UNIVERSITAT MUNCHEN
CENTRUM FUR INFORMATIONS- UND SPRACHVERARBEITUNG

On Existential Theories of

List Concatenation

Klaus U. Schulz

The paper has been presented at the Conference on Computer
Science Logic 94 in Kazimierz, Poland. A longer version will soon
appear as CIS report.

On Existential Theories of List Concatenation

Klaus U. Schulz”
CIS, University Munich, Wagmiillerstr. 23
80538 Munich, Germany
e-mail: schulz@cis.uni-muenchen.de

phone: (+49 89) 211 0667

Abstract

We discuss the existential fragments of two theories of concatenation. These theo-
ries describe concatenation of possibly nested lists in the algebra of finite trees
with lists and in the algebra of rational trees with lists. Syntax and the choice
of models are motivated by the treatment of lists in PROLOG III. In a recent
prototype of this language, Colmerauer has integrated a built-in concatenation of
lists, and the constraint-solver checks satisfiability of equations and disequations
over concatenated lists. But, for efficiency reasons satisfiability is only tested in a
rather approximative way'. The question arises if satisfiability is decidable. Our
main results are the following. For the algebra of finite trees with lists, the exi-
stential fragment of the theory is decidable. For the algebra of rational trees with
lists, the positive existential fragment of the theory is decidable. Problems in the
existential fragment may be traced back to a difficult question about solvability of
word equations with length constraints for variables.

1 Introduction

Quine [9] has shown that the theory of concatenation is undecidable. The existential
fragment of the theory was shown to be decidable by Biichi and Senger [3], building up
on Makanin’s decidability result for solvability of word equations [7]. Concatenation,
in the sense of Quine, is an operation acting on words over an alphabet of atomic
letters, and the classical theory of concatenation is the theory of free monoids. In the
meantime, with the development of high level programming languages, concatenation
has become relevant as an operation on lists. Lists, as opposed to flat words, may
contain complex objects as entries, including nested sublists, for example.

In this paper we want to discuss theories of list concatenation. We shall concentrate
on two formal models that are motivated by the treatment of lists in PROLOG III. In
a recent prototype of this language, Colmerauer has integrated a built-in concatenation

*Supported by EC Working Group CCL, EP 6028.
"We refer to a talk by Alain Colmerauer on the third Workshop on Constraint Logic Programming,

Marseille, March 1993.

of lists, and the constraint-solver checks satisfiability of equations and disequations bet-
ween terms with concatenated lists. For efficiency reasons, however, satisfiability is only
tested in a rather approximative way. Colmerauer introduces a non-standard “naive”
concatenation on a complicated “extended domain” to explain the precise answer be-
haviour of the solver declaratively. The question arises if satisfiability of equations and
disequations between terms with concatenated lists is decidable.

Approximating the formal model of PROLOG III, we consider the algebra of finite
trees with lists and the algebra of rational trees with lists. In both domains, concate-
nation is interpreted as a partial operation acting on lists only, free function symbols
are interpreted as tree constructors. In view of the results of Quine and Biichi-Senger
we only consider the existential fragment of the theories of these two structures. The
syntax is more or less identical to the syntax of PROLOG III for constraints over lists.
The “list constraint systems” that will be considered are finite sets of equations and
disequations between terms with concatenated lists. Arbitrary existential sentences
correspond to disjunctions of list constraint systems.

The paper is structured as follows. Section 2 starts with central definitions. In
Section 3 we show that solvability of list constraint systems over the algebra of finite
trees with lists is decidable. This implies that the existential theory of this structure
is decidable. The decision procedure is based on a decomposition technique that was
introduced in [2] in the context of disunification in the union of disjoint equational
theories. A variant of Makanin’s algorithm [7] deciding solvability of word equations is
needed.

In Section 4 we consider the algebra of rational trees with lists as solution domain.
It is shown that solvability of equational list constraint systems is decidable. Thus the
positive existential theory of this algebra is decidable. We sketch how the problem of
solvability of arbitrary list constraint systems over the algebra of rational trees with
lists may be traced back to the following problem: given a word equation with varia-
bles xy,...x,, and given a finite set of constraints of the form |z;| = |2;| demanding
that the length of the (words to be substituted for the) variables z; and z; has to be
the same, decide if the word equation has a solution that satisfies these restrictions.
Decidability of word equations with these length constraints seems to be a deep pro-
blem. G.S. Makanin (personal communication) has shown that a primitive recursive
decision procedure would give a primitive recursive algorithm for deciding solvability
of equations in free groups. It is known that Makanin’s algorithm for free groups [8] is
not primitive recursive [5].

2 List Constraint Systems and Solutions

List constraint systems

Following the syntax of PROLOG III we shall use an infinite set of list constructing
symbols for representing lists. For each natural number k, let |]} denote a function
symbol of arity k. Let ; := {[]*;k > 0}. Let Ty denote a disjoint finite set of
free function symbols, containing at least one constant and one non-constant function

symbol. The complete signature that we shall use contains binary concatenation “o”,
and all symbols from Xjgp := X U Xp. X is a countably infinite set of variables. In
the sequel, possibly subscripted symbols z, . z, ... always denote variables.

