
Universit�at M�unchenCentrum f�ur Informations- und Sprachverarbeitung
On Existential Theories ofList ConcatenationKlaus U. Schulz

The paper has been presented at the Conference on ComputerScience Logic 94 in Kazimierz, Poland. A longer version will soonappear as CIS report.

On Existential Theories of List ConcatenationKlaus U. Schulz�CIS, University Munich, Wagm�ullerstr. 2380538 Munich, Germanye-mail: schulz@cis.uni-muenchen.dephone: (+49 89) 211 0667AbstractWe discuss the existential fragments of two theories of concatenation. These theo-ries describe concatenation of possibly nested lists in the algebra of �nite treeswith lists and in the algebra of rational trees with lists. Syntax and the choiceof models are motivated by the treatment of lists in PROLOG III. In a recentprototype of this language, Colmerauer has integrated a built-in concatenation oflists, and the constraint-solver checks satis�ability of equations and disequationsover concatenated lists. But, for e�ciency reasons satis�ability is only tested in arather approximative way1. The question arises if satis�ability is decidable. Ourmain results are the following. For the algebra of �nite trees with lists, the exi-stential fragment of the theory is decidable. For the algebra of rational trees withlists, the positive existential fragment of the theory is decidable. Problems in theexistential fragment may be traced back to a di�cult question about solvability ofword equations with length constraints for variables.1 IntroductionQuine [9] has shown that the theory of concatenation is undecidable. The existentialfragment of the theory was shown to be decidable by B�uchi and Senger [3], building upon Makanin's decidability result for solvability of word equations [7]. Concatenation,in the sense of Quine, is an operation acting on words over an alphabet of atomicletters, and the classical theory of concatenation is the theory of free monoids. In themeantime, with the development of high level programming languages, concatenationhas become relevant as an operation on lists. Lists, as opposed to
at words, maycontain complex objects as entries, including nested sublists, for example.In this paper we want to discuss theories of list concatenation. We shall concentrateon two formal models that are motivated by the treatment of lists in PROLOG III. Ina recent prototype of this language, Colmerauer has integrated a built-in concatenation�Supported by EC Working Group CCL, EP 6028.1We refer to a talk by Alain Colmerauer on the third Workshop on Constraint Logic Programming,Marseille, March 1993. 1

of lists, and the constraint-solver checks satis�ability of equations and disequations bet-ween terms with concatenated lists. For e�ciency reasons, however, satis�ability is onlytested in a rather approximative way. Colmerauer introduces a non-standard \naive"concatenation on a complicated \extended domain" to explain the precise answer be-haviour of the solver declaratively. The question arises if satis�ability of equations anddisequations between terms with concatenated lists is decidable.Approximating the formal model of PROLOG III, we consider the algebra of �nitetrees with lists and the algebra of rational trees with lists. In both domains, concate-nation is interpreted as a partial operation acting on lists only, free function symbolsare interpreted as tree constructors. In view of the results of Quine and B�uchi-Sengerwe only consider the existential fragment of the theories of these two structures. Thesyntax is more or less identical to the syntax of PROLOG III for constraints over lists.The \list constraint systems" that will be considered are �nite sets of equations anddisequations between terms with concatenated lists. Arbitrary existential sentencescorrespond to disjunctions of list constraint systems.The paper is structured as follows. Section 2 starts with central de�nitions. InSection 3 we show that solvability of list constraint systems over the algebra of �nitetrees with lists is decidable. This implies that the existential theory of this structureis decidable. The decision procedure is based on a decomposition technique that wasintroduced in [2] in the context of disuni�cation in the union of disjoint equationaltheories. A variant of Makanin's algorithm [7] deciding solvability of word equations isneeded.In Section 4 we consider the algebra of rational trees with lists as solution domain.It is shown that solvability of equational list constraint systems is decidable. Thus thepositive existential theory of this algebra is decidable. We sketch how the problem ofsolvability of arbitrary list constraint systems over the algebra of rational trees withlists may be traced back to the following problem: given a word equation with varia-bles x1; : : : xn, and given a �nite set of constraints of the form jxij = jxjj demandingthat the length of the (words to be substituted for the) variables xi and xj has to bethe same, decide if the word equation has a solution that satis�es these restrictions.Decidability of word equations with these length constraints seems to be a deep pro-blem. G.S. Makanin (personal communication) has shown that a primitive recursivedecision procedure would give a primitive recursive algorithm for deciding solvabilityof equations in free groups. It is known that Makanin's algorithm for free groups [8] isnot primitive recursive [5].2 List Constraint Systems and SolutionsList constraint systemsFollowing the syntax of PROLOG III we shall use an in�nite set of list constructingsymbols for representing lists. For each natural number k, let []k denote a functionsymbol of arity k. Let �L := f[]k; k � 0g. Let �F denote a disjoint �nite set offree function symbols, containing at least one constant and one non-constant function2

