

Fine-Grained Contextual Predictions

for Hard Sentiment Words

Sebastian Ebert, Hinrich Schütze

Center for Information and Language Processing, University of Munich, Germany ebert@cis.lmu.de

1. Introduction

- high accuracy sentiment analysis requires sense disambiguation
- flaws of today's systems
 - often words are considered to always have same sentiment
 - ngram approaches lack in ability to generalize
- compositional approaches conflate differences in lexical meaning ("hard feelings" vs. "hard wood") and meaning composition (e.g., negation)
- sentiment often for whole documents or sentences

1.1 Contributions

• for prediction: softmax, i.e., **probability distribution**

$$P_{\theta}^{c}(w) = \frac{\exp(s_{\theta}(w, c))}{\sum_{w'} \exp(s_{\theta}(w', c))}$$

• do not predict last word, but center word in a window of 7 words • use P_{θ}^{c} as context representation

• trained on English Wikipedia

4. Sense Disambiguation Structure: Cluster Centroids

1. cluster P_{θ}^{c} of 4000 contexts of "hard"

1. detailed linguistic analysis of contexts of "hard"

2. introduction of **contextually enhanced sentiment lexicon**, which contains

(a) senses of word w

- (b) sentiment annotation of each sense
- (c) sense disambiguation structure: statistical classification model or cluster centroids
- 3. deep learning features for sentiment-relevant sense disambiguation

2. Sense Lexicon for "hard"

- basis: 16 Cobuild senses [4] (compiled based on an empirical analysis)
- 4800 contexts of "hard" from Amazon Product Reviews [2]

2.1 Cobuild Senses Refined

- split (3): distinguish the adverbial ("to accelerate hard") and adjectival ("hard acceleration") sense in the meaning 'intense'
- conflated (2, 4, 9, 10, 11): different types of difficulty ("hard question" (2), "hard work" (4), "hard life" (11), "hard on someone" (9), "hard on something" (10)
- conflated (3a, 5, 6, 7): different types of intensity: "to work hard" (3a), "to look hard" (5), "to kick hard" (6), "to laugh hard" (7)
- new non-compositional meanings in addition to (13, 14, 15, 16)
- new: opposites of senses of "soft"
- new: opposite of 'quiet/gentle voice/sound' (7: MUSIC; e.g., "hard beat", "not too hard of a song")
- new: opposite of 'smooth surface/texture' (8: CONTRAST; e.g., "hard line", "hard edge")

2.2 Sentiment Senses of "hard"

2. k-means, 100 clusters 3. assign a sense to each cluster 4. new context gets sense of closest cluster centroid

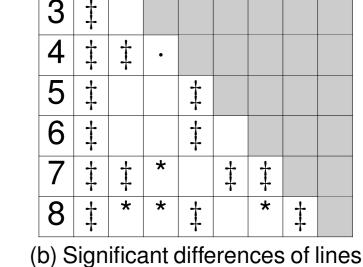
5. Experiments

- task: classify sense of "hard" as positive or negative given its context
- 4800 contexts of "hard"
- 4000+600 training + development examples: pattern based labeling, e.g., "hard drive"
- 200 test examples: manual labeling
- available online: http://www.cis.lmu.de/ebert
- 2 settings
- 1. fully manual: manual labels
- 2. semi-automatic: manually label 100 k-means cluster, computed using P_A^c

5.1 Results

			ngram	PCD	embed	acc	prec	rec	F_1
	bl	1			•	.62	•	1.00	_
	D I	-					.02		.92
	fully	2	+			.90			
		3		+		.90	.91	.92	
		4			+	.87	.87	.92	
		5	+	+		.92	.92	.94	.93
ent		6	+		+	.91	.90	.95	.92
Ĕ		7		+	+	.86	.83	.96	.89
do		8	+	+	+	.92	.93	.95	.94
development	semi	9	+			.85	.87	.89	.88
		10		+		.85	.87	.89	.88
		11			+	.76	.73	.98	.83
		12	+	+		.85	.87	.89	.88
		13	+		+	.85	.87	.89	.88
		14		+	+	.85	.89	.87	.88
		15	+		+		.87		.89
test	bl	16				.66	.66	1.00	.80
	fully	17	+	+	+	.90	.89	.96	.92
	semi	18	+	+	+	.85	.85	.91	.88
(a) Classification results; bl: baseline									

