
A Filter for Structured Document Retrieval�Christian Strohmaier Holger MeussCenter for Information and Language ProcessingUniversity of Munichfstrohmai,meussg@cis.uni-muenchen.deAbstractStructured document retrieval has established itself as a new research areain the overlap between Database Systems and Information Retrieval. Thiswork proposes a �ltering technique that can be added to already existing in-dex architectures of many structured document retrieval systems. This newtechnique takes the contextual structure information of query and documentdatabase into account and reduces the occurrence sets handed from the in-dex structure to the query evaluation algorithm drastically by selecting onlyoccurrences appearing in the right context, and thus decreases computationale�ort in query evaluation.With the notion of \selectivity" we introduce a measure for the addedvalue of the �ltering technique. Based on this notion, new techniques areproposed in order to reduce space requirements for the additional informationnecessary for the �ltering process. One technique utilizes varying patterns oflabels in the document database for compressing the information. The othertechnique uses grammars describing the document structure for �nding labelswith similar properties. Out of a pair of those labels, only information aboutone has to be included in the index structure.1 IntroductionWith the growing importance of Information Retrieval in the presence of a vastamount of structured documents in formalisms like SGML ([ISO86]) or the futureWWW language XML ([W3C98b]), sophisticated and e�cient indexing techniquesfor structured documents become more and more important. A recent W3C work-shop dedicated to XML query languages ([W3C98a]) illustrates the urgent need fore�cient query mechanisms on structured documents.Indexing and �ltering techniques are crucial for the e�ciency of Database Sys-tems (DBS) and Information Retrieval (IR) systems. With an appropriate indexor �lter structure irrelevant parts of the database can be disregarded in the search.Very sophisticated index structures have been proposed in the research in DBS andIR, some of them dedicated to a special class of data only, e.g. geographical data([BKSS90]).Index structures in DBS try to support access to data by organizing it in anappropriate way. The notion of ordering the data plays a keyrole in this task.Some data has a natural topology (like geographical data), whereas for other datathe index structure de�nes a topology. One of the problems of an e�cient index�This work was partially funded by Siemens AG.1

structure is to map this (usually multidimensional) topology onto the linear layoutof the storage medium.So far, index structures in IR are confronted with the one-dimensional formof the problem only: they implement a mapping from terms (i.e. words) in a setof documents to occurrences (i.e. o�sets in the �les storing the documents). Themapping problem becomes trivial, since text is seen in traditional IR as a linearmedium.In the last years, several formalisms for structured document retrieval have beenproposed, a �eld that combines aspects of DBS and IR. (See [BYN96] and [Loe94]for surveys.) The IR view derives from conceiving a document as a sequence ofwords, whereas the DBS aspect interprets the tree structure of a document asnesting of information containers. This hybrid role raises the question of appropriateindex structures for structured document retrieval. Only few formalisms did payattention to this question (e.g. the Lore system: [MAG+97]). Most formalismssimply adopted techniques and de�nitions for index structures well established inIR, e.g. inverted �les, or occurrences as o�sets in a text �le. But that neglectsthe outstanding peculiarity of structured documents, namely of having no lineartopology. Structured documents are usually conceived as trees and have thus asuper-linear topology.This work postulates a marriage between indexing techniques from the �eld ofDBS and IR, in the same way as structured document retrieval is conceived as amarriage between DBS and IR. It proposes as a �rst step an integration of additionalstructural information into the index structure. This can be seen as the invention ofDBS indexing techniques for IR related systems, since now the document topologyis taken into account in a nontrivial way.The additional structural information to be integrated into the index structureconsists of linear contexts associated with occurrences. With the help of these linearcontexts and a simple automatic query preprocessing a �lter can be applied to theresults of index calls, thus reducing the size of the occurrence sets. With thesereduced sets, the query evaluation algorithms will perform more e�ciently.The proposed �lter can be integrated into many formalisms for structured doc-ument retrieval. Examples of the necessary changes for di�erent systems are given.The bene�ts may vary from system to system and from application to application,but are likely to speed up query evaluation remarkably in overall.In addition, we provide mathematical tools based on the notion of \selectivity"that help the database administrator to decide which structural information shouldbe integrated and thus �nd an optimal solution for the space/speed trade-o�.This work is organized as follows. The next section describes the �eld of struc-tured document retrieval by discussing its general task and peculiarities and review-ing some formalisms known in the literature. Section 3 introduces the context �lterand how it is used in query evaluation. The following section shows how the addedvalue of the context �lter can be quanti�ed by using the notion of \selectivity" oflabels and how selectivity can be approximated e�ciently. Section 5 introduces newtechniques to reduce the size of the context �lter. Section 6 shows for an exam-ple database how the techniques proposed here behave for a real-world documentdatabase. Section 7 concludes with some directions for future work.
2

