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introduces set-valued feature structures that interweave ordinary feature struc-tures and non-wellfounded sets, and many other suggestions for integrating setsinto logic programming exist [DOP91, DoR93].In this paper, we study techniques for combining symbolic constraints froma more general point of view. On the practical side, these considerations mayfacilitate the design and implementation of new combined constraint languagesand solvers. On the theoretical side, we hope to obtain a better understanding ofthe principles underlying existing combination methods. This should show theiressential similarities and di�erences, and clarify their limitations.When combining di�erent constraint systems, at least three problemsmust besolved. The �rst problem, namely how to de�ne the set of \mixed" constraints, isusually relatively trivial. The two remaining problems|which will be addressedin this paper|are(1) how to de�ne the combined solution structure over which the mixed cons-traints are to be solved, and(2) once this combined structure is �xed, how to combine constraint solvers forthe single languages in order to obtain a constraint solver for the mixedlanguage.The �rst part of this paper is concerned with the �rst aspect. So far, the problemof combining solution domains has not been discussed in a general and systematicway. The reason is that most of the general combination results obtained untilnow were concerned with cases where the solution structures are de�ned bylogical theories. In this case, the combined structures are de�ned by the union ofthe theories. For example, in uni�cation modulo equational theories, the singlesolution structures are term algebras T (�1;X)==E1 and T (�2;X)==E2 moduloequational theories E1 and E2. Thus, the obvious candidate for the combinedstructure is T (�1[�2;X)==E1[E2 , the term algebra modulo the union E1[E2of the theories. It is, however, easy to see that feature structures and the \non-wellfounded" solution domains (such as rational trees) mentioned above cannotbe described as such quotient term algebras. For this reason, it is not a prioriclear whether there is a canonical way of combining such structures. The sameproblem also arises for other solution domains of symbolic constraints.As a possible solution to this problem, we introduce the abstract notion ofa \free amalgamated product" of two arbitrary structures in Section 3. Whe-never the free amalgamated product of two given structures A and B exists,it is unique up to isomorphism, and it is the most general element among allstructures that can be considered as a reasonable combination of A and B. Forthe case of quotient term algebras T (�1;X)==E1 and T (�2;X)==E2 , the freeamalgamated product yields the combined term algebra T (�1[�2;X)==E1[E2 .This shows that it makes sense to propose the free amalgamated product of twosolution structures as an adequate combined solution structure.With respect to the second problem{the problem of combining constraintsolvers3{rather general results have been obtained for uni�cation in the union of3 The problem of combining constraint solvers should not be confused with kind of



equational theories over disjoint signatures [ScS89, Bou90, BaS92]. These resultshave been generalized to the case of signatures sharing constants [Rin92, KiR94],and to disuni�cation [BaS93]. Prima facie, such an extension of results seems tobe mainly an algorithmic problem. The di�culty, one might think, is to �ndthe correct combination method. A closer look at the results reveals, however,that most of the recent combination algorithms use, modulo details, the sametransformation steps.4 In each case, the real problem is to show correctness ofthe \old" algorithm in the new situation. In [BaS94a] we have tried to isolatethe essential algebraic and logical principles that guarantee that the|seeminglyuniversal|combination scheme works. We found a simple and abstract algebraiccondition|called combinability|that guarantees correctness of the combinationscheme, and allows for a rather simple proof of this fact. In addition, it wasshown that this condition characterizes the class of quotient term algebras (i.e.,free algebras), or more generally (if additional predicates are present), the classof free structures. In the above mentioned proof, an explicit construction wasgiven that can be used to amalgamate two quotient term algebras over disjointsignatures, and which yields the combined quotient term algebra as result.In the second part of this paper it is shown that the concept of a combinablestructure and the amalgamation construction can considerably be generalized.This yields combination results that apply to most of the structures mentionedabove, and which go far beyond the level of quotient term algebras. To this pur-pose, a weakened notion of \combinability" is introduced (Section 4). Structu-res that satisfy this weak form of combinability will be called simply-combinablestructures (SC-structures).5 The algebra of rational trees [Mah88], feature struc-tures [APS94, SmT94], but also domains over hereditarily �nite (wellfounded ornon-wellfounded) nested sets and lists turn out to be SC-structures. The maindi�erence between free structures (treated in [BaS94a]) and SC-structures is thatfree structures are generated by a (countably in�nite) set of (free) generators,whereas this need not be the case for SC-structures (e.g., an in�nite rationaltree is not generated|in the algebraic sense|by its leaf nodes). This di�erencemakes it necessary to give rather involved proofs [BaS94b] for facts that aretrivial for the case of free structures. Nevertheless, a variant of the amalgama-tion construction of [BaS94a] can be used to combine arbitrary SC-structuresA and B over disjoint signatures � and � (Section 5). As a �-structure (resp.�-structure), the amalgam A 
 B is isomorphic to A (resp. B). Consequently,combination problem discussed in [NeO79]. In the latter approach, techniques fordeciding validity of quanti�er-free formulas over a mixed logical alphabet are dis-cussed. Thus, variables are implicitly universally quanti�ed. Constraint-solvers, incontrast, ask for satis�ability of quanti�er-free formulas over a �xed solution domain.Hence, variables are implicity existentially quanti�ed.4 Sometimes, additional steps are introduced just to adapt the general scheme tospecial situations (e.g., [KiR94, BaS93]). For optimization purposes, steps may beapplied in di�erent orders, and delay mechanisms are employed (e.g., [Bou90]).5 It has turned out that the notion of an SC-structure is closely related to the conceptof a \uni�cation algebra" [ScS88], and to the notion of an \instantiation system"[Wil91].



