht das hin-
stellen //erzeugen//, was [Frege] nicht der Fall ist. Also hängt
es ganz von unserer Grammatik ab, was möglich genannt wird
und was nicht, nämlich eben, was sie zulässßt. Aber das ist doch
willkürlich! – Gewissß, aber nicht mit jedem Gebilde kann ich
etwas anfangen; d.h.: nicht jedes Spiel ist nützlich und wenn ich
versucht bin, etwas ganz Unnützesals Satz zuzulassen, einen Satz
zu nennen, so geschieht es, weil ich mich durch eine Analogie dazu
verleiten lasse und nicht sehe, dassß mir für meinen Satz noch
die wesentlichen Regeln der Anwendung fehlen. Gewiß, aber nicht
jeder Kalkül der dem, mit gewissen unserer Erfahrungssätzen, ana-
log ist, ist irgendwie von Nutzen.Nicht jedes Gebilde das in so
einem Kalkül jenen Erfahrungssätzen entspricht werden wir Satz
nennen wollen. Gewiß aber unsere S Erfahrungssätze z.B. die,
welche sich durch ein gemaltes Bild ersetzen ließen weil sie eine
sichtbare Verteilung von Körpern beschreiben haben eher eine bes-
timmte Anwendung einen bestimmten Nutzen. Aber nicht jedes
Gebilde das in so einem Kalkül jenen Erfahrungssätzen entspricht
werden wir Satz nennen wollen. So ist es z.B., wenn man von
einer unendlichen Baumreihe redet und sich fragt, wie es denn zu
verifizieren sei, dassß eine Baumreihe unendlich ist, und was etwa
die Beziehung dieser Verifikation zu der des Satzes “die Baumreihe
hat 100 Bäume” ist.

74

Remarks Text

Ms-114,90v[2] Wenn man auch den Satz als Bild des beschriebenen Sachver-
halts auffaßt & sagt, der Satz zeige eben, wie es ist, wenn wie
sich die Dinge verhalten, wenn er wahr ist, er zeige also
die Möglichkeit des behaupteten Sachverhalts; so kann der Satz
doch bestenfalls tun, was ein gemaltes, oder modelliertes, Bild
tut, & er kann also jedenfalls nicht das hinstellen, was nun einmal
nicht der f Fall ist. Also hängt es ganz von unserer Grammatik
ab, was möglich genannt wird & was nicht, nämlich eben was sie
zuläßt. Aber das ist doch willkürlich! – Gewiß; aber grammatische
Gebilde, welche wir Erfahrungssätze nennen, z.B. die, welche eine
sichtbare Verteilung von Körpern im Raum beschreiben & sich
durch eine zeichnerische Darstellung ersetzen ließen, haben eine
bestimmte Anwendung, einen bestimmten Nutzen. Aber nicht
jede Konstruktion, die einem solchen Erfahrungssatz ihrer äußern
Form nach, ähnlich ist & die in einem Kalkül eine irgendwie ähn-
liche Rolle spielt, hateinen analogen Nutzen eine analoge Anwen-
dung, & wir werden dann nicht geneigt sein diese Konstruktion
einen Satz zu nennen.

Table C.3: Detailed information about the data points that are located in the blue box in
Figure C.3.

All clustering results are provided on the enclosed CD, where the hovering mode allows
for easier exploration of the dataspace. For the printed version, the hovering mode is
depicted in Figure C.4.

Figure C.4: Hovering over the data points for showing the respective siglums. Here, the
selected data point represents Ms-114,90v[2] which is part of the blue box
depicted in Figure C.3

75

D Detailed Scores

In this chapter, detailed results to the reduction techniques combined with the algorithms
used will be presented. The evaluation metrics are restricted to the same metrics presented
in Chapter 5: SRP, SRP, and UMAP. In order to avoid redundancy, only results not
presented in the main part of this work, will be presented. This means, for the evaluation
results of SVD in combination with all clustering algorithms, please refer to Table 5.3 on
page 47. In this chapter the following results will be given: Table D.1 presents all results
obtained by reducing the data with SRP prior to applying the clustering algorithms, while
Table D.2 depicts outlines the results with UMAP reduction.

k Algorithm Silhouette Calinski-Harabasz Davies-Bouldin Recall

2 DBSCAN 0.10 1446.93 5.96 1.00

Mean-Shift – – – –

50 K-Means -0.09 163.03 5.36 1.00

Ward -0.13 102.17 6.66 1.00

GMM -0.09 158.48 5.27 1.00

100 K-Means -0.09 93.64 4.59 1.00

Ward -0.12 64.85 4.94 1.00

GMM -0.09 93.45 4.61 1.00

150 K-Means -0.08 69.73 4.26 1.00

Ward -0.12 51.14 4.15 1.00

GMM -0.08 69.84 3.81 1.00

200 K-Means -0.08 56.88 3.74 1.00

Ward -0.11 43.70 3.94 1.00

GMM -0.08 56.57 3.91 1.00

250 K-Means -0.08 49.22 3.64 1.00

Ward -0.11 38.93 3.62 1.00

GMM -0.08 48.51 3.44 1.00

300 K-Means -0.07 43.41 3.29 1.00

Ward -0.10 35.57 3.33 1.00

GMM -0.07 42.88 3.36 1.00

Table D.1: Detailed evaluation score results for the entire Nachlass using SRP beforehand
as reduction to 523 features. Dashes indicate that the algorithm was not able to
separate clusters well and therefore the scores could not be computed. Results
printed in bold show the best outcomes for each evaluation measure. For
the Calinski-Harabasz index, K-Means is highlighted additionally because the
index fails to compute significant values for DBSCAN with d = 2.