2 Structured Document RetrievalA lot of models for structured document databases have been proposed in the recentyears. This section will introduce their features as far as they are relevant for theproposed �lter. Our work refers to the models reviewed in [BYN96] and [Loe94],and in addition to [Meu98], many of the new XML query languages [W3C98a], andthe Lore system ([MAG+97]).All these models represent structured documents as labeled, directed graphs(in most cases trees). The leaf nodes contain the actual textual content of thedocuments. This is implemented by associating these nodes with regions in a �lestoring the textual content of the document. Structural containment is representedby edges in the graphs. Nodes containing other nodes (e.g. chapters containingparagraphs) are associated with the union of all text regions of their children. Inorder to structure the text, every node is assigned a label, e.g. chapter or author.Structured document retrieval systems provide formalisms to query a documentdatabase, to evaluate the query and present the answer to the user. The querymay specify textual and structural aspects of the documents. Query evaluation issupported by various index structures, but most of the considered models provideat least two classes of index structures:� Text index: This index structure implements a mapping from search terms tooccurrences in the document database. Every structured document retrievalmodel implements a text index.� Structure index: This index structure implements a mapping from labels ofstructural elements to occurrences in the document database. This mappingis implement by most models.For the proposed �lter the distinction between these two index mappings is notrelevant, because our proposed �lter technique is applicable analogously to both ofthem. Therefore we will use the word \search term" to refer to both terms andlabels in the following.We will use the following abstract view upon the various query evaluation sys-tems mentioned in the beginning of this section: during query evaluation, for everysearch term in the query an index structure is called by the query evaluation algo-rithm. This index structure is given a search term and returns a set of occurrencesof the search term in the document database. The actual representation of these oc-currences may di�er from system to system; some systems represent occurrences aso�sets in text �les, others as paths in the document structure. We make no distinc-tion on this point and conceive index structures as a mapping from search termsto occurrence sets, independent from the actual representation of an occurrence.These occurrences are manipulated and combined by the query evaluation algo-rithm. Note that the size of the returned occurrence sets determines the e�ciencyof the query evaluation.For the description of the various formalisms we will refer to the following ex-ample query, cited here informally in natural language:Query 1: \Give me all chapters whose title reads Java."The structured document retrieval models we consider here are distinguished bytheir query evaluation strategy and can be divided into three classes:Bottom-up query evaluation guided by the syntax tree: This class compri-ses most of the models known to the literature, e.g. PAT Expressions ([ST94]),3

Overlapped Lists([CCB95a, CCB95b]), Proximal Nodes ([NBY97, Nav95]).These models have in common, that query evaluation is guided by the syntaxtree of the query, i.e. an operator in the syntax tree is evaluated after all itschildren are evaluated. The resulting set of occurrences is then attached tothat operator, and query execution can climb up further in the syntax tree.The leaves are evaluated by a text and a structure index, respectively. Inthese models an occurrence is a region in a �le containing the at text of thedocuments. This region is speci�ed by two o�set values.Query 1 is expressed in the Proximal Nodes syntax in the following way.(Queries in the two other mentioned formalisms look similar.)chapter with (title same Java)Its syntax tree is depicted in Figure 1.with���� HHHHchapter same�� HHtitle JavaFigure 1: Syntax Tree of the Proximal Nodes QueryQuery 1 is evaluated in the following way: A set with all elements with thecontent Java is produced by an index call, as well as a set with all title el-ements. The two occurrence sets are attached to the respective leaves. Thenthey can be compared with a simple intersection operation being the opera-tional equivalent for the same operator. The resulting set is attached to thesame node. Next comes evaluation of the chapter leaf, �nding (with the helpof the index structure) all chapter nodes in the document database, and inthe end, the sets attached to the chapter and to the same nodes are com-bined to the result set, that is attached to the with node and �nally returnedas answer.Bottom-up path-based query evaluation guided by the structural tree:This class consists of the Indexed Tree Matching formalism ([Meu98, MS98]),that is an extension of the Tree Matching formalism ([Kil92]). Query evalua-tion is guided by the structural tree that reects the search pattern, as in theexample tree depicted in Figure 2 being the graphical formulation of Query 1.chaptertitleJavaFigure 2: Indexed Tree Matching QueryFor query evaluation the search terms in the leaves of the tree are evaluatedusing an index that maps the search terms to their occurrences. An occurrence4

is the path in the document database leading to the leaf containing the searchterm. The set of all occurrence paths is thereafter combined in a data structurederived from the query. Traversal of the (syntax or structural) tree in singlesteps is avoided by manipulating paths instead of single nodes. For the samereason, there is no need for a structure index in Indexed Tree Matching.Flexible query evaluation guided by the syntax tree: This class consists ofthe Lore system ([MW97, MWA+98]), a formalism for querying graph-struc-tured data: Its sophisticated query evaluation mechanism supports variousevaluation strategies (bottom-up, top-down, hybrid). A query plan is op-timized at run-time based on statistical information about the documentdatabase called DataGuides ([GW97]). Four index structures are maintainedto support the various query evaluation techniques used. Every index struc-ture maps search terms (i.e. terms, relational or path expressions) to occur-rences. An occurrence is a node in the database.Apart from a path index that maps node/path pairs to nodes reachable fromthe input node via the path, all these index structures can be reasonably en-riched with contextual information. For the path index the additional storageof contextual information produces no better results.3 The Context FilterDisregarding irrelevant parts of the document database is a main strategy for queryevaluation algorithms of database and IR systems. The earlier and more e�ortlessthis is possible, the more e�cient an algorithm can perform. Index structures sup-port query evaluation in this task, since they avoid scanning the complete databasein order to �nd objects. This section describes a method to enrich index structureswith additional contextual information in a way that the result sets of calls to theindex structure can be drastically reduced with a computationally cheap test. Oc-currences not complying with the contextual conditions prescribed by the query are�ltered out. The query evaluation algorithm will only treat the reduced occurrencesets and will thus perform better.In the following we use the term linear context of an occurrence to denote theset of all ancestor labels containing that occurrence in the document tree.The proposed modi�cation to the host architecture consists of three components:Enriching the Occurrences: In order to �lter the set of occurrences, the indexstructure has to be equipped with the linear contexts of the occurrences. This isdone at the time of index generation. The contextual information is stored in thecondensed form of a bit string attached to every occurrence. All bit strings areof a �xed size, and every position in the bit strings corresponds to a label in thedocument database. A \1" indicates that the occurrence is in a region associatedwith that label, whereas a \0" indicates that this is not the case. The example inFigure 3 illustrates this. It is possible to integrate the additional context informationinto all index architectures used by the systems mentioned in Section 2.Query Preprocessing: The query is analyzed in order to �nd the linear contextfor every search term, i.e. for every search term a set of those labels is computed that\include" the search term as contexts. The algorithm itself depends on the querysyntax, and is therefore not elaborated here. These contexts are now encoded in thesame way in bit strings as the contextual information attached to the occurrences.5