pure �-constraints (resp. �-constraints) are solvable in A (resp. B) i� they aresolvable in A 
 B. If A and B belong to the subclass of strong SC-structures,then it can be shown that A
 B is in fact the free amalgamated product of Aand B as de�ned in Section 3. In this case, the amalgamation construction canbe applied iteratedly since A
 B is again a strong SC-structure.The combination scheme, in the form given in [BaS92, BaS94a], can be usedto combine constraint solvers for two arbitrary SC-structures A and B overdisjoint signatures into a solver for A 
 B (Section 6). In this general setting,we consider existential positive sentences as constraints, and the constraint sol-vers are decision procedures for validity of such formulae in the given solutionstructure. Thus, decidability of the existential positive theory of A 
 B can bereduced to decidability of the positive theories of A and B. For the case of strongSC-structures A and B, the combination method can also treat general positivesentences. Thus, in this case, decidability of the full positive theory of A
B canbe reduced to decidability of the positive theories of A and B. As one concreteapplication we show that validity of positive sentences is decidable in domainsthat interweave (�nite or rational) trees with hereditarily �nite (wellfoundedor non-wellfounded) sets and lists. For reasons of space limitation, the ratherlong and technical proofs had to be omitted here. An internal report, providingcomplete proofs, is available via ftp [BaS94b].2 Formal PreliminariesA signature � consists of a set �F of function symbols and a disjoint set �P ofpredicate symbols (not containing \="), each of �xed arity. Atomic �-formulaeare built with equality \=" or with predicate symbols p 2 �P as usual. Apositive �-formula has the form Q1u1 : : : Qkuk ', where Qi 2 f8;9g and ' isa quanti�er-free positive matrix, i.e., built from atoms using conjunction anddisjunction only. An existential positive �-formula is a positive formula wherethe pre�x contains only existential quanti�ers. Expressions A� (A�, ...) denote�-structures (�-structures, ...) over the same carrier set A, and fA (pA) standsfor the interpretation of f 2 �F (p 2 �P ) in A� . If � is a subset of the signature�, then any �-structure A� can also be considered as a �-structure, A�, byjust forgetting about the interpretation of the additional symbols.Usually, \constraints" are formulae '(v1; : : : ; vn) with free variables. Theconstraint '(v1; : : : ; vn) is solvable in A� i� there are a1; : : : ; an 2 A such thatA� j= '(a1; : : : ; an). Thus, solvability of ' in A� is equivalent to validity of thesentence 9v1 : : : 9vn '(v1; : : : ; vn) in A� . In this paper we shall always use thislogical point of view. As constraints we consider positive and existential positivesentences. A constraint is \mixed" if it is built over a mixed signature � [�.A �-homomorphism is a mapping h between two structures A� and B�such that h(fA(a1; : : : ; an)) = fB(h(a1); : : : ; h(an)) and pA[a1; : : : ; an] impliesthat pB[h(a1); : : : ; h(an)] for all f 2 �F , p 2 �P , and a1; : : : ; an 2 A. Let-ters h; g; : : :, possibly with subscript, denote homomorphisms. Whenever thesignature � is not clear from the context, expressions h� ; g� ; : : : will be used.



A �-isomorphism is a bijective �-homomorphism h : A� ! B� such thatpA[a1; : : : ; an] if, and only if, pB[h(a1); : : : ; h(an)], for all a1; : : : ; an 2 A. WewriteA� ' B� to indicate thatA� and B� are isomorphic. A �-endomorphismof A� is a homomorphism h� : A� ! A� . With End�A we denote the monoid ofall endomorphisms of the �-structure A� , with composition as operation. Thenotation M � End�A expresses that M is a submonoid of End�A. If g : A ! Band h : B ! C are mappings, then g � h : A! C denotes their composition.3 Combination of StructuresSuppose that B�1 and B�2 are two structures. In this section we shall discuss thefollowing question: What conditions should a (�[�)-structure C�[� satisfy tobe called a \combination" of B�1 and B�2 ? The central de�nition of this sectionwill be obtained after three steps, each introducing a restriction that is motivatedby the example of the combination of term algebras modulo equational theories.The structures B�1 and B�2 will be called the components in the sequel.Restriction 1: Homomorphisms that \embed" the components into the combi-ned structure must exist. If the components share a common substructure, thenthe homomorphisms must agree on this substructure.It would be too restrictive to demand that the components are substructures ofthe combined structure. For the case of consistent equational theories E;F overdisjoint signatures �;�, there exist injective homomorphisms of T (�;V )==Eand T (�;V )==F into T (� [�;V )==E[F . For non-disjoint signatures, however,these \embeddings" need no longer be 1{1. Note that even for disjoint signatures� and � there is a common part, namely the trivial structure represented bythe set V of variables. Restriction 1 motivates the following de�nition.De�nition 1. Let � and � be signatures, let � � �\�. A triple (A� ;B�1 ;B�2 )with given homomorphic embeddings h�A�B1 : A� ! B�1 and h�A�B2 : A� ! B�2will be called an amalgamation base. The structure D�[� closes the amalga-mation base (A� ;B�1 ;B�2 ) i� there are homomorphisms h�B1�D : B�1 ! D�and h�B2�D : B�2 ! D� such that h�A�B1 � h�B1�D = h�A�B2 � h�B2�D. We call(D�[�; h�B1�D; h�B2�D) an amalgamated product of (A� ;B�1 ;B�2 ).Restriction 2: The combined structure should share \relevant" structural pro-perties with the components.This principle accounts for the fact that there must be some kind of (logical,algebraic, algorithmic) relationship between the components and the combinedstructure. In the case of quotient term algebras T (�;V )==E and T (�;V )==F ,the combined algebra T (� [�;V )==E[F satis�es E [ F . In general, we cannotuse this as a condition on the structures that close the amalgamation base sinceB�1 and B�2 are not necessarily de�ned by logical theories. However, for the caseof term algebras there is an equivalent algebraic reformulation:Proposition 2. For a (� [ �)-algebra C�[� and a countably in�nite set (ofvariables) V , the following conditions are equivalent:



