A Filter for Structured Document Retrieval®

Christian Strohmaier Holger Meuss

Center for Information and Language Processing
University of Munich

{strohmai,meuss}@cis.uni-muenchen.de

Abstract

Structured document retrieval has established itself as a new research area
in the overlap between Database Systems and Information Retrieval. This
work proposes a filtering technique that can be added to already existing in-
dex architectures of many structured document retrieval systems. This new
technique takes the contextual structure information of query and document
database into account and reduces the occurrence sets handed from the in-
dex structure to the query evaluation algorithm drastically by selecting only
occurrences appearing in the right context, and thus decreases computational
effort in query evaluation.

With the notion of “selectivity” we introduce a measure for the added
value of the filtering technique. Based on this notion, new techniques are
proposed in order to reduce space requirements for the additional information
necessary for the filtering process. One technique utilizes varying patterns of
labels in the document database for compressing the information. The other
technique uses grammars describing the document structure for finding labels
with similar properties. Out of a pair of those labels, only information about
one has to be included in the index structure.

1 Introduction

With the growing importance of Information Retrieval in the presence of a vast
amount of structured documents in formalisms like SGML ([ISO86]) or the future
WWW language XML ([W3C98b]), sophisticated and efficient indexing techniques
for structured documents become more and more important. A recent W3C work-
shop dedicated to XML query languages ([W3C98a]) illustrates the urgent need for
efficient query mechanisms on structured documents.

Indexing and filtering techniques are crucial for the efficiency of Database Sys-
tems (DBS) and Information Retrieval (IR) systems. With an appropriate index
or filter structure irrelevant parts of the database can be disregarded in the search.
Very sophisticated index structures have been proposed in the research in DBS and
IR, some of them dedicated to a special class of data only, e.g. geographical data
([BKSS90]).

Index structures in DBS try to support access to data by organizing it in an
appropriate way. The notion of ordering the data plays a keyrole in this task.
Some data has a natural topology (like geographical data), whereas for other data
the index structure defines a topology. One of the problems of an efficient index

*This work was partially funded by Siemens AG.

structure is to map this (usually multidimensional) topology onto the linear layout
of the storage medium.

So far, index structures in IR are confronted with the one-dimensional form
of the problem only: they implement a mapping from terms (i.e. words) in a set
of documents to occurrences (i.e. offsets in the files storing the documents). The
mapping problem becomes trivial, since text is seen in traditional IR as a linear
medium.

In the last years, several formalisms for structured document retrieval have been
proposed, a field that combines aspects of DBS and IR. (See [BYN96] and [Loe94]
for surveys.) The IR view derives from conceiving a document as a sequence of
words, whereas the DBS aspect interprets the tree structure of a document as
nesting of information containers. This hybrid role raises the question of appropriate
index structures for structured document retrieval. Only few formalisms did pay
attention to this question (e.g. the Lore system: [MAG'97]). Most formalisms
simply adopted techniques and definitions for index structures well established in
IR, e.g. inverted files, or occurrences as offsets in a text file. But that neglects
the outstanding peculiarity of structured documents, namely of having no linear
topology. Structured documents are usually conceived as trees and have thus a
super-linear topology.

This work postulates a marriage between indexing techniques from the field of
DBS and IR, in the same way as structured document retrieval is conceived as a
marriage between DBS and IR. It proposes as a first step an integration of additional
structural information into the index structure. This can be seen as the invention of
DBS indexing techniques for IR related systems, since now the document topology
is taken into account in a nontrivial way.

The additional structural information to be integrated into the index structure
consists of linear contexts associated with occurrences. With the help of these linear
contexts and a simple automatic query preprocessing a filter can be applied to the
results of index calls, thus reducing the size of the occurrence sets. With these
reduced sets, the query evaluation algorithms will perform more efficiently.

The proposed filter can be integrated into many formalisms for structured doc-
ument, retrieval. Examples of the necessary changes for different systems are given.
The benefits may vary from system to system and from application to application,
but are likely to speed up query evaluation remarkably in overall.

In addition, we provide mathematical tools based on the notion of “selectivity”
that help the database administrator to decide which structural information should
be integrated and thus find an optimal solution for the space/speed trade-off.

This work is organized as follows. The next section describes the field of struc-
tured document retrieval by discussing its general task and peculiarities and review-
ing some formalisms known in the literature. Section 3 introduces the context filter
and how it is used in query evaluation. The following section shows how the added
value of the context filter can be quantified by using the notion of “selectivity” of
labels and how selectivity can be approximated efficiently. Section 5 introduces new
techniques to reduce the size of the context filter. Section 6 shows for an exam-
ple database how the techniques proposed here behave for a real-world document
database. Section 7 concludes with some directions for future work.

2 Structured Document Retrieval

A lot of models for structured document databases have been proposed in the recent
years. This section will introduce their features as far as they are relevant for the
proposed filter. Our work refers to the models reviewed in [BYN96] and [Loe94],
and in addition to [Meu98], many of the new XML query languages [W3C98a], and
the Lore system ([MAG'97]).

All these models represent structured documents as labeled, directed graphs
(in most cases trees). The leaf nodes contain the actual textual content of the
documents. This is implemented by associating these nodes with regions in a file
storing the textual content of the document. Structural containment is represented
by edges in the graphs. Nodes containing other nodes (e.g. chapters containing
paragraphs) are associated with the union of all text regions of their children. In
order to structure the text, every node is assigned a label, e.g. chapter or author.

Structured document retrieval systems provide formalisms to query a document
database, to evaluate the query and present the answer to the user. The query
may specify textual and structural aspects of the documents. Query evaluation is
supported by various index structures, but most of the considered models provide
at least two classes of index structures:

e Text index: This index structure implements a mapping from search terms to
occurrences in the document database. Every structured document retrieval
model implements a text index.

e Structure index: This index structure implements a mapping from labels of
structural elements to occurrences in the document database. This mapping
is implement by most models.

