
Caching Schema Information and Intermediate Results for
Fast Incremental XML Query Processing in RDBSs

Felix Weigel1 Klaus U. Schulz1

Centre for Information and Language Processing
University of Munich (LMU), Germany
{weigel,schulz}@cis.uni-muenchen.de

ABSTRACT
Many index structures and algorithms have been proposed
for efficient query processing in XML databases. However,
experience with view-based query answering in RDBSs shows
that the incremental evaluation based on cached query re-
sults can substantially improve the performance compared
to the evaluation from scratch. The main problems related
to caching are: (1) to determine which cache entries contain
the desired data, and (2) to choose those from which the
data can be computed with the least execution cost. Most
approaches to XML query caching have addressed the first
issue intensionally by comparing query expressions, which is
exponential while tending to ignore valuable cache contents,
and have ignored the second. This paper presents a new
XML query cache which not only contains the final results
of prior queries, but also intermediate “snapshots” of the
data obtained throughout the evaluation process, as well as
a compact summary of their structure (schema). Where the
final result of a restrictive query in the cache may be useless,
intermediate (partial) matches are much more likely to over-
lap with subsequent queries. Schema information allows to
compare queries extensionally without accessing the actual
results in the cache and to retrieve the relevant part of the
cache contents, even where a purely intensional approach
fails. We also explain query planning and cost estimation
for the evaluation from cache and from scratch in an RDBS.
Extensive experiments and a cost/benefit analysis illustrate
the efficiency, effectiveness and scalability of our approach.

1. INTRODUCTION
As more and more large collections of XML documents

become available, XML query processing is receiving much
attention and many index structures and algorithms have
been proposed for efficient search in XML databases with ei-
ther a native [1, 2, 3, 4] or a relational data model [5, 6, 7, 8,
9, 10]. However, these approaches only cover the evaluation
“from scratch”, disregarding previously computed query re-
sults which may contain some or even all hits to a new query
being processed. Experience with view-based query answer-
ing in RDBSs [11] shows that the incremental evaluation
based on cached query results can substantially improve the
performance compared to the evaluation from scratch. The
main problems related to caching are similar both for re-
lational and XML data: (1) to determine which cache en-
tries contain (part of) the desired data, and (2) to choose

1This work was supported by Deutsche Forschungsgemein-
schaft (DFG). The authors thank the DFG for the support.

those cache entries from which the final result can be ob-
tained with the smallest computational and I/O effort. Yet
for accelerating XML search it is not enough to apply tech-
niques developed for view-based query answering in RDBSs
to XML data stored as tuples. An explicit representation
of its hierarchical structure is needed to decide if and how
some cached query results can contribute to answering a
given new query Qn (except in the trivial case where the
same query is asked repeatedly). A truly incremental eval-
uation exploits containing or, more generally, overlapping
queries, i.e., those which may not be exactly equal to Qn ,
but whose results sets in the cache nevertheless include all
(containment) or, for overlap, at least some or some parts
of the requested data. Results of containing queries must
be purged of false positives w.r.t. Qn . Exploiting overlap-
ping queries is more challenging since they may also yield
only a partial evaluation to be completed in following steps,
perhaps by accessing the full data set. The result of an
overlapping query Q may be incomplete in two ways: not
necessarily all parts of Qn are matched in Q , and also en-
tire hits can be missing (which might be obtained from other
cached queries, though). Unlike prior work addressing only
query containment, where all desired data is subsumed by
the result of a single cached query, we consider the more
general overlap problem because (a) completing partial and
retrieving missing matches is usually still faster than an-
swering Qn from scratch; (b) the cached part of the result is
quickly available while the evaluation of the missing part is
going on in the background; (c) in top-k search those hits
retrieved from cache may even suffice to fulfill the request.

Main idea and contributions
Schema information.A number of techniques for incre-
mental XML querying have been proposed [12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23], some with the label semantic
caching. Most of them address the query containment prob-
lem intensionally1, i.e., by comparing only the query expres-
sions, which requires exponential time for tree- and graph-
shaped conjunctive regular path queries (including XPath
queries) [13]. However, a purely intensional query compar-
ison fails to recognize containing queries in the cache when
they have additional constraints (say, an extra node) not
mirrored in the new query. Moreover, from intensions alone
one cannot decide whether a non-containing cached query

1By intension we mean an abstract description of data (e.g.,
query results) in terms of desired properties (like structure
and keywords specified by a query), while extension denotes
some representation of the data with such properties.

overlaps with Qn , nor extract its relevant results from the
cache. (Sect. 3 gives an example.) To handle such queries,
we need to know the actual data, i.e., compare the query ex-
tensions (results), which is of course infeasible if it amounts
to an evaluation from scratch. Yet we show that schema
information summarizing the document structure allows to
detect various cases of containment and overlap missed by
the purely intensional approaches, and to retrieve all cache
contents needed to compute the final query result. From the

Fig. 1: Combined
evaluation with
and without cache.

DataGuide [1], a compact representa-
tion of all distinct label paths in the
documents, we derive schema hits, i.e.,
concise structural views on query ex-
tensions. Each of the schema hits
for a query Q represents a subset of
hits to Q with a specific structure (its
matches). In [10], we have shown
how to use schema hits for accelerat-
ing XML query processing from scratch
in an RDBS. In this paper, we use
the same schema information for ef-
ficiently detecting query containment
and overlap through a combined inten-
sional and extensional comparison, ex-
ploiting the fact that even when two
queries cannot be compared directly,
their schema hits can. The schema hits
of a cached query Q are held in a main-
memory index structure for fast cache
search without access to the actual
query results residing on disk. Com-
paring the schema hits of Qn and Q
may reveal that while the matches to
some schema hits to Qn must be com-
puted from scratch, others are (per-
haps partially) contained in the match
set of a schema hit to Q ; in other
words, Q overlaps with Qn . Similarly,
if the matches to all schema hits of Qn

are fully contained in Q ’s match sets,
then Q contains Qn . We present an in-
tegrated evaluation process for retriev-
ing part of the final result of Qn from
one or more cached queries and the
rest from scratch. Fig. 1 sketches how
both threads share common steps, e.g.,
schemamatching or query planning.

Intermediate results.A second contribution is motivated
by the observation that even when the final result to a
cached query Q is too restricted for Qn , a partial evalu-
ation of Q may yield partial matches to Qn . Therefore we
also store and retrieve intermediate results obtained during
the evaluation of cached queries. To the best of our knowl-
edge, all existing XML caches cover only the final results
of earlier queries. However, queries with branching nodes
are typically evaluated in a sequence of steps (e.g., path- or
edge-wise) each producing a set of partial matches to the
query. While the final result of a restrictive query in the
cache may be useless for many new queries, the intermedi-
ate matches are much more likely to overlap with subsequent
queries (for an example see Sect. 3). Therefore we store mul-
tiple “snapshots” of a query result as it evolved during the

evaluation of a cached query. We propose special techniques
to avoid a cache blow-up in space. The information which
snapshots (i.e., intermediate or final results) are available for
a given query is derived from the query plan used to obtain
them, and annotates the schema hits in the main-memory
part of the cache. Thus alternative plans for answering the
current query based on the cache are created and compared
in terms of join costs, in order to exploit the most useful
cache contents.