{ The structure C�[� satis�es all axioms of E [ F .{ For every mapping gV�C : V ! C there exist unique homomorphisms h�E :T (�;V )==E ! C� and h�F : T (�;V )==F ! C� extending gV�C.In Section 5, where we consider amalgamation of a particular type of structu-res, we shall restrict the admissible structures for closing an amalgamation base(A� ;B�1 ;B�2 ) to structures satisfying the second condition of the proposition(with B�1 ;B�2 in place of the term algebras). In the remainder of this section itis su�cient to assume that some class of admissible structuresAdm(B�1 ;B�2 ) forclosing the amalgamation base has been �xed.De�nition 3. Let (A� ;B�1 ;B�2 ) be an amalgamation base, let Adm(B�1 ;B�2 ) bea class of (�[�)-structures, to be called admissible structures. An amalgamatedproduct (D�[�; h�B1�D; h�B2�D) of (A� ;B�1 ;B�2 ) is called admissible with respectto Adm(B�1 ;B�2 ) (or simply admissible, if the class of admissible structures isclear from the context) i� D�[� 2 Adm(B�1 ;B�2 ).Restriction 3: Whenever possible, we want to obtain a most general elementamong all admissible amalgamated products of the components.In the case of term algebras, the combined algebra T (�[�;V )==E[F is not justany algebra satisfying E [ F : it is the free algebra.De�nition 4. Let (A� ;B�1 ;B�2 ) be an amalgamation base and letAdm(B�1 ;B�2 )be a class of admissible (� [ �)-structures. The admissible amalgamated pro-duct (C�[�; h�B1�C ; h�B2�C) of B�1 and B�2 over A� is called a free amalgama-ted product with respect to Adm(B�1 ;B�2 ) i� for every admissible amalgamatedproduct (D�[�; h�B1�D; h�B2�D) of B�1 and B�2 over A� there exists a uniquehomomorphism h�[�C�D : C�[� ! D�[� such that h�B1�D = h�B1�C � h�[�C�D andh�B2�D = h�B2�C � h�[�C�D.Free amalgamated products need not exist, but if they exist they are uniqueup to isomorphism.Theorem 5. Let (A� ;B�1 ;B�2 ) be an amalgamation base with �xed homomor-phic embeddings h�A�B1 : A� ! B�1 and h�A�B2 : A� ! B�2 . The free amalgama-ted product of B�1 and B�2 over A� with respect to a given class Adm(B�1 ;B�2 )is unique up to (� [�)-isomorphism.In Section 5 we shall give an explicit construction of the free amalgamatedproduct for the class of \strong SC-structures." For our standard example, termalgebras modulo equational theories, the free amalgamated product yields thecombined quotient term algebra, which shows that the above de�nition makessense:Proposition 6. Let B�1 = T (�;V )==E and B�2 = T (�;V )==F for consistentequational theories E and F . Let Adm(B�1 ;B�2 ) be the class of algebras satisfying(one of) the conditions of Proposition 2. For the amalgamation base (T (� \�;V );B�1 ;B�2 ), the free amalgamated product with respect to Adm(B�1 ;B�2 ) isisomorphic to the combined algebra T (� [�;V )==E[F .



Free amalgamation is obviously commutative if the class of admissible struc-tures satis�es Adm(B�1 ;B�2 ) = Adm(B�2 ;B�1 ). Some of our results concerningcombination of constraint solvers depend on the assumption that free amalgama-tion is associative as well. In order to guarantee associativity, some conditions onthe classes of admissible structures have to be imposed (see [BaS94b] for details).It should be noted that notions of \amalgamated product," similar to the onegiven above, can be found in universal algebra, model theory, and category theory([Mal73, Che76, DrG93]). There, however, amalgamation is typically studied forstructures over the same signature. Moreover, in most cases these structuressatisfy a �xed set of axioms (e.g., those for groups, �elds, skew �elds, etc.).4 Simply Combinable StructuresIn this section we shall introduce the concept of a simply combinable (SC-) struc-ture. This purely algebraic notion yields a large class of structures for which anamalgamated product can be obtained by an explicit construction, provided thatthe components have disjoint signatures. In this case, general techniques existthat can be used to combine constraint solvers for the components in order toobtain a constraint solver for the amalgamated structure. Many typical domainsfor constraint-based reasoning turn out to be SC-structures. Quotient term alge-bras will serve as illustrating and motivating example for the abstract de�nitions.In the sequel, let T := T (�F ; V )==E be such an algebra.Two endomorphisms of T that coincide on a set U � V of variables alsocoincide on all terms that are built over U . Abstracting this property, we arriveat the following two de�nitions.De�nition 7. Let A0; A1 be subsets of the �-structureA� , and letM� End�A.Then A0 stabilizes A1 with respect to M i� all elements h1 and h2 of M thatcoincide on A0 also coincide on A1.The reason for considering submonoids of End�A is that in some cases (such as forfeature structures) not all endomorphisms will be of interest in our context. Inthe sequel, we consider a �xed �-structure A� ;M always denotes a submonoidof End�A.De�nition 8. For A0 � A the stable hull of A0 with respect to M is the setSHAM(A0) := fa 2 A; A0 stabilizes fag with respect to Mg:The stable hull of a set A0 has properties that are similar to those of the sub-algebra generated by A0: (1) SHAM(A0) is a �-substructure of A� , and (2)A0 � SHAM(A0). In general, however, the stable hull can be larger than thegenerated subalgebra.De�nition 9. The setX � A is anM-atom set for A� if every mappingX ! Acan be extended to an endomorphism in M. If M = End�A, then X is simplycalled an atom set for A� .



