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Abstract. When combining languages for symbolic constraints, one is
typically faced with the problem of how to treat “mixed” constraints. The
two main problems are (1) how to define a combined solution structure
over which these constraints are to be solved, and (2) how to combine
the constraint solving methods for pure constraints into one for mixed
constraints. The paper introduces the notion of a “free amalgamated
product” as a possible solution to the first problem. Subsequently, we
define so-called simply-combinable structures (SC-structures). For SC-
structures over disjoint signatures, a canonical amalgamation construc-
tion exists, which for the subclass of strong SC-structures yields the free
amalgamated product. The combination technique of [BaS92, BaS94a]
can be used to combine constraint solvers for (strong) SC-structures
over disjoint signatures into a solver for their (free) amalgamated pro-
duct. In addition to term algebras modulo equational theories, the class
of SC-structures contains many solution structures that have been used
in constraint logic programming, such as the algebra of rational trees,
feature structures, and domains consisting of hereditarily finite (well-
founded or non-wellfounded) nested sets and lists.

1 Introduction

Many CLP dialects, and some of the related formalisms used in computational
linguistics, provide for a combination of several “primitive” constraint langua-
ges. For example, in Prolog IIT [Col90], mixed constraints can be used to express
lists of rational trees where some nodes can again be lists etc.; Mukai [Muk91]
combines rational trees and record structures, and a domain that integrates ra-
tional trees and feature structures has been used in [SmT94]; Rounds [Rou8§]
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introduces set-valued feature structures that interweave ordinary feature struc-
tures and non-wellfounded sets, and many other suggestions for integrating sets
into logic programming exist [DOP91, DoR93].

In this paper, we study techniques for combining symbolic constraints from
a more general point of view. On the practical side, these considerations may
facilitate the design and implementation of new combined constraint languages
and solvers. On the theoretical side, we hope to obtain a better understanding of
the principles underlying existing combination methods. This should show their
essential similarities and differences, and clarify their limitations.

When combining different constraint systems, at least three problems must be
solved. The first problem, namely how to define the set of “mixed” constraints, is
usually relatively trivial. The two remaining problems—which will be addressed
in this paper—are

(1) how to define the combined solution structure over which the mixed cons-
traints are to be solved, and

(2) once this combined structure is fixed, how to combine constraint solvers for
the single languages in order to obtain a constraint solver for the mixed
language.

The first part of this paper is concerned with the first aspect. So far, the problem
of combining solution domains has not been discussed in a general and systematic
way. The reason is that most of the general combination results obtained until
now were concerned with cases where the solution structures are defined by
logical theories. In this case, the combined structures are defined by the union of
the theories. For example, in unification modulo equational theories, the single
solution structures are term algebras 7 (X1, X)/=p and T (X, X)/=p, modulo
equational theories £y and F5. Thus, the obvious candidate for the combined
structure is 7 (X U Xy, X)/ZEluEZ , the term algebra modulo the union £y U E,
of the theories. It is, however, easy to see that feature structures and the “non-
wellfounded” solution domains (such as rational trees) mentioned above cannot
be described as such quotient term algebras. For this reason, it is not a priori
clear whether there is a canonical way of combining such structures. The same
problem also arises for other solution domains of symbolic constraints.

As a possible solution to this problem, we introduce the abstract notion of
a “free amalgamated product” of two arbitrary structures in Section 3. Whe-
never the free amalgamated product of two given structures A and B exists,
it is unique up to isomorphism, and it is the most general element among all
structures that can be considered as a reasonable combination of A and 5. For
the case of quotient term algebras 7(Xy,X)/=p and T(Xy, X)/=p , the free
amalgamated product yields the combined term algebra T(X1UX2, X) /=, p, -
This shows that it makes sense to propose the free amalgamated product of two
solution structures as an adequate combined solution structure.

With respect to the second problem-the problem of combining constraint
solvers® rather general results have been obtained for unification in the union of

3 The problem of combining constraint solvers should not be confused with kind of



equational theories over disjoint signatures [ScS89, Bou90, BaS92]. These results
have been generalized to the case of signatures sharing constants [Rin92, KiR94],
and to disunification [BaS93]. Prima facie, such an extension of results seems to
be mainly an algorithmic problem. The difficulty, one might think, is to find
the correct combination method. A closer look at the results reveals, however,
that most of the recent combination algorithms use, modulo details, the same
transformation steps.* In each case, the real problem is to show correctness of
the “old” algorithm in the new situation. In [BaS94a] we have tried to isolate
the essential algebraic and logical principles that guarantee that the seemingly
universal-—combination scheme works. We found a simple and abstract algebraic
condition called combinability that guarantees correctness of the combination
scheme, and allows for a rather simple proof of this fact. In addition, it was
shown that this condition characterizes the class of quotient term algebras (i.e.,
free algebras), or more generally (if additional predicates are present), the class
of free structures. In the above mentioned proof, an explicit construction was
given that can be used to amalgamate two quotient term algebras over disjoint
signatures, and which yields the combined quotient term algebra as result.