Methodology and evaluation.While the benefit of incre-
mental query answering is obvious – faster processing due
to fewer computational and I/O operations – the cost is
often ignored. The third contribution therefore concerns
the evaluation methodology: we identify different cost mea-
sures and optimization goals for XML query caching, and
locate our approach in the resulting trade-off both through
a cost/benefit analysis and an experimental evaluation. The
notion of cache support is introduced which quantifies how
useful the available cache contents are for a given query.
In two different experiments we study how cost and bene-
fit change as a function of the cache support. A small-scale
test simulates typical query editing operations, say, in a user
session with relevance feedback. Then, in a large-scale ex-
periment a randomly generated query workload is evaluated
against different stages of an evolving synthetic query cache.
We find that given a sufficient cache support, the benefit of
incremental processing often outweighs by far the cost, with
performance gains of more than one order of magnitude.
When the cache does not contain useful results, the over-
head caused by the unsuccessful cache search increases with
the number of schema hits to be checked, not the overall
cache size, thanks to our index structure.

The paper is organized as follows. First some preliminar-
ies are defined, including the data and query model. Sec-
tion 3 gives an overview of our approach and introduces the
example used throughout the paper. Section 4 briefly ex-
plains how we process XML queries from scratch, which is
needed for the detailed description of our incremental tech-
nique in Section 5. Section 6 reports on the experimental
results and discusses a couple of optimizations. Finally, Sec-
tion 7 reviews related work before we conclude in Section 8.

2. PRELIMINARIES
Let Λ be a finite alphabet of node labels. A document tree

is a finite ordered rooted tree D = 〈E, r , Child, NextSib, λ〉
where E is the finite and non-empty set of nodes (elements)2,
Child is a binary relation on E such that 〈E, Child, r〉 is an
unordered rooted tree with root r , NextSib ⊆ E ×E relates
a child to its immediate right sibling in the obvious way,
and λ : E → Λ assigns a label λ(e) ∈ Λ to each node
e ∈ E. The label path of any element e ∈ E is the sequence
of labels λ(e0) · · ·λ(ek) of all elements r = e0, . . . , ek = e
on the path from the root down to element e (i.e., where
〈ei, ei+1〉 ∈ Child for all 0 ≤ i < k). Let P be the set of
distinct label paths in D . Then the function π : E → P

maps any element e ∈ E to its unique label path in D .
Fig. 2 a. shows a heterogeneous document tree (node IDs
are explained later).

The schema tree (DataGuide [1]) for D is the finite rooted

2For simplicity, we refer to document nodes as elements in
the sequel. XML attributes are treated analogously.

a. document tree D b. schema tree S

c. matches to χ
Qn

1 d. matches to χ
Qn

2

e. matches to χQ f. matches to χQ′

Fig. 2: A sample document (a.) and schema (b.) and schema hits for the queries from Fig. 3 with their matches (c.–f.).

unordered node-labelled tree S = 〈P, π(r), Child ′, λ′〉 whose
nodes are the label paths in D and whose root is the label
path of the root r in D . Fig. 2 b. shows the schema tree for D
in a. The labelling function λ′ maps a label path p ∈ P to
the last symbol l ∈ Λ in p. For any two label paths p1

and p2, 〈p1, p2〉 ∈ Child ′ ⊂ P × P iff there exists a label
l ∈ Λ such that p2 = p1l. Note that for elements e1, e2 ∈
E, Child ′(π(e1), π(e2)) is necessary, but not sufficient for
Child(e1, e2). If Child ′(p1, p2), Sibling ⊂ P × P relates p2

to all other children of p1 (recall that S is unordered).
Besides Child, NextSib and their reverse counterparts (i.e.,

Parent and PrevSib, resp.), we also support binary rela-
tions Following and NextElt (document order) as well as
their inverses (Preceding and PrevElt, resp.). This covers
an important XPath fragment similar to Core XPath [24].
For all relations except Following, Preceding and Sibling,
lower and upper proximity bounds are defined as follows:
R

j
i =

S

i≤k≤j Rk where Rk denotes the k -fold composition

R◦· · · ◦R of R. Thus R is equivalent to R1
1. The symbol ∗

acts as a “don’t care” bound. For instance, Child corre-
sponds to the XPath axis child, Child∗

1 to descendant and
Child∗

0 to descendant-or-self. The remaining XPath axes are
modelled in [10] using unary relations for the type, label
and level of elements (with disjunction). To capture the tex-
tual contents of XML documents, we define unary relations
governk ⊂ E and containk ⊂ governk for each keyword k
in the set K of keywords occurring in the documents. For
any e ∈ E, e ∈ containk iff k occurs directly in e, and
e ∈ governk iff there is an e ′ containing k s.t. Child∗

0(e, e ′).
Keyword con-/disjunctions are treated in the obvious sense.

A query Q is a pair 〈Qv, Qc〉 where Qv is a finite and non-
empty set of query nodes and Qc is a finite and non-empty
set of constraints of the form R1(q) or R2(q , q ′) s.t. q , q ′ ∈
Qv and R1, R2 are unary and binary relations, respectively.
Note that the resulting query graph 〈Qv, Qc〉, illustrated in
Fig. 3 a.–c., must be connected but not necessarily acyclic.
A matching of a query Q against D is a mapping µ : Qv → E

such that µ(q) ∈ R1 for each unary constraint R1(q) ∈ Qc,
and analogously 〈µ(q), µ(q ′)〉 ∈ R2 for all binary constraints
R2(q , q ′) ∈ Qc. The answer (result) for Q in D , ans(Q), is
the set of µ-images of Qv (matches) for all matchings µ.
The answer to Qn in Fig. 3 c., e.g., consists of the subtrees
a2, a3, a4 of D in Fig. 2 a.

As a structural summary of the documents [1], the schema
tree only reflects some of the relations just introduced. The
following key definitions separate query constraints that can
be matched against the schema tree S from those which must
be checked on the document level:

Definition 1. The set of S-constraints to be matched

against the schema tree comprises (1) Parent′
j
i and Child ′j

i ,
(2) Sibling, (3) label, type and level constraints (i ≤ j ∈ IN).

Definition 2. The set of D-constraints to be matched
against the document tree comprises (1) Parent

j
i and Child

j
i ,

(2) containk , governk , (3) NextSib
j
i , PrevSib

j
i , (4) NextElt

j
i ,

PrevElt
j
i , (5) Following, Preceding (i ≤ j ∈ IN , k ∈ K).