For T , the set of variables V is an atom set. Two subalgebras generated bysubsets V0; V1 of V of the same cardinality are isomorphic. The same holds foratom sets and their stable hulls.Lemma 10. Let X0;X1 be two M-atom sets of A� of the same cardinality.Then every bijection h0 : X0 ! X1 can be extended to an isomorphism betweenSHAM(X0) and SHAM(X1).We are now ready to introduce the main concept of this paper.De�nition 11. A countably in�nite �-structureA� is an SC-structure i� thereexists a monoidM� End�A such that A� has an in�niteM-atom set X whereevery a 2 A is stabilized by a �nite subset of X with respect to M. We denotethis SC-structure by (A� ;M;X). If M = End�A, then (A� ;End�A;X) is calleda strong SC-structure.Examples 12 The following examples show that in fact many solution domainsfor symbolic constraints are SC-structures.� Let �F be a �nite set of function symbols. The free algebra T (�F ; V )==Emodulo the equational theory E with countably in�nite generator set V is astrong SC-structure with atom set V . The same holds for free structures, asconsidered in [BaS94a].� Let K be a �eld, let �K := f+g [ fsk; k 2 Kg. The K-vector space spannedby a countably in�nite basis X is a strong SC-structure over the atom setX. Here \+" is interpreted as addition of vectors, and sk denotes scalarmultiplication with k 2 K.� Let �F be a �nite set of function symbols, and let R�F be the algebraof rational trees where leaves are labelled with constants from �F or withvariables from the countably in�nite set (of variables) V . It is easy to seethat every mapping V ! R can be extended to a unique endomorphism ofR�F , and that (R�F ;End�FR ; V ) is a strong SC-structure. Note, however,that R�F is not generated by V .� Let Vhfs(Y ) be the set of all nested, hereditarily �nite (standard, i.e., well-founded) sets over the countably in�nite set of \urelements" Y . Thus, eachset M 2 Vhfs(Y ) is �nite, and the elements of M are either atomic elementsin Y or sets in Vhfs(Y ), the same holds for elements of elements etc. Thereare no in�nite descending membership sequences. Since union is not de�nedfor the urelements y 2 Y , the urelements will not be treated as sets here.Let X := ffyg j y 2 Y g. Let h : X ! Vhfs(Y ) be an arbitrary mapping.We want to show that there exists a unique extension of h to a mappingĥ : Vhfs(Y ) ! Vhfs(Y ) that is homomorphic with respect to union \[" andset construction f�g. Each M 2 Vhfs(Y ) can uniquely be represented in theformM = x1[ : : :[xk [fM1g[ : : :[fMlg where xi 2 X, for 1 � i � k, andwhere theMi are the elements ofM that belong to Vhfs(Y ). By induction (onnesting depth), we may assume that ĥ(Mi) is already de�ned (1 � i � l).Obviously ĥ(M) := h(x1)[ : : : [ h(xk)[ fĥ(M1)g[ : : : [ fĥ(Ml)g is one and



the only way of extending ĥ in a homomorphic way to the set M of deepernesting. For M = x 2 X we obtain ĥ(x) = h(x), thus ĥ is an extension ofh. Moreover, each mapping ĥ is in fact homomorphic with respect to union\[" and set construction \f�g". It follows easily that ĥ1 � ĥ2 is the uniqueextension of h1 � ĥ2 : X ! Vhfs(Y ), for all mappings h1; h2 : X ! Vhfs(Y ),which implies thatM := fĥ j h : X ! Vhfs(Y )g is closed under composition.Obviously, identity on Vhfs(Y ) belongs to M. Thus Vhfs(Y ), with union \["and set construction \f�g", is a strong SC-structure with atom set X.� Similarly it can be seen that the domain of heriditarily �nite non-wellfoundedsets6 over a countably in�nite set of urelements Y , with union \[" and setconstruction \f�g", is a strong SC-structure over the atom set X = ffyg; y 2Y g.� The two domains of nested, hereditarily �nite (1) wellfounded or (2) non-wellfounded lists over the countably in�nite set of urelements Y , with con-catenation \�" as binary operation and with list construction h�i : l 7! hli,are strong SC-structures over the atom set X = fhyi; y 2 Y g of all lists withone element y 2 Y . Formally, these domains can be described as the set ofall (1) �nite or (2) rational trees where the topmost node has label \h i"(representing a list constructor of varying �nite arity), nodes with successorshave label \h i", and leaves have labels y 2 Y or \h i".� Let Lab, Fea, and X be mutually disjoint in�nite sets of labels, features, andatoms respectively. Following [APS94], a feature tree is a partial functiont : Fea� ! Lab [X whose domain is pre�x closed (i.e., if pq 2 dom(t) thenp 2 dom(t) for all words p; q 2 Fea�), and in which atoms do not label interiornodes (i.e., if p(t) = x 2 X then there is no f 2 Fea with pf 2 dom(t)). Asusual, rational feature trees are required to have only �nitely many subtrees.In addition, they must be �nitely branching.We use the set R of all rational feature trees as carrier set of a structureR�whose signature contains a unary predicate L for every label L 2 Lab, anda binary predicate f for every f 2 Fea. The interpretation LR of L in R isthe set of all rational feature trees having root label L. The interpretationfR of f consists of all pairs (t1; t2) 2 R�R such that t1(f) is de�ned and t2is the subtree of t1 at f . The structure R� de�ned this way can be seen asa non-ground version of the solution domain used in [APS94].Each mapping h : X ! R has a unique extension to an endomorphism ofR� that acts like a substitution, replacing each leaf with label x 2 X bythe feature tree h(x). With composition, the set of these substitution-likeendomorphisms yield a monoidM. Thus (R� ;M;X) is an SC-structure. Inthis case, we do not have a strong SC-structure sinceR� has endomorphismsthat modify non-leaf nodes (e.g., by introducing new feature-edges for suchinternal nodes).6 Non-wellfounded sets, sometimes called hypersets, became prominent through[Acz88]. They can have in�nite descending membership sequences. The heridita-rily �nite non-wellfounded sets are those having a \�nite picture," see [Acz88] fordetails.