In the second part of this paper it is shown that the concept of a combinable
structure and the amalgamation construction can considerably be generalized.
This yields combination results that apply to most of the structures mentioned
above, and which go far beyond the level of quotient term algebras. To this pur-
pose, a weakened notion of “combinability” is introduced (Section 4). Structu-
res that satisfy this weak form of combinability will be called simply-combinable
structures (SC-structures).” The algebra of rational trees [Mah88], feature struc-
tures [APS94, SmT94], but also domains over hereditarily finite (wellfounded or
non-wellfounded) nested sets and lists turn out to be SC-structures. The main
difference between free structures (treated in [BaS94a]) and SC-structures is that
free structures are generated by a (countably infinite) set of (free) generators,
whereas this need not be the case for SC-structures (e.g., an infinite rational
tree is not generated—in the algebraic sense—by its leaf nodes). This difference
makes it necessary to give rather involved proofs [BaS94b] for facts that are
trivial for the case of free structures. Nevertheless, a variant of the amalgama-
tion construction of [BaS94a] can be used to combine arbitrary SC-structures
A and B over disjoint signatures ¥ and A (Section 5). As a Y-structure (resp.
A-structure), the amalgam A @ B is isomorphic to A (resp. B). Consequently,

combination problem discussed in [NeO79]. In the latter approach, techniques for
deciding wvalidity of quantifier-free formulas over a mixed logical alphabet are dis-
cussed. Thus, variables are implicitly universally quantified. Constraint-solvers, in
contrast, ask for satisfiability of quantifier-free formulas over a fized solution domain.
Hence, variables are implicity ezistentially quantified.
Sometimes, additional steps are introduced just to adapt the general scheme to
special situations (e.g., [KiR94, BaS93]). For optimization purposes, steps may be
applied in different orders, and delay mechanisms are employed (e.g., [Bou90]).
It has turned out that the notion of an SC-structure is closely related to the concept
of a “unification algebra” [ScS88], and to the notion of an “instantiation system”

[Wilo1].
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pure X-constraints (resp. A-constraints) are solvable in A (resp. B) iff they are
solvable in A @ B. If A and B belong to the subclass of strong SC-structures,
then it can be shown that A @ B is in fact the free amalgamated product of A
and B as defined in Section 3. In this case, the amalgamation construction can
be applied iteratedly since A @ B is again a strong SC-structure.

The combination scheme, in the form given in [BaS92, BaS94a], can be used
to combine constraint solvers for two arbitrary SC-structures A and B over
disjoint signatures into a solver for A @ B (Section 6). In this general setting,
we consider existential positive sentences as constraints, and the constraint sol-
vers are decision procedures for validity of such formulae in the given solution
structure. Thus, decidability of the existential positive theory of A @ B can be
reduced to decidability of the positive theories of A and B. For the case of strong
SC-structures A and B, the combination method can also treat general positive
sentences. Thus, in this case, decidability of the full positive theory of A® B can
be reduced to decidability of the positive theories of A and 5. As one concrete
application we show that validity of positive sentences is decidable in domains
that interweave (finite or rational) trees with hereditarily finite (wellfounded
or non-wellfounded) sets and lists. For reasons of space limitation, the rather
long and technical proofs had to be omitted here. An internal report, providing
complete proofs, is available via ftp [BaS94b].

2 Formal Preliminaries

A signature X consists of a set X' of function symbols and a disjoint set X'p of
predicate symbols (not containing “="), each of fixed arity. Atomic ¥-formulae
are built with equality “=" or with predicate symbols p € Yp as usual. A
positive X-formula has the form Qquy ... Qruy o, where Q; € {V,3} and ¢ is
a quantifier-free positive matrix, i.e., built from atoms using conjunction and
disjunction only. An ezistential positive X-formula is a positive formula where
the prefix contains only existential quantifiers. Expressions A% (A<, ...) denote
Y-structures (A-structures, ...) over the same carrier set A, and f4 (p4) stands
for the interpretation of f € ¥ (p € Yp) in A¥. If A is a subset of the signature
¥, then any Y-structure A¥ can also be considered as a A-structure, A<, by
just forgetting about the interpretation of the additional symbols.

Usually, “constraints” are formulae ¢(vy,...,v,) with free variables. The
coustraint p(vi,...,v,) is solvable in A% iff there are ai,...,a, € A such that
A¥ E ¢(ay,...,ay,). Thus, solvability of ¢ in A* is equivalent to validity of the
sentence Jvy ... 3Jv, (vy,... 7z;,,_) in A¥. In this paper we shall always use this
logical point of view. As constraints we consider positive and existential positive
sentences. A constraint is “mixed” if it is built over a mixed signature X' U A.

A Y- homomorphism is a mapping h between two structures A* and B~
such that h(fa(ai,...,an)) = fe(h{ar),...,h(a,)) and palar,...,a,] implies
that pg[h(ay),..., h{ay)] for all f € Xp, p € ¥p, and ay,...,a, € A. Let-
ters h,g,..., possibly with subscript, denote homomorphisms. Whenever the
signature ¥ is not clear from the context, expressions h*, g~,... will be used.



A Y-isomorphism is a bijective ¥-homomorphism h : A¥ — B¥ such that
palai,...,ap] if, and only if, pglh(a1),...,h(ay)], for all aj,...,a, € A. We
write A¥ ~ B¥ to indicate that A~ and B¥ are isomorphic. A Y-endomorphism
of A* is a homomorphism h* : A% — A*. With End’; we denote the monoid of
all endomorphisms of the Y-structure A%, with composition as operation. The
notation M < Endi expresses that M is a submonoid of Endfl. Ifg: A—> B
and h : B = (' are mappings, then go h: A — C' denotes their composition.