The set of all (F- and L-) terms is recursively defined as follows:

e every variable is an L-term and an F-term,

o if t1,....t, are terms and f € Xp is an n-ary function symbol, then
f(ti, ..., ty) is an F-term and []"*(#1,...,t,) is an L-term (n > 0),

e if [; and ls are L-terms, then [{ oly is an L-term.

Terms [|"(t1,...,t,) will be written in the form [t1,...,t,]. Since the infix symbol
“o” is interpreted as concatenation, we omit brackets in expressions [; o ---o[,. For
n = 0, an expression [o ---ol, denotes the empty lists [V. Of course many “natural”
expressions (such as those using “cons” and “conc”, or Prolog-style [t1|I]) are not treated
as terms. It is simple to see that for all these expressions there are terms which behave
in the same way, in any relevant sense. In order to keep proofs simple we have chosen
a minimal syntax which captures all conventional constructions for a combination of
terms with lists.

A st constraint system is a finite set of equations and disequations I of the form

{Sl = [P = s Sn+1 7& ZL'n«l»l«, <o Sntm 7é tn+’m}

where the s; and t; are terms.

Example 2.1 Let Xp = {f,g,a,b} where f is binary, ¢ is unary, and a and b are
constants. Then 'y = {[f(z,[z] o x),g(yoy)] = [f(g(zoy),[y]o[b,a]),z],y # []} and

[y = {[z] = x} are list constraint systems.

Two solution domains

We assume that trees (and subtrees) are formalized as usual, i.e., as sets of labelled
paths. Paths (= positions) are finite sequences of positive natural numbers. A tree with
lists is a tree with labels in X g p, the arity of the label giving the branching degree at
the node. A tree with lists is rational if it has only a finite number of distinct subtrees.

In order to solve list constraint systems we shall consider the two domains 7;%””
and K.EL&F of all finite (resp. rational) trees with lists. Elements of these domains will
often be written in the form f(t1....,t;) or [[¥(t1,....tx) = [t1,..., 1], where the t;
denote subtrees. Trees of the form [t1, ..., ;] will be called lists of length k.

Both domains may be turned into (partial) algebras over the signature g pU{o}:
free function symbols f € ¥ and list symbols |]k are interpreted as tree constructors,
the interpretation of “o” is the partial function

oyt <[7L’l: s :t‘n]: [tn—l—la s 7tn+‘m]> = [tlc RN Y t‘n—&-l: s :t‘rl+771]-

Solutions and finite-tree solutions

YLeF

A tree assignment is a mapping « : X — T2, Tree assignments will be used to
associate with arbitrary terms ¢ an interpretation t® € T.:*%*. But, since “o7p” is a

partial operation, we have to be careful. We say that « € X has type L with respect to
t if ¢ has a subterm of the form x ol or l o . It is not hard to see that t% is defined if
and only if % is a list, for every variable z which has type L with respect to t. The
variable x has type L with respect to the constraint system I if there is a term ¢ in I’
such that = has type L with respect to . A partial tree assignment o is consistent for
[if o assigns a list 27 to every variable z that has type L with respect to I' and an
arbitrary tree with lists to the remaining variables y of T'.

Definition 2.2 Let I be a constraint system. A rational-tree solution (or simply a
solution) of I is a partial tree assignment o which is consistent for I' such that s7 =t
(s” # t7) whenever I' contains an (dis)equation s =t (s # t). A finite-tree solution is
a solution o where z° € T;. ¥ for all variables z occurring in T'.

in

Example 2.3 The assignment = — [b,a],y — [b,a],z — g([b,a,b,a]) is a finite-tree
solution of the constraint system I'; given in Example 2.1. The system ['y does not
have a finite-tree solution. But there exists a solution ¢ which maps = to the rational

tree [[...[...]...]].

Flat and nontrivial constraint systems

A term ¢ is called flat if ¢ is a variable, if ¢ has the form f(xy,...,2,) (f € X¥p), orif t
has the form ljo---ol, (n > 0) where the arguments /; are variables or terms of the form
[x]. A flat constraint system is constraint system [where both sides of disequations are
variables and the left-hand (right-hand) sides of equations are variables (flat terms).
Obviously it is possible to compute for an arbitrary list constraint system I' a flat list
constraint system I that is equivalent in the sense that every (finite-tree) solution of
' can be extended to a (finite-tree) solution of IV and every (finite-tree) solution of T’
is a (finite-tree) solution of I'. (We just have to introduce additional variables x and
new equations of the form z =t in order to get rid of complex subterms.)

A flat list constraint system is triveal if it contains an equation x = ¢, where ¢ is
a non-variable F-term, and if at the same time z has type L with respect to T, or
x occurs in an equation x = [where [is a non-variable L-term. Obviously, triviality
can be detected algorithmically, and trivial systems are unsolvable. All list constraint
systems that will be considered in the following are assumed to be flat and non-trivial.

3 Decidability Result for Finite Tree Solutions

In this section we want to prove the following theorem.

Theorem 3.1 It is decidable if a list constraint system has a finite-tree solution.