For the proposed filter the distinction between these two index mappings is not
relevant, because our proposed filter technique is applicable analogously to both of
them. Therefore we will use the word “search term” to refer to both terms and
labels in the following.

We will use the following abstract view upon the various query evaluation sys-
tems mentioned in the beginning of this section: during query evaluation, for every
search term in the query an index structure is called by the query evaluation algo-
rithm. This index structure is given a search term and returns a set of occurrences
of the search term in the document database. The actual representation of these oc-
currences may differ from system to system; some systems represent occurrences as
offsets in text files, others as paths in the document structure. We make no distinc-
tion on this point and conceive index structures as a mapping from search terms
to occurrence sets, independent from the actual representation of an occurrence.
These occurrences are manipulated and combined by the query evaluation algo-
rithm. Note that the size of the returned occurrence sets determines the efficiency
of the query evaluation.

For the description of the various formalisms we will refer to the following ex-
ample query, cited here informally in natural language:

Query 1: “Give me all chapters whose title reads Java.”

The structured document retrieval models we consider here are distinguished by
their query evaluation strategy and can be divided into three classes:

Bottom-up query evaluation guided by the syntax tree: This class compri-
ses most of the models known to the literature, e.g. PAT Expressions ([ST94]),

Overlapped Lists([CCB95a, CCB95b]), Proximal Nodes ([NBY97, Nav95]).
These models have in common, that query evaluation is guided by the syntax
tree of the query, i.e. an operator in the syntax tree is evaluated after all its
children are evaluated. The resulting set of occurrences is then attached to
that operator, and query execution can climb up further in the syntax tree.
The leaves are evaluated by a text and a structure index, respectively. In
these models an occurrence is a region in a file containing the flat text of the
documents. This region is specified by two offset values.

Query 1 is expressed in the Proximal Nodes syntax in the following way.
(Queries in the two other mentioned formalisms look similar.)

chapter with (title same Java)

Its syntax tree is depicted in Figure 1.

with

N

chapter same

N

title Java

Figure 1: Syntax Tree of the Proximal Nodes Query

Query 1 is evaluated in the following way: A set with all elements with the
content Java is produced by an index call, as well as a set with all title el-
ements. The two occurrence sets are attached to the respective leaves. Then
they can be compared with a simple intersection operation being the opera-
tional equivalent for the same operator. The resulting set is attached to the
same node. Next comes evaluation of the chapter leaf, finding (with the help
of the index structure) all chapter nodes in the document database, and in
the end, the sets attached to the chapter and to the same nodes are com-
bined to the result set, that is attached to the with node and finally returned
as answer.

Bottom-up path-based query evaluation guided by the structural tree:
This class consists of the Indexed Tree Matching formalism ([Meu98, MS98]),
that is an extension of the Tree Matching formalism ([Kil92]). Query evalua-
tion is guided by the structural tree that reflects the search pattern, as in the
example tree depicted in Figure 2 being the graphical formulation of Query 1.

chapter

title

Java

Figure 2: Indexed Tree Matching Query

For query evaluation the search terms in the leaves of the tree are evaluated
using an index that maps the search terms to their occurrences. An occurrence

is the path in the document database leading to the leaf containing the search
term. The set of all occurrence paths is thereafter combined in a data structure
derived from the query. Traversal of the (syntax or structural) tree in single
steps is avoided by manipulating paths instead of single nodes. For the same
reason, there is no need for a structure index in Indexed Tree Matching.

Flexible query evaluation guided by the syntax tree: This class consists of
the Lore system ([MW97, MWA98]), a formalism for querying graph-struc-
tured data: Its sophisticated query evaluation mechanism supports various
evaluation strategies (bottom-up, top-down, hybrid). A query plan is op-
timized at run-time based on statistical information about the document
database called DataGuides ([GW97]). Four index structures are maintained
to support the various query evaluation techniques used. Every index struc-
ture maps search terms (i.e. terms, relational or path expressions) to occur-
rences. An occurrence is a node in the database.

Apart from a path index that maps node/path pairs to nodes reachable from
the input node via the path, all these index structures can be reasonably en-
riched with contextual information. For the path index the additional storage
of contextual information produces no better results.

3 The Context Filter

Disregarding irrelevant parts of the document database is a main strategy for query
evaluation algorithms of database and IR systems. The earlier and more effortless
this is possible, the more efficient an algorithm can perform. Index structures sup-
port query evaluation in this task, since they avoid scanning the complete database
in order to find objects. This section describes a method to enrich index structures
with additional contextual information in a way that the result sets of calls to the
index structure can be drastically reduced with a computationally cheap test. Oc-
currences not complying with the contextual conditions prescribed by the query are
filtered out. The query evaluation algorithm will only treat the reduced occurrence
sets and will thus perform better.

In the following we use the term linear context of an occurrence to denote the
set of all ancestor labels containing that occurrence in the document tree.

The proposed modification to the host architecture consists of three components:

Enriching the Occurrences: In order to filter the set of occurrences, the index
structure has to be equipped with the linear contexts of the occurrences. This is
done at the time of index generation. The contextual information is stored in the
condensed form of a bit string attached to every occurrence. All bit strings are
of a fixed size, and every position in the bit strings corresponds to a label in the
document database. A “1” indicates that the occurrence is in a region associated
with that label, whereas a “0” indicates that this is not the case. The example in
Figure 3 illustrates this. It is possible to integrate the additional context information
into all index architectures used by the systems mentioned in Section 2.

Query Preprocessing: The query is analyzed in order to find the linear context
for every search term, i.e. for every search term a set of those labels is computed that
“include” the search term as contexts. The algorithm itself depends on the query
syntax, and is therefore not elaborated here. These contexts are now encoded in the
same way in bit strings as the contextual information attached to the occurrences.