3 Combination of Structures

Suppose that Bi’ and Bj* are two structures. In this section we shall discuss the
following question: What conditions should a (XU A)-structure C*Y4 satisfy to
be called a “combination” of B{’ and B3'? The central definition of this section
will be obtained after three steps, each introducing a restriction that is motivated
by the example of the combination of term algebras modulo equational theories.
The structures B’ and B;' will be called the components in the sequel.
Restriction 1: Homomorphisms that “embed” the components into the combi-
ned structure must exist. If the components share a common substructure, then
the homomorphisms must agree on this substructure.
It would be too restrictive to demand that the components are substructures of
the combined structure. For the case of consistent equational theories F, F' over
disjoint signatures ¥, A, there exist injective homomorphisms of 7(X,V)/=
and T(A,V) /=, into T(¥ U A,V)/=,,, For non-disjoint signatures, however,
these “embeddings” need no longer be 1-1. Note that even for disjoint signatures
Y and A there is a common part, namely the trivial structure represented by
the set V of variables. Restriction 1 motivates the following definition.

Definition 1. Let ¥ and A be signatures, let I’ € YN A. A triple (AL, BY, B3)
with given homomorphic embeddings h’{ B, " Al = B and h'|_ B, " Al — B
will be called an amalgamation base. The structure D*Y4 closes the amalga-
mation base (AL, Bf, B3') iff there are homomorphisms hgl—D : B — D¥
and hg‘Q_D : BQA — DA such that hg_Bl o hgl_n = h;_% o ]7';_3\2—17- We call
(’DEUA,hﬁlfU,hﬁrD) an amalgamated product of (AL, By, B3).

Restriction 2: The combined structure should share “relevant” structural pro-
perties with the components.
This principle accounts for the fact that there must be some kind of (logical,
algebraic, algorithmic) relationship between the components and the combined
structure. In the case of quotient term algebras 7(X, V) /=, and T(A,V)/=,,
the combined algebra T(XU A, V) /=, . satisfies EU F. In general, we cannot
use this as a condition on the structures that close the amalgamation base since
B and B3' are not necessarily defined by logical theories. However, for the case
of term algebras there is an equivalent algebraic reformulation:

Proposition 2. For a (¥ U A)-algebra C¥°2 and a countably infinite set (of
variables) V', the following conditions are equivalent:



— The structure C¥Y2 satisfies all azioms of EUF.
— For every mapping gy —c : V — C there exist unique homomorphisms hy. :
T(E V)=, = C¥ and h3 : T(A,V)/=, = C2 eatending gy —c.

In Section 5, where we consider amalgamation of a particular type of structu-
res, we shall restrict the admissible structures for closing an amalgamation base
(AL B, B5') to structures satisfying the second condition of the proposition
(with B, B3 in place of the term algebras). In the remainder of this section it
is sufficient to assume that some class of admissible structures Adm(Bi", B3') for
closing the amalgamation base has been fixed.

Definition 3. Let (AL, By, B5') be an amalgamation base, let Adm(B;, B3*) be
a class of (YU A)-structures, to be called admissible structures. An amalgamated
product (D*¥Y4, hg _D» hé{ﬁD) of (AL, Bi, B3) is called admissible with respect
to Adm(Bi", B5*) (or simply admissible, if the class of admissible structures is
clear from the context) iff D¥Y2 € Adm(By, B3').

Restriction 3: Whenever possible, we want to obtain a most general element
among all admissible amalgamated products of the components.
In the case of term algebras, the combined algebra T(XUA,V)/=
any algebra satisfying F/' U F': it is the free algebra.
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Definition 4. Let (A", B{", B3') be an amalgamation base and let Adm(B{”, Bs*)
be a class of admissible (X U A)-structures. The admissible amalgamated pro-
duct (C¥V4, hgl_(—;, hAB2_(—;) of Bi and B3 over A! is called a free amalgama-
ted product with respect to Adm(By’, B3) iff for every admissible amalgamated
product (DZU‘\,hgl_D,hﬁz_D) of Bi" and B3' over A" there exists a unique
homomorphism hZ=Y4, : C¥Y4 — D*Y4 guch that h,"“a,l_D = h’%?l—(if o hzP9 and
A _pA DUA
hi,—p =hg,_cohz=D.
Free amalgamated products need not exist, but if they exist they are unique
up to isomorphism.

Theorem 5. Let (AL, B, B5') be an amalgamation base with fized homomor-
phic embeddings hﬂ_Bl : AL — BY and hﬂ-& : Al — B2, The free amalgama-
ted product of By and B3 over A" with respect to a given class Adm(By, B3')
is unique up to (XU A)-isomorphism.

In Section 5 we shall give an explicit construction of the free amalgamated
product for the class of “strong SC-structures.” For our standard example, term
algebras modulo equational theories, the free amalgamated product yields the
combined quotient term algebra, which shows that the above definition makes
sense:

Proposition 6. Let Bi = T(X,V)/=, and B = T(A,V)/=, for consistent
equational theories E and F. Let Adm(Bi’, B5') be the class of algebras satisfying
(one of) the conditions of Proposition 2. For the amalgamation base (T(X N
A V), B, BsY), the free amalgamated product with respect to Adm(Bi*, B3") is
isomorphic to the combined algebra T( XU A V)/ =, .-



Free amalgamation is obviously commutative if the class of admissible struc-
tures satisfies Adm(Bi", Bs') = Adm(Bs*, B"). Some of our results concerning
combination of constraint solvers depend on the assumption that free amalgama-
tion is associative as well. In order to guarantee associativity, some conditions on
the classes of admissible structures have to be imposed (see [BaS94b] for details).

It should be noted that notions of “amalgamated product,” similar to the one
given above, can be found in universal algebra, model theory, and category theory
([Mal73, Che76, DrG93]). There, however, amalgamation is typically studied for
structures over the same signature. Moreover, in most cases these structures
satisfy a fixed set of axioms (e.g., those for groups, fields, skew fields, etc.).

