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Zusammenfassung

Den Inhalt der Dissertation bilden verschiedene Aspekte der Kombination von
Constraint-Systemen. Der Begriff ,,Constraint“ 148t sich im Deutschen mit
Neben- oder Seitenbedingung nur unvollstéindig wiedergeben. Daher lassen wir
ihn als Terminus technicus hier uniibersetzt. Ein Constraint-System in unserem
Sinne besteht aus drei Teilen: Einer Constraint-Sprache, einem Losungsbereich
und einem Constraint-Loser. Die Constraint-Sprache ist die Sprache, in der die
Probleme formuliert werden. Typischerweise ist sie eine Sprache erster Ordnung
oder ein Fragment davon. Der Lésungsbereich ist eine algebraische Struktur, in
der die Constraint-Sprache interpretiert wird. Wir betrachten dabei bestimmte
Losungsbereiche, nimlich sogenannte quasi-freie Strukturen, die weiter unten
erldutert werden. Der Constraint-Loser schlief$lich entscheidet ein Fragment der
Constraint-Sprache, das heifit, er entscheidet fiir jede Formel des Fragments,
ob die Formel in der Lésungsstruktur wahr ist. Das betrachtete Fragment
ist dabei meist das existentielle, das heifit, die Formeln sind Konjunktionen
und Disjunktionen von Atomformeln oder negierten Atomformeln. Die in den
Formeln auftretenden Variablen werden als implizit existenziell quantifiziert
betrachtet. Die Formel ist demnach wahr in der Lésungsstruktur, wenn es eine
Abbildung gibt, die den Variablen der Formel Elemente der Losungsstruktur in
der Weise zuordnet, dal die Formel in der Struktur gilt.

Betrachtet man ein Constraint-System derart abstrakt, so stellt sich die Frage,
was fiir systematische Methoden zur Kombination von Constraint-Systemen es
gibt. Wichtig ist uns dabei, dal die Methoden allgemeingiiltig und prinzipiel-
ler Natur sind; Spezialverfahren interessieren uns weniger. Eine systematische
Methode hat demnach folgendes zu leisten: Einmal muf sie fiir zwei beliebige
Losungsbereiche ein Verfahren zur Konstruktion eines kombinierten Losungs-
bereiches zur Verfiigung stellen. Dabei soll der kombinierte Losungsbereich
moglichst allgemeingiiltig sein, und er sollte wesentliche strukturelle Eigenschaf-
ten der Komponentenbereiche mit diesen teilen. Zum zweiten mufl die Metho-
de einen Algorithmus beinhalten, der die Losung von gemischten Constraints
iiber der kombinierten Struktur erlaubt, also die beiden Constraint-Loser der
Komponenten zusammenbindet und gemischte Constraints iiber der vereinigten
Constraintsprache in reine Constraints je einer Sprache reduzieren kann, und
zwar in solcher Weise, daf} es fiir die reinen Constraints unter Benutzung der
Constraint-Loser der jeweiligen Komponenten genau dann eine Losung gibt,
wenn es auch fiir die gemischten Constraints eine Losung in der kombinierten
Losungsstruktur gibt. Wir verlangen weiterhin Konservativitit in folgendem
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Sinne: Die Losung eines reinen Constraints aus einer Komponentensprache soll
in der kombinierten Losungsstruktur zu keinem neuen Resultat fithren, ein sol-
cher Constraint soll in der kombinierten Struktur genau dann gelten, wenn er
in der Komponentenstruktur gilt.

Wenn man den Begriff von Kombination so allgemein und weit fafit, wie
wir es tun, ist es erforderlich, gewisse Einschrinkungen bei den Komponen-
tenconstraint-Systemen zu machen. Die erste wichtige Einschrinkung betrifft
die Signaturen der Komponentenconstraint-Sprachen. Mit Signatur bezeichnet
man die Menge der Konstanten, Funktionssymbole und Relationssymbole, aus
der die Constraint-Sprache aufgebaut wird. Wir verlangen, daf§ die Signaturen
der Komponentensprachen disjunkt sind, das bedeutet, dafl es keine Konstante,
kein Funktions- oder Relationssymbol gibt, das in beiden Signaturen auftaucht.

Die zweite wichtige Einschrinkung, die wir ziehen, betrifft die Losungsbereiche.
Diese miissen quasi-freie Strukturen sein. Der Begriff der quasi-freien Struktur
wurde von F. Baader und K. U. Schulz in [10] eingefiihrt. Er stellt eine Ver-
allgemeinerung des Begriffs der freien Struktur dar und umfafit viele wichtige
nicht-numerische, unendliche Losungsbereiche. Unter anderem sind Termalge-
bren, Quotiententermalgebren, rationale Baumalgebren, Vektorrdume, erblich
endliche fundierte und nicht fundierte Listen, Mengen und Multimengen so-
wie bestimmte Arten von Feature-Strukturen alle quasi-freie Strukturen. Die
wesentliche Erweiterung gegeniiber freien Strukturen besteht darin, daf die Ele-
mente des Grundbereiches nicht generiert sein miilen. Es reicht, wenn sie in
ihrem Verhalten unter Abbildungen durch das, was mit ihren ,, Atomen“ ge-
schieht, determiniert sind. Quasi-freie Strukturen sind symbolisch und unend-
lich. Dies stellt eine Einschrinkung insofern dar, dafl numerische Bereiche und
endliche Bereiche, die beide wichtige Bereiche fiir Constraint-Loser darstellen,
keine quasi-freien Strukturen sind, und also unsere Methoden der Kombination
fiir diese nicht in Frage kommen.

Baader und Schulz stellen in [10, 12, 15] ein erstes allgemeines Kombinationsver-
fahren vor, das wir eingehend erldutern, da es fiir unsere Arbeit grundlegend
ist. Die kombinierte Losungsstruktur ist das sogenannte Freie Amalgamierte
Produkt. Unter allen sinnvollen kombinierten Strukturen ist es dadurch cha-
rakterisiert, die allgemeinste zu sein in dem Sinne, dafl ein homomorphes Bild
des Freien Amalgamierten Produkts in jeder kombinierten Losungsstruktur zu
finden ist. Die Autoren geben ein allgemeines Verfahren zur Konstruktion des
Freien Amalgamierten Produkts fiir zwei beliebige quasi-freie Strukturen an.
Die geforderte Konservativitit zeigen sie, indem sie beweisen, daf}, betrachtet
man jeweils nur eine Komponentensignatur, , vergifit“ also sozusagen im Frei-
en Amalgamierten Produkt die Signatur der anderen Komponente, das Freie
Amalgamierte Produkt und die Komponentenstruktur isomorph sind. Die Au-
toren présentieren weiterhin einen Dekompositionsalgorithmus, der gemischte
Constraint-Probleme in reine Constraint-Probleme der jeweiligen Komponen-
ten zerlegt. Mit Hilfe dieses Dekompositionsalgorithmus beweisen sie, daf} die
positive Theorie des Freien Amalgamierten Produktes entscheidbar ist, wenn
die positiven Theorien der Komponentenstrukturen entscheidbar sind.

viii



Der erste Teil unseres Beitrags setzt sich mit diesem Dekompositionsalgorithmus
auseinander und gibt Optimierungsverfahren an. Der Dekompositionsalgorith-
mus beinhaltet drei nichtdeterministische Schritte, die einen so grofien Such-
raum aufspannen, daf§ sich eine Implementation dieses Algorithmus schlicht
verbietet. Um also den Dekompositionsalgorithmus auch fiir Anwendungen
brauchbar zu machen, mufl man Optimierungsverfahren finden, die den Such-
raum drastisch einschrinken. Dabei lag unser Interesse darin, moéglichst allge-
meine Verfahren zu finden, die auf fast alle Constraint-Loser von quasi-freien
Strukturen anwendbar sind. Es werden zwei solch allgemeiner Optimierungs-
verfahren vorgestellt, genannt die deduktive und die iterative Methode. Die
iterative Methode wurde fiir den Fall entwickelt, da eine groflere Zahl von
Komponenten als nur zwei kombiniert werden. Sie beruht auf der Beobach-
tung, dafl das Dekompositionsverfahren in so einem Fall den Suchraum stark
vergroBert, da alle moglichen nicht-deterministischen Entscheidungen getroffen
werden, bevor auch nur eine Komponente zu 16sen versucht wird. Im Gegensatz
dazu arbeitet die iterative Methode lokal. Sie legt die nicht-deterministischen
Entscheidungen jeweils nur fiir eine Komponente fest, und schreitet erst dann
zur nichsten fort, wenn ein Satz von Entscheidungen getroffen wurde, fiir den
der Komponentenconstraint-Loser eine Losung findet. Die Aufgabe bei dieser
an sich einfachen Idee besteht darin, zu zeigen, dafl das so modifizierte Verfah-
ren unsere Anforderung noch erfiillt, dal es dann und nur dann eine Losung
fiir ein gemischtes Constraint-Problem im Freien Amalgamierten Produkt gibt,
wenn es Losungen fiir reine Constraint-Probleme in den Komponenten gibt.

Die deduktive Methode beruht auf der Einsicht, dafl nicht alle Entscheidungen
im Dekompositionsalgorithmus nicht-deterministisch getroffen werden miissen.
Oft stellen das zu losende Constraint-Problem und die einzelnen Komponenten
Vorgaben, wie eine bestimmte Entscheidung zu treffen ist, soll das Problem noch
l6sbar sein. Man benétigt dazu neue Constraint-Loser fiir die Komponenten,
die am Prozefl der Suche nach den richtigen Entscheidungen beteiligt werden
kénnen. Diese miissen fiir ein ihnen vorgelegtes reines Constraint-Problem dann
nicht mehr nur Losbarkeit feststellen, sondern auch angeben konnen, welche
Entscheidungen im Algorithmus wie zu treffen sind, damit ihr reines Constraint-
Problem losbar bleibt. Der Kombinationsalgorithmus wird bei der deduktiven
Methode damit zu einer Art Moderator. Er befragt reihum die beteiligten Kom-
ponentenléser, welche Entscheidungen wie zu treffen sind. Wenn schliellich die
Komponentenléser keine weiteren Entscheidungen festlegen kénnen, trifft der
Kombinationsalgorithmus eine nichtdeterministische Entscheidung und beginnt
die Konsultation der Komponentenldser erneut, bis schliellich auf diesem Wege
alle Entscheidungen getroffen sind. Sagen dann noch alle Komponentenloser,
daf} ihre reinen Constraintprobleme I6sbar sind, so ist auch das urspriingliche
gemischte Problem lésbar.

Da die beiden Optimierungsverfahren voéllig unabhéngig voneinander sind, las-
sen sie sich in eines integrieren. Die Verfahren sind tatséichlich implementiert,
um ihren Effekt auch testen zu kénnen. Von uns durchgefiithrte Tests zeigen,
daf} viele Constraint-Probleme mit den Optimierungen um Groéflenordnungen
schneller gelést werden konnen, und einige Probleme erst mit dem optimierten
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Verfahren praktisch 16sbar sind.

Der zweite Beitrag behandelt die sogenannte Rationale Amalgamierung. Dabei
handelt es sich um eine zweite allgemeine Kombinationsmethode neben dem
Freien Amalgamierten Produkt. Obwohl das Freie Amalgamierte Produkt eine
allgemeinste kombinierte Lésungsstruktur darstellt, gibt es doch in der Pra-
xis Kombinationen, die nicht Instanzen des Freien Amalgamierten Produktes
sind. Beispiele dafiir sind Arbeiten von A. Colmerauer [29, 30] iiber die Kom-
bination von rationalen Biumen und rationalen Listen, sowie Arbeiten von
W. Rounds [90] und A. Moshier & C. Pollard [75] iiber die Kombination von
Feature-Strukturen und nicht-fundierten Mengen. In allen diesen Féllen sind
die Komponentenstrukturen ,rational“. Freie Amalgamierung ist daher nicht
die Kombination der Wahl fiir diese Constraint-Systeme, da die Elemente in der
kombinierten Losungsstruktur nicht rational, sondern endlich sind, das heif}t,
gemischte Constraints, in denen ein unendlich hiufiger Wechsel von der einen
Komponente in die andere verlangt wird, sind im Freien Amalgamierten Pro-
dukt nicht losbar.

Dies ist der Ansatzpunkt der Rationalen Amalgamierung. Sie stellt eine kom-
binierte Lésungsstruktur bereit, in der rationale Elemente vorhanden, mithin
solche Constraints 1osbar sind. Damit ist Rationale Amalgamierung die Me-
thode der Wahl bei der Kombination von rationalen Komponentenstrukturen.
Sie liefert ein allgemeines Konstruktionsverfahren fiir eine rationale kombinierte
Losungsstruktur, gegeben zwei beliebige sogenannte nicht-kollabierende quasi-
freie Strukturen. Auch fiir diese kombinierte Losungsstruktur 148t sich zeigen,
dafl bei Einschriankung auf jeweils eine Signatur nur einer Komponente die
kombinierte Struktur isomorph ist zur Komponentenstruktur. Damit ist die
Forderung nach Konservativitit erfiillt. Wir beweisen, dafl das Freie Amalga-
mierte Produkt bis auf Isomorphie eine Teilstruktur der Rationalen Amalgamie-
rung ist. Auch das folgende Theorem zeigt die Natiirlichkeit der Konstruktion:
Die rationale Amalgamierung zweier rationaler Baumalgebren iiber disjunkten
Signaturen ist isomorph zur rationalen Baumalgebra iiber der vereinigten Si-
gnatur. Der Dekompositionsalgorithmus fiir Rationale Amalgamierung ist eine
vereinfachte Variante des Algorithmus fiir das Freie Amalgamierte Produkt; der
letzte der drei nichtdeterministischen Schritte ist bei Rationaler Amalgamierung
nicht erforderlich. Mithilfe dieses Dekompositionsalgorithmus 148t sich zeigen,
dafl die Losbarkeit von gemischten Constraints in der Rationalen Amalgamie-
rung entscheidbar ist, wenn die Losbarkeit reiner Constraints (mit gewissen
technischen Zusatzbedingungen) in den Komponentenstrukturen entscheidbar
ist. Damit ist ein zweites allgemeines Kombinationsverfahren gegeben.

Der dritte Beitrag befait sich mit Negation bei der Kombination von Con-
straint-Systemen. Die Constraints, die in den bisherigen Teilen betrachtet
wurden, waren allesamt positive Constraints, enthielten also weder Negation
noch Implikation. Nun ist aber insbesondere die Implikation ein sprachliches
Mittel, auf das man bei der Formulierung von Constraint-Problemen ungern
verzichtet. Sie wird beispielsweise verwendet, um Constraint-Entailment aus-
zudriicken, das bei der Reduktion von Constraintmengen wichtig ist. In einem
ersten Teil setzen wir uns daher mit der Kombination von Constraint-Systemen,



deren Sprachen Negation enthalten, auseinander. Dabei gehen wir vom Frei-
en Amalgamierten Produkt als kombinierter Losungsstruktur aus und verwen-
den als Algorithmus eine Erweiterung des Dekompositionsalgorithmus um die
Behandlung negativer Formeln, aber ohne neue nichtdeterministische Schrit-
te. Wir zeigen, dafl das existenzielle Fragment der vereinigten Signatur, also
Konjunktionen und Disjunktionen von gemischten Atomformeln und gemisch-
ten negierten Atomformeln, im Freien Amalgamierten Produkt entscheidbar ist,
wenn die existenziellen Fragmente der Komponenten mit gewissen technischen
Zusatzbedingungen entscheidbar sind. Weiterhin geben wir Bedingungen fiir
die Losungen in den Komponenten an, unter denen sich im Freien Amalgamier-
ten Produkt Grundlosungen fiir gemischte Constraint-Probleme finden lassen,
da bei Constraint-Problemen mit Negation oftmals ein besonderes Interesse an
Grundlosungen besteht. Leider kann man aus Arbeiten von R. Treinen [113] er-
kennen, daf} sich im allgemeinen im Freien Amalgamierten Produkt auch dann
kein grofleres Quantorenfragment als das existenzielle entscheiden 148t, wenn
dies in den Komponenten mdéglich ist. Es ergibt sich aulerdem, dal Rationale
Amalgamierung fiir die Kombination von Constraint-Systemen mit Negation
hochstens in Spezialfillen geeignet ist, allgemein jedoch nicht.

Im zweiten Teil dieses Beitrags geht es um die sogenannte Unabhéngigkeits-
eigenschaft negativer Constraints. FEin Constraint-System besitzt die Un-
abhingigkeitseigenschaft, wenn fiir jede Konjunktion von positiven Constraints
und jede Konjunktion von negativen Constraints gilt: Die beiden Konjunktio-
nen sind zusammen lésbar genau dann, wenn fiir jeden negativen Constraint
die Konjunktion positiver Constraints zusammen mit dem negativen Constraint
l6sbar ist. Man kann also die negativen Constraints unabhingig voneinan-
der 16sen. Diese Figenschaft ist wichtig in praktischen Constraint-Losern. Sie
ermoglicht es, einen Constraint-Loéser nur fiir positive Constraints zu entwickeln
und mit diesem dennoch mithilfe einer Ubersetzung auch negative Constraints
zu 16sen. Zuerst einmal ohne Beriicksichtigung von Kombinationen untersuchen
wir, welche quasi-freien Strukturen die Unabhingigkeitseigenschaft besitzen,
wobei wir einen besonderen Blick auf Gleichungstheorien werfen, da diese eine
wichtige Rolle unter den quasi-freien Strukturen spielen. Fiir Gleichungstheo-
rien ergibt sich, dafl unitdre Theorien die Unabhingigkeitseigenschaft besitzen,
finitdre aber nicht. Es gibt Theorien vom Typ 0, die die Unabhingigkeitseigen-
schaft besitzen. Fiir die Kombination von Gleichungstheorien erhélt man fol-
gendes Modularitdtsresultat: Das Freie Amalgamierte Produkt zweier unitérer,
reguldrer und kollaps-freier Theorien ist wieder unitér, hat mithin also die Un-
abhéngigkeitseigenschaft. Blickt man nun allgemeiner auf quasi-freie Struk-
turen, so sieht man, dafl auch hier die unitdren Strukturen die Unabhingig-
keitseigenschaft besitzen. Und es gibt infinitdre Strukturen mit Unabhingig-
keitseigenschaft. Zum Abschlufl 148t sich auch das Modularitdtsresultat ver-
allgemeinern. Das Freie Amalgamierte Produkt zweier unitirer, reguldrer und
nicht kollabierender quasi-freier Strukturen ist wieder unitér, hat somit die Un-
abhingigkeitseigenschaft.

Diese Forschungsarbeit entstand im Rahmen eines Kooperationsprojekts an
dem Klaus U. Schulz, Franz Baader und Jorn Richts beteiligt waren. Daher
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wurden einge Resultate in Zusammenarbeit mit ihnen entwickelt. Wann immer
dies der Fall ist, ist dies entsprechend im Text vermerkt.
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Chapter 1

The Context of Combining
Constraint Systems

1.1 Constraint Systems

Constraint systems date back as far as to the mid nineteen sixties, when static
constraints were used to describe little toy worlds made of simple geometric
objects and constraint solvers had to reason whether an object could be on
top of another one (e.g., [110]). They gained significantly in interest during
the eighties when constraint programming merged with the field of logic pro-
gramming to constraint logic programming (see [55] for an overview). From the
logic programming side, this merge was natural, since constraints had already
been present in logic programming: Unification can be seen as implicitely in-
troducing equality constraints over terms. This step was made explicit in the
development of Prolog II [29]. Theoretical concepts were proposed by J. Jaf-
far and J.-L. Lassez in [54]. From there, it is only a small step to introduce
all kinds of constraints and to develop constraint solvers for different domains
like linear arithmetic over the real numbers, expressions over Boolean algebras,
constraints over string domains or feature trees and more. Nowadays, there
are several commercial constraint systems and solvers available in a growing
market.

There exists another area in which constraint solving is gaining interest, namely
automated theorem proving and term rewriting. In automated theorem proving,
one is faced with the problem that certain axioms will lead to non-termination,
because these axioms are always applicable. Examples are commutativity or
associativity of a function symbol. As a solution to this problem, G. Plotkin
[85] proposed to integrate these axioms into the deduction engine, more specif-
ically into the unification algorithm. M. Stickel prosecuted this idea presenting
resolution modulo a theory in [108]. A similar problem exists in term rewrit-
ing, where the above mentioned axioms seen as equations turn out to be non-
orientable. For commutativity, this is easily understood: Which side of the
axiom should be seen as more complex, which one as reduced, when they are
absolutely symmetrical? Tt is no coincidence, that the solution proposed here by



J.-P. Jouannaud & H. Kirchner [58] as well as L. Bachmair [18] is similar: These
non-orientable equations should be handled by the unification process. Unfor-
tunately, equational unification, especially unification modulo associativity and
commutativity, which is the one that is used the most, is not completely well
behaved in that a simple unification problem can have a huge number of differ-
ent unifiers. A solution to this difficulty can be the introduction of constraints.
Instead of computing and applying all unifiers, one poses the constraint that
the unification problem should remain solvable in further computation steps.
Systems based on this idea were proposed by H. J. Biirkert [24] and R. Nieuwen-
huis & A. Rubio [78, 91] in the field of automated deduction and by C. and
H. Kirchner [66] in the field of term rewriting.

All of these areas are faced with the following problem. In principle, a constraint
solver can be seen as a search engine. Therefore there is no such thing as
a general problem solver, because a “general” domain would be huge and no
search in it could ever terminate in acceptable time. A constraint solver can
only be efficient, if it is designed for a particular domain, best a richly structured
domain, because only the employment of as much knowledge about the specific
domain as is at hand avoids the otherwise threatening explosion of the search
space. Hence a constraint solver must be domain specific. On the other hand,
non-trivial problems are heterogeneous, not restricted to a single domain. If
you want to use a constraint system to model some part of the real world, then
different aspects of it will be described by constraints over different domains,
unless one forces anything into a single view. In automated theorem proving and
term rewriting, there are also several different theories involved, if statements
to be proven become more complex.

To overcome the problem that constraint solvers must be domain specific while
interesting problems are heterogeneous one needs methods to combine the dif-
ferent constraint solvers. Ideally, the heterogeneous constraints should be inter-
preted in a combined solution domain that shares relevant structural properties
with the different component constraint domains involved. Hence one needs a
construction method for such a combined solution domain. And there should
be a constraint solver for the combined solution domain with the following
properties. It should not be a new solver, rather effectively and efficiently re-
duce mixed constraints to pure constraints of the participating components in
order to use their efficient constraint solvers to solve the problem. And this
translation of mixed constraints into pure constraints of the different compo-
nents should take place in such a way that there is a solution for the mixed
constraints in the combined domain if and only if the pure constraints have
solutions in their respective solution domains. This sketches the general task.