77

k Algorithm Silhouette Calinski-Harabasz Davies-Bouldin Recall

4 DBSCAN 0.64 3262.20 1.66 1.00

60 Mean-Shift 0.51 380.23 1.90 1.00

50 K-Means 0.18 1931.46 2.01 1.00

Ward 0.12 1816.40 2.54 1.00

GMM 0.03 1398.04 2.09 1.00

100 K-Means 0.15 1283.31 1.64 1.00

Ward 0.12 1243.46 1.91 1.00

GMM 0.03 1008.80 1.78 1.00

150 K-Means 0.17 1131.73 1.35 1.00

Ward 0.11 1080.38 1.47 1.00

GMM 0.07 893.29 1.55 1.00

200 K-Means 0.16 1094.02 1.22 1.00

Ward 0.12 1029.92 1.18 1.00

GMM 0.06 848.14 1.33 1.00

250 K-Means 0.17 1117.29 1.07 1.00

Ward 0.13 1024.87 1.08 1.00

GMM 0.06 857.21 1.22 1.00

300 K-Means 0.18 1156.09 0.99 1.00

Ward 0.14 1039.88 1.05 1.00

GMM 0.08 897.72 1.09 1.00

Table D.2: Detailed evaluation score results for the entire Nachlass with UMAP reduction
to 100 features before the clustering. Results printed in bold show the best out-
comes for each evaluation measure. For the Calinski-Harabasz index, however,
both DBSCAN and K-Means are highlighted because DBSCAN solely sepa-
rated the data into four clusters, hence the index fails to compute significant
values.

78

List of Figures

1.1 Comparison of the brute-force approach and the newly developed meth-
ods incorporating dimensionality reduction and document clustering. Each
bucket represents 1,000 remarks. By applying SVD and K-Means on the
data, the correct cluster is selected and only 912 remarks, i.e. almost one
bucket, has to be searched. This reduces the search time from 32 minutes
to 5 seconds. 2

2.1 Proposed deep clustering network from [148]. 8
2.2 Separating the vector space by randomly chosen hyperplanes and defining

binary values for the hash value of each data point. 10
2.3 Semi-supervised approach to clustering using the constraint K-Means algo-

rithm. The blue circles and red squares represent labelled data. The black
stars show unlabelled data. All data points are clustered with respect to
the predefined class labels. 11

3.1 Pipeline for Document Clustering adapted from [147]. 13
3.2 The decomposition used in SVD, taken from [131]. The first rectangle

represents the original space M = m×n with m objects and n dimensions.
The space can be partitioned into M = UΣV T where the singular values in
Σ are set to U such that the corresponding columns in U and rows in V T

can be eliminated. 15
3.3 Determining the maximum variance among the data points in PCA. The

first principal component (PC1) represents the axis with the highest vari-
ance. The second principal component (PC2) is orthogonal to PC1. 16

3.4 Linear Discriminant Analysis for dimensionality reduction from R2 to R. . . 17
3.5 Classifying document clustering approaches into flat clustering and hierar-

chical clustering methods. 19
3.6 K-Means overview: Initially, k random seeds are chosen in the dataspace.

Each of the data points is assigned to its closest seed. Then, the seeds are
updated such that they form the cluster centres of their respective clusters.
Next, the data points are reassigned to the new centres. These steps are
repeated iteratively until the algorithm converges. 20

3.7 EM Probabilistic Clustering: The circles illustrate two random Gaussians to
partition the data points. With each step, the mean and covariance matrices
are re-calculated, where smaller the ellipses describe better clustering. [23] . 22

3.8 Concept of density-based algorithm: The basic theorem is that each object
in a density-based cluster C is density-reachable from any of its core-objects
while nothing else is density-reachable from core objects [43,121]. 24

3.9 Hierarchical representation of document clustering using a dendrogram. [121] 25
3.10 The hexagonal structure of a SOM. Mc shows the winning node that has

impacts on its surrounding neurons (Mi) [67]. 26

79

LIST OF FIGURES

3.11 Creating a k-d tree structure from a two-dimensional dataset containing ten
random data points: Points that are located on the left branch are smaller
than the root value, while points located to the right are equally high or
higher than the root. The green input point (7,4) is located in the same
two-dimensional space, and integrated in the search tree accordingly. 29

3.12 Creating a balltree. The data is separated by means of ellipsoidal hyper-
spheres in the data space, creating the tree with a top-down algorithm.
Illustration adapted from [39]. 30

4.1 Integration of the dimensionality reduction and text clustering as prepro-
cessing steps in the similarity search. The pipeline shows the feature reduc-
tion before clustering and the distance calculation to the centroids instead
of the entire database. Then the respective cluster is retrieved and the top
x similar remarks are retrieved. 40

5.1 Scree plot 1000 dimensions over the entire Nachlass: the x-achsis shows the
number of dimensions while the y-achsis represents the maintained variance. 45