4 Simply Combinable Structures

In this section we shall introduce the concept of a simply combinable (SC-) struc-
ture. This purely algebraic notion yields a large class of structures for which an
amalgamated product can be obtained by an explicit construction, provided that
the components have disjoint signatures. In this case, general techniques exist
that can be used to combine constraint solvers for the components in order to
obtain a constraint solver for the amalgamated structure. Many typical domains
for constraint-based reasoning turn out to be SC-structures. Quotient term alge-
bras will serve as illustrating and motivating example for the abstract definitions.
In the sequel, let 7 := T (X, V)/=, be such an algebra.

Two endomorphisms of 7 that coincide on a set U C V of variables also
coincide on all terms that are built over U. Abstracting this property, we arrive
at the following two definitions.

Definition 7. Let Ay, A; be subsets of the Y-structure AE, and let M < Endf\.
Then Aq stabilizes Ay with respect to M iff all elements hy and hy of M that
coincide on Ay also coincide on A;.

The reason for considering submonoids of End? is that in some cases (such as for
feature structures) not all endomorphisms will be of interest in our context. In
the sequel, we consider a fixed Y-structure AY; M always denotes a submonoid
of Endi.

Definition 8. For 49 C A the stable hull of Ay with respect to M is the set

SH7(Ag) := {a € A; Ay stabilizes {a} with respect to M}.

The stable hull of a set Ay has properties that are similar to those of the sub-
algebra generated by Ag: (1) SHY(4y) is a T-substructure of A%, and (2)

Ay C SHfA(AO). In general, however, the stable hull can be larger than the
generated subalgebra.

Definition 9. The set X C Ais an M-atom set for A* if every mapping X — A
can be extended to an endomorphism in M. If M = Endi, then X is simply
called an atom set for A~.



For 7T, the set of variables V is an atom set. Two subalgebras generated by
subsets V5. V; of V' of the same cardinality are isomorphic. The same holds for
atom sets and their stable hulls.

Lemma 10. Let Xy, X; be two M-atom sets of AY of the same cardinality.
Then every bijection hy : Xo — X1 can be extended to an isomorphism between
SH7,(Xo) and SH,(X1).

We are now ready to introduce the main concept of this paper.

Definition 11. A countably infinite ¥-structure A* is an SC-structure iff there
exists a monoid M < Endi such that A* has an infinite M-atom set X where
every a € A is stabilized by a finite subset of X with respect to M. We denote
this SC-structure by (A¥, M, X). If M = End3, then (A%, Endy, X) is called

a strong SC-structure.

Examples 12 The following examples show that in fact many solution domains
for symbolic constraints are SC-structures.

e Let Yp be a finite set of function symbols. The free algebra 7(Xr,V)/=
modulo the equational theory E with countably infinite generator set V is a
strong SC-structure with atom set V. The same holds for free structures, as
considered in [BaS94a].

e Let K be afield, let ¥y := {+} U {sk; k € K'}. The K-vector space spanned
by a countably infinite basis X is a strong SC-structure over the atom set
X. Here “4” is interpreted as addition of vectors, and s, denotes scalar
multiplication with k € K.

o Let ¥y be a finite set of function symbols, and let R** be the algebra
of rational trees where leaves are labelled with constants from Y or with
variables from the countably infinite set (of variables) V. It is easy to see
that every mapping V — R can be extended to a unique endomorphism of
R*>F, and that (R,L’F,End%F,V) is a strong SC-structure. Note, however,
that R** is not generated by V.

o Let V() be the set of all nested, hereditarily finite (standard, i.e., well-
founded) sets over the countably infinite set of “urelements” Y. Thus, each
set M € Y/Lfs(Y) is finite, and the elements of M are either atomic elements
in Y or sets in Vi.(Y), the same holds for elements of elements etc. There
are no infinite descending membership sequences. Since union is not defined
for the urelements y € Y, the urelements will not be treated as sets here.
Let X := {{y} | y € Y}. Let h : X = V,..(Y) be an arbitrary mapping.
We want to show that there exists a unique extension of h to a mapping
o Vi (Y) = Vi (Y) that is homomorphic with respect to union “U” and
set construction {-}. Each M € V..(Y) can uniquely be represented in the
form M =z U.. .Uz U{M;}U...U{M;} where z; € X, for 1 <i < k, and
where the M; are the elements of M that belong to Vi..(Y). By induction (on
nesting depth), we may assume that iAz,(A/L:) is already defined (1 < ¢ < ).

Obviously (M) := h(x)U...Uh(z;) U{h(M,)}U...U{h(M,)} is one and



the only way of extending hin a homomorphic way to the set M of deeper
nesting. For M = # € X we obtain h(z) = h(z), thus h is an extension of
h. Moreover, each mapping h is in fact homomorphic with respect to union
“U” and set construction “{-}”. It follows easily that hy o hy is the unique
extension of hy o hy 1 X — Vi (Y), for all mappings hy,hy : X — V.(Y),
which implies that M := {IA7 h:X = V,.(Y)} is closed under composition.
Obviously, identity on V. (Y) belongs to M. Thus V. (Y"), with union “U”
and set construction “{-}”, is a strong SC-structure with atom set X.
Similarly it can be seen that the domain of heriditarily finite non-wellfounded
sets® over a countably infinite set of urelements Y, with union “U” and set
construction “{-}”, is a strong SC-structure over the atom set X = {{y};y €
Y.