1.2 Combination of Constraint Systems and Com-
putational Linguistics

Constraint systems play an important role in linguistics, too. Classical govern-
ment and binding theory [27] describes syntactic well-formedness in terms of



principles, parameterised by languages, that any well-formed utterance has to
fulfil. One can regard these principles as constraints on the grammaticality of
syntactic structures. This view gains strength, if one looks at principle based
parsing. Parsers for GB-theory [34, 56, 69, 115] are indeed incarnations of con-
straint solvers, the syntactic structure they calculate for a given input utterance
is a solved form of the set of constraints consisting of the string or phonological
representation of the utterance and the linguistic principles and parameters.

The branch of linguistics following Head-driven Phrase Structure Grammar [86,
87] is even clearer related to constraint systems. In this theory, linguistic entities
are described by means of feature structures which are sets of constraints. And
linguistic principles are also expressed by complex feature structures. Parsers
for HPSG (see, e.g., [45, 46, 57]) are hence constraint solvers for the domain
of feature structures. The constraint set to be solved consists of the linguistic
theory and a small feature structure representing the input utterance. And the
full linguistic analysis of the utterance in relation to the theory, expressed again
as a feature structure, can be regarded as the normal form of the utterance
feature structure on the background of the constraints coding the linguistic
theory.

It is also in this area that we can find instance of combination in linguistics.
Many linguists demand to extend feature structures to include lists and sets
or multi sets of feature structures. W. Rounds [90] as well as A. Moshier &
C. Pollard [75] propose frameworks for integrating sets and feature structures.
We regard these as instances of combination of a feature theory as one compo-
nent and the theory of lists or (multi-) sets as the second component. Another
such instance of combination with feature structures can be found in works by
J. Dorre and A. Eisele [39, 40], who consider the integration of disjunctions
into feature structures. From our abstract point of view, this exemplifies the
combination of feature structures with Boolean algebras. The advantage of
our perspective lies in the clear separation of the different component theories
involved, feature structures on one side and sets or Boolean algebras on the
other. Consequently, certain decidability results about versions of “enriched”
feature structures that we difficult to obtain in their original setting, come out
much simpler, if one regards the “enriched” feature structures as instances of
combination.

On the long run, computational linguistics is not just concerned with syntactic
parsing, but with all aspects of natural language processing, and that includes
semantic and pragmatic evaluations of expressions and utterances. Since speak-
ers never utter anything involved in their thoughts, but rely on the intelligence
and knowledge of their audience, pragmatics leads almost instantly to the fields
of reasoning about the world and deduction. In other words, comprehensive
computer linguistics systems need deductive components. And in these com-
ponents, the problems one is faced with contain most naturally bits and pieces
of many different theories, since the world to reason about is heterogeneous.
Hence, the need for combining different reasoning components and different
constraint systems is quite strong in this area. We admit that these theses are
ideas on the long term future of language comprehension systems. But we are



convinced that these topics will become important. And we see our work as
basic research that generally investigates methods and principles available.

1.3 Combination of Constraint Systems

Let us now present a general framework of our work and explain the problems we
would like to deal with. A constraint system in our sense consists of three parts:
a constraint language, a solution domain, and a constraint solver. The first
component of a constraint system is the constrait language. We will exclusively
look at first order languages and fragments thereof. Higher order constraint
languages are not very relevant, since most properties expressible in them are
undecidable; that says, one cannot really do much constraint solving in them.

A solution domain is an algebraic structure which is used to interpret the con-
straint language. The solution domains we will be looking at are always infinite.
This certainly constitutes a restriction, especially since there are many efficient
constraint solving techniques for finite domains, but the infiniteness of the do-
main is required for our type of combination. Still, not every infinite domain
will be right for our purposes. We are interested in symbolic, non-numerical
solution domains of a fairly general character. Solution domains that fulfil these
properties and are suitable for combination are called quasi-free structures. We
will explain this notion, that was introduced by F. Baader and K. U. Schulz
in [10], in Section 3.2.2. Quasi-free structures generalise free structures and
hence comprise solution domains such as term algebras and quotien term al-
gebras. But also vector spaces, rational tree algebras, well-founded and non-
wellfounded lists, sets and multi sets are quasi-free structures. This shows that
many important non-numerical infinite solution domains are indeed covered.

A constraint solver is an algorithm that decides the constraint language or a
fragment of it. In other words, given a formula, the constraint solver states
whether the formula holds true in the solution domain. Very often, con-
straints are just conjunctions of atomic formulae, variables appearing in them
are thought of as being implicitely existentially quantified. Other fragments
we will consider are the existential fragment — conjunctions and disjunctions of
atoms and negated atoms — and the positive theory, which permits arbitrary
quantification of conjunctions and disjunctions of atoms.

Given these constraint systems, we are interested in systematic ways of com-
bining them. A combination is systematic, if it provides the following. It gives
an explicit construction mechanism to gain a combined solution domain given
the solution domains of the components. The combined solution domain should
again be a quasi-free structure, and it should share relevant structural prop-
erties with its components. Secondly, there must be an algorithm that solves
“mixed” constraints in the combined solution domain by reducing them to pure
constraints in the components in such a way that a mixed constraint is valid in
the combined solution domains if and only if the corresponding pure constraints
are valid in the component solution domains. We also demand conservativeness
in the sense that a pure constraint over the language of just one component is



true in the combined solution domain if and only if it is true in the component.
Evaluation of pure constraints should not lead to new results.

An important restriction in combination concerns the signatures of the com-
ponent systems. A signature comprises the sets of constants, function and
predicate symbols that are used to construct the constraint language. In the
combinations we will look at, we always assume the signatures to be disjoint,
i.e., to share no constants, function or predicate symbols, even if we do not
state so explicitely. This restriction may seem severe, but to date no-one has
come up with decent results on combining constraint systems over non-disjoint
signatures.

1.4 Combination of Equational Unification Algo-
rithms: A Historic Overview

Equational theories are amongst the most prominent quasi-free structures. And
although we gave a rather abstract definition of the research problem, the ques-
tion of combination has its strongest roots in unification theory. Unification is
the underlying operation in automated deduction as well as in rewriting. It is
as fundamental to them as is calculus for mathematics. Since the field is too
large, we will not give here an overview over unification theory or its history.
The interested reader is referred to [17] instead. Rather we describe the devel-
opments that led to the question of how to combine equational theories and the
solutions proposed to this question. Doing so we preassume a certain familiar-
ity with the notions of unification theory. All these notions are explained in
Section 2.2.

In his pioneering work on automated deduction, J. A. Robinson [89] describes in
1965 an algorithm designed to efficiently decide the applicability of a deduction
rule. This algorithm is syntactic unification. It should be mentioned that
unification was already described more than 30 years before in the work by
J. Herbrand [50], which unfortunately became forgotten.

The further development of unification was driven by the insight that certain
axioms in automated deduction like commutativity (C={f(z,y) = f(y,z)}) or
associativity (A={f(z, f(y,2)) = f(f(z,y),2)}) of a function symbol f lead
to non-termination. Similarly, in term rewriting, the very same equations of
commutativity or associativity cannot be oriented. In 1972, G. Plotkin [85] pro-
posed to stick these axioms into the unification algorithm, that is not perform
syntactic unification, but unification modulo an equational theory. He also gave
a unification algorithm modulo commutativity and described a non-terminating
procedure for unification modulo associativity.

The problem of giving an algorithm for unification modulo commutativity and
associativity, one that is particularly important since most function symbols
in automated deduction are commutative and associative, was solved indepen-
dently in 1975 by M. Stickel [106] and M. Livesey & J. Siekmann [67] by showing
that this kind of unification can be reduced to the solving of linear Diophantine



equations over the non-negative integers. But these algorithms were algorithms
for AC-unification with constants. Additional free function symbols in the uni-
fication problems could not be handled.

In 1981, M. Stickel [107] presented a general AC-unification algorithm, but
could not prove its termination. This termination problem remained open for
quite some time until F. Fages [42, 43] was able to solve it in 1984. The difficulty
of this problem exposed the importance of more general questions. Given an
algorithm for equational unification with constants, is there a general method to
extend it into a general equational unification algorithm? And given algorithms
for unification with constants in two different equational theories over disjoint
signatures, is there a principled way to gain a unification algorithm for the
combined equational theory to solve unification problems with mixed terms?

In 1985, C. Kirchner [64, 65] presented a first solution for a special subcase.
Both component theories have to be collapse-free and subterm collapse free.
An equational theory E is subterm collapse free if no term is ever E-equal to
one of its proper subterms. That same year, K. Yelick [117, 118] proposed a
combination method that works for collapse-free regular component theories
based on a generalisation of Stickel’s algorithm. In 1986, A. Herold [52] pre-
sented a different method to combine collapse-free regular equational theories.
Also in that year, E. Tidén [111] found a combination method for collapse-free
equational theories. Another special method was proposed by A. Boudet, J.-
P. Jouannaud & M. Schmidt-Schau$ [22] in 1989. In their algorithm, only one
of the component theories bears restrictions. It has to be so-called cycle-free.
An equational theory is cycle-free, if any unification problem of the form z = ¢
where ¢ is a non-variable term and z € Var(t) has no solution. The second
component theory is unrestricted. But one needs a further algorithm to finitely
solve so-called constant elimination problems'.

Finally in 1988, M. Schmidt-Schaufl [92, 93] presented a general solution to
the combination problem where no restrictions are imposed on the component
theories. The requirements are a unification algorithm for unification with con-
stants for both component theories, which entails that the component theories
must be finitary; and a constant elimination algorithm for both components. In
1990, A. Boudet [20, 21] described a more efficient version of this combination
method.

All of the above described methods require that all occurring unification prob-
lems and constant elimination problems have always finite complete sets of
solutions in the component theories and actually calculate and use these solu-
tions. Hence they are not suitable, if the component algorithms are decision
procedures, i.e., procedures that just state solvability of a given problem and
do not compute complete sets of solutions. And for infinitary theories, only de-
cision procedures can be given. An example of such a theory is the theory A of

LA constant elimination problem in a theory E is a finite set {(c1,t1),-- ., (ca,tn)} where
the ¢;’s are free constants not occurring in the signature of F and the ¢;’s are terms. A solution
to such a problem is a substitution o such that for all i (1 < i < n) there exists a term ¢; not
containing the constant ¢; with t; =g o(¢;).



an associative function symbol. A non-terminating procedure that enumerates
all unifiers of a given problem was already presented by G. Plotkin [85] back
in 1972. In 1977, G. S. Makanin [71] showed that A-unification with constants
is decidable. But the decidability of general A-unification remained an open
problem. Based on the ideas of M. Schmidt-Schaufl and A. Boudet, and mo-
tived by this problem, F. Baader and K. U. Schulz developed a combination
method for decision procedures [5, 14] in 1992. They show how to reduce the
decidability of combined unification problems to the decidability of pure unifi-
cation problems with so-called linear constant restrictions in the components.
The authors subsequently extended these results to constraint solving. The fol-
lowing year, they showed that this method can be extended to handle combined
disunification problems, i.e., equations and disequations between mixed terms
[6, 9]. By using algebraic methods, they proved that the positive theory of
the combination of equational theories is decidable provided the positive theo-
ries of the components are decidable [8]. And they generalised the components
from equational theories to quasi-free structures, which comprise many solution
domains for constraint solving [10] in 1995.

1.5 Combination of Satisfiability Procedures

There exists a different type of combination of theories in the literature, that we
will call here cooperation in order to distinguish it from our type of combination.
In this view, a theory is a (deductively closed) set of sentences of first order logic.
A decision procedure determines whether a universal sentence is satisfiable in
that theory, that is to say, whether there exists a model of the theory and the
universal sentence. The problem of cooperation of decision procedures then
can be described as follows. Given decision procedures for theories over disjoint
signatures, is there a general method to construct a decision procedure for the
combined theories to decide universal sentences over the joined signature.

The question of cooperation of decision procedures appeared first in the late
nineteen seventies in the context of automated program verification. Re-
searchers were confronted with the problem that programs typically contain
heterogeneous constructs such as lists or arrays and arithmetical expressions
over reals or integers. While decision procedures for fragments of such theo-
ries were known, the task was to devise coordination methods to decide mixed
formulae. Building upon earlier work on the augmentation of the universal frag-
ment of Presburger arithmetics by uninterpreted predicates and functions [99],
R. Shostak developed an integrative cooperation method, which was intendedly
not very modular, for theories with normal forms for interpreted predicates and
functions in [100].

About the same time, G. Nelson and D. Oppen [76, 77] devised a general method
for the cooperation of decision procedures based on the exchange of equations
and disequations of variables between the component procedures. Their ap-
proach was clearly modular, but rather procedural. D. Oppen [80] offers a
more declarative non-deterministic version. Recently, C. Tinelli and M. Ha-



randi [112] gave a simplified proof of the Nelson-Oppen cooperation procedure.
C. Ringeissen [88] offers a different perspective and generalises the results to
certain non-disjoint combinations.

Although combination and cooperation are related, there are differences to be
noted. Cooperation connects decision procedures for satisfiability, while com-
bination deals with wvalidity. The component procedures in cooperation hence
are searching for a model, in combination they test validity in a specific given
model. And in cooperation, the combined solution domains are trivial.

In cooperation, one is interested in satisfiability. Consequently, a component
decision procedure tries to find a structure that is a model for the theory and
for the first-order sentence to be solved. There is no particular interest on the
qualities of the model, with the exception that the model should be infinite —
at least for the Nelson-Oppen-procedure — to be suitable for cooperation. In
combination, there is no search for an arbitrary model. Rather, the model is
given, namely a quasi-free structure. The component decision procedure then
checks, whether the given (pure) constraint is true in the given structure. The
reason is that in combination, one is interested in validity. And quasi-free
structures as generalisations of free structures share their property, shown by
Mal’cev [73], of being the characteristic model for a theory in the following sense.
A positive sentence (or a positive constraint) is valid, i.e., true in all structures of
a given theory, if and only if it is true in the quasi-free structure of that theory.
Hence validity of a positive constraint can be tested by deciding if it holds
true in the quasi-free structure. For negative constraints, this characterisation
is no longer valid. But a solution in the quasi-free structure still presents a
general solution in some sense. Another important point is that, practically,
constraint solvers are not model generators or model seekers. Typically, the
solution domain is built-in and hence fixed. What they perform is to check,
if a constraint is true in that domain. So combination is more appropriate for
constraint solvers, because it assumes that the component solution domains are
given, and quasi-free structures comprise many important solution domains.

As explained above, combination does not only deliver an algorithm to reduce
the solution of mixed constraints to the solution of pure constraints in the com-
ponents, but also an explicit construction of a combined solution domain. This
combined solution domain, which should share relevant structural properties
with its components, is the domain where mixed constraints are interpreted.
Since we are interested in validity, the combined solution domain has to be a
quasi-free structure, too. This is the reason why we need an explicit construc-
tion method. In the case of coordination, the situation is simpler. If there
are infinite models for the pure sentences, a combined model can be gained
by means of a bijection between their universes, which always exists after the
component universes have been brought to equal cardinality by an applica-
tion of the Léwenheim-Skolem Theorem. A consequence of this fact is that
the decomposition algorithm for coordination is also simpler than the one for
combination. Indeed, the decomposition algorithm for combination consists of
three non-deterministic steps, while the one for coordination contains only the



first one of these non-deterministic steps.

1.6 An Outline of the Thesis

The next chapter is a chapter on technical preliminaries introducing concepts
and notions from algebra and unification theory that we will make use of later.

Chapter 3 is devoted to the description of quasi-free structures and the free
amalgamated product. We quote here work by F. Baader and K. U. Schulz
[12, 15] to introduce concepts and notions fundamental to our work. Quasi-free
structures are the solution domains we assume in our constraint systems. As
generalisations of free structures, they comprise many important non-numerical
infinite solution domains such as term algebras and quotient term algebra, ra-
tional tree algebras, hereditarily finite well-founded and non-wellfounded lists,
sets and multi sets, vector spaces, and certain feature structures. Quasi-free
structures have a simple, purely algebraic definition. While in a free structure,
every element of the domain must be finitely generated, this is no longer re-
quired with quasi-free structures. It suffices that each element has a kind of
a “handle” that can be used to determine the image of this element under an
arbitrary homomorphism.

The free amalgamated product constitutes a first systematic way to combine
constraint systems. It comes equipped with a general method that, given two
arbitrary quasi-free structures, constructs a combined solution domain and a
decomposition algorithm to solve “mixed” constraints, i.e., constraints built
over the language of the joint signature, by reducing them to pure constraints
in the components. The free amalgamated product as solution domain is char-
acterised by the important property of being the most general combination of
two quasi-free structures in the sense that every other combination contains a
homomorphic image of it. To show the above demanded conservativeness, we
present the theorem that the reduct of the free amalgamated product to one
component signature is isomorphic to the component structure. The decompo-
sition algorithm translates mixed constraints over the joint signature into pure
constraints of the component signatures in such a way, that a solution for a
mixed constraint exists in the free amalgamated product if and only if there
are solutions of the translated pure constraints in the component domains. The
core of the algorithm consists of three non-deterministic steps that guess an in-
formation exchange about variables occurring in both components’ constraints
after translation. On the base of this algorithm, Baader and Schulz show that
the positive fragment of the constraint language of the joint signature is decid-
able in the free amalgamated product, provided the positive fragments of the
component constraint languages over their signatures are both decidable.

Our first contribution, Chapter 4, examines this decomposition algorithm and
provides optimisation techniques therefor. The three non-deterministic steps
mentioned above span a search space that huge that in a practical implementa-
tion, even small constraint problems are intractable. To overcome this problem,



one has to find methods which drastically shrink the search space. Our inter-
est was to find general methods that should be applicable to a wide range
of quasi-free structures and their constraint solvers. Two such optimisation
method are presented, called the iterative and the deductive method. The it-
erative method is designed for the combination of more than two constraint
solvers; and the higher the number of solvers combined, the more important
this method becomes. It is based on the observation, that the original decom-
position algorithm largely expands the search space in such a case, because it
makes all non-deterministic decisions for all components first, before testing
the first component problem for solvability. The iterative method localises non-
deterministic choices, it tries to solve a single component first by guessing those
non-deterministic choices that are relevant for that component and proceeds to
the next component only after it could solve the current one. The difficulty of
this simple idea lies in proving that the thus amended decomposition algorithm
is still correct and complete, i.e., that the mixed constraints have a solution if
and only if the the iterative method finds one for each pure component problem.

The deductive method is based on the insight that not every decision has to
be made non-deterministically. Indeed, one can find that in many cases the
constraint problem at hand and the component solution domains and constraint
solvers determine certain choices in the sense that only if they are made in
one particular way, the problem is solvable. To use the deductive method,
one needs new component constraint solvers, which have to do more than just
decide whether a pure constraint problem is solvable. They must be capable of
computing which choices have to be made deterministically in what way in order
to keep their component problem solvable. The combination algorithm hence
becomes kind of a moderator. It asks the component solvers, which decisions
can be made deterministically and in what way, percolating these informations
from component solver to component solver. Only after no new decisions can
be made deterministically, it picks one non-deterministic choice. Thereafter it
starts again consulting the component solvers, and so on, until all decisions are
made. If then still all component solvers state their pure constraint problem is
solvable, then the original mixed problem has a solution.

Since the two optimisation methods are totally independent of each other, one
can easily integrate them into a common system. In order to test the efficiency
of the optimisation, we implemented several versions of them. The test results
provided show that many problems can be solved several orders of magnitude
faster than with the original algorithm by Baader & Schulz. And there are some
examples that cannot be solved in reasonable time without the optimisation
methods.

The concept of rational amalgamation is introduced in Chapter 5. It estab-
lishes a second systematic way of combining constraint systems. Although the
free amalgamated product is the most general combination method, there are
examples of combination that are not instances of the free amalgamated prod-
uct. Work by A. Colmerauer on the combination of rational tree algebras and
rational nested lists [29, 30] and work by W. Rounds [90] and A. Moshier &
C. Pollard [75] on the combination of feature structures and non-wellfounded
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sets are such examples. In all of these cases, the component structures are
“rational”, they contain infinite (but periodic) elements. In such a situation,
the free amalgamated product is not the combination of choice, because the
elements in the combined solution domain are always finite. Mixed constraints
that demand an infinite number of transitions from one component to the other
are therefore unsolvable in the free amalgamated product.

This is where rational amalgamation steps in. It provides a combined solution
domain that contains rational elements and hence allows to solve such mixed
constraints. Therefore, rational amalgamation is the method of choice when
combining constraint domains that are themselves rational. It comes equipped
with a general construction method for a rational combined solution domain,
given two arbitrary so-called non-collapsing quasi-free structures. For this com-
bined solution domain, we show that the reduct to just one component signature
is isomorphic to that component domain ensuring in this way the demanded
conservativeness. We proof that the free amalgamated product is — up to iso-
morphism — a substructure of rational amalgamation. The following theorem
shows the naturalness of the construction, too: the rational amalgamation of
two rational tree algebras over disjoint signatures is isomorphic to the rational
tree algebra of the joint signatures. The decomposition algorithm for rational
amalgamation is a simplified variant of the one for the free amalgamated prod-
uct; the final of the three non-deterministic steps is not required in rational
amalgamation. Using this decomposition algorithm, we show that solvability
of mixed constraints is decidable in the rational amalgamation, if solvability
of pure constraints (with certain technical requirements) is decidable in both
component domains. For the special class of rational non-collapsing structures,
the positive existential theory of the rational amalgamation is decidable, if the
positive universal-existential theory is decidable in both components.

Finally, Chapter 6 deals with negation in combining constraint systems. The
constraints we mentioned so far were exclusively positive constraints, they con-
tained neither negation nor implication. But clearly, implication is a desirable
tool when formulating constraint problems. For example, constraint entailment
cannot be expressed without it. And constraint entailment is used to decide
whether one constraint subsumes or entails another when reducing constraints
in a constraint solver (see, e.g., the constraint solver Oz [49, 103]). Negation is
also an important part of the constraint language in Prolog IT and IIT [29, 30].
Thus we investigate combinations of constraint systems that contain negation
in their constraint languages in a first part of this chapter. The combined solu-
tion domain we use is again the free amalgamated product, and the algorithm
is an extension of the decomposition algorithm to handle negative formulae,
but one that does not introduce new non-deterministic steps. We show that
the existential theory of the free amalgamated product over the joint signa-
tures is decidable, if the existential theories of both components (with certain
technical restrictions) are decidable. Furthermore we give conditions for the
solutions in the components under which there exists a ground solution in the
free amalgamated product, since there is a special interest in ground solutions,
if the constraint problems contain negation. Work by R. Treinen [113] lets us
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see that in general, it is not possible to solve a larger quantifier fragment in the
free amalgamated product than just the existential one, even if one can solve a
larger fragment in the components. We also show that Rational Amalgamation
is in general a solution domain not suited for the combination of constraint
systems with negation.