List constraint systems I' = {s] = t1,...,8, = €y, Snt1 7 tutls---sSntm & tntm)
represent existential sentences v of the form FZ((AL;s; = i) A (/\7;“7?3_1 —sj = t5)).
Finite-tree solvability of I' corresponds to validity of « in ﬁéb&‘”. Obviously arbitrary
existential sentences may be represented as disjunctions of list constraint systems.

Corollary 3.2 The existential theory of the algebra 'EEL&F 1s decidable.

To establish Theorem 3.1 we shall give an algorithm that decomposes a flat nontrivial
list constraint system I' = I'g into a finite set of output pairs. We shall see that I'g
is solvable iff both components of an output pair are solvable. Moreover, solvability
of both output components will be decidable. Before we describe the steps of the
algorithm we shall explain the nature of three types of constraint systems that arise
from decomposition. With T'(2, X) we denote the set of all terms with variables in X
and function symbols in Q. A VC-declaration (VC stands for variable-constant) is a
pair (Zy, Z¢) representing a partition Z = ZyUZ¢ of a finite set of variables Z C X.
In the presence of a VC-declaration (Zy, Z¢), the variables in Z¢ are not instantiated
in solutions, which means that they are treated as constants.

Free disunification problems with linear constant restriction

A free disunification problem with linear constant restriction is a quadrupel
(Tp, Zyv, Zc, <) where

o (Zy,Zc) is a VC-declaration of Z C X,

o I'; is a finite set of equations and disequations between terms in
T(XpUZco,Zy) and

e < is a linear ordering on Z.

The first component of each output pair has this complex form. A solution of this
problem is a T'(X p, X)-substitution o, not instantiating “constants” in Z¢, which solves
all equations and disequations of 'y such that y € Z- does not occur in z? for all z < y
(z € Zy). A solution o is called restrictive if 7 ¢ X for all x € Zy .

The notion of a disunification problem with linear constant restriction and the
notion of a restrictive solution have been introduced in [2] in the context of disunification
modulo equational theories. There it has been shown (proof of Corollary 4.8):

Lemma 3.3 It is decidable whether a free disunification problem with linear constant
restriction has a restrictive solution.

Flat pure list constraint systems with linear constant restriction

A flat pure list constraint system with linear constant restriction is a quadrupel
(I'r, Zv, Z¢c, <) where

ot

o (Zy,Zc) is a VC-declaration of Z C X,

e T'; is a finite set of of disequations of the form = # y (z,y € Zy) and of equations
of the form z =1lj0...0l, (n > 0) where x € Zy and the [; have the form z € Zy
or the form [y] with y € Z = Zy U Z¢,

e < is a linear ordering on Z.

Let M be a set. With £M we denote the set of all finite, possibly nested lists where

nested,fin

elements that are not itself lists are in M. This domain contains only finite trees.

A solution of (T'r, Zv, Z¢, <) is a mapping o which assigns to every variable © € Zy
an element 27 € L£X_,_, ¢, such that the canonical extension of o on pure L-terms? solves
all equations and disequations of I';, and the constant ¢ € Z does not occur in z7 for
all © < ¢ (z € Zy). The solution o is called compatible with < if x{ is never a proper
subtree of z§ for 2 < 1 (z1, 22 € Zy).

In the third step of the algorithm, systems of this type are created. Nested lists as
solution values may be necessary since variables may occur among the elements of lists
in equations. This is the important distinction to the following type of system.

Shallow pure list constraint systems with linear constant restriction

Let (I'y, Zv, Zc, <) be a flat pure list constraint system with linear constant restriction.
The shallow version (U, Zy, Zc U Zy,<) of (U'r, Zv, Z¢, <) is obtained by

(1) introducing the new set of constants Z1 ={z;x € Zy},

(2) replacing every term [z] in I';, with an embedded occurrence of a variable z € Zy
by an expression [z],

(3) using the linear ordering < which is the extension of < on Zy U Z¢ U Zy where
each constant @ is the immediate successor of z with respect to < (z € Zy).

XUZV

The second components of the output pairs will have this form. The domain L3,

contains all lists of the form [l1,...,l,] (n > 0) with elements I; € X U Zy.

A solution of ('FL. Zv,Zc U Zy, <) is a mapping o which assigns to every z € Zy
a value z7 € Lfﬁfz" such that the canonical extension® of o on terms in I';, solves all
equations and disequations of I'; and the constant ¢ € Z¢ U Zy does not occur in =7

for all z<c (x € Zy).

Lemma 3.4 [t is decidable whether the shallow version of a flat pure list constraint
system with linear constant restriction has a solution.

*Where ¢” :=cfor c € Zc, [l1,...,1,]° =[I7,...,15] and (I; o l3)7 is the concatenation of I and .
*Defined as above, with @7 = & for & € Zy-. Note that the canonical extension of o assigns to both

. . : . . AXUZy . . "
sides of each equation of I'y again values in L7 77" since there are no variables in element positions.

