
De�nability and CompressionFoto Afrati1 and Hans Lei�2 and Michel de Rougemont31 University of Athens, Greece2 Universit�at M�unchen, CISD-80583 M�unchen, Germany3 Universit�e Paris-II & LRI Bâtiment 490,F-91405 Orsay Cedex, FranceOctober 1999Abstract. We study the �rst-order de�nability on compressed structures of properties of stringsand images. Simple �rst-order properties of strings are presented which are not �rst-order de-�nable on strings compressed with the Lempel-Ziv compression schema. Conversely, there areproperties that are �rst-order de�nable on Lempel-Ziv compressed strings, but not on strings.We show that all properties of strings that are �rst-order de�nable on strings are de�nable onLempel-Ziv compressed strings in an extension of �rst-order logic by a transitive closure operator.We de�ne a subclass C of the �rst-order properties of strings such that if L is de�ned by a propertyin C, it is also �rst-order de�nable on the Lempel-Ziv compressed strings.We also consider a naive compression schema where all �rst-order properties of strings are �rst-order de�nable on compressed strings, but where this fails for 2-dimensional strings (images).1 IntroductionA classical search problem on strings asks for the existence of a given substring and recentpapers study the same question on compressed strings. This problem can be approached fromtwo di�erent points of view : the search for speci�c algorithms that solve the problem or thesearch for speci�c expresssions in a given language that de�ne the problem. The �rst eÆcientalgorithms to search for a substring in a compressed string were given in [Far91]. We follow thesecond point of view and study the de�nability of various problems on classes of compressed�nite structures.For the substring problem, a binary string w of length n is a �nite structure S(w) of size nwith a unary predicate U and a linear order < (the predicate U(i) is true i� the i-th bit of wis 1). There exists a �rst-oder formula, i.e. a logical expression in the language fU;<g usinglogical connectives and �rst-order quanti�ers, which de�nes the substring problem, i.e. whichis true on S(w) i� w contains s as a substring. Suppose w is given in a compressed form (asa .gz �le for example, i.e. generated by the classical Lempel-Ziv compression schema). Thecompressed string LZ (w) is another �nite structure LZ(w) which we will precisely de�ne.Given such a compressed string, we ask if there is another formula in the language of thecompressed structure which de�nes the existence of a substring s in w. More generally givena property P on a class of �nite structures and a compression schema, we ask if we can de�neP on the class of compressed structures.It is an essential feature to search in compressed structures for texts but also for imagesand multimedia �les. To �nd the relevant information without decompressing the �les is afundamental requirement for computations based on multimedia information. In case of the



universal Lempel-Ziv compression schema, we will show that the substring problem is not�rst-order de�nable on the compressed structures.It is not surprising that other compression schemas such as coding common pairs of letters inone byte [Man94] or omitting letters predictable using an antidictionary of the text [CMRS98]are beeing investigated. They allow a good compression and the possibility to search forsubstrings. In the case of video �les, the de�nition of new compression formats (such asMPEG 7) is principally motivated by indexing and search, but there is no proposal (at thispoint) for a query language. We need a better understanding of the intricate links betweencompression and de�nability on general structures.In this paper we take the simplest possible example of strings and binary images compressedby a naive or by the classical Lempel-Ziv [ZL77,ZL78] compression schema and ask the generalquestion: given any �rst-order property on strings, can we de�ne this property on the com-pressed structure? We will answer this question negatively and show that natural properties(like the existence of a particular substring or subimage) can not be de�ned by a �rst-orderformula on compressed strings or images. Our main results are:1. for the naive compression schema, �rst-order properties on strings are also �rst-orderde�nable on compressed strings. This is not the case for 2-dimensional strings (images).2. for the Lempel-Ziv compression schema, the �rst-order de�nability is not kept on com-pressed strings. However, the �rst-order properties of strings can be de�ned by a FO(TC)formula on compressed strings, i.e. a �rst-order formula with the Transitive Closure opera-tor. Moreover, we de�ne a class C of �rst-order formulas such that if a language is de�nableby a formula in C, its compression is �rst-order de�nable on the compressed structure.3. For both the naive and the Lempel-Ziv compression, the class of languages that are �rst-order de�nable as compressed strings is not closed under concatenation.In section 2, we describe how �nite structures represent strings and images, strings compressedby a naive compression schema and by Lempel-Ziv. In section 3, we study the de�nability onstrings and images compressed by the naive compression schema. In section 4, we study thede�nability on strings compressed by the classical Lempel-Ziv compression schema.2 Compression and �nite structuresA structure over a �nite domain D is a sequence D = (D;R1; : : : ; Rl; f1; : : : ; fk), where eachRi is a relation over D and each fj is a function from D into D. The sequence of arities ofthe Ri's and fj's is the type of the structure. A query is a function from a class of structures(of some �xed type) to relations of �xed arity over the same domain which is invariant underisomorphism. The language of the structure is fR1; : : : ; Rl; f1; : : : ; fkg.2.1 Strings as �nite structuresA string w of length n > 0 over an alphabet � = fa1; : : : ; alg is represented as a �nitestructure S(w) = (Dn; <; Ua1 ; : : : ; Ual)where Dn = f0; 1; : : : ; n � 1g, < is the linear order on Dn inherited from IN , and Ua � Dnis the unary predicate such that S(w) j= Ua(i) i� the i+ 1-st letter in w is a. (Note that the2



logical axiom 8x'! 9x' is only valid in S(w) because the empty string w is excluded.) Fora binary string over � = f0; 1g, we simplify the notation (Dn; <; U1; U0) to(Dn; <; U);where U = U1 and Dn � U = U0.To write formulas in the �rst-order language f<;Ua1 ; : : : ; Ualg, we use some abbreviationssuch as '(x + 1) := 9y('(y) ^ x < y ^ :9z(x < z ^ z < y)) . Similarly for '(x+ k); '(x � k)where k is �xed. By '(max) we mean the formula saying '(x) holds at the last element; for�xed k, bounded quanti�ers like 8x < max � k can be rephrased without max; k, and �.Moreover, we use Uabc(x) := Ua(x)^Ub(x+1)^Uc(x+2) and likewise Uw(x) for other stringsw over �.A set or formal language L � �+ of strings is �rst-order de�nable, if there is a �rst-ordersentence ' in the language f<g [ fUa j a 2 �g such that L = fw 2 �+ j S(w) j= 'g. L ismonadic-second-order de�nable, if the same holds for a sentence ' which may also havequanti�ers 9X and 8X ranging over subsets and atomic formulas X(y) for membership insubsets. A language L is �-star free (resp. regular), if it can be built from �nite languages byunion, elementwise concatenation, and also complement (resp. closure under concatenation).The basic facts on de�nable properties of strings are the following classical results:Theorem 1 [B�uc62,Elg61,MP71] Suppose L � �+. Then1. (McNaughton/Papert) L is star-free i� L is �rst-order de�nable.2. (B�uchi,Elgot) L is regular i� L is monadic-second-order de�nable.In particular, L+ := fw1 � � �wn j n � 1; w1; : : : ; wn 2 Lg need not be �rst-order de�nable whenL is. Even for a single string s, s+ := fsg+ is not �rst-order de�nable in general: if wecould de�ne s+ for s = aa, we could de�ne linear orders of even length, which is impossible(cf.[EF91], Example 1.3.5). It follows that L+ need not be �rst-order when L contains aperiodic word: simply, take L = faag [M where M is a language whose members do notcontain the letter a. If L+ were �rst-order de�nable by ', then ' ^ 8j Ua(j) would de�nefaag+, contradicting the unde�nability of evenness.A string is called periodic, if it is of the form pk with p 6= � and k > 1, otherwise we call itaperiodic. For example, abab is periodic and baab is aperiodic. The following fact about whenL+ is �rst-order is worth noting.Proposition 1 1. A string s is aperiodic i� s has only two occurrences in ss.2. If a string s is aperiodic, then s+ is �rst-order de�nable.3. There are aperiodic words s1; s2 such that fs1; s2g+ is not �rst-order de�nable.Proof: 1.) If s = pk is periodic, then clearly s has at least three occurrences in ss. Conversely,if ss = usv for some non-empty u; v, then s = uv because u �pre�x s; v �suÆx s and juvj = jsj;hence ss = (uv)(uv) = u(uv)v, so uv = vu. If juj = jvj, then we have s = p2 for p = u = v. Ifjuj < jvj, say, then v = uw for some w 6= �, and we get s = vu = uwu = uv, so v = uw = wu.By induction we get u = pk; w = pl for some k; l > 0 and hence s = pm for some m > 0.2.) Let Us(x) be the formula such that Us(j) is true in S(w) i� w has an occurrence of sbeginning at position j. A �rst-order de�nition for s+ is the following induction principle,Ind s := Us(0) ^ 8j < max� jsj0 (Us(j)! Us(j + jsj)); (1)3