The second part of this chapter deals with the so-called independence property
of negative constraints. A constraint system has the independence property, iff
for every conjunction of positive constraints and every conjunction of negative
constraints we have: The two conjunctions together are solvable if and only if
for each negative constraint the conjunction of positive constraints plus that
negative constraint is solvable. In this case, the negative constraints can be
solved separately. This property is very important for real world constraint
solvers. It enables the development of constraint solvers that solely solve posi-
tive constraints and can still handle negative ones by some means of translation.
Firstly ignoring combination, we investigate which quasi-free structures own the
independence property. Especially we consider equational theories, since they
are an important subclass of quasi-free structures. For equational theories, we
show that unitary theories have the independence property, while finitary do
not. There theories of type 0 that own the independence property. For the com-
bination of equational theories, one gains the following modularity result: The
free amalgamated product of two unitary, regular and collapse-free equational
theories is again unitary, and hence as the independence property. Generalising
to quasi-free structures, we find that unitary structures have the independence
property. And there are infinitary structures with the independence property.
Finally, we lift the modularity result to the combination of quasi-free structures.
The free amalgamated product of two unitary, regular and non-collapsing quasi-
free structures is again unitary, and thus has the independence property.

This research was carried out as part of a cooperative project, in which
Klaus U. Schulz, Franz Baader, and Jorn Richts participated. Some of the
results were therefore developed in cooperation with them. Whenever this is
the case, their contributions are clearly marked in the text.
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Chapter 2

Preliminaries

In this chapter, we introduce basic notions of algebra and unification theory
that we will make frequent use of. Structures and homomorphisms are our
fundamental tools, they are as substantial to us as hammer and nails are to
a carpenter. Notions from unification theory are important, even if we do not
always explicitely use them, because most definitions for quasi-free structures
are generalisations from unification theory.

2.1 Algebra

A signature ¥ consists of a finite set ¥ of function symbols and a finite set ¥ p
of predicate symbols, each with a fixed arity. We assume that equality “=" is a
logical constant that does not occur in ¥ p, and which is always interpreted as
identity. Given a signature ¥ and a countably infinite set of variables X, the
set of X-terms over X, written T'(3, X), is defined as follows: Every variable
z € X and every constant ¢ € X is a term; if f € X is an n-place function

symbol and t1,...,t, are terms, then so is f(¢1,...,%,). An atomic X-formula
is an equation s = t between Y-terms s, ¢ or a relational formula p(sq,...,$py)
where p is an m-ary predicate symbol in Xp and sq,...,S,, are X-terms. A

literal is an atomic formula or its negation. A X-formula is defined as follows:
Every literal is a formula; if ¢ and ¢ is a formula and = € X a variable, then
=, o AP, eV, xp, Ve are formulas. A Y-matriz is a quantifier-free formula.
A formula is called positive, if it contains no negation. A formula ¢ is negative,
if it is equivalent to —1) where 1) is a positive formula. A sentence is a formula
without free variables. The notion t(vy,...,v,) (resp. ¢(v1,...,v,)) indicates
that the set of all free variables of the term ¢ (of the formula ¢) forms a subset
of {vi,...,v,}.

A Y-structure 2> has a non-empty carrier set A, and it interprets each f € ¥
of arity n as an n-ary (total) function fy on A and each p € Xp of arity m as
an m-ary relation pg on A. Whenever we use a Roman letter like A and an
expression > in the same context, the former symbol denotes the carrier set
of the X-structure denoted by the later expression. Sometimes we will consider
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several signatures simultaneously. If A is a subset of the signature X, then
any Y-structure A can be considered as a A-structure (called the A-reduct
of A*) by just forgetting the interpretation of the additional symbols. In this
situation, A* denotes the A-reduct of 2A”. If the signature ¥ contains only
function symbols, then the Y-structure 2A* is called a X-algebra.

We write A” = p(aq,...,a,) to express that the formula o(vy,...,v,) is valid
in 2% under the evaluation that maps v; to a; € A (1 <4 < n). Expressions @
denote finite sequences a1, ..., a; of elements in A. In order to simplify notation,
we will sometimes use @ also to denote the set {a1,...,ax}.

A Y-homomorphism between L-structures A> and B> is a mapping h: A — B
such that

h(falar,...,an)) = fa(h(ar),... han))
palar,...,an) = px(al,...,ap)

for all f € Xp, p € ¥p and a1,...,a, € A. Letters h,g,... denote homo-
morphisms and hom%_ 5 denotes the set of all ¥-homomorphisms between 2>
and B>. In order to increase readability, we will often use expressions of the
form h% 5 to denote an element of hom%_g. A X-endomorphism of A is
a homomorphism % : A¥ — A¥. With End} we denote the monoid of all
endomorphisms of the Y-structure 2>, with composition as operation. A X-
isomorphism is a bijective £-homomorphism h : A* — B> such that

palar,...,an) < ps(h(ai),...,h(ay))

for all p € ¥p and all ay,...,a, € A. Equivalently, one can require that the
inverse mapping ™" is also homomorphic. A X-automorphism is an isomorphic
Y-endomorphism.

Ifg: A— B and h: B — C are mappings, then hog: A — C denotes their
composition. When composing several functions, we sometimes drop the o and
write hgf for hogo f. Let g1 : A — C and g2 : B — D be two mappings, We
say that g1 and g2 coincide on E C AN B, iff g1(e) = g2(e) for all e € E. For
a set A we denote the identity mapping on A by id4. If A is the carrier of the
Y-structure 2, then id, is the unit of the monoid Endy.

There is an interesting connection between surjective homomorphisms and pos-
itive formulae, which will be important in many subsequent correctness proofs
(see [73], pp. 143f or [68] for a proof).

Lemma 2.1.1 Let h : A¥ — B> be a surjective homomorphism between %-

structures A* and B>, p(vy,...,vm) be a positive ¥ formula, and ay, ..., an
be elements of A. Then A~ = @(ay,. .., an) implies B> = p(h(ay), ..., h(am)).

Expressions like 7, @ are used to denote finite sequences. If @ = aq,...,a, is a
sequence of elements of A and if m is a mapping with domain A, then m(a)
denotes the sequence m(ay),...,m(ay). If ¥ = v1,...,v,, then A* |= p(7/a) is

shorthand for 2> = ¢(v1/a1,...,v,/a,). The symbol “6” denotes disjoint set
union. With |A| we denote the cardinality of the set A. If f is a function and
M a set, we define the application of f onto M as f(M) :={f(m)|m e M}.
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2.2 Unification Theory

The aim of this section is to introduce those parts and notions of unification the-
ory that are necessary to understand the text. Thus this is not supposed to be
an introduction to unification theory in general. An excellent such introduction
is [17], from which we take most technical definitions.

In unification theory, a signature ¥ consits only of a finite set of function
symbols; there are no predicate symbols involved apart from equality. With
T (3, X) we denote the free term algebra of signature ¥ generated by X. A -
substitution o is an endomorphism of 7 (X, X)) where the set {z € X | o(z) # =}
is finite. We call this set the domain of o. If ¢ is a term, then Var(t) denotes
the set of variables occurring in .

An equational theory over the signature X is a set E of equations between -
terms. These equations are implicitly universally quantified and represent an
axiom system. With =g we denote the least congruence relation on 7 (%, X)
that is closed under substitution and contains F; and T (X, X)/=g denotes the
quotient term algebra modulo =g. An equational theory FE is called consistent,
if z #g y for distinct variables z,y € X. FE is called collapse-free, if E does
not contain an equation of the form x = ¢ where x € X is a variable and ¢ a
non-variable term. E is regular, if Var(s) = Var(t) for each equation s = ¢ in
E. E is simple, if s #g t for all terms s,t where s is a proper subterm of ¢.

Let E be an equational theory with signature X. A unification problem is a
finite set of equations between terms I' = {s; = ¢1,..., 8, = ¢, }. A substitution
o is a solution of ' (also callled a unifier of T'), iff for all i = 1,...,n holds that
o(s;) =g o(t;). Let o and 7 be two solutions of I'. Then o is called more
general than 7, if there exists a substitution A with Var(I') as domain such that
T =g Aoo. In this case we say that 7 is an instance of o or more specific than
o and write o < 7. A substitution p is called most general unifier of T, iff each
unifier of " is an instance of pu. A set S of solutions of a unification problem
I' is called complete, iff for every solution 7 of I' there exists a solution o € S
such that 7 is an instance of o. A solution set S is minimal, iff for each two
substitutions 0,0’ € S neither o < ¢’ nor o’ < o holds. Obviously, a compact
representation of all solutions for a unification problem in terms of a minimal
complete set is desireable. But unfortunately, such a set may not always exist.
Indeed, one systematically divides equational theories by looking at these sets.
An equational theory F is called

unitary, iff each solvable unification problem has one most general unifier.
The best known example of such a theory is of course syntactic (or Robin-
son) unification, an other example is distributivity to the left (or to the

right): Dr, = {f(9(z,v),2) = g(f(z,2), f(y,2))}.

finitary, iff each solvable unification problem has a finite minimal complete
set of unifiers.
Amongst examples of such theories are commutative unification (C =
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{f(z,y) = f(y,x)}) and associative-commutative unification (AC = CU
{f(f(z,y),2) = f(z, f(y,2))})-

infinitary, iff each solvable unification problem has a minimal complete set of
unifiers, but for at least one problem this set is infinite.
The theory of associative unification, sometimes called word unification,

(A ={f(f(z,9),2) = f(2, f(y,2))}) is an example.

of type 0, iff there exists a solvable unification problem that has no minimal
complete set of unifiers.
The theory of idempotent associative unification (also called bands, AI =
AU{f(z,z) = x}) is of type 0.

Let E be an equational theory and I' a set of terms. If it exists, we write
uUg(T) for the minimal complete set of unifiers of T, or just pU(T) in case E
is clear from context.

Unification problems are systematically distinguished based on what construc-
tors are allowed for building the problem terms. Let E be an equational theory
with signature X.. An elementary E-unification problem is a finite set I of equa-
tions between Y-terms. In an E-unification problem with constants, the terms
of the equations may also contain additional constant symbols not contained
in 3. An FE-unification problem is called general, if the terms may contain ad-
ditional free function symbols. Note that every general E-unification problem
can be regarded as an elementary unification problem in the combined theory
E U F where F is the free theory over a suitable set of function symbols. The
following facts (taken from [17]) show that it is indeed important to distinguish
these different types of unification.

e There exists a theory, namely the theory of Abelian monoids (AC1 :=
ACU{f(z,1) = z}), which is unitary with respect to elementary unifica-
tion, but only finitary with respect to unification with constants.

e There exists an equational theory for which elementary unification is de-
cidable, but unification with constants is undecidable.

e The theory of Boolean Rings is unitary with respect to unification with
constants, but only finitary with respect to general unification.

In later chapters, we will make use of a specific variant of unification with
constants. An E-unification problem with constant restrictions is an ordinary
FE-unification problem with constants, I, where a set of variables V. is defined
for each free constant ¢ in I'. A solution of the problem is an E-unifier o where
a free constant ¢ may not occur in o(z) for all z € V.. The problem T" is called
an E-unification problem with linear constant restrictions (LCR) if the sets V.
can be defined by a linear ordering < on the variables and free constants in I'
by V. := {z | z is a variable with z < c}.
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Chapter 3

Quasi-free Structures and the
Free Amalgamated Product

3.1 Introduction

This chapter introduces the notions of free and quasi-free structures, discusses
in general their combinations, presents a particular combination, the free amal-
gamated product, and algorithms to solve mixed constraints in the free amal-
gamated product. All of these concepts were developed by F. Baader and
K. U. Schulz in [10, 12, 15], they are fundamental to understand our own con-
tributions following in later chapters.

Quasi-free structures are the solution domains for combinations. They are gen-
eralisations of free algebras and free structures. In a free structure, every el-
ement of its domain is finitely generated; it is the result of a finite number
of applications of the structure’s functions to variables, the structure’s gener-
ators. These generators have nice properties. Every element of the domain is
constructed out of finitely many of them by means of function application. And
in order to understand what an arbitrary homomorphism maps an element to,
it is sufficient to know what this homomorphism maps its generators to. It is
this particular property, that is relevant in combination. The fact that the ele-
ment is finitely generated, is not so important. Hence the notion of generation
will be replaced by the more general one of “stabilisation”. We demand the
structure to have a distinguished set, to be called atom set, such that every
mapping of that set into the carrier of another structure can be extended to
a homomorphism into the structure, and each element is stabilised by a finite
number of atoms, i.e., if we know where a homomorphism maps these stabil-
ising atoms to, we already know where the element is mapped to. Quasi-free
structures comprise most non-numerical infinite solution domains for constraint
solving. Term algebras, quotient term algebras, rational tree algebras, vector
spaces, hereditarily finite well-founded and non-wellfounded sets and multi sets,
hereditarily finite well-founded and non-wellfounded lists, and certain feature
structures are all examples of quasi-free structures.
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We proceed to combinations of quasi-free structures discussing first fairly gener-
ally which conditions have to be fulfilled in order to call a combination suitable.
Certainly, not every combination is suitable. One can regard the trivial struc-
ture of just one element in the carrier and trivial interpretation of functions
and relations as a combination. But that is clearly not our choice. We want the
combined structure to be rather general and to share relevant structural proper-
ties with its components. We define the notion of the free amalgamated product
which is characterised as being the most general combination of structures. We
also provide a concrete construction method for the free amalgamated product
of two quasi-free structures.

Finally we discuss the combination of constraint solvers for quasi-free struc-
tures. We present a decomposition algorithm that reduces solvability of mixed
constraints over the joint signatures to solvability of pure constraints in the com-
ponents. The core of the algorithm consists of three non-deterministic steps
which together guess the way shared variables of the constraints have to be
dealt with in the components in order to ensure that solutions in the compo-
nents exist if and only if the mixed input problem has a solution. The main
theorem reads: The positive theory of the free amalgamated product of two
quasi-free structures is decidable, provided the positive theories are decidable
in both component structures.

Allmost all parts that follow in this chapter are direct quotes or transcriptions
of notions and results presented in [10, 12, 15]. This is also the reason why
this chapter contains no proofs. They can all be found in [15]. We decided to
quote such extensively from these papers, because we will frequently need the
notions and results introduced there. They are really fundamental to our own
contributions, there is no way of understanding our work without a knowledge
of them.

3.2 Free and Quasi-free Structures

3.2.1 Free Structures

The algebraic theory of free structures is very similar to the one for free algebras,
though considerably less well-known. In the first subsection, we will briefly re-
call some definitions and results for free structures (see [28, 47, 72, 116] for more
information). The usual definition of free structures is external in the sense that
it refers to a whole class of structures. In the present context (i.e., combina-
tion of structures and constraint solvers), a characterisation of free structures
in terms of their internal algebraic structure turns out to be more appropriate.
An internal characterisation of free structures over countably infinite sets of
generators will be used as starting point for the definition of quasi-free struc-
tures in the second subsection. In the third and fourth subsection, we derive
useful algebraic and logical properties of quasi-free structures.

We start with the usual external characterisation of free structures.

18



Definition 3.2.1 Let K be a class of -structures, and let 4> € K be generated
by the set X C A. Then A” is called free in KC over X iff every mapping from X
into the carrier of a structure B> € K can be extended to a ¥-homomorphism

of 2A* into B!

If A* and B> are free in the same class K, and if their sets of generators have
the same cardinality, then > and B> are isomorphic. As shown by the next
theorem, it is not really necessary to allow for arbitrary classes of Y-structures
in the definition of free structures. One can restrict the attention to varieties or
to the singleton class consisting of the free structure. As for the case of algebras,
Y-varieties are defined as classes of X-structures that are closed under direct
products, substructures, and homomorphic images.

Theorem 3.2.2 Let A> be a N-structure that is generated by X. Then the
following conditions are equivalent:

1. A” is free over X in some class KC of S-structures.
2. A* is free over X in some L-variety.

3. A is free over X in {A*}.

The only non-trivial part of the proof, namely “1 — 2”7, follows from the fact
that an algebra that is free in a class K is also free in the variety generated
by K, i.e., the closure of I under building direct products, substructures, and
homomorphic images (see [28, 72] for details).

The third condition of the theorem gives a characterisation of free structures
that is independent of any other structure. This motivates the next definition.

Definition 3.2.3 A Y-structure 2> is called free iff it is free over X in {A*}
for some subset X of A.

If X is the chosen set of generators of the free structure 2>, then we will
sometimes indicate this by saying that (%, X) is free. We can now give the
promised internal characterisation of free structures over countably infinite sets
of generators.

Theorem 3.2.4 A X-structure A> is free over the countably infinite set X iff

1. A is generated (as a Xp-algebra) by X,

2. for every finite subset Xy of X, every mapping hy : Xo — A can be
extended to a surjective endomorphism of A>.

Since A% is generated by X, this homomorphism is unique.
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If one is interested in the question how free structures can be constructed,
the characterisation via varieties is more appropriate. We have seen in Theo-
rem 3.2.2 that every free structure is free for some variety. Conversely, it can
be shown that every non-trivial variety contains free structures with sets of
generators of arbitrary cardinality [72]. The well-known Birkhoff Theorem says
that a class of X p-algebras is a variety iff it is an equational class, i.e., the class
of models of a set of equations. For structures, a similar characterisation is
possible [72].

Theorem 3.2.5 A class V of X-structures is a S-variety if, and only if, there
exists a set G of atomic S-formulae® such that V is the class of models of G.

In this situation, we say that V' is the Y-variety defined by G, and we write
V =V(G).

A concrete description of free Y-structures can be obtained as follows (see [72,
116] for more information). Obviously, the ¥p-reduct of a free X-structure
2A” is a free Yp-algebra, and thus it is (isomorphic to) an E-free ¥ p-algebra
T(Ep,X)/=, for an equational theory E. In particular, the =g-equivalence
classes [s] of Zp-terms s constitute the carrier of 2*. Tt remains to be shown
how the predicate symbols are interpreted on this carrier. Since 2> is free
over X, any mapping from X into T(Xp,X)/=, can be extended to a %-
endomorphism of 2. This, together with the definition of homomorphisms of
structures, shows that the interpretation of the predicates must be closed under
substitution, i.e., for all p € ¥p, all substitutions o, and all terms sy, ..., Sy,
if p[[s1],...,[sm]] holds in 2% then p[[si0],...,[smc]] must also hold in 2A*.
Conversely, it is easy to see that any extension of the X p-algebra T (Xp, X)/=,
to a Y-structure that satisfies this property is a free X-structure over X.

Example 3.2.6 Let Xr be an arbitrary set of function symbols, and assume
that X p consists of a single binary predicate symbol <. Consider the (absolutely
free) term algebra 7 (Xr, X). We can extend this algebra to a ¥-structure by
interpreting < as subterm ordering. Another possibility would be to take a
reduction ordering [37] such as the lexicographic path ordering. In both cases,
we have closure under substitution, which means that we obtain a free X-
structure. Constraints involving the subterm ordering or reduction orderings
are, for example, important in constraint rewriting [66].

Free structures over countably infinite sets of generators are canonical for the
positive theory of their variety in the following sense:

Theorem 3.2.7 Let A* be free over the countably infinite set X in the %-
variety V(G), and let ¢ be a positive -formula. Then the following are equiv-
alent:

2As usual, open formulae are here considered as implicitly universally quantified.
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1. ¢ is valid in all elements of V(G), i.e., ¢ is a logical consequence of the
set of atomic formulae G.

2. ¢ is valid in A>.

This theorem explains why it is appropriate to use free structures over count-
ably infinite sets of generators as solution structures when solving positive con-
straints. The proof is a simple consequence of Lemma, 2.1.1.

We close this subsection by introducing one more definition. If (A%, X) is free
in a class of Y-structures K, then, by definition, A* € K. Some authors (see,
e.g., [74]) do not assume A* € K when defining the notion “free for K.” We
make use of this less restrictive way of defining “free for K” in the following
situation:

Definition 3.2.8 Let 2> and ©* be T-structures, and assume that X C A
generates A”. (A, X) is called free for ®* if every mapping X — D has a
unique extension to a homomorphism h_p € Hom’ .

3.2.2 Quasi-free Structures

In this section, we generalise the definition of free structures in order to capture
typical domains for constraint-based reasoning such as the algebra of rational
trees. As illustrating and motivating example for the abstract definitions, we
will use free algebras (i.e., free structures where the relational part X of the
signature is empty). In the sequel, let 7 := T(XF,V)/=, be such an algebra
(i.e., T is free over X in the variety defined by the equational theory E, where
X consists of the =g-equivalence classes of variables).

Consider an element [t] of T, i.e., the =g-equivalence class of a term ¢. Obvi-
ously, ¢ contains only finitely many variables vy,. .., v,, which shows that [¢] is
generated by the finite subset [v1], ..., [v,] of X. Thus, the image of [{] under an
endomorphism of 7 is determined by the images of the generators [v1],. .., [vp].
In particular, two endomorphisms of 7 that coincide on [v1],. .., [v,] also coin-
cide on [t].

When looking at non-free structures that are used as solution structures for
symbolic constraint, one observes that they satisfy algebraic properties that
are very similar to those of free algebras. For example, consider the algebra of
rational trees where leaves are labelled by constants or variables. This algebra
is not generated by the set of variables (since “generated by” talks about a finite
process whereas rational trees may be infinite). Nevertheless, a rational tree ¢
contains only a finite number of variables v1, ..., v,, and two endomorphisms of
this algebra that coincide on these variables also coincide on ¢. This means that
the variables occurring in rational trees play a role that is similar to the role of
generators in free algebras, even though they do not generate the algebra. This
observation motivates the definition of stable hulls and atom sets given below.
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Definition 3.2.9 Let Ay, A; be subsets of the Y-structure 2A*. Then Ag sta-
bilises Ay, iff all elements hqy and hy of Endgzl that coincide on Ay also coincide
on Aq. For Ag C A the stable hull of Ay is the set

SHZ(Ag) := {a € A | Ay stabilises {a}}.

The following two lemmata show that the stable hull of a set Ay has properties
that are similar to those of the subalgebra generated by Ajy. Note, however, that
the stable hull can be larger than the generated subalgebra (see Example 3.2.17).

Lemma 3.2.10 Let Ay be a subset of the carrier A of A>. Then SHE(Ag) is
a B-substructure of A*, and Ay C SHA(Ap).

Lemma 3.2.11 Let Ay, Ay be subsets of the S-structure A*, and let h € Endgzl.
If h(Ao) C SH(Ay), then h(SHE(Ag)) C SH(A1).

Definition 3.2.12 The set X C A is an atom set for A* if every mapping
X — A can be extended to an endomorphism of A*.

For the free algebra 7 generated by X, the set of generators X obviously is
an atom set. Two subalgebras generated by subsets Xy, X1 of X of the same
cardinality are isomorphic. The same holds for atom sets and their stable hulls.