The two domains of nested, hereditarily finite (1) wellfounded or (2) non-
wellfounded lists over the countably infinite set of urelements Y, with con-
catenation “o” as binary operation and with list construction (-} : { — (I},
are strong SC-structures over the atom set X = {{y);y € Y} of all lists with
one element y € Y. Formally, these domains can be described as the set of
all (1) finite or (2) rational trees where the topmost node has label “{ )”
(representing a list constructor of varying finite arity), nodes with successors
have label “( )", and leaves have labels y € Y or “( )",

Let Lab, Fea, and X be mutually disjoint infinite sets of labels, features, and
atoms respectively. Following [APS94], a feature tree is a partial function
t: Fea® — LabU X whose domain is prefix closed (i.e., if pg € dom(t) then
p € dom(t) for all words p, g € Fea™), and in which atoms do not label interior
nodes (i.e., if p(t) = @ € X then there is no f € Fea with pf € dom(t)). As
usual, rational feature trees are required to have only finitely many subtrees.
In addition, they must be finitely branching.

We use the set R of all rational feature trees as carrier set of a structure R
whose signature contains a unary predicate L for every label L € Lab, and
a binary predicate f for every f € Fea. The interpretation L of L in R is
the set of all rational feature trees having root label L. The interpretation
fr of f consists of all pairs (#;, t») € R X R such that t; (f) is defined and ¢,
is the subtree of ¢; at f. The structure R¥ defined this way can be seen as
a non-ground version of the solution domain used in [APS94].

Each mapping h : X — R has a unique extension to an endomorphism of
R* that acts like a substitution, replacing each leaf with label » € X by
the feature tree h(z). With composition, the set of these substitution-like
endomorphisms yield a monoid M. Thus (R*, M, X) is an SC-structure. In
this case, we do not have a strong SC-structure since R~ has endomorphisms
that modify non-leaf nodes (e.g., by introducing new feature-edges for such
internal nodes).

Non-wellfounded sets, sometimes called hypersets, became prominent through
[Acz88]. They can have infinite descending membership sequences. The heridita-
rily finite non-wellfounded sets are those having a “finite picture,” see [Acz88] for
details.



Now suppose that we introduce, following [SmT94], additional arity predi-
cates F' for every finite set ' C Fea. The interpretation F'r of F' consists of
all feature trees t where the root of ¢ has a label L € Lab and where F is
(exactly) the set of all features departing from the root of ¢. Let A be the
extended signature. Then (R4, End%1 X) is a strong SC-structure.

Let us now establish some useful formal properties of SC-structures.
Lemma 13. Let (AY, M, X) be an SC-structure.

1. AY = SHfA(X) and every mapping X — A has a unique extension to an
endomorphism of A¥ in M.

2. For all finite sets {aj,...,a,} C A there exists a unique minimal finite
subset Y of X such that {ay,...,a,} C SH’(‘A(Y) This set will be called the
stabilizer Stabaq(aq,...,a,) of {a1,... ,a,} with respect to M.

Using this notion of stabilizers, the validity of positive formulae in SC-structures
can be characterized in an algebraic way. This characterization is essential for
proving correctness of our combination method for constraint solvers over SC-
structures. In the following lemma, letters of the form u and v (e and x) denote
sequences of variables (elements) of finite, non-fixed length.

Lemma 14. Let (A¥, M, X) be an SC-structure, and let
Yuy vy .. Y dvy o(ug, v, .., ug, Vi)

be a positive X-sentence. Then the following conditions are equivalent:

1. AY EVu3vy . Vwavg p(ag, v, ..., ug, Vi),
2. there exist x1 € X,e1 € A,...,x; € X, e € A such that
(a) AY E o(x1,€1,-. Xk, €k),
(b) all M-atoms in the sequences Xi,...,Xy are distinct,
(¢) for all j,1 < j <k, the components of X; are not contained in
Staba(er) U... U Staba(ej_1).

The role of the second condition is perhaps not easy to grasp. Consider a
prefix xy,ey,...,X;—1,€;_1,%; of the sequence in Condition 2. Parts (b) and
(c) say that the atoms in x; do not occur in the stabilizers of the elements
X1,€1,...,Xi_1,€;_1 preceeding x; in the linear order. In the proof, this fact is
used to show that the elements in X; may be mapped to arbitrary elements of A
by surjective M-endomorphisms that fix all the predecessorsxi,e1,...,Xi—1,€;_1
at the same time.

In Section 3, where we describe how to construct amalgamated products
of SC-structures, we will have to embed a given SC-structure (A%, M, X) in
a larger SC-structure (AY, Mo, Xoo). Given A, the amalgamated product
will be obtained just by introducing additional functions and relations on this
structure. The following, rather technical lemma collects all the conditions that
are needed to establish later a collection of nice properties for the amalgam.



Lemma 15. Let (AY, M, X) be an SC-structure. Then there ezists an SC-structure
(AY . Moo, Xoo) such that:

oo Y

(a0) A* and A% are isomorphic.

(al) A = SHf\‘/lZ (X), X C X, and Xoo \ X is infinite.

(a2) (AZ, Moo, Xoo) is strong iff (A¥, M, X) is strong.

(a3) If (A¥, M, X) is a strong SC-structure, then every mapping X — A, has
a unique extension to a homomorphism hffAm tAY o AT

(af) If (A¥, M, X) is a strong SC-structure, and if X C X' C X, then every
bijection ¢y : X — X' has a unique extension to an isomorphism between

SHY; (X) and SHy (X).