Document database: book���������� HHHHHHHHHHauthor title body����� HHHHHchapter�� HHtitle par chapter���� HHHHtitle par parBit-mask: book author title body chapter parThe search term Java occurs in the title of the book (occurrence o1) and in thetitle of the second chapter (occurrence o2). The label title has three occur-rences: One as the title of the book (occurrence o3), two as titles of chapters(occurrences o4 and o5). A part of the enriched index mapping is:Java 7! fo1 + 1 0 1 0 0 0 ;o2 + 1 0 1 1 1 0 gtitle 7! fo3 + 1 0 0 0 0 0 ;o4 + 1 0 0 1 1 0 ;o5 + 1 0 0 1 1 0 gFigure 3: Linear contexts of occurrencesSince this preprocessing step depends on the size of the query only and can be donevery e�ciently, it increases the overall time complexity of query evaluation with aneglectable addend dependent on the query size only.For Query 1, the preprocessing computes the linear context fchapter,titleg forthe search term Java, and the linear context fchapterg for the search term title.These two linear contexts are encoded in the bit strings0 0 1 0 1 0 and 0 0 0 0 1 0 in the same way as the oc-currences in the document database in Figure 3.
term/
label

Filter
Index
structure

set of
occurrences

reduced set
of occurrencesFigure 4: Integration of the context �lterFiltering the Index Result Sets: We suppose that the index structure returnssets of enriched occurrences, i.e. occurrences together with their linear contexts.Every call to an index structure in query evaluation is now processed in the followingway (see also Figure 4): The linear context of every occurrence is compared to the6

linear context of the respective search term in the query that was computed in thepreprocessing step. Occurrences not complying with the contextual conditions are�ltered out and only the complying nodes are passed back to the query evaluationalgorithm.This �ltering of occurrences is realized by an e�cient bit comparison, anANDNOT1 operation between the respective search term's linear context and theoccurrences' linear contexts. If this results in 0 (the bit string consisting of \0"sonly), the respective occurrence is kept, since then all labels speci�ed in the linearcontext of the search term do in fact occur in the linear context of the occurrence.Otherwise the occurrence is dropped. This can be implemented very e�ciently,because the used operations are hardware-oriented.The reduced set of occurrences is now processed in the same way as the fullset of occurrences would have been without the context �lter. Again, integrationof this �lter into the respective query evaluation mechanism is possible in all themodels mentioned in Section 2.Consider for example Query 1 and the document database depicted in Figure 3.The three calls to the index structure have the following results:� There are two chapter elements.� There are three title elements (o3, o4 and o5).� There are two occurrences of the search term Java (o1 and o2).When examining the bit strings of the enriched occurrences returned by eachcall to the index, the �lter can detect very fast that occurrence o1 of the search termJava is not inside a chapter. From the three title occurrences one can be removedas well.Note that we do not interfere with the host query evaluation mechanism in anyway, since the �ltering procedure does not depend on the point of time the indexcalls are made. The important thing is that every result of an index call runsthrough the �lter before it is passed back to the host algorithm.4 SelectivityIn this section we will de�ne a measure for the e�ciency of the context �lter.The \selectivity" of a label measures the number of occurrences in the documentdatabase that can be rejected by the context �lter. The higher the selectivity ofa label is, the more occurrences can be �ltered out, if that label is speci�ed as acontext in the query. In addition we will show how the selectivity of labels canbe approximated with reasonable computational e�ort. As we will see in the nextsection, a selectivity analysis of labels can also be used in order to minimize thespace requirements for the occurrence bit strings stored in the index structure.Informally, we de�ne the selectivity &(l) of a label l as the average proportionbetween \recall noise" and \total recall".&(l) = recall noise(l)total recallTotal recall is the number of all occurrences returned by an index call, and recallnoise is the number of those occurrences outside the scope of the label l.As elaborated in the following, the selectivity of a label is inuenced by the1ANDNOT executes a bitwise AND on the �rst and the negated second operator.7

� coverage of that label, and� inter-dependence of that label with others.Obviously, the smaller the text regions are that are covered by a given label, themore selective that label is. And also, the more independent labels are from eachother, i.e. the more each label tends to have its own vocabulary, the less selectivethey are. Inter-dependence of labels is mainly caused by element nesting or redun-dancy in natural language. The causality between selectivity and inter-dependenceis illustrated in the following example.Regard a Franco-phone IR system of local conference papers in French withadditional English abstracts marked with r�es angl. Querying English terms willproduce a recall set of occurrences which are almost inevitably covered by the labelr�es angl, because just a few terms occur in both languages, like sale. In the termsde�ned above this means a low recall noise of the label r�es angl, resulting in a lowselectivity of that label. Querying the French abstracts (r�es fran�c) with Frenchterms is di�erent, since the text index call returns occurences which are covered byr�es fran�c as well as occurences which are not. Therefore a �ltering step is usefulfor that label. Notice that French and English abstracts have roughly the samesize but di�erent selectivity. Hence coverage and inter-dependence are orthogonalinuences on the selectivity. This informal reasoning will have its formal reectionin Theorem 4.1.Next we will present the exact de�nition of selectivity. The basic idea in it is toconsider every potential recall set for every label. The fraction between the recallnoise and total recall is computed for every search term. The unweighted averageof all these fractions is the selectivity of that label.We distinguish term occurrences o and terms �o.2 The exact de�nition of what aterm actually is, together with its sophisticated, but tideous accompanying problemsis left to the host formalism. We describe the relation \occurrence o is in the scopeof the label l" by o 2 l. The proposition o 2 DB (with the reserved symbol DB)shall be true for all occurrences o in the document database database. This symbolDB can be conceived as a unique label of an arti�cial root node that is an ancestorof all nodes in the document database.De�nition 4.1 Let T = f�o1; : : : ; �ong be the set of di�erent terms in the database.The selectivity &(l) of a label l is computed with the formula:&(l) = 1n nXj=1 ��fo j o 2 �oj ^ o =2 lg����fo j o 2 �ojg��The selectivity can take values in the interval [0; 1]. If &(l) = 0, then l is a labelcovering all term occurrences of the document. If the document collection has aroot element with label lr, then &(lr) = 0, e.g. the XML tag framing every XMLdocument.If &(l) = 1, then l is a label covering no term occurrences at all, e.g. a bachelor tag(in the XML terminology).The formula shows that the computation of selectivity is a high computationale�ort. Therefore we provide with the notion of coverage a means to approximatethe selectivity:2We conceive terms as equivalence classes of term occurrences, i.e. a term is the set �o containingexactly the occurrences of the term. If o is an occurrence of term �o, we write o 2 �o.8