Lemma 3.2.13 Let Xy, X, be atom sets of A” of the same cardinality. Then
every bijection hg : Xo — X1 can be extended to an isomorphism between

SHR(Xp) and SHE(X)).
We are now ready to introduce the main concept of this section.

Definition 3.2.14 A countably infinite X-structure 2> is called quasi-free iff
2> has an infinite atom set X where each a € A is stabilised by a finite subset
of X. We denote this quasi-free structure by (2>, X).

This definition generalises the characterisation of free structures given in The-
orem 3.2.4. The countably infinite set of generators is replaced by a countably
infinite atom sets, but we retain some of the properties of generators. In the
free case, every element of the structure is generated by a finite set of genera-
tors, whereas in the quasi-free case it is stabilised by a finite set of atoms. The
following lemma shows that the second condition of Theorem 3.2.4 is satisfied
in the quasi-free case.

Lemma 3.2.15 Let X be an infinite atom set of the countably infinite X-
structure A>, and let Xg C X be finite. Then every mapping hy : Xg — A
can be extended to a surjective endomorphism of A>.
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Remark 3.2.16 Let A> be a X-structure and M be a submonoid of Endy.
We obtain useful variants of the notions of “stabiliser”, “stable hull”, “atom
set”, and “quasi-free structure” by always referring to M instead of Endgl. For
example, X C A is an atom set for A w.r.t. M if every mapping X — A can be
extended to an endomorphism in M. We say that (A, X) is quasi-free with re-
spect to M if (A>, X) satisfies the corresponding variant of Definition 3.2.14. In
[10], such structures were called simply combinable structures (SC-structures).
Most of the results that we will present for quasi-free structures can be lifted to
structures A> that are quasi-free with respect to some submonoid M of Endgzl
(see [10] for details).

We will call both (*, X) and (2%, X, M) quasi-free structures. We think this
does no harm, because whenever we refer to a specific submonoid M of Endgl,
we will make that explicit. In this and the next chapter, M will always be Endg,
the set of all endomorphism. In the chapter on rational amalgamation, we do
not expect that (A%, X) is quasi-free with respect to the whole of End%:l. Thus
the quasi-free structures we consider there will have an explicit endomorphism
monoid M. In the chapter on negation, we assume that (2%, X) is quasi-free
with respect to Endy.

Examples 3.2.17 The following examples show that many solution domains
for symbolic constraints are indeed quasi-free structures.

Free structures. Obviously, every free structures over a countably infinite set
of generators is a quasi-free structure. The atom set is the set of generators of
the free structure.

Vector spaces. Let K be a field, let ¥x := {+} U{sx | ¥ € K}. The K-vector
space spanned by a countably infinite basis X is a quasi-free structure over the
atom set X. Here “4” is interpreted as addition of vectors, and s; denotes
scalar multiplication with k£ € K.

The algebra of rational trees. Let X be a finite set of function symbols, and let
MR>F be the algebra of rational trees ([29, 70]), where leaves are labelled with
constants from X p or with variables from the countably infinite set V. It is easy
to see that every mapping V' — R can be extended to a unique endomorphism
of M*F, and that (R>F,V) is a quasi-free structure. Note, however, that :R*F
is not generated by V. In addition, it is easy to see that SR*F cannot be a
free structure (over any set of generators). Indeed, it is well-known that only
trivial equations between ¥ p-terms are valid in SR%F. Thus, if R¥F was free,
it would be isomorphic to the absolutely free term algebra, which is not true,
however [70].

Hereditarily finite sets. Let Vi (Y) be the set of all nested, hereditarily finite
(standard, i.e., wellfounded) sets over the countably infinite set of “urelements”
Y. Thus, each M € Vi (Y) is finite, and the elements of M are either in Y
or in Vi,(Y), the same holds for elements of elements etc. Wellfounded means
that there are no infinite descending membership sequences. Since union is
not defined for the urelements y € Y, the urelements will not be treated as
sets here. Let X := {{y} | y € Y}. Let h : X — Vi(Y) be an arbitrary
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mapping. We want to show that there exists a unique extension of h to a
mapping h: Viss(Y) = Vig(Y) that is homomorphic with respect to union “U”
and (unary) set construction {-}. Each M € V,(Y') can uniquely be represented
in the form M =z, U.. .Uz U{M 1} U...U{M;} where z; € X, for 1 <i <k,
and where the M; are the elements of M that belong to Vi (Y). By induction
(on nesting depth), we may assume that h(M;) is already defined (1 < 4 < 1).
Obviously (M) := h(z1)U...Uh(zs) U{h(M)}U...U{h(M,)} is one and the
only way of extending hina homomorphic way to the set M of deeper nesting.
For M = z € X we obtain h(z) = h(z), thus h is an extension of h. Moreover,
each mapping h is in fact homomorphic with respect to union “U” and unary
set construction “{-}”. In addition, each set M € V,(Y) involves only finitely
many different urelements (induction on the nesting depth). Thus, Vi (Y),
with union “U” and unary set construction “{-}”, is a quasi-free structure with
atom set X.

Hereditarily finite non-wellfounded sets. Similarly it can be seen that the do-
main Vig.s(Y) of hereditarily finite non-wellfounded sets® over a countably
infinite set of urelements Y, with union “U” and set construction “{-}”, is a
quasi-free structure over the atom set X = {{y} |y € Y'}.

Hereditarily finite wellfounded or non-wellfounded lists. The two domains
Vaa(Y) and Vi (Y) of nested, hereditarily finite (1) wellfounded or (2) non-
wellfounded lists over the countably infinite set of urelements Y, with concate-
nation “o” as binary operation and with (unary) list construction (-) : I — (I},
are quasi-free structures over the atom set X = {(y) | y € Y} of all lists with
one element y € Y. Formally, these domains can be described as the set of all
(1) finite or (2) rational trees where the topmost node has label “( )" (repre-
senting a list constructor of varying finite arity), nodes with successors have

label “( )7, and leaves have labels y € Y.

Feature structures. Let Lab, Fea, and X be mutually disjoint infinite sets of
labels, features, and atoms respectively. Following [2], we define a feature tree
to be a partial function ¢ : Fea* — LabU X whose domain is prefix closed (i.e.,
if pg € dom(t) then p € dom(¢) for all words p,q € Fea*), and in which atoms
do not label interior nodes (i.e., if #(p) = x € X then there is no f € Fea with
pf € dom(t)). As usual, rational feature trees are required to have only finitely
many subtrees. In addition, they must be finitely branching.

We use the set R of all rational feature trees as carrier set of a structure R>
whose signature contains a unary predicate L for every label L. € Lab, and
a binary predicate f for every f € Fea. The interpretation Lz of L in R is
the set of all rational feature trees having root label L. The interpretation fr
of f consists of all pairs (¢1,%2) € R x R such that #1(f) is defined and ¢5 is
the subtree of t; at f. The structure R> defined this way can be seen as a
non-ground version of the solution domain used in [2]. We will call R* the
non-ground structure of rational feature trees. We will show that the set of

*Non-wellfounded sets, sometimes called hypersets, became prominent through [1]. They
can have infinite descending membership sequences. The hereditarily finite non-wellfounded
sets are those having a “finite picture”, see [1] for details.
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feature trees that consist of a single leaf node that is labelled by an element of
X is an atom set of R¥ w.r.t. a certain monoid M (see Remark 3.2.16). We
identify this set in the obvious way with X.

Each mapping » : X — R has a unique extension to an endomorphism of R>
that acts like a substitution, replacing each leaf with label £ € X by the feature
tree h(z). With composition, the set of these substitution-like endomorphisms
yields a monoid M. Thus, it is not difficult to see that (R>, X) is quasi-free with
respect to M. However, R” has endomorphisms (not belonging to M) that
modify non-leaf nodes (e.g., by introducing new feature-edges for such internal
nodes). Since these modifications of non-leaf nodes are independent of the
images of elements of X, the set X is not an atom set w.r.t. all endomorphisms,
and thus (R*, X) is not quasi-free.

Now suppose that we introduce, following [19, 104], additional arity predicates
F for every finite set F' C Fea. The interpretation Fr of F' consists of all feature
trees t where the root of ¢ has a label L € Lab and where F' is (exactly) the set of
all features departing from the root of . Let A be the extended signature. Then
(R, X) is a quasi-free structure. We shall call it the non-ground structure of
rational feature trees with arity.

As can be seen from the previous examples, there is often an interesting ground
variant of a given quasi-free structure. The following definition formalises this
relationship.

Definition 3.2.18 Let (2%, X) be a quasi-free structure such that SHE(() is
non-empty. Then A := SHE(0) is called the ground substructure of (A, X).

3.2.3 Algebraic Properties of Quasi-free Structures

Before we can turn to the combination of quasi-free structures, we must estab-
lish some useful properties of these structures.

Lemma 3.2.19 Let (A”, X) be a quasi-free structure.

1. A¥ = SH%(X) and every mapping X — A has a unique extension to an
endomorphism of A>.

2. Let Xo C X. Then we have SHR(Xo) N X = Xj.

3. For all finite sets {a1,...,an} C A there exists a unique minimal finite
subset Y of X such that {ay,...,a,} C SHE(Y).

The third statement of the lemma shows that the notion “is stabilised by”
behaves better than the notion “is generated by.” In fact, minimal sets of
generators need not be unique, as demonstrated by the next example.
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Example 3.2.20 We consider the quotient term algebra 7 (Xr,V)/=,, where
YiF consists of one unary function symbol f, V' is countably infinite, and £ =
{f(z) = f(y)}. Obviously, the carrier of T(Xp,V)/=, consists of the =p-
classes {z;} for z; € V and one additional class [f(-)] := {f(¢) |t € T(2Fr,V)}.
It is easy to see that for all z; € V, the element [f(-)] of T(Xp,V)/=, is
generated by {z;}. However, [f(-)] is not generated by (. Thus, there are
infinitely many minimal sets of generators of [f(-)].

Definition 3.2.21 Let (2%, X) be a quasi-free structure, and let {ai,...,
an} C A. The stabiliser Stabs(a1,...,an) of {a1,...,a,} is the (unique) mini-
mal finite subset Y of X such that {ai,...,a,} C SHA(Y).

For the case of term algebras (i.e., absolutely free algebras), the stabiliser of a
term is the set of variables (i.e., generators) occurring in this term. In the more
general case of arbitrary quasi-free structures, using this as an intuition will help
to understand the definitions and proofs. Note, however, that the notion of a
stabiliser is still well-defined (and turns out to be extremely useful) in contexts
where “the minimal set of generators occurring in an element” is no longer
unique. The next lemma is an immediate consequence of Definition 3.2.21 and
of the definition of the stable hull.

Lemma 3.2.22 Let (A”, X) be a quasi-free structure, and let Y be a subset of
X. Then SHE(Y) = {a € A | Stab¥(a) C Y}.

The stabilising effect of Stab$(a) for a is not restricted to Endy. Under suit-
able conditions on the Y-structure ®%, Stabd(a) stabilises a with respect to
Hom’; p,. Before we can formulate this in a more precise way, we must gener-
alise Definition 3.2.8 to the quasi-free case.

Definition 3.2.23 Let A”, D> be Y-structures, and let X C A. (A, X) is
called quasi-free for ® if every mapping X — D has a unique extension to a
homomorphism h4_p € Hom’_p.

Thus, the fact that a structure (A, X) is quasi-free is the special case where
(A%, X) is quasi-free for itself.

Lemma 3.2.24 Let (A%, X) be quasi-free, and assume that (A*, X) is quasi-
free for ©>. Let hi,hy € Hom%_p, a € A and Y C X.

1. If hy and hy coincide on Stab(a), then hi(a) = ha(a).
2. If hy and hy coincide on'Y, then hy and hs coincide on SH%(Y).

In Section 3.3.2, where we introduce a construction that combines quasi-free
structures over disjoint signatures, we need to embed a given quasi-free struc-
ture into an isomorphic superstructure. Here, the usual notion of isomorphism
between structures is not sufficient, however, since the atom sets must also be
taken into account.
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Definition 3.2.25 Let (2A”, X) and (%B>,Y) be quasi-free. A gf-isomorphism
between (%%, X) and (B*,Y) is an isomorphism A : 2A* — B> that maps X
onto Y.

The next lemma shows that gf-isomorphic structures are quasi-free for the same
class of structures (in the sense introduced in Definition 3.2.23).

Lemma 3.2.26 Let (A%, X) and (B>,Y) be qf-isomorphic quasi-free struc-
tures, and let D be a B-structure. If (A, X) is quasi-free for D%, then also
(B>,Y) is quasi-free for D>. In particular, since any quasi-free structure is
quasi-free for itself, (A=, X) is quasi-free for B> and (B>,Y) is quasi-free for
A>.

The following two results show that one can always find gf-isomorphic substruc-
tures and superstructures of a given quasi-free structure. For free structures,
showing these results is almost trivial. For quasi-free structures it requires
rather long and tedious technical proofs (see [11] for details).

Lemma 3.2.27 Let (B>,Y) be a quasi-free structure. Let Z be an infinite
subset of Y, and let € := SHY (Z). Then the following holds:

1. (€*, Z) is quasi-free, and (B>,Y) and (€, 7) are qf-isomorphic.
2. For each ¢ € C, we have Stab® (¢) = Stab%(c).
3. For each U C Z, SHE(U) = SHE(U).

Theorem 3.2.28 Let (A”, X) be a quasi-free structure. Then there exists a
quasi-free superstructure (B>,Y) with the following properties:

1. Y\ X is infinite.

2. X CY, and A” = SHE(X).

3. (A*, X) and (B>,Y) are qf-isomorphic.

4. If X CZCY, and if €& = SHI(Z), then A* = SHE(X), and (A, X)

and (€*, Z) are qf-isomorphic.

3.2.4 Logical Properties of Quasi-free Structures

Using the notion of stabilisers, the validity of positive formulae in quasi-free
structures can be characterised in an algebraic way. This characterisation is
essential for the correctness proof (in [15]) of combining constraint solvers for
quasi-free structures.
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Lemma 3.2.29 Let (A”, X) be a quasi-free structure, and let
Y= Vﬁ’ﬁlﬁl ce VﬁkEIUk (,0(1_1:1, 171, ce. ,ﬁk, Uk)

be a positive X-sentence, where @ is a positive (not necessarily quantifier-free)
formula. Then the following conditions are equivalent:

1. Q[E ):Vﬁlaﬁl\V/ﬁkaﬁk (p(ﬁl,ﬁl,...,ﬁk,ﬁk).
2. There exist T1 € )?,é'l € ff,...,fk € )?,é'k € A such that

((1) Q[E ): cp(fl? 617 s 7fk7 gk)7
(b) all atoms in the sequences T1,...,Ty are distinct,

(¢c) for all j,1 < j < k, the components of Z; are not contained in
Stab¥ (1) U ... U Stabs(&j_1).

The role of the second condition of the lemma, is very similar to one that linear
constant restrictions played in work on combining unification algorithms. This
notion was introduced in [5]. We will present and discuss it in the chapter on
optimisation techniques.

3.3 Combination of Quasi-free Structures

This section is concerned with the problem of how to combine two quasi-free
structures over disjoint signatures into a new structure over the union of both
signatures. First, we will introduce an algebraic framework for combining struc-
tures, which is not restricted to quasi-free structures or disjoint signatures. This
framework tries to formalise our intuition of what to expect from a canonical
combination of two structures. We go on to describe an explicit construction for
combining two quasi-free structures over disjoint signatures, and show that the
result of this construction coincides with what our abstract framework proposes
as canonical combined structure.

3.3.1 Combination of Structures

Let B! and B2 be two structures. What conditions should a (£; U %)-
structure €192 gatisfy to be called a “canonical combination” of BT' and
%?2? The central notion of this subsection will be obtained after three steps,
each introducing a restriction that is motivated by the example of the com-
bination of free algebras, i.e., term algebras modulo equational theories. The
structures B7" and 9857 will be called the components in the sequel.

Restriction 1: Homomorphisms that embed the components into
the combined structure must exist. If the components share a com-
mon substructure, then the embedding homomorphisms must agree
on this substructure.
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In fact, a minimal requirement seems to be that both structures must in some
sense be embedded in their combination. It would, however, be too restrictive
to demand that the components are substructures of the combined structure.
For the case of consistent equational theories Ej, Fo over disjoint signatures
X1, X9, there exist 1-1-embeddings of T(X,V)/=, and T(X2,V)/=,, into
T(31UX, V) /:EIUE2. For non-disjoint signatures, however, these “embed-
dings” need no longer be 1-1. Note that even for disjoint signatures ¥; and 3o
there is a common part, namely the trivial structure represented by the set V'
of variables. A reasonable requirement is that elements of the common part are
mapped to the same element of the combined structure by the homomorphic
embeddings. To be as general as possible, we do not assume that the “common
part” is really a substructure of 23121 and ‘BQE 2. Instead, we assume that it is just
homomorphically embedded in both structures. These considerations motivate
the following formalisation of Restriction 1.

Definition 3.3.1 Let ¥ and ¥y be signatures, and let I' C 31 N X5, A triple
(A", B>, B>2) with given homomorphic embeddings

Wi g 2 =87 and BY_p A" — B

is called an amalgamation base. The structure D>1Y*2 closes the amalgamation
base (AL, %121 , %52) iff there are homomorphisms

1 . 21 3o Y 93 P
Wy _p BT 5D and KRBy D

such that h%i_D o thBl = hgz_D o hl;afo We call (DT1V%2, hgi—Dv hgz—p)
an amalgamated product of (er,%lzl,%QEQ).

If the embedding homomorphisms are irrelevant or clear from the context, we
will also call the structure 12 alone an amalgamated product of 87" and
%52 over AL, For a given amalgamation base, there usually exist various struc-
tures that can be used to close this base. Which one should be seen as a
canonical closure? Motivated by the example of free structures, where the
canonical combined structure is again free, we are interested in “most general”
amalgamated products.

Restriction 2: We are interested in structures closing the amalga-
mation base that are as general as possible.

In principle, we consider a structure € to be more general than a structure ®
iff there is a homomorphism of € into ®. Thus, a possible formalisation of
Restriction 2 seems to be to ask for an amalgamated product

YUY Y1 P
(Q: 7hBl_Cah’B2—C’)

such that for each amalgamated product (D*19>2, h%}Dv hgiiD) of the amal-
gamation base there exists a unique (37 U X9)-homomorphism hc_p such that

29



hp,—p = hc_pohp, ¢, for i = 1,2. This situation is illustrated in the following
figure.

It turns out, however, that requiring a most general element among all possi-
ble amalgamated products is too strong. Informally, the reason is that not all
amalgamated products of a given amalgamation base share “relevant” struc-
tural properties with the component structures of the base. To be more
precise, we consider the example of free algebras 23121 = T(X,V)/= p, and
B2 1= T (s, V)/=p,, with common “substructure” AN .= T(X1 Ny, V). The
canonical combined algebra is the free algebra T(X1 UX2,V)/=, |z, , which is
in fact most general (in the sense introduced above) among all amalgamated
products that satisfy F1UFEs, i.e., all elements of V(E;UEs). An arbitrary prod-
uct D*1U¥2 of 23121 and ‘BQE? may, however, invalidate some axioms of F; U Fs.
In this case, it may not be possible to find an appropriate homomorphism from
T(Z1UZ2,V)/=p um, to D>1U%2 (gee [11] for an example). For this reason, we
allow for the possibility of restricting the attention to a certain subclass of all
amalgamated products.

Restriction 3: Only admissible combinations of the two compo-
nents are considered. The class of admissible structures should share
relevant structural properties with these components.

For the case of free algebras, the obvious candidate for the class of admissible
structures is the the variety defined by the union of the component theories,
e, Adm(T(X1,V)/=p, . T(22,V)/=p,) = V(E1 UE,). An appropriate class of
admissible structures for the quasi-free case will be obtained as a generalisation
of this. In the remainder of this subsection, however, we make no assumption
on the specific form of the class of admissible structures. We just assume that
such a class is given. An amalgamated product is called admissible iff it belongs
to the class of admissible structures.

Definition 3.3.2 Let (A", 53121,53222) be an amalgamation base, and assume
that a class Adm(B>',B5?) of admissible (3 U 5p)-structures is fixed. The
admissible amalgamated product (€>1Y>2, h%i—C? h%ﬁ_c) of ‘Blzl and ‘B§2 over
A" is called a free amalgamated product with respect to Adm(‘Blzl,‘B§2) iff for
every admissible amalgamated product (@ElUEQ,hgi_ D,hg;_ p) of %121 and
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%2 over A" there exists a unigue homomorphism hjt)? : €*1U%2 . D¥1UZ:

such that

ElUEQ 21UE2 PP
WS = kS o hT o and B, =hIYRo b .

Free amalgamated products need not exist, but if they exist they are unique up
to isomorphism.

Theorem 3.3.3 Let (AT, B71,9B52) be an amalgamation base with fized ho-
momorphic embeddings hngl D, L ‘3121 and h5732 b/ L 53222. The free
amalgamated product of %121 and %222 over AT with respect to a given class
Adm(BT,B5?) is unique up to (3 U By)-isomorphism.

The theorem justifies to speak about the free amalgamated product of two
structures (provided that the embedding homomorphisms and the class of ad-
missible structures are fixed). In this situation, we will sometimes denote the
free amalgamated product of 8, and 85 by B; ® Bs. The product operation
is obviously commutative, if the definition of the class of admissible structures
satisfies Adm (987", B5?) = Adm(%85?,B7"). In order to obtain associativity as
well, we need some additional conditions on the class of admissible structures.

Before formulating these restrictions, we extend the definition of an amalgama-
tion base and of the free amalgamated product to the case of three structures.*
Let T C £ NN 3. A quadruple (AT, %121 , %52, %?3) with given homomor-
phic embeddings
W g A" — BT (i =1,2,3)

is called a simultaneous amalgamation base. The structure D>1Y>2V23 clpses
the simultaneous amalgamation base (er,%lzl,%§2,%§3) iff, for 1 = 1,2,3,
there are homomorphisms hgz_ D ‘BiE i — ©%i such that

o N s
hB OhA B — hB OhA By — hB OhA Ba*

In this case, (D>1V¥2U%3, h D h%; D> hgg p) 18 a simultaneous amalgamated
product of ‘Bl ,5352, ‘B3 over A"

Now, assume that a class of admissible structures Adm(8>", 852, 823 is fixed.
The admissible simultaneous amalgamated product

by by
(gPee, h —ohB o hE )
of %121,%52,%??3 over A is called a free simultaneous amalgamated product
with respect to Adm(% %222, % %) iff for every admissible simultaneous amal-
gamated product (921U22U23 hB D h%Zva h%::’ﬁD) there exists a unique ho-

momorphism
Y1UX2oUXs | 42 1UNaUX3 31U UNg
oD : ¢ Y

such that gB _p = fEIUE2U23 hB _o» for i =1,2,3. As for the binary free

amalgamated product, one can show that the free simultaneous amalgamated
product is unique up to isomorphism, provided that it exists.