	1	2	3	4	5	6	7	8
1								
2	+							
	.1.							


i.e., senses of "hard" & sentiment annotation of each sense

sense	Cobuild	syntax	meaning	example	sent.	# train #	ŧ test
1 FIRM	1	ADJ	firm, stiff	hard floor	neu	78	5
2 DIFFICULT	2, 4, 9, 10, 11	ADJ	difficult	hard question	neg	2561	120
3 ADVERB	3a, 5, 6, 7	ADV	intensely	work hard	neu	425	19
4 INTENSE	3b	ADJ	intense	hard look	neu	24	7
5 HARD-MAN	8	ADJ	unkind	hard man	neg	15	0
6 HARD-TRUTH	12	attributive ADJ	definitely true	hard truth	neu	5	6
7 MUSIC		ADJ	hard-rock- type music	hard beats	neu	347	15
8 CONTRAST		ADJ	opposite of soft tran- sition	hard edge	neu	3	1
9 NEGATIVE-P	13, 15	phrases		hard drugs	neg	36	2
10 NEUTRAL-P	14, 16	phrases		hard drive	neu	375	27

3. Sense Disambiguation Structure: Classifier

3.1 Features

- **1**. *n*-gram features for $n \in 1, 2, 3$
- 2. probability distribution of language model ($P_{\theta}^{c}(w)$)
- 3. deep learning features: mean of input and target representations of context learned by

1-8 in left table; ‡: p=0.01, *: p=0.05, ·: p=0.1

6. Conclusion and Future Work

• sentiment is output of causal chain

• complex linguistic processes

- high-accuracy sentiment analysis needs meaning of individual words
- use a contextually enhanced sentiment lexicon for sense disambiguation, i.e., sense-based **lexicon** instead of word-based
- deep learning features helpful for sense disambiguation
- future work: show that findings generalize to other words
- future work: use features from WSD community

Acknowledgments

language model ($\sum_{i=1}^{n-1} r_{w_i}$ and $\sum_{i=1}^{n-1} q_{w_i}$) (embed) 4. classifier: liblinear [1]

3.2 Language Model

• vectorized log-bilinear language model (vLBL) [3]

 $\hat{\boldsymbol{q}}(c) = \sum_{i=1}^{n-1} \boldsymbol{d}_i \odot \boldsymbol{r}_{w_i}$ $s_{\theta}(w,c) = \hat{\boldsymbol{q}}(c)^T \boldsymbol{q}_w + b_w$

- r_{w_i} : input representation of word w_i
- $\hat{q}(c)$: predicted target representation given context $c = w_1, \ldots, w_{n-1}$

• q_w : correct target representation of word w

• d_i : position dependent weights, \odot : pointwise multiplication, b_w : bias for word w

• s_{θ} : similarity of predicted target and real target with $\theta = \{R, Q, D, b\}$: model parameters • trained using noise-contrastive estimation [3], thus no normalization necessary during training This work was supported by DFG (grant SCHU 2246/10). We thank Lucia Krisnawati and Sascha Rothe for their help with annotation.

References

- [1] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A library for large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.
- [2] Nitin Jindal and Bing Liu. Opinion spam and analysis. In International Conference on Web Search and Web Data Mining, pages 219–230, 2008.
- [3] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noisecontrastive estimation. In Annual Conference on Advances in Neural Information Processing Systems, pages 2265–2273, 2013.
- [4] John Sinclair. Looking Up: Account of the Cobuild Project in Lexical Computing. Collins CoBUILD, 1987.