symbol. The complete signature that we shall use contains binary concatenation \�",and all symbols from �L&F := �L [�F . X is a countably in�nite set of variables. Inthe sequel, possibly subscripted symbols x; y; z; : : : always denote variables.The set of all (F - and L-) terms is recursively de�ned as follows:� every variable is an L-term and an F -term,� if t1; : : : ; tn are terms and f 2 �F is an n-ary function symbol, thenf(t1; : : : ; tn) is an F -term and []n(t1; : : : ; tn) is an L-term (n � 0),� if l1 and l2 are L-terms, then l1 � l2 is an L-term.Terms []n(t1; : : : ; tn) will be written in the form [t1; : : : ; tn]. Since the in�x symbol\�" is interpreted as concatenation, we omit brackets in expressions l1 � � � � � ln. Forn = 0, an expression l1 � � � � � ln denotes the empty lists []0. Of course many \natural"expressions (such as those using \cons" and \conc", or Prolog-style [t1jl]) are not treatedas terms. It is simple to see that for all these expressions there are terms which behavein the same way, in any relevant sense. In order to keep proofs simple we have chosena minimal syntax which captures all conventional constructions for a combination ofterms with lists.A list constraint system is a �nite set of equations and disequations � of the formfs1 := t1; : : : ; sn := tn; sn+1 6 := tn+1; : : : ; sn+m 6 := tn+mgwhere the si and ti are terms.Example 2.1 Let �F = ff; g; a; bg where f is binary, g is unary, and a and b areconstants. Then �1 = f[f(z; [x] � x); g(y � y)] := [f(g(x � y); [y] � [b; a]); z]; y 6 := []g and�2 = f[x] := xg are list constraint systems.Two solution domainsWe assume that trees (and subtrees) are formalized as usual, i.e., as sets of labelledpaths. Paths (= positions) are �nite sequences of positive natural numbers. A tree withlists is a tree with labels in �L&F , the arity of the label giving the branching degree atthe node. A tree with lists is rational if it has only a �nite number of distinct subtrees.In order to solve list constraint systems we shall consider the two domains T �L&F�nand T �L&Frat of all �nite (resp. rational) trees with lists. Elements of these domains willoften be written in the form f(t1; : : : ; tk) or []k(t1; : : : ; tk) = [t1; : : : ; tk], where the tidenote subtrees. Trees of the form [t1; : : : ; tk] will be called lists of length k.Both domains may be turned into (partial) algebras over the signature �L&F [f�g:free function symbols f 2 �F and list symbols []k are interpreted as tree constructors,the interpretation of \�" is the partial function�T : h[t1; : : : ; tn]; [tn+1; : : : ; tn+m]i 7! [t1; : : : ; tn; tn+1; : : : ; tn+m]:3

Solutions and �nite-tree solutionsA tree assignment is a mapping � : X �! T �L&Frat . Tree assignments will be used toassociate with arbitrary terms t an interpretation t� 2 T �L&Frat . But, since \�T " is apartial operation, we have to be careful. We say that x 2 X has type L with respect tot if t has a subterm of the form x � l or l � x. It is not hard to see that t� is de�ned ifand only if x� is a list, for every variable x which has type L with respect to t. Thevariable x has type L with respect to the constraint system � if there is a term t in �such that x has type L with respect to t. A partial tree assignment � is consistent for� if � assigns a list x� to every variable x that has type L with respect to � and anarbitrary tree with lists to the remaining variables y of �.De�nition 2.2 Let � be a constraint system. A rational-tree solution (or simply asolution) of � is a partial tree assignment � which is consistent for � such that s� = t�(s� 6= t�) whenever � contains an (dis)equation s := t (s 6 := t). A �nite-tree solution isa solution � where x� 2 T �L&F�n , for all variables x occurring in �.Example 2.3 The assignment x 7! [b; a]; y 7! [b; a]; z 7! g([b; a; b; a]) is a �nite-treesolution of the constraint system �1 given in Example 2.1. The system �2 does nothave a �nite-tree solution. But there exists a solution � which maps x to the rationaltree [[: : : [: : :] : : :]].Flat and nontrivial constraint systemsA term t is called
at if t is a variable, if t has the form f(x1; : : : ; xn) (f 2 �F), or if thas the form l1�� � ��ln (n � 0) where the arguments li are variables or terms of the form[x]. A
at constraint system is constraint system � where both sides of disequations arevariables and the left-hand (right-hand) sides of equations are variables (
at terms).Obviously it is possible to compute for an arbitrary list constraint system � a
at listconstraint system �0 that is equivalent in the sense that every (�nite-tree) solution of� can be extended to a (�nite-tree) solution of �0 and every (�nite-tree) solution of �0is a (�nite-tree) solution of �. (We just have to introduce additional variables x andnew equations of the form x := t in order to get rid of complex subterms.)A
at list constraint system is trivial if it contains an equation x := t, where t isa non-variable F -term, and if at the same time x has type L with respect to �, orx occurs in an equation x := l where l is a non-variable L-term. Obviously, trivialitycan be detected algorithmically, and trivial systems are unsolvable. All list constraintsystems that will be considered in the following are assumed to be
at and non-trivial.3 Decidability Result for Finite Tree SolutionsIn this section we want to prove the following theorem.Theorem 3.1 It is decidable if a list constraint system has a �nite-tree solution.4