CoverageWhen neglecting the e�ects of \di�ering vocabularies" in labels, we can approx-imate the selectivity of a label by its size, i.e. by the number of occurrences in thedocument database under that label. This is captured by the notion of coverage.The relation between coverage and selectivity will be stated in Theorem 4.1.De�nition 4.2 The coverage (l) of a label l is computed with the formula:(l) = ��fo j o 2 lg����fo j o 2 DBg��The next de�nition captures the notion of label independent terms, i.e. terms,whose relative number of occurrences is equal for all labels. This notion provides abasis for a formal reasoning on the orthogonal inuences of label inter-dependenceand coverage.De�nition 4.3 A term �o is called label independent, if��fo j o 2 �o ^ o 2 lg����fo j o 2 lg�� = ��fo j o 2 �o ^ o 2 DBg����fo j o 2 DBg��holds for all labels l.The following theorem shows that coverage is a good approximation for selec-tivity if we neglect the e�ects of label dependent terms. Obviously this assumptiondoes not hold in a real-world document database, but the results in our case study(see Section 6) and their discussion show that coverage is a realistic approximationfor selectivity.Theorem 4.1 Let &̂(l) be an estimation for the selectivity &(l) of a label l computedwith &̂(l) = 1� (l):If all terms are label dependent, this approximation is exactly the selectivity of alabel: &̂(l) = &(l)Proof: Let all terms be label independent. Then we can de�ne the size of a termas size(�o) = ��fo j o 2 �o ^ o 2 DBg��jfo j o 2 DBgj :With this de�nition, the following equations hold:&(l) = 1n nXj=1 ��fo j o 2 �oj ^ o 62 lg����fo j o 2 �oj ^ o 2 DBg��= 1� 1n nXj=1 ��fo j o 2 �oj ^ o 2 lg����fo j o 2 �oj ^ o 2 DBg��= 1� 1n nXj=1 size(�oj) � ��fo j o 2 lg����fo j o 2 �oj ^ o 2 DBg��= 1� 1n nXj=1 ��fo j o 2 �oj ^ o 2 DBg�� � ��fo j o 2 lg����fo j o 2 DBg�� � ��fo j o 2 �oj ^ o 2 DBg��9

= 1� 1n nXj=1 ��fo j o 2 lg����fo j o 2 DBg��= 1� 1n � n � ��fo j o 2 lg����fo j o 2 DBg��= 1� (l)For the the second equality we used the fact, that fo j o 2 �ojg form a partitionfor the set fo j o 2 DBg of all occurrences. The next equation follows from equaldistribution of terms and the rest is pure arithmetics. 25 Reduction of Space RequirementsThe additional information associated with every occurrence is stored in a bit string,whose length depends on the number of di�erent labels in the database. The ob-jective of this section is to present techniques that reduce the length of these bitstrings. We propose a dynamic method that utilizes the varying coverage of la-bels in order to shorten the bit strings, and two static methods, that provide thedatabase administrator with means to decide which labels can be excluded from theoccurrence bit strings.5.1 Dynamic Bit String CompressionThe space reduction technique we present in this section is based on three observa-tions. After describing these observations and their causality, we will discuss twomethods of compressing the bit strings in order to achieve a smaller total length ofthe occurrence bit strings. All examples given in the following discussion on the ob-servations and their background refer to the example document database introducedin Section 3.Peculiarities of the Bit String DistributionObservation 1: The actual number of di�erent bit strings generated by encodinglinear contexts of occurrences is much smaller than the number of bit strings of a�xed size.The reasons for observation 1 are:Grammatical: In most cases, a grammar restricts occurrence bit strings to validpaths. For instance, a possible grammar for our example database could de�neauthor and title as atomic elements (i.e. leaves), consisting of at text only.Obviously an occurrence can not be in the context of two di�erent atomicelements at the same time.Semantical: Even if no grammar exists or the grammar is not strict enough, theinherent semantics of the document description will restrict occurrence bitstrings to a given set of patterns. An author element for instance will normallyhave no date sub-element.Empirical: Some meaningful and grammatically correct occurrence bit strings failto appear in a speci�c database merely by chance. The example databasecould for instance contain books whose chapters have di�erent authors, rep-resented by author nodes for chapters. If, by chance, only books by singleauthors are entered into the database, no occurrence will be in the contextof author and chapter at the same time.10