For matching S-constraints against the schema tree, we de-
fine µS : Qv → P analogously to µ, and call the µS-images

of Q its schema hits. The two schema hits χ
Qn

1 , χ
Qn

2 for Qn

are shown in Fig. 2 c.–d. (left-hand side). Since each match
a ∈ ans(Q) corresponds to exactly one schema hit consisting
of the label paths in a, a subset of schema hits for Q parti-
tions ans(Q) in the obvious sense (while other schema hits
may have no instances in D). For a schema hit χ, ansQ(χ)
denotes the subset of ans(Q) corresponding to χ (its matches
for Q , see the right-hand side in Fig. 2 c.–f.). We drop the
subscript to ans when Q is clear from the context. For in-

stance, ans(χQn

1) = {a2, a3} and ans(χQn

2) = {a4}.

3. OVERVIEW AND EXAMPLE

3.1 Schema information in the cache
Schema information is useful for incremental query pro-

cessing because it helps to solve the overlap problem (Sect. 1)
for queries which are hard to compare on a purely intensional
basis. For instance, consider the three queries in Fig.3 a.–c.
which represent the intensional viewpoint. Assume that the
final results of Q and Q ′ have already been retrieved and
stored in the query cache (ignoring its exact structure for the
moment). Obviously the third query Qn cannot be proved
to be contained in any of the cached queries from the inten-
sions alone: the keyword constraints “Lee” and “female” are
more restrictive and the label disjunction gender∨ sex less
restrictive than Q and Q ′. Thus we cannot decide whether
the three result sets overlap, nor retrieve exactly the inter-
section of Qn with Q or Q ′, unless we compare the actual
results in the documents. Since this would require Qn to be
evaluated from scratch, the cache contents seem useless for
answering Qn . However, below we show how to translate
the intensions of all three queries to extensional constraints
on the schema level, where they are compared in order to
obtain part of the answer to Qn (namely, a2, a3) from the
cache at low computational and I/O cost.

In many situations the schema information is indispens-
able for exploiting cache contents. For a cached query Qc

and a new query Qn whose intensions tell nothing about in-
clusion or overlap, schema hits may show whether Qc nev-

a. cached query Q b. cached query Q ′ c. new query Qn

d. Q and χQ e. Q ′ and χQ′

f. Qn and χ
Qn

1

g. Qn and χ
Qn

2

Fig. 3: Sample queries against the docu-
ment tree in Fig. 2: a.–c. intensions; d.–g.
after schematization with the schema hits
in Fig. 2 c.–f. (binary constraints normal-
ized, labels shown for convenience). Qn

has two schematizations for χ
Qn

1 , χ
Qn

2 .

ertheless contains Qn , or else which parts of ans(Qn) are
missing in ans(Qc). Typical cases include the following:

• Qn allows Parent∗1 where Q required Parent (similar
for Child and other proximity bounds)

• Qn has a * where Q required a specific label/type/level

• Qn accepts a superset of the labels specified in Q

• any combination of the above

In general descriptive schemata like DataGuides, as up-to-
date summaries of the current document structure, allow to
detect more of the reusable cache contents than prescriptive
schemata like DTDs or XSDs, which are often too general.

Evaluating a query Qn from scratch is done in two phases:
during schema matching, we match its S-constraints against
the schema tree, which produces the schema hits introduced
above. Then during document matching we successively re-
trieve the occurrences of these schema hits while match-
ing Qn ’s D-constraints in an interleaved process. Details are
given in Sect. 4; suffice it to say here that matching queries
against the small schema tree can be done very fast, while
document matching may involve expensive joins with the full
data set. To rephrase the caching problem, we would like to
reuse (maybe partial) occurrences of (at least some) schema
hits from cached queries with constraints similar to Qn , and
match only the missing constraints from Qn against them.
S-constraints play an important role in efficiently finding
suitable queries in the cache. In the sequel we assume that
every query has at least one binary S-constraint (caching
queries without Parent and Child edges is future work).

A simple example.Consider a cached query Qc that looks
like Qn (Fig. 3 c.) without keyword constraints. Clearly Qc

and Qn have identical S-constraints and hence the same

two schema hits χ
Qc

1 = χ
Qn

1 and χ
Qc

2 = χ
Qn

2 (Fig. 2 c.–d.),
but possibly different result sets. To decide whether Qc

overlaps with Qn , we compare their D-constraints on each
schema hit. In what we call schematization, all unary and
binary D-constraints in a query are applied to those nodes
of a particular schema hit which match the query nodes

involved in these constraints. Fig. 3 depicts the schemati-

zation of Qn with χ
Qn

1 (f.) and χ
Qn

2 (g.). For Qc and χ
Qc

1 ,
the keyword constraints are missing. The schematization
of D-constraints tells us which part of Qn and Qc must be

reconciled: there is overlap on χ
Qn

1 and χ
Qc

1 iff the schema-
tized D-constraints in Qc are no more restrictive than those
in Qn on the same schema nodes. For the binary constraints,
this is trivial since they are equal, but the same would apply,
say, to NextElt+1 (#2, #5) as a binary D-constraint in Qc and
NextSib+

1 (#2, #5) or PrevSib+
1 (#5, #2) in Qn (now shown

in Fig. 3). The test also succeeds for the unary constraints
because the empty constraint attached to #2 in Qc is less
restrictive than “Lee” for #2 in Qn , and likewise for #5. It
would fail, e.g., if Qc specified a single keyword other than
“Lee” for #2 or a binary constraint not mirrored in Qn .

In the example Qc’s D-constraints are necessary condi-

tions for matches to Qn and χ
Qn

1 , i.e., ans(χQn

1) ⊂ ans(χQc

1).

The sufficient conditions needed to retrieve exactly ans(χQn

1)
follow from the comparison of the schematized D-constraints
and together form a remainder query [14] to be evaluated

only on ans(χQc

1)—typically with substantially reduced CPU
and I/O cost. Here the remainder query for Qn against

ans(χQc

1) consists simply of the two keyword constraints

on #2 and #5, as expected. The other schema hit χ
Qc

2

is treated similarly. To sum up, the schematization reveals
which query constraints from Qn and Qc correspond and
must be tested for restrictiveness. While for homomorphic
queries this is trivial, the real benefit shows when Qn and Qc

are different.

The general case.In general Qn has a different structure
from the cached queries, and therefore its schema hits are
not exactly identical to hits in the cache. To recognize over-
lap, we also schematize and compare their S-constraints.
The schematization of S-constraints helps to locate cached
queries that are potentially useful for evaluating Qn . First
the S-constraints of any query being added to or looked up
in the cache are normalized, as follows: (1) Child ′ edges are
inverted to match equivalent Parent′ edges; (2) label, type,
level and proximities are omitted, being unambiguous for

schema nodes. In case of χ
Qn

1 this yields Parent′
∗
∗(#2, #1),

Parent′
∗
∗(#5, #1) (Fig. 3 f.) and for χ

Qn

2 Parent′
∗
∗(#2, #1),

Parent′
∗
∗(#6, #1) (Fig. 3 g.). Looking up schema hits in the

cache with these constraints, we retrieve χQ and χQ′

in

both cases (each sharing two constraints with χ
Qn

1 and one

with χ
Qn

2 , see Fig. 3 d.–e.). For each pair χQc

, χQn

of schema
hits retrieved for a cached query Qc and a new query Qn

in this way, ans(χQn

) ⊂ ans(χQc

) if (1) χQc

is a subgraph

of χQn

and (2) the associated D-constraints in Qc are less re-
strictive than the corresponding D-constraints in Qn , which
is checked as described above. Interestingly, additional con-
straints in Qc that do not introduce a proper restriction may
be ignored. For instance, the schematization of Q ′ yields