where jsj0 means jsj � 1. If a string S(w) satis�es Ind s, then w 2 s+: let k be the largestnumber such that w = sk+1u for some u. Then jsk+1j � max � jsj0. If juj is not 0, thenj = jskj < max � jsj0 is a position with Us(j) ^ :Us(j + jsj), contradicting Ind s. If s isaperiodic, then the only occurrences of s in sk 2 s+ are at positions j = jsij, i < k, so sksatis�es Ind s. (If s = pk is periodic, then sm+2 does not satisfy Ind s, because Us(x) holds atmax� jpj(k + 1), but not jsj positions to the right, at max� jpj.)3.) Suppose ' is a �rst-order de�nition of fs1; s2g+ with s1 = aba and s2 = b. Then = ' ^ Ua(0) ^ Ub(max) ^ :9j(Uaa(j) _ Ubb(j))de�nes (s1s2)+ = fababg+. Since abab is periodic, we would get a �rst-order de�nition ofevenness again. 22.2 Naive compression of stringsThe naive compression, or N -compression, of a string codes the number of repetitive symbolsas an integer. Formally, it decomposes a string w 2 �+ into a sequence of subwords or blocksBi 2 �+ such that w = B0 � � �Bm�1. The �rst block B0 consists of the longest pre�x of wwhose letters are all the same. If B0; : : : ; Bn�1 are de�ned and w = B0 � � �Bn�1v for somev 2 �+, then Bn is the longest pre�x of v whose letters are all the same. The N -compressionof w is the sequence p0 � � � pm�1 of pairs pn = (j; a) such that Bn = aj .For example, the naive block decomposition of w = aaaaaabbbbaa is aaaaaa:bbbb:aa and thenaive compression of w is N(w) = (6; a)(4; b)(2; a). A more familiar notation is w = a6b4a2.We represent naively compressed strings N(w) as �rst-order structuresN (w) = (Dm;Dn; <m; <n; Ua1 ; : : : ; Ual ; f)where (Dm; <m; Ua1 ; : : : ; Ual) represents the string of second components of N(w), i.e. m isthe length of N(w), <m the natural order on Dm, and Ua(i) i� N(w)(i) = (j +1; a) for somej; further, n is the maximal block length, i.e. the maximal j such there are i and a withN(i) = (j; a); f : Dm ! Dn is the block length �1, i.e. f(i) = j i� N(w)(i) = (j + 1; a) forsome a; and <n is the natural order on Dn.In the �rst-order language talking about N (w), variables must indicate if they range over Dnor Dm. For example, the formula 9j 2 Dn8i 2 Dm(f(i) = j) de�nes the set of compressedstrings of the form ajbjcjbj � � �.Notice that the naive coding can compress with an exponential gain. The string an is com-pressed as (n; a) and requires log n bits. The LZ structure we present below requires pn bits,but some more elaborate variations of Lempel-Ziv also achieve an exponential gain.2.3 Lempel-Ziv compression of stringsThe classical Lempel-Ziv compression is a family of algorithms with many variations. Wefollow a simple version presented in [CT91]. The compressed string is a sequence of pairspn = (k; a) which represent subsequent blocks in the original string. The �rst component kis either 0 or points to a previous pair pk�1 that encodes the longest strict pre�x Bk�1 ofthe substring Bn encoded by pn. The second component a is the letter of the alphabet whichmakes Bn = Bk�1a. 4



More formally, the LZ-compression decomposes a word w 2 �+ into a sequence of subwordsor blocks Bi 2 �+, so that w = B0 � � �Bm�1. The �rst block B0 consists of the �rst letterof w. Suppose for some n > 0, we have constructed blocks B0; : : : ; Bn�1 such that w =B0 � � �Bn�1v for some v 2 �+. Then Bn is the shortest non-empty pre�x of v that is notamong fB0; : : : ; Bn�1g, if this exists, otherwise Bn is v. The LZ-compression LZ (w) of w isthe sequence p0 � � � pm�1 of pairs pn = (k; a) such that Bn = Bk�1a (where B�1 := �) and w =B0 � � �Bm�1. The decompression is given by decode(p0 : : : pm�1) = decode(p0) � � � decode(pm�1)where decode((0; a)) = a and decode((n + 1; a)) = decode(pn)a.We insert dots in a string to show its decomposition into LZ-blocks. For example, the stringw1 = a:aa:aaa:aaaa:aaaaais encoded as LZ (w1) = (0; a)(1; a)(2; a)(3; a)(4; a). The stringw2 = a:b:bb:aa:bba:bbabis encoded as LZ (w2) = (0; a)(0; b)(2; b)(1; a)(3; a)(5; b).We represent LZ-compressed strings LZ (w) = p0 � � � pm�1 as �rst-order structuresLZ(w) = (Dm; <; Ua1 ; : : : ; Ual ; E);which are �nite labelled ordered graphs. As in the naive compression, (Dm; <; Ua1 ; : : : ; Ual)represents the string of second components of LZ (w), so m is the length of LZ (w), < thenatural order on Dm, and Ua(i) is true i� the last letter of block i is a. The binary relationE describes the reference to previous pairs: if pi = (k; a) for some a 2 � and k > 0, (i.e. thek-th block Bk�1 is the longest strict pre�x of Bi), then there is an edge E(i; k� 1) from nodei to node k � 1.For w = a:b:bb:aa:bba:bba: with LZ (w) = (0; a)(0; b)(2; b)(1; a)(3; a)(3; a); the graph LZ(w) is
a b a a ab

0 1 2 3 4 5In case of a compressed binary string LZ (w), we have a structure LZ(w) = (Dm; <; U;E)where U is the unary predicate U1 and its complement is the predicate U0.Notice that the graphs are very special : if the string w is over an alphabet with d letters,the in-degree of LZ(w) is at most d+ 1, the out-degree at most 1, and LZ(w) has at most droots.2.4 2-dimensional images and their compressionsWe consider images as 2-dimensional arrays on a �nite domain � of colours. The image is afunction � : Dn �Dn ! � which gives for each pixel (i1; i2) its colour �(i1; i2). We representimages as structures : I = (Dn; <; Ua1 ; : : : ; Ual);where each Ua is the binary predicate on Dn given by Ua(i1; i2) i� �(i1; i2) = a, and < theordering on Dn. We only use the binary value domain � = fÆ; �g, so that images are bitmaps.5



Compressed images are obtained by compressing the strings that arise from the concatena-tion of all lines, i.e. �(0; 0) � � � �(0; n � 1) � � � �(n � 1; 0) � � � �(n � 1; n � 1). For Lempel-Zivcompression of a bitmap, we obtain a structureLZ(I) = (Dm; <; U;E)as before. For the naive compression of a bitmap, we obtain a structureN (I) = (Dm;Dn2 ; <m; <n2 ; U; f):In the case of a blank image of size n � n, its naive compression is simply one block (n2; Æ),i.e. N (I) has m = 1, :U(0) and f(0) = n2 � 1.2.5 Two example problems for de�nability under compressionSuppose we have a scheme C that maps strings w to compressed strings C(w), and suppose werepresent C(w) by a �rst-order structure C(w), i.e. we �x how to talk about the compressedstrings in �rst-order. We say L � �+ is �rst-order de�nable on C-compressed strings if there isa �rst-order sentence ' in the language of C-structures such that L = fw 2 �+ j C(w) j= 'g.(We then also say ' is a �rst-order de�nition of C(L) := fC(w) j w 2 Lg, ignoring the in�nitemodels of '.) To express properties of strings we can use either the language of strings or thelanguage of compressed strings.We are interested in the question how the properties de�nable on strings are related to theproperties de�nable on compressed strings. As an example, we look atThe substring query The substring query for a �xed pattern string s asks whether a givenstring w contains s as a substring. It is �rst-order de�nable on strings by 9xUs(x). A moregeneral classical question is the problem of �nding the occurrences of the pattern in thegiven string, i.e. of computing f(w; i) j S(w) j= Us(i)g.We will show that the substring query is �rst-order de�nable on naively compressed strings,but not on LZ-compressed strings. In fact, all �rst-order properties on strings are �rst-orderon N -compressed strings, and are de�nable on LZ-compressed strings in �rst-order extendedby a transitive closure operator. In both cases, we also treat formulas with free variables, sowe can answer with occurrence positions, which are represented by tuples of elements of thecompressed string. For images, we consider a similar subimage query and show that alreadythe subsquare query is not �rst-order on N -compressed images.We are also interested in how the class of properties of strings that are de�nable on compressedstrings behaves. As an example, we considerClosure under Concatenation The concatenation of two �rst-order de�nable languages isa �rst-order de�nable language, by Theorem 1. Is the same true under compression, i.e.if L1 and L2 are �rst-order de�nable on compressed strings, is their concatenation L1L2also �rst-order on compressed strings?We show that the answer is negative both for N -compression and for LZ -compression; it ispositive for N -compression when N -structures are equipped with additon.6