“The extension to an arbitrary number n > 2 of structures should then be obvious.
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Theorem 3.3.4 (Associativity of free amalgamation)

Let ' C X1 N Yo N X3, and let Q[F,‘Blzl,%222,€3§3 be structures with fized
homomorphic embeddings hl;l_Bl s Al - B hE_B2 AL — B2, and
hngs b/ L %? . Assume that the free amalgamated products ‘352 ® ‘B§3,
B @ (B2 @ B33, BI' @ B2, and (B! @ By?) @ BY* exist, and that the
classes of admissible structures satisfy

B (B @BY) €
(BT @B3°) @B € Adm
Adm(BT', 852, 87) C

B %222 ,B23),
El ,%?3), and
>2) N Adm(BT' @ B3, B3%) N
)N Adm(BT, B52 @ BI).

dm

dm(
(B
(BY
Adm(

Then we have (B @ B5) @ B3* ~ %121 ® (B5? @ B3*), and this structure is
the free simultaneous amalgamated product of ‘3121 222, and 533 over AL,

The proof of this theorem, which can be found in [11], can be given on a rather
abstract level (manipulation of arrows, i.e., homomorphisms). Note, however,
that proving in a particular situation that the prerequisites of the theorem are
satisfied is usually not possible on this abstract external level; it may require
deep knowledge about the internal structure of the involved structures.

Notions of “amalgamated product,” similar to the one given above, can be
found in universal algebra, model theory, and in category theory (see, e.g.,
[26, 41, 73]). There are, however, certain differences between our situation and
the typical situations in which amalgamation occurs in other areas. In algebra
or model theory, amalgamation has been introduced for particular classes of
algebraic structures such as groups, fields, skew fields etc. Amalgamation is
studied for such a fixed class of structures over the same signature, and it is
assumed that these structures all satisfy the same set of axioms (e.g., those for
groups, fields, skew fields, etc.). In our case, algebras over different signatures
are amalgamated, and these algebras satisfy different types of axioms (or are
not defined by axioms at all).

3.3.2 An Amalgamation Construction for Quasi-free Structures

We describe an explicit construction for closing any amalgamation base where
the two components are quasi-free structures over disjoint signatures. In Sec-
tion 3.3.3 we will show that the constructed amalgamated product is in fact the
free amalgamated product. Having such an explicit construction rather than
just an abstract algebraic characterisation of the free amalgamated product
is important in the correctness proof of our method for combining constraint
solvers. The description of the construction given below is considerably different
from the one presented in [8, 10]. The main advantage of this new description
is that it allows for shorter and simpler proofs.

Let (27',X) and (23?,X) be quasi-free structures over disjoint signatures
31 and 35 such that A1 N Ay = X. We consider the amalgamation base
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(X, %121,91222), where the common part is just the set of atoms X. Thus, for
i = 1,2, the embedding “homomorphisms” hy_4, : X — Aizi are given by
idx. In order to close this amalgamation base, we first embed each component
(Q[Z.E",X ) into an isomorphic superstructure (‘Biz", Y;) satisfying Conditions 1-4
of Theorem 3.2.28 (i = 1,2). In addition, we assume without loss of generality
that By N By = X. Our goal is to construct (for i = 1,2) a X;-structure QIZ.E",
which is a superstructure of lezl and a substructure of %ZEZ The construction
will provide us with a bijection between Cy and C] satisfying certain proper-
ties. This bijection can be used to carry the Yo-structure of (’1222 over to (.
The (X; U Xg)-structure obtained in this way is the result of the construction.
The properties of the bijection will guarantee that this result is in fact the free
amalgamated product of the component structures. For defining the required
bijection, the notion of a fibre will be important.

Definition 3.3.5 Fibres are either 1-fibres or 2-fibres. A 1-fibre is of the form
F = {z} for x € X, and a 2-fibre is of the form F = {y,b} where y € ¥; \ X
and b € B; \'Y; for {i,j} = {1,2}. For a fibre F and ¢ = 1,2, we define
F(i) := F N B;. The index of a 2-fibre F is j iff F(j) is the non-atom element
of F.

The fibring construction

Let by, bo, b3, ... be an enumeration of By := By U By. Using this enumeration,
we construct an ascending tower of sets Fy C F; C F» C ... where each F; is
a set of mutually disjoint fibres. In addition, each set JF; contains only finitely
many 2-fibres. We start with Fy := {{z} | z € X}, i.e., Fp is the set of all
1-fibres. Now, assume that Fj has already been defined, and that all fibres of
Fi. are mutually disjoint. When defining Fj. 1, we distinguish two situations.

Case 1: If there exists an element b of B 5, say in B;, such that

1. each element of the stabiliser Stab%ﬁ(b) belongs to a fibre F' € Fy, but

2. b itself does not belong to a fibre F' € Fy,

then we proceed as follows: Let by, be the first element of B o (in the enumer-
ation by, bo, b3, . ..) satisfying the two Properties 1 and 2, and let 7 be such that
bmin € B;. For the other index j # 4, we select an atom z € Y; that does not
belong to any fibre of Fj,. Such an atom exists since SB]-EI satisfies Condition 1 of
Theorem 3.2.28, and Fj, is assumed to contain only finitely many 2-fibres. We
define Fi11 := {bmin, 2}, and Fyy1 := Fp U{Fj11}. Note that Fj,q is indeed
a 2-fibre since b,,;, cannot be an atom. In fact, it is easy to see that any atom
x has the singleton set {z} as its stabiliser. Thus, an atom cannot satisfy the
Conditions 1 and 2 simultaneously.

Case 2: Otherwise, we define Fjq 1= Fy.

By definition, Fy C F; C F» C ..., and at each level k, all fibres of Fj are
mutually disjoint.
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Let F := Ukzo Fk. Then C) 2 := Uper F is asubset of By 5. Let C; := C2NB;,
and Z; := C12NY; (1 =1,2). We say that an element of B is fibred iff it
belongs to a fibre of F. For these elements we define a height.

Definition 3.3.6 For a € () define the height of a by height(a) := k iff a is
an element of the fibre Fj,.

So, the height of each x € X is 0; and the height of each non-atomic element with
non-empty stabiliser is larger then the height of each element in its stabiliser.

The definition of the amalgamated structure
The sets Cy and Cy are indeed stable hulls.
Lemma 3.3.7 C; = SH?;(Zi), and thus (’Zizi is a Yj-substructure of %?1

Now, we define appropriate bijections between C; and Cs. Each element ¢ €
C1,2 belongs to a unique fibre F,. of 7. We define the bijections h; ; : C; — Cj
by mapping each ¢ € C; to F.(j), the unique element of Fi belonging to C;
({#,7} = {1,2}). Obviously this implies h; j = hj,i_l. Note that any element x
of X belongs to a 1-fibre, and thus

hij(z) = x for all x € X. (3.1)

The bijections hq2 and hg; are now used to carry the ¥s-structure of (’1222 to
C1: Let f be an n-ary function symbol of 3, let p be an n-ary predicate symbol
of Yo, and let aq,...,a, € C;. We define

fe(ar, .. an) = hoi(fe,(hi2(ar), .., hi2(an)))
pefar, ... an] 1 = peylhi2(ar),. .., hi2(an)]

In the same way, we impose the 3;-structure of ¢*' on Cy. Thus, both €; and
¢y can be seen as (3 U Xg)-structures. Let ¥ := X1 UXy. By construction, the
mappings

hi2 and hy 1 are inverse Y-isomorphisms between ¢} and €3. (3.2)

For this reason, it is irrelevant which of these two structures is taken as result
of the construction. In the following, we use €} as the amalgamated structure
obtained by the construction, and we will sometimes denote this structure by
AT @ A7

Properties of the amalgamation construction

Before we can show that the construction really yields the free amalgamated
product, we must state some useful properties:

(€¥, Z;) and (2, X) are qf-isomorphic (for i = 1,2). (3.3)
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(3.3) follows from the fact that (for ¢ = 1,2) ‘BiEi satisfies Condition 4 of
Theorem 3.2.28. In addition, by Lemma 3.2.27 we have

Vd € ¢; : Stabi (d) = Staby! (d) and YU C Z; : SHY (U) = SHY (U)  (3.4)

For i = 1,2, each set of fibres F} determines a set Fi. := {F(i) | F € F,} C Ci.
Now, (3.4) and the definition of the fibring construction imply:

If ce C;\ Z; is in F, |, then Stab%'i (c) C Fi (fori=1,2). (3.5)
In order to show that €} closes the amalgamation base (X, 91121 , 91222 ), we define
ha,—c, :=1ida, and ha, ¢, := ha1]a,. (3.6)
By definition of h4,_¢, and (3.1) we know that
ha;—c,|x =idx (for i =1,2). (3.7)
Thus, ha,—c, ohx—4, =idx = ha,—c, © hx_4,, which shows:

Lemma 3.3.8 The amalgamated structure €} obtained by the construction is
an amalgamated product of 2[121 and m§2.

Definition 3.3.9 The enumeration by, bo, b3, ... defines a strict linear ordering
<x on X. In addition, a strict linear ordering <; on the complements C; \ X is
given by the order in which the elements of C; \ X are fibred: We define ¢ <; d
iff, for some k, ¢ € ]—",i and d &€ .7-"};. With <; we denote the unique strict linear
ordering on C; that extends both <x and <;, and makes each element of X
smaller than each element of C; \ X (i =1,2).

As an easy consequence of this definition, we obtain

Ve,d € Ci: e <; d iff hi,j(c) < hi,j(d) ({’L,j} = {1, 2}), (3.8)
Ve,d € Cii e <;d implies d & Stab§ (c) (i € {1,2}). (3.9)

Note that (3.8) is trivial, and that (3.9) follows from (3.5).

3.3.3 The Free Amalgamated Product of Quasi-free Structures

In this subsection, we will show that the amalgamation construction presented
above really yields the free amalgamated product of the quasi-free component
structures. In the sequel, (QLIEI,X ) and (QLEZ,X ) denote quasi-free structures,
which are used as the input components of the amalgamation construction.
We shall also refer to other entities introduced in the construction, such as
inz, ‘Bizi, hi j, Fi, etc. First, we must fix the class of admissible structures with
respect to which the free product is to be built.
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Definition 3.3.10 Let (X, 91121,%222) be an amalgamation base, where both
(A, X) and (A52, X) are quasi-free structures over disjoint signatures. Then
we choose

Adm(27",A52) == {DF1Y%2 | (AX1, X) is quasi-free for D7, for i = 1,2}

as the class of admissible structures.

Theorem 3.3.11 ¢7 = 91121 ® Ql§2 is the free amalgamated product of the
quasi-free structures 2[121 and 9[52 with respect to the class Adm(Q[lzl,QLQEZ) of
admissible structures defined above.

3.3.4 Multiple and Iterated Amalgamation

The explicit amalgamation construction introduced above can easily be gener-
alised to a construction that combines an arbitrary number n > 2 of quasi-free
structures over disjoint signatures.’> The — here omitted — proof for the theorem
in the above subsection can also be generalised to show that the extended con-
struction yields the n-fold simultaneous free amalgamated product, provided
that the following obvious generalisation of the class of admissible structures is
used:

Adm(?llzl, e 79’[%}”) =
{DP1V-UEn | 9 i quasi-free for D, for 1 <i < n}. (3.10)

In this subsection, we show that it is not really necessary to introduce the ex-
plicit amalgamation construction for the case n > 2 since the free amalgamated
product can also be obtained by iterated application of the construction to two
structures. Obviously, iterated application is only possible if the structure ob-
tained by the construction is again quasi-free. The following proposition shows
that this prerequisite is satisfied.

Proposition 3.3.12 The free amalgamated product of two quasi-free structures
with common atom set X is a quasi-free structure with atom set X.

Corollary 3.3.13 (QllEl ® 2[?2,)() is a quasi-free structure that is quasi-free
for each ©* € Adm(AT", A>?).

Obviously, the set of admissible structures, as introduced in Definition 3.3.10,
satisfies Adm(A},25?) = Adm(A3?, A7), Thus, free amalgamation of quasi-
free structures is commutative. Since the amalgamation construction can be
iterated, the question arises whether the construction is associative as well.
This question is answered to the affirmative by showing that the assumptions of
Theorem 3.3.4 are satisfied. Thereby, the theorem also shows that simultaneous
free Amalgamation and iterated free Amalgamation yield the same result.

®It is even possible to amalgamate a countably infinite number of quasi-free structures in
this way.
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Theorem 3.3.14 Free amalgamation of quasi-free structures with disjoint sig-
natures over the same atom set is associative, and free simultaneous amalga-
mation coincides with iterated free amalgamation.

3.4 Combining Constraint Solvers for Quasi-free
Structures

Let (A7, X) and (A32, X) be quasi-free structures over disjoint signatures ¥
and Y9, and let € = Qllzl ® %52 denote their free amalgamated product, as
constructed in the previous section, where 3 = 31 UXs. This section is devoted
to the presentation of the following combination result for constraint solvers
over quasi-free structures.

Theorem 3.4.1 The positive theory of €7 = 9[121 ® QLQEQ is decidable, provided
that the positive theories of the quasi-free structures AT and A5? are decidable.

First, we show how constraint solvers for the positive theories of A} and 23>
can be combined to a constraint solver for the existential positive theory of
AT @ A32. In a second subsection, it is shown that this result can be lifted to
the full positive theory of 27! ® 252

3.4.1 The Existential Positive Case

In this subsection, we present a restricted version of Theorem 3.4.1.

Theorem 3.4.2 The existential positive theory of €7 = 9[121 ®912E2 is decidable,
provided that the positive theories of the quasi-free structures 2[121 and Ql§2 are
decidable.

The same theorem can be proved for the simultaneous free amalgamated prod-
uct of n > 2 quasi-free components over disjoint signatures. To keep things
simpler, we restrict our attention to the case n = 2.

The decomposition algorithm described below decomposes an existential pos-
itive Y-sentence g into a finite set of pairs (o, 3), where « is a positive 31-
sentence and [ is a positive Xo-sentence. This algorithm coincides with the one
described in [8], where it has been used in the restricted context of combination
problems for free structures. Steps similar to Step 1, 3, and the labelling in
Step 4 are present in most methods for combining unification algorithms. Nel-
son & Oppen’s combination method for universal theories [77] explicitly uses
Step 1, and implicitly, Step 3 is also present.

Before we can describe the algorithm, we must introduce some notation. In the
following, V' denotes an infinite set of variables used by the first-order languages
under consideration. Let ¢ be a 3-term. This term is called pure iff it is either
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a Yi-term or a Yo-term. An equation is pure iff it is an equation between
pure terms of the same signature. A relational formula p[sq,..., sp] is pure iff
81, ..,8m are pure terms of the signature of p. Now assume that ¢ is a non-pure
term whose topmost function symbol is in ¥;. A subterm s of ¢ is called alien
subterm of t iff its topmost function symbol belongs to 35 and every proper
superterm of s in ¢ has its top symbol in ;. Alien subterms of terms with top
symbol in ¥y are defined analogously. For a relational formula p[si,...,sp],
alien subterms are defined as follows: if s; has a top symbol whose signature is
different from the signature of p then s; itself is an alien subterm; otherwise,
any alien subterm of s; is an alien subterm of p[sy,..., $n].

The decomposition algorithm

Let oo be an existential positive 3-sentence. Without loss of generality, we
may assume that ¢y has the form iy vy, where 7y is a conjunction of atomic
formulae. Indeed, since existential quantifiers distribute over disjunction, a
sentence iy (1 V y2) is valid iff iy 1 or iy 7, is valid.

Step 1: Transform non-pure atomic formulae.
(1) Equations s = t of 7y where s and ¢ have topmost function symbols
belonging to different signatures are replaced by (the conjunction of) two
new equations u = s,u = t, where u is a new variable. The quantifier
prefix is extended by adding an existential quantification for w.
(2) As a result, we may assign a unique label ¥; or ¥ to each atomic
formula that is not an equation between variables. The label of an equa-
tion s = ¢ is the signature of the topmost function symbols of s and/or ¢.
The label of a relational formula p[sy, ..., s,] is the signature of p.
(3) Now alien subterms occurring in atomic formulae are successively re-
placed by new variables. For example, assume that s = t is an equation
in the current formula, and that s contains the alien subterm s;. Let
u be a variable not occurring in the current formula, and let s’ be the
term obtained from s by replacing s; by u. Then the original equation
is replaced by (the conjunction of) the two equations s’ = ¢t and u = s5.
The quantifier prefix is extended by adding an existential quantification
for u. The equation s’ = t keeps the label of s = ¢, and the label of u = s
is the signature of the top symbol of s;. Relational atomic formulae with
alien subterms are treated analogously. This process is iterated until all
atomic formulae occurring in the conjunctive matrix are pure. It is easy
to see that this is achieved after finitely many iterations.

Step 2: Remove atomic formulae without label.
Equations between variables occurring in the conjunctive matrix are re-
moved as follows: If u = v is such an equation then one removes Ju from
the quantifier prefix and v = v from the matrix. In addition, every occur-
rence of v in the remaining matrix is replaced by v. This step is iterated
until the matrix contains no equations between variables.
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Let (1 be the new sentence obtained this way. The matrix of 1 can be written
as a conjunction y; v, Ay1,5,, where v 5, is a conjunction of all atomic formulae
from ¢; with label 3¢, and 7y %, is a conjunction of all atomic formulae from
1 with label 3. There are three different types of variables occurring in ¢;:
shared wvariables occur both in <1y, and in 7 x,; X-variables occur only in
71,55 and Xo-variables occur only in vy x,. Let @ x, be the tuple of all ;-
variables, 4 x,, be the tuple of all ¥p-variables, and @; be the tuple of all shared
variables.% Obviously, ¢, is equivalent to the sentence

Jiy (Fur,s, 7,m, A Jdrs, N,5,) -

The next two steps of the algorithm are nondeterministic, i.e., a given sentence
is transformed into finitely many new sentences. Here the idea is that the
original sentence is valid iff at least one of the new sentences is valid.

Step 3: Variable identification.
Consider all possible partitions of the set of all shared variables. Each of
these partitions yields one of the new sentences as follows. The variables
in each class of the partition are “identified” with each other by choosing
an element of the class as representative, and replacing in the sentence
all occurrences of variables of the class by this representative. Quantifiers
for replaced variables are removed.

Let iy (i1, v2,, A JU15, Y2,5,) denote one of the sentences obtained by
Step 3, where s denotes the sequence of all representatives of shared variables.

Step 4: Choose signature labels and ordering.
We choose a label ¥; or 3 for every (shared) variable in s, and a linear
ordering < on these variables.

For each of the choices made in Step 3 and 4, the algorithm yields a pair («, 3)
of sentences as output.

Step 5: Generate output sentences.
The sentence iz (I x, v2,5, A 15, Y2,5,) is split into two sentences

o = Vﬁlﬂwl e Vﬁka’lﬁkaﬁl’gl ’yg’gl
and
ﬁ = 3’171V’U71 e E‘UkV’lﬁkaﬁl,gz 72’22.

Here U101 . . . UpwWy is the unique re-ordering of @y along <. The variables
0; (w;) are the variables with label ¥y (label Xy).

Thus, the overall output of the algorithm is a finite set of pairs of sentences.
Note that the sentences o and (8 are positive formulae, but they need no longer
be existential positive formulae.

5The order in these tuples can be chosen arbitrarily.
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Correctness of the decomposition algorithm

If one of the output pairs is valid, then the original sentence is valid. But also,
if the input sentence is valid, then there exists a valid output pair.

Proposition 3.4.3 ¢} |= g if and only if Qllzl E a and 9[52 = (B for some
output pair (a, ).

Obviously, Theorem 3.4.2 follows immediately.

3.4.2 The General Positive Case

The goal of this subsection is to show that the decomposition method intro-
duced above can be extended such that it becomes possible to decide validity
of general positive sentences in the free amalgamated product €3 = 91121 ®91222.
The main idea is to transform positive sentences (with arbitrary quantifier pre-
fix) into existential positive sentences by Skolemising the universally quantified
variables.” In principle, the decomposition algorithm for positive sentences is
now applied twice to decompose the input sentence into three positive sen-
tences a, 3, p, whose validity must respectively be decided in Qllzl, 91222, and the
absolutely free term algebra over the Skolem functions.

The extended decomposition algorithm

The input is a positive sentence (1 in the mixed signature 3y UYs. We assume
that ¢ is in prenex normalform, and that the matrix of ¢ is in disjunctive
normalform. The algorithm proceeds in two phases.

Phase 1: Via Skolemisation of universally quantified variables, ¢ is trans-
formed into an existential sentence ¢} over the signature 3; U Xy UT';. Here
Iy is the signature consisting of all the new Skolem function symbols that have
been introduced.

Suppose that ¢! is of the form 3, (\/ v1,), where the v;; are conjunctions of
atomic formulae. Obviously, ¢! is equivalent to \/(3@; v1,), and thus it is
sufficient to decide validity of the sentences 3i; 7, ;. Each of these sentences is
used as input for the decomposition algorithm.

The atomic formulae in 7, ; may contain symbols from the two (disjoint) sig-
natures ¥; and ¥y UI';. In Phase 1 we treat the sentences 3u;y;; by means of
Steps 1-5 of the decomposition algorithm, finally splitting them into positive
¥1-sentences v and positive (XoUT'y )-sentences 9. Thus, the output of Phase 1
is a finite set of pairs («, p2).

"We are Skolemising universally quantified variables since we are interested in validity of
the sentence and not in satisfiability.
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Phase 2: In the second phase, @5 is treated exactly as 1 was treated before,
applying Skolemisation to universally quantified variables and Steps 1-5 of the
decomposition algorithm a second time. Now we consider the two (disjoint)
signatures Yo and [I' = I'y U I's, where I's contains the Skolem functions that
are introduced by the Skolemisation step of Phase 2. We obtain output pairs
of the form (3, p), where (3 is a positive sentence over the signature X5 and p
is a positive sentence over the signature I'. Together with the corresponding
sentence « (over the signature ¥;) we thus obtain triples («, 3, p) as output.

For each of these triples, the sentence « is now tested for validity in 91121, J]
is tested for validity in Ql?z, and p is tested for validity in the absolutely free
term algebra 7 (I", X') with countably many generators X, i.e., the free algebra
over X for the class of all [-algebras.® We have seen that this structure is a
quasi-free structure with atom set X (Examples 3.2.17 (3)).

Correctness of the extended decomposition algorithm

We must show that the original sentence ¢; is valid iff for one of the out-
put triples, all three components are valid in the respective structures. The —
here not presented — proof depends on the following lemma, which exhibits an
interesting connection between Skolemisation and free amalgamation with an
absolutely free algebra.

