

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

1. Introduction

- large amount of labeled training data necessary to train Convolutional Neural Network; linguistic knowledge can help to compensate for it
- linguistic knowledge is crucial for polarity classification
- linguistic resources already available, e.g., sentiment lexicons
- question: how to incorporate such knowledge into CNN

1.1 Contributions

- 1. incorporation of linguistic features into Convolutional Neural Network (CNN)
- word-level features: learn interactions between words
- sentence-level features: learn overall features
- 2. performance comparable to state-of-the-art on SemEval Twitter data

2. Convolutional Neural Network

2.1 Why CNN?

- work with arbitrary input length
- capture sequential phenomena, i.e., keep word order
- consider words in their contexts
- capture long-distance effects
- goal of CNN: conflate the input sequence into a meaningful representation by finding salient features that indicate polarity

6th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis (2015)

A Linguistically Informed Convolutional Neural Network

Sebastian Ebert, Ngoc Thang Vu, Hinrich Schütze

Center for Information and Language Processing, University of Munich, Germany ebert@cis.lmu.de

2.2 Input

- $LT \in \mathbb{R}^{d \times |V|}$: lookup table
- d: length of representation
- V: vocabulary

2.3 2D Convolution

- $\mathbf{a}_{o}^{(1)} = \sum_{i=1}^{d} \sum_{j=1}^{m} M_{i,j} Z_{i,o+j}$
- $M \in \mathbb{R}^{d \times m}$: filter matrix
- *m*: filter size
- $\mathbf{a}_{o}^{(1)}$: layer's activation at current position $o \in [0, n m]$ of convolution

2.4 Max Pooling and Non-linearity

- ReLU non-linearity: $a^{(2)} = max(0, a^{(1)} + b^{(2)})$
- $\mathbf{a}^{(1)}$: maximum value of $\mathbf{a}^{(1)}_{o}$
- $b^{(2)}$: bias

2.5 Softmax

- concatenate sentence features: $\mathbf{a}^{(2)'} = [\mathbf{a}^{(2)} \mathbf{s}]$
- input to fully connected layer: $\mathbf{z} = W \mathbf{a}^{(2)'} + b^{(3)}$
- softmax: $\mathbf{a}_i^{(3)} = \frac{\exp(\mathbf{z}_i)}{\sum_j \exp(\mathbf{z}_j)}$

3. Linguistic Features

3.1 Word-level Features

 $LT = \begin{bmatrix} P \\ Q \end{bmatrix}$

- $P \in \mathbb{R}^{d_P \times |V|}$: word embeddings; randomly initialized or pre-trained with word2vec on unlabeled Twitter data
- $Q \in \mathbb{R}^{d_Q \times |V|}$: linguistic features
- binary sentiment indicators binary polarity label per token; lexicons: MPQA [Wilson et al., 2005], Opinion lexicon [Hu and Liu, 2004], NRCC Emotion lexicon [Mohammad and Turney, 2013]
- sentiment scores sentiment score per token (or bigram); lexicons: sentiment 140 lexicon, hashtag lexicon [Mohammad et al., 2013]

binary negation indicator if token is between a negation word and the next punctuation

3.2 Sentence-level Features

- counts number of terms that are all upper case; number of elongated words such as 'coooool'; number of emoticons; number of contiguous sequences of punctuation; number of negated words
- **sentiment scores** number of sentiment words in a sentence: the sum of sentiment scores of these words as provided by the lexicons; the maximum sentiment score; the sentiment score of the last word

conv.

pooling

softmax

4.1 Training Parameters

- trainable parameters: $\theta = \{P, M^*, W, b^{(*)}\}$
- AdaGrad with initial lr = 0.01, ℓ_2 with $\lambda = 5e^{-5}$

4.2 Data

- (Sent140) [Go et al., 2009]
- results reported: $F_{1,macro} = \frac{1}{2} \left(F_{1,positive} + F_{1,negative} \right)$
- preprocessing: tokenization, normalization of user mentions, urls, punctuation

4.3 Baselines

- SVM with bag-of-words and linguistic features [Mohammad et al., 2013]

4.4 Results

model	features			SemEval Sent140	
SVM	bow			50.51	67.34
	ling.			57.28	66.90
	bow -	⊦ ling.		59.28	70.21
Webis				64.84	-
UNITN				64.59	-
	emb.	word	sent.		
lingCNN		+		57.83	72.58
		+	+	59.24	74.36
	+			62.72	77.59
	+		+	62.61	79.14
	+	+		63.43	80.21
	+	+	+	64.46	80.75

5.1 Examples

- "saturday night in with toast, hot choc & <user> on e news #happydays"
- before misclassified as neutral, now classified as positive
- "shiiiiit my sats is on saturday . i'm going to fail"
- to learn a good sentiment-bearing embedding
- before misclassified as neutral, now classified as negative

5.2 Corpus Size

emb	
emb.	+ word +

 $Z = \left| \begin{array}{ccc} | & | & | \\ LT_{\cdot,t_1} & \cdots & LT_{\cdot,t_n} \\ | & | & | \end{array} \right|$

Acknowledgments This work was supported by DFG (grant SCHU 2246/10).

	1000	3000	all
	49.89	58.10	62.72
sent.	60.89	62.51	64.46

• 'fail' is strongly negative, but occurs only 10 times in the training set, i.e., likely not enough

• only '#happydays' has sentiment; no embedding because unknown word; but in lexicon

5. Error Analysis

• Webis [Hagen et al., 2015] (ensemble) and UNITN [Severyn and Moschitti, 2015] (CNN)

• SemEval 2015 data set [Rosenthal et al., 2015] and test set of Sentiment140 corpus

• CNN hyper-parameters: $d_P = 60$, 100 filters for each $m \in \{2, 3, 4, 5\}$

• training hyper-parameters: mini-batch stochastic gradient descent with 100 batch size,

4. Experiments