Now suppose that we introduce, following [SmT94], additional arity predi-cates F for every �nite set F � Fea. The interpretation FR of F consists ofall feature trees t where the root of t has a label L 2 Lab and where F is(exactly) the set of all features departing from the root of t. Let � be theextended signature. Then (R�;End�R;X) is a strong SC-structure.Let us now establish some useful formal properties of SC-structures.Lemma 13. Let (A� ;M;X) be an SC-structure.1. A� = SHAM(X) and every mapping X ! A has a unique extension to anendomorphism of A� in M.2. For all �nite sets fa1; : : : ; ang � A there exists a unique minimal �nitesubset Y of X such that fa1; : : : ; ang � SHAM(Y ). This set will be called thestabilizer StabM(a1; : : : ; an) of fa1; : : : ; ang with respect to M.Using this notion of stabilizers, the validity of positive formulae in SC-structurescan be characterized in an algebraic way. This characterization is essential forproving correctness of our combination method for constraint solvers over SC-structures. In the following lemma, letters of the form u and v (e and x) denotesequences of variables (elements) of �nite, non-�xed length.Lemma 14. Let (A� ;M;X) be an SC-structure, and let8u19v1 : : : 8uk9vk '(u1;v1; : : : ;uk;vk)be a positive �-sentence. Then the following conditions are equivalent:1. A� j= 8u19v1 : : : 8uk9vk '(u1;v1; : : : ;uk;vk),2. there exist x1 2 X; e1 2 A; : : : ;xk 2 X; ek 2 A such that(a) A� j= '(x1; e1; : : : ;xk; ek),(b) all M-atoms in the sequences x1; : : : ;xk are distinct,(c) for all j; 1 � j � k, the components of xj are not contained inStabM(e1) [ : : : [ StabM(ej�1).The role of the second condition is perhaps not easy to grasp. Consider apre�x x1; e1; : : : ;xi�1; ei�1;xi of the sequence in Condition 2. Parts (b) and(c) say that the atoms in xi do not occur in the stabilizers of the elementsx1; e1; : : : ;xi�1; ei�1 preceeding xi in the linear order. In the proof, this fact isused to show that the elements in xi may be mapped to arbitrary elements of Aby surjectiveM-endomorphisms that �x all the predecessorsx1; e1; : : : ;xi�1; ei�1at the same time.In Section 5, where we describe how to construct amalgamated productsof SC-structures, we will have to embed a given SC-structure (A� ;M;X) ina larger SC-structure (A�1;M1;X1). Given A�1, the amalgamated productwill be obtained just by introducing additional functions and relations on thisstructure. The following, rather technical lemma collects all the conditions thatare needed to establish later a collection of nice properties for the amalgam.



Lemma 15. Let (A�;M;X) be an SC-structure. Then there exists an SC-structure(A�1;M1;X1) such that:(a0) A� and A�1 are isomorphic.(a1) A� = SHA1M1(X), X � X1, and X1 nX is in�nite.(a2) (A�1;M1;X1) is strong i� (A� ;M;X) is strong.(a3) If (A� ;M;X) is a strong SC-structure, then every mapping X ! A1 hasa unique extension to a homomorphism h�A�A1 : A� ! A�1.(a4) If (A� ;M;X) is a strong SC-structure, and if X � X 0 � X1, then everybijection g0 : X ! X 0 has a unique extension to an isomorphism betweenSHA1M1(X) and SHA1M1(X 0).For the case of a term algebra modulo an equational theory, the statement of thelemma trivially holds. In fact, if V1 is any countable superset of the countablyin�nite set V , then T (�F ; V )==E is isomorphic to T (�F ; V1)==E . In the caseof SC-structures, the proof is much more involved.5 Amalgamation of Simply Combinable StructuresWe describe an explicit construction that may be used to close any amalgama-tion base where the two components are SC-structures over disjoint signatures.If both components are strong SC-structures, then this construction yields thefree amalgamated product of these structures. In the general case, the resul-ting structure also seems to play a unique role, but a precise characterization ofthis intuition has not yet been obtained. The construction is almost identical tothe amalgamation construction given in [BaS94a] for the case of free structures.There is just one essential di�erence. In [BaS94a], substructures that are genera-ted by increasing sets of free generators are used in each step of the construction.Here, in the case of SC-structures, stable hulls (as de�ned in De�nition 8) of in-creasing sets of atoms must be used instead.Let (A� ;M;X) and (B�;N ;X) be two SC-structures over disjoint signa-tures � and �. We consider the amalgamation base (X;A� ;B�), where thecommon part is just the set of atoms X. Thus, the embedding \homomor-phisms" hX�A : X ! A� and hX�B : X ! B� are given by IdX , i.e., theidentity mapping on X. In order to close this amalgamation base, we shall �rstembed A� and B� into isomorphic superstructures. Let (A�1;M1;X1) be anSC-superstructure of (A� ;M;X) satisfying conditions (a0){(a4) of Lemma 15.Analogously, there exists an SC-superstructure (B�1;N1; Y1) of (B�;N ;X)such that the corresponding properties (b0){(b4) hold.Starting fromA�0 := A� and B�0 := B�, we shall make a zig-zag constructionthat de�nes an ascending tower of �-structures A�n , and similarly an ascendingtower of �-structures B�n . These structures are connected by bijective mappingshn and gn. The combined structure is obtained as the limit structure, whichobtains its functional and relational structure from both towers by means of thelimits of the mappings hn and gn. Let X0 := Y0 := X.