Document database:

book

author title body

chapter chapter
N
title par
title par par

Bit-mask: | book | author | title | body | chapter | par |

The search term Java occurs in the title of the book (occurrence ol) and in the
title of the second chapter (occurrence 02). The label title has three occur-
rences: One as the title of the book (occurrence 03), two as titles of chapters
(occurrences 04 and 05). A part of the enriched index mapping is:

Java— {ol1+|1]0]1]0]0]0]
o2+ 1]JOo[1]1]1]O]

title—>{o3+[1]0]J0[0]0]0]
od+[1]J0JoJ1]1]0]
o5+[1]0]0]1]1]O]

Figure 3: Linear contexts of occurrences

Since this preprocessing step depends on the size of the query only and can be done
very efficiently, it increases the overall time complexity of query evaluation with a
neglectable addend dependent on the query size only.

For Query 1, the preprocessing computes the linear context {chapter,title} for
the search term Jawva, and the linear context {chapter} for the search term title.
These two linear contexts are encoded in the bit strings
[0]0]1]0]1]0]and[0]O]O[0]1]0]in the same way as the oc-

currences in the document database in Figure 3.

set of . educed set
occurrences Filter of occurrences

)

term/
label

Index
structure

Figure 4: Integration of the context filter

Filtering the Index Result Sets: We suppose that the index structure returns
sets of enriched occurrences, i.e. occurrences together with their linear contexts.
Every call to an index structure in query evaluation is now processed in the following
way (see also Figure 4): The linear context of every occurrence is compared to the

linear context of the respective search term in the query that was computed in the
preprocessing step. Occurrences not complying with the contextual conditions are
filtered out and only the complying nodes are passed back to the query evaluation
algorithm.

This filtering of occurrences is realized by an efficient bit comparison, an
ANDNOT! operation between the respective search term’s linear context and the
occurrences’ linear contexts. If this results in 0 (the bit string consisting of “0”s
only), the respective occurrence is kept, since then all labels specified in the linear
context of the search term do in fact occur in the linear context of the occurrence.
Otherwise the occurrence is dropped. This can be implemented very efficiently,
because the used operations are hardware-oriented.

The reduced set of occurrences is now processed in the same way as the full
set of occurrences would have been without the context filter. Again, integration
of this filter into the respective query evaluation mechanism is possible in all the
models mentioned in Section 2.

Consider for example Query 1 and the document database depicted in Figure 3.
The three calls to the index structure have the following results:

e There are two chapter elements.
e There are three title elements (03, 04 and 05).

e There are two occurrences of the search term Java (ol and 02).

When examining the bit strings of the enriched occurrences returned by each
call to the index, the filter can detect very fast that occurrence ol of the search term
Java is not inside a chapter. From the three title occurrences one can be removed
as well.

Note that we do not interfere with the host query evaluation mechanism in any
way, since the filtering procedure does not depend on the point of time the index
calls are made. The important thing is that every result of an index call runs
through the filter before it is passed back to the host algorithm.

4 Selectivity

In this section we will define a measure for the efficiency of the context filter.
The “selectivity” of a label measures the number of occurrences in the document
database that can be rejected by the context filter. The higher the selectivity of
a label is, the more occurrences can be filtered out, if that label is specified as a
context in the query. In addition we will show how the selectivity of labels can
be approximated with reasonable computational effort. As we will see in the next
section, a selectivity analysis of labels can also be used in order to minimize the
space requirements for the occurrence bit strings stored in the index structure.

Informally, we define the selectivity ¢(I) of a label [as the average proportion
between “recall noise” and “total recall”.

recall noise(l)

<(h) =

total_recall

Total recall is the number of all occurrences returned by an index call, and recall
noise is the number of those occurrences outside the scope of the label [.

As elaborated in the following, the selectivity of a label is influenced by the

LANDNOT executes a bitwise AND on the first and the negated second operator.

e coverage of that label, and

e inter-dependence of that label with others.

Obviously, the smaller the text regions are that are covered by a given label, the
more selective that label is. And also, the more independent labels are from each
other, i.e. the more each label tends to have its own vocabulary, the less selective
they are. Inter-dependence of labels is mainly caused by element nesting or redun-
dancy in natural language. The causality between selectivity and inter-dependence
is illustrated in the following example.

Regard a Franco-phone IR system of local conference papers in French with
additional English abstracts marked with rés_angl. Querying English terms will
produce a recall set of occurrences which are almost inevitably covered by the label
rés_angl, because just a few terms occur in both languages, like sale. In the terms
defined above this means a low recall noise of the label rés_angl, resulting in a low
selectivity of that label. Querying the French abstracts (rés_frang) with French
terms is different, since the text index call returns occurences which are covered by
rés_frang as well as occurences which are not. Therefore a filtering step is useful
for that label. Notice that French and English abstracts have roughly the same
size but different selectivity. Hence coverage and inter-dependence are orthogonal
influences on the selectivity. This informal reasoning will have its formal reflection
in Theorem 4.1.

Next we will present the exact definition of selectivity. The basic idea in it is to
consider every potential recall set for every label. The fraction between the recall
noise and total recall is computed for every search term. The unweighted average
of all these fractions is the selectivity of that label.

We distinguish term occurrences o and terms 6.2 The exact definition of what a
term actually is, together with its sophisticated, but tideous accompanying problems
is left to the host formalism. We describe the relation “occurrence o is in the scope
of the label I” by o € I. The proposition o € DB (with the reserved symbol DB)
shall be true for all occurrences o in the document database database. This symbol
DB can be conceived as a unique label of an artificial root node that is an ancestor
of all nodes in the document database.

Definition 4.1 Let T = {61,...,0,} be the set of different terms in the database.
The selectivity <(1) of a label I is computed with the formula:

{o|o€6j/\o§£l}|
|{o|0€5j}|

1 & |
==Y
n <
j=1
The selectivity can take values in the interval [0,1]. If ¢(I) =0, then [is a label
covering all term occurrences of the document. If the document collection has a
root element with label I, then ¢(I,) = 0, e.g. the XML tag framing every XML
document.
If ¢(I) = 1, then [is a label covering no term occurrences at all, e.g. a bachelor tag
(in the XML terminology).