3 De�nability on naively compressed strings and imagesWe compare the properties of strings that are �rst-order de�nable on strings with those thatare �rst-order de�nable on naively compressed strings.3.1 First-order on N-compressed strings need not be �rst-order on stringsSome properties of strings that are �rst-order on N -compressed strings are not �rst-order onstrings.Example 1 The language L = f0n1n j 0 < ng is not regular, hence by B�uchi's result it is noteven monadic-second-order on strings. But it is �rst-order on N -compressed strings, becausew 2 L () N (w) j= :U(0) ^ U(max) ^ f(0) = f(max) ^ 9x 2 Dm8y(U(y)$ x < y):3.2 First-order on strings is �rst-order on N-compressed stringsFirst-order queries on strings can be expressed as �rst-order queries on naively compressedstrings; in fact, this extends to �rst-order relations between positions in a string:Theorem 2 For every �rst-order formula '(x1; : : : ; xn) on strings, there is a �rst-orderformula 'N (x1; y1; : : : ; xn; yn) on naively compressed strings, such that for each w and alli1; : : : ; in 2 S(w), S(w) j= '(i1; : : : ; in) () N (w) j= 'N (h(i1); : : : ; h(in)): (2)Here, h is the mapping from elements of S(w) to pairs of elements of N (w) such that h(i) =(k; j) i� position i is the j+1-st relative position in block Bk, i.e. i = �i0<k(f(i0)+1)+(j+1).Proof: By induction on the formula '(x1; : : : ; xn), we de�ne 'N (x1; y1; : : : ; xn; yn) and verifythe property (2) for all i1; : : : ; in 2 S(w), writing h(i1) = (k1; j1); : : : ; h(in) = (kn; jn).1. (Ua(x1))N := Ua(x1). If S(w) j= Ua(i1), then position i1 lies in block Bk1 and letter i1of w is a, so N(w)(k1) = (j; a) for some j1 � j � f(k1) and hence N (w) j= Ua(k1). Theconverse is similar.2. (x1 = x2)N := (x1 = x2 ^ y1 = y2). Claim (2) just means i1 = i2 () h(i1) = h(i2),which is true since h is injective.3. (x1 < x2)N := x1 <m x2 _ (x1 = x2 ^ y1 <n y2). If S(w) j= i1 < i2, then either thesepositions are in di�erent blocks, so N (w) j= k1 <m k2, or they are in the same block, soN (w) j= k1 = k2 ^ j1 <n j2. The converse is also clear from the relation between i's, k'sand j's given by h.4. (:')N := :('N ) and ('1 ^ '2)N := ('N1 ^ 'N2 ). In these cases, (2) is clear by induction.5. (9xn+1' (x1; : : : ; xn))N := 9xn+19yn+1 [ yn+1 �n f(xn+1) ^ 'N (x1; y1; : : : ; xn+1; yn+1) ]:Suppose S(w) j= '(i1; : : : ; in+1) for some in+1 2 S(w). By induction, we have N (w) j='N (k1; j1; : : : ; kn+1; jn+1), and since jn+1 is a position in block kn+1, we also have jn+1 �f(kn+1). Conversely, if N (w) j= jn+1 �n f(kn+1) ^ 'N (k1; j1; : : : ; kn+1; jn+1), then fromthe �rst conjunct we know that (kn+1; jn+1) = h(in+1) for some in+1, whence S(w) j='(i1; : : : ; in+1) follows by induction, so S(w) j= 9xn+1' (i1; : : : ; in).7



This completes the proof. 2Corollary 1 The substring query is �rst-order de�nable on N -compressed strings.For example, the query 9x1 Uaba(x1) can be stated on naively compressed strings by translatingits complete form,9x19x29x3[Ua(x1) ^ Ub(x2) ^ Ua(x3) ^ x1 < x2 < x3 ^ :9x4(x1 < x4 < x2 _ x2 < x4 < x3)];which gives a somewhat complicated formula because of the translation of the last conjunct.Corollary 2 Every �-free language L is �rst-order de�nable on N -compressed strings.Proof: By McNaughton's theorem, L is de�nable by a �rst-order sentence ' on strings, so itstranslation 'N de�nes the naive compression of L. (A sentence ' with L = fw j N (w) j= 'gcan e�ectively be determined from a �-free extended regular expression r for L.) 2Theorem 2 implies that if L1 and L2 are �rst-order de�nable, then N (L1L2) is �rst-order. Weconnot replace assuming that Lk is �rst-order by assuming that N (Lk) is �rst-order:Proposition 2 Language concatenation is not �rst-order on N -compressed strings.Proof: Both L1 = f0n1n j 0 < ng and L2 = f1m0m j 0 < mg are �rst-order on N -compressedstrings, by Example 1. To de�ne L1L2 on N -compressed strings, we would need a �rst-orderformula expressingmax = 2 ^ :U(0) ^ U(1) ^ :U(2) ^ f(1) = f(0) + f(2);but we don't have addition on Dn. Suppose ' were a �rst-order sentence of quanti�er rank kthat de�ned L1L2 on N -compressed strings. Pick w1 2 L1 and w2 2 L2 such that jwij > 4k.One can show that N (w1w2) and N (w11w2) are k-elementarily equivalent, by de�ning awinning strategy for the Duplicator in the k-round Ehrenfeucht-Fraisse-game between thesestructures. Hence N (w11w2) j= ', because N (w1w2) j= ', contradicting w11w2 =2 L1L2. 2However, if we allow addition on Dn of N -structures, the class of languages that are �rst-orderunder N -compression is closed under concatenation:Proposition 3 Language concatenation is �rst-order de�nable on naively compressed strings,if we represent naively compressed strings N(w) as �rst-order structuresN+(w) = (Dm;Dn; <m; Ua1 ; : : : ; Ual ; f;+; 0; 1)where +; 0; 1 are the partial addition on Dn with zero and unit elements. That is, N+(L1L2)is the class of �nite models of a �rst-order sentence, if N+(L1);N+(L2) are.Proof: Suppose that, for k = 1; 2,  k is a �rst-order de�nition of N+(Lk). Note that N+(w) 2N+(L1L2) i� there are words w1; w2 such that w = w1w2 and N+(wk) j=  k. If the last letterof w1 di�ers from the �rst of w2, we obtain N+(w1) and N+(w2) by splitting N+(w) betweentwo points i and i + 1. In this case, to say that the parts satisfy  k we can use formulas k[x; y], obtained from  k by relativizing all quanti�ed variables ranging over Dm to theinterval between x and y. 8



If the last letter of w1 is the same as the �rst of w2, we obtainN+(w1) and N+(w2) by splittinga point i 2 N+(w) into two, i.e. by letting i be the last point of the �rst segment and alsothe �rst of the second segment, and adjusting the multiplicity f(i) of the common symbol forthe two segments (i.e. we split block Bi). To reinterpret f for the parts, we replace all atomicexpressions f(x) = y in ( 1 ^ f(max) = p) by the formula'1(x; y; p) := (x < max ^ f(x) = y) _ (x = max ^ y = p)and in ( 2 ^ f(0) = q) by the formula'2(x; y; q) := (x = 0 ^ y = q) _ (0 < x ^ f(x) = y)to obtain formulas  �1(p) and  �2(q), before relativizing to the segments. The formula de�ningN+(L1L2) then is := 9i 2 Dm f ( 1[0; i] ^  2[i+ 1;max]) _9p; q 2 Dn(f(i) = p+ q + 1 ^  �1(p)[0; i] ^  �2(q)[i;max])g:Note that the meaning of the pseudo-constants 0;max in  �k changes under relativisation. 23.3 First-order on images need not be �rst-order on N-compressed imagesFor images, we now take a somewhat complex example which illustrates how the existence ofsimple patterns can become very diÆcult even with simple compression schemas.The subsquare query The (monochrome) subsquare query asks for the existence of a squareof four � symbols, i.e. the existence of two consecutive lines of the image where the pattern� � occurs at the same horizontal position. We can de�ne this query in �rst-order by'sq := 9i19i2 [U�(i1; i2) ^ U�(i1 + 1; i2) ^ U�(i1; i2 + 1) ^ U�(i1 + 1; i2 + 1) ] ;where (i1; i2) refers to the position of the bottom left corner of the square.The goal of this section is to show:Theorem 3 The subsquare query is not �rst-order on naively compressed images.Before we go into technicalities we shall give an outline of our proof of Theorem 3. Supposethe subsquare query were �rst-order de�nable on compressed images by a sentence 'Nsq ofquanti�er rank k. We will construct two images, I1 without the square pattern, I2 withthe square pattern in the �rst two lines (and identical from the third line on) such that theircompressionsN (I1) andN (I2) are k-elementarily equivalent. This contradicts the assumptionthat N (I2) satis�es 'Nsq and N (I1) does not.We will prove that N (I1) and N (I2) are k-elementarily equivalent by showing that the Du-plicator will win an Ehrenfeucht-Fraisse game of k rounds on N (I1) and N (I2). To do so,we �rst construct from N (I1) and N (I2) two simpler structures E1 and E2, show that theDuplicator has a winning strategy on these and then transfer the winning strategy to N (I1)and N (I2). To construct E1 and E2, we consider N (I1) and N (I2) as sequences of regions(intervals), each corresponding to a substring of the �rst or second line of the images I1 and9