n = 0: Consider A�0 = A� = SHA1M1(X0). We interpret the \new" elementsin A0 nX0 as atoms in B�1. For this purpose, select a subset Y1 � Y1 such thatY1 \ Y0 = ;, jY1j = jA0 nX0j, and the remaining complement Y1 n (Y0 [ Y1) iscountably in�nite. Choose any bijection h0 : Y0 [ Y1 ! A0 where h0jY0 = IdY0 .Consider B�0 = B� = SHB1N1(Y0). As for A0, we interpret the \new" elementsin B0 n Y0 as atoms in A�1. Select a subset X1 � X1 such that X1 \X0 = ;,jX1j = jB0 n Y0j and the remaining complement X1 n (X0 [ X1) is countablyin�nite. Choose any bijection g0 : X0 [X1 ! B0 where g0jX0 = IdX0 .n ! n + 1: Suppose that the structures A�n = SHA1M1(Sni=0Xi) and B�n =SHB1N1(Sni=0 Yi) and the atom sets Xn+1 � (X1 nSni=0Xi) and Yn+1 � (Y1 nSni=0 Yi) are already de�ned. We assume that the complements X1 nSn+1i=0 Xiand Y1 nSn+1i=0 Yi are in�nite. In addition, we assume that bijections hn : Bn�1[Yn [ Yn+1 ! An and gn : An�1 [Xn [Xn+1 ! Bn are de�ned such that(�) gn(hn(b)) = b for b 2 Bn�1 [ Yn and hn(gn(a)) = a for a 2 An�1 [Xn;(��) hn(Yn+1) = An n (An�1 [Xn) and gn(Xn+1) = Bn n (Bn�1 [ Yn):We de�ne A�n+1 := SHA1M1(Sn+1i=0 Xi) and B�n+1 = SHB1N1(Sn+1i=0 Yi) and selectsubsets Yn+2 � Y1 and Xn+2 � X1 such that Yn+2 \ Sn+1i=0 Yi = ; = Xn+2 \Sn+1i=0 Xi. In addition, the cardinalities must satisfy jYn+2j = jAn+1n(An[Xn+1)jand jXn+2j = jBn+1n(Bn[Yn+1)j, and the remaining complements Y1nSn+2i=0 Yiand X1 nSn+2i=0 Xi must be countably in�nite. Let�n+1 : Yn+2 ! An+1 n (An [Xn+1) and �n+1 : Xn+2 ! Bn+1 n (Bn [ Yn+1)be arbitrary bijections. We de�ne hn+1 := �n+1 [ g�1n [ hn and gn+1 := �n+1 [h�1n [ gn.Without loss of generality we may assume (for notational convenience) thatthe construction eventually covers all atoms in X1 and Y1; in other words, weassume that S1i=0Xi = X1 and S1i=0 Yi = Y1, and thus S1i=0Ai = A1 andS1i=0Bi = B1. We de�ne the limit mappings h1 := S1i=0 hi : B1 ! A1 andg1 := S1i=0 gi : A1 ! B1. It is easy to see that h1 and g1 are bijectionsthat are inverse to each other. They may be used to carry the �-structure ofB�1 to A�1, and to carry the �-structure of A�1 to B�1: Let f (f 0) be an n-aryfunction symbol of � (�), let p (p0) be an n-ary predicate symbol of � (�), andlet a1; : : : ; an 2 A1 (b1; : : : ; bn 2 B1). We de�nefA1(a1; : : : ; an) := h1(fB1(g1(a1); : : : ; g1(an)));f 0B1(b1; : : : ; bn) := g1(f 0A1(h1(b1); : : : ; h1(bn)));pA1[a1; : : : ; an] :() pB1 [g1(a1); : : : ; g1(an)];p0B1 [b1; : : : ; bn] :() p0A1 [h1(b1); : : : ; h1(bn)]:With this de�nition, the mappings h1 and g1 are inverse isomorphisms betweenthe (� [ �)-structures A�[�1 and B�[�1 . We take A�[�1 as the result of theconstruction.Lemma 16. A�[�1 closes the amalgamation base (X;A� ;B�).