The formula shows that the computation of selectivity is a high computational
effort. Therefore we provide with the notion of coverage a means to approximate
the selectivity:

2We conceive terms as equivalence classes of term occurrences, i.e. a term is the set 6 containing
exactly the occurrences of the term. If o is an occurrence of term 6, we write o € 4.

Coverage

When neglecting the effects of “differing vocabularies” in labels, we can approx-
imate the selectivity of a label by its size, i.e. by the number of occurrences in the
document database under that label. This is captured by the notion of coverage.
The relation between coverage and selectivity will be stated in Theorem 4.1.

Definition 4.2 The coverage (1) of a label | is computed with the formula:

|{o|o€l}|

()= [{o| 0 € DB}|

The next definition captures the notion of label independent terms, i.e. terms,
whose relative number of occurrences is equal for all labels. This notion provides a
basis for a formal reasoning on the orthogonal influences of label inter-dependence
and coverage.

Definition 4.3 A term 6 is called label independent, if

|{o|o€6/\o€l}| _ |{o|o€5/\o€DB}|
[{o| o€} [{o]| 0 € DB}|

holds for all labels I.

The following theorem shows that coverage is a good approximation for selec-
tivity if we neglect the effects of label dependent terms. Obviously this assumption
does not hold in a real-world document database, but the results in our case study
(see Section 6) and their discussion show that coverage is a realistic approximation
for selectivity.

Theorem 4.1 Let (1) be an estimation for the selectivity ¢(1) of a label | computed

with
) =1-0).

If all terms are label dependent, this approximation is exactly the selectivity of a
label:

Proof: Let all terms be label independent. Then we can define the size of a term

as
|{o|o€oA0€ DB}

[{o|oe€ DB}
With this definition, the following equations hold:

size(0) =

|{o|o€o]/\o€l}|
@ = Z|{0|o€0]/\0€DB}|

1 |{o|o€oj/\o€l}|
=1 Z|{o|o€o]/\o€DB}|

1« size(o; |{o|o€l}|
= 1__Z|)

_ Z |{o|o€oj/\o€DB}| |{o|o€l}|
B |{0|0€DB}| [{o| 0 € 0; Ao € DB}

1 |{o|o€l}|
B Z|{0|0€DB}|

_ l—l-n- |{o|o€l}|
n |{o| 0 € DB}|
= 1=7()

For the the second equality we used the fact, that {o | o € 6,} form a partition
for the set {o | o € DB} of all occurrences. The next equation follows from equal
distribution of terms and the rest is pure arithmetics. O

5 Reduction of Space Requirements

The additional information associated with every occurrence is stored in a bit string,
whose length depends on the number of different labels in the database. The ob-
jective of this section is to present techniques that reduce the length of these bit
strings. We propose a dynamic method that utilizes the varying coverage of la-
bels in order to shorten the bit strings, and two static methods, that provide the
database administrator with means to decide which labels can be excluded from the
occurrence bit strings.

5.1 Dynamic Bit String Compression

The space reduction technique we present in this section is based on three observa-
tions. After describing these observations and their causality, we will discuss two
methods of compressing the bit strings in order to achieve a smaller total length of
the occurrence bit strings. All examples given in the following discussion on the ob-
servations and their background refer to the example document database introduced
in Section 3.

Peculiarities of the Bit String Distribution

Observation 1: The actual number of different bit strings generated by encoding
linear contexts of occurrences is much smaller than the number of bit strings of a
fixed size.

The reasons for observation 1 are:

Grammatical: In most cases, a grammar restricts occurrence bit strings to valid
paths. For instance, a possible grammar for our example database could define
author and title as atomic elements (i.e. leaves), consisting of flat text only.
Obviously an occurrence can not be in the context of two different atomic
elements at the same time.

Semantical: Even if no grammar exists or the grammar is not strict enough, the
inherent semantics of the document description will restrict occurrence bit
strings to a given set of patterns. An author element for instance will normally
have no date sub-element.

Empirical: Some meaningful and grammatically correct occurrence bit strings fail
to appear in a specific database merely by chance. The example database
could for instance contain books whose chapters have different authors, rep-
resented by author nodes for chapters. If, by chance, only books by single
authors are entered into the database, no occurrence will be in the context
of author and chapter at the same time.

10

In order to make observation 1 more formal, we have to use some definitions: Let
L be the set of different labels in the database and let By, be the set of bit strings
with the fixed length |L|. It follows that |By| = 2/*I. Let 8 : {o| 0o € DB} — By,
be the function that computes for every occurrence the corresponding bit string.
We define the image of that function as follows, Im(DB) := {8(0) | 0 € DB}.
Observation 1 means that [Im(DB)| < |Br|.

Observation 2: The bit strings are label dependent: A few bit strings are
generated very often, some are generated rarer and the rest never (the latter corre-
sponds to observation 1).

Again, we will formulate this observation more formally: the function 8 applied
to all occurrences in the database can be considered as a generator for a distri-
bution of bit strings; we denote that distribution Dgpp). The concentration of a
distribution can be measured, e.g. with the measure & of Lorenz-Miinzner ([Fer85]),
describing a distribution with respect to its conformity. Observation 2 states that
k(Dg(pp)) is nearly 1, i.e. there is a tendency towards few bit strings occurring
with a high frequency.

The reasons for observation 2 are:

word frequency The bigger the coverage of a label on leaf level is, the more fre-
quently the corresponding bit strings appear. Typically, the label par has
got a big coverage, while the label author has got a low coverage. The
bit string encoding the linear context {paragraph, chapter,body, book} ap-
pears much more frequently than the bit strings encoding the linear contexts
{author, book} or {author, chapter, body, book}.

label frequency Some labels appear in one context more frequently than in an-
other, hence the corresponding bit strings appear more frequently. For exam-
ple each book in the database has only one title, but several chapters with
a title each.