In order to make observation 1 more formal, we have to use some de�nitions: LetL be the set of di�erent labels in the database and let BL be the set of bit stringswith the �xed length jLj. It follows that jBLj = 2jLj. Let � : fo j o 2 DBg ! BLbe the function that computes for every occurrence the corresponding bit string.We de�ne the image of that function as follows, Im(DB) := f�(o) j o 2 DBg.Observation 1 means that jIm(DB)j � jBLj.Observation 2: The bit strings are label dependent: A few bit strings aregenerated very often, some are generated rarer and the rest never (the latter corre-sponds to observation 1).Again, we will formulate this observation more formally: the function � appliedto all occurrences in the database can be considered as a generator for a distri-bution of bit strings; we denote that distribution D�(DB). The concentration of adistribution can be measured, e.g. with the measure � of Lorenz-M�unzner ([Fer85]),describing a distribution with respect to its conformity. Observation 2 states that�(D�(DB)) is nearly 1, i.e. there is a tendency towards few bit strings occurringwith a high frequency.The reasons for observation 2 are:word frequency The bigger the coverage of a label on leaf level is, the more fre-quently the corresponding bit strings appear. Typically, the label par hasgot a big coverage, while the label author has got a low coverage. Thebit string encoding the linear context fparagraph; chapter; body; bookg ap-pears much more frequently than the bit strings encoding the linear contextsfauthor; bookg or fauthor; chapter; body; bookg.label frequency Some labels appear in one context more frequently than in an-other, hence the corresponding bit strings appear more frequently. For exam-ple each book in the database has only one title, but several chapters witha title each.Observation 3: The order of bit positions in the context �lter is arbitrary.This means that at time of database creation the administrator is free to decidewhich position encodes which label.General Outline for Bit String CompressionFrom observation 1 we conclude that there must be a compressed presentation ofthe occurrence bit strings. From observation 2 we conclude that a representationof occurrence bit strings with dynamical length can help us to reduce the spacerequirements for the context �lter. Observation 3 will help us to encode the occur-rences. The general approach is to use an alternative name space C, whose elementscorrespond via a translation function � to the actual bit strings describing occur-rences. Let C be the alternative name space, and � : BL ! C an injective function.Then � is the compression and ��1 : �(C) ! BL the decompression function. Theidea is to construct C and � in a way that the total storage space for all occurrencesis reduced, i.e.Xo2DB storage space(�(o)) � Xo2DB storage space(�(�(o))):An occurrence o is now enriched with a bit string �(�(o)) = c 2 C representing theactual occurrence bit string �(o). In the �ltering process itself, the compressed bitstring c has to be translated into the occurrence bit string ��1(c) = �(o), and thenthe �ltering process continues as described before.We formulate the following requirements for a compression function � :11

� Decompression, i.e. computation of ��1, can be done in constant time.� Total storage space for compressed bit strings is smaller than original size.� The compression technique copes with dynamic databases, i.e. a growingIm(DB) does not enforce a reorganization of the whole index structure.Front CompressionLet jbj denote the length of a bit string b. Observation 3 gives us the freedomto choose an ordering of labels for bit string representation. We are looking foran alignment of the bit positions so that � tends to generate regular bit patterns.Remember, that the lower the coverage of a label, the lower the probability thatthe corresponding bit position contains a \1". If we arrange the bit positions byascending coverage, the bit strings will show the tendency to start with a longrun of \0"s. Hence we can conclude that every bit string starts with a run of0 � k � jLj \0"s (k maximal). There are jLj + 1 possibilities for k, representingjLj+1 possibilities for the �rst \1". These possibilities can be encoded as bit stringsof length dlog2(jLj + 1)e. The rest of the occurrence bit string is headed by a \1"and followed by a body b0 of arbitrary many bits (not more than jLj). The lengthjb0j of the body can be derived from the number k of leading \0"s by the formulajb0j = jLj � k � 1. If k = jLj, i.e. jb0j = �1, then the occurrence bit string consistsof \0"s only.3�(b) for a bit string b is de�ned in the following way: A pre�x of �xed lengthdlog2(jLj+1)e encodes the number k of leading \0"s in b. Then the body (excludingthe �rst \1" after the pre�x of b) is appended to this pre�x, resulting in �(b). Anexample of this encoding can be found in Section 6.The decompression step can be realized by the hardware-oriented SHIFT op-eration.4 Hence the decompression step (computation of ��1(b)) can be done inconstant time. Every bit string b 2 B can be represented with this compressiontechnique, i.e. an index reorganization is not enforced by growing Im(DB).Similarly to the discussion of front compression, the observation that the stringsalso show the tendency to end with a long run of "1"s, suggests the idea to reapplythis technique, a su�x compression. But in the next sections we present other tech-niques for avoiding unnecessary information caused by labels with a high coverage.5.2 Label Elimination based on Absolute SelectivityThe selectivity of a label is an exact measure for the bene�ts of the context �lter.Labels with a low selectivity have little bene�ts and can thus be excluded. Thedatabase administrator may chose a threshold, e.g. 85%, and exclude all labelswith a selectivity lower than this threshold. Labels not incorporated in the indexstructure receive no special treatment from the context �lter.5.3 Grammar-based Label EliminationAs an extension to the considerations before, that elaborated on superuous labelsbased on absolute selectivity, we will now generalize this to a concept based on3An occurrence bit string consisting of \0"s may only occur in combination with one of theother space reduction techniques.4In a concrete realization of this optimization we have to take into account hardware de�nitionslike Byte length or word length. These strict boundaries have a negative inuence on the actualbene�t of front compression, but the good experimental results in Section 6 suggest that frontcompression will perform well even with this handicap.12

