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NLP-based Similarity Detection

Abstract

Similarity detection in documents seems to be a well-elaborated field of study. Scientists
develop different approaches, ranging from fingerprinting to methods of Natural Language
Processing (NLP) and graph-based detection. However, none of the existing works have
tried to develop a hybrid approach that combines syntactic NLP methods, such as word
position or Part-of-Speech (POS) tags, with the retrieval of semantic information. This
thesis has focused on syntactic as well as semantic information, extending the state of the
art in document similarity detection. Vector Space Models (VSMs) have been used to store
the document information in vectors and to calculate the cosine similarity between two
documents. Results show that this approach is of high relevance, improving the F-score
of existing results by 0.15, achieving an F-score of 0.76.

Die Ähnlichkeitssuche in Dokumenten scheint auf den ersten Blick ein weit erforschtes Ge-
biet zu sein. Verschiedenste Ansätze wurden bereits entwickelt, welche von Fingerprinting
bis zu auf Natural Language Processing (NLP) beruhenden und Graph-basierten Ansätzen
reichen. Dennoch wurde bis heute nicht versucht mit einem hybriden Ansatz syntaktische
Teile der NLP Methoden, wie zum Beispiel Wortposition und Part-of-Speech Tags, mit
semantischen Informationen zu vereinen. Der Fokus dieser Arbeit liegt auf der Kombi-
nation von syntaktischer und semantischer Information, womit der State of the Art bei
der Ähnlichkeitssuche in Dokumenten erweitert wird. Für das Speichern der Information
in Vektoren wurden Vector Space Models verwendet. Zwischen den Vektoren wird dann
der Kosinusabstand zweier Dokumente berechnet. Ergebnisse zeigen, dass dieser hybride
Ansatz von hoher Bedeutung ist, da er den F-Score der bestehenden Ergebnisse um 0,15
verbessert und damit einen F-Score von 0,76 erreicht.
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1 Introduction

The rapid growth of the World Wide Web during the last two decades has granted access
to digital libraries, search engines and millions of web pages across the world. From the
very first active website info.cern.ch in August 1991 [23], the number of webpages has
increased extraordinarily quickly, until in 2014, Tim Berners-Lee, director of the World
Wide Web Consortium (W3C), announced the milestone of one billion websites [2]. But it
is not only different hostnames that are crucial in determining the growth of the web. In
2009, more than 50 million science papers had been published since 1665, in about 28,100
active peer-reviewed scholarly journals. Each year this number grows by 2.5 million [3].
With the Horizon 2020 programme, which was announced in a press release from the EU
Presidency [35], all scientific articles in Europe will be freely accessible online to everyone
by 2020, unless there are profound reasons for not doing so, such as intellectual property
rights or security and privacy issues. This research programme will boost innovations and
accelerate the development of new technologies and products, but simultaneously it may
also facilitate plagiarism in academic work. Luckily, new technologies are being developed
to detect and track plagiarism as it becomes easier to make unrecognised use of academic
papers.

This chapter is divided into two sections. Section 1.1 will expose the incentive of de-
veloping a system that identifies document similarities. Further, Section 1.2 will give an
overview of the structure of this work.

1.1 Motivation

Based on different plagiarism detection systems, documents can be compared with con-
tent on the World Wide Web, or with reference documents. Systems then detect possibly
copied passages using syntactic or semantic features and yield results with the percentage
of similar content.

The sentence similarity detection used in plagiarism detection systems can also be rele-
vant to reveal similarities within a single document. The philosopher Ludwig Wittgenstein
for instance, used to reuse information from his former works in later publications. How-
ever, he did not give reference to these recycled ideas. Nevertheless, it would be interesting
to see which ideas he considered crucial enough to integrate them again in his works. For
researchers in the field of philosophy it can therefore still be of importance to get an
overview of Wittgenstein’s reused ideas.

As will be shown in Chapter 2, existing research to date focuses either on syntactic
or semantic similarity. No attempt has been made to combine these two approaches to
improve results. This is why this work will not only take copied sentences or phrases into
consideration, but also aim to detect paraphrased similarities and synonyms. Therefore, a
wider range of features will be considered for the detection of similarities. The NLP-based
approach will include lemma information, POS tags, word position and synonyms. The
files to be analysed will be pre-processed in order to yield even more accurate results.

1



1 Introduction

Stop words that are similar across all kinds of documents will be removed, as they do not
contribute to the meaning of the document. It will be shown that this hybrid approach
will extend the state of the art and that existing results will be improved.

1.2 Outline

The remainder of the thesis is organised as follows: Chapter 2 will discuss related work
with different existing approaches, pointing out the lack of a hybrid approach that com-
bines syntactic with semantic features. Chapter 3 will explain definitions that are used in
this work, as well as structuring methods, providing an overview and evaluation of existing
plagiarism detection tools. The proposed hybrid approach will then be presented in Chap-
ter 4, describing the utilised methodology, implementation details and results. The work
concludes in Chapter 5 with some suggestions for future work. A list of all introduced
abbreviations can be reviewed on page 37.

2
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2 Related Work

Many approaches have already been made with regard to similarity detection in doc-
uments. Some of them are based on features [1, 8], others on the hash structure of
files [17, 28]. This chapter will briefly give an overview of related work in this field and
then propose a new method for similarity detection, which combines existing methods and
therefore yields more accurate results.

The remaining chapter is subdivided as follows: Section 2.1 will describe NLP-based
approaches, while Section 2.2 will outline techniques that consider synonyms. Finally,
Section 2.3 will survey miscellaneous methods in the field of similarity detection.

2.1 NLP-based Approaches

Several similarity detection techniques incorporate either syntactic or semantic information
in their algorithms. While some of them tokenise the input files before comparing them,
others include Machine Translation (MT) or Word Sense Disambiguation (WSD) systems.
All these tasks form part of NLP. Some of the major NLP tasks are presented in Figure 2.1.

Figure 2.1: Natural Language Processing tasks

Ekbal et al. [8], for instance, perform text pre-processing on the input data to filter out
irrelevant information before measuring the similarity of two files. Their pre-processing
steps include splitting sentences, tokenising the document, retrieving lemmas, finding char-
acter offsets and determining POS classes with the Stanford NLP tool1. Furthermore, they
detect the file language and discard all non-English documents. Stop words are removed
as well as lemmas belonging to certain POS classes. After the pre-processing steps, a
subset of documents is selected, by means of methods from Information Retrieval (IR),

1This NLP software is provided by the University of Stanford: https://nlp.stanford.edu/software/

3
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2 Related Work

using VSMs for document selection. More precisely, the documents are represented as
vectors and the most similar documents are determined, calculating the smallest cosine
angle between the vectors. The most similar documents are possible source documents.

However, Ekbal et al. point out that with this method, all terms are considered equally
important, which is why some terms are assigned a higher importance than desirable. For
example, a collection of documents about Machine Learning is very likely to have the
terms Machine and Learning in almost every document. For that reason, they reduce
the Term Frequency weight by a factor that increases with the number of occurrences in
a document. This so-called Term Frequency-Inverse Document Frequency (TF-IDF) can
now be combined to produce a composite weight for each term in a document as

tf-idft,d = dft,d × log
N

dft
(2.1)

where dft is the number of documents in the collection that contain a term t, and N
is the total number of documents in the collection [18]. The TF-IDF weighting scheme
assigns to a term t a weight in document d. A term receives the highest weight if it occurs
many times in a relatively small number of documents. The assigned weight is lower when
a term occurs fewer times in a document or occurs in many documents, and lowest when
the term occurs in nearly all documents. The overlap score measure of a query q and a
document d,

Score(q, d) =
∑
t∈q

tf-idft,d (2.2)

is then the sum of the TF-IDF weight of each term in a document d. Lastly, the
plagiarised passages are retrieved using a graph-based technique, with the depth first
search algorithm, and false detections are filtered out. The algorithm thereby expands the
left-most node until the deepest node is reached before expanding nodes to its right, see
Figure 2.2. In doing so, nodes with a low score are discarded.

Figure 2.2: Depth-first tree-search algorithm, taken from Holden [16]

For the evaluation of this method to detect pair-wise similarity between documents,
three obfuscation strategies were applied: Firstly, random text operations have been made,
which insert or replace words and short phrases at random. Then semantic word varia-
tion have been carried out, i.e. words are replaced by one of their synonyms, antonyms,
hyponyms, or hypernyms. Finally, words were shuffled at random, while retaining the
original POS sequence. Ekbal et al. yield moderate results with their approach, attaining
a recall value of 0.19 and precision of 0.66, on a scale of 0 to 1. Although addressing the
point that one part of plagiarism is replacing words with their synonyms, and obfuscating
their texts with semantic word variation, there was no incorporation of word synonyms.
However, they leave this open to future work, proposing to integrate the lexical database
WordNet to deal with semantic variations.

4
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2.2 Synonym-based Approaches

In order to involve semantic word information, Abdalgader et al. [1] take synonyms into
consideration. Rather than assigning a value of 0 or 1 for the vector entry, they insert
a non-zero value if two words are semantically related. For a precise calculation of these
“semantic vectors”, they first perform the Lesk algorithm to disambiguate words, that is,
calculate the lexical overlap of the glossaries of two words. Lastly, they assign the correct
expanded synonym set to a word. This enriched semantic context allows a more accurate
estimate of the semantic similarity between two texts to be obtained. For the synonym
extraction they use WordNet and measure the shortest path between two words, in order
to determine how close they are. They store these word-sense pairs for all words but
stop words in two sets S1 and S2, and combine them in the reduced vector space U, before
calculating the similarity between the two vectors. An illustration of their method is given
in Figure 2.3. With this combination of WSD and synonym expansion they achieve results
with an accuracy of 0.70.

Figure 2.3: Synonyms and word sense disambiguation in similarity detection, taken from
Abdalgader et al. [1]

2.3 Other Approaches

Rather than incorporating vectors, Tomita et al. [36] build subject graphs in order to
calculate the similarity between documents. Subject graphs are an extension of the con-
ventionally used term vectors. Each node in the graph has a weight that corresponds to
the respective significance of the term association. For the similarity detection, they first
extract all terms from the text, then calculate the significance of each term and create a
term vector. Finally, the significance of each term-term association is calculated and an
association vector is built. An example can be seen in Figure 2.4. The nodes in the graph
represent the subjects, while every edge between two vertices is assigned a weight (eij).

The term-term association is calculated from the frequency of two terms in a unit, where
the unit can be a sentence, clause or word window. Tomita et al. found that while sentence
units slightly outperform clause units, the latter are still more precise, because a larger
unit would yield excessively large associations and therefore fail to offset the increase in
computational complexity. They conclude that subject graphs simplify the analysis steps
from the knowledge discovery of a large volume of texts.

Hash-based or fingerprint methods are used by Sadowski and Levin [28]. They determine
the similarity between two files by storing a set of hash keys and auxiliary data per
file. Then they compare the pre-sorted hash key values (see Figure 2.5). To improve

5
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Figure 2.4: Example of a subject graph, as presented by Wang et al. [37]

performance, they preselect a set of strings to search for and then only compute the
distance between the sum tables of two documents. In their experiments they show that
an unbalanced weighting scheme works best on a realistic file set, while a more uniform
weighting scheme performs better on artificial data sets. This method outperforms the
others in terms of storage and performance. A major drawback remains, as this method
does not take the ordering of the tag matches into account when creating key values and
sum tables, that is, two files with rearranged content would yield a similarity value of 1.
In other words, they would achieve the same similarity value as two identical files.

Figure 2.5: Similarity detection by means of a hash function, as presented by Gipp [11]

Kent et al. [17] combine fingerprint matching with four other features in the similarity
detection process. They consider the top keyword feature, which is the word in the docu-
ment with the highest frequency and should represent the overall idea of an article. Next,
they take the first sentence into consideration, along with query phrases, which refers to
the clause after certain words, such as “in conclusion” or “the experiment shows that”.
Lastly, they take the longest common subsequence into consideration. The combination of
these features seems to improve the accuracy of the results, however, they did not obtain
a favourable result: The most frequent words in articles do not necessarily refer to the
overall ideas, but might be frequent due to the author’s writing style. The first sentence
feature is only effective in particular types of articles, such as news articles, but rather
less effective in scientific papers. Also the number of query phrases should be increased in
order to yield accurate results.

6
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3 Methods in Plagiarism Research

As seen in Chapter 2, lots of approaches exist to detect plagiarism automatically [7,11,34].
As the field of Plagiarism Detection (PD) software becomes a major importance, scientists
try to develop tools to improve the accuracy of such software. In 2009, the yearly workshop
and evaluation lab, Plagiarism Analysis, Authorship Identification, and Near-Duplicate
Detection (PAN) was initiated, which works on uncovering plagiarism, authorship, and
social software misuse [27]. PAN organises yearly competitions and benchmark activities
where scientists work on different shared tasks, including source retrieval, text alignment,
cross-language text reuse detection, and external and intrinsic PD.

The following chapter will first give an overview of different types of plagiarism in
Section 3.1. Then existing PD approaches will be explained in Section 3.2 before going
into detail and looking at six specific systems in Section 3.3. Experiments and evaluation
will be addressed in Section 3.4. Finally, results and research gaps will be discussed in
Section 3.5.

3.1 Types of Plagiarism

There are several different types of plagiarism, some of which are more difficult to detect
than others. The coarsest way would be to categorise plagiarism into intended and unin-
tended plagiarism. However, it is not possible to prove whether a part of a document is
plagiarised intentionally or by coincidence. If two documents share identical text however,
we speak of exact copy plagiarism, as it is very unlikely to use the exact formulations
and vocabulary as found in an existing source. Direct copying is the most obvious and
provable type of plagiarism, manually or automatically, and refers to word-by-word copies
without using quotation marks or any acknowledgement to the source [19].