List constraint systems � = fs1 := t1; : : : ; sn := tn; sn+1 6 := tn+1; : : : ; sn+m 6 := tn+mgrepresent existential sentences
 of the form 9~x((Vni=1 si = ti) ^ (Vn+mj=n+1:sj = tj)).Finite-tree solvability of � corresponds to validity of
 in T �L&F�n . Obviously arbitraryexistential sentences may be represented as disjunctions of list constraint systems.Corollary 3.2 The existential theory of the algebra T �L&F�n is decidable.To establish Theorem 3.1 we shall give an algorithm that decomposes a
at nontriviallist constraint system � = �0 into a �nite set of output pairs. We shall see that �0is solvable i� both components of an output pair are solvable. Moreover, solvabilityof both output components will be decidable. Before we describe the steps of thealgorithm we shall explain the nature of three types of constraint systems that arisefrom decomposition. With T (
;X) we denote the set of all terms with variables in Xand function symbols in
. A VC-declaration (VC stands for variable-constant) is apair (ZV ; ZC) representing a partition Z = ZV _[ZC of a �nite set of variables Z � X.In the presence of a VC-declaration (ZV ; ZC), the variables in ZC are not instantiatedin solutions, which means that they are treated as constants.Free disuni�cation problems with linear constant restrictionA free disuni�cation problem with linear constant restriction is a quadrupel(�F ; ZV ; ZC; <) where� (ZV ; ZC) is a VC-declaration of Z � X,� �F is a �nite set of equations and disequations between terms inT (�F [ZC ; ZV) and� < is a linear ordering on Z.The �rst component of each output pair has this complex form. A solution of thisproblem is a T (�F ;X)-substitution �, not instantiating \constants" in ZC , which solvesall equations and disequations of �F such that y 2 ZC does not occur in x� for all x < y(x 2 ZV). A solution � is called restrictive if x� 62 X for all x 2 ZV .The notion of a disuni�cation problem with linear constant restriction and thenotion of a restrictive solution have been introduced in [2] in the context of disuni�cationmodulo equational theories. There it has been shown (proof of Corollary 4.8):Lemma 3.3 It is decidable whether a free disuni�cation problem with linear constantrestriction has a restrictive solution.Flat pure list constraint systems with linear constant restrictionA
at pure list constraint system with linear constant restriction is a quadrupel(�L; ZV ; ZC ; <) where 5

� (ZV ; ZC) is a VC-declaration of Z � X,� �L is a �nite set of of disequations of the form x 6 := y (x; y 2 ZV) and of equationsof the form x = l1 � : : :� ln (n � 0) where x 2 ZV and the li have the form z 2 ZVor the form [y] with y 2 Z = ZV [ZC ,� < is a linear ordering on Z.LetM be a set. With LMnested;�n we denote the set of all �nite, possibly nested lists whereelements that are not itself lists are in M . This domain contains only �nite trees.A solution of (�L; ZV ; ZC ; <) is a mapping � which assigns to every variable x 2 ZVan element x� 2 LXnested;�n such that the canonical extension of � on pure L-terms2 solvesall equations and disequations of �L and the constant c 2 ZC does not occur in x� forall x < c (x 2 ZV). The solution � is called compatible with < if x�1 is never a propersubtree of x�2 for x2 < x1 (x1; x2 2 ZV).In the third step of the algorithm, systems of this type are created. Nested lists assolution values may be necessary since variables may occur among the elements of listsin equations. This is the important distinction to the following type of system.Shallow pure list constraint systems with linear constant restrictionLet (�L; ZV ; ZC ; <) be a
at pure list constraint system with linear constant restriction.The shallow version (_�L; ZV ; ZC [_ZV ; _<) of (�L; ZV ; ZC ; <) is obtained by(1) introducing the new set of constants _ZV := f _x;x 2 ZV g,(2) replacing every term [x] in �L with an embedded occurrence of a variable x 2 ZVby an expression [_x],(3) using the linear ordering _< which is the extension of < on ZV [ZC [_ZV whereeach constant _x is the immediate successor of x with respect to _< (x 2 ZV).The second components of the output pairs will have this form. The domain LX[_ZV
atcontains all lists of the form [l1; : : : ; ln] (n � 0) with elements li 2 X [_ZV .A solution of (_�L; ZV ; ZC [_ZV ; _<) is a mapping � which assigns to every x 2 ZVa value x� 2 LX[_ZV
at such that the canonical extension3 of � on terms in _�L solves allequations and disequations of _�L and the constant c 2 ZC [_ZV does not occur in x�for all x _<c (x 2 ZV).Lemma 3.4 It is decidable whether the shallow version of a
at pure list constraintsystem with linear constant restriction has a solution.2Where c� := c for c 2 ZC , [l1; : : : ; ln]� = [l�1 ; : : : ; l�n] and (l1 � l2)� is the concatenation of l�1 and l�2 .3De�ned as above, with _x� = _x for _x 2 _ZV . Note that the canonical extension of � assigns to bothsides of each equation of _�L again values in LX[_ZV
at since there are no variables in element positions.6