Our assumption (a0) on A�1 shows that A� and A�1 have the same �rst ordertheory. Similarly (b0) shows that B� and B�1 or A�1 have the same �rst ordertheory. Thus, from a logical point of view the relationship between the com-ponents A� and B� and the amalgam A�[�1 is optimal. In order to obtain abetter algebraic characterization of what the above construction generates, werestrict our attention to strong SC-structures. First, we must de�ne a class ofadmissible structures. To this purpose we use the algebraic condition of Propo-sition 2:De�nition 17. For strong SC-structures (A� ;M;X) and (B�;N ;X), the classof admissible structures, Adm(A� ;B�), consists of all structures C�[� suchthat for every mapping gX�C : X ! C there exist unique homomorphismsg�A�C : A� ! C� and g�B�C : B� ! C� extending gX�C .We may now formulate our central result concerning amalgamation of strongSC-structures. In the proof, the conditions (a1)� (a4) and (b1)� (b4) that havebeen imposed onA�1 and B�1 at the beginning of the amalgamation constructionbecome relevant.Theorem 18. If (A� ;M;X) and (B�;N ;X) are strong SC-structures over dis-joint signatures, then A�[�1 is the free amalgamated product of A� and B� overX with respect to the class Adm(A� ;B�) of admissible structures de�ned above.For strong SC-structures, the amalgamation construction can be applied itera-tedly because the obtained structure is again a strong SC-structure:Theorem 19. The free amalgamated product of two strong SC-structures withcommon atom set X is a strong SC-structure with atom set X.The following theorem is needed to prove correctness of our method for de-ciding positive constraints over the free amalgamated product of two strongSC-structures with disjoint signatures.Theorem 20. Free amalgamation of strong SC-structures with disjoint signatu-res over the same atom set is associative.6 Combining Constraint Solvers for SC-StructuresLet (A� ;M;X) and (B�;N ;X) be two SC-structures over disjoint signatures�and�; letA�
B� ' A�[�1 denote the result of the amalgamation constructiondescribed in the previous section.Lemma 21. There exists a decomposition algorithm that decomposes a positiveexistential (�[�)-sentence '0 into a �nite set of output pairs (�; �), where � isa positive �-sentence, and � is a positive �-sentence, such that A� 
B� j= '0i� A� j= � and B� j= � for some output pair (�; �).



A brief description of the algorithm is given in the Appendix. A detailled de-scription of all steps can be found in [BaS94a], where the same algorithm hasbeen used in the restricted context of constraint solvers for free structures.Theorem 22. The existential positive theory of A� 
B� is decidable, providedthat the positive theories of A� and of B� are decidable.Recall that, for strong SC-structures (A� ;M;X) and (B�;N ;X), the struc-ture A� 
B� is the free amalgamated product A� �B�of A� and B� over Xwith respect to Adm(A� ;B�). In this case, our combination method is not re-stricted to existential positive sentences. The main idea is to transform positivesentences (with arbitrary quanti�er pre�x) into existential positive sentences bySkolemizing the universally quanti�ed variables. In principle, the decompositionalgorithm for positive sentences is now applied twice to decompose the inputsentence into three positive sentences �; �; �, whose validity must respectivelybe decided in A� , B�, and the absolutely free term algebra over the Skolemfunctions (here Theorem 20 becomes relevant).Theorem 23. If (A� ;M;X) and (B�;N ;X) are strong SC-structures then the(full) positive theory of A� �B� is decidable, provided that the positive theoriesof A� and of B� are decidable.In connection with the Theorems 19 and 20, this provides the basis for constraintsolving in the combination of any �nite number of strong SC-structures.Theorems 22 and 23 show that the prerequisite for combining constraint sol-vers with the help of our decomposition algorithms is that validity of arbitrarypositive sentences is decidable in both components. If we leave the realm of freestructures, not many results are known that show that the positive theory ofa particular SC-structure is decidable. One example is the algebra of rationaltrees: its full �rst order theory|like the theory of the algebra of �nite trees|isknown to be decidable [Mah88].7 In general, the problem of deciding validity ofexistential positive sentences and the problem of deciding validity of arbitrarypositive sentences in a given structure can be quite di�erent. For the case of SC-structures, however, the following variant of Lemma 14 shows that the di�erenceis not drastic.Lemma 24. Let (A� ;M;X) be an SC-structure, let8u19v1 : : : 8uk9vk '(u1;v1; : : : ;uk;vk)be a positive �-sentence, and let, for each i; 1 � i � k, xi be an arbitrary (but�xed) sequence of length juij of distinct atoms such that distinct sequences xi andxj do not have common elements. Let X1;i denote the set of all atoms occurringin the sequences x1; : : : ;xi (i = 1; : : : ; k). Then the following conditions areequivalent:1. A� j= 8u19v1 : : : 8uk9vk '(u1;v1; : : : ;uk;vk),7 Maher considers ground tree algebras, but over possibly in�nite signatures. Thereforehis result can be lifted to the non-ground case by treating variables as constants.



2. there exist e1 2 SHAM(X1;1); : : : ; ek 2 SHAM(X1;k) such thatA� j= '(x1; e1; : : : ;xk; ek).Looking at the second condition of the lemma, one sees that a positive sentencecan be reduced to an existential positive sentence where the universally quanti�edvariables are replaced by atoms (i.e., free constants), and additional restrictionsare imposed on the values of the existentially quanti�ed variables. For this reason,it is often not hard to extend decision procedures for the existential positivetheory of an SC-structure to a decision procedure for the full positive theory.This way of proceeding can, for example, be used to prove that the positivetheories of the four domains of nested, heriditarily �nite wellfounded or non-wellfounded sets or lists, as introduced in Example 12, are decidable.Corollary 25. Simultaneous free amalgamated products have a decidable posi-tive theory if the components are �nite or rational tree algebras, or nested, heri-ditarily �nite wellfounded or non-wellfounded sets or lists, and if the signaturesof the components are disjoint.7 ConclusionThis paper should be seen as a �rst step to provide an abstract framework forthe combination of constraint languages and constraint solvers. We have intro-duced the notion \admissible amalgamated product" in order to capture|inan abstract algebraic setting|our intuition of what a combined solution struc-ture should satisfy. It was shown that in certain cases there exists a canonicalstructure|called the free amalgamated product|that yields a most general ad-missible closure of a given amalgamation base.We have introduced a class of structures|called SC-structures|that areequipped with structural properties that guarantee (1) that a canonical amal-gamation construction can be applied to SC-structures over disjoint signatures,and (2) that validity of positive existential formulae in the amalgamated struc-ture obtained by this construction can be reduced to validity of positive formu-lae in the component structures. For the subclass of strong SC-structures wehave obtained stronger results. Interestingly, a very similar class of structureshas independently been introduced in [ScS88, Wil91] in order to characterizea maximal class of algebras where equation (and constraint) solving essentiallybehaves like uni�cation.8It is interesting to compare the concrete combined solution domains that canbe found in the literature with the combined domains obtained by our amalga-mation construction. It turns out that there can be di�erences if the elementsof the components have a tree-like structure that allows for in�nite paths (asin the examples of non-wellfounded lists/sets and rational trees). In these cases,frequently a combined solution structure is chosen where an in�nite number of8 The notion of an SC-structure can be considered as a sort-free version of the conceptsthat have been discussed in [ScS88, Wil91].