I2; in addition, regions representing substrings in the �rst and second line of the images I1and I2 are related. The structures E1 and E2 represent these relations as an ordering of tu-pels. Thus, the E-structures allow to talk about the �rst two compressed lines of the imagessimultaneously, which makes it easier to explain the Duplicator's strategy.Now for the formal proof of Theorem 3. We need to de�ne the k-round Ehrenfeucht-Fraissegame only for the subclass of N -structures where Dn = D4, because the longest blocks inthe example images are of length 4.1 We call these structures N = (Dm;D4; U; f;<m; <4) therestricted N -structures:De�nition 1 The k-round Ehrenfeucht-Fraisse game is played between two players, the Spoilerand the Duplicator, on two restricted N -structures N and N 0. At round r, the spoiler picks apoint pr in one of the domains of one of the structures; the duplicator responds by picking apoint qr in the corresponding domain of the other structure. For each r, let tr; t0r be the pointsassociated with N , N 0 respectively; so ftr; t0rg = fpr; qrg. The duplicator wins the game if forall i; j � k and all a 2 �:ti = tj i� t0i = t0j ; f(ti) = f(t0i); ti < tj i� t0i < t0j; and Ua(ti) i� Ua(t0i):The well-known theory of Ehrenfeucht-Fraisse games (cf. [EF91]) gives the following result:Theorem 4 Let Q be a property of restricted N -structures. The following are equivalent:(a) Q is not expressible in �rst-order logic for restricted N -structures.(b) For each k, there exist restricted N -structures N , N 0 which di�er with respect to Q suchthat the spoiler wins the k-round Ehrenfeucht-Fraisse game on N , N 0.The example images We will now construct the two image structures I1 and I2. Eachimage is a square matrix �lled in with Æ's and �'s. All lines of the matrix are �lled with Æ'sexcept for the �rst two, which look as follows, for suitable i1; i2; j1; j2 to be �xed later:I1 : �(Æ � Æ �)i1(Æ Æ � �)i2 Æ Æ Æ Æ � � Æ � � Æ � �(Æ Æ � �)j1(Æ Æ � �)j2 Æ Æ� � (Æ Æ � �)i1(Æ Æ � �)i2 Æ Æ � � Æ Æ Æ � � Æ � �(Æ Æ � �)j1(Æ Æ � �)j2ÆI2 : �(Æ � Æ �)i1(Æ Æ � �)i2 Æ Æ Æ Æ � � Æ � � Æ � � (Æ Æ � �)j1(Æ Æ � �)j2 Æ Æ� � (Æ Æ � �)i1(Æ Æ � �)i2 Æ Æ � �(Æ Æ � �)j1 Æ Æ Æ � � Æ � � (Æ Æ � �)j2ÆThe �rst line of the two images is the same. In I1, the �'s are misaligned in the �rst two lines,hence a subsquare of four �'s does not exist. In I2, the subsquare occurs at the underlinedposition, if 0 < j1.Using the abbreviations a = (1; Æ); b = (2; Æ); d = (1; �); c = (3; �); e = (3; Æ); f = (4; Æ) andi = i1 + i2; j = j1 + j2, the naive compressions areN (I1) : d(ad)2i1 (bc)i2fcacac(bc)jb:c(bc)ibcecac(bc)jaN (I2) : d(ad)2i1 (bc)i2fcacac(bc)jb:c(bc)i+j1bcecac(bc)j2awhere, to improve readability, we inserted the . to mark the end of the �rst line.1 Therefore, the following also works when usingN+(w) rather thanN (w) to represent N(w), because additionon D4 can be replaced by <4. 10



In both structures, the �rst line consists of a segment of dada : : : dad followed by the patternbcbc : : : bcb with a string of fcacac somewhere in the middle. The second line consist of thepattern cbcbc : : : bca interrupted (at di�erent places in the two structures) by a string bcecac.In order for Duplicator to win a game with k rounds, we will later set the integers i1; i2; j1; j2large compared to k. Notice that the neighborhoods on an original image are 2-dimensionalas we have an order <1 on the �rst coordinate and an order <2 on the second. On the naivelycompressed image, the neighborhoods are 1-dimensional. In order to cope simultaneouslywith the �rst two compressed lines, we �rst work on modi�cations of N (I1) and N (I2) whereregions in the �rst two lines are coupled.A simpler form of the compressed images Consider words over the alphabet � =fA; : : : ; Gg, represented as labelled ordered structuresE = (Dm; <; UA; : : : ; UG):We can write the compressed images N (I1) and N (I2) as words E1 and E2 over fA; : : : ; Gg,using these letters as the codesA = dc B = adbc C = bcbc D = fcacacbcbcbc E = bcbcecac F = bc G = ba ;each of these letters represents two regions of blocks in a compressed image, the �rst regionhaving the upper component line of the letter as labels, the second the lower component line.Reading the concatenation of these letters componentwise, we can view the �rst compressedstructure N (I1) as : E1 : AB2i1Ci2�i1+1ECi1�3DCj1+j2�i1F i1Gand the second compressed structure N (I2) as :E2 : AB2i1Cj1+i2�i1+1ECi1�j1�3DCj1+j2�i1F i1G;where i1; i2; j2; j2 are constrained so that all exponents are nonnegative. The only di�erencebetween E1 and E2 is that letter E occurs in another position. For example, N (I1) withi1 = 4; i2 = 5; j1 = 1; j2 = 4 can be written as E1 = AB8C2ECDCF 4G, ordc adbc adbc adbc adbc adbc adbc adbc adbc bcbc bcbc bcbcecac bcbc fcacacbcbcbc bcbc bc bc bc bc ba :In fact, we can a little bit further simplify the way we view E1 and E2 by letting p = i1 � 3,q = i2 � i1 + 1 and m = j + j2 � i1; then we can re-write the two structures to:E1 : AB2(p+3)CqECpDCmF p+3G;E2 : AB2(p+3)Cj+qECp�jDCmF p+3Gwhere the constraints now are: q is even and j << p << q << m.Lemma 1 E1 �k E2. 11



Proof: The Duplicator has a classical winning strategy on labelled orderings: he always playspoints with same label as the last point played by the Spoiler, satisfying the same orderingrelations; moreover, if the Spoiler in round r plays at a distance k � r from a border pointor a point played earlier, the Duplication plays at the same distance from the correspondingborder point; otherwise, he plays at a distance > 2k�r from all border and already playedpoints. This is possible for k rounds if the numbers i1; :::; j2 are large enough. 2We can now re�ne the Duplicator's winning strategy on E1 and E2 to obtain:Lemma 2 N (I1) �k N (I2).Proof: Note that the word E1 decomposes the structure N (I1) into jEij pairs of regions: forexample, point r of E1, labelled by C = (bc; bc), �xes two occurrences of bc in the sequenceN(I1) 2 fa; : : : ; fg+, hence two regions of size 2 in the structure N (I1). Conversely, eachpoint r of the structure N (I1) corresponds to a point of E1, namely the one which contains rin one of the regions it de�nes on N (I1). The same holds for E2 and N (I2).Therefore, the Duplicator can use the following strategy: If the last point played by theSpoiler belongs to the second domain D4, the Duplicator just plays the same point in theother structure.If the last point played by the Spoiler belongs to Dm, the Duplicator �rst translates thepoints played so far on the Dm-domains of structuresN (I1) and N (I2) into the correspondingpoints on the structures E1 and E2. He then plays on the E-structures according to his winningstrategy of the proof of Lemma 1, translates the point of Dm he has played into a pair ofregions in the N (I)-structures, and then plays a point in one of the regions depending on theSpoiler's last move: if, for example, the spoiler played a point r1 of N (I1) labelled b, whosecorresponding point e1 in E1 is labelled C, and if r1 is the �rst point of the second regionde�ned by e1, then the point e2 of E2 provided by the winning strategy is also labelled C, sothe Duplicator answers with r2, the �rst point of the second region of N (I2) de�ned by e2.It remains to be checked that at the end of the game, a partial isomorphism between N (I1)and N (I2) is obtained. The corresponding points on the E-structures give a partial isomor-phism between E1 and E2, by the strategy used for E-structures. The strategy used on theN -structures re�nes this to a partial isomorphism between N (I1) and N (I2) as far as la-belling and ordering are concerned, and for the points of the domains D4, the correspondenceis the identity. 2By Lemma 2 and Lemma 1, N (I1) and N (I2) are k-elementarily equivalent. Since one ofI1;I2 contains the subsquare but the other does not, the subsquare query cannot be de�nedon the compressed images by a �rst-order sentence of quanti�er depth k. This completes theproof of Theorem 3.4 De�nability on Lempel-Ziv compressed stringsWe can consider stringsw as labelled �nite orders S(w) or, when compressed using the Lempel-Ziv compression, as labelled �nite ordered graphs LZ(w). For each version, we have a �rst-order language by which we can express properties of strings as de�nable classes of structuresS, or G, respectively. What is the relation between the properties de�nable in the two �rst-order languages? 12



4.1 First-order on LZ-compressed strings need not be �rst-order on stringsFirst-order sentences on the class of compressed (binary) strings, i.e. sentences in the languagefU;E;<g, de�ne properties of compressed strings LZ(w) and hence properties of strings w.Are they de�nable in the language of strings, i.e. with only fU;<g? The following lemmaanswers this question negatively.Lemma 3 There exists a �rst-order property on the class of LZ-compressed strings which isnot �rst-order de�nable on the class of strings.Proof: Consider the class of compressed strings de�ned by' := :U(0) ^ U(1) ^ 8i � 2 (U(i)$ U(i� 2)) ^ 8i8j(E(i; j) $ (i � 2 ^ j = i� 2))A graph of size 6 satisfying ' is
0 1 0 1 0 1