Observation 3: The order of bit positions in the context filter is arbitrary.
This means that at time of database creation the administrator is free to decide
which position encodes which label.

General Outline for Bit String Compression

From observation 1 we conclude that there must be a compressed presentation of
the occurrence bit strings. From observation 2 we conclude that a representation
of occurrence bit strings with dynamical length can help us to reduce the space
requirements for the context filter. Observation 3 will help us to encode the occur-
rences. The general approach is to use an alternative name space C', whose elements
correspond via a translation function 7 to the actual bit strings describing occur-
rences. Let C' be the alternative name space, and 7 : By, — C an injective function.
Then 7 is the compression and 7~! : 7(C) — By, the decompression function. The
idea is to construct C' and 7 in a way that the total storage space for all occurrences
is reduced, i.e.

Z storage_space(5(0)) > Z storage_space(7(5(0))).

o€eDB oeDB

An occurrence o is now enriched with a bit string 7(8(0)) = ¢ € C representing the
actual occurrence bit string 8(0). In the filtering process itself, the compressed bit
string ¢ has to be translated into the occurrence bit string 7~ !(c) = 3(0), and then
the filtering process continues as described before.

We formulate the following requirements for a compression function 7:

11

e Decompression, i.e. computation of 7~!, can be done in constant time.
e Total storage space for compressed bit strings is smaller than original size.

e The compression technique copes with dynamic databases, i.e. a growing
Im(DB) does not enforce a reorganization of the whole index structure.

Front Compression

Let |b| denote the length of a bit string b. Observation 3 gives us the freedom
to choose an ordering of labels for bit string representation. We are looking for
an alignment of the bit positions so that 3 tends to generate regular bit patterns.
Remember, that the lower the coverage of a label, the lower the probability that
the corresponding bit position contains a “1”. If we arrange the bit positions by
ascending coverage, the bit strings will show the tendency to start with a long
run of “0”s. Hence we can conclude that every bit string starts with a run of
0 < k < |L| “0”s (k maximal). There are |L| 4+ 1 possibilities for k, representing
|L|+1 possibilities for the first “1”. These possibilities can be encoded as bit strings
of length [log,(|L| + 1)]. The rest of the occurrence bit string is headed by a “1”
and followed by a body b’ of arbitrary many bits (not more than |L|). The length
|b'| of the body can be derived from the number k of leading “0”s by the formula
|b| = |L|—k—1. If k = |L|, i.e. |b'| = —1, then the occurrence bit string consists
of “0”s only.?

7(b) for a bit string b is defined in the following way: A prefix of fixed length
[log,(|L| +1)] encodes the number & of leading “0”s in b. Then the body (excluding
the first “1” after the prefix of b) is appended to this prefix, resulting in 7(b). An
example of this encoding can be found in Section 6.

The decompression step can be realized by the hardware-oriented SHIFT op-
eration. Hence the decompression step (computation of 77!(b)) can be done in
constant time. Every bit string b € B can be represented with this compression
technique, i.e. an index reorganization is not enforced by growing Im(DB).

Similarly to the discussion of front compression, the observation that the strings
also show the tendency to end with a long run of ”1”s, suggests the idea to reapply
this technique, a suffix compression. But in the next sections we present other tech-
niques for avoiding unnecessary information caused by labels with a high coverage.

5.2 Label Elimination based on Absolute Selectivity

The selectivity of a label is an exact measure for the benefits of the context filter.
Labels with a low selectivity have little benefits and can thus be excluded. The
database administrator may chose a threshold, e.g. 85%, and exclude all labels
with a selectivity lower than this threshold. Labels not incorporated in the index
structure receive no special treatment from the context filter.

5.3 Grammar-based Label Elimination

As an extension to the considerations before, that elaborated on superfluous labels
based on absolute selectivity, we will now generalize this to a concept based on

3An occurrence bit string consisting of “0”s may only occur in combination with one of the
other space reduction techniques.

4In a concrete realization of this optimization we have to take into account hardware definitions
like Byte length or word length. These strict boundaries have a negative influence on the actual
benefit of front compression, but the good experimental results in Section 6 suggest that front
compression will perform well even with this handicap.

12

relative selectivity. This requires that the general structure of the documents in the
database is at least partially known and described by a grammar.

In most document databases this grammar exists; in the case of SGML or XML
it is usually provided in the form of a DTD. If this is case, we can use the hierarchic
information provided in the grammar together with knowledge of the selectivity of
labels in order to locate labels that can be neglected in the occurrence bit string.
Consider the following motivating example:

The grammar of a book describes a chapter as a sequence of one title and
arbitrary many paragraphs. In addition we know, that a paragraph cannot occur
outside a chapter. From a selectivity analysis we can infer that all chapters
of a book have almost the same content as the paragraphs, i.e. ¢(chapter) =
¢(paragraph). This means that almost every word occurring in a chapter occurs
also in a paragraph. The few remaining occurrences in a chapter reflect exactly
the contribution of the title. From this follows that almost all occurrences inside
chapters are also inside paragraphs. If a query specifies an occurrence to be inside a
paragraph we can filter out occurrences that are not inside chapters instead, while
taking into account only a small increase of recall noise. This increase consists
of the occurrences inside of titles. This means that we can drop information
about paragraphs in the index structure. In the phase of query preprocessing,
paragraph contexts in the query are changed to chapter contexts for the filtering
technique. Note that the increase of recall noise only affects the occurrence sets that
are handed back to the query evaluation algorithm and has absolutely no influence
on the quality of the overall answer.

This example leads to the definition of relative selectivity:
Definition 5.1 Let l; and l5 be labels.

e We call I; fixed under Iy, if it occurs under a given context ly only and
((lz) < 1.

e The relative selectivity ¢(l1,l2) of a label Iy fized under Iy is defined as

_ . 1=c()
s(l1,l) =1— 1—7q(l2)

o We say that ly is c-dependent on ls iff <(I1,12) < c.