Proof. (Sketch). Suppose that I'; has m disequations. It is first shown that
solvability of (f‘;,., Zv, ZcUZy, <) may be tested in a domain EﬂX;t’UZCUZV where Xy C X
has 2m + 1 elements and Xy N Z~ = (). Now we have a finite solution alphabet, and the
method of Biichi and Senger ([3]) may be used to compute an equivalent finite set of
systems with equations only. This latter systems are like word unification problems with
linear constant restriction, where solvability is known to be decidable (see [1]). (More
details of all steps can be found in [2] where the almost identical case of associative

disunification with linear constant restriction has been treated.) O

3.1 First decomposition algorithm (Algorithm 1)

The input of Algorithm 1 is a flat and nontrivial list constraint system I'g.

Step 1: variable identification. Consider all partitions of the set of all variables
occurring i I'g such that distinct variables x,y are in the same class of the partition
if the system contains the equation © = vy, and distinct variables x,y are in distinct
classes of the partition if the system contains the disequation x # y. Fach of these
partitions yields one of the new systems 'y as follows. The variables in each class of
the partition are “identified” with each other by choosing an element of the class as
representative, and replacing in the system all occurrences of variables of the class by
this representative. Afterwards, trimal equations © = x are erased. In addition, we add
a disequation x # y for every pair x,y of distinct representatives to the system if this
disequation is not already present. Systems that are triwial now are excluded.

In each system I'1, the right-hand side of every equation is either an F-term or an L-term
(but not a variable). We may speak about F-equations and L-equations accordingly.

Step 2: choose ordering, type variables. For a given system 'y, consider all pos-
sible strict linear orderings < on the variables of the system. Guess a type assignment
which maps every variable x to an element type(x) of {F, L}, satisfying the following re-
strictions: of © has type L with respect to T'y, or if I'| contains an equation x =t where
t is a non-variable L-term (resp. F-term), then type(x) = L (resp. type(z) = F).
Each pair (<, type) yields one of the new systems obtained from the given one.

For a system I'> obtained by Step 2. let X3 r (X3 1) denote the set of variables of type
F (L) occurring in I'y. Let X9 = X3 7 U X3 . Now left-hand sides of F' (L) equations
are in X3 p (X371).

Step 3: split systems. A given system D'y is divided into two systems 'y =
I3 p U3 The “free” subsystem LI's p contains all F-equations of I's, the “L7-
subsystem I's 1 contains all L-equations of I's. Disequations with at least one variable
of type F are added to the free subsystem, the other disequations are added to T'3p.
Now (T'3.p, X3, 7, X3.1,<) is a free disunification problem with linear constant restric-
tion and ('3 1, X310, X3 1, <) is a flat pure list constraint system with linear constant
restriction.

Step 4: dot embedded variables. In this step we compute the shallow version
(T30, X3, X3, U X3.1,<) of the flat pure list constraint system with linear constant
restriction, (I's 1, X317, X3 1, <), obtained in the previous step.

Terms of I.‘37 7, have the form Iy o+ 0, (m > 0) where the subterms [; are variables
x € X3, or lists [t] where t € X3 p U X3 1 is a constant.

Note that Steps 1 and 2 are non-deterministic. The output of the algorithm consists
of all pairs
(C3,p, X300, X3,0. <), (I'3,1,, X3,0, X3, U X3,1,, <))

which are obtained from I'g by means of the Steps 1 — 4. O

Theorem 3.1 is a direct consequence of the following proposition, using Lemmata 3.3
and 3.4.

Proposition 3.5 The input system 'y has a finite-tree solution if and only if there
exists an output pair

(D30, X300, X3.0,, <), (T30, X3.1, X300 U X3, <))

such that (I's p, X3, 1, X3,1,, <) has a restrictive solution and (F;L X3, X3’FUX3’L, <)
has a solution.

3.2 Correctness of Algorithm 1

In order to prove Proposition 3.5 we shall prove four subpropositions.

Proposition 3.6 If the input system ['g is solvable, then there exists a pair
(3,7, X3,7, X3.1.<), (3.0, X310, X3,7, <))

reached after Step 3 such that (I's p, X3 7, X3,1, <) has a restrictive solution and
(Ts.1, X371, X3 F,<) has a solution that is compatible with <.

Proof. Suppose that ¢ is a solution of ['y. We have to determine choices in the non-
deterministic Steps 1 and 2 which lead—after Step 3—to a pair of systems as described in
the proposition. In Step 1 of the algorithm two variables z, y are identified iff z7 = 4.
With this choice o is a solution of I';. In Step 2 of the algorithm the linear order <
which we choose is an arbitrary extension of the partial order < defined by

x <y :& x7 is a proper subtree of y°.

A variable x receives type F iff the topmost label of 27 is in Xp. These choices
are consistent with the restrictions in Steps 1 and 2 and define a pair of systems
(T3,p. X3,7, X3,1,, <), (I'3,1,, X3.1,, X3 p. <)) which is reached after Step 3. We have to
show that these systems have solutions as described in the proposition.

Let 3 : Torer 5 X, UY be a bijection such that G(z%) = x for all z € X5. Here
Y C X is a set of variables that is disjoint to X». Since z{ # z§ for all z1,29 € X
with 1 # z2 such a bijection exists. Now § defines two projections 7 : Torer
T(EpUX31,Y) and 7p, ¢ Yrer _, psrOV

fin nested,fin

as follows:

mp(f(t,... tn) = flrp(t),...,7p(t1)) (f € Bp)
L (f(t,. .) = B(f(t,....ta)) (f€Xp)
wrll b)) = B(h...L]) (n>0)
([l 0]) = [ro(ly),...,7(ln)] (n>0).