0 1 2 3 4 5Note that LZ(w) j= ' () w = 0:1:00:11:000:111: ::: :0p:1p for some p:The set of these strings w is not a regular language. By the result of B�uchi, it can not bede�ned by a �rst-order formula in f<;Ug, not even by a monadic second-order formula. 24.2 First-order on strings need not be �rst-order on LZ-compressed stringsWe now turn to the reverse question. First-order sentences in the language of strings, i.e. withthe unary predicates fUa j a 2 �g and the order predicate <, de�ne properties of strings. Wewill show that, in general, they can not be expressed by sentences on LZ-compressed strings.In particular, we show that the substring query is not �rst-order on LZ-compressed strings.Thus, �nding a substring is `diÆcult' to do on LZ-compressed structures. The main reasonis that under LZ-compression of a string wsv, the compressed structure LZ(w) will directlyinuence the compression of s in the string wsv. The LZ algorithm always looks at previouspre�xes and therefore the code of a substring occurrence depends on its left context.Example 2 Consider the alphabet � = f0; 1; ag and the language L = f0; 1g� a 0�: Wecall LZ (L) the corresponding set of compressed strings. Let LZ (w1) and LZ (w2) be the twocompressed strings represented by the graphs below.
0 0 0 0 00 1 0 0 0aThe compressed string LZ(w1) of length 11
0 0 0 0 00 1 0 a 0The compressed string LZ(w2) of length 1013



Notice that the parities of the graphs di�er. By decompression, the corresponding strings arew1 : 0:1:00:10:000:100:0000:1000:00000:1000a:000000 2 Land w2 : 0:1:00:10:000:100:0000:1000:0000a:10000 =2 L:Lemma 4 There is a �rst-order property on strings which is not �rst-order de�nable onLZ-compressed strings.Proof: Consider the language L of example 2 which is �rst-order de�nable. Let us show thatthe corresponding set LZ(L) of compressed strings is not �rst-order de�nable. Suppose LZ(L)were �rst-order de�nable by a formula  k of quanti�er rank k. If LZ(w1) and LZ(w2) are twoorders of length m and m� 1 where m > 2k+1, then LZ(w1) �k LZ(w2). In a Ehrenfeucht-Fraisse game of rank k, the Duplicator has a winning strategy : at stage i � k, he keeps theintervals of size 2k�i around the minimum, the maximum and the points played isomorphic.As w1 2 L;w2 62 L and compression is injective, we have LZ (w1) 2 LZ (L) and LZ (w2) 62LZ (L). Because LZ(w1) j=  k and LZ(w1) �k LZ(w2), the graph LZ(w2) should also satisfy k, a contradiction. 2Corollary 3 The substring query is not �rst-order de�nable on LZ-compressed strings.Proof: Let s = a0 and consider example 2. The substring s occurs in w1 but not in w2, yet thecompressed strings are k-elementarily equivalent. Hence no �rst-order formula of quanti�errank k in the language of the compressed structures can de�ne the substring query. 2Corollary 4 Language concatenation is not �rst-order de�nable on LZ-compressed strings.Proof: We note that the compression of L1 = f0; 1g+ and of L2 = af0g+ are �rst-orderde�nable. By a slight modi�cation of the above example, the compression of L1L2 is not. 24.3 First-order on strings is �rst-order in TC on LZ-compressed stringsWe now show that we can de�ne all �rst-order properties of strings in an extension of the�rst-order formulas of LZ -structures. A formula is in the language FO(TC) if it can be builtwhen we add the following syntactic construction to those for �rst-order formulas : given abinary formula  (x; y) the expression TC: (x; y) is also a formula, with free variables x; y.The meaning of TC: (x; y) is the transitive closure of the graph de�ned by  (x; y).Let us see how TC can be used to de�ne a substring query on LZ-compressed strings.Example 3 Consider occurrences of the substring s = 10 in binary strings. Since each pre�xof a block is (the content of) a previous block, it is suÆcient to de�ne occurrences of 10 withblock borders as in 10: or 1:0, and these can be de�ned by the formula9i; j [ (:U(i) ^E(i; j) ^ U(j)) _ (U(i) ^ TC:E(i + 1; j) ^ 8k:E(j; k) ^ :U(j)) ]:In the �rst case, we check the symbols 0 at the end of block i and 1 at the node obtained byfollowing one back-edge. In the second case we can check 1 at the end of block i, but to checkwhether 0 is the �rst symbol of block i+ 1 requires to follow the back-edges (using TC) fromnode i+ 1 all the way to �nd the block j containing the pre�x of block i+ 1 with length 1.14



The example suggests a general way to recover a position in the original string from a pair ofnodes in the LZ-compressed string. Namely, the positions in block Bk uniquely correspond tothe blocks containing the non-empty pre�xes of Bk. Hence the set of positions i 2 S(w) coveredby Bk is represented in LZ(w) by f(j; k) j LZ(w) j= E�(k; j)g, where E� is the transitivereexive closure of E. Thus, if E�(k; j), we can view (k; j) as the end position of block j as apre�x of block k.For example, if w = a:aa:ab:aba:aa, the positions 5,6,7 contained in block 3 are represented by(3; 0); (3; 2); (3; 3), because the nonempty pre�xes of B3 are a = B0, ab = B2, and aba = B3.The last position of the last block B4 = aa = B1 is represented by (4; 4), not by (4; 1).Theorem 5 For every �rst-order formula '(x1; : : : ; xn) on strings, there is a FO(TC)-formula'LZ (x1; y1; : : : ; xn; yn) on LZ-graphs, such that for each S(w) and all i1; : : : ; in 2 S(w),S(w) j= '(i1; : : : ; in) () LZ(w) j= 'LZ (h(i1); : : : ; h(in)):Here, h is the mapping from elements of S(w) to pairs of elements of LZ(w) such thath(i) = (k; j) i� position i lies in block Bk and Bj is the pre�x of Bk ending in position i.We will only need TC to de�ne E�, using x = y _ TC:E(x; y). Since E is a deterministicrelation, the translation in fact will go to FO(DTC) � FO(TC).Proof: By induction on the formula '(x1; : : : ; xn).1. If '(x) = Ua(x), let 'LZ (x; y) be Ua(y): if S(w) j= Ua(i), and h(i) = (k; j), then Bj isthe shortest pre�x of Bk that covers position i; therefore, Bj ends in the letter a, which isthen the label at node j of LZ(w), so LZ(w) j= Ua(j). Similarly for the converse.2. If '(x1; x2) = x1 < x2, let 'LZ (x1; y1; x2; y2) be (x1 < x2)_ (x1 = x2^ y1 < y2). If i1 < i2,then either i1 belong to an earlier block than i2 or they belong to the same block, but therelative position of i1 is smaller than that of i2.Conversely, assume LZ(w) j= 'LZ (h(i1); h(i2)) where h(i1) = (k1; j1) and h(i2) = (k2; j2).Since blocks do not overlap, k1 < k2 gives i1 < i2. If k1 = k2 and j1 < j2, then since therelative positions refer to the same block, the absolute positions satisfy i1 < i2.23. Clearly, ('1 _ '2)LZ is ('LZ1 _ 'LZ2 ) and (:')LZ is :('LZ ).4. If '(x1; : : : ; xn) = 9xn+1: , let 'LZ be 9xn+19yn+1:( LZ ^ E�(xn+1; yn+1)). If S(w) j='(i1; : : : ; in), there is in+1 2 S(w) such that, by induction,LZ(w) j=  LZ (h(i1); : : : ; h(in+1)).Let h(in+1) = (k; j). Then in+1 is a position in block k, and by de�nition of h, E�(k; j).So LZ(w) j= 'LZ (h(i1); : : : ; h(in)).Conversely, assume LZ(w) j= 'LZ (h(i1); : : : ; h(in)) and pick k; j 2 LZ(w) such thatLZ(w) j=  LZ (h(i1); : : : ; h(in); (k; j)) ^E�(k; j):Nodes k and j represent blocks Bk and Bj of the LZ block decomposition of w. Since jcan be reached from k by an E-chain, block Bj is a pre�x of block Bk. So, if in+1 2 S(w) isthe endposition of this pre�x of block Bk, we have (k; j) = h(in+1) and thus, by induction,S(w) j=  (in; : : : ; in+1). Hence S(w) j= 9xn+1 (i1; : : : ; in).2 Wemight take E�(xi; y2)^E+(y2; y1) instead of y1 < y2, which also might be more eÆcient. But by de�nitionof h and since E+(j2; j1)) j1 < j2, this is not necessary.15