In general, the following distinction can be made, which summarises the key types as
found in the works of Eisa et al., Martin, and Mustofa et al. [7, 19,22].

1. Exact copy plagiarism: copying phrases or the whole content of a document without
reference to the source

2. Paraphrasing plagiarism: rewriting sentences or using synonyms, while the source
text can still be recognised

3. Translated plagiarism: translating phrases or the whole content of a document from
a language to another without reference to the source

4. Plagiarism of secondary sources: reference to the original source exists, but obtained
from a secondary source without looking up the original

5. Style plagiarism: copying an author’s style or concept

6. Idea plagiarism: copying someone’s idea and reuse it as one’s own

7. Plagiarism of authorship: putting one’s name under someone else’s work

8. Self-plagiarism: recycling or translating one’s own ideas without reference [20,21]

7
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Plagiarism Detection

Extrinsic

Local

Chunk
Similarity
Analysis

Chunk
Identity
Analysis

Global

Content-based
Analysis

Citation-based
Analysis

Intrinsic

Stylistic

Text
Structure
Analysis

Linguistic
Analysis

Figure 3.1: Plagiarism Detection Approaches

Note that some of the types are fundamentally difficult to detect, such as style or
idea plagiarism, while others are easier to identify. Translated plagiarism for instance is
extremely computationally expensive, as a bilingual dictionary is necessary for the trans-
lation the suspicious document. Mustofa et. al [22], for instance, work with translations
from documents written in Bahasa Indonesia to English. Not only is the software restricted
to these two languages, but also it is inherently difficult, if not impossible, to determine
the language of the source document in the first place.

3.2 Plagiarism Detection Approaches

This section will present existing approaches to detect plagiarism. The hierarchy of all
presented methods is displayed in Figure 3.1.

Subsection 3.2.1 will shortly outline intrinsic plagiarism techniques that focus on the
assumption that only one document is provided without any given source documents.
Next, Subsection 3.2.2 will present extrinsic methods, which are further divided into local
and global methods. Then, global methods are again divided into content-based meth-
ods, including techniques based on n-grams, structure, semantics, and into citation-based
methods that detect plagiarism based on language-independent markers, such as citations
or formulas.

3.2.1 Intrinsic Plagiarism Detection

In some cases, reference documents cannot be provided or it is too time expensive to
crawl through web content. In that case, we can draw back on intrinsic PD methods,
which try to find plagiarised passages within a single document. Approaches are style
based, that is, automatic systems try to detect stylistic chances and thus can determine
whether a document is written by a single author or whether some of the content is
copied from another document. Intrinsic PD is therefore closely related to the problem
of author verification [33]. Stylistic changes can either be detected through text structure
analysis, which determines if the structure of a paragraph deviates significantly from the
remaining text, including vocabulary and average word length. On the other hand, a

8



3.2 Plagiarism Detection Approaches

linguistic analysis can be performed, focusing on the used grammar, word types and so
forth. However, this method is not crucial for the current study, which is why it will be
no further explained in detail.

3.2.2 Extrinsic Plagiarism Detection

As soon as reference documents are provided or a web-based search can be granted, PD
systems can work with extrinsic or external methods. These methods can yield more
accurate results, as they are do not exclusively focus on stylistic changes but can directly
compare the input with existing scholarly articles and work out similarities. Extrinsic PD
can further be divided into local and global similarity assessment [34] as explained below.

Local vs. Global

Methods that are founded on local similarity directly link the number of identical regions in
contiguous matching sequences. One way to do this is by matching sequences with length
n, which retrieves word-for-word plagiarism. The most common local approach is finger-
printing, which is explained below. Global and local similarity detection are contrasted in
Figure 3.2.

Figure 3.2: Local and global similarity detection, as presented by Stein [34]. The left side
illustrates all identical n-grams with a length ≥ 5 between two documents A
and B, while the right side shows global similarity, where common word stems
without stop words of A and B are highlighted.

In order to get the fingerprint of a file, each document is divided into contiguous chunks
of tokens. Instead of copying long passages of a document, a plagiariser would try to change
sentence structure of copied material, so the longest chunks can be discarded. Similarly,
short chunks can be disregarded, because the possibility of retrieving false positives is
relatively high. For example, two general passages that are not representative can be found
in several documents and are hence incorrectly identified as plagiarism. Next, the chunks
are broken up into short byte strings, which helps to disguise documents and prevents the
program from storing intellectual property of the files. This set of byte strings from a single
document is called its signature [10]. The resulting byte strings are then stored in a hash
table. If two document candidates share byte strings in their signatures, they are related
and one of the documents possibly plagiarised the other. Formally, consider documents d1

9



3 Methods in Plagiarism Research

and d2 with their set of their respective digested chunks, signatures h(d1) and h(d2) and
their resolutions are |h(d1)| and |h(d2)|. The local similarity is the intersection of the two
fingerprints divided by their unification, which is described as [10,34]:

simloc(d1, d2) =
|h(d1) ∩ h(d2)|
|h(d1) ∪ h(d2)|

(3.1)

In case document d1 is an excerpt of a much larger document d2, then the similarity
simloc(d1, d2) = 1.0, which means the two documents share the same signatures. However
if the similarity is 0, then there is no overlap of the two documents and very likely no case
of plagiarism.

By contrast, global similarity handles longer text sections or even the complete docu-
ment. As opposed to local similarity approaches, word order is neglected, and stop words
removed. That is, two documents may have a strong similarity, although they may not
share a single bigram [34]. Commonly used assessment methods are, for instance, VSMs.
VSMs do not take order into consideration, but compare vector representations of a text
as an unordered set [11]. A weight vector assigns weights to these terms according to the
importance of the features. Finally, a similarity function computes “how matching terms
of documents contribute to the calculation of a similarity score” [11, p. 29], for example
with the standard cosine similarity measure. Finkel [10] calculates global similarity as

simglob(d1) =
|h(d1) ∩ (

⋃
d2
h(d2))|

|h(d1)|
(3.2)

which is the intersection of the signature of d1 and the unification of all chunks of d2,
divided by the signature of d1.

This thesis will also be built around global similarity detection, more precisely around
VSMs. Before going into detail, content-based and citation-based approaches will be
presented in the next paragraphs, which both derive from global similarity, which has
been illustrated in Figure 3.1.

Content-based vs. Citation-based

Methods in global similarity are based either on content or citations. The latter indicates
that a suspicious document refers to the exact same documents as a source document [11].
On the other hand, content-based techniques include [7, 12,24]:

• String-based detection techniques

• Structure-based techniques

• Semantic-based approaches

• Hybrid approaches

The most straightforward PD systems compare n-grams at character or word level.
These n-grams can then be filtered, retrieving only stop word n-grams, n-grams with
at least one named entity, or the most frequently used n-grams [12]. Gupta et al. [12]
call these methods string-based detection techniques, as they solely refer to strings and
therefore detect only simple cases of word-for-word plagiarism, or cases that contain small
random shuffling. They point out that although string-based techniques are less efficient
when it comes to complex types of plagiarism, they yield good results concerning precision

10



3.2 Plagiarism Detection Approaches

and can therefore be combined in hybrid approaches.

On the other hand, in structure-based techniques, units are not necessarily n-grams, but
can be sentences, chunks or units that are based on POS Tagging or any other syntac-
tic feature. These techniques can provide more detailed information on a document and
reveal deeper manipulations [12]. Other techniques that include syntax are for instance
duplication-gram, re-ordering, and alignment of words and phrase tags. Similarity scores
are then calculated by considering the number of similar POS tags of the suspicious and
the source document [7]. Structure-based approaches utilise representations with graphs
and trees, where the nodes of a graph represent the sentences and the edges illustrate
the attributes of the sentence. Each node is uniquely defined which allows a computation
of the degree of similarity between two documents. Multilayer self-organising map-based
approaches include additional structure-based features such as pages and paragraphs to
detect plagiarism [7].

However, none of the methods described so far are able to detect paraphrasing plagia-
rism that includes word synonyms. Semantic-based approaches include the meaning of
words and can thus detect sentences where words are replaced by their synonyms. These
techniques include Semantic Role Labelling (SRL), Machine Learning (ML), and soft com-
puting techniques [12]. In order to take the meaning of a document into consideration,
models need dictionaries or thesauruses where they can look up synonyms and hypernyms.
Fuzzy-based methods also include the semantics of a suspicious document while finding
equivalent original texts through fuzzy numbers or sets [7].

Unlike content-focused methods, those based on citations do not only check language-
dependent markers, such as n-grams, but also consider language-independent markers, i.e.
citations, formulas or dates [11]. To quantify similarity, these markers are then inspected
for overlap, distinctiveness, order and proximity. It is then possible to determine the bibli-
ographic coupling strength, that is the absolute number of references that two documents
share, as well as retrieving documents that share the same order of citations. The bigger
the overlap of these features, the more likely it is that one document copied the citation
structure of another. Besides detecting plagiarism, citation-based techniques can also be
used as a filter, for example in verifying if the citation is giving credit to the original
source or whether it only refers to a secondary source [25]. The citation-based approach
is to date still rare, but a good example is for instance the software CitePlag1 which was
introduced by the University of Konstanz and is described in more detail in Gipp [11].

The following work will focus on a hybrid approach, which combines semantic and
syntactic techniques. Before going into detail in Chapter 4, Section 3.3 will first give an
overview of existing free plagiarism detection tools, and evaluate how well they perform.

1http://citeplag.org/
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3.3 Overview of Plagiarism Detection Systems

To see how existing tools perform, the following section will compare six freely available
PD systems. The evaluated tools are Academic Plagiarism2, CopyLeaks3, Plagiarisma4,
Plagium5, PlagTracker6 and Small SEO Plagiarism checker7.

First, these systems will be tested for the identification of exact copy plagiarism and
then analysed how they cope with manipulated paragraphs. This includes paraphrasing,
translating, and replacing words with one of their synonyms. Then, two excerpts from
Wittgenstein’s work will be taken and examined to what extent these systems manage to
detect similarities.

3.3.1 Introduction of the Tools

Before outlining some of the tools’ advantages and drawbacks, each of them will be in-
troduced shortly in the following paragraphs. It should be said that all six tools to be
analysed are freely available online and that results are based on the free version if there
exists a paid version of the software. All advantages and disadvantages of the presented
software are summarised in Table 3.1.

Advantages Disadvantages

Academic Plagiarism Queries can be saved Limited number of queries
Finds only exact matches

CopyLeaks Open Source Limited number of queries
Optical Character Recognition Slow performance
Text comparation possible

Plagiarisma Fuzzy logic Separate queries required
and Levenshtein distance Limited number of queries

Plagium Paragraph-wise Comparison Low priority for free version

PlagTracker Unlimited number of queries Limited number of queries
Text comparation possible

Small SEO Unlimited number of queries Poor results

Table 3.1: Comparison of existing plagiarism detection tools.

According to their website, Academic Plagiarism checker uses advanced algorithms to
scan for and categorise plagiarised content. To find plagiarism, the tool compares the
document to billions of websites as well as a large collection of essays gathered online.
However, this is only included in the premium version. The free software compares docu-
ments with the web only. Also, only exact sentences are matched, while the paid version
allows a dynamic match, which should then find paraphrased sentences and synonyms as
well. The algorithm automatically detects and ignores quoted text. While the paid version
allows five scans a day, free users can only submit one document every three days.

2https://academicplagiarism.com/
3https://copyleaks.com/
4http://plagiarisma.net/
5http://www.plagium.com/
6http://www.plagtracker.com/
7http://smallseotools.com/plagiarism-checker/
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3.3 Overview of Plagiarism Detection Systems

Copyleaks works with cloud computing, and scans more than 60 trillion webpages and
databases. Their algorithm works with various levels of duplicate content, which should
detect word-for-word plagiarism, paraphrasing, and sentence restructuring. The free ver-
sion of Copyleaks grants ten pages (250 words per page) every month. It supports a vast
number of file types, all Unicode languages including Asian languages, and even Opti-
cal Character Recognition (OCR) to compare pictures and graphics that contain textual
content. The latter distinguishes this tool from the others, along with the possibility to
compare two documents against each other.

Plagiarisma is split into four different plagiarism detectors, namely systems that search
Google, Yahoo, Books and Scholar. In order to get accurate results, four different queries
should be started, one for each search engine. Each query must contain between 30 and
2000 characters. With the creation of a free account, the tool allows the use of their sim-
ilarity checker, which compares text and files using fuzzy logic and Levenshtein distance.

Plagium advances paragraph-wise, then applies grammar and word usage rules to break
up each paragraph into chunks of text. These chunks are then compared to the web.
Following that, the retrieved documents and webpages that correspond to each of those
paragraphs are displayed. Queries are limited to 5000 characters, with the option to get
the premium version to analyse longer text.

PlagTracker, as the other tools, scans papers and checks them against a huge database
of millions of published works. For the free version, it is not necessary to create an account.
Also, there is no limited number of queries, however, each query is limited to 5000 words.
In order to check longer documents, users can upgrade to premium, which will also enable
the function to exclude a list of references from the text. Similarly to the tools CopyLeaks
and Plagiarisma, PlagTracker includes the feature to compare two files against each other.

Finally, Small SEO (Search Engine Optimisation) checks sentences one by one and com-
pares them with already indexed content retrieved by various search engines. As opposed
to the other tools, Small SEO has no limitations and therefore does not need a premium
version.

3.3.2 Evaluation Methods

The tools described in the previous subsection are evaluated as follows: All sentences are
labelled manually either “plagiarised” or “not plagiarised” (P or P ). These labels serve
as references for the system’s output. The hand-labelled data is referred to as the gold
standard (Table 3.2 uses the short term gold). Sentences that are considered plagiarism
in the gold standard and are at the same time detected as plagiarism by the detection sys-
tem (referred to as sys in Table 3.2) are called True Positives (TP). Sentences that do not
contain plagiarised parts and are correctly ascribed are True Negatives (TN). Equally, pla-
giarised sentences are either missed, that is, False Negatives (FN), or incorrectly marked as
“not plagiarised”, namely False Positives (FP). An illustration of this evaluation method
is given in Table 3.2.