The relative selectivity ¢(l1,l2) takes values of the interval [0,1] and reflects the
independence of I; relative to lo. ¢(I1,l2) =0, iff ¢(I1) = ¢(l2), i.e. [y and I contain
absolutely the same portions of text. ¢(l1,l2) becomes bigger, the more ¢(l;) and
¢(l2) differ. This means a decreasing conformity of vocabulary and coverage of Iy
and I, and thus an increasing relative selectivity of [y under [5.

The relative selectivity turns out to be a generalization of the (absolute) se-
lectivity defined in Section 4: ¢(I) = <(I, DB) if we use (slightly imprecisely) the
symbol DB for a label covering the complete document collection, since ¢(DB) =0
holds.

As in the case of selectivity, labels do not carry enough information, if their
relative selectivity is too low, and can be neglected in the occurrence bit strings.
Furthermore, analogously to selectivity, the relative selectivity of a label can be

approximated by the (relative) coverage: v(l1,l2) := 183 We can approximate

¢(!) with 1 —~(Iy,15), since under the assumption of label independence ¢(l,15) =
1 —(l1,I2) holds.

13

If labels are disregarded due to their low relative selectivity, the changes for the
filter components are as follows: If for a given threshold ¢ a label [, is c-dependent
on ls, then [is not represented in the bit strings attached to every occurrence.
In query preprocessing, contexts I; are replaced by Is, i.e. an occurrence specified
in the query to appear inside context [; is filtered using context [s. The filtering
process itself does not change further.

5.4 Overview and Combination of the Space Reduction Tech-
niques

We have presented so far three techniques for reducing the space requirements: Bit
string compression and selectivity- and grammar-based label elimination. Another
technique not mentioned here is the removal of labels that are very unlike to be
used in queries, for example layout descriptions. This section gives a synopsis of
the context filter if all these techniques are used.

Before the database with its index structure is actually created the administrator
has to decide which labels are suppressed in the occurrence bit strings. This can
be done by choosing a threshold® ¢ and then using the automatic techniques based
on absolute and relative selectivity. The result is a set of labels carrying enough
information to be integrated into the index structure. For labels suppressed due to
grammar-based reduction, a mapping f is established, that provides a means for
mapping linear contexts to their encoding bit strings.

f is defined as

fi if [is c-dependent on I’
fiy = no contribution if [is removed due to absolute selectivity
bit_position(l) otherwise

The function bit_position returns the position of the label in the bit string. This
position is determined by the order imposed by the front compression technique.

Of course in an implementation some modifications are suggestive:
e dissolve the recursion with the help of a table

e f(l) does not return the bit_position but the corresponding bit-mask, where
only the bit at position bit_position(l) is set

e f(I) does not return no contribution if necessary but a bit string that con-
sists of “0”s only

With these modifications the bit-mask for a linear context {l1,...,l,} can easily be
computed hardware-orientated: bit-mask = f(I1) OR ... OR f(l,)

A coverage analysis used to approximate absolute and relative selectivity is used
to define the order of labels in the bit strings. The (fixed) length of the prefixes can
be computed from the number of remaining labels.

Now the database can be created, with every inserted document being given to
a procedure updating the index structure. The index structure has the architecture
as described by the host system, with the addition that every occurrence is enriched
by a front-compressed bit string encoding the contextual information.

In query evaluation, the query is preprocessed in order to determine the linear
contexts for all search terms. Labels removed due to absolute selectivity are ne-
glected in the linear contexts. Labels removed due to relative selectivity are mapped

5The two techniques may use two different thresholds.

14

to the labels they are dependent on. The linear contexts are now represented as a
bit string.

For every index access with a search term a set of enriched front-compressed
bit strings is returned. These bit strings are unfolded using SHIFT operations with
the value of the prefixes as parameters. For every occurrence this can be done in
constant time.

Then the occurrence bit strings are ANDNOT compared with the linear context
bit strings. Only the matching occurrences are handed back to the algorithm.

6 A Case Study

This section presents a case study on the benefits of the context filter and its quan-
tification by the notion of selectivity, approximated by the notion of coverage. The
document database in question is a set of automatically generated XML documents.
These documents were generated from HTML input describing university depart-
ments in Germany. The tool used for the information extraction was developed in
the UNICO project ([Str97, Rei98]).

The document database consists of 1620 text documents of 5.3 Mbyte in total.
The documents contain more than 390000 term occurrences and are structured by
34 labels (see Appendix A for the document statistics).

Approximation of Selectivity by Coverage

We consider example queries that search for two different terms (Asthma and Soft-
ware) in six different contexts (name, keyword, publication, research, project
and the unique root label unico). Table 1 compares the occurrences of the two
search terms with the coverage values of the labels. The first column reflects the
coverage of the respective label, while the second (third) columns states the abso-
lute number of the occurrences of the term Asthma (Software) in the context of the
respective label and its fraction among all occurrences of Asthma (Software). As can
be seen in the last row, the (unmodified) index structure returns 26 occurrences for
the search term Asthma and 51 occurrences for Software. The fractions of Asthma
and Software occurrences under a given label can be seen as samples to measure
the quality of our selectivity approximation through the coverage.

The result shows that the coverage gives some approximate value for the reduc-
tion of the occurrence sets. With the discussion about the influence of vocabulary

Coverage | Occurrences of Asthma | Occurrences of Software

absolute relative | absolute relative

name 3.90% 2 7.69% 3 5.88%
keyword 4.86% 6 15.38% 10 19.61%
publication 22.80% 4 6.67% 3 5.88%
research 39.59% 14 53.85% 28 54.90%
project 82.02% 18 69.23% 34 66.67%
unico 100.00% 26 100.00% 51 100.00%

Table 1: Coverage and actual occurrences

inter-dependence upon selectivity, the significant difference between the coverage of
keyword and the high percentage of Asthma and Software occurrences under this
label can be interpreted as follows: The label keyword is used for marking lists of
keywords. Obviously Asthma and Software are good candidates for keywords, since

15

they are nouns with a strong semantical content. Therefore they have a higher
proportion of occurrences in this text region than other terms. This difference re-
flects the orthogonal influence of coverage and vocabulary inter-dependence upon
the selectivity. A similar effect can be observed on the label publication.