For the case of a term algebra modulo an equational theory, the statement of the
lemma trivially holds. In fact, if V,, is any countable superset of the countably
infinite set V', then 7(Xp,V)/=p, is isomorphic to 7(Xp, V., )/=p. In the case
of SC-structures, the proof is much more involved.

5 Amalgamation of Simply Combinable Structures

We describe an explicit construction that may be used to close any amalgama-
tion base where the two components are SC-structures over disjoint signatures.
If both components are strong SC-structures, then this construction yields the
free amalgamated product of these structures. In the general case, the resul-
ting structure also seems to play a unique role, but a precise characterization of
this intuition has not yet been obtained. The construction is almost identical to
the amalgamation construction given in [BaS94a] for the case of free structures.
There is just one essential difference. In [BaS94a], substructures that are genera-
ted by increasing sets of free generators are used in each step of the construction.
Here, in the case of SC-structures, stable hulls (as defined in Definition 8) of in-
creasing sets of atoms must be used instead.

Let (A¥, M, X) and (B2, N, X) be two SC-structures over disjoint signa-
tures ¥ and A. We consider the amalgamation base (X, A, B<), where the
common part is just the set of atoms X. Thus, the embedding “homomor-
phisms” hx_4 : X — A% and hx_g : X — B2 are given by Idy, i.e., the
identity mapping on X. In order to close this amalgamation base, we shall first
embed A¥ and B2 into isomorphic superstructures. Let (AZ, M., X ) be an
SC-superstructure of (A¥, M, X) satisfying conditions (a0)—(a4) of Lemma 15.
Analogously, there exists an SC-superstructure (B2, N, Yo) of (B4, N, X)
such that the corresponding properties (b0) (b4) hold.

Starting from Ay := A¥ and B§* := B4, we shall make a zig-zag construction
that defines an ascending tower of Y-structures A7, and similarly an ascending
tower of A-structures B2'. These structures are connected by bijective mappings
h, and g,. The combined structure is obtained as the limit structure, which
obtains its functional and relational structure from both towers by means of the
limits of the mappings h, and g,,. Let Xy : =Y, := X.



n = 0: Consider A7 = A* = SH@;’:O (Xy). We interpret the “new” elements
in 4y \ Xy as atoms in Bé. For this plﬁ‘pose, select a subset Y7 C Y, such that
NYy =0, [Y1| = |40 \ Xo|, and the remaining complement Y., \ (Yo U Y7) is
countably infinite. Choose any bijection hg : Yo UY; = Ag where holy, = Idy,.

Consider B3* = B2 = SHb ( Yo). As for Ay, we interpret the “new” elements
in By \ Y; as atoms in Agc. Soloct a subset X; C X, such that X; N X, = 0,
Xi1| = |Bo \ Yu| and the remaining complement X, \ (X U X;) is countably
infinite. Choose any bijection gy : Xo U X| — By where go|x, = Idx,-

n — n + 1: Suppose that the structures A, = SHéf;(U:]:O X;) and B2 =
SH%Fi (UL, Y;) and the atom sets X411 C (Xoo \ Uiy Xi) and Yy C (Yoo \
UL, Yi) are already defined. We assume that the complements X \ Ujlt,l X
and Y.\ U?iol Y, are infinite. In addition, we assume that bijections h,, : B, 1 U
Y,UY,41 2 A4,and g, : A, UX,UX, 11 = B, are defined such that

(%) gn (I (b)) =bforbe B, 1 UY, and hy,(gn(a)) =a fora € A, UX,,
() hp (Vo) = An \ (A1 U X)) and gn(Xng1) = Bp \ (Bh—1 UY;).

We define A | := SHAOQ (U:H_O1 X;) and B2, = SHK’* (U"+1 Y:) and select

subsets Yn+z - lx and /\,,+2 C Xx such ‘rha‘r 1,,+z N Un+1 Vi=0=X,.u0N
Uiy Xi. Yool = |40\ (40X )|
and | X, 42| = |Bn+l\(B UY,+1)|, and the remaining complements Y OO\U’qu2
and X \ U”Jr? X; must be Countably infinite. Let

Upy1: Yog2 = Appr \ (A UXq1) and &uqr: Xpyo = Bogr \ (Br U Yoga)

be arbitrary bijections. We define h,, 1 := v,41 U g;1 Uh, and g,41 = Eppq U
h,;tUgn.

Without loss of generality we may assume (for notational convenience) that
the construction eventually covers all dtOIIlb in X, and Y,.; in other words, we
assume that ;=g Xi = X and J;2,Y; = Y, and thus U2y 4i = Ax and
U2y Bi = Bx. We define the limit mappings ho := [Jio hi : B = A and
Joo 1= U?io gi + Aew = Bso. It is easy to see that ho, and go, are bijections
that are inverse to each other. They may be used to carry the A-structure of
B2 to AZ, and to carry the X-structure of A to B2: Let f (f') be an n-ary
function symbol of A (X), let p (p') be an n-ary predicate symbol of A (X), and

let aq,...,a, € Ax (b1,...,b, € Bs). We define
fa(ar,....an) = hoo(f(goolar),. .., gc(an))),
fl/a’oe(bl-,---abn) = g'x(f_//-\w(hoo(bl)nhoo(bn)))*

p.A%[als e 7(1’71] = PB. [gx(al)a ) 1goc‘(an)]1

p'Bm [b1,...,bp] 1 = p/A%[hm(bl)7 o heo (b))
With this definition, the mappings h., and g, are inverse isomorphisms between
the (¥ U A)-structures AYY2 and BZY2. We take AYY2 as the result of the
construction.