Parent′
∗
∗(#5, #3) which is missing in χ

Qn

1 . However, it also

applies implicitly to χ
Qn

1 (since the ancestors of #5 are un-
ambiguous) and therefore does not hurt the containment

ans(χQn

1) ⊂ ans(χQ′

). By contrast, χQ is too restrictive

for χ
Qn

1 due to the additional constraint Parent′
∗
∗(#4, #1)

(compare Fig. 2 c., e. to verify that a3 is part of ans(χQn

1),

but not ans(χQ), because of this edge). Likewise, since χ
Qn

2

a. path table b. element table

Fig. 4: The RCADG for the document in Fig. 2 a. and b.

lacks the Parent′
∗
∗(#5, #1) constraint in χQ , χQ′

its matches
cannot be computed from cached results. In this way we ex-
amine all schematized constraints in a cached query that
are not mirrored in Qn to decide whether the query can still
contribute matches to Qn . By contrast, extra constraints
in Qn are simply added to the remainder query (see above).

Through schematization we learn that part of the answer

to Qn (namely, ans(χQn

1)) can be obtained from ans(χQ′

)
(by matching “Lee” and “female”) while the rest (namely,

ans(χQn

2)) must be retrieved from scratch. Again, this dis-
tinction would be impossible on the intensional level and
even if a DTD were given. The correctness of our approach
follows from how we compare (1) schematized S-constraints
during the cache look-up and (2) all additional constraints
of cached queries afterwards. (Proofs are omitted for lack
of space.) The algorithm is complete in the sense that it
retrieves all cached schema hits whose schematized S- and
D-constraints are more general than those of any schema hit
to Qn . Of course we cannot detect a coincidental contain-
ment or overlap of otherwise unrelated queries.

3.2 Intermediate query results in the cache
The above example assumes that only the final results

of Q and Q ′ are stored in the cache. However, D-constraints
are matched step-wise, not all at once. Caching the inter-
mediate results can further increase the effectiveness of the
cache when partial matches to a cached query happen to co-
incide with results to Qn . As an example, assume the doc-
ument matching for query Q in Fig. 3 a. was done in three
phases: in the first two steps, s

Q
1 and s

Q
2 , Parent∗∗(#5, #1),

contain“female”(#5) and Parent∗∗(#2, #1) were matched, pro-
ducing as intermediate result the two matches a2, a3. Only
in the third step s

Q
3 the edu node was matched, causing a3 to

be discarded from the final result of Q . Thus before s
Q
3 , all

matches to χ
Qn

1 (namely, a2 and a3) can be obtained from
the intermediate result of Q in the cache. This makes Q a
competitor of Q ′ in the contribution of cached query results
for evaluating Qn . Moreover, Q ’s matches already satisfy
contain“female”(#5) which also appears in Qn , but not Q ′.
The query planner described in Sect. 5 therefore prefers Q
to Q ′, thus saving an access to the document level.

Our evaluation algorithm processes queries with branch-
ing nodes in a sequence of steps in much the same way as
sketched above and stores the intermediate results in an
RDBS backend. In each step si one or more query con-
straints are matched, which makes some of the partial hits
more complete while discarding others from the next in-
termediate result. Thus si produces a “snapshot” of the
query result as it evolves during the evaluation process.
To keep track of the “snapshots” available in the query
cache, we tag each schematized D-constraint with the step
in which it was matched during the evaluation of the cached

a. schema matching

b. doc. matching, step s
Q
1

c. doc. matching, step s
Q
2

d. doc. matching, step s
Q
3

Fig. 5: Result tables created while evaluating Q in Fig. 3 a.

query. This allows to determine the latest evaluation step
in which a cached schema hit is useful for a schema hit
of the new query. Let JχKsi denote the part of a schema
hit χ which has been matched up to step si . In our exam-

ple, ans(χQn

1) = ans(JχQK
s
Q
2

), hence the intermediate results

to Q obtained in the step s
Q
2 are used for answering Qn .

4. QUERY EVALUATION FROM SCRATCH
This section briefly explains our approach to XML query

evaluation from scratch in an RDBS, which is the basis for
the incremental technique presented in Sect. 5. For details,
see [10]. The core data structure is the RCADG index
(for Relational Content-Aware DataGuide), which consists
of two tables as shown in Fig. 4. The path table (a.) is a rela-
tional version of the schema tree S in Fig. 2 b.: each schema
node is represented as a tuple 〈pid , par ,max , lab, type , lev〉
where pid , par ,max are the preorder ranks in S of the node
itself, its parent and its last descendant (assuming an arbi-
trary sibling order), and lab, type , lev are the node’s label,
type and level in S. The element table (b.) contains a tu-
ple 〈π(e), k , e〉 for all elements e ∈ E and keywords k ∈ K
s.t. e contains k as defined in Sect. 2. An additional en-
try for each element, regardless of its textual contents, and
the empty keyword serves for matching query nodes without
keyword constraints. Note that the path table is typically
several orders of magnitude smaller than the element table.

Any given query is first matched on the schema level in
an n-way selfjoin of the path table where n is the number
of query nodes. While label, type and level constraints are
simply translated to conditions on the last three fields in
Fig. 4 a., matching the binary S-constraints involves com-
bined conditions on the pid , par and max fields exploiting
certain properties of the preorder ranks in S. Proximity
bounds translate to level conditions. The schema match-
ing produces a table of schema hits such as the one shown
in Fig. 5 a. for Q from Fig. 3 a. Based on these schema
hits, the query is evaluated on the document level as fol-
lows. Step by step (Fig. 5 b.–d.) occurrences ei of label
paths pi in Fig. 5 a. matching a query node qi are retrieved
through joins with the element table and checked against the
D-constraints. Each step produces an intermediate result
table with partial matches to be completed in subsequent
steps. For instance, the two matches to q4 in Fig. 5 b. are
obtained by selecting those tuples from the element table
where pid=#5 and key=“female”. Depending on the query
constraints, however, there may be a better way to match
query nodes which avoids the possibly expensive element-
table join: we assign element IDs in such a way that the
IDs of some neighbours of a given element e (e.g., its an-
cestors and left siblings) can be reconstructed from the ID
of e without accessing the element table. Thus in Fig. 5 b.,

the matches to q1 are computed from those to q4 in memory
without another element-table join. The underlying tree
encoding is BIRD [25]. Other schemes supporting recon-
struction could be used, too.