\signature changes" may occur when following an in�nite path in an elementof the combined domain ([Col90, Rou88]). In contrast, our amalgamation con-struction yields a combined structure where elements allow for a �nite number ofsignature changes only. This indicates that the free amalgamated product, evenif it exists, is not necessarily the only interesting combined domain. It remainsto be seen which additional natural ways to combine structures exist, and howdi�erent ways of combining structures are formally related.It should be noted that for most of the results presented in the paper the pre-sence of countably many atoms (\variables") in the structures to be combined isan essential precondition. On the other hand, many constraint-based approachesconsider ground structures as solution domains. In most cases, however, a cor-responding non-ground structure containing the necessary atoms exists. Thus,our combination method can be applied to these non-ground variants. Of course,the combined structure obtained in this way is again non-ground. However, inthe context of constraint solving this distinction is rather irrelevant: typically,\constraints" are existential positive formulae, and for existential positive for-mulae, validity in the non-ground combined structure is equivalent to validity inthe ground variant of the combined structure.9 This observation has the follo-wing interesting consequence. Even in cases where the (full) positive theory ofa ground component structure is undecidable, our combination methods can beapplied to show decidability of the existential positive theory even for the groundcombined structure, provided that the (full) positive theories of the non-groundcomponent structures are decidable. Our remark following Lemma 24 shows thatdecidability of the full positive theory of such a non-ground structure can so-metimes be obtained by an easy modi�cation of the decision method for theexistential positive case. Free semigroups are an example for this situation: thepositive theory of a free semigroup with a �nite number n � 2 of generators isundecidable, whereas the positive theory of the countably generated free semi-group (which corresponds to our non-ground case) is decidable [VaR83].References[Acz88] P. Aczel, \Non-well-founded Sets," CSLI Lecture Notes 14, Stanford Univer-sity, 1988.[APS94] H. Ait-Kaci, A. Podelski, and G. Smolka, \A feature-based constraint systemfor logic programming with entailment," Theoretical Comp. Science 122,1994, pp.263{283.[BaS92] F. Baader and K.U. Schulz, \Uni�cation in the union of disjoint equationaltheories: Combining decision procedures," in: Proc. CADE-11, LNAI 607,1992, pp.50-65.[BaS93] F. Baader and K.U. Schulz, \Combination techniques and decision problemsfor disuni�cation," in: Proc. RTA-93, LNCS 690, 1993.[BaS94a] F. Baader and K.U. Schulz, \Combination of Constraint Solving Techniques:An Algebraic Point of View," Research Report CIS-Rep-94-75, University9 We assume here that the ground structure is a substructure of the non-ground struc-ture and that \substitution" of ground elements for atoms is homomorphic.
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[Wil91] J.G. Williams, \Instantiation Theory: On the Foundation of Automated De-duction," Springer LNCS 518, 1991.Appendix: The Decomposition Algorithm Let '0 be a positive existential(�[�)-sentence, the input. We may assume that '0 has the form 9u0 
0, where
0 is a conjunction of atomic formulae.Step 1. An equivalent positive existential (� [ �)-sentence '1 is generatedwhere all atomic subformulae are pure, i.e., they are built over one signature (�or �) only.Step 2. All equations u = v between variables are removed after replacingevery occurrence of u in '1 by v. Let '2 be the new sentence obtained this way.The matrix of '2 can be written as a conjunction 
2;� ^ 
2;�, where 
2;� isthe conjunction of all atomic �-subformulae, and 
2;� is the conjunction of allatomic �-subformulae. There are three di�erent types of variables occurring in'2: shared variables occur both in 
2;� and in 
2;�; �-variables (�-variables)occur only in 
2;� (in 
2;�). Let u2;� (u2;�) be the tuple of all �-variables (�-variables), let u2 be the tuple of all shared variables. Obviously, '2 is equivalentto the sentence 9u2 (9u2;� 
2;� ^ 9u2;� 
2;�).Step 3 (non-deterministic). We choose a partition of the set of shared varia-bles. For each class of the partition, a representative is selected, and all variablesof the class are replaced by the representative. Quanti�ers for replaced variablesare removed. Let 9u3 (9u2;� 
3;� ^ 9u2;� 
3;�) denote a sentence obtained byStep 3.Step 4 (non-deterministic). We choose a label � or � for each componentof u3, and a linear ordering < on the set of these variables.Step 5. The sentence 9u3(9u2;� 
3;� ^ 9u2;� 
3;�) is split into two sentences� = 8v19w1 : : : 8vk9wk9u2;� 
3;� ; and � = 9v18w1 : : : 9vk8wk9u2;� 
3;�:Here v1w1 : : : vkwk is the unique re-ordering of u3 along <. The variables vi(wi) are the variables with label � (label �). The output sentences � and � are(not necessarily existential) positive formulae.
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