(By Bj we sometimes mean just the word, not its occurrence �xed by the LZ-algorithm.) 2Since the substring query for an arbitrary string s is de�nable on strings by 9xUs(x), theprevious example generalizes to:Corollary 5 The substring query is FO(TC) de�nable on LZ-compressed strings.An m-ary relation R � Dmn on S(w) is recovered in the compressed structure LZ(w) from the2m-ary relation h(R), where h is the above mapping from S(w) to LZ(w)�LZ(w). Hence wecan also use LZ-compression on strings with some additional relations R. For example, we cancompress labelled graphs if we �rst impose a total linear order and then use LZ-compressionon the resulting string with the edge relation.If we extend the above translation to second-order formulas using(9X(m): )LZ := 9X(2m): LZ and X(m)(x1; : : : ; xm)LZ := X(2m)(x1; y1; : : : ; xm; ym);we still have S(w) j= '(i1; : : : ; in) =) LZ(w) j= 'LZ (h(i1); : : : ; h(in))for existential second-order formulas '(x1; : : : ; xn) on strings. The converse fails since thereexist 2m-ary relations on LZ(w) that are not the f -image of m-ary relations on S(w).4.4 When �rst-order on strings remains �rst-order on LZ-compressed stringsThe class of languages that are �rst-order de�nable on compressed strings contains the �nitelanguages and is of course closed under the boolean operations of intersection, union andcomplement. By Corollary 4, it is not closed under concatenation. We will below present aclass of �rst-order properties of strings which remain �rst-order on the compressed structures.This class is closed under a limited use of iterated concatenation.Recall that for de�nability on strings, s+ is �rst-order for aperiodic strings s, by Proposition 1.Likewise, a limited use of + can be �rst-order on LZ-compressed strings:Example 4 The regular language L = 00+11+ = f0m 1p j m; p � 2g is de�ned by = 9i < max [1 < i ^ 8j(i � j $ U(j))]:The string s = 025113 2 L,0:00:000:0000:00000:000000:00001:1:11:111:1111:11;has the following LZ-graph:
0 0 0 0 0 1 1 110 1

i

1

i i1 2The compression LZ(L) of L can be de�ned by LZ = 9i; i1; i2 [ (i1 < i < i2) ^ (8j(U(j)$ i � j) _ 8j(U(j)$ i < j)) ^8j8k(E(k; j)$ (k = i ^ j = i1) _ (k = max ^ j = i2)_(k 6= 0 ^ k 6= i ^ k 6= i+ 1 ^ k 6= max ^ j = k � 1)) ]:16



With considerable e�ort, we will now show:Lemma 5 If s 2 �+ is aperiodic, then s+ is �rst-order de�nable on LZ-compressed strings.The main observation is that for w 2 s+ large enough, the ordered labelled graphs LZ(w) havea repeated pattern, a sequence of isomorphic subgraphs, of which any two adjacent ones arelinked by back-edges in the same way. The existence of such a pattern, though not suÆcientfor Lemma 5, is not straightforward. It is best shown by ignoring how LZ-compression behavesat the end of w; therefore, we turn to the compression of the in�nite string s!.The LZ-graph of the in�nite string s! as a domino sequence. Let s! = sss � � � bethe in�nite word over � obtained by the concatenation of in�nitely many copies of s. TheLZ-block decomposition of s! is the in�nite sequenceB0; B1; B2; B3 � � � ; (3)where B0B1 � � � = s! and Bm 2 �+ is the shortest nonempty pre�x of BmBm+1 � � � that isnot among B0; B1; : : : ; Bm�1. Then (3) gives an in�nite LZ-graph,LZ(s!) = (D!; <; Ua1 ; : : : ; Ual ; E)of order type !, whose label at node i 2 D! is the last letter of block Bi.It is useful to think of LZ(s!) as a sequence of dominoes, as follows. For a string t, letu <pre�x t mean that t = uv for some v 2 �+, and v <suÆx t that t = uv for some u 2 �+.We also use v <suÆx t for in�nite words t. Note that s! has only a �nite suÆx-set , namelyfvs! j v <suÆx psg; where ps is the shortest p �pre�x s such that pk = s for some k:For example, if s = abaaba, the suÆx-set of s! is fvs! j v <suÆx abag, because baabas! =bas!; aabas! = as!; abas! = s!. If s is aperiodic, ps = s.Let ps = u0v0 = : : : = ujpsjvjpsj be all splittings of ps into pre�x ui and suÆx vi, where jvij = i.For each j there are unique3 l; r < jpsj such that BjBj+1 � � � = vls! and Bj+1 � � � = vrs!; wecall the ordered pair Cj = [l; r] the class of block Bj. Except for small j, we have Bj = vlskurfor some k.Example 5 Consider the aperiodic string s = aba. The LZ-block decomposition of s! gives asequence of blocks beginning as follows:a : b : aa : ba : ab : aab : as : s : sa : baa : baab : asa : bas : sab : asab : as2: � � �The classes of these blocks are[0; 2][2; 1][1; 2][2; 0][0; 1] [1; 1] [1; 0][0; 0][0; 2] [2; 2] [2; 1] [1; 2] [2; 0] [0; 1] [1; 1] [1; 0] � � � :For example, block B10 = baab has class C10 = [2; 1], because B10B11 � � � = bas! gives the �rstcomponent 2 = jbaj and B11 � � � = as! gives the second component 1 = jaj.3 But the word Bj may have di�erent occurrences in ps (or concatenations of a suÆx with a pre�x of ps, asaa in abaaca), which in turn de�ne di�erent suÆx-pairs of s!. For example, with s = abaaba, the subworda of s! has occurrences of class [0; 2] and occurrences of class [1; 0].17



A domino (over ps) is just an ordered pair [l; r] of numbers l; r < jpsj; its �rst component isits type. On f0; : : : ; jpsj � 1g, let � := f(k + 1; k) j k < jpsj � 1g [ f(0; jpsj � 1)g. A sequenceC = [l0; r0][l1; r1][l2; r2] � � �of dominoes [lj; rj ] over ps is called a LZ-domino sequence, if it satis�es two conditions:1. Domino rule: For all j 2 IN , lj+1 = rj , i.e. [lj ; rj][lj+1; rj+1] match like dominoes,2. LZ-rule: For all j 2 IN , if j0 is the smallest index > j with lj = lj0 , then rj � rj0 .The domino rule says that the LZ-block Bj+1 is a pre�x of the suÆx of s! left by removingits pre�x B0 � � �Bj . The LZ-rule expresses that when a pre�x block Bj0 is taken from vls!, itextends the last block Bj taken from vls! by a single letter.Every LZ-domino sequence C = C0C1 � � � over ps with Ci = [li; ri] de�nes a labelled orderedgraph GC = (DjCj; <; Ua1 ; : : : ; Ual ; E), where Ua(i) i� avri �suÆx ps and E(i; j) i� j < i,li = lj, rj � ri and there is no Ck with j < k < i of type li. This also works if C has length !.For example, if ps = aba and C = [0; 0][0; 2][2; 2][2; 1][1; 2][2; 0][0; 1][1; 1][1; 0], we obtainGC =C = 1 2 3 4 5 6 7 80

[0,0]   [0,2]    [2,2]    [2,1]    [1,2]    [2,0]    [0,1]    [1,1]    [1,0]

a a aa ab bbaIn particular, the LZ -graph of s! is completely determined by ps and the sequenceC = C0C1 C2 � � �of block classes Cj of the Bj : one easily checks that GC = LZ(s!). This representation ofLZ(s!) as an LZ-domino sequence C allows us to show the existence of a repeating subgraphby showing that C is ultimately periodic.Proposition 4 Let C be an in�nite LZ-domino sequence. If S is a subword of C containingeach domino once, then C = TS!, where TS is any pre�x of C ending in S.Proof: Let d2 be the number of dominoes, so jSj = d2. Let Cm be the �rst domino in S andCm0 := Cm+d2 the domino following S in C. It is suÆcient to show Cm0 = Cm, because thenwe likewise consider S0 = Cm+1 � � �Cm0 . Let Cm0 = [l0; r0]. Since each domino of type l0 occursonce in S, these occur ordered like [l0; r0]; : : : ; [l0; r] where r � r0. Suppose Cm 6= [l0; r0]. Thenthere are d + 1 dominoes of type l0 in SCm0 , and their left neighbours are d + 1 dominoeswith second component l0, lying in S. But this is impossible, since there are only d di�erentdominoes with second component l0, and S contains no domino twice. So Cm0 = Cm. 2Lemma 6 For each in�nite LZ-domino sequence C there are �nite words S; T such thatC = TS!, where S contains each domino once.Proof: Let d2 be the number of dominoes. Since C is in�nite, at least one domino is usedin�nitely often. Pick one of these and let Cm = Cm+k,m < m+k, be two of its occurrences; wemay assume that S := Cm+1 � � �Cm+k is the longest suÆx of C0 � � �Cm+k containing no domino18