The order in which D-constraints are matched is deter-
mined by a query plan devised after schema matching. The
plan PQ for evaluating Q is given in Fig. 6. The full paper
[26] explains query planning in detail. The goal is to avoid as
many joins as possible through reconstruction. Only when
a binary constraint cannot be reconstructed or we already
know both elements to be checked, the edge is decided with

planPQ = 〈sQ
1

, s
Q
2

, s
Q
3
〉

step s
Q
1

:
Join1 = {q4}, Dec1 = {}
Rec1 = {Parent∗

∗
(q4, q1)}

step s
Q
2

:
Join2 = {q2}, Rec2 = {}
Dec2 = {Child∗

∗
(q1, q2)}

step s
Q
3

:
Join3 = {q3}, Rec3 = {}
Dec3 = {Child∗

∗
(q1, q3)}

Fig. 6: Plan for Q .

a suitable condition on the BIRD
IDs in a join with the element ta-
ble. This is the case for the two
edges matched in steps s

Q
2 and s

Q
3 .

Note how the second partial match
to Q in Fig. 5 c. is discarded from
the final result in d. for not satis-
fying Child∗

∗(q1, q3) in s
Q
3 . In the

end, join(PQ) = 3 joins are needed
to evaluate Q from scratch.

5. INCREMENTAL QUERY EVALUATION
This section presents a summary of the incremental query

evaluation with the RCADG. The full paper [26] explains all
data structures and algorithms in detail. The cache stores
the queries, query plans and query results (both intermedi-
ate and final) obtained in the evaluation procedure just de-
scribed. Given a new query Qn , we compute a set of cache
hits specifying (1) the relevant schema hits of all cached
queries overlapping with Qn on the schema level (Sect. 2)
and (2) the evaluation steps providing the right “snapshots”
of their result sets (Sect. 3.2). These results may need to be
restricted, completed, or both, depending on the additional
constraints in Qn and the cached queries. To this end, one
or more query plans are created for computing the results
of Qn based on the data specified by the cache hits and per-
haps the full data set in the element table. Also, the same
subset of Qn ’s result may be obtained from distinct cache
hits. A cost measure indicates which of several alternative
plans to execute in order to exploit the best-fitting cache
hits. Owing to schema information, no duplicates need to be
eliminated when merging results from distinct query plans.

Structure of the cache.The cache consists of (1) the re-
sults of prior queries in the RDBS backend (Fig. 5) and (2) a
main-memory index structure C containing all schema hits
of cached queries. In C we look up those schema hits for any
cached query Q which share at least one edge with a schema
hit for Qn s.t. the corresponding binary S-constraints in Q
and Qn are equivalent, as described in Sect. 2. To this end,
each schema hit for a query Q to be cached is decomposed
into its schema edges (the schematized binary S-constraints
in Q) which are then stored in C. The same decomposi-
tion, applied to the schema hits of Qn , produces the schema
edges to be searched in C. For instance, looking up the

schema edge Parent′
∗
∗(#5, #1) from χ

Qn

1 (Fig. 3 f.) retrieves

(among others) the tuple 〈χQ , s
Q
1 , Parent∗1(q4, q1)〉 indicat-

ing that the same schema edge as part of χQ matched the
Parent∗1(q4, q1) constraint in Q before, during step s

Q
1 of the

evaluation. Note how equivalent binary constraints are iden-
tified regardless of their direction, while unary constraints

such as query keywords are ignored at this stage. In this
way the schema edges in all schema hits for Qn are looked
up in C. A query node binding for each edge links the cor-
responding node pairs in Qn and the cached queries (for
Parent′

∗
∗(#5, #1), the binding is qn

1 ∼q1 and qn
3 ∼q4).

Containment test for schema hits.The cache look-up pro-

duces candidate pairs 〈χQ , χQn

〉 each consisting of a cached
and an uncached schema hit, along with query node bindings
and planning information. Each of these pairs must undergo
the containment test to decide whether the set of matches
to χQ indeed contains those to χQn

, at least at some point
during the evaluation of Q . The test determines the last
step sf in the query plan PQ s.t. ans(χQn

) ⊂ ans(JχQKsf
)

as defined in Sect. 3.2. To this end, the D-constraints in PQ

are examined in the order of the evaluation steps. For each
step si we need to know (1) whether the unary or binary
query constraints processed in si are too restrictive for Qn

(this means sf = si−1 unless i = 0), and if not, (2) which
constraints in si are mirrored in Qn . In the end, if sf exists
for χQ , it is saved in a new cache hit κ specifying also the
extra constraints in Qn to be checked against ans(JχQKsf

).

Consider again the query plan for Q in Fig. 6. In step s
Q
1

the query edge Parent∗∗(q4, q1) was processed which has the
counterpart Parent∗∗(q

n
3 , qn

1) in Qn (we can tell that from
the query node binding above). Since the unary constraints
on the corresponding nodes in both queries are also com-
patible (see the next paragraph), ans(χQn

1) ⊂ ans(JχQK
s
Q
1

)

holds. Similarly the containment test succeeds for s
Q
2 . By

contrast, in s
Q
3 the constraint Child∗

1(q1, q3) was matched
which is not mirrored in Qn . Regarding question (1), we
conclude that ans(JχQK

s
Q
3

) might not contain all matches

to χ
Qn

1 and therefore sf = s
Q
2 for χQ . As to question (2),

a comparison of the keyword constraints in both queries
(see below) reveals that the only additional constraint to
be checked against ans(JχQK

s
Q
3

) is contain“Lee”(#2), which

translates into a join of the tables in Fig. 4 b. and 5 c.

Comparing keyword constraints.The query node bind-
ings produced by the schematization specify pairs of query
nodes whose keyword constraints must be reconciled for the
containment test to succeed. For instance, the test would
fail if q4 in Fig. 3 a. required other keywords than “female”,
since this would be too restrictive for qn

3 in Fig. 3 c. De-
pending on whether the two query nodes specify (if any)
a conjunction or a disjunction of keywords to be contained
or governed by matching elements, distinct relations on the
keyword sets (equality, sub-/superset, non-empty intersec-
tion) are allowed. For the full compatibility matrix, see [26].

Creating query plans.The core of the planning algorithm
sketched in Sect. 4 is common to both the evaluation with
and without cache. The only difference is that when exploit-
ing cache contents, some D-constraints in Qn need not be
matched any more. In particular, the element table is joined
only for query nodes and keyword constraints in Qn that are
missing in the cached query. Additional binary constraints
in Qn are decided if they involve matches in the cached re-
sult, otherwise reconstructed if possible. The time and space
complexity is linear in the number of edges in Qn .

In our example, the plan PQn

κ for the cache hit κ (spec-

ifying how to compute matches to χ
Qn

1 from those to χQ)
involves a single join with the element table, needed to re-
trieve those matches to q2 in Jans(χQ)K

s
Q
2

which contain an

occurrence of the keyword “Lee”. An alternative plan P
Qn

κ′

based on the cache hit κ′ for χ
Qn

1 and χQ′

requires two joins
since the “female” constraint must be checked as well. In
general, to avoid the repeated matching of the same schema
hit for Qn , we must decide which cache hit is used to retrieve
the matches to which schema hit. This is done based on a
cost measure for the query plans created for the cache hits,
which at the moment simply counts the number of element-
table joins needed to execute a plan. Thus PQn

κ has a lower

cost than P
Qn

κ′ , and κ′ is discarded. More sophisticated
methods could also take into account selectivity estimates
for keyword and label constraints. If multiple cache hits for
distinct schema hits for Qn are found, the corresponding
query plans may be executed in parallel or sequentially, in
which case the plans with the lowest cost are executed first.
Finally, we create a single query plan covering all remaining

schema hits for Qn that must be matched from scratch (χQn

2

in the example), and add the matches to the final result.