relative selectivity. This requires that the general structure of the documents in thedatabase is at least partially known and described by a grammar.In most document databases this grammar exists; in the case of SGML or XMLit is usually provided in the form of a DTD. If this is case, we can use the hierarchicinformation provided in the grammar together with knowledge of the selectivity oflabels in order to locate labels that can be neglected in the occurrence bit string.Consider the following motivating example:The grammar of a book describes a chapter as a sequence of one title andarbitrary many paragraphs. In addition we know, that a paragraph cannot occuroutside a chapter. From a selectivity analysis we can infer that all chaptersof a book have almost the same content as the paragraphs, i.e. &(chapter) �&(paragraph). This means that almost every word occurring in a chapter occursalso in a paragraph. The few remaining occurrences in a chapter reect exactlythe contribution of the title. From this follows that almost all occurrences insidechapters are also inside paragraphs. If a query speci�es an occurrence to be inside aparagraph we can �lter out occurrences that are not inside chapters instead, whiletaking into account only a small increase of recall noise. This increase consistsof the occurrences inside of titles. This means that we can drop informationabout paragraphs in the index structure. In the phase of query preprocessing,paragraph contexts in the query are changed to chapter contexts for the �lteringtechnique. Note that the increase of recall noise only a�ects the occurrence sets thatare handed back to the query evaluation algorithm and has absolutely no inuenceon the quality of the overall answer.This example leads to the de�nition of relative selectivity:De�nition 5.1 Let l1 and l2 be labels.� We call l1 �xed under l2, if it occurs under a given context l2 only and&(l2) < 1.� The relative selectivity &(l1; l2) of a label l1 �xed under l2 is de�ned as&(l1; l2) = 1� 1� &(l1)1� &(l2)� We say that l1 is c-dependent on l2 i� &(l1; l2) < c.The relative selectivity &(l1; l2) takes values of the interval [0; 1] and reects theindependence of l1 relative to l2. &(l1; l2) = 0, i� &(l1) = &(l2), i.e. l1 and l2 containabsolutely the same portions of text. &(l1; l2) becomes bigger, the more &(l1) and&(l2) di�er. This means a decreasing conformity of vocabulary and coverage of l1and l2 and thus an increasing relative selectivity of l1 under l2.The relative selectivity turns out to be a generalization of the (absolute) se-lectivity de�ned in Section 4: &(l) = &(l; DB) if we use (slightly imprecisely) thesymbol DB for a label covering the complete document collection, since &(DB) = 0holds.As in the case of selectivity, labels do not carry enough information, if theirrelative selectivity is too low, and can be neglected in the occurrence bit strings.Furthermore, analogously to selectivity, the relative selectivity of a label can beapproximated by the (relative) coverage: (l1; l2) := (l1)(l2) . We can approximate&(l) with 1� (l1; l2), since under the assumption of label independence &(l1; l2) =1� (l1; l2) holds. 13

If labels are disregarded due to their low relative selectivity, the changes for the�lter components are as follows: If for a given threshold c a label l1 is c-dependenton l2, then l1 is not represented in the bit strings attached to every occurrence.In query preprocessing, contexts l1 are replaced by l2, i.e. an occurrence speci�edin the query to appear inside context l1 is �ltered using context l2. The �lteringprocess itself does not change further.5.4 Overview and Combination of the Space Reduction Tech-niquesWe have presented so far three techniques for reducing the space requirements: Bitstring compression and selectivity- and grammar-based label elimination. Anothertechnique not mentioned here is the removal of labels that are very unlike to beused in queries, for example layout descriptions. This section gives a synopsis ofthe context �lter if all these techniques are used.Before the database with its index structure is actually created the administratorhas to decide which labels are suppressed in the occurrence bit strings. This canbe done by choosing a threshold5 c and then using the automatic techniques basedon absolute and relative selectivity. The result is a set of labels carrying enoughinformation to be integrated into the index structure. For labels suppressed due togrammar-based reduction, a mapping f is established, that provides a means formapping linear contexts to their encoding bit strings.f is de�ned as f(l0) if l is c-dependent on l0f(l) = (no contribution if l is removed due to absolute selectivitybit position(l) otherwiseThe function bit position returns the position of the label in the bit string. Thisposition is determined by the order imposed by the front compression technique.Of course in an implementation some modi�cations are suggestive:� dissolve the recursion with the help of a table� f(l) does not return the bit position but the corresponding bit-mask, whereonly the bit at position bit position(l) is set� f(l) does not return no contribution if necessary but a bit string that con-sists of \0"s onlyWith these modi�cations the bit-mask for a linear context fl1; : : : ; lng can easily becomputed hardware-orientated: bit mask = f(l1) OR : : : OR f(ln)A coverage analysis used to approximate absolute and relative selectivity is usedto de�ne the order of labels in the bit strings. The (�xed) length of the pre�xes canbe computed from the number of remaining labels.Now the database can be created, with every inserted document being given toa procedure updating the index structure. The index structure has the architectureas described by the host system, with the addition that every occurrence is enrichedby a front-compressed bit string encoding the contextual information.In query evaluation, the query is preprocessed in order to determine the linearcontexts for all search terms. Labels removed due to absolute selectivity are ne-glected in the linear contexts. Labels removed due to relative selectivity are mapped5The two techniques may use two di�erent thresholds.14

to the labels they are dependent on. The linear contexts are now represented as abit string.For every index access with a search term a set of enriched front-compressedbit strings is returned. These bit strings are unfolded using SHIFT operations withthe value of the pre�xes as parameters. For every occurrence this can be done inconstant time.Then the occurrence bit strings are ANDNOT compared with the linear contextbit strings. Only the matching occurrences are handed back to the algorithm.6 A Case StudyThis section presents a case study on the bene�ts of the context �lter and its quan-ti�cation by the notion of selectivity, approximated by the notion of coverage. Thedocument database in question is a set of automatically generated XML documents.These documents were generated from HTML input describing university depart-ments in Germany. The tool used for the information extraction was developed inthe UNICO project ([Str97, Rei98]).The document database consists of 1620 text documents of 5.3 Mbyte in total.The documents contain more than 390000 term occurrences and are structured by34 labels (see Appendix A for the document statistics).Approximation of Selectivity by CoverageWe consider example queries that search for two di�erent terms (Asthma and Soft-ware) in six di�erent contexts (name, keyword, publication, research, projectand the unique root label unico). Table 1 compares the occurrences of the twosearch terms with the coverage values of the labels. The �rst column reects thecoverage of the respective label, while the second (third) columns states the abso-lute number of the occurrences of the term Asthma (Software) in the context of therespective label and its fraction among all occurrences of Asthma (Software). As canbe seen in the last row, the (unmodi�ed) index structure returns 26 occurrences forthe search term Asthma and 51 occurrences for Software. The fractions of Asthmaand Software occurrences under a given label can be seen as samples to measurethe quality of our selectivity approximation through the coverage.The result shows that the coverage gives some approximate value for the reduc-tion of the occurrence sets. With the discussion about the inuence of vocabularyCoverage Occurrences of Asthma Occurrences of Softwareabsolute relative absolute relativename 3.90% 2 7.69% 3 5.88%keyword 4.86% 6 15.38% 10 19.61%publication 22.80% 4 6.67% 3 5.88%research 39.59% 14 53.85% 28 54.90%project 82.02% 18 69.23% 34 66.67%unico 100.00% 26 100.00% 51 100.00%Table 1: Coverage and actual occurrencesinter-dependence upon selectivity, the signi�cant di�erence between the coverage ofkeyword and the high percentage of Asthma and Software occurrences under thislabel can be interpreted as follows: The label keyword is used for marking lists ofkeywords. Obviously Asthma and Software are good candidates for keywords, since15