Lemma 16. AXY4 closes the amalgamation base (X, A*¥, B4).



Our assumption (ag) on A% shows that A% and A have the same first order
theory. Similarly (bg) shows that B2 and BZ or A% have the same first order
theory. Thus, from a logical point of view the relationship between the com-
ponents A* and B2 and the amalgam A>"4 is optimal. In order to obtain a
better algebraic characterization of what the above construction generates, we
restrict our attention to strong SC-structures. First, we must define a class of
admissible structures. To this purpose we use the algebraic condition of Propo-
sition 2:

Definition 17. For strong SC-structures (A%, M, X) and (B4, A, X), the class
of admissible structures, Adm(A¥,B?), consists of all structures C¥“2 such
that for every mapping gx_c : X — (' there exist unique homomorphisms
95t AY = C¥Y and g5 _ : B2 = C2 extending gx ¢

We may now formulate our central result concerning amalgamation of strong
SC-structures. In the proof, the conditions (a;) — (a4) and (by) — (bs) that have
been imposed on A% and B2 at the beginning of the amalgamation construction
become relevant.

Theorem 18. If (AY, M, X) and (B2, N, X) are strong SC-structures over dis-
joint signatures, then AZY2 is the free amalgamated product of A¥ and B2 over
X with respect to the class Adm(A~, B?) of admissible structures defined above.

For strong SC-structures, the amalgamation construction can be applied itera-
tedly because the obtained structure is again a strong SC-structure:

Theorem 19. The free amalgamated product of two strong SC-structures with
common atom set X s a strong SC-structure with atom set X.

The following theorem is needed to prove correctness of our method for de-
ciding positive constraints over the free amalgamated product of two strong
SC-structures with disjoint signatures.

Theorem 20. Free amalgamation of strong SC-structures with disjoint signatu-
res over the same atom set is associative.

6 Combining Constraint Solvers for SC-Structures

Let (A¥, M, X) and (B2, N, X) be two SC-structures over disjoint signatures
and A; let A¥ @ B2 ~ AZY2 denote the result of the amalgamation construction
described in the previous section.

Lemma 21. There exists a decomposition algorithm that decomposes a positive
existential (XU A)-sentence po into a finite set of output pairs (a, 3), where o is
a positive X-sentence, and 3 is a positive A-sentence, such that A¥ @ B2 | ¢y

iff AY | a and B2 | B for some output pair (o, 3).



A brief description of the algorithm is given in the Appendix. A detailled de-
scription of all steps can be found in [BaS94a], where the same algorithm has
been used in the restricted context of constraint solvers for free structures.

Theorem 22. The existential positive theory of AY © B2 is decidable, provided
that the positive theories of AY and of B2 are decidable.

Recall that, for strong SC-structures (AZ., M, X)) and (Z)’A,J\”., X)), the struc-
ture AY @ B2 is the free amalgamated product A¥  B2of A*¥ and B2 over X
with respect to Adm(A*,B4). In this case, our combination method is not re-
stricted to ewxistential positive sentences. The main idea is to transform positive
sentences (with arbitrary quantifier prefix) into existential positive sentences by
Skolemizing the universally quantified variables. In principle, the decomposition
algorithm for positive sentences is now applied twice to decompose the input
sentence into three positive sentences «, 3, p, whose validity must respectively
be decided in A¥, B2, and the absolutely free term algebra over the Skolem
functions (here Theorem 20 becomes relevant).

Theorem 23. If (A¥, M, X) and (B2, N, X) are strong SC-structures then the
(full) positive theory of A¥ © B2 is decidable, provided that the positive theories
of A¥ and of B2 are decidable.

In connection with the Theorems 19 and 20, this provides the basis for constraint
solving in the combination of any finite number of strong SC-structures.

Theorems 22 and 23 show that the prerequisite for combining constraint sol-
vers with the help of our decomposition algorithms is that validity of arbitrary
positive sentences is decidable in both components. If we leave the realm of free
structures, not many results are known that show that the positive theory of
a particular SC-structure is decidable. One example is the algebra of rational
trees: its full first order theory like the theory of the algebra of finite trees 1is
known to be decidable [Mah88].” In general, the problem of deciding validity of
existential positive sentences and the problem of deciding validity of arbitrary
positive sentences in a given structure can be quite different. For the case of SC-
structures, however, the following variant of Lemma 14 shows that the difference
is not drastic.

Lemma 24. Let (A¥, M, X) be an SC-structure, let

Yuydvy .. Yudvy o(ug, vy, ..., ug, Vi)
be a positive X-sentence, and let, for each 1,1 <i <k, x; be an arbitrary (but
x; do not have common elements. Let X, ; denote the set of all atoms occurring

in the sequences Xi,...,%X; (i = 1,...,k). Then the following conditions are
equivalent:

1. A¥ BV 3vy .. Vudvg p(ug, v, ug, Vi),

7 Maher considers ground tree algebras, but over possibly infinite signatures. Therefore
his result can be lifted to the non-ground case by treating variables as constants.



2. there exist e; € SH:;‘,l(Xl’l),...,ek € SHfA(XUQ) such that
‘AL ': S‘Q(Xlaelt"' 7xktek)'

Looking at the second condition of the lemia, one sees that a positive sentence
can bereduced to an existential positive sentence where the universally quantified
variables are replaced by atoms (i.e., free constants), and additional restrictions
areimposed on the values of the existentially quantified variables. For this reason,
it is often not hard to extend decision procedures for the existential positive
theory of an SC-structure to a decision procedure for the full positive theory.
This way of proceeding can, for example, be used to prove that the positive
theories of the four domains of nested, heriditarily finite wellfounded or non-
wellfounded sets or lists, as introduced in Example 12, are decidable.