5.2 The graph shows the number of points that will have to be compared when
clustering into the respective number of clusters, assuming a balanced clus-
ter size. In terms of performance, the minimum value of points to be com-
pared yields the ideal cluster size. This means, the best number of clusters
is 234 where 468 elements have to be compared. 46

5.3 Two sentences in the same remark where the first sentences is similar to
remarks A, B, and C, while the second sentences shares similar features
with remarks D, E, and F. However there is no connection between [A,B,C]
and [D,E,F]. 51

B.1 The scree plot for the artifically created toy corpus and for Wittgenstein’s
Kringelbuch. The ideal number of features are 36 and 17, respectively. By
reducing to the respective number of dimensions, the full variance can be
maintained in both cases. 67

B.2 The scree plot for the Prototractatus, the Brown Book, and the Philosoph-
ical Investigations. The smallest dataset, i.e. the Brown Book, should be
reduced to 300 dimensions, while the Prototractatus and the Philosophical
Investigations can be reduced to 680 and 700 dimensions respectively. In
each reduction, a variance of 100% is maintained. 68

B.3 The scree plot for the two largest datasets, that is, the Big Typescript and
the entire Nachlass. Scree plot 1000 dimensions over the full Nachlass. The
Big Typescript can be reduced to 2,050 features in order to preserve the
entire variance of the data. Due to its complexity, the entire Nachlass is
reduced to only 1,600 features maintaining 80% of the original variance.
Maintaining the full variance is not efficient, since the curve rises only by
0.1 after each reduction step with a number of dimensions larger than 1,000. 68

C.1 SVD and K-Means applied on entire dataset for k = 150. Although for this
combination, the data points are located close in the data space, the cluster
structure can be illustrated clearly. 69

C.2 UMAP and K-Means applied on entire dataset for k = 150. The two-
dimensional visualisation reveals a data partition into two groups, while
further analyses can only be carried out by zooming in. 70

80

LIST OF FIGURES

C.3 Selecting three random data groups, represented by differently coloured
boxes. The boxes can then be evaluated by examining the texts behind the
data points in further detail. 70

C.4 Hovering over the data points for showing the respective siglums. Here, the
selected data point represents Ms-114,90v[2] which is part of the blue box
depicted in Figure C.3 . 75

81

List of Tables

2.1 Calculating the hash values for Figure 2.2. The first value reflects, which
data points lie on the side 1 of the blue line, and 0 of the red and green
line, yielding the cluster a, b, and d. The remaining values are determined
equivalently. 10

3.1 Symbolical vector structure for two remarks in Manuscript 101 – Ms-101,IIr[1]
and Ms-101,IIr[2] – where each vector stores the feature information regard-
ing the occurrence of a word (w), its lemma (l), POS-tag (p), and respective
synonyms (s). (Table adapted from Tan et al. [127]) 14

3.2 Comparison of the partitioning methods, presented by [121]. 21
3.3 Strategies for merging the closest clusters in hierarchical clustering ap-

proaches, adapted from [143]. 26
3.4 Fourfold table reflecting how the values TP, FN, FP, and TN are determined

by comparing the actual class to the predicted class. 32

4.1 Test sets used in the experiments along with their properties, i.e. what
manuscrips or typescripts are included, their number of dimensions in the
feature space, the number of samples, i.e. remarks, and their number of
clusters if given. 39

5.1 Compared algorithms for dimensionality reduction and their results. All
dimensions are calculated using SVD and are presented in relation to their
original number of features. 44

5.2 Compared algorithms and their outcome. 45
5.3 Detailed evaluation score results for the entire Nachlass. Dashes indicate

that the algorithm was not able to compute the respective score. 47
5.4 Compared KNN performance on different datasets without clustering in-

cluded. 48
5.5 Compared performance on different datasets, before and after clustering. . . 49

A.1 List of test sets and remarks used for the experiments. 66
C.1 Detailed information about the data points that are located in the green

box in Figure C.3. 71
C.2 Detailed information about the data points that are located in the orange

box in Figure C.3. 73
C.3 Detailed information about the data points that are located in the blue box

in Figure C.3. 75
D.1 Detailed evaluation score results for the entire Nachlass using SRP before-

hand as reduction to 523 features. Dashes indicate that the algorithm was
not able to separate clusters well and therefore the scores could not be com-
puted. Results printed in bold show the best outcomes for each evaluation
measure. For the Calinski-Harabasz index, K-Means is highlighted addi-
tionally because the index fails to compute significant values for DBSCAN
with d = 2. 77

83

LIST OF TABLES

D.2 Detailed evaluation score results for the entire Nachlass with UMAP re-
duction to 100 features before the clustering. Results printed in bold show
the best outcomes for each evaluation measure. For the Calinski-Harabasz
index, however, both DBSCAN and K-Means are highlighted because DB-
SCAN solely separated the data into four clusters, hence the index fails to
compute significant values. 78

84

CD Content

A ma.pdf

Thesis in PDF format.

B thesis.zip/

All necessary files to generate the pdf file.

C papers.zip/

PDF files of all referenced scientific work.

D code/

Code written for the implementation of the system and all experiments.