To make systems comparable, the established measures precision and recall are deter-
mined. While the recall value reflects what proportion of sentences in the gold standard
were detected, precision shows what proportion of the output is correct. If there are no
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Psys P sys

Pgold TP FN

P gold FP TN

Table 3.2: Fourfold table reflecting how values are determined

possible correct answers in the gold standard, recall = 1; if there are no answers given
by the system, then precision = 1. Equation (3.3) shows how the values in Table 3.2 are
utilised to calulate precision and recall.

Recall =
TP

TP+FN
Precision =

TP

TP+FP
(3.3)

In general, precision and recall oppose each other, that is, as precision goes up, recall
usually goes down. This is why F-measure is used to combine the two values and compare
systems according to both measures, as can be seen in Equation (3.4). If β = 1, we talk
about F1.

F-measure =
(β2 + 1)PR

β2P+R
⇒ F1 =

2PR

P+R
(3.4)

The factor β is used to favour either precision or recall, if β > 1 precision is favoured,
while recall is favoured for all β < 1. However, as in most cases there is no particular
reason to give preference to either of them, F1 is used to receive a balanced value. Results
in this thesis therefore also consider F1 only.

3.4 Experiments and Evaluation

According to the methods presented in Subsection 3.3.2, the existing tools are evaluated.
To test the systems for different degrees of obfuscation, the first remark from Wittgen-
stein’s Typescript (TS) 207 [26] is taken and modified. The abstract used in these ex-
periments comprises the introductory words of Wittgenstein’s Lecture on Ethics and is
composed of 16 sentences.

In order to test for different degrees of disguise, the remark has been changed in three
different ways. First of all, the remark has been copied and pasted, and tested for simi-
larity (Subsection 3.4.1), then it has been slightly paraphrased and some words have been
replaced by synonyms (Subsection 3.4.2). The tools have been tested for translated pla-
giarism in Subsection 3.4.3. Lastly, Subsection 3.4.4 evaluates how well the tools deal with
text where the remark has been completely modified by replacing words with one of their
synonyms with the Small SEO Article Rewriter.

The complete texts can be found in the Appendix, Tables A.1 to A.4. Similarly, detailed
results can be found there, Tables B.1 to B.5. All results are summarised in Table 3.3.

Additionally, the three tools CopyLeaks, Plagiarisma and Plagium, support the feature
to compare two documents against each other. The manipulated texts from TS 207 are
also tested against the original with these tools. Furthermore, Wittgenstein’s TS 213 [26]

8This result could not be determined, as PlagTracker was unavailable online in the middle of the experi-
ments. The overall result will therefore be calculated using the other three factors.
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F1 value exact paraphrased translated SEO Rewriter overall

Academic Plagiarism 0.90 0.12 0.12 0.12 0.38
CopyLeaks 0.97 0.77 0.00 0.00 0.43
Plagiarisma 1.00 0.67 0.55 0.22 0.61
Plagium 1.00 1.00 0.12 0.00 0.53
PlagTracker 1.00 0.00 0.00 n/a8 0.33
Small SEO 0.81 0.48 0.00 0.00 0.32

Table 3.3: Evaluation of existing plagiarism detection tools.

is compared to Manuscript (MS) 114 [26], showing how the author reused his ideas in
different workings. Results will be presented in Subsection 3.4.5.

3.4.1 Exact Copy Evaluation

In the first experiment, the systems are tested for exact copy plagiarism as described in
Section 3.1. The extract is directly taken from Wittgenstein’s TS 207 and pasted into the
different PD systems. Plagiarisma, Plagium and PlagTracker search the web successfully
and define all 16 sentences as plagiarised. Academic Plagiarism, CopyLeaks and Small
SEO fail to determine the first part in the TS “Ladies and Gentlemen”, and therefore
yield slightly lower recall values. However, this copy-and-paste approach is the easiest one
to detect, and web-based tools were able to reveal most of the plagiarised parts, achieving
high F1 values ranging from 0.81 to the maximum of 1.00.

3.4.2 Paraphrased Evaluation

Second, the same text excerpt is slightly changed: The syntax has been adapted and some
of the words have been replaced by synonyms. Plagium yields the best result, classifying
the text to be 100% plagiarised. CopyLeaks and Plagiarisma still attain accurate results
with F1 values of 0.77 and 0.67, respectively. PlagTracker and Academic Plagiarism do not
find any similar results. The latter can be explained because searching for rewritten pas-
sages is not part of the freely available version of the tool. An excerpt of the paraphrased
remark is shown in Table 3.4.

Original Paraphrased

Before I begin to speak about my subject
proper let me make a few introductory re-
marks. I feel I shall have great difficulties
in communicating my thoughts to you and
I think some of them may be diminished
by mentioning them to you beforehand.

Before I begin to talk about my subject
proper, I want to make a few introductory
remarks. I feel I will have big problems in
communicating my thoughts to you and I
think some of them may be diminished by
mentioning them to you in advance.

Table 3.4: Example of the paraphrased text
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3.4.3 Translated Evaluation

In order to find translated plagiarism, the 16 sentences mentioned above have been trans-
lated into German with Google Translate and subsequently been corrected manually. An
example can be seen in Table 3.5. This seems to be the most challenging disguise, as al-
most every tool yields an F1 value of 0.00. Although Plagium detects plagiarised sentences,
yielding an F1 of 0.11, the retrieved web pages with apparent plagiarism do not contain
contents of Wittgenstein’s remarks. They rather share short random phrases in common,
such as “that means” or “he either believes”. The only successful software among the
tools to be tested is Plagiarisma, finding a website that cites a part of Wittgenstein’s TS
207 in German, which is why 6 out of 16 sentences are correctly classified.

Original Translated

Before I begin to speak about my subject
proper let me make a few introductory re-
marks. I feel I shall have great difficulties
in communicating my thoughts to you and
I think some of them may be diminished
by mentioning them to you beforehand.

Bevor ich anfange, über mein Thema zu
sprechen, lassen Sie mich ein paar einleit-
ende Bemerkungen machen. Ich glaube,
ich werde große Schwierigkeiten haben,
meine Gedanken an Sie zu vermitteln,
und ich denke, dass einige von ihnen ver-
mieden werden können, indem ich sie Ih-
nen gegenüber im Voraus erwähne.

Table 3.5: Example of the translated text

3.4.4 Small SEO Rewritten Evaluation

Finally, the short text has been transformed with the Small SEO Article Rewriter9. This
freely available tool replaces words with their synonyms, which helps to disguise plagiarism,
making it inaccessible to detection systems that do not include the semantics of the words.
Systems that are solely web-based are not able to retrieve sentences where content words
are replaced with synonyms which shows that they are unable to uncover transformed
passages. Table 3.6 gives an impression of how the transformed text looks. Academic
Plagiarism and Plagiarisma yield low F1 values of 0.12 and 0.22, respectively, while none
of the other tools are able to detect similarities between the original and the disguised
text.

Original Small SEO rewritten

Before I begin to speak about my subject
proper let me make a few introductory re-
marks. I feel I shall have great difficulties
in communicating my thoughts to you and
I think some of them may be diminished
by mentioning them to you beforehand.

Before I begin to talk concerning my sub-
ject proper let me build a couple of intro-
ductory remarks. I feel I shall have great
difficulties in communicating my thoughts
to you and that I assume a number of
them could also be diminished by men-
tioning them to you beforehand.

Table 3.6: Example of the Small SEO rewritten text

9http://smallseotools.com/article-rewriter/
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3.4.5 Evaluation of Document Similarity

Mainly, the PD tools compare text against web pages. The three tools CopyLeaks, Pla-
giarisma, and Plagium also allow to compare two documents against each other. The
first document is the original text, again taken from Wittgenstein’s TS 207, as in the
subsections before. Then the document to be compared is the paraphrased, translated, or
rewritten text, respectively. The systems output the percentage of similar content of the
two texts. Table 3.7 shows how well each of the tools performed.

Paraphrased Translated Small SEO Overall

CopyLeaks 65.40% 0.00% 18.10% 27.83%
Plagiarisma 81.43% 45.03% 60.92% 62.46%
Plagium 55.40% 0.00% 55.20% 36.87%

Table 3.7: Results for different degrees of disguise

As can be seen, CopyLeaks and Plagium fail to detect any kind of translated plagiarism,
which reveals they do not include dictionaries in their algorithms. Plagiarisma stands out
detecting 45.03% similarity for the translated part. As for the other results, the tools per-
form quite moderately. Plagiarisma outperforms the other tools slightly, detecting 81.43%
similarity for the paraphrased passage and 62.46% similarity for the rewritten text.

TS 213 MS 114

Augustinus beschreibt wirklich einen
Kalkül; nur ist nicht alles, was wir Sprache
nennen, dieser Kalkül. (Und das muß
man in einer großen Anzahl von Fällen
sagen, wo es sich fragt: ist diese Darstel-
lung brauchbar oder unbrauchbar. Die
Antwort ist dann: “ja, brauchbar; aber
nur dafür, nicht für das ganze Gebiet, das
Du darzustellen vorgabst”.)

Augustinus beschreibt einen Kalkül un-
serer Sprache, nur ist nicht alles, was wir
Sprache nennen, dieser Kalkül. (Und das
muß man in vielen Fällen sagen, wo die
Frage vor uns steht: “ist diese Darstel-
lung brauchbar, oder unbrauchbar”. Die
Antwort ist: “ja, brauchbar, – aber nur
dafür; nicht für das ganze Gebiet, das Du
darzustellen vorgabst”.) S. 179 A

Table 3.8: Wittgenstein’s TS 213 compared to MS 114 [26]

So far, only artificially created similarity has been compared. This means that all
compared texts were adapted for research purposes. In order to identify non-artificial
similarity, Wittgenstein’s TS 213, and MS 114 [26] will be compared. The two remarks
are similar to a human reader, but the variations might be more challenging for an au-
tomatic detection system. The two remarks contain the same content, while one of them
has different filler words than the other, as can be seen in Table 3.8.

It is not obvious to the tools, however, that these documents share the same content.
CopyLeaks, for instance, fails to detect any similarities where sentence structure has been
changed. Table 3.9 shows the percentages of similar content that the tools detect.

Plagiarisma again outperforms the other tools, detecting 85% similar content, followed
by Plagium which retrieves 75% similarity and CopyLeaks only revealing 23% of parallel
content. All results will be discussed in the next section.
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Similarity

CopyLeaks 23%
Plagiarisma 85%
Plagium 75%

Table 3.9: Results for the comparison of TS 213 and MS 114

3.5 Discussion

Most of the free plagiarism tools, namely CopyLeaks, Plagium, PlagTracker, and Small
SEO Plagiarism Checker, start a Google or Yahoo search and determine the number of
web pages with the same content, as well as a percentage of plagiarised or unique phrases.
They split the text to be analysed into chunks of different sizes, depending on the tool,
and start several queries searching for the content on the internet. As for document com-
parison, the tools split the documents into similar parts and compare them successively.

Summarising the results, the tools yield good outcomes for direct plagiarism, where the
content has been copied and pasted the way it is; achieving results that range from 0.81
to 1.00. The F-measure decreases as the paragraph is adapted and sentence structures
changed. However, some tools still perform well. Plagium scores an F1 of 1.00, followed
by CopyLeaks and Plagiarisma with 0.77 and 0.67, respectively. Already at this stage,
Academic Plagiarism and PlagTracker fail to make a connection to the original document.
All tools fail to reach satisfying results for translated texts as well as texts that were trans-
formed with the Small SEO Article Rewriter. In a nutshell, precision and recall values are
high for direct plagiarism, varying from high F1 values from 0.8 to 1.0, while F1 decreases
with the complexity of disguise.

It should be noted that the existing tools fail to make a distinction between similarity
and plagiarism. The systems claim to detect plagiarism, but in fact they do not consider
whether a document cites another source properly or not. In other words, they try to
identify similarities accross texts, while not examining if a document plagiarises another
or cites it adequately. A tool might rate a student’s paper, therefore, with a plagiarism
amount of 60%, while in fact it is much lower, such as 2%, because the student has marked
all citations [5].

Moreover, it is important to note that the outcome of these tools cannot be accepted
without searching manually for plagiarised content. This is because the tools are only
able to detect similarities in files that are not manipulated. To help students to disguise
plagiarism, there are blogs online that outline tips on how to cheat PD systems. One of
those blogs is for example “How to cheat Turnitin” [5]. According to the blogger, the
easiest way to cheat the detection systems is to manipulate a document in such a way that
the systems fail to extract its content properly. A possibility is to add a tilde (∼) after every
letter ‘a’, and then enable the macros in Microsoft Word before the paper is submitted.
The tilde becomes invisible to the examiner and the system fails to find similarities with
the source documents. Heather [14] adds that another way to manipulate a PDF file is by
modifying the Character map (Cmap), which maps character identifiers to character codes.
These entries are needed if different fonts store their glyphs in another order. However,
if the Cmap is modified by swapping two entries (see Figure 3.3), this reassignment will
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produce completely garbled outcome. Modifying the glyphs themselves, such that they no
longer correspond to the alphabet yields equally incoherent results. Lastly, each character
in the document to be analysed could be replaced with the Bézier curve that defines
the character glyph. The curve basically paints the letters without storing any machine-
readable letters behind them. As systems reject input if a file is empty, random letters and
words must be added and made invisible, such that the detection system cannot determine
that the file has been manipulated. Heather [14] proposes a solution to fix this problem
by employing OCR in detection systems, which will check hidden text for plagiarism. Of
the systems that have been tested, CopyLeaks is the only one that incorporates OCR in
its search.