twice, whence 1 � k � d2. If k = d2, the claim holds with T := C0 � � �Cm by Proposition 4.So assume k < d2. We show that there is m0 � m and k0 > k such that S := Cm0+1 � � �Cm0+k0is the longest suÆx of C0 � � �Cm0+k0 containing no domino twice.If Cm+k+1 does not occur in Cm+1 � � �Cm+k, put m0 = m; k0 = k + 1. If Cm+k+1 occurs inCm+1 � � �Cm+k and Cm+k+1 = Cm+1, then Cm+2 � � �Cm+k+1 is the longest suÆx of C0 � � �Cm+k+1containing no domino twice, again of length k < d2; by the LZ-rule this cannot occur k timesin a sequence.So suppose Cm+k+1 occurs in Cm+1 � � �Cm+k. In order to prove Cm+k+1 = Cm+1, we show thata maximal sequence of pairwise di�erent dominoes that obey the domino- and LZ-rules canonly be continued by its �rst element. Consider the case d = 3, then the domino componentsare i; i � 1; i � 2 (mod 3). Up to cyclic shifts, the maximal sequences of dominoes withoutrepetitions are:[i; i][i; i � 1][i� 1; i][i; i � 2][i� 2; i][i; i][i; i � 1][i� 1; i][i; i � 2][i� 2; i � 1][i � 1; i� 1][i � 1; i � 2][i� 2; i � 2][i � 2; i][i; i][i; i � 1][i� 1; i][i; i � 2][i� 2; i � 2][i � 2; i][i; i][i; i � 1][i� 1; i� 1][i � 1; i� 2][i� 2; i][i; i � 2][i � 2; i � 1][i� 1; i][i; i][i; i � 1][i� 1; i� 1][i � 1; i� 2][i� 2; i � 1][i� 1; i][i; i � 2][i� 2; i � 2][i � 2; i][i; i][i; i � 1][i� 1; i� 1][i � 1; i� 2][i� 2; i � 2][i� 2; i][i; i � 2][i� 2; i � 1][i � 1; i][i; i][i; i � 1][i� 1; i� 2][i � 2; i][i; i � 2][i � 2; i� 1][i � 1; i][i; i][i; i � 1][i� 1; i� 2][i � 2; i� 1][i� 1; i][i; i � 2][i � 2; i � 2][i� 2; i][i; i][i; i � 1][i� 1; i� 2][i � 2; i� 2][i� 2; i][i; i � 2][i � 2; i � 1][i� 1; i � 1][i � 1; i]:By inspection, the only domino that extends any of these according to the domino- and LZ-rules is [i; i], the �rst one of each sequence. The same applies for d di�erent from 3. It followsthat one has to run into the �rst case, where k < d2 is increased. 2For a �nite domino sequence C there is an obvious �rst-order formula 'C(x) such that forevery ordered labelled graph G,G j= 'C(j) () G�fj;:::;j+jCj�1g' GCwhere G�fj;:::;j+jCj�1g is the restriction of G to nodes j; : : : ; j + jCj � 1. This extends to thegraphs of order type ! we are interested in:Lemma 7 For every s 2 �+, there is a �rst-order formula 'TS!(x) such that for each orderedlabelled graph G = (!;<;Ua1 ; : : : ; Ual ; E) of order type !,G j= 'TS!(0) () G ' LZ(s!):Proof: For the in�nite LZ-graph of s!, we clearly have LZ(s!) = GTS! , using the block classsequence C = TS! of s! in its representation by �nite T; S according to Lemma 6. To de�neGTS! in �rst order, we can take'TS!(x) := 'TSS(x) ^ 8z � x+ jT j ('SS(z)! 'SS(z + jSj))^8y � x+ jTSj 8z (E(y; z)! y � jSj � z < y):It is clear that 'TSS(x) implies 'SS(x + jT j). Note that G j= 'SS(j) says that at nodes jand j + jSj there are copies of GS which are appropriately connected by backedges (dotted inthe following picture). The third conjunct excludes edges in G connecting nodes > jT j of adistance � jSj. 219



Example 4 (Cont.) For s = aba as above, when picking jT j = 7 the initial segment GTSSdescribed by 'TSS(0) looks as follows:
[0,0]   [0,2]    [2,2]    [2,1]    [1,2]    [2,0]    [0,1]    [1,1]    [1,0] [0,0]   [0,2]    [2,2]    [2,1]    [1,2]    [2,0]    [0,1]    [1,1]    [1,0][0,2]   [2,1]   [1,2]   [2,0]   [0,1]   [1,1]   [1,0] 

S ST

a a a a a a a a a a a a a a ab b b b b b bb

a     .    b    .   aa   .  ba   .   ab   .   aab  .   as    .      s     .   sa   .   baa  .   baab  .  asa   .  bas   .  sab   .  asab  .  ass    .    ss   .   ssa  .  basa  . basab .  assa  .  bass  . ssab  .  assab . asss .

baThe 9 blocks corresponding to the k � th occurrence of S in C are, by induction on k:sk : ska : bask�1a : bask�1ab : aska : bask : skab : askab : ask+1: (4)We now return to the �nite. Since s+ is a set of �nite pre�xes of s!, our next goal is a �rst-order description of a suitable set of initial segments of LZ(s!) ' GTS! , the graphs GTSn for�nite n. (Roughly, this is a �rst-order de�nition of the language TS+ of domino-words.)Corollary 6 Let s 2 �+ and C = TS! be a representation of the LZ-block class sequence ofs! according to Lemma 6. There is a �rst-order formula 'TSS+(x; y) such that for each �niteordered labelled graph G,G j= 'TSS+(0;max) () for some n > 0; G ' GTSSn :Proof: To say that the segment from node x up to node y of an ordered labelled graph G isisomorphic to GTSSn for some n > 1, we impose an upper bound on 8z in the formula 'TS!(x)of Lemma 6, obtaining'TSS+(x; y) := 'TSS(x) ^ 8z(x+ jT j � z < y � jSSj ^ 'SS(z)! 'SS(z + jSj)) (5)^8z1 � x+ jTSj 8z2 (E(z1; z2)! z1 � jSj � z2 < z1):Then if G j= 'TSS+(0;max) is �nite, clearly G ' GTSSn for some n > 0. However, in order tosee that GTSSn j= 'TSS+(0;max), we must know that when GTSSn j= 'SS(j) with jT j � j <max� jSSj, then j � max� jSSSj. In other words, we must ensure that in GSSS the formula'SS(x) only holds for nodes 0 and jSj. This is done in Proposition 5 below. (Cf. the proof ofProposition 1, claim 2., for strings.) 2We need to extend the notion of an aperiodic word to the case of LZ-graphs. To account forthe backedges between copies of GS , the de�nition is restricted to graphs of the form GSS. Wecall a labelled ordered graph of the form GSS periodic, if GSSS contains at least 3 segmentsisomorphic to GSS .Proposition 5 Let s 2 �+ be a power of some aperiodic string ps. Let the LZ-block classsequence of s! = p!s be TS! where jSj = jpsj2. Then GSS is aperiodic.Proof: Suppose GSS is periodic, i.e. GSSS j= 'SS(k) for some 0 < k < jSj. Then GS! j= 'S!(k),and n 7! n+k de�nes an embedding of GS! to an isomorphic end segment. The minimal suchk divides jSj. On GS! , E only relates nodes whose class are of the same domino type i < jpsj,so E = S fEi j i < jpsjg is a union of graphs Ei with disjoint �elds. Note that n 7! n + k20



preserves E, so that dominoes Cn of the same type i are mapped to dominoes Cn+k of thesame type �(i), for some bijection � : jpsj ! jpsj. Hence, by the domino rule, if in C = S!we have Cn = [ln; rn], then Cn+k = [�(ln); �(rn)]. Moreover, � preserves the relation �, so�(i � 1) = �(i) � 1 (mod jpsj). Since � cannot be the identity, we have �(i) = i + k0 (modjpsj) for some 0 < k0 < jpsj.Since n 7! n+ k respects the labelling on GS! , the labels at n and n+ k are the same; so thelast letter of urn �pre�x ps equals the last letter of urn+k = u�(rn) = urn+k0. But this impliesthat ps is periodic, contradicting the assumptions. 2Finally, it is convenient that we can �nd blocks containing given subwords of s!:Proposition 6 Let w be a subword of s! with jsj � jwj < !. There is j with Bj = w.Proof: Let Bj be the LZ-blocks of s! and Cj the class of Bj. Since s! = p!s , we may assumethat s is aperiodic. Pick l;m; r such that w = vlsmur. We show thatBj+1Bj+2 � � � = vls! for in�nitely many j: (6)Then if j + 1 is large enough, w = vlsmur is a pre�x of Bj+1, and since the set of blocks isclosed under pre�xes, w is the content of a block. To show (6), note that there is at least oneclass [l0; r0] such that Cj = [l0; r0] for in�nitely many j. So for each k 2 IN , there are k0 > kand j0 with Bj0 = vl0sk0ur0 . Since the set of blocks is closed under pre�xes, vl0skul = Bj forsome j. Since s is aperiodic, Bj+1 � � � = vls!. As j increases with k, (6) is shown. 2We can now combine the arguments to prove the announcedLemma 5 If s 2 �+ is aperiodic, then s+ is �rst-order de�nable on LZ-compressed strings.Proof: The language s+ is a set of �nite pre�xes of s!. We distinguish the elements w 2 s+according to the class of the LZ-block of s! in which w ends. Roughly speaking, for each ofthe subsets of s+ obtained this way we give a �rst-order de�nition of its LZ-compression.Consider the sequence B = B0B1 � � � of LZ-blocks of s! and its associated sequence C =C0C1 � � � of block classes. Let C = TS! as in Lemma 6. We may assume that S begins with[0; 0] and that BjT j = w0 2 s+, by Proposition 6. Since s is aperiodic, jSj = jsj2. Becausesubsequent blocks of the same class appear at a distance of jSj blocks, and the second extendsthe �rst by jsj subsequent letters of s!, we have:8n; k 8i < jSj (BjT j+i = vlskur ) BjT j+i+njSj = vlsk+nur): (7)In particular, block BjTSnj contains w0sn. Note that s+ is the union of the following 2jSj+ 1sublanguages, where P ranges over non-empty suÆxes of S:a) fw 2 s+ j w �pre�x B0 � � �BjTSSjg,b) fw 2 s+ j w = B0 � � �BjTSSnP j�1 for some n > 0g,c) fw 2 s+ j B0 � � �BjTSSnP j�1 <pre�x w <pre�x B0 � � �BjTSSnP j for some n > 0g).It remains to be shown that each of these is �rst-order de�nable on LZ-compressed strings.Proof of a): This is clear since we are dealing with a �nite language.21