1. witt-cluster

• lib/: contains python modules and the Makefile

• res/: contains resources used for the experiments

• out/: contains the generated output

• README.md: information to run the code

• Makefile: Makefile for running the code

• requirements.txt: required python packages. Can be installed by typing make-install

2. witt-similar: contains the integration into WiTTSim

85

Bibliography

[1] D. Achlioptas. Database-friendly random projections. In Proceedings of the twentieth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 274–281. ACM, 2001.

[2] D. Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with
binary coins. Journal of computer and System Sciences, 66(4):671–687, 2003.

[3] C. Afonso, F. Ferreira, J. Exposto, and A. I. Pereira. Comparing clustering and
partitioning strategies. In AIP Conference Proceedings, volume 1479, pages 782–
785. AIP, 2012.

[4] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park. Fast algorithms
for projected clustering. In ACM SIGMoD Record, volume 28, pages 61–72. ACM,
1999.

[5] C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in high dimen-
sional spaces, volume 29. ACM, 2000.

[6] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clus-
tering of high dimensional data for data mining applications, volume 27. ACM,
1998.

[7] S. Al-Anazi, H. Al-Mahmoud, and I. Al-Turaiki. Finding similar documents using
different clustering techniques. Procedia Computer Science, 82:28–34, 2016.

[8] M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez, and
K. Kochut. A brief survey of text mining: Classification, clustering and extraction
techniques. arXiv preprint arXiv:1707.02919, 2017.

[9] S.-i. Amari and A. Takeuchi. Mathematical theory on formation of category detecting
nerve cells. Biological Cybernetics, 29(3):127–136, 1978.

[10] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: ordering points
to identify the clustering structure. In ACM Sigmod record, volume 28, pages 49–60.
ACM, 1999.

[11] H. Ashtiani, S. Kushagra, and S. Ben-David. Clustering with same-cluster queries.
In Advances in neural information processing systems, pages 3216–3224, 2016.

[12] F. Bação, V. Lobo, and M. Painho. Self-organizing maps as substitutes for k-means
clustering. In International Conference on Computational Science, pages 476–483.
Springer, 2005.

[13] E. Bair. Semi-supervised clustering methods. Wiley Interdisciplinary Reviews: Com-
putational Statistics, 5(5):349–361, 2013.

[14] S. Balakrishnama and A. Ganapathiraju. Linear discriminant analysis-a brief tuto-
rial. Institute for Signal and information Processing, 18:1–8, 1998.

87

BIBLIOGRAPHY

[15] G. H. Ball and D. J. Hall. Isodata, a novel method of data analysis and pattern
classification. Technical report, Stanford research inst Menlo Park CA, 1965.

[16] S. Basu, A. Banerjee, and R. Mooney. Semi-supervised clustering by seeding. In
In Proceedings of 19th International Conference on Machine Learning (ICML-2002.
Citeseer, 2002.

[17] J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

[18] J. C. Bezdek, C. Coray, R. Gunderson, and J. Watson. Detection and characteri-
zation of cluster substructure i. linear structure: Fuzzy c-lines. SIAM Journal on
Applied Mathematics, 40(2):339–357, 1981.

[19] J. C. Bezdek, R. Ehrlich, and W. Full. Fcm: The fuzzy c-means clustering algorithm.
Computers & Geosciences, 10(2-3):191–203, 1984.

[20] E. Biçici and D. Yuret. Locally scaled density based clustering. In International Con-
ference on Adaptive and Natural Computing Algorithms, pages 739–748. Springer,
2007.

[21] H. Biesenbach and L. Wittgenstein. Anspielungen und Zitate im Werk Ludwig
Wittgensteins. University of Bergen, 2011.

[22] E. Bingham and H. Mannila. Random projection in dimensionality reduction: ap-
plications to image and text data. In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 245–250.
ACM, 2001.

[23] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

[24] A. Z. Broder. On the resemblance and containment of documents. In Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pages
21–29. IEEE, 1997.

[25] Y. Cai and J. Yuan. Text clustering based on improved DBSCAN algorithm. Com-
puter Engineering, 12:018, 2011.

[26] T. Caliński and J. Harabasz. A dendrite method for cluster analysis. Communica-
tions in Statistics-theory and Methods, 3(1):1–27, 1974.

[27] R. J. Campello, D. Moulavi, A. Zimek, and J. Sander. Hierarchical density esti-
mates for data clustering, visualization, and outlier detection. ACM Transactions
on Knowledge Discovery from Data (TKDD), 10(1):5, 2015.

[28] K. S. Candan and M. L. Sapino. Data management for multimedia retrieval. Cam-
bridge University Press, 2010.

[29] S.-H. Cha. Comprehensive survey on distance/similarity measures between proba-
bility density functions. City, 1(2):1, 2007.

[30] J.-W. Chang and D.-S. Jin. A new cell-based clustering method for large, high-
dimensional data in data mining applications. In Proceedings of the 2002 ACM
symposium on Applied computing, pages 503–507. ACM, 2002.

88

BIBLIOGRAPHY

[31] J.-P. Cheiney and C. de Maindreville. A parallel strategy for transitive closure usind
double hash-based clustering. In VLDB, pages 347–358, 1990.

[32] C.-H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based subspace clustering for mining
numerical data. In Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’99, pages 84–93, New York, NY,
USA, 1999. ACM.