they are nouns with a strong semantical content. Therefore they have a higherproportion of occurrences in this text region than other terms. This di�erence re-ects the orthogonal inuence of coverage and vocabulary inter-dependence uponthe selectivity. A similar e�ect can be observed on the label publication.Reduction Based on Absolute SelectivityWith the reduction techniques based on absolute selectivity as described in Sec-tion 5.2 we could �nd six labels (unico, project, p, research, publication andinstitution) that could be eliminated (threshold c = 0:85 for absolute selectiv-ity, i.e. c0 = 0:15 for coverage) due to their low selectivity (i.e. high coverage; cf.Table 4).Grammar-based ReductionThe 34 labels contain only 14 �xed labels, i.e. labels appearing in one context only.(The reason for this is that the documents evolved as an overlay between layoutmarked documents and semantically marked documents.) We will approximate therelative selectivity &(l1; l2) with the relative coverage (l1; l2) = (l1)(l2) .The values of (l1; l2) for labels l1 �xed under l2 are listed in Table 2.Label l1 Context label l2 (l1; l2)tr table 96.85%td tr 87.85%project unico 82.02%dd dl 77.86%publication project 27.80%dt dl 22.02%institution unico 17.98%contact institution 11.07%equipment institution 9.13%institute project 4.87%child institution 1.92%duration project 1.32%parent project 0.42%internet institution 0.11%Table 2: Relative coverage (l1; l2) of �xed labels l1With a threshold c = 0:85 for relative selectivity, i.e. c0 = 0:15 for relativecoverage, we �nd 7 c-dependent labels, namely institution, dt, publication,dd, project, td, tr. 3 of them have already been eliminated before, but with thenotion of relative selectivity we gained a bene�t of another four bits that couldbe avoided in the bit string. Note that these labels can be used in queries, butinformation about them has not to be stored in the bit strings associated with theoccurrences. Nonetheless, the new �ltering techniques also can be applied to theselabels, as elaborated in Section 5.3.This means that the notion of relative selectivity gives a bene�t of another fourbits that could be avoided in the bit string. Both methods combined result in thereduction of a bit string of length 34 (for 34 labels) down to length 24, i.e. 3 Bytes.The function used for mapping labels to surrounding labels they are dependenton consists of four pairs only: fdd 7! dl; dt 7! dl; tr 7! table; td 7! tableg.The labels project, publication and institution are removed due to absoluteselectivity and are therefore not mapped to another label.16

Bit String CompressionWe will discuss the bene�ts of bit string compression again on the two exampleoccurrence sets for the search terms Asthma and Software. There are 26 occur-rences of Asthma and 51 occurrences of Software in the document database. For 24remaining labels this sums up to a total length of all concatenated occurrence bitstrings of 624 or 1224 bits, respectively.If we use front compression, the pre�x has always length 5, in order to representa sequence of 0 � k � 24 leading \0"s. For the encoding of labels in occurrence bitstrings we used the order of Table 4. The linear context fequipment; institution;li; ul; unicog is represented as occurrence bit string 000000000000010000011000and encoded in the compressed bit string 01101 0000011000. In Table 3 we di-vided the occurrences with respect to their contexts and stated for every class ofoccurrences the number of leading \0"s in the occurrence bit string o, the lengthj� j = j�(�(o))j of the encoded occurrence bit string, the number of occurrences ofthe respective search terms under that context and the total length of the concate-nated name bit strings.The total length of the concatenated, compressed bit strings for all occurrences ofAsthma (resp. Software) is 174 or 510, respectively. This means that the bit stringsare reduced down to 30% (resp. 40%) of the size using 24 bit encoding. Togetherwith the reduction techniques based on selectivity the size of storing all occurrencebit strings for Asthma (resp. Software) was reduced from 884 (1734) bits down to20% (30%) of their original size.Every occurrence of Asthma (Software) needs now 6.7 bits (10 bits) on average forstoring the compressed bit string. But this great improvement still has to be veri�edwith other experimental data.Term �o Linear context \0"s j� j # occ. TotalAsthma p; research; project; unico 24 5 10 50p; publication; project; unico 24 5 4 20p; research; institution; unico 24 5 4 20keyword; institution; unico 18 10 4 40keyword; project; unico 18 10 2 20name; project; unico 16 12 2 24Software p; research; project; unico 24 5 16 80p; publication; project; unico 24 5 3 15p; research; institution; unico 24 5 4 20li; ul; research; institution; unico 19 9 1 9keyword; institution; unico 18 10 4 40keyword; project; unico 18 10 6 60institute; project; unico 17 11 2 22name; project; unico 16 12 3 36li; ul; cooperation; institution; unico 15 13 1 13contact; institution; unico 14 14 1 14li; ul; equipment; institution; unico 13 15 2 30p; equipment; institution; unico 13 15 1 15li; ul; ol; research; project; unico 8 20 4 80li; ol; research; institution; unico 8 20 2 40b; li; ol; research; institution; unico 3 25 1 25Table 3: E�ects of front compression on storage space
17