Proof of b): If the last domino of P is not of the form [l; 0] for some l < jsj, the set is empty.Otherwise, GTSSnP is the LZ-graph of B0 � � �BjTSSnP j�1 2 s+, for each n > 0. These graphsare the �nite models of'TSS+(0;max � jP j) ^ 'SP (max� jSP j+ 1); (8)where 'TSS+(x; y) is the formula of Corollary 6 and 'SP (max � jSP j + 1) forces an endsegment isomorphic to GSP .Proof of c): Note that ifB0 � � �BjTSSnP j�1 <pre�x sm <pre�x B0 � � �BjTSSnP j;then LZ(sm) is not an initial segment of LZ(s!) = GTS! ; it extends GTSSnP , the LZ-graphof B0 � � �BjTSSnP j�1, by a maximal node that is labelled with the last letter of s and hasE(max; z) for a suitable node z of GTSSnP . We have to express the possible values of z.Let P = Q[i; j] and let [j; r] be the class of block BjTSSnP j. The blocks BjTSSnP j�1 andBjTSSnP j contain viskuj and vjsk0ur, for some k > 0, where S and P determine whetherk0 = k�1; k or k+1, independently of k by (7). The �nal block of LZ (sm) has class D = [j; 0]and contains vjsl for some l � k0. It is related in LZ(sm) by E to the block containingthe longest strict pre�x of vjsl, which is a block among the �rst jT j blocks, or a later blockcontaining vjsl�1u1, which has class [j; 1].Let JT be the numbers < jT j of blocks containing the longest strict pre�x of some vjsl, andjS < jSj resp. jP < jP j the position of domino [j; 1] in S resp. P . Let T;S;P (z) := _jT2JT z = jT _ 9y('S(y) ^ z = y + jS) _ z = max� jP j+ 1 + jP ;The sublanguage c) of s+ is then de�ned in �rst-order on LZ-compressed strings by'0TSS+(0;max� jP j) ^ 'SQ(max� jSP j+ 1) ^9z ( T;S;P (z) ^ 8y(y = z $ E(max; y)) ^ Ua(max)); (9)where a is the last letter of s and '0TSS+(x; y) is formula (5) except that 8z1 does not rangeover max, to allow that z may be far away from max. 2To de�ne s+ on strings, we needed s to be aperiodic because otherwise the induction formulaInd s would not de�ne s+. To de�ne s+ on LZ-compressed strings, we need s to be aperiodicfor a di�erent reason. When s is periodic, say s = pks , the LZ-graphs of s! and p!s are thesame, so that we can represent its block class sequence C as TS!, where jSj = jpsj2, andde�ne LZ (p+s ) as above. To de�ne LZ (s+), we have to be more restrictive; for example, incase c) we must not allow the back-edge from max to go to an arbitrary block of class [j; 1].Example 5 Consider the periodic word s = abab. The in�nite string s! has only two suÆxes,v0 = s! and v1 = bs!. We obtain the following sequence of blocks and block classes for s!:B a b ab aba b a bab abab abab a bab a bab ab ab abab abab aba b abab a bab abab � � �C [0,1] [1,0] [0,0] [0,1] [1,1] [1,0] [0,0] [0,1] [1,1] [1,0] [0,0] [0,1] [1,1] [1,0] � � �n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 � � �22



We have C = TS! and jSj = jpsj2 = jabj2 = 4 with four di�erent choices for S, for exampleT:S = [0; 1][1; 0][0; 0]:[0; 1][1; 1][1; 0][0; 0] :Indeed, GSS is an aperiodic graph, since GSSS, i.e.
[0,1] [1,1] [0,1] [1,1] [0,1][1,1] [1,1][1,0] [1,0] [1,0][0,0][0,0] [0,0] [0,0]

0 1 2 3 4 5 6 7 8 9 10 11

a a a a b bb bbaa b

does not contain three copies of GSS: the formula 'SS(x) holds at nodes 0 and 4 only; becauseof the labels, it does not hold at node 2. In order to de�ne LZ (s+), we would need, for example,the graphs GTSn extended by a �nal element max with label b and a back-pointer to the m-thnode of class [0; 1] from the end, where m is odd (resp. even) if n is even (resp. odd). Thesedistinctions cannot be made in �rst order.More simply, let s be the periodic word aa. Suppose ' has quanti�er rank k and de�nes s+ onLZ-compressed strings. Choose w such that LZ (w) has length 2m + 1 > 2k and E(max;m).Note that LZ(w) and LZ(wa) only di�er in that the latter has E(max;m+ 1). Clearly, theduplicator has a winning strategy for the k-round Ehrenfeucht-Fraisse game between thesestructures, so they are k-elementarily equivalent. But then both w and wa belong to (aa)+,which is impossible. Hence, s+ is not �rst-order on LZ-compressed strings.De�nition 2 Let C be the class of languages L � �+ built by union, intersection and com-plement from �nite languages and the languages us+, where u 2 �� and s 2 �+ is aperiodic.By Theorem 1 and Proposition 1, C is a class of �rst-order de�nable languages.Theorem 6 If L 2 C, then L is �rst-order de�nable on LZ-compressed strings.Proof: by induction on the de�nition of L. The LZ-compression of a �nite language is de�nablesince LZ(w) is de�nable for each word w 2 �+. For union, intersection and complement weobtain straightforward formulas using the logical connectives.Let u be a word and s be aperiodic. To show that u � s+ is �rst-order on LZ-compressedstrings, we modify the proof of Lemma 5 and the previous reasoning. The representation ofthe LZ-graph LZ (us!) by an LZ-domino sequence TS! has to be slightly changed by usingadditional dominoes describing blocks that intersect with u. These are part of T and inuencethe repeating S, but do not a�ect the argumentation otherwise. We leave it to the reader tocheck the details. 2Example 4, de�ning LZ (00+11+), is not explicitly handled by Theorem 6. However, sincethe two iterations 0+ and 1+ operate on words with disjoint alphabets, the example can bereduced to the case of Theorem 6.5 ConclusionWe have considered properties of strings that are de�nable on strings or on compressed strings,using a naive and the Lempel-Ziv compression schema. First-order queries on strings can be23



translated to �rst-order queries on naively compressed strings, and to queries de�nable in�rst-order extended with transitive closure on Lempel-Ziv compressed strings. Since we treatformulas, the translations cover the case of reporting occurrence positions of matches found.We showed that the subsquare query is not �rst-order on naively compressed images, and thesubstring query is not �rst-order on Lempel-Ziv compressed strings. Moreover, the class ofproperties that are �rst-order on the compressed strings is not closed under concatenationand contains properties that are non-regular, hence not monadic second-order on strings.Similar questions as we have treated can be asked for other compression schemes. For example,in the compression by omitting letters that can be predicted using an antidictionary [CMRS98]of the string, the compressed word and the antidictionary are separate structures, and it isnot clear how to decompose properties of the string into properties of the compressed stringand properties of the antidictionary.In many applications, for example in computational biology, it is not suÆcient to view stringsas labelled orders as we have done here, but one needs to talk about distances betweenpatterns in a string. For such cases, strings would better be represented by structures S+(w) =(Dm;+; Ua1 ; : : : ; Ual), where the order < is replaced by the (partial) addition on Dm. It wouldbe an important extension of our investigation to relate �rst-order properties of strings withaddition with those that can be de�ned on the corresponding compressed strings.A further direction for future research is the study of de�nability and compression for arbitrary�nite structures and more general logics.References[B�uc62] J. R. B�uchi. On a decision method in restricted second order arithmetic. In E. Nagel, editor,International Congress on Logic, Information and the Philosophy of Science, volume 1. StanfordUniversity Press, 1962.[CMRS98] M. Crochemore, F. Mignoni, A. Restive, and S. Salemi. Text compression using anti-dictionaries. Technical report, Universit�e de Marne-la-Vall�ee, Institut Gaspard-Monge, 1998.www-igm.univ-mlv.fr/~mac/RAC/DCA.html.[CT91] T. Cover and J. Thomas. Elements of Information Theory. John Wiley, 1991.[EF91] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1991.[Elg61] C.C. Elgot. Decision problems of �nite automata design and related arithmetics. Transactions ofthe American Mathematical Society, 98:21{52, 1961.[Far91] M. Farach. String matching in Lempel-Ziv compressed strings. In ACM Symposium on the Theoryof Computing, 1991.[Man94] U. Manber. A text compression scheme that allows fast searching directly in the compressed �le. InCombinatorial Pattern Matching, volume 807 of Lecture Notes in Computer Science, pages 113{124.Springer Verlag, 1994.[MP71] R. McNaughton and S. Papert. Counter-Free Automata. MIT-Press, Cambridge, Mass., 1971.[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactionson Information Theory, pages 337{343, 1977.[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE Trans-actions on Information Theory, pages 530{536, 1978.
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