Lemma 3.4.4 Let AT be a quasi-free structure with atom set X, and let
be a positive Y-sentence. Suppose that the existential positive sentence 7' is
obtained from ~ via Skolemisation of the universally quantified variables in 7y,
introducing the set of Skolem function symbols T. Let AL := T (T, X) be the
absolutely free term algebra over I' with generators X, and let €TV" be the free
amalgamated product of AT and AL. Then AT |= v if, and only if, ETVT = +.

Correctness of the extended decomposition algorithm is an easy consequence of
this lemma.

Proposition 3.4.5 QIEIUEZ = 1 if, and only if, there exists an output triple
(e, B, p) such that 2[121 E a, QLQEQ E B, and T(I', X) | p, where T' consists of
the Skolem functions introduced in Phases 1 and 2 of the algorithm.

The proposition shows that decidability of the positive theory of the free amal-
gamated product 25" ® 252 can be reduced to decidability of the positive
theories of 9[121, QLQE 2. and of an absolutely free term algebra 7 (', X). It is
well-known that the whole first-order theory of absolutely free term algebras is
decidable [33, 70, 72]. Thus, Theorem 3.4.1 follows immediately. In connection
with the Theorems 3.3.12 and 3.3.14, the following generalisation is obtained.

8Note that I' contains no predicate symbols.
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Theorem 3.4.6 If (QLIEI,X), oy, (A" X)) are quasi-free structures over dis-
joint signatures, then the full positive theory of the free simultaneous amalga-
mated product 2[121 R ® 2[%” 1s decidable, provided that the positive theories
of all structures A are decidable (1 <i<n).

3.5 Conclusion

This chapter’s purpose was to introduce fundamental concepts of combining
constraint systems. We presented the notion of a quasi-free structure explor-
ing its algebraic and logical properties. Quasi-free structures comprise many
important non-numerical infinite solution domains for constraint solving such
as quotient term algebras, rational tree algebras, vector space, sets, multisets
and lists and certain feature structures. We discussed the properties a suit-
able combination of structures should have, namely sharing relevant structural
properties with the components and being rather general. We introduced the
free amalgamated product of two structures which is characterised by being
the most general combination of two quasi-free structures and gave an explicit
construction how to obtain the free amalgamated product for arbitrary quasi-
free structures. Finally we drew our attention to the combination of constraint
solvers presenting a non-deterministic algorithms to reduce the solving of mixed
constraints over the joint signatures to solving of pure constraints in the com-
ponents. By means of correctness of this algorithm we showed that the positive
theory of the free amalgamated product is decidable, provided the positive the-
ories of the component quasi-free structures are decidable.

On this given base, it is three different aspects of combining constraint systems
that we would like to investigate in the next chapters. Firstly, the decomposition
algorithm introduced is meant to be clear and simple. In its current form, it
is well suited for explaining the method and proving its correctness. But it
is highly non-deterministic, and hence totally unsuitable for implementation.
We will present the search space spanned by the non-deterministic steps of
the algorithm underpinning thereby the imminent need for optimisations and
explore systematic, generally applicable optimisation methods. We will see that
there are two principled ways to reduce the non-determinism which together
can shrink the search space for certain input problems by several orders of
magnitude.

Another aspect faces the amalgamation construction. The free amalgamated
product has the nice characterising property of being the most general combi-
nation of quasi-free structures. But is it the only general combination construc-
tion? We will see that there is another combination, namely rational amalga-
mation, which constitutes a very general combined solution domain for a large
class of quasi-free structures. In opposite to free amalgamation, rational amal-
gamation allows an infinite number of switchings from one component to the
other in the elements of the combined solution domain, and therefor permits
the solution of mixed cyclic equations or constraints.

Finally, we investigate to what extend negation can be handled in combination.
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The constraints in the last chapter will be literals, atoms or negated atoms,
while they are just (positive) atoms in the other chapters. We will find the
free amalgamated product to be a combined solution domain suitable for com-
bining mixed positive and negative constraints. Indeed, mixed constraint over
the joint signatures of the components can be solved in the free amalgamated
product, if the pure constraints together with some technical requirements can
be solved in the quasi-free component structures. We will also take a look at
the independence property of negative constraints. For a given structure, the
independence property states that a conjunction of negative constraints is solv-
able, if each negative constraint is solvable in isolation, ignoring the others.
This is quite a useful property in actual constraint solving. We explore general
properties that a quasi-free structure must have in order to own the indepen-
dence property. And we also derive a modularity result stating under which
conditions the independence property of two component quasi-free structures
is inherited by their free amalgamated product.
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Chapter 4

Optimisation Techniques

4.1 Introduction

The previous chapter described a fairly general combination algorithm for con-
straint solvers for quasi-free structures over disjoint signatures. For reasons of
expository clarity, and also to simplify correctness proofs, no effort was made
in trying to lay out the algorithm in an efficient way. The part of the algorithm
that introduces the complexity are the three non-deterministic steps of variable
identification, labelling and ordering. The search space spanned by the com-
bination of all different choices that can be made in these three steps is huge;
it is indeed that huge that a naive implementation of the algorithm is in praxi
deemed to non-termination even for small input problems. In a subsequent
subsection on the complexity of the algorithm, we will show this in detail.

The consequence of this simple observation is obviously, that any implementa-
tion of the algorithm must employ optimisation techniques. In principle, there
are two different ways to handle the problem. For the task of combining two
particular given constraint systems, one could start by defining a special com-
bined solution domain and then develop a very specific decomposition algorithm
for combining the two constraint solvers at hand. This may be the solution of
choice, if for a concrete implementation speed is more important than anything
else.

The line we would like to follow here is a one that is interested in general opti-
misation techniques applicable to a large number of constraint systems. Espe-
cially, we want to profit from general results presented in the previous chapter.
Therefore we choose to keep the free amalgamated product as combined solu-
tion domain. And we take its decomposition algorithm as a starting point for
our optimisation rather then developing a new one from scratch. In this way,
we may not be able to provide the most efficient combination algorithm for two
specific constraint solvers — and it is important to see that we do not claim this
and hence do not compete with specific combination algorithms — but provide
strategies that are usable in many circumstances and allow the integration of
several diverse constraint solvers in a suitable amount of time without being
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forced to redesign everything.

In principle, there are two different general methods of optimisation we will
present. The first one is called the iterative method. It is based on the insight
that in a combination of many constraint solvers it is not wise to make all
non-deterministic choices for all components first and only then simultaneously
test solvability in all components. It turns out to be more sensible to restrict
attention to one component at a time and find a set of non-deterministic choices
for which the component solver can solve its subproblem. Though this seems
clear, the difficulty in this method lies in showing that neither correctness nor
completeness of the combination algorithm is lost, something that is far from
obvious. This method’s use is meaningful only, when more than two constraint
solvers are combined, and with a growing number of components it shows its
full strength.

The second optimisation method we will present is called the deductive method.
The underlying observation here is that many choices need not be made non-
deterministically. The input problem and the component constraint systems
frequently enforce certain decisions to be made in a particular fashion, because
otherwise the problem would be plain unsolvable. These choices can be made
deterministically, and what is more, choices made in a particular fashion in
line with demands of one component can trigger new deterministic decisions
to keep subproblems of other components solvable. Hence one needs new com-
ponent constraint solvers that are capable of deducing what decisions can be
made deterministically on the base of their subproblem and the choices made so
far. And one needs a new combination algorithm that consults the component
solvers after a non-deterministic decision was made to find out which determin-
istic ones it involves and uses constraint propagation techniques to circulate
decisions between the component solvers. The impact of this method is enor-
mous. It turns out that in many cases there is enough information available in
the constraint systems to shrink the non-deterministic search space by orders
of magnitude.

This chapter heavily relies on [61]. The optimisation methods described above
were originally designed for the combination of equational unification algorithm;
and it is that, what the technical report describes. But these methods can be
applied to the more general case of combining constraint solvers straight for-
wardly. The original combination algorithm for combining constraint solvers, as
described in the previous chapter, differs from the one for combining unification
algorithms (as presented in [14]) only in the obvious way. Every predicate dif-
ferent from equality must be purified (i.e., alien subterms must be abstracted
away) and assigned to the component the signature of which it belongs to.
Thus only a small extension in the purification step is needed, the three main
steps, the non-deterministic guessing of the variable identification, labelling and
ordering remain the same.

On the terminological side, we replaced the notion constraint as used in [61] by
the notion decision. Since we are describing the more general case of combining
constraint solvers and not just equational unification algorithms, we would end
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up using the word “constraint” for both the input problem and the individual
non-deterministic choices, and that would only cause a lot of confusion.

The optimisation methods and the above cited report are a co-production with
J. Richts. He developed and implemented the deductive method and the deduc-
tive component algorithms for equational unification. All these are described in
detail in his forthcoming doctoral dissertation. The author’s contribution is the
development of the iterative method and the integration of the two methods.
He also implemented the deductive component algorithm for feature structures.

The first section of this chapter shortly reviews the original combination algo-
rithm and explains its complexity. It also presents some basic optimisations
that are obvious or long known and should be taken into account by any im-
plementation. The second section introduces the concept of a decision as a
technical term thereby laying out a common framework for describing both
methods. The following two sections are devoted to introducing and describ-
ing our two optimisation methods. We will thereafter show that it is easy to
integrate them into a common system and present some run time results to
empirically support our theoretical claims. Finally, since Boudet [20, 21] devel-
oped optimisation techniques for combining unification algorithms that show
certain similarities to our work, we spend some time to detail the differences
and similarities of the two approaches.

In this chapter, a constraint problem is a conjunction of atomic formulae. Vari-
ables occurring therein are implicitly existentially quantified.

4.2 The Base for Optimisation

The Original Combination Algorithm

In this section, we briefly recapitulate the original combination algorithm as
described in the previous chapter while at the same time extending it from 2
to n constraint solvers that are combined simultaneously. For i = 1,...,n
(n > 2), let ¥; be pairwise disjoint signatures and ¥ := (Ji_; ¥;. The input
problem T is a conjunction of atomic constraints over . We say that I" is in
decomposed form, if I" has the form (J;.; I'; where each I'; is a pure constraint
problem of component i over the signature 3;. Any constraint problem I' can
be transformed into a constraint problem in decomposed form that is solvable,
iff the original problem is solvable, by a simple deterministic preprocessing step,
namely variable abstraction. In the following, we will therefore always assume
that a constraint problem is in decomposed form |Jj—; [';.

The combination algorithm consists of three non-deterministic steps which re-
sult in a linear constant restriction for the constraint problem. The notion of a
linear constant restriction is introduced for unification problems at the end of
Section 2.2. Let I" be a constraint problem in decomposed form.

Step 1: Variable identification Non-deterministically choose a partitioning
IT of Var(T") and a representative for each class. In all constraints, replace each
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variable by its representative. We obtain a new formula IV := AT%. Let Y be
the set of representatives.

Step 2: Labelling Non-deterministically choose a labelling function Lab :
Y = {3,..., 5.}

Step 3: Ordering Non-deterministically choose a strict linear order <7, on
the variables Y.

Step 4: Component solvers For : = 1,...,n, form constraint problems with
constant restrictions: in T'; treat each x € Y with Lab(x) # %; as a free constant
and use the linear constant restrictions induced by <.

Theorem 4.2.1 The input problem I' has a solution in the free amalgamated
product, if and only if there exists an output tuple (T'},... ') with Lab and <,
in Step 4 such that for i = 1,...,n the constraint problem with linear constant
restriction (I, (Lab, <r)) has a solution.

A proof of this theorem can be found in [15]. For clarity, Let us define the
notion of a solution for a constraint problem with linear constant restriction in
one of the components.

Definition 4.2.2 Let (QLiEi,X) be a quasi-free structure. Let L = (Lab, <p)
be a linear constant restriction, and I['; a constraint problem over signature
Y;. A substitution o is a called a solution of the constraint problem with
linear constant restriction (I';, L), iff it is a solution of T'; and for every variable
x € dom(Lab) with Lab(z) # ¥; holds o(x) € X, and for all variables z,y €
dom(Lab) with Lab(x) = ;, Lab(y) # %i,z <z, y holds o(y) ¢ Stab™ (o(z)).

If the constraint problem is positive, i.e., contains no negation, as we assume
in this chapter, then constraint problems with linear constant restrictions can
be translated into purely logic problems, as is shown in Lemma 3.2.29.

Complexity of the Original Combination Algorithm

The above algorithm contains three non-deterministic steps. By guessing the
right variable identification, labelling and ordering, one can find a solution
in polynomial time. Hence the algorithm belongs to the complexity class
nondeterministic-polynomial time (NP). But any implementation has to be de-
terministic, thus the above classification is not really satisfactory. We will
now give a bound for the search tree spanned by the combinations of different
choices that can be made. Suppose that there are n component systems and k
variables.!

!The following basic combinatorial notions and formulae can be found in any book on this
subject. A particular constructive approach that we consulted is [105].
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In Step 1, we have to calculate an upper bound for all partitions of & Variables.
The number of partitions of a k element set is known as the k-th Bell number
By. Tt can be recursively calculated by the formula

k
k
By=1,  Bra=), <T>Br :

r=0

But there is a more appropriate way for our purposes. The choices in Steps 2
and 3 are not independent of the choices in the first step, they depend on the
number of remaining representatives. The number of ways to partition a k
element set into r partitions is called the Sterling number of the second kind.

It is defined by
e [T\ .
= L3 0) (>y
r 3 j

and can be recursively calculated by
Sk, = Sk—1,—1 + 7 Sk—1,r -

Now, the k-th Bell number
k
By = Z Skr
r=1

by definition of Bell numbers and Sterling numbers of the second kind.

Let  be the number of representatives remaining after variable identification
in the first step. In Step 2, the labels for the variables (after identification) are
chosen independent of each other. Thus there are

nT‘

different variable labellings.

In Step 3, we are looking for all linear orders of the representatives. Thus we
have to consider all permutations of a r element sequence, and it is known that
there are

rl

many.

Hence, the size of the search space is given by

k
Zsk,r-nr-r! .
r=1

A deterministic implementation of the algorithm is in the complexity class de-
terministic (singly-) exponential time. To gain an intuition on the size of the
search space, consider a small input problem with 3 component systems and 5
variables. Then there are exactly 52923 different leaf nodes in the search tree.
So, even small problems are practically intractable. This obviates the need for
optimisation techniques.
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Basic Optimisations

The following optimisations are very straightforward and should be taken into
account in any implementation. They have already been discussed by other
authors or are obvious. We mention them here for the sake of completeness.

Only variables occurring in more than one component constraint I'; have to be
considered by the combination algorithm. Hence we define the set of combina-
tion variables or shared variables U := {x | 34,5 : i # j,x € Var(T;) N Var(I';)}
and use U; := UNVar(T;) to denote the set of combination variables of constraint
[';. Only combination variables need to be considered in the non-deterministic
steps. Because if L is a linear constant restriction containing only combination
variables such that (T, L) is solvable, then L can be extended to a linear con-
stant restriction L' with all variables that has an identical set of solutions. This
fact was discovered independently by Boudet [20, 21] and Baader & Schulz [5].

Secondly, two different linear orderings <y, and <j, may lead to the same
constraint problems with linear constant restrictions. Suppose that the order-
ings <y, and <y, differ only in the order of two variables with identical label
which are adjacent w.r.t. <7, and <z,. Then the restrictions on atoms that
can occur in the stabilisers of other elements induced by these orderings are
identical and the constraint problem with linear constant restriction obtained
from <y, is solvable iff the problem obtained from <y, is solvable. Thus the
algorithm does not need to consider the ordering of variables with identical la-
bel if no variable with different label lies between them in the chosen ordering.
The orderings we will use in the following are therefore only quasi-linear: each
two variables which have different labels must be ordered.

Thirdly, the set of pure constraint problems can be partitioned in such a way
that each class of constraint problems can be solved independently of the others
by the following. We call two pure constraint problems interrelated iff they
share a variable. A class of constraint problems is a connected component with
respect to this “interrelated”-relation. If two constraint problems belong to
different classes, they do not even indirectly share variables. Thus they are
totally independent of each other and can therefore be solved independently.
Hence, we will assume that the constraint problem we must solve consists of
just one class of interrelated constraint problems.

We generalise the notion of a linear constant restriction to respect the first two
optimisations mentioned above and to include the variable identification given
in the first step of the combination algorithm. A generalised linear constant
restriction over a set of variables U is a triple L = (TI, Lab, <) where II is a
partition of U, Lab : U — {¥4,...,%,} is a labelling function, and <z, is a
partial ordering of U with the following properties (we use =p to denote the
equivalence relation induced by II):

e Lab obeys the identification induced by II (Lab(x) = Lab(y) if z =n y),

o <y obeysIl (' <p 9 ifr' =nz, v =ny, and z <p, y), and
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e cach two variables with different labels are ordered in <j (z < y or
y <r, = if Lab(z) # Lab(y)).

A substitution o solves (T';, L) in the quasi-free structure (QLiEi,X ), iff o solves
I';, and for all x,y € U

e o(z)=0(y) if z =n vy,
e o(xz) € X whenever Lab(x) # %;, and
e o(y) ¢ Stab® (0(z)) whenever Lab(y) # Lab(z) = ¥; and z <f, y.

By item two, all variables that receive a label different from 3; are treated
as constants by o. By item three, the use of these constants in o is further
restricted. Two generalised linear constant restrictions L; and Lo over U are
called equivalent, if they have identical partitions and labelling functions and
their orders differ at most in ordering variables of identical label. This definition
induces an equivalence relation on all generalised linear constant restrictions for
a given set of variables U. If Ly and Ly are equivalent and a substitution o
solves (I, L), then o also solves (', Ls).

Proposition 4.2.3 The input problem I' has a solution in the free amalga-
mated product, if and only if there exists a generalised linear constant restric-
tion L = (II, Lab,<p) over U, the combination variables of T', such that for
the output tuple ((T'1,L),...,(Tp, L)) each constraint problem with generalised
linear constant restriction (I';, L) has a solution.

It is clear that an optimised algorithm will compute just one generalised linear
constant restriction for each equivalence class.

4.3 Decision Sets

The original algorithm makes all non-deterministic decisions first, and only
thereafter it calls the component algorithms to determine whether the input
problem with the thus chosen constant restriction is solvable. Our optimisa-
tions interleave these two parts. Hence we have to deal with linear constant
restrictions which are only partially specified, i.e., restrictions representing the
choices already made but making no statements about the decisions still open.
In order to describe these partial constant restrictions and to have a common
framework for describing our optimisations on a formal level, we introduce the
notion of decision sets. Each element in such a set describes a single non-
deterministic decision. There exist five different types of decisions.

Definition 4.3.1 Let U/ be the set of variables. A decision is an expression
of the form z =y, z # y, £ < y, x +> %, or = v/ ¥;, where z,y € U and
1 < i < n. The decision z < y is used as an abbreviation for z < y,z # y.
With L£(U) we denote the decision language.
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Sets of decisions (for a set of variables i) are — as usual — read conjunctively.
In order to represent the two options when making a decision, we define the
negation of a decision.

Definition 4.3.2 Let d be a decision. Its negation —d is defined as follows:

r=y =L F Y, ~rFY =a =y,
-z Xji=1 A X, -z N =1 N,
—r<y =y

These rules of negation reflect the three non-deterministic steps of the algo-
rithm: Two variables have to be identified or treated as different variables;
each variable has to be treated as a variable or like a constant in a particular
component constraint problem; and two variables with distinct labels have to
be ordered in one way or the other. In the following we formally define this
correspondence between sets of decisions and linear constant restrictions.

Definition 4.3.3 Let U be a set of variables. A generalised linear constant
restriction L = (II, Lab, <p,) over U satisfies a decision set D, if the following
holds:

rz=ny if z=ye€D, rZny if z#yeD,
Lab(z) =%; ifz v %; € D, Lab(z) #%; ifxvh ¥, € D,
r<pyorx=ny if xz<yéeD.

The set of linear constant restrictions satisfying D is denoted by L£(D). Two
sets of decisions Dy and Ds are equivalent if £(D;1) = L(D3). A set D is called
inconsistent if L(D) = ().

So, the decisions are interpreted by a generalised linear constant restriction in
a straightforward way.

Definition 4.3.4 A decision set D is called closed if
D = {d| every L € L(D) satisfies {d}}.

This definition implies that for each decision set D there is exactly one closed
set which is equivalent to D; this set is called the closure of D. This closure
can be computed efficiently; one has to consider that = denotes a congruence,
< stands for an ordering, and z ++ 3; represents a functional relation. For
example, a closure always contains x = =z for all variables z € U, the two
decisions £ =y € D and y < z € D imply that 2 < z is in the closure of D, and
the closure of {z ++ ¥;} contains z & X; for all ¢ # j. In the following we will
always assume that sets of decisions are closed, i.e., when adding decisions to
a set we assume that the closure is formed immediately. With C,(,) we denote
the set of all closed decision sets. There are two special closed decision sets.
The first one is the closure of the empty decision set, denoted C'|. The second
one is the closure of any inconsistent set, namely Ct = L(U).

We have the following syntactic characterisation of closure.
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Lemma 4.3.5 Let D be a set of decisions over variables U. D is closed, iff for
all xz,y,z €U

r=x€D,

r=yeD—=—=y=zx€D,
r=y,y=2€D=x=2€D,
r#yeED=y#x€D,
r=yy#zeD=x#2€D,

z— X, €D = xvs ¥; €D forall j #1,
=y, x>, €D =y~ ¥, €D,

z— Y,y N, eEDiF =z F#yeD,
r<yy<z€D=1x<2€D,
r=yy<ze€D=2x<2€D,
r<yy=z2€D=2x<2€D,
r<yeED=x#y€eD.

Proof. 1t is straight forward to check that if D is closed all of the above
conditions must hold. Thus the only interesting part is to see that the conditions
characterise closure. So let D fulfil these conditions. We have to show that every
decision that is satisfied by all linear constant restrictions L € £(D) is already
contained in D. Decisions satisfied by all L € £(D) are those ones that follow
from the definition of a generalised linear constant restriction.

Let L = (II, Lab, <) be a generalised linear constant restriction. The first
part, II, is a partition of U. It interprets = and #. Thus = is always reflexive,
symmetric and transitive in the closure of D, # is symmetric and =-closed.
Hence the first five conditions.

The second component, Lab, is a labelling function that obeys II. Condition six
corresponds to function-hood and conditions seven and eight reflect that Lab
respects II.

The third component, <, is a partial order that obeys II and orders each two
variables with different labels. Condition nine give the transitivity of the partial
order. Conditions ten to twelve reflect that <7, obeys II. Since the definition of
<, only demands that two variables of different labels be ordered, but not the
way they are, different linear constant restrictions may order them differently.
Hence there can’t be any decision satisfied by all linear constant restrictions
in £(D) resulting from that part of the definition of <. Since this is all the
definition demands there are no more conditions required. |

We need a criterion when a set of decisions already represents one linear
constant restriction constructed by the algorithm, i.e., when no more non-
deterministic decisions have to be made.