Figure 3.3: Glyphs in an unmodified (left) and modified (right) font [14]

Furthermore, none of the systems appear to draw on NLP methods. As a consequence
they detect unoriginality in short chunks in paper headers because papers share content
words at several points. Retrieving irrelevant similarities then falsifies the final score of the
plagiarism percentage. This problem could be dealt with by removing stop words before
analysing the documents.

In the present work, this last issue should be addressed in order to improve results. On
the other hand, intentional cheating should not be considered, because including OCR
would go beyond the scope of this work, as it is too time-consuming. Also, the following
work will focus on document similarity detection rather than plagiarism detection, without
regard to citations used. This is because accurate plagiarism detection is dependent on
human interaction to see if similar text passages are indeed copied without reference to
the source. Similarly to experiments in Subsection 3.4.5, two texts will be compared, as
opposed to searching the internet, and a degree of similarity measured.
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4 NLP-based Document Similarity

As could be seen in Chapter 2, research in plagiarism and similarity detection is still to
be improved. The analysed work focuses on various different approaches instead of com-
bining them and yielding better results. In the previous chapter, these isolated methods
were reflected in the results, as free plagiarism tools are not as accurate as we would like
them to be. It is therefore questionable why so few hybrid approaches in the field of
similarity detection exist. In this thesis, not only methods of the syntactic part of NLP
are considered, including word position and POS tags, but also the semantic part, includ-
ing synonyms, is taken into account. Combining these syntactic and semantic features,
this new hybrid approach considers more factors, leading to preciser results than existing
methods. The remaining chapter is further subdivided as follows. Section 4.1 will present
the applied methodology of the hybrid approach, Section 4.2 will show how these meth-
ods were implemented and finally, Section 4.3 will show the evaluation of the presented
approach.

4.1 Methodology

As mentioned before, none of the existing papers have so far dealt with the combination
of NLP methods and semantic similarity. Although Abdalgader et al. [1] take synonyms
into consideration, they do not deal with the position of a word in a given file, which leads
to a higher similarity score than expected. Ekbal et al. [8] take all NLP steps into account
but disregard semantic similarity of sentences. Subsequently, a new methodology will be
proposed. Subsection 4.1.1 will outline text pre-processing methods and Subsection 4.1.2
will explain the included features in the new approach. The section concludes in Sub-
section 4.1.3, proposing a similarity measure for the experiments. Figure 4.1 outlines the
procedure of the new hybrid approach.

Figure 4.1: Illustration of the methodology
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4.1.1 Text Preprocessing

Before features can be extracted from the documents, the texts should be adjusted by
pre-processing. Several existing methods calculate document similarity based on words
themselves, sometimes including semantic information such as synonyms. In any case, it
is indispensable to process files before comparing them.

In short, the used text pre-processing steps include:

• Tokenisation

• Lowercasing (English)

• Punctuation removal

• Stop word removal

• Number Replacement

Documents cannot be compared as they are, but rather segments should be compared.
In this work, these segments should be tokens that were separated by whitespace. Splitting
by newline is not necessary because the input is read in line by line. Note the difference
between tokens, types and terms pointed out by Manning et al. [18]. While a token is an
instance of a sequence of characters, a type is the class of all tokens containing the same
character sequence. After removing common expressions without meaning, normalised
types are left, so-called terms. In this case, as the texts are split by whitespace only,
tokens still contain punctuation.

After the tokenisation step, two identical words may still not share the same token. This
is because words at the start of a sentence begin with an uppercase letter, while words at
all other positions have a lowercase letter as their initial character. This is why all words
should be lowercased, such that they can be compared with the words at every other po-
sition. This step is however unreliable for German, where all nouns are capitalised. This
information is needed for POS tagging. If all words are lowercased, the tagger will not
recognise German nouns any more and categorise them incorrectly. For this reason, only
English texts will be uncapitalised, while German files will maintain their case.

The lowercased tokens still comprise punctuation marks, which have to be removed
from every token. If this step is left out, two words “little” and “little,” are not identified
as the same word. After the removal of punctuation, the documents consist of “clean” data.

As has been discussed in Section 3.5, results of current tools are falsified due to an
overlap of common words in various papers. These so-called “stop words” do not con-
tribute to the meaning of a document and can thus be disregarded. In the pre-processing
steps, English and German stop words are removed, where the language depends on the
settings. English stop words are removed by default if no language is specified. An extract
of the removed stop words can be seen in Table 4.1; full lists are specified the Appendix,
Tables C.1 and C.2.

Lastly, documents may contain references to other papers and scientific work. However,
the numbering in these references is very likely to vary from the document to be compared.
Equally, papers refer to tables and figures with varying numbers. As a consequence, these
numbers would falsify the similarity results [6]. Instead of deleting them, but still to
indicate that there is a number, all digits are replaced with the dummy string “[NUM]”.
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English German

a, about, above, after, again, against, all,
am, an, and, any, are, aren’t, as, at, be,
because, been, before, being, below, be-
tween, both, but, by, can’t, cannot, could,
couldn’t, did, didn’t, do, does, doesn’t,
doing, don’t, down, during, each, few,
for, from, further, had, (...), you’ve, your,
yours, yourself, yourselves

aber, alle, allem, allen, aller, alles, als,
also, am, an, ander, andere, anderem, an-
deren, anderer, anderes, anderm, andern,
anders, auch, auf, aus, bei, bin, bis, bist,
da, damit, dann, das, dass, dasselbe, dazu,
(...), wo, wollen, wollte, während, würde,
würden, zu, zum, zur, zwar, zwischen,
über

Table 4.1: Extract of English and German stop words

4.1.2 Feature Design

After pre-processing the two files, the features that should be included in the vector can
be extracted. The experiments have been carried out with five different features, which
are as follows:

1. Word itself

2. Lemma

3. POS tag

4. Position

5. Synonyms

Primarily, all words should be stored in the feature vector, in order to find exact copies
of text and to distinguish them from rewritten text. Along with the words themselves,
stems or lemmas should be taken into account. Take two words with the same lemma,
such as imagine and imagination. Needless to say, they should receive a higher similarity
value than words that do not share the same word stem or lemma. Especially in highly
inflected languages, words with the same lemma vary in suffixes in different positions of a
sentence. This is why extracting the words’ lemmas is useful for detecting their similarity,
as they would have a similarity value of zero otherwise.

It is also crucial to take the POS tag into account, which helps to consider sentence
structure and meaning of the words. POS can help to disambiguate two words and does
not yield an inappropriately high similarity value for two different words that share the
same spelling. This syntactic and semantic information is crucial to obtaining accurate
results.

Imagine two sentences s1 and s2, where s1 is the original one. In sentence s2, every
word in s1 has been replaced by its synonym without referencing s1. This is considered
paraphrased plagiarism, as described in Section 3.1. In order to detect this, words that
share the same meaning must be included in the feature vector. Further, without including
POS, the word fly in Example 4.1 is considered the same and the two sentences yield an
inappropriate similarity value.

(a) They let him fly back to Virginia.

(b) A fly is a small insect. (4.1)
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In terms of lexical generalisation, the synonyms of each lemma are considered. For
the English language, synonyms are retrieved from WordNet, a large lexical database of
English [9]. In WordNet, nouns, verbs, adjectives, and adverbs are grouped into sets of
cognitive synonyms, so-called synsets. These synsets are used to compare the semantic
similarity of two sentences. WordNet includes 155,287 lexical units and 117,659 synsets.

Similar to WordNet is the lexical-semantic database GermaNet, which retrieves German
synonyms accordingly. Lexical units that express the same concepts are also grouped into
synsets [13, 15]. GermaNet was developed and maintained within various projects at the
research group for General and Computational Linguistics Division of Computational Lin-
guistics of the Linguistics Department, University of Tübingen since 1997. It comprises
110,167 synsets and 142,814 lexical units and is thereby just a little less extensive as its
English counterpart.

Consider two documents d1 and d1 consisting of one word each, d1 = small and
d2 = little. Without including synonyms and POS tags in the vector, the sim(d1, d2) = 0,
meaning they do not share anything in common. With regard to the features mentioned
above, d1 and d2 may not share the same word and lemma, but they are synonyms
and share the same POS tag (POS = adjective). The similarity of the two vectors is
sim(d1, d2) = 0.5, provided every feature is assigned the same weight. This shows that
by including additional information about the words, even paraphrased or other types of
disguised plagiarism can be revealed.

Finally, related work has shown [1] that including semantic information is an important
factor in determining document similarity. Nevertheless, they yield higher similarity scores
than desired, as they only refer to synonyms without regard to word position in a text.
Considering this feature is a crucial point however, as two documents may share the same
words, but may not share any semantic similarity due to a completely different ordering
of the words. For that reason, the position of a word will be considered and included in
the feature vector. This will be especially important for low inflected languages, such as
English, where the position of a word reflects its function in the sentence.

4.1.3 Similarity Measure

After designing the feature vector, an appropriate similarity measure must be chosen to
compare the vectors of two documents. There are several different approaches to calculate
the similarity between two vectors. A detailed description can be found in Cha [4]. The
distance of two vectors can be calculated for example using cosine similarity, Euclidian
distance, or the Jaccard similarity index.

The latter compares members for two sets and determines if these sets are shared or
distinct. These members can either be symmetric, i.e. of equal importance (gender, mar-
ital status, etc), or asymmetric, meaning the members have different levels of importance
(testing positive for a disease). Jaccard similarity is easy to interpret, however, it is sen-
sitive to small document sizes and could give erroneous results.

On the other hand, Euclidean distance measures the distance between particular points
of interest along the vector. It may be less useful in determining document similarities as
long documents and short documents could yield a high similarity value just because they
share a high number of common words in a topic.
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Cosine similarity normalises the length of documents and is therefore a popular similarity
measure in the context of text mining for comparing documents. For this reason, cosine
similarity will also be used in this work. Manning et al. [18] present Cosine Similarity
in terms of IR (see Figure 4.2), where a query q is compared to various documents d1
to dn. The documents and the query are displayed as vectors, and the cosine similarity
measured. The smaller the angle between two vectors, the more similar they are. Like
this, documents that are similar to the query are retrieved. With regard to similarity
detection between two documents, only the two documents should be compared, without
reference to a query, and the cosine similarity is calculated.

Figure 4.2: Cosine similarity between three documents vectors d1 to d3 and a query vector
q as presented by Manning et al. [18], where q comprises the words jealous
and gossip

This measure is especially useful when the length of two vectors varies significantly. For
example, two documents d1 and d2 share very similar content, but d1 is considerably longer
than d2. This means they have significant vector difference simply because of the varying
document length. In order to normalise the vectors, and to treat them as if they were all
of the same size, the cosine similarity of the two document vectors should be computed.
In this thesis however, the vectors are not simple Bag of Words (BOW) vectors, that
store simply information about word occurrences in a document disregarding their word
position. Instead, the vectors store additional word information, which means they are all
artificially of the same length. Like this, the normalisation of cosine similarity is no longer
required, but still selected to measure the percentage of similar content of the documents.
Equation (4.2) shows how cosine similarity is calculated.

sim(d1, d2) =
~V (d1) · ~V (d2)

|~V (d1)||~V (d2)|
(4.2)

Another part of the similarity measurement is the weight vector. Depending on the
weights, document similarities change. After creating a weight vector which is of the same
length as the feature vector, it is multiplied with the feature vector of the document, as
can be seen in Figure 4.3.

Obviously, there is no clear guideline for the value of the weight for each feature. Also,
the tool will be implemented for two different languages, English and German, where
it is likely that weightings will vary according to the selected language. Highly inflected
languages, such as German, will probably need lower weights for the position feature, while
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Figure 4.3: Applying the weight vector to the feature vector

word position will play a major role in low inflected languages. Therefore, two different
trainings would have to be carried out, until the optimal weight is found for each of the
features in the respective language.

4.2 Implementation

Following the methods explained in the previous section, text pre-processing has been
applied on the two files. The following section is structured as follows. Subsection 4.2.1
will demonstrate how the feature vector has been built up, Subsection 4.2.2 explains how
the features then were extracted to fill the vector. Last, Subsection 4.2.3 will show how
the weight vector has been implemented.

4.2.1 Structure of the Feature Vector

As most of the existing tools fail to detect similarities as soon as the word order is slightly
changed, this thesis will expand on a BOW representation of the documents. In the BOW
representation, the word order is neglected, while the number of occurrences of a word is
preserved1 [18]. Equation (4.3) shows the simplest vector representation of a collection of
documents. The words of all documents are stored in the columns, each column refers to
one word (w1 to wn) and reflects the number of occurrences, while each column represents
one document for all documents d1 to dm.

BOW =



w1 w2 w3 ... wn

d1 1 1 1 ... 5
d2 0 3 0 ... 1
d3 0 0 2 ... 1
...

...
...

... ...
...

dm 0 0 0 ... 1

 (4.3)

However, we will have to extend the matrix in Equation (4.3), such that all the selected
features can be stored. Equation (4.4) shows how the matrix of a document d1 would look,
storing all the relevant features. The first part of the equation represents the verbose
matrix, while the second part expresses the binary transformation of the information.
The first digit in the word vector stands for “nicer”, while the binary value represents
the presence of absence of this word in this document. The length of the word vector

1As opposed to Boolean Retrieval, where the vector stores only 0 or 1, depending if a word exists in a
document or not
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is therefore equal to the number of different words in the two documents. The second
part represents the lemmas in the texts. Similarly to the word vector, each digit stands
for the presence of a certain lemma, and the length of the vector is again the number
of lemmas in both documents. However, this vector is probably shorter than the other
one, as multiple words share the same lemma. The remaining digits for POS tag, word
position, and synonyms work in the same manner.

d1 =


word lemma pos ... syn

w1 nicer nice JJ ... kind
w2 grass grass NN ... green
...

...
...