Proof. (Sketch). Suppose that _�L has m disequations. It is �rst shown thatsolvability of (_�L; ZV ; ZC[_ZV ; _<) may be tested in a domain LX0[ZC[_ZV
at whereX0 � Xhas 2m+1 elements and X0\ZC = ;. Now we have a �nite solution alphabet, and themethod of B�uchi and Senger ([3]) may be used to compute an equivalent �nite set ofsystems with equations only. This latter systems are like word uni�cation problems withlinear constant restriction, where solvability is known to be decidable (see [1]). (Moredetails of all steps can be found in [2] where the almost identical case of associativedisuni�cation with linear constant restriction has been treated.)3.1 First decomposition algorithm (Algorithm 1)The input of Algorithm 1 is a
at and nontrivial list constraint system �0.Step 1: variable identi�cation. Consider all partitions of the set of all variablesoccurring in �0 such that distinct variables x; y are in the same class of the partitionif the system contains the equation x := y, and distinct variables x; y are in distinctclasses of the partition if the system contains the disequation x 6 := y. Each of thesepartitions yields one of the new systems �1 as follows. The variables in each class ofthe partition are \identi�ed" with each other by choosing an element of the class asrepresentative, and replacing in the system all occurrences of variables of the class bythis representative. Afterwards, trivial equations x := x are erased. In addition, we adda disequation x 6 := y for every pair x; y of distinct representatives to the system if thisdisequation is not already present. Systems that are trivial now are excluded.In each system �1, the right-hand side of every equation is either an F -term or an L-term(but not a variable). We may speak about F -equations and L-equations accordingly.Step 2: choose ordering, type variables. For a given system �1, consider all pos-sible strict linear orderings < on the variables of the system. Guess a type assignmentwhich maps every variable x to an element type(x) of fF;Lg, satisfying the following re-strictions: if x has type L with respect to �1, or if �1 contains an equation x := t wheret is a non-variable L-term (resp. F -term), then type(x) = L (resp. type(x) = F).Each pair (<; type) yields one of the new systems obtained from the given one.For a system �2 obtained by Step 2, let X3;F (X3;L) denote the set of variables of typeF (L) occurring in �2. Let X2 = X3;F [X3;L. Now left-hand sides of F (L) equationsare in X3;F (X3;L).Step 3: split systems. A given system �2 is divided into two systems �2 =�3;F [�3;L. The \free" subsystem �3;F contains all F -equations of �2, the \L"-subsystem �3;L contains all L-equations of �2. Disequations with at least one variableof type F are added to the free subsystem, the other disequations are added to �3;L.Now (�3;F ;X3;F ;X3;L; <) is a free disuni�cation problem with linear constant restric-tion and (�3;L;X3;L;X3;F ; <) is a
at pure list constraint system with linear constantrestriction. 7

Step 4: dot embedded variables. In this step we compute the shallow version(_�3;L;X3;L;X3;F [_X3;L; _<) of the
at pure list constraint system with linear constantrestriction, (�3;L;X3;L;X3;F ; <), obtained in the previous step.Terms of _�3;L have the form l1 � � � � � lm (m � 0) where the subterms li are variablesx 2 X3;L or lists [t] where t 2 X3;F [_X3;L is a constant.Note that Steps 1 and 2 are non-deterministic. The output of the algorithm consistsof all pairs ((�3;F ;X3;F ;X3;L; <); (_�3;L;X3;L;X3;F [_X3;L; _<))which are obtained from �0 by means of the Steps 1 { 4.Theorem 3.1 is a direct consequence of the following proposition, using Lemmata 3.3and 3.4.Proposition 3.5 The input system �0 has a �nite-tree solution if and only if thereexists an output pair((�3;F ;X3;F ;X3;L; <); (_�3;L;X3;L;X3;F [_X3;L; _<))such that (�3;F ;X3;F ;X3;L; <) has a restrictive solution and (_�3;L;X3;L;X3;F [_X3;L; _<)has a solution.3.2 Correctness of Algorithm 1In order to prove Proposition 3.5 we shall prove four subpropositions.Proposition 3.6 If the input system �0 is solvable, then there exists a pair((�3;F ;X3;F ;X3;L; <); (�3;L;X3;L;X3;F ; <))reached after Step 3 such that (�3;F ;X3;F ;X3;L; <) has a restrictive solution and(�3;L;X3;L;X3;F ; <) has a solution that is compatible with <.Proof. Suppose that � is a solution of �0. We have to determine choices in the non-deterministic Steps 1 and 2 which lead{after Step 3|to a pair of systems as described inthe proposition. In Step 1 of the algorithm two variables x; y are identi�ed i� x� = y�.With this choice � is a solution of �1. In Step 2 of the algorithm the linear order <which we choose is an arbitrary extension of the partial order � de�ned byx � y :, x� is a proper subtree of y�:A variable x receives type F i� the topmost label of x� is in �F . These choicesare consistent with the restrictions in Steps 1 and 2 and de�ne a pair of systems((�3;F ;X3;F ;X3;L; <); (�3;L;X3;L;X3;F ; <)) which is reached after Step 3. We have toshow that these systems have solutions as described in the proposition.8