[33] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, K. Olukotun, and A. Y. Ng.
Map-reduce for machine learning on multicore. In Advances in neural information
processing systems, pages 281–288, 2007.

[34] P. Comon. Independent component analysis, a new concept? Signal processing,
36(3):287–314, 1994.

[35] S. Dasgupta and Y. Freund. Random projection trees and low dimensional manifolds.
In STOC, volume 8, pages 537–546. Citeseer, 2008.

[36] S. Dasgupta and A. Gupta. An elementary proof of the johnson-lindenstrauss lemma.
International Computer Science Institute, Technical Report, 22(1):1–5, 1999.

[37] D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE transactions
on pattern analysis and machine intelligence, (2):224–227, 1979.

[38] D. DeMers and G. W. Cottrell. Non-linear dimensionality reduction. In Advances
in neural information processing systems, pages 580–587, 1993.

[39] M. Dolatshah, A. Hadian, and B. Minaei-Bidgoli. Ball*-tree: Efficient spatial in-
dexing for constrained nearest-neighbor search in metric spaces. arXiv preprint
arXiv:1511.00628, 2015.

[40] W. Dong, C. Moses, and K. Li. Efficient k-nearest neighbor graph construction for
generic similarity measures. In Proceedings of the 20th international conference on
World wide web, pages 577–586. ACM, 2011.

[41] A. Dundar, J. Jin, and E. Culurciello. Convolutional clustering for unsupervised
learning. arXiv preprint arXiv:1511.06241, 2015.

[42] J. C. Dunn. A fuzzy relative of the isodata process and its use in detecting compact
well-separated clusters. 1973.

[43] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages
226–231, 1996.

[44] K. Fatehi, A. Bozorgi, M. S. Zahedi, and E. Asgarian. Improving semi-supervised
constrained k-means clustering method using user feedback. Journal of Computing
and Security, 1(4):273–261, 2014.

[45] S. Faußer and F. Schwenker. Semi-supervised clustering of large data sets with kernel
methods. Pattern Recognition Letters, 37:78–84, 2014.

[46] C. Fellbaum. Wordnet. In Theory and applications of ontology: computer applica-
tions, pages 231–243. Springer, 2010.

89

BIBLIOGRAPHY

[47] M. Filippone, F. Camastra, F. Masulli, and S. Rovetta. A survey of kernel and
spectral methods for clustering. Pattern recognition, 41(1):176–190, 2008.

[48] E. Forgy. Cluster analysis of multivariate data: efficiency versus interpretability of
classifications. Biometrics, 21:768–780, 1965.

[49] J. FRIEDMAN. An algorithm for finding best matches in logarithmic expected time.
ACM Transactions on Mathematical Software, 3(3):209–226, 1977.

[50] J. H. Friedman and J. J. Meulman. Clustering objects on subsets of attributes
(with discussion). Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 66(4):815–849, 2004.

[51] J. Gan and Y. Tao. Dbscan revisited: mis-claim, un-fixability, and approximation.
In Proceedings of the 2015 ACM SIGMOD international conference on management
of data, pages 519–530. ACM, 2015.

[52] S. Goil, H. Nagesh, and A. Choudhary. Mafia: Efficient and scalable subspace clus-
tering for very large data sets. In Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, volume 443, page 452. ACM,
1999.

[53] J. Goldberger, G. E. Hinton, S. T. Roweis, and R. R. Salakhutdinov. Neighbourhood
components analysis. In Advances in neural information processing systems, pages
513–520, 2005.

[54] M. Hadersbeck, A. Pichler, F. Fink, and Ø. L. Gjesdal. Wittgenstein’s Nachlass:
WiTTFind and Wittgenstein advanced search tools (WAST). In Proceedings of the
First International Conference on Digital Access to Textual Cultural Heritage, pages
91–96. ACM, 2014.

[55] B. Hamp, H. Feldweg, et al. Germanet - A lexical-semantic net for German. In
Proceedings of ACL workshop Automatic Information Extraction and Building of
Lexical Semantic Resources for NLP Applications, pages 9–15, 1997.

[56] J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques. Elsevier,
2011.

[57] V. Henrich and E. W. Hinrichs. GernEdiT-The GermaNet Editing Tool. In ACL
(System Demonstrations), pages 19–24. Citeseer, 2010.

[58] A. Hinneburg, D. A. Keim, et al. An efficient approach to clustering in large multi-
media databases with noise. In KDD, volume 98, pages 58–65, 1998.

[59] T. Honkela. Self-organizing maps in Natural Language Processing. PhD thesis,
Helsinki University of Technology Espoo, Finland, 1997.

[60] T. Honkela, S. Kaski, K. Lagus, and T. Kohonen. WEBSOM—self-organizing maps
of document collections. In Proceedings of WSOM, volume 97, pages 4–6, 1997.

[61] V. P. Honkela and A. Saarela. Self organization of a massive document collection.
IEEE Transactions on Neural Networks, 11(3):1, 2000.

[62] A. Huang. Similarity measures for text document clustering. In Proceedings of the
sixth new zealand computer science research student conference (NZCSRSC2008),
Christchurch, New Zealand, volume 4, pages 9–56, 2008.

90

BIBLIOGRAPHY

[63] L. Hubert and P. Arabie. Comparing partitions. Journal of classification, 2(1):193–
218, 1985.