Note that our decision concerning variable typing guarantees that the projections have
ranges as stated above. We define the assignments op : ¢ — 7wp(z?) (z € X3 p) and
or:x— wp(x%) (z € X37L) and claim that o solves the free system and o, solves the
L-system.

Let z =t be an equation of I'3 p. We know that 7 = ¢7. Since ¢ has only function
symbols from X and since mp(y?) = f(y7) =y for all y € X3, the last equality in

2F =qp(x?) =7wp(t?) = t°F

holds. Thus op solves all equations of I'3 p. Let © =l 0---0l, (n > 0) be an
equation of I'3 . The [; are variables in X3 ;, or lists [t] where t € Xo. We know that
7 =(lyo---0l,)?. Since 7r(y”) = P(y?) =y for all y € X3 p we get 272 =7y (27) =
mr((lyo---0l,)?) =nwp(I{)or---opmp(l17) = (lyo---0l,)?%. Thus o, solves all equations
of I's .

Let 21 # x2 be a disequation of I'3 po. At least one variable has type F. We have
z{ # x§. The inequality wp(z]) # mp(x9) follows immediately if both variables have
distinct type since in this case exactly one side is a variable. But the same inequality
holds also if both variables have type F' since 3 is a bijection, and since z{ does not
contain variables (i = 1,2). It follows that op solves all disequations of I'3 p. Similarly
it follows that o, solves all disequations of I'3 j,.

Let us now consider the linear constant restriction of the free subsystem. If zo €
X351, occurs in :c(fF = 7mp(x]) (1 € X3 r), then this occurrence is necessarily the result
of projecting an occurrence of 9 in x{ since £ does not contain variables. Thus z§ is a
proper subtree of ©§ and x9 < «;. This shows that op satisfies the constant restriction
of the free subsystem. Similarly it follows that or satisfies the constant restriction of
the L-subsystem. Since the 7p-projection of a tree with topmost function symbol in
Y cannot be a variable it is clear that oy is a restrictive solution. It remains to be
shown that oy, is compatible with <. Suppose that z]* is a proper subterm of z3*
(1,22 € X3.1). Thus 77 (27) is a proper subterm of 77 (23). The inverse 37! of 3 may
be considered as a substitution. It follows that z{ = (7, (m‘{))ﬁil is a proper subterm

3—1

of z§ = (7!'[1(.1’3))‘/; and therefore 1 < x2. Thus o, is in fact compatible with <. O

Proposition 3.7 If a system (I's 1, X3 1, X3 F, <) obtained as second component after
Step 3 has a solution o that is compatible with <, then the dotted system reached after
Step 4, (U's.r, X310, X3, 0 UX31.<). has a solution.

The proof is similar as the previous one. Compatibility of ¢ with < is needed to be
able to satisfy the linear constant restrictions of the dotted system that are associated
with dotted variables. Summarizing, the preceding two propositions show that the
decomposition algorithm is complete. Let us now consider soundness.

Proposition 3.8 If a dotted system (I“&L,X&L,X&F U X;;’L, <) obtained after Step 4
has a solution, then the original system (I's 1, X3 1, X3 1. <) has a solution.

Proof. Let ¢ be a solution of (I"37L, X3, X3 pU XgﬁL./ <). We may assume that

. YUX;5 pUX:
o X37L — [,ﬂm ST L

where Y C X is disjoint to Xs. We shall now use the linear order < in order to define
a partial assignment o : X3/ U Xgﬁ L — Eieie\;%ﬁi such that the restriction on X3 j—
extended canonically on pure L-terms solves (I's 1, X3 1, X3.p,<). Let © € X3, UX&L
and assume that 2z has been defined for all z € Xg,L U X&L such that z<z. We shall

also assume (*) that 27 # 29 for all z1, 20 € X3, with & > 21 # 29 < z.

If + = 2 is a dotted variable, then z is the immediate successor of z. We define
x? = 2. If © € X3, then the dotted elements of the flat list 2% are smaller than z
with respect to <. We define 27 := 297, Since the flat lists 7 and 2% are distinct it
follows easily, by (*), that 27 # 27 for all z <z, z € X3 .

We shall now prove that o is a solution of (I's 1. X3.7,, X3 r, <). Let # =lj0---0l, be
an equation of I'y 7, with counterpart # = [} o---ol/, in I's ;. We have 2% = (I{o---ol)°.
Therefore 27 = 2°7 = (I o ---0l/)%?. Each I} is in X3, or it has the form [¢] where
t € X3 UX3p. Tt follows easily that (I o---01)%7 = (ljo---0l,)7, thus o solves
x = (lyo---0l,). I'3 1, contains only disequations where both variables have type L. We
have already seen that ¢ solves these disequations. Let us consider the linear constant
restriction which is imposed by <. Let z € X3, z > € X3 ;. We know that z does
not occur in any term of the form ro for r<z, r € X3.1,. From this it follows easily that
z does not occur in z°. O

Proposition 3.9 If there exists a pair ((I's p, X350, X3, <). (I'3,1, X3.1, X3,p, <)) re-
ached after Step 3 such that (I's p, X3 r, X3.1,, <) has a restrictive solution and
(T3, X315, X3 r,<) has a solution, then Iy has a solution.