Definition 4.3.6 A set of decisions D is complete, if all generalised linear
constant restriction in £(D) are equivalent.

From this definition and the one above it follows that there is a one-to-one
correspondence between the equivalence classes of generalised linear constant
restrictions over U and closed and complete sets of decisions for U.
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In order to test inconsistency and completeness in the algorithm, we need a
syntactic formulation of these properties. This is provided by the following
lemma.

Lemma 4.3.7

1. A closed set of decisions D is inconsistent iff d € D and —=d € D for some
decision d.

2. A closed and consistent set of decisions D (for variables U) is complete
iff for all x,y e U

either =y €D or x#£y €D, and
either t<ye€D or y<z €D ifx+s X,yvs ¥, €D, and
x> 3; € D for one 3;.

Proof. The characterisation of consistency is obviously correct.

Let D be a consistent closed and complete set. Since all generalised linear
constant restrictions in £(D) are equivalent, all their partitions and labelling
functions are identical. As the partition and labelling function are total on U,
clearly for all z,y € U : either z =y € D or z # y € D and thereisan i <mn
with x = ¥; € D by D being closed.

All generalised linear constant restrictions in £(D) order all pairs of variables
with different label, and since they are equivalent, their ordering information
on those variables that differ in label are identical. Thus for all z,y € U with
x v N,y s B; either x <y € D or y < x € D, because D is closed.

Suppose D is consistent and closed and fulfils the three conditions. Let Ly =
(ITy, Laby,<pr,) and Ly = (I, Laby, <r,) be two generalised linear constant
restrictions that satisfy D. For all z,y € U either x =y € D or x # y € D.
Therefore for all z,y € U either z =, y and x =n, y or  #q, ¥y and = Z, .
Thus H1 = H2.

For all z € U there is an 7 such that z v+ X; € D. Therefore for all z € U :
Laby(z) = Labe(z) = X;. And thus Lab; = Labs.

For all z,y € U such that there is an ¢ with z v 3;,y & X; € D either
x<y€Dory<zeD. Thus either x <y, y and = <p, y or y <z, = and
y <1, . Therefore <7, and <y, order all pairs of variables that differ in label
identical. Therefore, Ly and Ly are equivalent and D is complete. |

Definition 4.3.8 Let (Qlizi,X) be a quasi-free structure over signature ;. A
constraint problem with decision set is a finite set of atomic X;-constraints T’
(read conjunctively) together with a set of decisions D. A substitution o is a
solution of (T, D), if o is a solution of T and for all variables z,y € U

e if 2 =y € D then o(z) = o(y),
e if z £y € D then o(x) # o(y),
o if x4 3; € D then o(z) € X,
o ifx s B,y Nz <y € D then o(y) ¢ Stab¥ (o(z)).
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4.4 Iterative Decomposition

The Principle

A major disadvantage of the original method is late detection of failure. Suppose
the input problem consists of constraint problems of five different components
and that the second sub constraint problem — and thus the whole problem — is
unsolvable. The original method always makes all decisions for all constraint
problems. In order to detect the insolvability of the second component, all
decisions for all the following components must be considered as well before
testing solvability. Thus the whole search tree of the remaining constraint
problems must be considered before the algorithm establishes that at any leaf
of this tree the second component is unsolvable, independently of the decisions
made for later components.

Avoiding this problem is the main goal of the iterative decomposition method:
components are solved iteratively, one component at a time. All decisions in
the non-deterministic steps are made locally, for the current component only,
and after that, this component is tested for solvability. So we start by non-
deterministically choosing a variable identification, a labelling, and an ordering
that solves the first component problem. And we proceed from one compo-
nent constraint problem to another by making the choices necessary to solve
the next component problem while respecting previously made choices. If it
turns out that previously made choices make the current component problem
unsolvable, we have to backtrack to the previous component problem and try
another set of choices. Making choices locally just for one component problem
means the following. We identify or discriminate variables of the current com-
ponent problem, only. We label variables of the current component problem,
and furthermore we only determine whether a variable receives the signature of
the current component problem as label or whether it is treated as a constant
in this component. And just the variables of the current component problem
are ordered.

The advantages of the iterative decomposition are twofold. Firstly, iterative
decomposition remedies the disadvantage of late detection of insolvability as
described above. If a component problem is unsolvable, this is detected when
trying to solve this component problem. Therefore no decisions about later
component problems will be made.

Secondly, the search space is reduced as compared to the original algorithm
by avoiding certain superfluous choices. Even under the assumption that all
component problems of the input constraint problem are interrelated, there are
variable identifications and orderings that are not needed. For example, if two
variables do not occur commonly in one component problem after all identifi-
cations being made, then ordering them either way does not affect solvability.
Since iterative decomposition can make decisions only on variables that occur
together in at least one component problem, these superfluous choices will not
be made.
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The Algorithm

Before we present the algorithm, we have to define a condition when all choices
for one component constraint problem have been made. Recall that I; denotes
the set of combination variables of problem I';.

Definition 4.4.1 A decision set D is complete for component i, iff for all vari-
ables =,y € U;

eitherr t=y€ Dor z#yeD, and

either x = ¥; € Dor z v/ 3; € D, and

either z<yeDor y<xeD ifxs I yvh Y €D.

In the following description, we collect previously made decisions in the form
of sets of decisions D;. Each set D; will be a consistent closed set of decisions
collecting the choices we have made so far. Define Dy := Clo((}), i.e., the initial
set of decisions is trivial.

For component problems ¢ := 1 to n repeat the following steps
Step 1: Variable Identification

Choose a partition IT amongst the variables Uf;. Define Dg’: ={z=y|z=ny}
and Dgﬁé :={z # y | £ Zn y}. The partition II must be chosen in such a
way, that D;_, U D’~’: U Dgy 4 is consistent. This means that previously made
identifications and discriminations must be observed.

Step 2: Labelling

Choose some set V' C U; to form the labelling decision set Dj ; , := {z + %; |
z€VIU{z v 5|z €U\ V}insuch a way that D;_1UD; _UD;_,UD;
is consistent. Therefore labels are assigned to whole classes of the partition II,

and a label can only be assigned to variables that have not yet received one.
Step 3: Ordering

Choose a set of ordering decisions D§’< Clr<yy<z|zyelandz
Yi,y o Bi € D, .} such that each pair z,y € U; with distinct labels is ordered
and D;_; UD{’: ’UD;’;,,é UD;’Lab U D§’< is consistent. This implies amongst other
things that the order is non-cyclic and that previous ordering decisions are
respected.

Define D; as the closure of D;_1UD; _UD; ,UD;;,,UD; . Define Dj|y, C D;
as the subset of D; that contains only decisions over the variable set U;.

Step 4: Testing the Component Problem I'; with Decision Set

If there is a X;-substitution that solves (I';, D;|y;,), continue with the next
component problem. Otherwise choose another set of decisions. If no other
choice is left for the current component problem I';, backtrack over components
1—1,...,1, i.e., try another choice in the preceding components.

Proposition 4.4.2 The input problem I' is solvable, iff there is a set D,, such

that for each i =1,...,n the component problem with decision set (I';, Djly;) is
solvable.
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Note that testing (I';, D;|;) for solvability can be performed by the same com-
ponent algorithms as are used in the original algorithm.

It is a quite subtle task to enumerate all the possible consistent extensions of
a given decision set without relying on an inefficient generate and test method.
For the first two steps, this task is not too difficult. For the third step, the
description of such an enumeration algorithm is rather involved. It follows
in Section 4.5. We will now give syntactic criteria for when an extension is
consistent.

Lemma 4.4.3 In Step 1, D;—1UD; _UD; , is consistent, iff the following two
conditions are true: both x =ny ift =y € Di—q, andx #Zny if x #y € D;—y
for all x,y € U;.

Proof. If D;—1UD; _UD; , is consistent, then clearly the two conditions hold.
For the inverse direction, D;_; and D; _ U D; , are consistent. So the only way
inconsistencies can arise by d € D;_1 and —d € D;’: u Dgﬁé for some decision
d. This can only happen by either z =y € D; ; and z Zgyorz #y € D; 4
and z = y for some z,y € U;. |

Lemma 4.4.4 In Step 2, D; 1 UD;_UD;_,UDj;, is consistent, iff the
following two conditions are true: both [zlg CV for allx € V, and V N {z |
dj<i: z ZjEDZ',l}:@.

Proof. If D;_4 UD’FUD;Jé UDQ’Lab is consistent, then clearly the two conditions
hold. For the inverse direction, D; U D’-’: U D;ﬁé and Dg’ Lap ar€ consistent.
There are two ways inconsistencies can arise. There can be some decision d
such that d € D;_; U D’~’: U D;ﬁé and —~d € DQ’Lab. Or the inconsistency occurs
when forming the closure of D; | U Dg’: U D;ﬁé U D;’ Lap- The former case
can only happen if there is an z € V such that z = ¥; € D;_; for some
j < i. The latter case occurs only, when = & X, € D;Lab and x V— X; €
Clo(D;—1 U D{’: U D;ﬁé U D;,Lab) \ (Dj—1 U D{’: U D;ﬁé U D;,Lab)' This happens,
whenz =y € D; 1UD; _UD;, and y++ %; € Dj ;. Thus there is a y such
that y € V but [yln € V. [

Correctness and Completeness

We presume the correctness and completeness of the original decomposition
with basic optimisations, as stated in Proposition 4.2.3.

Correctness

Lemma 4.4.5 For each i with 1 < i < n, the decision set Dj|y, is closed,
consistent and complete for component .
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Proof. D;|y; is consistent as a subset of the consistent set D;. Dy, is closed,
because it is the reduction of the closed set D; that contains all decisions over
variables ;.

Let z,y € U;. Then either x =y € D;|y, or x # y € D;|y, due to Step 1 of the
algorithm. And either z +» %; € D;|y, or z v» E; € D;|y, due to Step 2. If
z = B,y 5 3 € D;|y, then immediately by Step 3 either z < y € D,y or
y < x € Dj|y,. Therefore D; |y, is complete for component 4 by Definition 4.4.1.
[

Proposition 4.4.6 If for all i with 1 < i <n there exists a 3;-substitution o;
that solves (I';, D;|i.), then the input problem T" is solvable.

Proof. D, is consistent by definition. Define the following generalised linear
constant restriction L = (TI, Lab, <j,) by

e x=qnuy, iffx =y €D,

¥, ifx v 3; € Dy,
Y., otherwise;

e Lab(z) = {

e <y is given by any consistent extension of
r<py, ifzx<ye€D,
that orders each two variables with different labels.

L satisfies D,,, and if o; solves (I';, D;|;) then o; solves (I';, L). Thus the input
problem T' is solvable due to correctness of the original algorithm (Proposi-
tion 4.2.3). [

Completeness

The aim is to show the following

Proposition 4.4.7 If the input problem I' is solvable, then I' is solvable by
iterative decomposition.

We will prove this proposition using the completeness of the original algorithm
with basic optimisations. Due to the completeness of the original algorithm, if
the input problem is solvable, there exists a generalised linear constant restric-
tion L such that the output tuples ((I';, L))1<i<n are solvable. This generalised
linear constant restriction is used to guide the choices that will be made in each
iteration of the iterative method.

Definition 4.4.8 Let L = (II, <y, Lab) be a generalised linear constant re-
striction. Define
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the set of equality decisions
Di—:={z=y|z=nyand I <n:zycl},
the set of disequality decisions
Diy:={z#y|rx#nyand Ji <n:z,ycl},
the set of labelling decisions
DJ,Lab = {ZE > | Lab(zp) =Y,and z € Ui},
the set of ordering decisions as the set
Do :={z<yl|z<py3Jj:zyecU;(Lab(z) = %;,
Lab(y) # %) or (Lab(z) # 5, Lab(y) = 5;)}.

Set Dy, the decision set induced by L, as the closure of the union D —UD U
D¢< U DiLab-

Lemma 4.4.9 D), is a closed consistent set.

Lemma 4.4.10 Let ['; be a constraint problem. Let L = (II,Lab,<r) be a
linear constant restriction and D,j, the decision set induced thereby. Then
(I's, L) is solvable , if and only if (I';, Dy1|u;) is solvable, where D)y, is D,r,
restricted to decisions over variables U;.

Proof. If (T';, L) is solvable, then (I';, Dz |iy;) is solvable, because the decision
set D, |y, induced by L contains only a subset of the decisions of L.

For the inverse direction, suppose o solves (I';, D1 |i;). If for z,y € U; : o(z) =
o(y), then x =y € D, |y, and therefore x =g y.

Now let z =i y. Then = y € D,p|y, by definition of D7 and therefore
o(z) =o(y).

Let for y € U; : Lab(y) = %, with j # . If y € Uj, then y ¥ 3; € Dp|y,.
If y ¢ U;, then there is no k such that y — ¥ € D|r|i;- In both cases
y+> ;i & Dy1ly;. Therefore o(z) € X as demanded.

Let for z,y € U; : Lab(z) = ¥;, Lab(y) = %;,j # i and o(z) € Stab(o(y)).
Then y = ¥; € Dy1|y;; and z ¥4 3; € D 1|y, according to the same argument
as in the previous paragraph. Therefore z < y € Dl and z < Llu, Y by
definition of Dy |y, . n

We now have to show that D7 is a potential decision set calculated by the
iterative decomposition.

Lemma 4.4.11 Let (I, L) be a solvable component problem with decision set
L. Then the induced decision set D), can be constructed by the iterative de-
composition, i.e., D = Dy.

Proof. In each component i, we make the following choices. Two variables
x,y € U; are identified according to D)z, that is, iff x =y € D,y then z =
y € Dg’:; iff  #y € Dy, then z # y € Dgﬁé. Iff z v+ ¥; € Dy, then

x v B € Dj 1oy Mffx <y € Do, thenz <y e Dj_.
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Claim 1: For 0 <1 < n: D; is consistent and D; C Dy..

Proof of Claim 1:

Dy = ) is obviously consistent and a subset of Dr.

Let i > 0. D;—1 C Dy, by hypothesis. D; _, D; ,, D; ; ,, and D; _ are subsets of
D1, by definition, thus D; 1 UD; _U D”# U D;’Lab U Dj _ is consistent, because
it is a subset of the consistent set D 7. D; defined as the closure of the above
union is a subset of D7, by monotonicity of the closure operator and consistent,
because it is a subset of a consistent set.

Claim 2: DiL = Dn

Proof of Claim 2:

Dn g DiL by Claim 1.

Let x =y € Dy, then z =y € Clo(D|=). D= = ;= Dj _ by definition, thus
Clo(D,=) = Clo(Uj-, D; =) C Dy,

Let z #y € Dyy. Then, by definition, z # y € Clo(D)=U D). D= C D,
by the above. If w # z € D, then there is a j such that w,z € U;, and thus
w# 2z € D;#. Therefore D+ C D,,. Thus z # y € D,, since D, is closed.

Let = ¥; € Dy, for some ¢. Then x € U; by definition, and therefore
z— %, €D Lab © Dn.

Concerning the ordermg, D,. = U=, D; . by definition. Clo(D,= U D #)
Clo(Ui= Di — UUj=, D; ;) by the above Now r<y€Dy 1mphes T<y€
ClO(D¢<UD¢=UDi?£) ClO(Uz:1D1<UU: :UUz: z, )gD :

Claim 3: All of the above choices of the sets Dj _,
as steps in iterative decomposition.

Proof of Claim 3:

That all of these choices can be made consistently, is shown by Claim 1.

For variable identification, the partitioning is directly given by the equivalence
classes that result when restricting the equality and disequality decisions of Dz,
to the variables of a particular component problem, as done in D’ _ and D’
For labelling, the generalised linear constant restrictions ensure that each varl—
able receives only one label and that classes of variables that are identified
receive one and the same label.

For ordering, Dg’ - contains only ordering decisions on variables of component
1. It respects the variable identification, because the generalised linear constant
restriction (II, <r, Lab) does so. And, by definition, each pair z,y € U; of vari-
ables where one has component ¢ as label while the other has not is ordered in
D _. n

! ! :
DZ;J,é,DZ.’Lab,Di’< are valid

Proof of Proposition 4.4.7.

Let I" be solvable. By Proposition 4.2.3 there exists a generalised linear constant
restriction L = (II, <g, Lab) such that the output tuples ((I';,L))1<i<n have
a solution. By Lemma 4.4.10 the output tuples ((Fi,D\LL|ui))1S¢§niv;ith the
induced decision set D, are solvable. By Lemma 4.4.11, there exists a set of
choices of the iterative algorithm such that the decision set Dy, is constructed
thereby. |
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4.5 An Algorithm for Computing the Variable Or-
derings

The description for choosing linear orderings in the iterative algorithm lays
out only the conditions that an actual implementation has to fulfil. It is not
a method for computing them. In this section we want to give a concrete
algorithm, the one that is actually used in the implementation. The key point
of the difficulty is the best use of the already given partial order that one has
to respect when constructing the current one. One could generate all possible
orderings and use the given partial order as a filter. But that would naturally
lead to many orderings constructed in vain. The optimal solution would be one
that integrates the filter into the construction and produces only such orderings
that are compatible with the partial ordering. Of course we also want to respect
the basic optimisation that two adjacent variables with identical label (here:
current component or not current component) need not be ordered relative to
each other. All of these demands are fulfilled in the following algorithm.

Function Restrictions

Input: - partial order PO from previously handle components
given as a list, each element: a pair, a node and a set of
successors which contains all immediate successors and maybe
some more
a node can can be marked as "done"
(this is much simpler than actually taking the node out of
the P0.)
- list of variables of the current component VL
(only combination variables are relevant)
information whether variable is handled as a true variable or
constant is given (by indexing)
variables can be marked, markings are

* "inserted" : variable is already inserted into the linear
order
* "blocking" : variable is inserted and blocks other

variables in the PO above itself from being inserted later
Construction of one order

Let LO be the linear order to be constructed,

Set LO := [1 (empty list)

Let VO be the list of variables still to insert

Set VO := VL (without markings)

Let V/C-flag be a flag indicating whether the last block constructed
was a block of variables or constants.

Non-deterministically set V/C-flag to V or C.

While VO =\= [] do
{
(Construction of the next block)
Let BE-flag be a flag stating whether the current block is still
empty
Set BE-flag := true
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Invert V/C-flag (V <--> C)
If there are only variables of type V/C-flag left in VO
Append VO to LO and exit the loop

(Step through VO from left to right)
For each element X in VO
{
If X is the last element of type V/C-flag in VO
and BE-flag = true,
take X
else
non-deterministically choose X
Let SG be the set of elements below X in PO
Set SG := Suborder(X, PO, VL)
If SG =\= [] do
{
Set BE-flag := false
Delete SG from VO
Append SG to LO
Mark X in VL as "blocking"
Mark all other elements form SG in VL as "inserted"
Mark all elements from SG as "done" in PO
}
}
Delete all marks from VL;
}

Remove all marks in PO.
Compute the linear constant restrictions from LO and call the
Constraint solving algorithm of the current component problem.
If the solver was successful,

Integrate LO in PO
else

backtrack choosing a new LO.

Function Suborder

Input: Variable X
Partial order PO with mark signs
List of variables of the current component
with markings VL
Output: If X can be integrated into the current linear order, the
suborder below X in PO, else the empty list.

X can be integrated into the current linear order, if for all
variables Y below X in PO holds:
Y is not in the current component (in VL)
or
Y is of the same type (variable or constant) as X and not marked as
"blocking".
The returned suborder is a list of variables that still have to be
appended to the quasi-linear order under construction.
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If X is not in PO (a new variable, not handled so far)
exit the function with return value [X].

Let Stack be a stack of elements from PO still to be processed
Set Stack := [X]

Let CL be a list of elements which don’t need to be processed any
more.

Set CL := [].
Let SG be the suborder to be returned
Set SG := [].

While Stack =\= [] do

{

Set Y := Top(Stack)

Set Stack := Pop(Stack)

(Examine Y)

If Y is marked as "done" in PO
just continue

If Y has a label different from X

or Y is marked as "blocking" in VL
set SG := [], Stack := []

If Y is not in VL (not in current component)

or Y is marked as "inserted" in VL
{
Set CL := CL (set-) union Successors of Y (in P0)
Set Stack := Push(Successors of Y minus CL, Stack)

}

else (Y in current component, not inserted, unmarked)
{
Set CL := CL union Successors of Y

Set Stack := Push(Successors of Y minus CL, Stack)
Set SG := [Y|SG] (append Y to SG)
}

Return SG.

4.6 The Deductive Method

The method to describe in this section relies on the fact that many decisions
in the search space are not really non-deterministic, but rather determined
by demands of the components. It has been developed by J. Richts and is
explained in full detail in his doctoral dissertation. We present it here, because
any description of optimisation techniques would be incomplete without it, and
also because the method has been developed in a co-operative project with us.
The deductive and the iterative method are integrated to form one system.

A severe disadvantage of the original combination algorithm is that all non-
deterministic decisions are made blindfolded without respecting the require-
ments that the components may impose. For example, if a component is an
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equational theory FE; that is collapse-free and the problem contains an equation
x=f(...y...) where f € ¥;, then £ must receive label ;. If E; is also regular
then the problem is unsolvable if y &4 ¥; € D and z < y € D. Hence the
algorithm can choose z +— ¥; € D deterministically and take into account that
y s 3; € D implies y < x € D.

As the example shows, some decisions that have been deduced earlier in one
component can be used to deduce new decisions in another component. This
possible interplay between different components suggests to use a method where
component algorithms computing new decisions are called alternately in the be-
ginning of the combination algorithm and whenever a non-deterministic choice
has been made: Starting with some initial decisions, each component algorithm
computes new decisions; these new decisions are added to the current set of
decisions, which is used when calling the other component algorithms. When
this process comes to an end because no new decisions can be deduced, the next
non-deterministic choice has to be made by the combination algorithm. After
this choice the process of computing new consequences can be started again.
At any step of computing the consequences, a component algorithm may return
the information that its subproblem has become unsolvable with the current set
of decisions. Thereby, unsolvable branches of the search tree can be detected
earlier.

Obviously, this method requires new component algorithms that are capable of
computing consequences implied by the component structure, the problem, and
the decisions computed so far. A quasi-free structure for which such an algo-
rithm does not exist can still be used in this method, but it cannot contribute to
the deductive process. It is clearly the quality of the deductive component al-
gorithms that decides the amount of optimisation achieved. The optimisations
of our component algorithms go quite beyond using only syntactic properties
of theories as in the example above. The goal is to deduce as much information
as is possible with a reasonable effort.

The Algorithm

First we define the task of the new deductive component algorithms. Their
input is a pure constraint problem and a set of decisions which need not be
complete. The result is a set of decisions that follows from the constraint
problem and the input decisions. If the input is unsolvable, the result may also
be an inconsistent set of decisions.