Let � : T �L&F�n �! X2 [Y be a bijection such that �(x�) = x for all x 2 X2. HereY � X is a set of variables that is disjoint to X2. Since x�1 6= x�2 for all x1; x2 2 X2with x1 6= x2 such a bijection exists. Now � de�nes two projections �F : T �L&F�n �!T (�F [X3;L; Y) and �L : T �L&F�n �! LX3;F[Ynested;�n as follows:�F (f(t1; : : : ; tn)) = f(�F (t1); : : : ; �F (t1)) (f 2 �F)�L(f(t1; : : : ; tn)) = �(f(t1; : : : ; tn)) (f 2 �F)�F ([l1 : : : ln]) = �([l1 : : : ln]) (n � 0)�L([l1 : : : ln]) = [�L(l1); : : : ; �L(ln)] (n � 0):Note that our decision concerning variable typing guarantees that the projections haveranges as stated above. We de�ne the assignments �F : x 7! �F (x�) (x 2 X3;F) and�L : x 7! �L(x�) (x 2 X3;L) and claim that �F solves the free system and �L solves theL-system.Let x := t be an equation of �3;F . We know that x� = t�. Since t has only functionsymbols from �F and since �F (y�) = �(y�) = y for all y 2 X3;L the last equality inx�F = �F (x�) = �F (t�) = t�Fholds. Thus �F solves all equations of �3;F . Let x := l1 � � � � � ln (n � 0) be anequation of �3;L. The li are variables in X3;L or lists [t] where t 2 X2. We know thatx� = (l1 � � � � � ln)�. Since �L(y�) = �(y�) = y for all y 2 X3;F we get x�L = �L(x�) =�L((l1�� � ��ln)�) = �L(l�1)�T � � ��T �L(l�n) = (l1�� � ��ln)�L. Thus �L solves all equationsof �3;L.Let x1 6 := x2 be a disequation of �3;F . At least one variable has type F . We havex�1 6= x�2 . The inequality �F (x�1) 6= �F (x�2) follows immediately if both variables havedistinct type since in this case exactly one side is a variable. But the same inequalityholds also if both variables have type F since � is a bijection, and since x�i does notcontain variables (i = 1; 2). It follows that �F solves all disequations of �3;F . Similarlyit follows that �L solves all disequations of �3;L.Let us now consider the linear constant restriction of the free subsystem. If x2 2X3;L occurs in x�F1 = �F (x�1) (x1 2 X3;F), then this occurrence is necessarily the resultof projecting an occurrence of x�2 in x�1 since x�1 does not contain variables. Thus x�2 is aproper subtree of x�1 and x2 < x1. This shows that �F satis�es the constant restrictionof the free subsystem. Similarly it follows that �L satis�es the constant restriction ofthe L-subsystem. Since the �F -projection of a tree with topmost function symbol in�F cannot be a variable it is clear that �F is a restrictive solution. It remains to beshown that �L is compatible with <. Suppose that x�L1 is a proper subterm of x�L2(x1; x2 2 X3;L). Thus �L(x�1) is a proper subterm of �L(x�2). The inverse ��1 of � maybe considered as a substitution. It follows that x�1 = (�L(x�1))��1 is a proper subtermof x�2 = (�L(x�2))��1 and therefore x1 < x2. Thus �L is in fact compatible with <.Proposition 3.7 If a system (�3;L;X3;L;X3;F ; <) obtained as second component afterStep 3 has a solution � that is compatible with <, then the dotted system reached afterStep 4, (_�3;L;X3;L;X3;F [_X3;L; _<), has a solution.9

The proof is similar as the previous one. Compatibility of � with < is needed to beable to satisfy the linear constant restrictions of the dotted system that are associatedwith dotted variables. Summarizing, the preceding two propositions show that thedecomposition algorithm is complete. Let us now consider soundness.Proposition 3.8 If a dotted system (_�3;L;X3;L;X3;F [_X3;L; _<) obtained after Step 4has a solution, then the original system (�3;L;X3;L;X3;F ; <) has a solution.Proof. Let _� be a solution of (_�3;L;X3;L;X3;F [_X3;L; _<). We may assume that_� : X3;L ! LY [X3;F[_X3;L
atwhere Y � X is disjoint to X2. We shall now use the linear order _< in order to de�nea partial assignment � : X3;L [_X3;L ! LY [X3;Fnested;�n such that the restriction on X3;L|extended canonically on pure L-terms|solves (�3;L;X3;L;X3;F ; <). Let x 2 X3;L[_X3;Land assume that z� has been de�ned for all z 2 X3;L [_X3;L such that z _<x. We shallalso assume (*) that z�1 6= z�2 for all z1; z2 2 X3;L with x > z1 6= z2 < x.If x = _z is a dotted variable, then x is the immediate successor of z. We de�nex� := z�. If x 2 X3;L, then the dotted elements of the
at list x _� are smaller than xwith respect to _<. We de�ne x� := x _��. Since the
at lists x _� and z _� are distinct itfollows easily, by (*), that x� 6= z� for all z < x, z 2 X3;L.We shall now prove that � is a solution of (�3;L;X3;L;X3;F ; <). Let x := l1�� � ��ln bean equation of �3;L with counterpart x := l01�� � ��l0n in _�3;L. We have x _� = (l01�� � ��l0n) _�.Therefore x� = x _�� = (l01 � � � � � l0n) _��. Each l0i is in X3;L or it has the form [t] wheret 2 _X3;L [X3;F . It follows easily that (l01 � � � � � l0n) _�� = (l1 � � � � � ln)�, thus � solvesx := (l1�� � �� ln). �3;L contains only disequations where both variables have type L. Wehave already seen that � solves these disequations. Let us consider the linear constantrestriction which is imposed by <. Let z 2 X3;F , z > x 2 X3;L. We know that z doesnot occur in any term of the form r _� for r _�x, r 2 X3;L. From this it follows easily thatz does not occur in x�.Proposition 3.9 If there exists a pair ((�3;F ;X3;F ;X3;L; <); (�3;L;X3;L;X3;F ; <)) re-ached after Step 3 such that (�3;F ;X3;F ;X3;L; <) has a restrictive solution and(�3;L;X3;L;X3;F ; <) has a solution, then �0 has a solution.Proof. Let �F be a restrictive solution of the free disuni�cation problem with linearconstant restriction (�3;F ;X3;F ;X3;L; <), let �L be a solution of (�3;L;X3;L;X3;F ; <).We may assume that �F : X3;F ! T (�F [X3;L; YF)�L : X3;L ! LX3;F[YLnested;�nwhere the sets YF = fy1;F ; : : : ; ym;F � X and YL = fy1;L; : : : ; yn;Lg � X are �nite,disjoint and do not contain an element of X3;F [X3;L[_X3;L. Since �F contains at least10