Proof. Let oy be a restrictive solution of the free disunification problem with linear
constant restriction (I'y p, X3, X3 1, <), let o, be a solution of (I'3 1, X3 1, X3 1, <).
We may assume that

or: X3 r — T(ZFUXS,L-,YF)
X3, rUYT,

nested,fin

agy, XgﬁL - L

where the sets Y = {y1p,...,ympr C X and Y, = {y11...., Yn,1,} € X are finite,

disjoint and do not contain an element of X3 U X3, UX3 /. Since X contains at least

10

one constant and one non-constant function symbol we may choose n distinct ground
terms £q,...,t, over this signature which are different from all terms 7% for z € X3 p.
Similarly we may choose m distinct nested lists I1,...,[,, where all labels have the form
[]l” (k> 0), each list I; being distinct from all lists 7" for € X3 1. Let

TFiyir L (1< <im),
oy = t (1<0<n).

We shall define a ﬂ%b&‘“'—assignmont o on Xa by induction on the linear ordering <.
Assume that 27 has been defined for all z € X5 preceding = € X» with respect to <.
We shall assume (1) that this assignment is type-conform, which means that z7 has
topmost symbol in ¥ (of the form []¥) for variables z of type F' (type L), (2) that
z{ # 2§ for all z1,2zy < =, and (3) that the terms 2z are not in {f1,.... ¢y, l1,....ln}
for z < z.

Assume that = has type ¢ € {F, L}, let ¢« # j € {F, L}. Since o; respects the linear
constant restriction of system ¢, the variables occurring in x7 are variables z € X3 ;

7i7i9 - By induction

with z < z, or variables from Y;. Thus we may define z7 = x
hypothesis, z7 € 7;§L&F for all z > z € X3 ;, thus 27 € 7;?’3&17. Since op is restrictive
and since o, ranges over lists, this assignment is type-conform and assumption (1)
holds again. Assume that 7 = 27 for some z € X5, z < z. Then z has type ¢ since o is
type-conform. By assumption (1), the maximal j-subterms of 2777

are exactly the o-images of the variables of type 7 occurring in 2% and the 7;-images of

= 27 = 7 = pOiTi0
variables y; ;. The former variables are smaller than x and the restriction of o on these
variables is injective, by hypothesis. By assumption (3), we obtain 27 and x back
from 27 = x7 just by a projection which replaces these alien subterms by their unique
7;- or g-origines. Thus x% = 27, This is a contradiction since g; solves the disequation
x # z. Therefore assumption (2) holds again. If 27 contains any variable, then z?
will have occwrrences of free function symbols and of a list symbol []¥. Therefore
% & {ty,.. .ty by IE 2% s ground, 7 = x% & {t1,... .t 01, .., lm} by
choice of the these elements. Therefore assumption (3) holds again.

We may now show that ¢ solves the system 'y which is reached after Step 2. Since
o is consistent for I'y (see (1) and the restrictions in Step 2) it is then clear that o can
be extended to a solution of I'g. By our previous considerations it remains to be shown
that o solves the equations z =t of I'y. Assume that z = is in I'3 ;, where 7 € {F, L}.
Then z% = t%. It follows that % = x%7i% = {777 = {7, For the last equality recall
that o; and 7; leave all y € X3 ; fixed while y7'77 = y7 for y € X3;. |

4 Results for Rational-Tree Solutions

Here we want to prove the following theorem.

Theorem 4.1 It is decidable if an equational list constraint system ' has a rational-
tree solution.

Corollary 4.2 The positive existential theory of the algebra TELET s decidable.

11

Before we give a second algorithm for proving these results it is instructive to recon-
sider Algorithm 1 and its soundness proof: we found that given solutions of the two
components of an output pair can be combined to yield a solution of the input system.
This solution is found by a finite recursive process along the chosen linear ordering.
The linear constant restrictions imposed on the components of the output pairs have
the effect of a partial occur check, excluding cyclic dependencies between values of
F- and L-variables. If we now ask for rational-tree solutions, cyclic dependencies are
acceptable and may be necessary. Accordingly, constant restrictions are not used in
Algorithm 2.

4.1 Second decomposition algorithm (Algorithm 2)

The wnput is a flat and nontrivial constraint system I'g without disequations. Algorithm
2 is obtained as a simplification of Algorithm 1:

e We ignore all subparts in the description of the steps of Algorithm 1 that refer to
disequations.

e In Step 2 (type variables) we do not choose a linear order on the variables.
Accordingly, the systems obtained after Step 3 have the form (I's p, X3 p, X31)
and (I's 1, X3.1. X3 r), and from (I's 1, X317, X3 r) we obtain its shallow version
(f‘qu,X;giL,ngp U X3,L)4 in StOp 4.