... ...
...

wn walker walk NN ... go

 =


word lemma pos syn

1 0 0 1 0 0 1 0 1 0 0
0 1 0 0 1 0 0 1 0 1 0

...
...

...
...

0 0 1 0 0 1 0 1 0 0 1

 (4.4)

The problem with these extended word information is that, if we nest them into a matrix
that stores the information of each of the documents, the vector is not at one level any
more. This means the document feature vectors cannot be compared.

The idea is to calculate an average over all words from the document vector, such that
the dimension is decreased and the two vectors can be compared. The example of an
average vector can be seen in Equation (4.5). The decimal number shows the proportion
in which a certain word, lemma, POS tag etc. occurs in a document. Here again the length
of each feature reflects the representation of this feature in the document. The documents
in the equation consist therefore of three different words, three different lemmas, two POS
tags, and so on.

( word lemma pos position syn

d1 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.66 ... 0.33 0.33 0.33
)

(
d2 0.66 0.00 0.33 0.66 0.00 0.33 0.66 0.33 ... 0.66 0.00 0.33

) (4.5)

Provided that there are two documents in Equation (4.5), each consisting of three words
w1 to w3, we can deduce from Vector 1 that each of the three words in the corpus occurs
exactly once. Vector 2 shows that w1 occurs twice, w2 is absent in this document, and w3

occurs once. This works equivalently for the remaining features.

4.2.2 Feature Extraction

The last subsection discussed the structure of storing the features. Next, these features
will have to be extracted from the two input files. After the pre-processing steps pre-
sented in Subsection 4.1.1, tokens have already been extracted and can be stored in the
feature vector. The following paragraphs will explain, how the remaining features, POS
tag, lemma, synonyms, and position, have been extracted and stored.

As discussed in Section 4.1.2, it is of major interest to include the POS tag in the
feature vector, as this helps to distinguish words that have the same spelling but a different
meaning and POS tag. To extract these lemmas, along with their respective POS tag, the
TreeTagger will be used. Other than a standard trigram tagger, the TreeTagger achieves
a higher accuracy, even with a lower document size. Furthermore, the tagger does not
influence the time efficiency of the program, as it is able to tag up to 10,000 tokens per
second [30]. A sample output can be seen in Table 4.2, taken from the TreeTagger website2.

2http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
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word pos lemma
The DT the
TreeTagger NP TreeTagger
is VBZ be
easy JJ easy
to TO to
use VB use
. SENT .

Table 4.2: Sample TreeTagger output, taken from the TreeTagger website

The TreeTagger was developed by Helmut Schmid in the Text Corpora project at the
Institute for Computational Linguistics of the University of Stuttgart [29, 30]. The Tree-
Tagger is a n-gram tagger that models the probability of a tagged sequence of words. The
transition probabilities are estimated with a binary decision tree. In each step, the test
yielding the most information is attached to the current node of the tree. This tree is
expanded recursively until the node with the highest probability reveals the category of
the word [30]. Figure 4.4 shows an example of an excerpt of a binary decision tree. Suffix
and prefix lexicons are used to classify unknown words.

Figure 4.4: Sample tree of the TreeTagger, as illustrated by Schmid [30]

For the retrieval of synonyms, the lexical databases GermaNet and WordNet are used
to store the German and English synonyms, respectively. Storing synonyms in the feature
vector turned out to be not as straightforward as the other features. The first idea was
to store each synonym as a feature, such that for the word small, the synonyms are
Syn1 = little, Syn2 = minor etc. Also, the word itself must be stored as a synonym
as this is crucial for comparing the vectors: Syn0 = small. It must also be taken into
consideration that words have different sets of synonyms in WordNet and GermaNet, even
if they are synonyms of each other. The synonym vectors for the two words above are
given in Equation (4.6) and displayed in Figure 4.5 .
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( syn0 syn1 syn2

small small little minor
)
→

( syn0 syn1 syn2

w2 1 0 1 0 1 0
)

(
little little small humble

)
→

(
w2 0 1 0 1 0 1

) (4.6)

As can be seen, the vectors do not share any common parts, because of their different word
ordering. This is why synonyms cannot be stored in this way but must be implemented
differently.

Figure 4.5: Storing synonyms in separate list entries

As the vectors are built from dictionaries, another idea would be to give the dictionary
an ordered list of synonyms as a value, and synonyms as a key. This would be implemented
as follows:

dictionary =

{word: little, pos: JJ, ..., synonyms: [humble, little, small...]}

This would work if the tool that is used to transform the dictionaries into vectors had the
possibility to transform arrays into vectors. Unfortunately, with the used tool, DictVector-
izer from scikit-learn3, only non-embedded structures can be transformed to binary values.

The idea of the algorithm is to store all synonyms that belong together in a list and
embed these small lists into a bigger one, that then stores all synonyms of all words in
the documents. The lists themselves are sorted alphabetically, such that the first element
remains the same if we search these lists. The function checks the words in the existing
synonym list first, before creating a new synonym set. When creating the synonym fea-
ture for the vector, the algorithm then searches in which list the current word appears and
returns the first element of the synonym set. This word represents the whole list, that is,
it is unambiguous to which list it refers and there is no need to store the whole list in the
dictionary.

The transformation with DictVectorizer is now possible, because the list is not embedded
any more. The first document in the example below contains the words small and nice,
while the second one only contains the word little. The synonyms have been calculated as
above, and the first synonym is stored as representative. The following sample code shows
the transformation of two documents:

3scikit-learn is a ML tool for Python, which provides useful modules for data mining and data
analysis. http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.

DictVectorizer.html
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>>> Document = ’nice small minor’

>>> Synonyms = [

... [courteous, dainty, decent, nice],

... [belittled, humble, little, minor, modest, small]

]

>>> create_dictionary()

[ {word: small, pos: JJ, lemma: small, Syns: belittled},

{word: nice, pos: JJ, lemma: nice, Syns: courteous},

{word: minor, pos: JJ, lemma: minor, Syns: belittled} ]

The synonym list has a nested structure, as it contains lists of all synonyms of the
documents to be compared. Every time a new word is read in, these subordinate lists will
have to be searched in order to find if the word or one of its synonyms already exists.
Then for each vector, the algorithm will have to iterate again over all lists in order to
identify the correct synonym list. However, this search is too time-expensive, especially
as the documents exceed a small number of elements. Time was not a problem during
the experiments, as most of the example documents contained only one or a couple of
short sentences. As the two files get longer, searching a list of lists becomes too time
complex. To iterate over a list of lists has the time complexity of O(n2), compared to a
hash (dictionary) structure with a complexity of O(n). Figure 4.6 shows the comparison of
the two structures (adapted from: https://stackoverflow.com/questions/487258/).

Figure 4.6: Time complexity of O(n2) and O(n)

Now that all synonyms are stored in a less complex structure, time complexity is re-
duced to O(n). The first element in each hash entry can then be stored as the synonym
in the feature vector (see Figure 4.7). Then DictVectorizer transforms the dictionary into
a vector as can be seen below:

def vectorize(dictionary):

vec = DictVectorizer()

pos_vectorized = vec.fit_transform(dictionary).toarray()

return pos_vectorized

>>>vectorize(dictionary)

doc1 [
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[ 1. 0. 0. 0. 1. 1. 0. 0. 1.]

[ 0. 1. 0. 1. 0. 1. 0. 1. 0.] ]

doc2 [

[ 1. 0. 1. 0. 0. 1. 1. 0. 0.] ]

Figure 4.7: Incorporating words in a hash structure, where synonyms point to the same
entry.

Finally, to integrate the position in the feature vector, it is not possible to include
only a dictionary entry that has a key “position” and the value of the word position in
the sentence. As with the used method, the positions would all have the value 1

N where
N is the total number of positions in all documents. The solution is not only to store
the position number, but to concatenate it with the word on that position in the format
word.position. The output in Example 4.7 indicates that, in the first sentence, the lemma
this occurs at the first position and stores a different word position feature (this.0) than
the same lemma in the second sentence (this.1).

(a) this is a small house
this.0 is.1 a.2 small.3 house.4

(b) is this a small house
is.0 this.1 a.2 small.3 house.4 (4.7)

4.2.3 Feature Weighting

As explained in Section 4.1.3, not all features are equally important. Two texts may share
the same POS tags, while their content is completely different. This indicates that POS
should be assigned a lower weight than the word itself. On the other hand, words in
paraphrased texts may have another position in the sentence, while still expressing the
same meaning.

To create a weight vector, the same weight for “word” has been stored according to the
number of digits that represent the words themselves in the word vector. Then a weight
for all lemmas has been added to the weight vector, and so forth. The weight vector for a
file containing five different words, four lemmas, and four POS tags, could look as follows:

[ 2. , 2. , 2. , 2. , 1. , 1. , 1. , 1. , 0.5, 0.5, 0.5,

0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1. , 1. , 1. , 1. , 1. ]

So far, weights have to be adjusted manually with default values lemma=2, POS=1,
position=0.5, synonyms=0.5, word=1. The values sum up to five, in agreement with the
number of features. However, it is possible to assign higher values to shift the result and
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give more weight to considerable features. In the developed tool, it is possible to assign
these weights over the command line in order to test if new weights perform better than
the default values. The weight vector is multiplied with the feature vector before calcu-
lating the cosine similarity between the two document vectors.

Due to the time limitation of this thesis, weights will have to be adjusted manually
and an accurate weight found through human intuition. It is left for future work (see
Chapter 5) to train a ML system in order to get a perfectly accurate feature vector.

4.3 Evaluation

After processing the documents and retrieving the two feature vectors and the weight
vector, the program can be evaluated. Therefore, the same data that has already been
utilised for the evaluation of the existing tools in Chapter 3 will be used and the outcome
evaluated. Subsection 4.3.1 will discuss the expected results, while Subsection 4.3.2 will
evaluate actual results and compare them to those of existing software.

4.3.1 Expected Results

The new hybrid approach combines features and methods from existing work discussed in
Chapters 2 and 3. This is why we would expect the tool to outperform existing methods,
improving their attained F-score. In general, two files with the same meaning should have
a high similarity measure, while files that share nothing in common should score a measure
near zero. The new system should moreover be resistant to transformed sentences, a slight
change in sentence structure and replacement of words with their synonyms. We would
also expect different results for different languages. This is because the wrong language
setting will remove the stop words belonging to another language and POS tagging will
not work. For this reason, inappropriate language settings should yield poorer results.
Lastly, translated plagiarism will very likely not be detected, as the tool neither works
with bilingual dictionaries nor with other translation systems. Actual results will be
discussed in Subsection 4.3.2.

4.3.2 Results and Evaluation

The hybrid approach was able to significantly expand the state of the art compared to web-
based detection systems. Overall results could be improved by an F-measure of 0.15. The
system has been compared to the three best performing tools, CopyLeaks, Plagiarisma,
and Plagium, that were evaluated in Section 3.4. Evaluation results, including the new
approach, are shown in Table 4.3.

F1 value Exact Paraphrased Translated SEO Rewriter Overall

CopyLeaks 0.97 0.77 0.00 0.00 0.43
Plagiarisma 1.00 0.67 0.55 0.22 0.61
Plagium 1.00 1.00 0.12 0.00 0.53
Hybrid Approach 1.00 0.97 0.11 0.95 0.76

Table 4.3: Comparison of the new approach with the best performing tools

These results show that in order to detect any kind of disguised similarity, the consider-
ation of several features is reasonable. Including word position, the new approach detects
changes in sentence structure and still yields high similarity values. Considering word
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synonyms, the system is able to reveal a high overlap between the original and the text
that has been transformed with the Small SEO Article Rewriter. Without this feature,
the tool would not have attained as accurate results as the outcomes of existing tools
demonstrate.

Exact Copy Evaluation

For exact copy similarity, the developed tool manages to achieve a F-score of 1.00, that
means, all the sentences have been classified correctly. The system creates two identical
vectors which have a cosine distance of zero and hence a similarity value sim(d1, d2) = 1.
Table 4.4 illustrates an extract of the two equivalent vectors, one of TS 207 and the other
of its copy.

Document 1 Document 2

[[ 1., 0., 0., ..., 0., 0., 0.],

[ 0., 1., 0., ..., 0., 0., 0.],

[ 0., 0., 1., ..., 0., 0., 0.],

[[ 1., 0., 0., ..., 0., 0., 0.],

[ 0., 1., 0., ..., 0., 0., 0.],

[ 0., 0., 1., ..., 0., 0., 0.],
..., ...,
[ 0., 0., 0., ..., 1., 0., 0.],

[ 0., 0., 0., ..., 0., 1., 0.],

[ 0., 0., 0., ..., 0., 0., 1.]]

[ 0., 0., 0., ..., 1., 0., 0.],

[ 0., 0., 0., ..., 0., 1., 0.],

[ 0., 0., 0., ..., 0., 0., 1.]]

Table 4.4: Vector comparison for two identical documents

Paraphrased Evaluation

The extract that has been paraphrased or slightly adapted still yields an accurate similarity
score of 0.97. The result refers to the percentage of similar content, which means it is even
desirable not to achieve 1.00, as the two files are not identical and the score would be
incorrect. The tool still assigns a considerably high similarity value, because it includes
the synonyms and lemmas of the words. Table 4.5 shows the two document vectors of the
original (Document 1) and paraphrased (Document 2) extract.

Document 1 Document 2

[[ 0., 1., 0., ..., 0., 0., 0.],

[ 0., 0., 1., ..., 0., 0., 0.],

[ 0., 0., 0., ..., 0., 0., 0.],

[[ 1., 0., 0., ..., 0., 0., 0.],

[ 0., 0., 1., ..., 0., 0., 0.],

[ 0., 0., 0., ..., 0., 0., 0.],
..., ...,
[ 0., 0., 0., ..., 0., 0., 0.],

[ 0., 0., 0., ..., 0., 0., 0.],

[ 0., 0., 0., ..., 1., 0., 0.]]