[64] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern recognition letters,
31(8):651–666, 2010.

[65] J. A. Kangas, T. K. Kohonen, and J. T. Laaksonen. Variants of self-organizing
maps. IEEE transactions on neural networks, 1(1):93–99, 1990.

[66] T. Kohonen. Self-organized formation of topologically correct feature maps. Biolog-
ical cybernetics, 43(1):59–69, 1982.

[67] T. Kohonen. Essentials of the self-organizing map. Neural networks, 37:52–65, 2013.

[68] T. Kohonen, S. Kaski, P. Somervuo, K. Lagus, M. Oja, and V. Paatero. Biennial
Report 2002-2003, chapter 8. CIS, February, pages 113–122, 2004.

[69] H.-P. Kriegel and M. Pfeifle. Density-based clustering of uncertain data. In Proceed-
ings of the eleventh ACM SIGKDD international conference on Knowledge discovery
in data mining, pages 672–677. ACM, 2005.

[70] D. Kriesel. A Brief Introduction to Neural Networks. 2007.

[71] P. Kröger. Knowledge Discovery in Databases II. University Lecture, LMU München,
May 2019.

[72] S. Kushagra, S. Ben-David, and I. Ilyas. Semi-supervised clustering for de-
duplication. arXiv preprint arXiv:1810.04361, 2018.

[73] A. Lawrynowicz. Semantic Data Mining: An Ontology-Based Approach, volume 29.
IOS Press, 2017.

[74] E. G. Learned-Miller. Entropy and mutual information. Department of Computer
Science, University of Massachusetts, Amherst, 2013.

[75] L. Lee. Measures of distributional similarity. arXiv preprint cs/0001012, 2000.

[76] C. Li and B. Wang. Principal components analysis. 2014.

[77] P. Li, T. J. Hastie, and K. W. Church. Very sparse random projections. In Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 287–296. ACM, 2006.

[78] T. Li, M. Ogihara, and G. Tzanetakis. Music data mining. CRC Press, 2011.

[79] M. Lindinger. Entwicklung eines WEB-basierten Faksimileviewers mit Highlighting
von Suchmaschinen-Treffern und Anzeige der zugehörigen Texte in unterschiedlichen
Editionsformaten. Master’s thesis, LMU, 2015.

[80] B. Liu, Y. Xia, and P. S. Yu. Clustering through decision tree construction. In Pro-
ceedings of the ninth international conference on Information and knowledge man-
agement, pages 20–29. ACM, 2000.

[81] S. Lloyd. Least squares quantization in pcm. IEEE transactions on information
theory, 28(2):129–137, 1982.

91

BIBLIOGRAPHY

[82] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

[83] J. MacQueen et al. Some methods for classification and analysis of multivariate ob-
servations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[84] A. F. McDaid, D. Greene, and N. Hurley. Normalized mutual information to evaluate
overlapping community finding algorithms. arXiv preprint arXiv:1110.2515, 2011.

[85] L. McInnes, J. Healy, and S. Astels. hdbscan: Hierarchical density based clustering.
The Journal of Open Source Software, 2(11), mar 2017.

[86] L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[87] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

[88] G. Miller. WordNet: An electronic lexical database. MIT press, 1998.

[89] J. Nayak, B. Naik, and H. Behera. Fuzzy c-means (fcm) clustering algorithm: a
decade review from 2000 to 2014. In Computational intelligence in data mining-
volume 2, pages 133–149. Springer, 2015.

[90] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm. In Advances in neural information processing systems, pages 849–856,
2002.

[91] M. Oja, S. Kaski, and T. Kohonen. Bibliography of self-organizing map (som)
papers: 1998-2001 addendum. Neural computing surveys, 3(1):1–156, 2003.

[92] S. M. Omohundro. Five balltree construction algorithms. International Computer
Science Institute Berkeley, 1989.

[93] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a
review. Acm Sigkdd Explorations Newsletter, 6(1):90–105, 2004.

[94] U. Patki, S. Kishor, and P. Khot. Fuzzy Document Clustering based on Frequent
Features and Feature Length. 2018.

[95] K. Pearson. Liii. on lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11):559–572, 1901.

[96] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[97] D. Pelleg and A. Moore. Accelerating exact k-means algorithms with geomet-
ric reasoning. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA
SCHOOL OF COMPUTER SCIENCE, 2000.

92

BIBLIOGRAPHY

[98] D. Pelleg, A. W. Moore, et al. X-means: extending k-means with efficient estimation
of the number of clusters. In Icml, volume 1, pages 727–734, 2000.

[99] A. Pichler. Untersuchungen zu Wittgensteins Nachlaß. The Wittgenstein Archives,
1994.

[100] A. Pichler, H. Krüger, D. Smith, T. Bruvik, A. Lindebjerg, and V. Olstad, editors.
Wittgenstein Source Bergen Facsimile (BTE). Wittgenstein Source Bergen, 2009.

[101] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. Murali. A monte carlo algorithm
for fast projective clustering. In Proceedings of the 2002 ACM SIGMOD interna-
tional conference on Management of data, pages 418–427. ACM, 2002.

[102] M. O. Rabin. Fingerprinting by random polynomials. Technical report, 1981.