The output consists of all pairs ((I's r, X3,r, X3.1.), (F;gJ/,X;g’L,X;g’F U ng,)) that are
obtained from Iy by means of the new Steps 1 — 4. O

The simplification of the decomposition steps comes in parallel with a modifi-

cation of the solution domains for the systems that are reached. The free system
Y rUX

(T's,7, X3,7, X3,1) is solved in the algebra f;FU‘\g'LU) of rational trees with labels in

YpUXg3, UY, treating X3 as a set of constants. Here ¥ C X is an infinite set

. . . e e . . Y rUX, Y
of variables that is disjoint to Xs. Solvability of equational systems over 7:“FU 3LV

is decidable (see [4, 6]). Since Xp contains a constant and a non-constant function
symbol, solvability and restrictive solvability are equivalent.

Corollary 4.3 It is decidable if a system (I's p, X3 p. X3.1) has a restrictive solution.

System (I'3 1, X317, X3 r) is solved—treating X3 p as a set of constants—in the

. X3 pUY
domain £, %5, of nested lists representing rational trees with labels in ¥, U X3 pUY.

. g . . XUX3 1, .
System (I's 1, X3,1,, X3 0 U X3,1,) is solved in Lg,, S as earlier.

Theorem 4.1 is a direct consequence of the following proposition, using Corollary 4.3
and the fact that solvability of word equations is decidable ([7]).

“Defined as earlier, ignoring linear orders.

Proposition 4.4 The input I'g of Algorithm 2 has o rational-tree solution if and only
if there exists an output pair ((I's p, X3, X3 L) (F;L X3, X3, p U X5 1)) such that
(T, X3 1, X3.1,) has a restrictive solution and (Fg L, X3,1, X3, FUXg 7,) has a solution.

4.2 Correctness of Algorithm 2

Completeness of Algorithm 2 is proved in similar manner as for Algorithm 1. We omit
this part. For proving soundness let us introduce the following notation: we write
t1 =; to if the rational trees ¢; and ¢ have the same labels for all positions of length
(depth) k < i. Clearly t; = to iff | =; to for all ¢ > 0.

Proposition 4.5 If a dotted system (ll‘qu,ngL.X;;’FUX;;,L) obtained after Step 4 has
a solution, then the original system (I'3 1, X3, 1, X3, r) has a solution.

Proof. Let ¢ be a solution of (I"37L, X3, X3 rpU X3L) We may assume that

. YUX3 rUX3 T,
(o2 X37L — Lﬂat

where Y C X and X5 are disjoint. Let 7 be the assignment which maps every dotted

variable @ € Xg r todT =% Leto; =607 (i > 1). Obviously z% = z for all

1,7 > k and x € X3 . There exists a unique tree t, € E,ﬁftfdul}:(such that x% = t,
for all + > k > 1. We define 27 :=t, (r € X3). Take an equation & =1y 0---0ol, of
I'3. 1 with counterpart =1j o---0ol/ in F3L Let + > 1. For [; = l; =y € X3 we
have llai =; (7. For I; =1’ = [y] with y € X3 r we have l;ai =1 =17. For l; = [j] with
y € Xy we have 1% = [§71] = 57°7) = 571 = b7 = 7] = b =15 Thns
x7 =; 2% = (] o OI’) =;(ljo---0l,)? fori>1and o solves z =[jo---0l,. O

Proposition 4.6 If there exists a pair ((I's,p, X3,7. X3.1), (I's,1, X3.1.. X3 7)) reached
after Step 3 such that ('3 p, X3 p, X3 1) has a restrictive solution and ('3 1, X3 1, X3)
has a solution, then T'g has a solution.

Proof. Let o be a restrictive solution of (I's p, X3 7, X3,1) and let o7, be a solution
of (I'3.1,, X3,1,, X3,#). We may assume that
Y rUX3 LUY
op: Xgp — Tal
X3 pUY

nested,rat

or, X37L - L

where Y = {y1,..., ,Yn} C X is finite and Y N Xy = . Let opgr :=opUoy. Choose n
distinct ground trees tq,....t, € r“L“ Let 7 :y; — t; (1 <1 < n). We identify both
opgr, and 7 with their homomorphic extension on 7:;“” UXUY . Let 01 :=0opgr UT,
and let o; := o* (i > 1). Since op is restrictive and each list 27 (J, € X3,1) has topmost
label of the form []k we know that 2% = % for all 4,5 > k (v € X2). There exists a
L&F gnch that 27 =, t, for all 1 < k <i. We define 27 :=t,. The

restrictions in Step 2 of the algorithm guarantee that o is consistent for I';.

unique tree ¢, € 77‘

13

Let ¢ > 1. Counsider an F-equation © = f(yi,...,y,) of the system reached after
OFTO;—1 __