[ 0., 0., 0., ..., 1., 0., 0.],

[ 0., 0., 0., ..., 0., 1., 0.],

[ 0., 0., 0., ..., 0., 0., 1.]]

Table 4.5: Vector comparison with the paraphrased document

Translated Evaluation

As expected, the new approach yields poor results in terms of translated document sim-
ilarity. Results rate the translated and the original remark to be 11% similar. This can
be explained through the fact that most of the POS tags may be similar in both lan-
guages, while the other four features, word, lemma, synonyms, and word position, are
different. Without including any dictionary or translation systems, translated similarities
can obviously not be detected.
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Small SEO Evaluation

There are significant improvements in revealing parallelism between the original text and
the text that has been transformed with the Small SEO Article Rewriter. While exist-
ing systems yield scores between 0.00 and 0.22, the new tool detects a similarity of 0.95,
improving results by 0.73. This can be explained by the fact that the SEO tool replaces
words with their synonyms. Current systems find similar structures in function words
other than content words, and fail to draw a parallel between the two documents. The
hybrid approach, however, takes synonyms into account and can detect the similarities
between the two texts accordingly.

Evaluation of Document Similarity

The tool improves results a little, surpassing Plagiarisma by 5.21% and Plagium and
CopyLeaks by 30.8% and 39.84%, respectively. Again, the most significant changes can be
found in the text rewritten by Small SEO, 34.08%. This can again be explained through
the fact that freely available tools do not include semantic word information in their
algorithms.

Paraphrased Translated SEO Rewriter Overall

CopyLeaks 65.40% 0.00% 18.10% 27.83%
Plagiarisma 81.43% 45.03% 60.92% 62.46%
Plagium 55.40% 0.00% 55.20% 36.87%
Hybrid Approach 97.00% 11.00% 95.00% 67.67%

Table 4.6: Comparison with tools that compare two documents

Comparing again two documents that are not adapted for research purposes, Wittgen-
stein’s TS 213, and MS 114 (see again Table 3.8 on page 17) will be analysed with the
new tool. Table 4.7 shows that the tool outperforms existing systems.

% detected

CopyLeaks 23
Plagiarisma 85
Plagium 75
Hybrid Approach 94

Table 4.7: Similarity between Wittgenstein’s TS 213 and MS 114 [26]

These results show a similarity of the files of 94%, which is an expected result. The
files are slightly different and should not have scored a similarity of 100%. This would be
the case if two identical files were compared. This means the tool could provide accurate
results and outperform existing tools that compare two documents against each other. A
complete sample output of the two files can be found in the Appendix, Chapter D.
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5 Conclusions and Future Work

In this work, a new hybrid approach in the field of similarity detection has been pre-
sented. Semantic-based and syntactic-based approaches have been combined together
with common NLP-methods. Two documents have been pre-processed, before extracting
five different features and creating a weight vector to be multiplied with the feature vec-
tors. Combining all features, including synonyms and word position, expands the state of
the art methods in similarity detection.

A summary of the new approach will be presented in Section 5.1. However, similarity
detection remains a complex field, and the synonym hash, as well as the weight vector are
still to be improved. Section 5.2 will give an overview of future work.

5.1 Conclusions

A new hybrid approach has been developed, combining methods that depend on words
and word positions, and methods that only use synonyms. Five different features have
been extracted, namely the word itself, lemma, POS-tag, word position, and synonyms.
These features have been stored in a feature vector for each document and been multiplied
with a weight vector. Last, the cosine similarity between the two documents has been
calculated. Results have shown that the combination of existing methods leads to more
accurate results, improving the F-measure by 0.15 compared to existing tools. The tool has
performed well with exactly copied similarity, paraphrased similarity, and a text that has
been modified with the Small SEO Article Rewriter, where all words have been replaced
by their synonyms. The hybrid method yields a similarity score of 0.97 in these three
subjects. The overall result of 0.76 can be explained by the fact that no dictionaries or
translation systems have been used. Translated passages are hence not classified as similar,
yielding a similarity of 0.11.

Overall, the tool could improve the state of the art significantly, improving the F-score
from 0.67 to 0.97 in three of the categories. To conclude, hybrid approaches in the field
of similarity detection yield better results, as they consider more different features than
approaches that solely focus on either syntactic or semantic features.

5.2 Future Work

A lot has already been done, as summarised in Section 5.1. However, due to time limi-
tations, the weights of the features still have to be adapted manually and optimised with
experiments and subjective rating of the similarity of two files. It remains to optimise
the weight vector by means of ML methods, where the weight vector is trained on hand-
labelled training data. The ML algorithm should then learn the weights automatically
and further yield more precise results.

Secondly, the synonym hash has to be optimised. Currently, synonyms are stored in a
hash, and words with the same meaning point to the same entry. These synonym entries
can be extended, such that all synonyms of a word are classified correctly. WSD methods
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would also help to retrieve the correct synonyms of a word.

Furthermore, the feature set could be expanded. Incorporating MT systems will help
to identify similarities across documents of different languages. A possibility would be to
include the Operation Sequence Model, as presented by Schütze et al. [31]. This model
combines n-gram and phrase-bases Statistical MT. By combining the two approaches, the
system considers all possible reorderings and achieves to correctly reorder words accross
large distances. This translation system yields better accuracy and translation quality
compared to other systems, which could be useful in determining similarities as precisely
as possible.

Moreover, the relation between words could be taken into account. A combination
of convolutional and recurrent neural networks for relation classification is described in
Schütze et al. [32]. Recurrent neural networks compute a weighted combination of all
words in a sentence, while convolutional neural networks only extract the most infor-
mative n-grams for the relation. Their features complement each other, which is why
combining the two networks improves existing techniques. Integrating this information
about the relation of the words will then further achieve more accurate results in the field
of document similarity extraction.

Finally, the tool has only been tested on Wittgenstein’s remarks and variations of it.
Therefore, it would be interesting to see how the tool performs on another type of data. It is
left to future work to apply the system to different data. A collaborative documentation
of plagiarism that could be used for this is, for instance, the GuttenPlag Wiki1. The
Wiki deals critically with the plagiarised content of the doctoral dissertation of the former
German Minister of Defence, Karl-Theodor Freiherr zu Guttenberg. The dissertation along
with original sources could be taken as new evaluation data of the similarity detection
system.

1http://de.guttenplag.wikia.com/wiki/GuttenPlag_Wiki
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A Used Texts

Ladies and Gentlemen, Before I begin to speak about my subject proper let me make
a few introductory remarks. I feel I shall have great difficulties in communicating my
thoughts to you and I think some of them may be diminished by mentioning them to
you beforehand. The first one, which almost I need not mention, is, that English is not
my native tongue and my expression therefore often lacks that precision and subtlety
which would be desirable if one talks about a difficult subject. All I can do is to ask
you to make my task easier by trying to get at my meaning in spite of the faults which
I will constantly be committing against the English grammar. The second difficulty I
will mention is this, that probably many of you come up to this lecture of mine with
slightly wrong expectations. And to set you right in this point I will say a few words
about the reason for choosing the subject I have chosen: When your former secretary
honoured me by asking me to read a paper to your society, my first thought was that I
would certainly do it and my second thought was that if I was to have the opportunity
to speak to you I should speak about something which I am keen on communicating
to you and that I should not misuse this opportunity to give you a lecture about, say,
logic. I call this a misuse for to explain a scientific matter to you it would need a course
of lectures and not an hour’s paper. An other alternative would have been to give you
what’s called a popularscientific lecture, that is a lecture intended to make you believe
that you understand a thing which actually you don’t understand, and to gratify what I
believe to be one of the lowest desires of modern people, namely the superficial curiosity
about the latest discoveries of science. I rejected these alternatives and decided to talk to
you about a subject which seems to me to be of general importance, hoping that it may
help to clear up your thoughts about this subject (even if you should entirely disagree
with what I will say about it). My third and last difficulty is one which, in fact, adheres
to most lengthy philosophical lectures and it is this, that the hearer is incapable of seeing
both the road he is led and the goal which it leads to. That is to say: he either thinks: “I
understand all he says, but what on earth is he driving at” or else he thinks “I see what
he’s driving at, but how on earth is he going to get there”. All I can do is again to ask you
to be patient and to hope that in the end you may see both the way and where it leads to.

Table A.1: Wittgenstein’s TS 207 - original version
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Dear Ladies and Gentlemen, Before I begin to talk about my subject proper, I want to
make a few introductory remarks. I feel I will have big problems in communicating my
thoughts to you and I think some of them may be diminished by mentioning them to
you in advance. First of all, which almost I need not mention, is, that English is not
my mother language and my expression therefore often lacks that precision and subtlety
which would be of importance if one talks about a difficult subject. All I can do is
to kindly ask you to make my task easier by trying to get at my point in spite of the
faults which I will constantly be committing against the English grammar. The second
difficulty I will mention is this, that probably many of you come up to this lecture of
mine with false expectations. And to make it clear at this point I will say a few words
about the reason for choosing the chosen subject: When your former secretary honoured
me by asking me to read a paper to you, my first thought was that I would surely do it
and my second thought was that if I was to have the chance to talk to you I should speak
about something which I am keen on telling to you and that I should not misuse this
chance to give you a lecture about, for instance, logic. I call this a misuse for to explain a
scientific topic to you it would need a couple of lectures and not an hour’s paper. Another
alternative would have been to give you what is called a popularscientific talk, that is
a lecture intended to make you think that you comprehend a thing which actually you
don’t comprehend, and to gratify what I think to be one of the lowest desires of modern
people, namely the superficial curiosity about the latest discoveries of science. I rejected
these alternatives and decided to give a lecture about a subject which seems to me to be
of general importance, hoping that it may help to understand this subject (even if you
should entirely disagree with what I will say about it). My last problem is one which, to
be honest, adheres to most lengthy philosophical lectures and it is this, that the hearer is
incapable of seeing both the road he is led and the goal which it leads to. That means:
he either believes: “I comprehend all he says, but what in blazes is he driving at” or else
he thinks “I see what he’s driving at, but how in blazes is he going to get to this”. All I
can do is once again to ask you to be patient and to hope that in the end you may see
both the way and where it leads to.

Table A.2: Wittgenstein’s TS 207 - paraphrased version
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Meine Damen und Herren, bevor ich anfange, über mein Thema zu sprechen, lassen
Sie mich ein paar einleitende Bemerkungen machen. Ich glaube, ich werde große
Schwierigkeiten haben, meine Gedanken an Sie zu vermitteln, und ich denke, dass
einige von ihnen vermieden werden können, indem ich sie Ihnen gegenüber im Voraus
erwähne. Das erste, das ich fast nicht erwähnen muss, ist, dass Englisch nicht meine
Muttersprache ist und es meinem Ausdruck also oft der Präzision und Feinheit fehlt,
welche wünschenswert wäre, wenn man über ein schwieriges Thema spricht. Alles, was
ich tun kann, ist Sie zu bitten, meine Aufgabe zu erleichtern, indem Sie versuchen, die
Bedeutung trotz der Fehler zu verstehen, die ich ständig gegen die englische Grammatik
begehen werde. Die zweite Schwierigkeit, die ich erwähnen werde, ist, dass wahrscheinlich
viele von Ihnen zu dieser Vorlesung von mir mit etwas falschen Erwartungen kommen.
Und um Sie in diesem Punkt richtig zu stellen, werde ich ein paar Worte über den Grund
für die Wahl des Themas, das ich gewählt habe, sagen: Als Ihre ehemalige Sekretärin
mich geehrt hat, indem Sie mich bat, eine Vorlesung in Ihrer Gesellschaft zu halten,
war mein erster Gedanke, dass ich sicherlich tun würde und mein zweiter Gedanke war,
dass ich, wenn ich die Gelegenheit hätte, mit Ihnen zu sprechen, über etwas sprechen
sollte, von dem ich begeistert bin Ihnen zu vermitteln, und dass ich diese Gelegenheit
nicht missbrauchen sollte, um einen Vortrag über etwa die Logik zu halten . Ich nenne
dies einen Missbrauch, um Ihnen eine wissenschaftliche Angelegenheit zu erklären, würde
man eine Vortragsreihe und nicht ein einstündigen Vortrag brauchen. Eine andere
Alternative wäre es gewesen, Ihnen zu geben, was man einen populärwissenschaftlichen
Vortrag nennt, das ist ein Vortrag, der dazu bestimmt ist, Sie glauben zu lassen, dass
Sie eine Sache verstehen, die Sie eigentlich nicht verstehen, und um, was ich glaube,
einen der niedrigsten Wünsche der modernen Menschen, nämlich die oberflächliche
Neugier auf die neuesten Entdeckungen der Wissenschaft, zu befriedigen. Ich habe diese
Alternativen abgelehnt und beschlossen, mit Ihnen über ein Thema zu sprechen, das mir
von allgemeiner Bedeutung erscheint, in der Hoffnung, dass es Ihnen helfen kann, Ihre
Gedanken über dieses Thema zu entwirren (auch wenn Sie dem was ich sage vielleicht
auch vollständig widersprechen). Meine dritte und letzte Schwierigkeit ist eine, die in der
Tat an den meisten philosophischen Vorträgen haftet, und das ist es, was der Hörer nicht
in der Lage ist, sowohl den Weg zu sehen, der ihn führt, als auch das Ziel, zu dem er
führt. Das heißt: er denkt entweder: ”Ich verstehe alles, was er sagt, aber worauf in aller
Welt will er hinaus” oder er denkt ”ich sehe, worauf er hinaus will, aber wie in aller Welt
wird er dorthin kommen”. Alles was ich tun kann ist wieder, Sie zu bitten, geduldig zu
sein und zu hoffen, dass Sie am Ende vielleicht beides sehen, den Weg und wohin er führt.