one constant and one non-constant function symbol we may choose n distinct groundterms t1; : : : ; tn over this signature which are di�erent from all terms x�F for x 2 X3;F .Similarly we may choose m distinct nested lists l1; : : : ; lm where all labels have the form[]k (k � 0), each list li being distinct from all lists x�L for x 2 X3;L. Let�F : yi;F 7! li (1 � i � m);�L : yi;L 7! ti (1 � i � n):We shall de�ne a T �L&F�n -assignment � on X2 by induction on the linear ordering <.Assume that z� has been de�ned for all z 2 X2 preceding x 2 X2 with respect to <.We shall assume (1) that this assignment is type-conform, which means that z� hastopmost symbol in �F (of the form []k) for variables z of type F (type L), (2) thatz�1 6= z�2 for all z1; z2 < x, and (3) that the terms z� are not in ft1; : : : ; tn; l1; : : : ; lmgfor z < x.Assume that x has type i 2 fF;Lg, let i 6= j 2 fF;Lg. Since �i respects the linearconstant restriction of system i, the variables occurring in x�i are variables z 2 X3;jwith z < x, or variables from Yi. Thus we may de�ne x� := x�i�i�. By inductionhypothesis, z� 2 T �L&F�n for all x > z 2 X3;j , thus x� 2 T �L&F�n . Since �F is restrictiveand since �L ranges over lists, this assignment is type-conform and assumption (1)holds again. Assume that x� = z� for some z 2 X2, z < x. Then z has type i since � istype-conform. By assumption (1), the maximal j-subterms of z�i�i� = z� = x� = x�i�i�are exactly the �-images of the variables of type j occurring in z�i and the �i-images ofvariables yl;i. The former variables are smaller than x and the restriction of � on thesevariables is injective, by hypothesis. By assumption (3), we obtain z�i and x�i backfrom z� = x� just by a projection which replaces these alien subterms by their unique�i- or �-origines. Thus x�i = z�i. This is a contradiction since �i solves the disequationx 6 := z. Therefore assumption (2) holds again. If x�i contains any variable, then x�will have occurrences of free function symbols and of a list symbol []k. Thereforex� 62 ft1; : : : ; tn; l1; : : : ; lmg. If x�i is ground, x� = x�i 62 ft1; : : : ; tn; l1; : : : ; lmg bychoice of the these elements. Therefore assumption (3) holds again.We may now show that � solves the system �2 which is reached after Step 2. Since� is consistent for �1 (see (1) and the restrictions in Step 2) it is then clear that � canbe extended to a solution of �0. By our previous considerations it remains to be shownthat � solves the equations x := t of �2. Assume that x := t is in �3;i, where i 2 fF;Lg.Then x�i = t�i. It follows that x� = x�i�i� = t�i�i� = t�. For the last equality recallthat �i and �i leave all y 2 X3;j �xed while y�i�i� = y� for y 2 X3;i.4 Results for Rational-Tree SolutionsHere we want to prove the following theorem.Theorem 4.1 It is decidable if an equational list constraint system � has a rational-tree solution.Corollary 4.2 The positive existential theory of the algebra T �L&Frat is decidable.11

Before we give a second algorithm for proving these results it is instructive to recon-sider Algorithm 1 and its soundness proof: we found that given solutions of the twocomponents of an output pair can be combined to yield a solution of the input system.This solution is found by a �nite recursive process along the chosen linear ordering.The linear constant restrictions imposed on the components of the output pairs havethe e�ect of a partial occur check, excluding cyclic dependencies between values ofF - and L-variables. If we now ask for rational-tree solutions, cyclic dependencies areacceptable and may be necessary. Accordingly, constant restrictions are not used inAlgorithm 2.4.1 Second decomposition algorithm (Algorithm 2)The input is a
at and nontrivial constraint system �0 without disequations. Algorithm2 is obtained as a simpli�cation of Algorithm 1:� We ignore all subparts in the description of the steps of Algorithm 1 that refer todisequations.� In Step 2 (type variables) we do not choose a linear order on the variables.Accordingly, the systems obtained after Step 3 have the form (�3;F ;X3;F ;X3;L)and (�3;L;X3;L;X3;F), and from (�3;L;X3;L;X3;F) we obtain its shallow version(_�3;L;X3;L;X3;F [_X3;L)4 in Step 4.The output consists of all pairs ((�3;F ;X3;F ;X3;L); (_�3;L;X3;L;X3;F [_X3;L)) that areobtained from �0 by means of the new Steps 1 { 4.The simpli�cation of the decomposition steps comes in parallel with a modi�-cation of the solution domains for the systems that are reached. The free system(�3;F ;X3;F ;X3;L) is solved in the algebra T �F[X3;L[Yrat of rational trees with labels in�F [X3;L [Y , treating X3;L as a set of constants. Here Y � X is an in�nite setof variables that is disjoint to X2. Solvability of equational systems over T �F[X3;L[Yratis decidable (see [4, 6]). Since �F contains a constant and a non-constant functionsymbol, solvability and restrictive solvability are equivalent.Corollary 4.3 It is decidable if a system (�3;F ;X3;F ;X3;L) has a restrictive solution.System (�3;L;X3;L;X3;F) is solved|treating X3;F as a set of constants|in thedomain LX3;F[Ynested;rat of nested lists representing rational trees with labels in �L[X3;F [Y .System (_�3;L;X3;L;X3;F [_X3;L) is solved in LX[_X3;L
at , as earlier.Theorem 4.1 is a direct consequence of the following proposition, using Corollary 4.3and the fact that solvability of word equations is decidable ([7]).4De�ned as earlier, ignoring linear orders. 12