Reduction Based on Absolute Selectivity

With the reduction techniques based on absolute selectivity as described in Sec-
tion 5.2 we could find six labels (unico, project, p, research, publication and
institution) that could be eliminated (threshold ¢ = 0.85 for absolute selectiv-
ity, i.e. ¢ = 0.15 for coverage) due to their low selectivity (i.e. high coverage; cf.
Table 4).

Grammar-based Reduction

The 34 labels contain only 14 fixed labels, i.e. labels appearing in one context only.
(The reason for this is that the documents evolved as an overlay between layout
marked documents and semantically marked documents.) We will approximate the

relative selectivity <(I1,l2) with the relative coverage v(I1,12) = 183

The values of v(l1,12) for labels I; fixed under I, are listed in Table 2.

Label [Context label Is | y(I1,12)
tr table 96.85%
td tr 87.85%
project unico 82.02%
dd d1 77.86%
publication project 27.80%
dt dl 22.02%
institution wunico 17.98%
contact institution 11.07%
equipment institution 9.13%
institute project 4.87%
child institution 1.92%
duration project 1.32%
parent project 0.42%
internet institution 0.11%

Table 2: Relative coverage 7(I1,l2) of fixed labels Iy

With a threshold ¢ = 0.85 for relative selectivity, i.e. ¢/ = 0.15 for relative
coverage, we find 7 c-dependent labels, namely institution, dt, publication,
dd, project, td, tr. 3 of them have already been eliminated before, but with the
notion of relative selectivity we gained a benefit of another four bits that could
be avoided in the bit string. Note that these labels can be used in queries, but
information about them has not to be stored in the bit strings associated with the
occurrences. Nonetheless, the new filtering techniques also can be applied to these
labels, as elaborated in Section 5.3.

This means that the notion of relative selectivity gives a benefit of another four
bits that could be avoided in the bit string. Both methods combined result in the
reduction of a bit string of length 34 (for 34 labels) down to length 24, i.e. 3 Bytes.
The function used for mapping labels to surrounding labels they are dependent
on consists of four pairs only: {dd — d1,dt — dl,tr — table,td — table}.
The labels project, publication and institution are removed due to absolute
selectivity and are therefore not mapped to another label.

16

Bit String Compression

We will discuss the benefits of bit string compression again on the two example
occurrence sets for the search terms Asthma and Software. There are 26 occur-
rences of Asthma and 51 occurrences of Software in the document database. For 24
remaining labels this sums up to a total length of all concatenated occurrence bit
strings of 624 or 1224 bits, respectively.

If we use front compression, the prefix has always length 5, in order to represent
a sequence of 0 < k < 24 leading “0”s. For the encoding of labels in occurrence bit
strings we used the order of Table 4. The linear context {equipment, institution,
1i,ul,unico} is represented as occurrence bit string 000000000000010000011000
and encoded in the compressed bit string 01101 0000011000. In Table 3 we di-
vided the occurrences with respect to their contexts and stated for every class of
occurrences the number of leading “0”s in the occurrence bit string o, the length
|7| = |7(B(0))] of the encoded occurrence bit string, the number of occurrences of
the respective search terms under that context and the total length of the concate-
nated name bit strings.
The total length of the concatenated, compressed bit strings for all occurrences of
Asthma (resp. Software) is 174 or 510, respectively. This means that the bit strings
are reduced down to 30% (resp. 40%) of the size using 24 bit encoding. Together
with the reduction techniques based on selectivity the size of storing all occurrence
bit strings for Asthma (resp. Software) was reduced from 884 (1734) bits down to
20% (30%) of their original size.
Every occurrence of Asthma (Software) needs now 6.7 bits (10 bits) on average for
storing the compressed bit string. But this great improvement still has to be verified
with other experimental data.

Term 0 | Linear context “0”s | |7| | # occ. | Total
Asthma | p,research,project,unico 24) 10 50
p,publication,project,unico 24) 4 20
p,research, institution,unico 24) 4 20
keyword, institution,unico 18 | 10 4 40
keyword, project,unico 18 | 10 2 20
name, project,unico 16 | 12 2 24
Software | p,research, project,unico 24 5 16 80
p,publication,project,unico 24 5 3 15
p,research, institution,unico 24) 4 20
li,ul, research, institution,unico 19 9 1 9
keyword, institution,unico 18 | 10 4 40
keyword, project,unico 18 | 10 6 60
institute,project,unico 17 | 11 2 22
name, project,unico 16 | 12 3 36
1li,ul, cooperation, institution,unico 15| 13 1 13
contact,institution,unico 14| 14 1 14
li,ul, equipment, institution,unico 13] 15 2 30
p,equipment, institution,unico 13] 15 1 15
li,ul, ol,research,project,unico 81 20 4 80
1li,o0l,research, institution,unico 81 20 2 40
b,1i,0l,research, institution,unico 3] 25 1 25

Table 3: Effects of front compression on storage space

17

7 Conclusion

This work presented a filtering technique for structured document retrieval that
takes contextual information into account. It showed that this filtering technique
can be integrated into many existing architectures for structured document retrieval
with little effort. It also presented with the notion of “selectivity” a measure to
quantify the added value of the context filter.

Based on this measure techniques that reduce the size of the context filter were
introduced. One technique was based on the idea to exploit patterns in the occur-
rence bit strings in order to compress these bit strings to shorter ones. The other
methods used selectivity and relative selectivity of labels in order to drop labels
carrying not enough information.