[103] W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical association, 66(336):846–850, 1971.

[104] D. Ravichandran, P. Pantel, and E. Hovy. Randomized algorithms and nlp: Using
locality sensitive hash functions for high speed noun clustering. In Proceedings of
the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05),
pages 622–629, 2005.

[105] R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the em
algorithm. SIAM review, 26(2):195–239, 1984.

[106] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471,
1978.

[107] J. Rissanen. A universal prior for integers and estimation by minimum description
length. The Annals of statistics, pages 416–431, 1983.

[108] H. Ritter and T. Kohonen. Self-organizing semantic maps. Biological cybernetics,
61(4):241–254, 1989.

[109] A. Rosenberg and J. Hirschberg. V-measure: A conditional entropy-based external
cluster evaluation measure. In Proceedings of the 2007 joint conference on empirical
methods in natural language processing and computational natural language learning
(EMNLP-CoNLL), 2007.

[110] J. Rothhaupt. Wittgensteins Kringel-Buch. Ludwig-Maximilians-Universität
München, Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft,
2011.

[111] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

[112] P. J. Rousseeuw and L. Kaufman. Finding groups in data. Hoboken: Wiley Online
Library, 1990.

[113] I. Röhrer. Musik und Ludwig Wittgenstein: Semantische Suche in seinem Nachlass.
Bachelor’s thesis, LMU, 2017.

[114] I. Röhrer, S. Ullrich, and M. Hadersbeck. Weltkulturerbe international digi-
tal: Erweiterung der Wittgenstein Advanced Search Tools durch Semantisierung
und neuronale maschinelle Übersetzung. multimedial multimodal. Abstracts zur

93

BIBLIOGRAPHY

Jahrestagung des Verbandes Digital Humanities im deutschsprachigen Raum, 25. -
29.03.2019 an den Universitäten zu Mainz und Frankfurt, 2019.

[115] C. Sadowski and G. Levin. SimHash: Hash-based similarity detection. Technical
report, Google, 2007.

[116] J. M. Santos and M. Embrechts. On the use of the adjusted rand index as a metric for
evaluating supervised classification. In International conference on artificial neural
networks, pages 175–184. Springer, 2009.

[117] A. Schmidt. Ludwig Wittgenstein’s Nachlass in the UNESCO Memory of the World
register. Nordic Wittgenstein Review, 7(2):209–213, 2018.

[118] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural computation, 10(5):1299–1319, 1998.

[119] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu. DBSCAN revisited,
revisited: why and how you should (still) use DBSCAN. ACM Transactions on
Database Systems (TODS), 42(3):19, 2017.

[120] H. Schütze and C. Silverstein. Projections for efficient document clustering. 1997.

[121] T. Seidl. Knowledge Discovery and Data Mining I. Unsupervised Methods - Clus-
tering. University Lecture, LMU München, Mar 2019.

[122] H. Shen and C.-Z. Xu. Hash-based proximity clustering for efficient load balancing
in heterogeneous dht networks. Journal of Parallel and Distributed Computing,
68(5):686–702, 2008.

[123] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering
techniques. In TextMining Workshop at KDD2000 (May 2000), 2000.

[124] H. Steinhaus. Quelques applications des principes topologiques à la géométrie des
corps convexes. Fund. Math, 41:284–290, 1955.

[125] A. Strehl and J. Ghosh. Cluster ensembles-a knowledge reuse framework for com-
bining partitionings. In Aaai/iaai, pages 93–99, 2002.

[126] A. Struyf, M. Hubert, P. Rousseeuw, et al. Clustering in an object-oriented envi-
ronment. Journal of Statistical Software, 1(4):1–30, 1997.

[127] M. A. Tan, A. Meleqi, and A. Berasategui. Informationsverarbeitung II, NLP Group.
Seminar work, Ludwig-Maximilians-Universität München, 2018.

[128] J. Tang, J. Liu, M. Zhang, and Q. Mei. Visualizing large-scale and high-dimensional
data. In Proceedings of the 25th international conference on world wide web, pages
287–297. International World Wide Web Conferences Steering Committee, 2016.

[129] M. C. Thrun. Projection-based clustering through self-organization and swarm intel-
ligence: combining cluster analysis with the visualization of high-dimensional data.
Springer, 2018.

[130] K. Torkkola. Linear discriminant analysis in document classification. In IEEE ICDM
Workshop on Text Mining, pages 800–806. Citeseer, 2001.

94

BIBLIOGRAPHY

[131] J. D. Ullman. Mining Massive Datasets, Chapter 11. University Lecture, Stanford
University, 2017. http://infolab.stanford.edu/˜ullman/mmds/ch11.
pdf.

[132] S. Ullrich, D. Bruder, and M. Hadersbeck. Aufdecken von “versteckten” Einflüssen:
Teil-Automatisierte Textgenetische Prozesse mit Methoden der Computerlinguistik
und des Machine Learning. Kritik der digitalen Vernunft. Abstracts zur Jahresta-
gung des Verbandes Digital Humanities im deutschsprachigen Raum, 26.02.-02.03.
2018 an der Universität zu Köln, veranstaltet vom Cologne Center for eHumanities
(CCeH), 2018.

[133] L. Van Der Maaten, E. Postma, and J. Van den Herik. Dimensionality reduction: a
comparative. J Mach Learn Res, 10(66-71):13, 2009.