Proposition 4.4 The input �0 of Algorithm 2 has a rational-tree solution if and onlyif there exists an output pair ((�3;F ;X3;F ;X3;L); (_�3;L;X3;L;X3;F [_X3;L)) such that(�3;F ;X3;F ;X3;L) has a restrictive solution and (_�3;L;X3;L;X3;F [_X3;L) has a solution.4.2 Correctness of Algorithm 2Completeness of Algorithm 2 is proved in similar manner as for Algorithm 1. We omitthis part. For proving soundness let us introduce the following notation: we writet1 =i t2 if the rational trees t1 and t2 have the same labels for all positions of length(depth) k � i. Clearly t1 = t2 i� t1 =i t2 for all i � 0.Proposition 4.5 If a dotted system (_�3;L;X3;L;X3;F [_X3;L) obtained after Step 4 hasa solution, then the original system (�3;L;X3;L;X3;F) has a solution.Proof. Let _� be a solution of (_�3;L;X3;L;X3;F [_X3;L). We may assume that_� : X3;L ! LY [X3;F[_X3;L
atwhere Y � X and X2 are disjoint. Let � be the assignment which maps every dottedvariable _x 2 _X3;L to _x� := x _�. Let �i := _� � � i (i � 1). Obviously x�i =k x�j for alli; j � k and x 2 X3;L. There exists a unique tree tx 2 LX3;F[Ynested;rat such that x�i =k txfor all i � k � 1. We de�ne x� := tx (x 2 X3;L). Take an equation x := l1 � � � � � ln of�3;L with counterpart x := l01 � � � � � l0n in _�3;L. Let i > 1. For lj = l0j = y 2 X3;L wehave l0�ij =i l�j . For lj = l0j = [y] with y 2 X3;F we have l0�ij = l0j = l�j . For l0j = [_y] withy 2 X3;L we have l0�ij = [_y�i] = [_y _��� i] = [_y� i] = [y _�� i�1] = [y�i�1] =i [y]� = l�j . Thusx� =i x�i = (l01 � � � � � l0n)�i =i (l1 � � � � � ln)� for i > 1 and � solves x := l1 � � � � � ln.Proposition 4.6 If there exists a pair ((�3;F ;X3;F ;X3;L); (�3;L;X3;L;X3;F)) reachedafter Step 3 such that (�3;F ;X3;F ;X3;L) has a restrictive solution and (�3;L;X3;L;X3;F)has a solution, then �0 has a solution.Proof. Let �F be a restrictive solution of (�3;F ;X3;F ;X3;L) and let �L be a solutionof (�3;L;X3;L;X3;F). We may assume that�F : X3;F ! T �F[X3;L[Yrat�L : X3;L ! LX3;F[Ynested;ratwhere Y = fy1; : : : ; yng � X is �nite and Y \X2 = ;. Let �F&L := �F [�L. Choose ndistinct ground trees t1; : : : ; tn 2 T �L&Frat . Let � : yi 7! ti (1 � i � n). We identify both�F&L and � with their homomorphic extension on T �L&F[X2[Yrat . Let �1 := �F&L [� ,and let �i := �i (i � 1). Since �F is restrictive and each list x�L (x 2 X3;L) has topmostlabel of the form []k we know that x�i =k x�j for all i; j � k (x 2 X2). There exists aunique tree tx 2 T �L&Frat such that x�i =k tx for all 1 � k � i. We de�ne x� := tx. Therestrictions in Step 2 of the algorithm guarantee that � is consistent for �1.13