6. EXPERIMENTAL EVALUATION
To evaluate the incremental query processing described

in the previous section, we have conducted two different ex-
periments. One studies how the performance for selected
queries varies when cached queries with different degrees of
similarity are available, while the other relates the cost and
benefit of caching on a larger scale, using a randomly gener-
ated cache content and query workload. Both experiments
rely on a number of performance measures explained below.

The test system is a Java implementation (JDK 1.5.0) of
the data structures and algorithms presented in [26], includ-
ing the optimizations described there. The mappings in C

and L are realized by hash tables providing access in amor-
tized constant time. At system start-up the main-memory
part of the query cache is loaded and connections to the
RDBS are established once for a test session. This takes 1-2
seconds. The test system accesses through JDBC a Post-
greSQL v. 7.3.2 backend running on the same machine, with
database cache disabled. Apart from the database server
and the test system, the computer is idle during the exper-
iments. All queries are processed sequentially on an i686
computer with an AMD AthlonXP2600+ CPU running at
2 GHz with 256 kB cache. The machine has 1GB RAM and
runs Slackware Linux9.1 with kernel 2.4.26. Characteristics
of all test queries are shown in Fig. 8; for details about the
document collections see [10]. The runtime figures shown
below represent the time needed for computing all matches
to all nodes in a query, obtained by averaging three out of
five consecutive runs after discarding the best and worst re-
sult to minimize artefacts. Results obtained incrementally
have been compared to the results computed from scratch to
make sure the evaluation is correct. The cache contents al-
ways include intermediate and final results. All result tables
on disk are indexed with a B+-Tree on the id column.

Cost and benefit.We quantify the benefit of incremen-
tal query evaluation by measuring the processing time and
the number of joins needed to compute the result (although
counting the number of tuples being joined would be more
accurate). Since schema matching is the same for the evalu-

ation from cache and from scratch, we ignore the n-way self-
join of the path table (Sect. 4) and simply count the number
of joins with the larger element table. On the other hand, re-
trieving and matching overlapping queries and their schema
hits in the main-memory part of the cache takes some extra
processing time not needed when evaluating from scratch.
We refer to this overhead as (cache) search time. Besides,
the persistent cache data structures consume extra storage
both in main memory and on disk, which we denote as cache
size (in memory/on disk).

We now define the notion of cache support to measure
how “useful” the cache contents C are for evaluating a given
query Qn . Let X be the set of schema hits for Qn and P an
evaluation plan for processing Qn from scratch with minimal
join cost join(P) (Sect. 4). Besides, let

S

i
Xκi be a partition

of X s.t. each Xκi contains the schema hits represented by
the cache hit κi computed for Qn and C (Sect. 5). Finally,
let Pκi denote the query plan devised for κi . Then the cache

support for Qn and C is defined as [1−
Σi |Xκi

|·join(Pκi
)

|X|·join(P)
]·100%.

Intuitively, this quantifies how many joins have been avoided
compared to the evaluation from scratch. Note that a cache
support of 100% does not necessarily mean that Qn is found
in the cache, only that no joins are needed to evaluate Qn

from cache. In the experiments described next, the cache
support indicates to what extent the evaluation can possi-
bly benefit from the cache. Our main questions regard the
following three optimization goals:

effectiveness Are useful cached queries exploited if available?

efficiency Does the benefit of caching outweigh the overhead?

scalability How does the overhead vary with growing cache size?

Small-scale experiment.To illustrate the effectiveness of
our approach, we consecutively evaluate a single query Qn

i

on five caches each containing another singleton query Qij ,
1 ≤ j ≤ 5 (all queries for IMDb, see Fig. 8). As can be seen
from the abscissa in Fig. 9, the cache support grows from
0% (j = 1) to 100% (j = 5). The experiment is conducted
four times, and in each run 1 ≤ i ≤ 4 the cached queries Qij

Fig. 9: Small-scale results.

are derived from Qn
i by

a specific class of edit-
ing operations as they
occur in user sessions
with relevance feedback:
N denotes modifications
of the query nodes
and L of the labels;
-/+ means making the
query more or less re-
strictive, respectively.
Adding a node, e.g.,
is in class N-, whereas
adding an alternative
label to a node which
already has a label con-
straint would be in K+. Fig. 9 shows that for all classes, the
processing time decreases significantly with growing cache
support, down to 20% of the time needed without cache.

Fig. 10: Cache contents in the
large-scale experiment (XMark).

Large-scale experiment.
The second experiment
targets all optimization

a. complete results (ms) (sup: % cache support; ovh: % search time) b. selected results

Fig. 7: Results of the large-scale experiment on 1 GB XMark for all stages C0–C4 in the cache evolution.

Fig. 8: Properties of all test queries run against the 9 GB Internet Movie Database (IMDb) and 1 GB XMark collection.

goals in a large-scale set-
ting, simulating a cache
growing from 0 to 199 dis-
tinct queries in five stages
(Fig. 10, initial stage C0
omitted), as it could emerge during continuous retrieval. In
the absence of a real-world query workload which could only
be extracted from the log of a system in productive use, we
model the workload as a sequence of random queries, in-
cluding some popular or “hotspot” queries which are more
likely to be asked repeatedly (possibly with modifications).
From a seed of 150 distinct randomly generated tree queries
against the 1GB XMark collection (Fig. 10), we randomly
remove 15 hotspot queries. Then we create five exact copies
and five variants of each hotspot query according to the edit-
ing operations discussed in the previous experiment, e.g., by
adding/removing a node, label or keyword constraint. The
workload is the union of the resulting 150 hotspot queries
and the remaining 135 seed queries. Now 23 distinct test
queries are randomly removed from the workload. Note that
the probability that a hotspot query is selected (which ben-
efits from its duplicates or variants in the cache) is the same
as the probability that a hotspot query occurs in the origi-
nal workload, which is reasonable. The remaining workload
(199 queries after removal of duplicates) is randomly sorted
and partitioned into four subsets of 38, 35, 61 and 65 dis-
tinct queries, resp. These are evaluated from scratch and
the results of each query set are added to the initially empty
cache, which yields the stages in Fig. 10. The main-memory
footprint of the cache is modest even when nearly 1GB of
results are cached on disk (including B+-Trees). Since the
cache size grows linearly with the number of cache edges, the
system should easily scale up by three orders of magnitude.