Table A.3: Wittgenstein’s TS 207 - translated version
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Ladies and Gentlemen, Before I begin to talk concerning my subject proper let me build
a couple of introductory remarks. I feel I shall have great difficulties in communicating
my thoughts to you and that i assume a number of them could also be diminished by
mentioning them to you beforehand. the primary one, which just about i would like not
mention, is, that English isn’t my native tongue and my expression so typically lacks
that exactness and subtlety which might be desirable if one talks about a tough subject.
All I will do is to raise you to make my task easier by making an attempt to induce at
my meaning in spite of the faults that i’ll perpetually be committing against English
grammar. The second problem i’ll mention is this, that in all probability several of you
come back up to the current lecture of mine with slightly wrong expectations. And to line
you right during this purpose i’ll say many words concerning the rationale for selecting
the topic I actually have chosen: once your former secretary honored me by asking me
to read a paper to your society, my initial thought was that i’d definitely do it and my
second thought was that if i was to have the chance to talk to you I ought to speak
concerning one thing that i’m keen on communicating to you which I mustn’t misuse
this chance to allow you a lecture about, say, logic. I call this a misuse for to clarify
a scientific refer you it’d need a course of lectures and not an hour’s paper. an other
alternative would have been to allow you what is known as a popularscientific lecture,
that’s a lecture supposed to make you think that you just perceive a issue that truly
you do not perceive, and to gratify what i think to be one amongst the lowest wishes
of contemporary individuals, particularly the superficial curiosity concerning the newest
discoveries of science. I rejected these alternatives and determined to speak to you a few
subject that seems to me to be of general importance, hoping that it’s going to facilitate
to clear up your thoughts concerning this subject (even if you must entirely trouble what
i’ll say concerning it). My third and last problem is one that, in fact, adheres to most
prolonged philosophical lectures and it’s this, that the perceiver is incapable of seeing
each the road he’s led and therefore the goal that it results in. that’s to say: he either
thinks: “I perceive all he says, however what on earth is he driving at” as an alternative
he thinks “I see what he is driving at, however how on earth is he reaching to get there”.
All I will do is once more to raise you to be patient and to hope that within the end you
will see each the approach and where it results in.

Table A.4: Wittgenstein’s TS 207 - Small SEO rewritten version
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B Detailed Results

Exact Copy TP TN FP FN Recall Precision F1

Academic Plagiarism 13 0 0 3 0.8125 1 0.8965517241
CopyLeaks 15 0 0 1 0.9375 1 0.9677419355
Plagiarisma 16 0 0 0 1 1 1
Plagium 16 0 0 0 1 1 1
PlagTracker 16 0 0 0 1 1 1
Small Seo 11 0 0 5 0.6875 1 0.8148148148

Table B.1: Exact copy results

Paraphrased TP TN FP FN Recall Precision F1

Academic Plagiarism 1 0 0 15 0.0625 1 0.1176470588
CopyLeaks 10 0 0 6 0.625 1 0.7692307692
Plagiarisma 8 0 0 8 0.5 1 0.6666666667
Plagium 16 0 0 0 1 1 1
PlagTracker 0 0 0 16 0 1 0
Small Seo 5 0 0 11 0.3125 1 0.4761904762

Table B.2: Paraphrased results

Translated TP TN FP FN Recall Precision F1

Academic Plagiarism 1 0 0 15 0.0625 1 0.1176470588
CopyLeaks 0 4 0 16 0 1 0
Plagiarisma 6 0 0 10 0.375 1 0.5454545455
Plagium 1 0 0 15 0.0625 1 0.1176470588
PlagTracker 0 0 0 16 0 1 0
Small Seo 0 0 0 16 0 1 0

Table B.3: Translated results

Small SEO TP TN FP FN Recall Precision F1

Academic Plagiarism 1 0 0 15 0.0625 1 0.1176470588
CopyLeaks 0 0 0 16 0 1 0
Plagiarisma 2 0 0 14 0.125 1 0.2222222222
Plagium 0 0 0 16 0 1 0
PlagTracker 0 0 0 16 0 1 0
Small Seo 0 0 0 16 0 1 0

Table B.4: Small SEO rewritten results
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B Detailed Results

Overall Results Direct Copy Paraphrased Translated Small SEO Overall

Academic Plagiarism 0.90 0.12 0.12 0.12 0.31
CopyLeaks 0.97 0.77 0.00 0.00 0.43
Plagiarisma 1.00 0.67 0.55 0.22 0.61
Plagium 1.00 1.00 0.12 0.00 0.53
PlagTracker 1.00 0.00 0.00 0.00 0.33
Small Seo 0.81 0.48 0.00 0.00 0.33
Hybrid Approach 1.00 0.97 0.11 0.95 0.76

Table B.5: Overall results
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C Lists of Stop Words

a, about, above, after, again, against, all, am, an, and, any, are, aren’t, as, at, be, because,
been, before, being, below, between, both, but, by, can’t, cannot, could, couldn’t, did,
didn’t, do, does, doesn’t, doing, don’t, down, during, each, few, for, from, further, had,
hadn’t, has, hasn’t, have, haven’t, having, he, he’d, he’ll, he’s, her, here, here’s, hers,
herself, him, himself, his, how, how’s, i, i’d, i’ll, i’m, i’ve, if, in, into, is, isn’t, it, it’s, its,
itself, let’s, me, more, most, mustn’t, my, myself, no, nor, not, of, off, on, once, only, or,
other, ought, our, ours, ourselves, out, over, own, same, shan’t, she, she’d, she’ll, she’s,
should, shouldn’t, so, some, such, than, that, that’s, the, their, theirs, them, themselves,
then, there, there’s, these, they, they’d, they’ll, they’re, they’ve, this, those, through, to,
too, under, until, up, very, was, wasn’t, we, we’d, we’ll, we’re, we’ve, were, weren’t, what,
what’s, when, when’s, where, where’s, which, while, who, who’s, whom, why, why’s, with,
won’t, would, wouldn’t, you, you’d, you’ll, you’re, you’ve, your, yours, yourself, yourselves

Table C.1: List of all English stop words

aber, alle, allem, allen, aller, alles, als, also, am, an, ander, andere, anderem, anderen,
anderer, anderes, anderm, andern, anders, auch, auf, aus, bei, bin, bis, bist, da, damit,
dann, das, dass, dasselbe, dazu, daß, dein, deine, deinem, deinen, deiner, deines, dem,
demselben, den, denn, denselben, der, derer, derselbe, derselben, des, desselben, dessen,
dich, die, dies, diese, dieselbe, dieselben, diesem, diesen, dieser, dieses, dir, doch, dort, du,
durch, ein, eine, einem, einen, einer, eines, einig, einige, einigem, einigen, einiger, einiges,
einmal, er, es, etwas, euch, euer, eure, eurem, euren, eurer, eures, für, gegen, gewesen, hab,
habe, haben, hat, hatte, hatten, hier, hin, hinter, ich, ihm, ihn, ihnen, ihr, ihre, ihrem,
ihren, ihrer, ihres, im, in, indem, ins, ist, jede, jedem, jeden, jeder, jedes, jene, jenem,
jenen, jener, jenes, jetzt, kann, kein, keine, keinem, keinen, keiner, keines, können, könnte,
machen, man, manche, manchem, manchen, mancher, manches, mein, meine, meinem,
meinen, meiner, meines, mich, mir, mit, muss, musste, nach, nicht, nichts, noch, nun, nur,
ob, oder, ohne, sehr, sein, seine, seinem, seinen, seiner, seines, selbst, sich, sie, sind, so,
solche, solchem, solchen, solcher, solches, soll, sollte, sondern, sonst, um, und, uns, unse,
unsem, unsen, unser, unses, unter, viel, vom, von, vor, war, waren, warst, was, weg, weil,
weiter, welche, welchem, welchen, welcher, welches, wenn, werde, werden, wie, wieder,
will, wir, wird, wirst, wo, wollen, wollte, während, würde, würden, zu, zum, zur, zwar,
zwischen, über

Table C.2: List of all German stop words
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D Sample Program Output

Text 1:

Augustinus beschreibt wirklich einen Kalkül; nur ist nicht alles, was wir Sprache

nennen, dieser Kalkül. (Und das muß man in einer großen Anzahl von Fällen sagen,

wo es sich fragt: ist diese Darstellung brauchbar oder unbrauchbar. Die Antwort

ist dann: "ja, brauchbar; aber nur dafür, nicht für das ganze Gebiet, das Du

darzustellen vorgabst".)

Text 2:

Augustinus beschreibt einen Kalkül unserer Sprache, nur ist nicht alles, was wir

Sprache nennen, dieser Kalkül. (Und das muß man in vielen Fällen sagen, wo die

Frage vor uns steht: "ist diese Darstellung brauchbar, oder unbrauchbar". Die

Antwort ist: "ja, brauchbar, { aber nur dafür; nicht für das ganze Gebiet, das Du

darzustellen vorgabst".) S. A

Tokenised Text 1:

(’Augustinus beschreibt wirklich Kalkül Sprache nennen Kalkül muß großen Anzahl

Fällen sagen fragt Darstellung brauchbar unbrauchbar Antwort ja brauchbar dafür

ganze Gebiet darzustellen vorgabst’,)

Tokenised Text 2:

(’Augustinus beschreibt Kalkül unserer Sprache Sprache nennen Kalkül muß vielen

Fällen sagen Frage steht Darstellung brauchbar unbrauchbar Antwort ja brauchbar

dafür ganze Gebiet darzustellen vorgabst S A’,)

Feature Vectors:

[’word’: ’Antwort’, ’lemma’: ’Antwort’, ’pos’: ’NP’, ’position’: ’Antwort.16’,

’syns’: ’Antwort’, ’word’: ’Anzahl’, ’lemma’: ’Anzahl’, ’pos’: ’NP’, ’position’:

’Anzahl.9’, ’syns’: ’Anzahl’, ’word’: ’Augustinus’, ’lemma’: ’Augustinus’, ’pos’:

’NP’, ’position’: ’Augustinus.0’, ’syns’: ’Augustinus’, ’word’: ’Darstellung’,

’lemma’: ’Darstellung’, ’pos’: ’NP’, ’position’: ’Darstellung.13’, ’syns’:

’Darstellung’, ’word’: ’Fällen’, ’lemma’: ’Fällen’, ’pos’: ’NP’, ’position’:

’Fällen.10’, ’syns’: ’Fällen’, ’word’: ’Gebiet’, ’lemma’: ’Gebiet’, ’pos’: ’NP’,

’position’: ’Gebiet.21’, ’syns’: ’Gebiet’, ’word’: ’Kalkül’, ’lemma’: ’Kalkül’,

’pos’: ’NP’, ’position’: ’Kalkül.3’, ’syns’: ’Kalkül’, ’word’: ’Kalkül’, ’lemma’:

’Kalkül’, ’pos’: ’NP’, ’position’: ’Kalkül.6’, ’syns’: ’Kalkül’, ’word’:

’Sprache’, ’lemma’: ’Sprache’, ’pos’: ’NP’, ’position’: ’Sprache.4’, ’syns’:

’Sprache’, ’word’: ’beschreibt’, ’lemma’: ’beschreibt’, ’pos’: ’NN’, ’position’:

’beschreibt.1’, ’syns’: ’beschreibt’, ’word’: ’brauchbar’, ’lemma’: ’brauchbar’,

’pos’: ’NP’, ’position’: ’brauchbar.14’, ’syns’: ’brauchbar’, ’word’:

’brauchbar’, ’lemma’: ’brauchbar’, ’pos’: ’NN’, ’position’: ’brauchbar.18’,

’syns’: ’brauchbar’, ’word’: ’dafür’, ’lemma’: ’dafür’, ’pos’: ’NN’, ’position’:

’dafür.19’, ’syns’: ’dafür’, ’word’: ’darzustellen’, ’lemma’: ’darzustellen’,

’pos’: ’NP’, ’position’: ’darzustellen.22’, ’syns’: ’darzustellen’, ’word’:

’fragt’, ’lemma’: ’fragt’, ’pos’: ’NP’, ’position’: ’fragt.12’, ’syns’: ’fragt’,
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’word’: ’ganze’, ’lemma’: ’ganze’, ’pos’: ’NN’, ’position’: ’ganze.20’, ’syns’:

’ganze’,’word’: ’großen’, ’lemma’: ’großen’, ’pos’: ’NP’, ’position’: ’großen.8’,

’syns’: ’großen’, ’word’: ’ja’, ’lemma’: ’Ja’, ’pos’: ’NP’, ’position’:

’ja.17’, ’syns’: ’ja’, ’word’: ’muß’, ’lemma’: ’muß’, ’pos’: ’NP’, ’position’:

’muß.7’, ’syns’: ’muß’, ’word’: ’nennen’, ’lemma’: ’nennen’, ’pos’: ’NP’,

’position’: ’nennen.5’, ’syns’: ’nennen’, ’word’: ’sagen’, ’lemma’: ’Sagen’,

’pos’: ’NP’, ’position’: ’sagen.11’, ’syns’: ’sagen’, ’word’: ’unbrauchbar’,

’lemma’: ’unbrauchbar’, ’pos’: ’NP’, ’position’: ’unbrauchbar.15’, ’syns’:

’unbrauchbar’, ’word’: ’vorgabst’, ’lemma’: ’vorgabst’, ’pos’: ’NP’, ’position’:

’vorgabst.23’, ’syns’: ’vorgabst’, ’word’: ’wirklich’, ’lemma’: ’wirklich’,

’pos’: ’NP’, ’position’: ’wirklich.2’, ’syns’: ’wirklich’, ’word’: ’A’, ’lemma’:

’A’, ’pos’: ’NP’, ’position’: ’A.26’, ’syns’: ’A’, ’word’: ’Antwort’, ’lemma’:

’Antwort’, ’pos’: ’NP’, ’position’: ’Antwort.17’, ’syns’: ’Antwort’, ’word’:

’Augustinus’, ’lemma’: ’Augustinus’, ’pos’: ’NP’, ’position’: ’Augustinus.0’,

’syns’: ’Augustinus’, ’word’: ’Darstellung’, ’lemma’: ’Darstellung’, ’pos’: ’NP’,

’position’: ’Darstellung.14’, ’syns’: ’Darstellung’, ’word’: ’Frage’, ’lemma’:

’Frage’, ’pos’: ’NP’, ’position’: ’Frage.12’, ’syns’: ’Frage’, ’word’: ’Fällen’,

’lemma’: ’Fällen’, ’pos’: ’NP’, ’position’: ’Fällen.10’, ’syns’: ’Fällen’,

’word’: ’Gebiet’, ’lemma’: ’Gebiet’, ’pos’: ’NP’, ’position’: ’Gebiet.22’,

’syns’: ’Gebiet’, ’word’: ’Kalkül’, ’lemma’: ’Kalkül’, ’pos’: ’NP’, ’position’:

’Kalkül.2’, ’syns’: ’Kalkül’, ’word’: ’Kalkül’, ’lemma’: ’Kalkül’, ’pos’: ’NP’,

’position’: ’Kalkül.7’, ’syns’: ’Kalkül’, ’word’: ’S’, ’lemma’: ’S’, ’pos’: ’NP’,

’position’: ’S.25’, ’syns’: ’S’, ’word’: ’Sprache’, ’lemma’: ’Sprache’, ’pos’:

’NP’, ’position’: ’Sprache.4’, ’syns’: ’Sprache’, ’word’: ’Sprache’, ’lemma’:

’Sprache’, ’pos’: ’NP’, ’position’: ’Sprache.5’, ’syns’: ’Sprache’, ’word’:

’beschreibt’, ’lemma’: ’beschreibt’, ’pos’: ’NN’, ’position’: ’beschreibt.1’,

’syns’: ’beschreibt’, ’word’: ’brauchbar’, ’lemma’: ’brauchbar’, ’pos’: ’NP’,

’position’: ’brauchbar.15’, ’syns’: ’brauchbar’, ’word’: ’brauchbar’, ’lemma’:

’brauchbar’, ’pos’: ’NN’, ’position’: ’brauchbar.19’, ’syns’: ’brauchbar’,

’word’: ’dafür’, ’lemma’: ’dafür’, ’pos’: ’NN’, ’position’: ’dafür.20’,

’syns’: ’dafür’, ’word’: ’darzustellen’, ’lemma’: ’darzustellen’, ’pos’: ’NP’,

’position’: ’darzustellen.23’, ’syns’: ’darzustellen’, ’word’: ’ganze’, ’lemma’:

’ganze’, ’pos’: ’NN’, ’position’: ’ganze.21’, ’syns’: ’ganze’, ’word’: ’ja’,

’lemma’: ’Ja’, ’pos’: ’NP’, ’position’: ’ja.18’, ’syns’: ’ja’, ’word’: ’muß’,

’lemma’: ’muß’, ’pos’: ’NP’, ’position’: ’muß.8’, ’syns’: ’muß’, ’word’:

’nennen’, ’lemma’: ’nennen’, ’pos’: ’NP’, ’position’: ’nennen.6’, ’syns’:

’nennen’, ’word’: ’sagen’, ’lemma’: ’Sagen’, ’pos’: ’NP’, ’position’: ’sagen.11’,

’syns’: ’sagen’, ’word’: ’steht’, ’lemma’: ’steht’, ’pos’: ’NN’, ’position’:

’steht.13’, ’syns’: ’steht’, ’word’: ’unbrauchbar’, ’lemma’: ’unbrauchbar’,

’pos’: ’NP’, ’position’: ’unbrauchbar.16’, ’syns’: ’unbrauchbar’, ’word’:

’unserer’, ’lemma’: ’unserer’, ’pos’: ’NP’, ’position’: ’unserer.3’, ’syns’:

’unserer’, ’word’: ’vielen’, ’lemma’: ’vielen’, ’pos’: ’NP’, ’position’:

’vielen.9’, ’syns’: ’vielen’, ’word’: ’vorgabst’, ’lemma’: ’vorgabst’, ’pos’:

’NP’, ’position’: ’vorgabst.24’, ’syns’: ’vorgabst’]
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Feature Vector Document 1 (sentences):

[[ 0., 1., 0., ..., 0., 0., 0.], [ 0., 0., 1., ..., 0., 0., 0.], [ 0., 0., 0.,

..., 0., 0., 0.], ..., [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 1.,

0.], [ 0., 0., 0., ..., 0., 0., 1.]]

Feature Vector Document 2 (sentences):

[[ 1., 0., 0., ..., 0., 0., 0.], [ 0., 1., 0., ..., 0., 0., 0.], [ 0., 0., 0.,

..., 0., 0., 0.], ..., [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 1., 0.,

0.], [ 0., 0., 0., ..., 0., 1., 0.]]

Feature Vector 1 (document):

[ 0. , 0.04166667, 0.04166667, 0.04166667, 0.04166667, 0. , 0.04166667,

0.04166667, 0.04166667, 0.08333333, 0. , 0.04166667, 0.04166667, 0.04166667,

0.08333333, 0.04166667, 0.04166667, 0.04166667, 0.04166667, 0.04166667,

0.04166667, 0.04166667, 0. , 0.04166667, 0. , 0. , 0.04166667, 0.04166667,

0.16666667, 0.83333333, 0. , 0.04166667, 0. , 0.04166667, 0.04166667, 0.04166667,

0. , 0. , 0.04166667, 0.04166667, 0. , 0. , 0.04166667, 0.04166667, 0. , 0. ,

0.04166667, 0. , 0.04166667, 0.04166667, 0. , 0.04166667, 0. , 0.04166667, 0.

, 0.04166667, 0. , 0.04166667, 0.04166667, 0. , 0.04166667, 0.04166667, 0. ,

0.04166667, 0. , 0.04166667, 0. , 0.04166667, 0. , 0.04166667, 0. , 0. , 0. ,

0.04166667, 0. , 0.04166667, 0. , 0.04166667, 0.04166667, 0.04166667, 0.04166667,

0. , 0.04166667, 0.04166667, 0.08333333, 0. , 0.04166667, 0.04166667, 0.08333333,

0.04166667, 0.04166667, 0.04166667, 0.04166667, 0.04166667, 0.04166667,

0.04166667, 0.04166667, 0.04166667, 0. , 0.04166667, 0. , 0. , 0.04166667,

0.04166667, 0. , 0.04166667, 0.04166667, 0.04166667, 0.04166667, 0. , 0.04166667,

0.04166667, 0.08333333, 0. , 0.04166667, 0.04166667, 0.08333333, 0.04166667,

0.04166667, 0.04166667, 0.04166667, 0.04166667, 0.04166667, 0.04166667,

0.04166667, 0.04166667, 0. , 0.04166667, 0. , 0. , 0.04166667, 0.04166667]

Feature Vector 2 (document):

[ 0.03703704, 0.03703704, 0. , 0.03703704, 0.03703704, 0.03703704, 0.03703704,

0.03703704, 0.03703704, 0.07407407, 0.03703704, 0.03703704, 0.07407407,

0.03703704, 0.07407407, 0.03703704, 0.03703704, 0. , 0.03703704, 0. , 0.03703704,

0.03703704, 0.03703704, 0.03703704, 0.03703704, 0.03703704, 0.03703704, 0. ,

0.18518519, 0.81481481, 0.03703704, 0. , 0.03703704, 0. , 0.03703704, 0. ,

0.03703704, 0.03703704, 0.03703704, 0. , 0.03703704, 0.03703704, 0. , 0. ,

0.03703704, 0.03703704, 0.03703704, 0.03703704, 0.03703704, 0. , 0.03703704,

0. , 0.03703704, 0. , 0.03703704, 0. , 0.03703704, 0. , 0. , 0.03703704, 0. ,

0. , 0.03703704, 0. , 0.03703704, 0. , 0.03703704, 0.03703704, 0.03703704, 0. ,

0.03703704, 0.03703704, 0.03703704, 0. , 0.03703704, 0. , 0.03703704, 0.03703704,

0. , 0.03703704, 0.03703704, 0.03703704, 0.03703704, 0.03703704, 0.07407407,

0.03703704, 0.07407407, 0.03703704, 0.07407407, 0.03703704, 0.03703704, 0. ,

0.03703704, 0. , 0.03703704, 0.03703704, 0.03703704, 0.03703704, 0.03703704,

0.03703704, 0.03703704, 0.03703704, 0.03703704, 0. , 0.03703704, 0.03703704,

0. , 0.03703704, 0.03703704, 0.03703704, 0.03703704, 0.03703704, 0.07407407,

0.03703704, 0.07407407, 0.03703704, 0.07407407, 0.03703704, 0.03703704, 0. ,

0.03703704, 0. , 0.03703704, 0.03703704, 0.03703704, 0.03703704, 0.03703704,

0.03703704, 0.03703704, 0.03703704, 0.03703704, 0. ]
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Weight Vector:

[ 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. ,

2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 1. , 1. , 0.5, 0.5,

0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. ,

1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. ,

1. , 1. , 1. , 1. ]

Feature Vector Document 1 (weighted):

[ 0. , 0.08333333, 0.08333333, 0.08333333, 0.08333333, 0. , 0.08333333,

0.08333333, 0.08333333, 0.16666667, 0. , 0.08333333, 0.08333333, 0.08333333,

0.16666667, 0.08333333, 0.08333333, 0.08333333, 0.08333333, 0.08333333,

0.08333333, 0.08333333, 0. , 0.08333333, 0. , 0. , 0.08333333, 0.08333333,

0.16666667, 0.83333333, 0. , 0.02083333, 0. , 0.02083333, 0.02083333, 0.02083333,

0. , 0. , 0.02083333, 0.02083333, 0. , 0. , 0.02083333, 0.02083333, 0. , 0. ,

0.02083333, 0. , 0.02083333, 0.02083333, 0. , 0.02083333, 0. , 0.02083333, 0.

, 0.02083333, 0. , 0.02083333, 0.02083333, 0. , 0.02083333, 0.02083333, 0. ,

0.02083333, 0. , 0.02083333, 0. , 0.02083333, 0. , 0.02083333, 0. , 0. , 0. ,

0.02083333, 0. , 0.02083333, 0. , 0.02083333, 0.02083333, 0.02083333, 0.02083333,

0. , 0.02083333, 0.02083333, 0.04166667, 0. , 0.02083333, 0.02083333, 0.04166667,

0.02083333, 0.02083333, 0.02083333, 0.02083333, 0.02083333, 0.02083333,

0.02083333, 0.02083333, 0.02083333, 0. , 0.02083333, 0. , 0. , 0.02083333,

0.02083333, 0. , 0.04166667, 0.04166667, 0.04166667, 0.04166667, 0. , 0.04166667,

0.04166667, 0.08333333, 0. , 0.04166667, 0.04166667, 0.08333333, 0.04166667,

0.04166667, 0.04166667, 0.04166667, 0.04166667, 0.04166667, 0.04166667,

0.04166667, 0.04166667, 0. , 0.04166667, 0. , 0. , 0.04166667, 0.04166667]

Feature Vector Document 2 (weighted):

[ 0.07407407, 0.07407407, 0. , 0.07407407, 0.07407407, 0.07407407, 0.07407407,

0.07407407, 0.07407407, 0.14814815, 0.07407407, 0.07407407, 0.14814815,

0.07407407, 0.14814815, 0.07407407, 0.07407407, 0. , 0.07407407, 0. , 0.07407407,

0.07407407, 0.07407407, 0.07407407, 0.07407407, 0.07407407, 0.07407407, 0. ,

0.18518519, 0.81481481, 0.01851852, 0. , 0.01851852, 0. , 0.01851852, 0. ,

0.01851852, 0.01851852, 0.01851852, 0. , 0.01851852, 0.01851852, 0. , 0. ,

0.01851852, 0.01851852, 0.01851852, 0.01851852, 0.01851852, 0. , 0.01851852,

0. , 0.01851852, 0. , 0.01851852, 0. , 0.01851852, 0. , 0. , 0.01851852, 0. ,

0. , 0.01851852, 0. , 0.01851852, 0. , 0.01851852, 0.01851852, 0.01851852, 0. ,

0.01851852, 0.01851852, 0.01851852, 0. , 0.01851852, 0. , 0.01851852, 0.01851852,

0. , 0.01851852, 0.01851852, 0.01851852, 0.01851852, 0.01851852, 0.03703704,

0.01851852, 0.03703704, 0.01851852, 0.03703704, 0.01851852, 0.01851852, 0. ,

0.01851852, 0. , 0.01851852, 0.01851852, 0.01851852, 0.01851852, 0.01851852,

0.01851852, 0.01851852, 0.01851852, 0.01851852, 0. , 0.03703704, 0.03703704,

0. , 0.03703704, 0.03703704, 0.03703704, 0.03703704, 0.03703704, 0.07407407,

0.03703704, 0.07407407, 0.03703704, 0.07407407, 0.03703704, 0.03703704, 0. ,

0.03703704, 0. , 0.03703704, 0.03703704, 0.03703704, 0.03703704, 0.03703704,

0.03703704, 0.03703704, 0.03703704, 0.03703704, 0. ]

Weighted distance 0.946286426282

Cosine Similarity: 0.936140972642
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CD Content

Bachelor’s Thesis

Contains the electronic version of the thesis

• Latex files (all chapters, including glossary, list of abbreviations, and .bib-File)

• PDF-version

Code

Contains all software and written code

• ext: contains external software (TreeTagger)

• lib: contains two modules (calculate.py and synonyms.py)

• make: contains Makefiles

• res: contains resources (.txt files)

References

Contains all references cited in the thesis
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