7 ConclusionThis work presented a �ltering technique for structured document retrieval thattakes contextual information into account. It showed that this �ltering techniquecan be integrated into many existing architectures for structured document retrievalwith little e�ort. It also presented with the notion of \selectivity" a measure toquantify the added value of the context �lter.Based on this measure techniques that reduce the size of the context �lter wereintroduced. One technique was based on the idea to exploit patterns in the occur-rence bit strings in order to compress these bit strings to shorter ones. The othermethods used selectivity and relative selectivity of labels in order to drop labelscarrying not enough information.Besides an integration of the �lter with its space optimizing techniques intoexisting systems and evaluation of the resulting prototypes, we are planning a deeperinvestigation of the following topics:� What is the bene�t of extending the concept of coverage and selectivity tostructural elements, i.e. to count the number of elements governed by a labelin addition to the number of words?� An analysis of users' query needs and habits could lead to a strong reductionof the needed labels. Only labels that are used in queries frequently are neededin the index structure.� Sometimes attributes of nodes behave in a way similar to labels, i.e. theyhave a nested hierarchy and inherit values over that hierarchy (e.g. in compu-tational linguistics). [FGR98] and [FMB98] treat attributes like this. If theseattributes behave similar to labels, the introduced techniques can be used forattributes as well.� How can we use the insights gained by investigating the selectivity in orderto �nd new means to automatically classify vocabulary based on selectivity?AcknowledgmentsWe would like to thank Jochen Sauter for proofreading a preliminary version of thiswork.References[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and BernhardSeeger. R-tree. an e�cient and robust access method for points andrectangles. SIGMOD Record, 19(2):322{331, June 1990.[BYN96] R. Baeza-Yates and G. Navarro. Integrating contents and structure intext retrieval. SIGMOD Record, 25(1):67{79, 1996.[CCB95a] C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski. An algebra forstructured text search and a framework for its implementation. TheComputer Journal, 38(1):43{56, 1995.[CCB95b] C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski. Schema-independent retrieval from heterogenous structured text. In Proc.Fourth Annual Symposium on Document Analysis and Information Re-trieval, pages 279{290, 1995.18

[Fer85] Franz Ferschel. Deskriptive Statistik. Physika-Verlag W�urzburg Wien,1985.[FGR98] N. Fuhr, N. G�overt, and T. R�ollecke. DOLORES: A system for logic-based retrieval of multimedia objects. In Proc. ACM SIGIR '98, 1998.[FMB98] F. Fourel, P. Mulhem, and M.-F. Bruandet. A generic framework forstructured document access. In Proc. DEXA'98, 1998.[GW97] Roy Goldman and Jennifer Widom. Dataguides: Enabling query for-mulation and optimization in semistructured databases. In VLDB'97,pages 436{445, 1997.[ISO86] ISO. Information Processing - Text and O�ce Systems - Standard Gen-eral MarkUp Language (SGML). ISO8879, 1986.[Kil92] P. Kilpel�ainen. Tree Matching Problems with Applications to StructuredText Databases. PhD thesis, Dept. of Computer Science, University ofHelsinki, 1992.[Loe94] A. Loe�en. Text databases: A survey of text models and systems.SIGMOD Record, 23(1):97{106, March 1994.[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore:A database management system for semistructured data. SIGMODRecord (ACM Special Interest Group on Management of Data), 26(3),1997.[Meu98] H. Meuss. Indexed tree matching with complete answer representations.In Proc. Fourth Workshop on Principles of Digital Document Processing(PODDP'98), 1998.[MS98] H. Meuss and K. Schulz. Complete answer aggregates for structureddocument retrieval. Technical Report 98-112, CIS, University of Mu-nich, 1998.[MW97] J. McHugh and J. Widom. Query optimization for semistructured data.Technical report, Stanford University, Computer Science Department,1997.[MWA+98] J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A. Rajamaran. Index-ing semistructured data. Technical report, Stanford University, Com-puter Science Department, 1998.[Nav95] G. Navarro. A language for queries on structure and contents of textualdatabases. Master's thesis, Dept. of Computer Science, University ofChile, 1995.[NBY97] G. Navarro and R. Baeza-Yates. Proximal Nodes: A model to querydocument databases by contents and structure. ACM Transactions onInformation Systems, 15(4):400{435, 1997.[Rei98] R. Reiner. Ein Blackboard-System zur Informationsextraktion aussemistrukturierten Daten f�ur die UNICO-Datenbank. Master's thesis,University of Munich, 1998.[ST94] A. Salminen and F. W. Tompa. PAT expressions: an algebra for textsearch. Acta Linguistica Hungarica, 41(1-4):277{306, 1994.19

[Str97] C. Strohmaier. UNICO, eine OMNIS-Datenbank zur Hochschulkooper-ation mit der Industrie. Master's thesis, University of Munich, 1997.[W3C98a] W3C. QL'98 - the query languages workshop, December 1998.http://www.w3.org/TandS/QL/QL98.[W3C98b] World Wide Web Consortium: Extensible Markup Lan-guage (XML) 1.0. W3C Recommendation, February 1998.http://http://www.w3.org/TR/REC-xml.

20

A The Example DatabaseThe database contains 1620 documents with 390696 occurrences altogether.They are structured by 34 Labels. The following table states how many occur-rences every label contains (absolutely and relatively). The labels are translatedfrom German into English.Label Coverage # occ.internet 0.02% 75u 0.03% 119sup 0.04% 148b 0.05% 177sub 0.11% 449parent 0.34% 1346child 0.35% 1349key 0.42% 1642ol 0.54% 2092td 0.63% 2448tr 0.72% 2795table 0.74% 2886duration 1.08% 4226created 1.26% 4926acquisition 1.26% 4926equipment 1.64% 6415contact 1.99% 7775dt 2.99% 11688cooperation 3.00% 11728name 3.90% 15227institute 4.00% 15614keyword 4.86% 18999ul 5.39% 21048li 5.84% 22825i 6.23% 24348dd 10.58% 41324person 13.48% 52673dl 13.58% 53072institution 17.98% 70239publication 22.80% 89089research 39.59% 154685p 60.92% 238004project 82.02% 320457unico 100.00% 390696Table 4: Document database statistics

21