The results of evaluating all test queries against the five
cache stages and from scratch are listed in Fig.7 a. The
time, sup and ovh columns list the processing time, cache

support and search time (relative to the processing time)
for each query and cache stage, respectively. The first seven
queries all benefit from cache contents at different stages.
For instance, there are overlapping queries for T0 and T4
in C1 which avoid additional joins (cache support 100%)
and decrease the processing time by a factor 30 and 97, re-
spectively. In subsequent stages, the search time increases
a little, but does not depend on the overall cache size. The
other five queries benefit only at later stages, up to which
point there is a negligible overhead. T21 retrieves 130,000
distinct hits, 10% of which are retrieved from the cache af-
ter only 0.6 seconds. This illustrates how incremental eval-
uation may increase the reactivity of the system even when
only part of the results can be obtained from the cache. Note
that for T22 which already has 100% cache support in C2,
the performance further improves in C3 and C4 where newly
cached queries permit more efficient query plans. This ef-
fect, which we also observe for the second group of queries
in Fig. 7 a., is not captured by our notion of cache support.
Fig. 7 b. plots selected results for all stages. Note the neg-
ligible overhead of incremental evaluation against an empty
cache, compared to the evaluation from scratch.

The third group in Fig. 7 a. lists queries which do not
benefit from cache contents, mostly by lack of overlapping
queries in the cache. Again we observe a small search over-
head (inevitable for deciding whether or not to use the cache)
which grows much slower than the cache. The results of T3
and T13 are computed from 2-3 overlapping queries with
small cache support, hence the evaluation from scratch is
faster. Query planning with selectivity estimates, as men-
tioned above, is likely to eliminate such cases. The same
applies to the queries in the fourth group, where the cache
look-up does not pay off compared to the extremely fast
evaluation from scratch. T2 benefits largely from the fact
that query node bindings shared by multiple schema hits are
processed only once [26]: In line with the structure of the

query (Fig. 8), there are thousands of containing schema hits
in the cache which only differ w.r.t. the leaf node. Matching
the shared schema edges repeatedly would cost a needless ex-
tra 14 seconds, which is completely avoided. Nevertheless,
this indicates that for queries with an extremely unspecific
structure the search time might be considerable. Such cases
are detected immediately after schema matching, when the
number of schema hits is known. If a certain threshold is
exceeded, one may still decide to look up only some schema
hits in the cache, or evaluate the whole query from scratch.
Besides, queries with very large result sets should probably
not be cached (also in view of the storage consumption).

7. RELATED WORK
Many papers have studied the theoretical complexity of

view-based query processing on semistructured data for dif-
ferent query languages, mostly based on regular path expres-
sions [27, 28]. For results in the presence of DTDs, see [29,
30, 31]. [13] shows that both view-based query containment
and view-based query answering are PSPACE-complete for
tree-shaped conjunctive queries and EXPSPACE-complete
for arbitrary conjunctive queries (including forward and re-
verse relations in both cases). In question answering the
results of a given query are computed from both the view
definitions and extensions [32]. Thus the problem is closer
to our approach than query containment where queries are
compared based on their intensional description only.

Despite the high theoretical complexity of query process-
ing in the presence of views, a number of different approaches
have been proposed which strive to push the practical effi-
ciency to its limits, building on various query evaluation
techniques such as, e.g., native XQuery engines [20, 18], two-
way finite state automata [13], tree automata [33] or LDAP
servers [15]. These approaches differ in several respects from
the present work. First, unlike our approach to enhancing
user interaction, prior work in the field is mostly targeted
towards efficient query processing in a distributed environ-
ment, where the query cache acts as part of the middleware
in a multi-tier architecture [20, 21, 16]. Besides, query con-
tainment and overlap is mostly checked intensionally (except
in [15]) and in particular, without exploiting schema infor-
mation. Although DTDs or DataGuides are sometimes used
for formulating queries [12, 1], no approach we know of uses
schema information for indexing cache contents or checking
query containment and overlap. Third, no strategies or in-
dex structures have been proposed for choosing the closest
queries in the cache, a problem which arises for all but the
few approaches where all cached query results are merged
[12]. Finally, we are not aware of any systems caching both
final and intermediate results. Consequently, the impact of
query planning on the cache contents is largely ignored.

Since a thorough comparison of the aforementioned and
more recent work [22, 23, 19] is infeasible in the scope of this
paper, we only sketch a couple of representative approaches
instead. ACE-XQ [20, 34, 17, 16] (formerly XCache [33])
answers XQuery expressions using materialized views. A
containment mapping is established between the variables
in a new XQuery and a cached one. To this end, queries to
be cached are normalized and then described in terms of the
variables occurring in the RETURN clause or elsewhere in the
query, the path expression connecting them and conditions
such as keyword constraints. To benefit from cached results,
variables in the new query may only involve stricter condi-

tions on structure or content than their counterparts in the
cached query (although [20, 16] report on results for over-
lapping queries, which are not explained). [20] elaborates on
XQuery containment in the presence of hierarchical multi-
valued dependencies among variables, which can define dif-
ferent groupings of the same data. Replacement strategies
are studied in [34]. Yet the problem of how to choose the
best cached query for containment mapping remains open.

[12] proposes an incomplete tree as a main-memory cache
structure. It is a prefix of the document tree that gradually
becomes larger as more query results are added to the cache.
Queries are prefixes of the schema tree (a simplified DTD
is used instead of the DataGuide as in our approach), to-
gether with content conditions and label negation, but no *
and // constructs. To indicate which data are missing from
the cache, the complements of the cached queries are inten-
sionally represented in the incomplete tree by extra paths
with content conditions and DTD-style multiplicities. This
incompleteness information is inferred by negating incoming
queries, which may result in an exponential growth of the
cache. [12] discusses several workarounds which either make
the cache manipulation more complex or further restrict the
query language. On the other hand, the incompleteness in-
formation allows to create non-redundant remainder queries
in polynomial time. However, [12] states that this does not
guarantee practical efficiency, and no experimental evalua-
tion is provided. By contrast, our approach is to deduce
missing data on-the-fly to avoid the exponential blow-up.

Based on the work in [12], [14] introduces a modified in-
complete tree (MIT) which intensionally describes the data
currently cached rather than the data missing from the cache.
Combined with a partitioning of the possible element con-
tent into predefined domain ranges, this avoids the expo-
nential growth of the incomplete tree. Built on top of the
MIT, the XCacher system [14] answers simplified XQuery
requests which are first translated into expressions of the
same prefix-selection query language as in [12]. Both use
a cache which contains all elements on root paths to query
matches, but is still supposed to reside in main memory. To
cope with obvious space limits, [14] sketches a simple re-
placement strategy (least-recently used). By contrast, our
approach exploits the BIRD labelling scheme to reconstruct
root paths, which therefore need not be cached. It also dif-
fers from [12, 14] in its combined extensional and intensional
handling of query containment and overlap (see above).

HLCaches [15] is an XPath cache on top of the LDAP
data model. Results are cached with the original XPath
string (combined intension/extension). Each result element
is stored together with its context node. Comparing sets
of context nodes of a cached and a new query with the
same intension determines equivalence and overlap. Com-
plex queries may be decomposed into subqueries to be looked
up in the cache, but no decomposition strategy for new or
cached queries is given. Only subqueries benefit from cached
results which have been asked before in exactly the same
form, i.e., partial results cannot be reused or combined.