[134] J. Vesanto, E. Alhoniemi, et al. Clustering of the self-organizing map. IEEE Trans-
actions on neural networks, 11(3):586–600, 2000.

[135] R. Vidal. Subspace clustering. IEEE Signal Processing Magazine, 28(2):52–68, 2011.

[136] N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings
comparison: is a correction for chance necessary? In Proceedings of the 26th annual
international conference on machine learning, pages 1073–1080. ACM, 2009.

[137] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.

[138] S. Wagner and D. Wagner. Comparing clusterings: an overview. Universität Karl-
sruhe, Fakultät für Informatik Karlsruhe, 2007.

[139] M. J. Warrens. On the equivalence of cohen’s kappa and the hubert-arabie adjusted
rand index. Journal of Classification, 25(2):177–183, 2008.

[140] T. Wei, Y. Lu, H. Chang, Q. Zhou, and X. Bao. A semantic approach for text
clustering using WordNet and lexical chains. Expert Systems with Applications,
42(4):2264–2275, 2015.

[141] Y. Weiss. Segmentation using eigenvectors: a unifying view. In Proceedings of the
seventh IEEE international conference on computer vision, volume 2, pages 975–982.
IEEE, 1999.

[142] D. J. Willshaw and C. Von Der Malsburg. How patterned neural connections can
be set up by self-organization. Proceedings of the Royal Society of London. Series
B. Biological Sciences, 194(1117):431–445, 1976.

[143] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2016.

[144] K.-G. Woo, J.-H. Lee, M.-H. Kim, and Y.-J. Lee. Findit: a fast and intelligent
subspace clustering algorithm using dimension voting. Information and Software
Technology, 46(4):255–271, 2004.

[145] J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for clustering
analysis. In International conference on machine learning, pages 478–487, 2016.

[146] J. Xu, W. Peng, T. Guanhua, X. Bo, Z. Jun, W. Fangyuan, H. Hongwei, et al. Short
text clustering via convolutional neural networks. 2015.

95

http://infolab.stanford.edu/~ullman/mmds/ch11.pdf
http://infolab.stanford.edu/~ullman/mmds/ch11.pdf

BIBLIOGRAPHY

[147] R. Xu and D. C. Wunsch. Survey of clustering algorithms. 2005.

[148] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong. Towards k-means-friendly spaces:
Simultaneous deep learning and clustering. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 3861–3870. JMLR. org, 2017.

[149] J. Yang, W. Wang, H. Wang, and P. Yu. δ-clusters: capturing subspace correlation
in a large data set. In Proceedings 18th international conference on data engineering,
pages 517–528. IEEE, 2002.

[150] J. Ye, R. Janardan, and Q. Li. Two-dimensional linear discriminant analysis. In
Advances in neural information processing systems, pages 1569–1576, 2005.

[151] S. Yu. Advanced probabilistic models for clustering and projection. PhD thesis, LMU,
2006.

[152] J. Zamora, M. Mendoza, and H. Allende. Hashing-based clustering in high dimen-
sional data. Expert Systems with Applications, 62:202–211, 2016.

[153] J. Zhang. Visualization for Information Retrieval, volume 23. Springer Science &
Business Media, 2007.

[154] T. Zhang, P. Ji, M. Harandi, R. Hartley, and I. Reid. Scalable deep k-subspace
clustering. arXiv preprint arXiv:1811.01045, 2018.

[155] W. Zhang, X. Tang, and T. Yoshida. TESC: An approach to text classification using
semi-supervised clustering. Knowledge-Based Systems, 75:152–160, 2015.

[156] P.-Y. Zhou and K. C. Chan. A model-based multivariate time series clustering
algorithm. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 805–817. Springer, 2014.

96

	Abstract
	Introduction
	Motivation
	Contribution
	Outline

	Related Work
	Partitioning Approaches
	Deep Learning Approaches
	Kohonen Self-Organizing Maps
	Density-based Approaches
	Other Approaches

	Methodological Overview
	Feature Extraction
	Dimensionality Reduction
	Singular Value Decomposition
	Principal Component Analysis
	Linear Discriminant Analysis
	Sparse Random Projection
	Uniform Manifold Approximation and Projection

	Document Clustering Methods
	Partitioning Methods
	Probabilistic Methods
	Density-Based Methods
	Hierarchical Methods
	Kohonen Self-Organizing Maps
	Others

	K-Nearest Neighbour Search
	K-d tree
	Balltree

	Evaluation Metrics
	Unsupervised Methods
	Supervised Methods

	Summary

	Implementation
	Data Collection
	Data Preprocessing
	Dimensionality Reduction
	Experimental Setup
	Integration into WiTTSim
	Evaluation

	Experimental Results and Evaluation
	Optimal Feature Space
	Optimal Algorithm
	Cluster Algorithm Comparison
	K-Nearest Neighbour Search

	Performance Evaluation
	Challenges
	Curse of Dimensionality
	Parameter Setting
	Cluster Structure

	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	List of Abbreviations
	Appendices
	A Dataset Details
	B Dimensionality Reduction Results
	C Clustering Results
	D Detailed Scores

	List of Figures
	List of Tables
	CD Content
	Bibliography