Besides an integration of the filter with its space optimizing techniques into
existing systems and evaluation of the resulting prototypes, we are planning a deeper
investigation of the following topics:

e What is the benefit of extending the concept of coverage and selectivity to
structural elements, i.e. to count the number of elements governed by a label
in addition to the number of words?

e An analysis of users’ query needs and habits could lead to a strong reduction
of the needed labels. Only labels that are used in queries frequently are needed
in the index structure.

e Sometimes attributes of nodes behave in a way similar to labels, i.e. they
have a nested hierarchy and inherit values over that hierarchy (e.g. in compu-
tational linguistics). [FGR98] and [FMB98] treat attributes like this. If these
attributes behave similar to labels, the introduced techniques can be used for
attributes as well.

e How can we use the insights gained by investigating the selectivity in order
to find new means to automatically classify vocabulary based on selectivity?

Acknowledgments

We would like to thank Jochen Sauter for proofreading a preliminary version of this
work.

References

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. R-tree. an efficient and robust access method for points and
rectangles. SIGMOD Record, 19(2):322-331, June 1990.

[BYN96] R. Baeza-Yates and G. Navarro. Integrating contents and structure in
text retrieval. SIGMOD Record, 25(1):67-79, 1996.

[CCB95a] C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski. An algebra for
structured text search and a framework for its implementation. The
Computer Journal, 38(1):43-56, 1995.

[CCB95b] C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski. Schema-
independent retrieval from heterogenous structured text. In Proc.
Fourth Annual Symposium on Document Analysis and Information Re-
trieval, pages 279-290, 1995.

18

[Fer85]

[FGROS)

[FMBOS]

[GWOT]

[ISO86]

[Ki192]

[Loe94]

[MAG+97]

[Meu98]

[MS98]

[MW97]

[MWA*98]

[Nav95]

[NBY97]

[Rei98]

[ST94]

Franz Ferschel. Deskriptive Statistik. Physika-Verlag Wiirzburg Wien,
1985.

N. Fuhr, N. Gévert, and T. Réllecke. DOLORES: A system for logic-
based retrieval of multimedia objects. In Proc. ACM SIGIR ’98, 1998.

F. Fourel, P. Mulhem, and M.-F. Bruandet. A generic framework for
structured document access. In Proc. DEXA’98, 1998.

Roy Goldman and Jennifer Widom. Dataguides: Enabling query for-
mulation and optimization in semistructured databases. In VLDB’97,
pages 436-445, 1997.

ISO. Information Processing - Text and Office Systems - Standard Gen-
eral MarkUp Language (SGML). ISO8879, 1986.

P. Kilpeldinen. Tree Matching Problems with Applications to Structured
Text Databases. PhD thesis, Dept. of Computer Science, University of
Helsinki, 1992.

A. Loeffen. Text databases: A survey of text models and systems.
SIGMOD Record, 23(1):97-106, March 1994.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore:
A database management system for semistructured data. SIGMOD
Record (ACM Special Interest Group on Management of Data), 26(3),
1997.

H. Meuss. Indexed tree matching with complete answer representations.
In Proc. Fourth Workshop on Principles of Digital Document Processing
(PODDP’98), 1998.

H. Meuss and K. Schulz. Complete answer aggregates for structured
document, retrieval. Technical Report 98-112, CIS, University of Mu-
nich, 1998.

J. McHugh and J. Widom. Query optimization for semistructured data.
Technical report, Stanford University, Computer Science Department,
1997.

J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A. Rajamaran. Index-
ing semistructured data. Technical report, Stanford University, Com-
puter Science Department, 1998.

G. Navarro. A language for queries on structure and contents of textual
databases. Master’s thesis, Dept. of Computer Science, University of
Chile, 1995.

G. Navarro and R. Baeza-Yates. Proximal Nodes: A model to query
document databases by contents and structure. ACM Transactions on
Information Systems, 15(4):400-435, 1997.

R. Reiner. Ein Blackboard-System zur Informationsextraktion aus
semistrukturierten Daten fiir die UNICO-Datenbank. Master’s thesis,
University of Munich, 1998.

A. Salminen and F. W. Tompa. PAT expressions: an algebra for text
search. Acta Linguistica Hungarica, 41(1-4):277-306, 1994.

19

[Str97]

[W3C98a]

[W3C98b]

C. Strohmaier. UNICO, eine OMNIS-Datenbank zur Hochschulkooper-
ation mit der Industrie. Master’s thesis, University of Munich, 1997.

W3C. QL’98 - the query languages workshop, December 1998.
http://wuw.w3.org/TandS/QL/QLI8.

World Wide Web Consortium: Extensible Markup Lan-
guage (XML) 1.0. W3C Recommendation, February 1998.
http://http://www.w3.org/TR/REC-xml.

20

A The Example Database

The database contains 1620 documents with 390696 occurrences altogether.
They are structured by 34 Labels. The following table states how many occur-
rences every label contains (absolutely and relatively). The labels are translated
from German into English.

Label Coverage # occ.
internet 0.02% 75
u 0.03% 119
sup 0.04% 148
b 0.05% 177
sub 0.11% 449
parent 0.34% 1346
child 0.35% 1349
key 0.42% 1642
ol 0.54% 2092
td 0.63% 2448
tr 0.72% 2795
table 0.74% 2886
duration 1.08% 4226
created 1.26% 4926
acquisition 1.26% 4926
equipment 1.64% 6415
contact 1.99% 7775
dt 2.99% 11688
cooperation 3.00% 11728
name 3.90% 15227
institute 4.00% 15614
keyword 4.86% 18999
ul 5.39% 21048
1i 5.84% 22825
i 6.23% 24348
dd 10.58% 41324
person 13.48% 52673
dl 13.58% 53072
institution 17.98% 70239
publication 22.80% 89089
research 39.59% 154685
p 60.92% 238004
project 82.02% 320457
unico 100.00% 390696

Table 4: Document database statistics

21