Corollary 25. Simultanecous free amalgamated products have a decidable posi-
tive theory if the components are finite or rational tree algebras, or nested, heri-
ditarily finite wellfounded or non-wellfounded sets or lists, and if the signatures
of the components are disjoint.

7 Conclusion

This paper should be seen as a first step to provide an abstract framework for
the combination of constraint languages and constraint solvers. We have intro-
duced the notion “admissible amalgamated product” in order to capture—in
an abstract algebraic setting—our intuition of what a combined solution struc-
ture should satisfy. It was shown that in certain cases there exists a canonical
structure—called the free amalgamated product—that yields a most general ad-
missible closure of a given amalgamation base.

We have introduced a class of structures—called SC-structures—that are
equipped with structural properties that guarantee (1) that a canonical amal-
gamation construction can be applied to SC-structures over disjoint signatures,
and (2) that validity of positive existential formulae in the amalgamated struc-
ture obtained by this construction can be reduced to validity of positive formu-
lae in the component structures. For the subclass of strong SC-structures we
have obtained stronger results. Interestingly, a very similar class of structures
has independently been introduced in [ScS88, Wil91] in order to characterize
a maximal class of algebras where equation (and constraint) solving essentially
behaves like unification.®

It is interesting to compare the concrete combined solution domains that can
be found in the literature with the combined domains obtained by our amalga-
mation construction. It turns out that there can be differences if the elements
of the components have a tree-like structure that allows for infinite paths (as
in the examples of non-wellfounded lists/sets and rational trees). In these cases,
frequently a combined solution structure is chosen where an infinite number of

# The notion of an SC-structure can be considered as a sort-free version of the concepts

that have been discussed in [ScS88, Wil91].



“signature changes” may occur when following an infinite path in an element
of the combined domain ([Col90, Rou88|). In contrast, our amalgamation con-
struction yields a combined structure where elements allow for a finite number of
signature changes only. This indicates that the free amalgamated product, even
if it exists, is not necessarily the only interesting combined domain. It remains
to be seen which additional natural ways to combine structures exist, and how
different ways of combining structures are formally related.

It should be noted that for most of the results presented in the paper the pre-
sence of countably many atoms (“variables”) in the structures to be combined is
an essential precondition. On the other hand, many constraint-based approaches
consider ground structures as solution domains. In most cases, however, a cor-
responding non-ground structure containing the necessary atoms exists. Thus,
our combination method can be applied to these non-ground variants. Of course,
the combined structure obtained in this way is again non-ground. However, in
the context of constraint solving this distinction is rather irrelevant: typically,
“constraints” are existential positive formulae, and for existential positive for-
mulae, validity in the non-ground combined structure is equivalent to validity in
the ground variant of the combined structure.® This observation has the follo-
wing interesting consequence. Even in cases where the (full) positive theory of
a ground component structure is undecidable, our combination methods can be
applied to show decidability of the existential positive theory even for the ground
combined structure, provided that the (full) positive theories of the non-ground
component structures are decidable. Our remark following Lemma 24 shows that
decidability of the full positive theory of such a non-ground structure can so-
metimes be obtained by an easy modification of the decision method for the
existential positive case. Free semigroups are an example for this situation: the
positive theory of a free semigroup with a finite number n > 2 of generators is
undecidable, whereas the positive theory of the countably generated free semi-
group (which corresponds to our non-ground case) is decidable [VaR83].
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Appendix: The Decomposition Algorithm Let ¢ be a positive existential
(Yu A)—sentence, the input. We may assume that yo has the form Jug vy, where
7o is a conjunction of atomic formulae.

Step 1. An equivalent positive existential (X U A)-sentence ¢ is generated
where all atomic subformulae are pure, i.e., they are built over one signature (¥
or A) only.

Step 2. All equations u = v between variables are removed after replacing
every occurrence of u in ) by v. Let @9 be the new sentence obtained this way.
The matrix of ¢, can be written as a conjunction v2 3; A ¥2,4, Where 77 5 is
the conjunction of all atomic Y-subformulae, and 2 A is the conjunction of all
atomic A-subformulae. There are three different types of variables occurring in
9 shared variables occur both in 44 » and in v, 4; Y-variables (A-variables)
occur only in 72 5 (in 72,4). Let up » (up o) be the tuple of all ¥-variables (A-
variables), let uz be the tuple of all shared variables. Obviously, @2 is equivalent
to the sentence Juy (Juz v 72,5 AJus A Y2,A)-

Step 3 (non-deterministic). We choose a partition of the set of shared varia-
bles. For each class of the partition, a representative is selected, and all variables
of the class are replaced by the representative. Quantifiers for replaced variables
are removed. Let Jug (Fuy y; 3,0 A Jus A v3,4) denote a sentence obtained by
Step 3.

Step 4 (non-deterministic). We choose a label ¥ or A for each component
of ug, and a linear ordering < on the set of these variables.

Step 5. The sentence Fuz(Juz » 73,5 A Juy 4 ~3.A) is split into two sentences

a=Vvidw, ... Vvedw,duy » 13,2, and B =3Iv,Vw,...dv,Vw,3us A 73 4.

Here viwy ... viwj is the unique re-ordering of us along <. The variables v;
(w;) are the variables with label A (label X'). The output sentences « and 3 are
(not necessarily existential) positive formulae.
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