Step 1, I'1. If y; € X3 p, then 11/;.7’_'7(7"*1 =yl =i y;"*l_ If y; € X1,1,, then y;

y}’“l . Thus

IU =, xO'L' — wUFTUi—l — f(y‘l‘ . 5yrn,)O.FTOi_1

=i fyrey) 77 =0y)7

Therefore o solves x = f(y1,...,yn). Consider an L-equation z =y o0---0l, (n > 0)
of I'1. If I; =y € X3, then Z;Lmi_l = l;’i =1 l;’i_l. Similarly Z?L'—Ui_l =1 l?i_l for

l; =[y] with y € X3 1. If [; = [y] where y € X3 p, then ljr’mi” = lj"'”. Thus

7° = 10 = CLTOi-1 — (ll 0O---0 l”)(TLT(Tifl

=1 (lho---0l,) " ' =1 (ljo---0l,)

and o solves x =1y o---0l,. This shows that ¢ solves all equations of I'|. Thus ¢ is a
solution of I'7. It is now trivial to extend ¢ to a solution of I'. O

4.3 Problems with Disequations

Unfortunately, the treatment of disequations causes problems when we ask for rational-
tree solutions. Here is an illustrating example. The input system I'g with equations
x1 = g(y1),x2 = g(y2),y1 = [x1],y2 = [x2] and disequation x] # zo cannot be solved
in T2PF gince every solution of the equational part will identify z; and zs. If we
decompose I'y, treating disequations as in Algorithm 1, one particular output pair with
free system I's p = {z1 = g(y1),x2 = g(y2), x1 # z2} U {z; # y;:1,7 = 1,2} (constants
11,42) and with L-component l."g,L = {y1 = [z1],y2 = [x2],y1 # y2} (constants z1,z2)
is generated. Both systems are solved. Thus decomposition is no longer sound. The
reason is that validity of disequations is not preserved when we recombine solutions of
the output systems in order to obtain a solution of I'j.

Our attempts to prove decidability of the full existential theory of TEL4E have led
to a partial result only. The question can be reduced to the following problem for
word equations: given a word equation with variables z1,...x,, and given a finite set
of constraints of the form |z;| = |¢;| demanding that the length of the (words to be
substituted for the) variables z; and z; has to be the same, decide if the word equation
has a solution that satisfies these restrictions. The first reduction step is based on the
following observation.

Theorem 4.7 5 If a typed flat constraint system T has a solution, then the system
L\ (ry has a solution that is obtained from I' by replacing every disequation x # y of
' by a bounded disequation x #\,(p) y. Here x(I') = nfmb + nagi. + 1 where n..., 1s the

number of embedded variables of I' and ng, is the number of disequations of I.

®A list constraint system I' is typed if every variable occurring in T' has type F or type L. A tree
assignment ¢ solves a bounded disequation x #;, y if the trees 27 and y” have a distinct label in depth
J < k. An occurrence of a variable x in a term of t of I of the form [z] or f(...,z,...) (f € ZF) is
called an embedded occurrence of x in T

14

In a second step, bounded disequations can be eliminated for the price of introducing
length constraints of the form |z| = |y| and |z| > |y| that restrict the length of (the
values of) L-variables. For each system A with equations and bounded disequations
we obtain a finite number of systems Aq,..., A, with length constraints, preserving
solvability in both directions. Eventually a variant of Algorithm 2 may be used to
decompose the systems A; in a similar way as before, taking length constraints into
account. While the free output components take the same form as in the case of
Algorithm 2, the L-output systems may be considered as word equations with length
constraints as described above. On the level of word equations it suffices to have length
constraints of the form |z| = |y|.

The remarks given in the introduction indicate that the problem to decide solvability
of word equations with length constraints might be extremely difficult.

References

[1] F. Baader and K.U. Schulz. Unification in the union of disjoint equational
theories: Combining decision procedures. In Proceedings of CADE-11, Sprin-
ger LNCS 607, 1992.

[2] F. Baader and K.U. Schulz, “Combination Techniques and Decision Problems
for Disunification,” (extended version) DFKI Research-Report-93-05, German
Research Center for Al, Saarbriicken 1993. Short version in Proceedings RTA
93, Montreal, June 1993, LNCS. Springer, 1993, pp.301-315.

[3] J.R. Biichi, S. Senger, “Coding in the Existential Theory of Concatenation,”
Arch. math. Logik 26 (1986/7), pp.101-106.

[4] A. Colmerauer, “Equations and Inequations on Finite and Infinite Trees,”
Proceedings of the FGCS’84, pp.85-99.

[5] A. Koscielski, L. Pacholski, “Complexity of Makanin’s Algorithms,” Research
Report, Universitiy of Wroclaw (1991); preliminary version: “Complexity of
Unification in Free Groups and Free Semi-Groups,” Proceedings 31st Annual
IEEE Symposium on Foundations of Computer Science, Los Alamos (1990),
pp-824-829.

[6] M.J. Maher, “Complete axiomatizations of the algebras of finite, rational and

infinite trees”, In Proc. LICS 3, IEEE Computer Society (1988), pp.348-357.

[7] G.S. Makanin, “The Problem of Solvability of Equations in a Free Semigroup,”
Mat. USSR Shornik 32, 1977.

[8] G.S. Makanin, “Equations in a Free Group”, Izv. Akad. Nauk SSSR Ser. Mat.
46 (1982), 1199-1273; English Translation in Math. USSR Izv. 21 (1983).

[9] W.V. Quine, “Concatenation as a Basis for Arithmetic,” J. Symbolic Logic
11 (1946), pp.105-114.

15