8. CONCLUSION AND FUTURE WORK
In this paper we present a method for exploiting cached

results during the evaluation of XML queries in an RDBS.
We show how extending the cache with schema information,
intermediate results and query plans helps to detect reusable
queries in the cache and to extract the useful parts of their

results. Algorithms are presented for the combined query
evaluation with and without cache, and for selecting those
cache contents from which the desired data can be obtained
with the least computational and I/O effort. A careful eval-
uation of costs and benefits demonstrates that our approach
is effective, efficient and scalable.

Several problems remain to be solved in future work. First,
to retain the most useful data in a cache of limited size, a
replacement strategy is needed. Besides standard strategies
for the maintenance of priority queues, like LRU/LFU, pos-
sible hints for assigning appropriate priorities could come
from explicit user feedback or silent monitoring of user in-
teraction. Alternatively, we might choose to retain results
which were expensive to compute. Second, when the doc-
ument collection changes some or all cache contents may
become stale. Since the label paths to updated elements
are known from the element table, we might use the exist-
ing main-memory index to retrieve stale cache contents ef-
ficiently, exploiting schema information in the same way as
for detecting query overlap. To some extent, the robustness
of our cache also depends on the underlying tree encoding.

9. REFERENCES
[1] Goldman, R., et al.: DataGuides: Enabling Query

Formulation and Optimization in Semistructured
Databases. In: Proc. 23rd VLDB. (1997) 436–445

[2] Naughton, J.F., et al.: The Niagara Internet Query
System. IEEE Data Engin. Bulletin 24 (2001) 27–33

[3] Jagadish, H.V., et al.: TIMBER: A Native XML
Database. VLDB Journal 11 (2002) 274–291

[4] Fiebig, T., et al.: Anatomy of a Native XML Base
Management System. VLDB J. 11 (2002) 292–314

[5] Shanmugasundaram, J., et al.: Relational Databases
for Querying XML Documents: Limitations and
Opportunities. In: Proc. 25th VLDB. (1999) 302–314

[6] Deutsch, A., Fernández, M., Suciu, D.: Storing
Semistructured Data with STORED. In: Proc. 18th
SIGMOD Conference. (1999) 431–442

[7] Bohannon, P., Freire, J., Roy, P., Siméon, J.: From
XML Schema to Relations: a Cost-based Approach to
XML Storage. In: Proc. 18th ICDE. (2002) 64–75

[8] Jiang, H., et al.: Path Materialization Revisited: An
Efficient Storage Model for XML Data. In: Proc. 13th
Austr. Database Conf. (2002)

[9] Grust, T.: Accelerating XPath Location Steps. In:
Proc. 21st SIGMOD Conf. (2002) 109–120

[10] Weigel, F., et al.: Exploiting Native XML Indexing
Techniques for XML Retrieval in Relational Database
Systems. In: Proc. 7th WIDM. (2005)

[11] Halevy, A.Y.: Answering queries using views: A
survey. VLDB Journal 10 (2001) 270–294

[12] Abiteboul, S., et al.: Representing and Querying XML
with Incomplete Inform. In: Proc. 20th PODS. (2001)

[13] Calvanese, D., et al.: View-based Query Answering
and Query Containment over Semistructured Data.
In: Proc. 8th DBPL. (2002) 40–61

[14] Hristidis, V., Petropoulos, M.: Semantic Caching of
XML Databases. In: Proc. 5th WebDB. (2002) 25–30

[15] Marrón, P.J., Lausen, G.: Efficient Cache
Answerability for XPath Queries. In: Proc. Int.
Workshop on Data Integration over the Web. (2002)

[16] Chen, L., Rundensteiner, E.: ACE-XQ: A
CachE-aware XQuery Answering System. In: Proc.
5th WebDB. (2002)

[17] Chen, L.: A Semantic Caching System for XML
Queries. PhD thesis, Worc. Polytechnic Inst. (2003)

[18] Shah, A., Chirkova, R.: Improving Query Performance
using Materialized XML Views: A Learning-based
Approach. In: Proc. 1st XSDM. (2003) 297–310

[19] Mandhani, B., Suciu, D.: Query Caching and View
Selection for XML Databases. In: Proc. 31st VLDB.
(2005) 469–480

[20] Chen, L., Rundensteiner, E.A.: XQuery Containment
in Presence of Variable Binding Dependencies. In:
Proc. 14th WWW-Conf. (2005) 288–297

[21] Kang, H., Han, S., Kim, Y.: Schemes of Storing XML
Query Cache. In: Proc. 16th Australasian Database
Conf. (2005) 55–64

[22] Matsumura, H., Tajima, K.: Incremental Evaluation
of a Monotone XPath Fragment. In: Proc. 14th
CIKM. (2005) 245–246 (Poster).

[23] Xu, W., Özsoyoglu, Z.M.: Rewriting XPath Queries
Using Materialized Views. In: Proc. 31st VLDB.
(2005) 121–132

[24] Gottlob, G., Koch, C., Pichler, R.: Efficient
Algorithms for Processing XPath Queries. In: Proc.
28th VLDB. (2002) 95–106

[25] Weigel, F., et al.: The BIRD Numbering Scheme for
XML and Tree Databases – Deciding and
Reconstructing Tree Relations using Efficient Arithm.
Operations. In: Proc. 3rd XSym. (2005) 49–67

[26] Weigel, F., Schulz, K.U.: Caching Schema Information
and Intermediate Results for Fast Incremental XML
Query Processing in RDBSs. Technical report,
Univ. of Munich (LMU) (2006) See http://www.cis.uni-
muenchen.de/∼weigel/Literatur/weigel06cachingtech.pdf.

[27] Miklau, G., Suciu, D.: Containment and Equivalence
for an XPath Fragment. In: Proc. 21st PODS. (2002)
65–76

[28] Calvanese, D., et al.: Reasoning on Regular Path
Queries. SIGMOD Record 32 (2003) 83–92

[29] Deutsch, A., Tannen, V.: Containment and Integrity
Constraints for XPath. In: Proc. 8th KRDB. (2001)

[30] Wood, P.T.: Containment for XPath Fragments under
DTD Constraints. In: Proc. 9th ICDT. (2003) 300–314

[31] Neven, F., Schwentick, T.: XPath Containment in the
Presence of Disjunction, DTDs, and Variables. In:
Proc. 9th ICDT. (2003) 315–329

[32] Calvanese, D., et al.: Query Processing using Views
for Regular Path Queries with Inverse. In: Proc. 19th
PODS. (2000) 58–66

[33] Chen, L., Rundensteiner, E.A., Wang, S.: XCache: a
Semantic Caching System for XML Queries. In: Proc.
21st SIGMOD Conf. (2002) 618–618 Demo.

[34] Chen, L., Wang, S., Rundensteiner, E.A.: Evaluation
of Replacement Strategies for XML Query Cache.
Data and Knowledge Engineering J. 49 (2004) 145–175