Let i > 1. Consider an F -equation x := f(y1; : : : ; yn) of the system reached afterStep 1, �1. If yj 2 X3;F , then y�F ��i�1j = y�ij =i�1 y�i�1j . If yj 2 X1;L, then y�F ��i�1j =y�i�1j . Thus x� =i x�i = x�F ��i�1 = f(y1; : : : ; yn)�F ��i�1=i f(y1; : : : ; yn)�i�1 =i f(y1; : : : ; yn)�:Therefore � solves x := f(y1; : : : ; yn). Consider an L-equation x := l1 � � � � � ln (n � 0)of �1. If lj = y 2 X3;L, then l�L��i�1j = l�ij =i�1 l�i�1j . Similarly l�L��i�1j =i�1 l�i�1j forlj = [y] with y 2 X3;L. If lj = [y] where y 2 X3;F , then l�L��i�1j = l�i�1j . Thusx� =i x�i = x�L��i�1 = (l1 � � � � � ln)�L��i�1=i�1 (l1 � � � � � ln)�i�1 =i�1 (l1 � � � � � ln)�and � solves x := l1 � � � � � ln. This shows that � solves all equations of �1. Thus � is asolution of �1. It is now trivial to extend � to a solution of �0.4.3 Problems with DisequationsUnfortunately, the treatment of disequations causes problems when we ask for rational-tree solutions. Here is an illustrating example. The input system �0 with equationsx1 := g(y1); x2 := g(y2); y1 := [x1]; y2 := [x2] and disequation x1 6 := x2 cannot be solvedin T �L&Frat since every solution of the equational part will identify x1 and x2. If wedecompose �0, treating disequations as in Algorithm 1, one particular output pair withfree system �3;F = fx1 := g(y1); x2 := g(y2); x1 6 := x2g [fxi 6 := yj; i; j = 1; 2g (constantsy1; y2) and with L-component _�3;L = fy1 := [x1]; y2 := [x2]; y1 6 := y2g (constants x1; x2)is generated. Both systems are solved. Thus decomposition is no longer sound. Thereason is that validity of disequations is not preserved when we recombine solutions ofthe output systems in order to obtain a solution of �0.Our attempts to prove decidability of the full existential theory of T �L&Frat have ledto a partial result only. The question can be reduced to the following problem forword equations: given a word equation with variables x1; : : : xn, and given a �nite setof constraints of the form jxij = jxjj demanding that the length of the (words to besubstituted for the) variables xi and xj has to be the same, decide if the word equationhas a solution that satis�es these restrictions. The �rst reduction step is based on thefollowing observation.Theorem 4.7 5 If a typed
at constraint system � has a solution, then the system��(�) has a solution that is obtained from � by replacing every disequation x 6 := y of� by a bounded disequation x 6 :=�(�) y. Here �(�) = n2emb + ndis + 1 where nemb is thenumber of embedded variables of � and ndis is the number of disequations of �.5A list constraint system � is typed if every variable occurring in � has type F or type L. A treeassignment � solves a bounded disequation x 6 :=k y if the trees x� and y� have a distinct label in depthj � k. An occurrence of a variable x in a term of t of � of the form [x] or f(: : : ; x; : : :) (f 2 �F) iscalled an embedded occurrence of x in �. 14

In a second step, bounded disequations can be eliminated for the price of introducinglength constraints of the form jxj = jyj and jxj > jyj that restrict the length of (thevalues of) L-variables. For each system � with equations and bounded disequationswe obtain a �nite number of systems �1; : : : ;�r with length constraints, preservingsolvability in both directions. Eventually a variant of Algorithm 2 may be used todecompose the systems �i in a similar way as before, taking length constraints intoaccount. While the free output components take the same form as in the case ofAlgorithm 2, the L-output systems may be considered as word equations with lengthconstraints as described above. On the level of word equations it su�ces to have lengthconstraints of the form jxj = jyj.The remarks given in the introduction indicate that the problem to decide solvabilityof word equations with length constraints might be extremely di�cult.References[1] F. Baader and K.U. Schulz. Uni�cation in the union of disjoint equationaltheories: Combining decision procedures. In Proceedings of CADE-11, Sprin-ger LNCS 607, 1992.[2] F. Baader and K.U. Schulz, \Combination Techniques and Decision Problemsfor Disuni�cation," (extended version) DFKI Research-Report-93-05, GermanResearch Center for AI, Saarbr�ucken 1993. Short version in Proceedings RTA'93, Montreal, June 1993, LNCS. Springer, 1993, pp.301-315.[3] J.R. B�uchi, S. Senger, \Coding in the Existential Theory of Concatenation,"Arch. math. Logik 26 (1986/7), pp.101-106.[4] A. Colmerauer, \Equations and Inequations on Finite and In�nite Trees,"Proceedings of the FGCS'84, pp.85-99.[5] A. Ko�scielski, L. Pacholski, \Complexity of Makanin's Algorithms," ResearchReport, Universitiy of Wroclaw (1991); preliminary version: \Complexity ofUni�cation in Free Groups and Free Semi-Groups," Proceedings 31st AnnualIEEE Symposium on Foundations of Computer Science, Los Alamos (1990),pp.824-829.[6] M.J. Maher, \Complete axiomatizations of the algebras of �nite, rational andin�nite trees", In Proc. LICS 3, IEEE Computer Society (1988), pp.348-357.[7] G.S. Makanin, \The Problem of Solvability of Equations in a Free Semigroup,"Mat. USSR Sbornik 32, 1977.[8] G.S. Makanin, \Equations in a Free Group", Izv. Akad. Nauk SSSR Ser. Mat.46 (1982), 1199-1273; English Translation in Math. USSR Izv. 21 (1983).[9] W.V. Quine, \Concatenation as a Basis for Arithmetic," J. Symbolic Logic11 (1946), pp.105-114. 15