Definition 4.6.1 Let (I, D) be a constraint problem with decision set. The
decision set D is a consequence of (I, D), iff D is contained in every complete
decision set D' D D with (T', D') is solvable, i.e.,

CC ﬂ{D' | D C D', D' is complete for T', and (T, D') is solvable }.

Note that C' = ) is always a consequence and that the solution need not be in-
consistent if (T', D) is unsolvable for all complete extensions D’ of D. Therefore,
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the standard algorithms for constraint problems with linear constant restrictions
must be called in the end when a complete set of decisions is reached. In the
subsection on component algorithms, we discuss how deductive and component
algorithms co-operate.

Now we can describe the algorithm. The termination condition in case of success
is that the set of decisions is complete, as given in Lemma 4.3.7. In the following,
D denotes the current set of decisions, initialised with D := (.

Repeat
Deduce consequences:
Repeat
For each component 1,
call the component algorithm of component 7 to calculate
new consequences D of (T';, D),
set the new current set of decisions D := D U C
Until D is inconsistent
or no component algorithm computes new decisions.

If D is consistent and not complete
Select next choice:
Select a decision d ¢ D such that D U {d} is consistent.
Non-deterministically choose either
D :=DuU{d} or

D := DuU{~d}
Until D is inconsistent or complete
Return D.

Like the algorithms presented so far, this algorithm non-deterministically com-
putes a decision set D for which each (I';, D|y;) has to be tested for solvability.

Proposition 4.6.2 The input problem T is solvable, iff the algorithm computes
a consistent decisions set D such that for each i = 1,...,n the constraint prob-
lem with decision set (I';, D|y;) is solvable.

A proof of this proposition can be found in Richts’ doctoral dissertation.

Deterministic Combination

It is interesting to observe that there exists a class of constraint systems for
which the deductive combination algorithm has PTIME complexity, which en-
tails that all steps can be made deterministically. In [94, 96], K. U. Schulz gives
a general description of a PTIME combination algorithm for certain equational
theories. This algorithm is extended to the combination of quasi-free structures
in Chapter 6. The class of structures that are deterministically combinable is
quite restricted. Currently, only unitary regular collapse-free structures are
known to belong to it.
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Although our deductive component algorithm is designed for the general case,
it turns out to be an implementation of the deterministic algorithm when ap-
plied to component algorithms satisfying the conditions imposed in [94, 96] and
Chapter 6. Our component algorithms for unification in the empty theory, for
rational tree algebras, and for feature structures meet these conditions. Thus,
when applied to these structures, our combination algorithm runs determinis-
tically. This deterministic behaviour shows the great impact of interchanging
decisions between component algorithms.

Component Algorithms

In order to prune the search space significantly, new component algorithms are
needed for the deductive method. When designing these algorithms one should
take into account the special way in which they are called. Many constraint
solving algorithms, especially standard unification algorithms, are “one shot”
algorithms: They are started only once with all information they need given and
compute final results. Deductive component algorithms must be able to cope
with partial information and deliver a meaningful but not not necessarily the
final result. More importantly, when receiving new information the algorithms
should not restart computation from scratch but rather continue on the base
of their prior internal states. Otherwise, the search space would be partially
shifted from the combination algorithm to the deductive component algorithms.
The same holds for the standard component algorithms for constraint problems
with linear constant restrictions that perform a complete test at the end of the
combination algorithm: They should take into account the information already
computed by the corresponding deductive component algorithms. Thus there
should be a strong coupling of the standard and the deductive algorithm.

Note that there is no need for completeness in the deductive component algo-
rithm. The algorithm need not compute all decisions implied by the input and
it need not return an inconsistent set if the problem is unsolvable. Thus an al-
gorithm returning always the empty set would be correct. This would not result
in any optimisation, but it enables us to use every quasi-free structure in the
deductive combination algorithm for which an algorithm for solving constraint
problems with generalised linear constant restrictions exists. In the other ex-
treme it might not be advisable to compute new decisions at any cost; there
should be a careful consideration between optimisations of the combination al-
gorithm resulting from new decisions and a higher complexity of the deductive
component algorithm.

We developed deductive component algorithms for particular equational theo-
ries and equational unification: For the free theory, A, AC, and ACI. This is not
the place to give a detailed description of these algorithms. In the following,
we rather outline the ideas underlying them.

The deductive algorithm for the free theory is based on computing the most
general unifier (mgu). Identification, labelling, and ordering can easily be com-
puted from this mgu. The mgu has to be computed only once, namely when the
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deductive algorithm is called for the first time. When the algorithm is called
with some new identification z = y, which was deduced by another deductive
algorithm, unification of the terms mgu(z) and mgu(y) has to be performed.
All other decisions do not trigger any computation. This method can be inte-
grated in the quasi-linear algorithm described in [17] where terms and unifiers
are represented as directed acyclic graphs.

The theory A = {z+(y+2) = (z+y)+=z}, i.e., the theory of an associative func-
tion symbol + is basically the theory of free word equations. The deductive
component algorithm translates the input into word equations and simplifies
them. The simplification steps allow the computation of new identification, la-
belling and ordering information. This is an example of a deductive component
algorithm which does not compute all consequences. Hence we need to call
the standard algorithm for A-unification with linear constant restrictions in the
end.

For the theory AC = {z+(y+2) = (x+y)+2;2+y = y+=x}, i.e., the theory of
an associative and commutative function symbol 4, the deductive algorithm is
based on [107]. First, the set of minimal solutions of the homogeneous Diophan-
tine equations corresponding to the unification problem is computed. Some of
these solutions can be deleted with the help of the existing decisions. From the
remaining set of solutions, information about labelling, ordering and identifica-
tion can be deduced.

The set of minimal solutions has to be recomputed when new identification deci-
sions occur. This might seem to be a drawback at first glance, since computing
the solutions of Diophantine equations can be a time-consuming task; but it
cannot be worse than in the original combination algorithm, i.e., Diophantine
equations are not solved more often, since this happens at most once for every
partition of variables. Unfortunately, the number of minimal solutions of the
Diophantine equations can be exponential in the size of the unification problem.
But at least we do not need to compute complete sets of unifiers, which can
even be doubly-exponential in number.

In the theory of Abelian monoids, ACI = ACU{z+z = z}, the binary function
symbol is associative, commutative and idempotent. In [59] an algorithm was
given that decides solvability of ACT-unification with constants. The main idea
is to set up Horn clauses which describe the solvability of the equations. We
extended this idea by defining more general Horn clauses such that variables
can be turned into constants during the algorithm without changing the form
of the Horn clauses. The algorithm works by propagating truth values through
the clauses signalling insolvability when a contradiction occurs. New decisions
can be deduced from the literals in the Horn clauses labelled with truth values
during this propagation. Again, the Horn clauses must be set up from scratch,
when new identification decisions occur.

The algorithms for the free theory and for the theories AC and ACI have in
common that they behave like decision procedures for unification with linear
constant restrictions if called with a complete set of decisions, i.e., they return
a correct and complete answer. Therefore the final test does not need to com-

67



pute anything; it can simply return the result achieved by the corresponding
deductive component algorithm.

Rational Trees and Feature Structures

As examples of a quasi-free structures which are not an equational theories the
author implemented rational tree algebras and feature structures of the Smolka
and Treinen variety [104]. The algorithm for rational tree algebras is a simple
extension of the algorithm for syntactic unification. The occurs-check has to be
left out and the computation of new decisions is a bit more complicated since
certain cyclic solution which are impossible in the free theory have to be taken
into account.

We introduced feature structures as examples of quasi-free structures in 3.2.17.
The implementation employs techniques for integrating record like data types
(as feature structures) into logic programming frameworks developed by Van
Roy, Mehl and Scheidhauer [114]. Upon first call, the internal graph-like repre-
sentation of the feature theory is constructed and used to calculate new iden-
tification, labelling and ordering information. This representation needs to be
constructed only once. Later on, new incoming identification information does
not trigger a complete new setup, rather starts a feature structure unification
of the the two structures pending below the newly identified variables. Addi-
tional information can be read out of the new structures, if unification succeeds.
Incoming labelling or ordering information triggers no unification. Labelling in-
formation can help to deduce more information on the ordering. The algorithm
is designed in such a way that it behaves like a decision procedure for fea-
ture constraint problems with linear constant restrictions when called with a
complete set of decisions.

4.7 Integrating the Deductive and Iterative Method

The two methods described above can easily be integrated. The iterative
method is a selection strategy for non-deterministic steps, while the deductive
method deduces deterministic consequences from the decisions already made.
Therefore integration is achieved by plugging the iterative selection strategy
into the deductive algorithm. The combined method looks as follows. Suppose
component constraint problems I'y to I';_; are solved, the current decision set
is D, and D is not complete for component 7, the current component. Select a,
decision d ¢ D over the variables of component 7 such that DU{d} is consistent.
Nondeterministically choose d or its negation and add it to D. Compute conse-
quences and add them to D. If D is still not complete for component i, select
the next decision for this component. If D is complete and (I';, D|y;,) is solv-
able, proceed to the next component problem. Otherwise perform backtracking
and make an alternative choice for one of the decisions made so far.

The method to compute consequences of a non-deterministic decision should be
amended to the new selection strategy as follows. Components that are already

68



solved cannot contribute any new decisions. Consequently only components
that still have non-deterministic choices left open are consulted.

Tests

The above described optimisation methods and component algorithms have
been implemented in COMMON LiISP using the KEIM toolkit [53]. Indeed, there
exists an implementation for the following component algorithms: for the free
theory, the theories A, AC, and ACI and also for rational tree algebras and
feature constraints. Several versions of the combintion algorithms representing
different levels of optimisation are also implemented to test the specific contri-
butions that the individual methods provide. Hence there is an implementation
of the original combination algorithm with basic optimisations, two versions of
the iterative method, two of the deductive method and two of the integrated
solution. In the following we show some results of our optimisations. In or-
der to test our algorithms with examples that occur in practice we used the
REVEAL theorem prover [25]. For some example theorems, we collected all uni-
fication problems that are generated and solved by REVEAL while proving them.
These theorems (and the corresponding sets of unification problems) contain
free function symbols and constants and one or two AC-symbols.

Table 4.1 gives an overview of the run time for some sets of unification problems.
The first six lines contain all unification problems that have to be solved by
REVEAL during the proof search or completion of the respective example. The
first three examples are very simple completions or proofs and the next three
are more complex theorems from the REVEAL distribution. All examples except
the first one contain two AC-symbols and several free symbols. The last three
examples, containing several AC and ACI symbols, are added to demonstrate
the potential of the iterative method. An empty cell in the columns indicates
that the algorithm was aborted after running one hour.

We want to emphasise the differences between column ‘ded’ and ‘ded-’. Column
‘ded-’ shows the run time of the algorithm when using only syntactic properties
as described in [14]; a comparison with column ‘ded’ demonstrates the power of
the deductive method and the deductive component algorithms. The run time
decreases dramatically for most examples and some examples even cannot be
solved in suitable time when using only syntactic properties.

The first six examples present an unexpected deficit in performance increase
when using the iterative selection strategy in the deductive method (compare
columns ‘i+d’ and ‘ded’). This requires an explanation. Note that the number
of backtracking steps is about the same. The equations in the example sets
contain at most two AC-function symbols besides the free symbols. And our
deductive component algorithms for AC and for the free theory are very so-
phisticated; they are capable of deducing such an amount of decisions that the
remaining search space is to small to be shrinkable by the iterative selection
strategy. The last three examples show that the use of the iterative selection
strategy can lead to a speed-up by more than one order of magnitude. The equa-
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Time in seconds Bktrk
Example Size| i+d ded i+d- ded- it+ it orig|i+d ded
Abelian group 291 3.7 3.7 50 50 32 116 172 4 4
Boolean ring o1 3.2 3.2 48 48 27 35 33| 0 O
Boolean algebra 122|15.8 15.7 20.5 24.5 807 12 12
exboolston 87| 12 12 948 997 17 14
exgrobner 1002 | 154 155 1442 1488 65 66
exugsl?2 404| 109 108 7474
AC*ACI* 1 1/ 16 101 74 385 8.2 15 16 103
AC*-ACT* 2 1| 31 407 393 413 841 13 205
AC*-ACT* 3 1| 67 557 204 248 22 192

Legend: Bktrk: Number of Backtracking Steps; i+d: Integration of Iterative and Deductive
Method; ded: Deductive Method; i+d-: Iterative & Deductive Method, but AC-component
replaced by one that uses only collapse-freeness and regularity; ded-: Deductive Method, but
AC-component replaced by one that uses only collapse-freeness and regularity; it+: Iterative
Method alone, plus using collapse-freeness and regularity once at the start; it: Iterative

Method alone; orig: Original unoptimised algorithm.

Table 4.1: Run time of some example sets

tions in these examples contain several AC and ACI-function symbols besides
free function symbols. It is a general observation that the iterative method is
advantageous, if the number of components is large or the deductive component
algorithms do not deduce many decisions.

In order to get more examples, we developed a test set generator. With it,
one generates sets of random combined unification problems over signatures
containing several function symbols from different theories. Certain means were
taken to ensure that about half of the generated problems are solvable. Table 4.7
presents some run time results for these randomly generated problem sets. The
signature contains 2 A, 2 AC, 0-3 ACI and several free function symbols. The
problems are that complex that a use of a combination method different from
the deductive combination makes no sense at all.

It is interesting to observe that with these problems, the iterative selection
strategy is not always the best choice. There are examples (sets 2, 3, and 15)
in which the iterative selection strategy is superior. On the other hand, in the
sets 1, 5, 6, and 18 it is much worse than a strategy which firstly settles all
variable identification and discrimination decisions for all component problems.
It is currently not clear what the conditions are under which one should choose
the iterative selection strategy, and when to rather use the other strategy. The
presence of several collapsing theories is important, but there are several col-
lapsing theories both in those examples where the iterative selection strategy
works well and in those where it flounders. In all these examples, it seems
important to make the “right” decisions first, but there is at current no way to
state what the “right” decisions are.
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Set Equations term- # ACI Ded+Iter Ded
depth time bktrk time bktrk

1 199/98 6 3 816 1953 81 152
2 200/99 6 3 232 780 >1h
3 199/101 6 3 330 800 1158 1982
4 200/127 6 3 58 250 42 110
5 200/97 6 3 1362 3971 141 401
6 200/113 6 3 >1h 103 295
7 200/112 6 3 676 2217 189 689
8 200/100 5 0 19 1 19 1
9 200/90 Y 0 67 33 75 33
10 200/95 5 0 16 1 15 1
11 200/87 Y 0 20 7 21 10
12 200/89 5 0 21 8 21 8
13 200/99 Y 1 32 50 31 30
14 200/93 5 1 21 47 26 22
15 200/109 Y 1 154 394 3931 12335
16 200/116 5 1 26 50 30 31
17 200/107 Y 2 319 1116 83 147
18 200/106 5 2 1250 2627 44 107
19 200/95 9 2 178 462 58 169

20 200/108 ) 2 99 414 43 159
Legend: The signature of these problems consists of 2 A, 2 AC, 0-3 ACI and several free

function symbols. Equations: number of equations in set and number of solvable equations;
term depth: maximal depth of terms; # ACI: Number of ACI-function symbols in signa-
ture; Ded+Iter: deductive combination with iterative selection strategy; Ded: deductive
combination with a selection strategy that chooses all identifications first; bktrk: number of

backtracking steps.

Table 4.2: Run time of randomly generated example sets

Another observation is that there is no simple, e.g., linear, connetion between
the run time and the number of backtracking steps. Obviously, some backtrack-
ing steps require a lot of time, because they appear high up in the search tree,
while others that are close to the leaf nodes of the search tree have a very small
influence on the run time.

4.8 Related Work

We presented an optimised algorithm for deciding combined constraint prob-
lems on the basis of the iterative and the deductive method. The test section
indicates that the optimisations deliver an impressive speed-up over the practi-
cally unusable naive implementation. But for most equational theories F, the
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complexity of general E-unification is NP-hard (see [94, 95]). Since general
E-unification can be regarded as a combination of E-unification with constants
and syntactic unification, it therefore follows, that no algorithm how optimised
it may be will ever be capable of solving all unification problems in polynomial
time, unless NP = P. This means though we see the practical usability of our
algorithm, we do not claim that all problems are solved.

The work that is most closely related to ours is the one by Boudet [20, 21],
where an efficient method for combining equational unification algorithms that
compute complete sets of unifiers is presented. The most important difference
is that our algorithm is designed to handle combined decision problems for
constraint systems while Boudet’s computes complete sets of unifiers for equa-
tional unification problems. Consequently, the theories combinable by Boudet’s
method must be finitary equational theories, i.e., the minimal complete set of
unifiers always has to be finite. This is not the case for decision procedures.
For equational theories, this may not make such a big difference, because most
theories used in theorem proving are finitary. An exception is the theory A of
an associative function symbol, which is infinitary, but decidable. The decision
procedure given by Makanin [71] has EXPSPACE complexity (see [48]) which
is quite bad, but, e.g., no worse than computing complete sets of AC-unifiers.
Hence it could well become usable for certain applications.

If one progresses from unification theory to constraint solving, it is of course im-
portant that one is not forced to calculate and apply sets of unifiers. Quasi-free
structures such as rational tree algebras and feature structures are efficiently
decidable, but unifiers cannot be computed for them due to their nature. Con-
sequently, Boudet’s method cannot be used here. We, on the other hand, im-
plemented deductive components for these structures to show their practical
usability.

For the restriction to finitary equational theories, Boudet describes a method
to simulate the algorithm by Baader and Schulz within his framework. But
unfortunately under these conditions, he looses all the optimisations he had
earlier introduced. His simulation is indeed a naive implementation of the
decision procedure by Baader and Schulz. And there is no way to enhance the
situation with his optimisation techniques, because they rely on information
resulting from the computed sets of unifiers.

Our algorithm contains three sources of non-determinism, namely the variable
identification, the labelling and the ordering. Boudet’s algorithm possesses an
equivalent for each of the three sources of non-determinism. Variable identi-
fication is exactly matched, it occurs in the F;-resolution step. Labelling and
ordering occur, too, but in a somewhat different setting. Boudet’s labelling
rule, called Mark, is applied only after a theory conflict is discovered. In con-
trast, we always label all variables. But Boudet’s labelling is superior only
at first sight. What is the reason for the need of a labelling? A conflict in
which two theories simultaneously try to instantiate one and the same variable.
If both theories are collapse-free, the situation cannot be remedied, the input
problem has no solution. Both algorithms have special optimisations to han-
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dle collapse-free theories. A resolution of the theory conflict is possible only,
if one theory has collapsing axioms. In that case, it is a matter of chance, if
Boudet’s algorithm is superior. If, by coincidence, the unifiers that are selected
in the resolution steps in Boudet’s algorithm happen to be compatible, i.e., the
collapse axiom is used to avoid the theory conflict, Boudet needs no labelling.
If coincidentally a different pair of unifiers is chosen, the theory conflict arises,
and an application of his Mark rule is required. Our algorithm does not make
a blind shot to see if it hits by coincidence a non-conflicting pair of unifiers, but
labels straight away. This is obviously not much worse.

Boudet’s method of handling the ordering is advantageous. His algorithm
guesses a particular ordering of a pair of variables only in case where the solu-
tion computed so far contains a (compound) cycle. In our method, it depends
on the component algorithms. If the component algorithms are good, they may
be able to determine the order of a pair of variables. Otherwise we have to
guess the order non-deterministically.

Boudet’s algorithm contains a further source of non-determinism that is totally
absent in our algorithm: The choice of a particular unifier in the E;-resolution
step. If the task is to compute all unifiers for a given combined unification
problem, there is no other way, one has to compute complete sets of unifiers in
all F;-resolution steps. But Boudet also aims at deciding unification problems
with his method. In this case the selection of a particular unifier out of the
complete set of unifiers for a single component resolution step introduces a
source of non-determinism, that is not required.

It is questionable that picking a unifier out of a complete set of unifiers is
a promising strategy. There is little doubt about its correctness. But the
non-determinism contained seems to be inappropriately handled. Especially
the arbitrary selecting contains a mixture of don’t-know and don’t-care non-
determinism. What does that mean? A single unifier contains all the infor-
mation that is special to this particular solution of the problem as well as the
general information that is common to all solutions, because the problem can-
not be solved elsehow. Suppose a unifier identifies two variables. Unfortunately
one cannot determine whether this identification is proprietary to this unifier or
shared by all unifiers in the complete set. But it makes an important difference.
If the identification is special for this unifier, it is a don’t-know non-determinism,
otherwise it is a don’t-care non-determinism. Suppose solving the overall prob-
lem fails because of this identification. In the don’t-care case, no backtracking
is required; since all unifiers share this identification, any unifier is as bad as
the one chosen. In the don’t-know case, the situation is different. Then one
must backtrack to find a unifier that avoids the failure causing identification.
Thus one should rather know whether the choice one makes is a don’t-know or
a don’t-care choice. It is this problem that the deductive method tries to tackle.
It is the task of the deductive components to find out as much as possible about
the "don’t-care” part, the part that must be present in any solution indepen-
dent of what particular solution one finally picks. So, by deducing what part is
common to all solutions, one can avoid a lot of unnecessary backtracking.
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There is still another problem in using sets of solutions. As stated, Boudet does
not just test a component for solvability, he calculates a unifier and uses that
unifier. The unifier is interpreted as a solved form of the component problem. So
in a sense, it is a component problem, but a trivially solved one. Now, there are
equational theories, for which the solved form of a unification problem can be
exponentially large in the size of the input problem. An example of such a theory
is AC, as can be seen in [38]. Thus after a resolution step, Boudet’s algorithm
continues computation with a component that may have grown exponentially in
size. The point is, there is no guarantee that each component is solved only once.
Later resolutions of different components, especially certain identifications of
shared variables, may cause the earlier solved component to be no longer in
solved form. Hence it has to be solved again, but now it may be — due to earlier
resolution — exponentially larger. And the resolution step may again lead to
an exponential growth in size. This is the reason why currently the worst
case complexity of Boudet’s algorithm is unknown. As seen by J. Richts and
A. Boudet himself,? it seems possible that the complexity is k~-EXPTIME for
some k > 2 or even non-elementary. On the other hand, the decision problem
is in NP and a naive implementation of the unoptimised algorithm by Baader
and Schulz is singly-exponential, as shown in Subsection 4.2.

We conclude with a positive observation. An important aspect of the itera-
tive method is the localisation of choices. This strategy is very much present
in Boudet’s algorithm. The variables considered for identification in an F;-
resolution step are the ones of the component constraint problem to be currently
resolved. Variables subject to the Mark rule are the ones that caused a clash,
so they are certainly local to the problem and the components involved. And
variables subject to the Cycle-rule are variables in a compound cycle. Again
these are local to the components involved in the cycle. One could argue that
the localisation in Boudet’s method is driven to the utmost point, which is a
strength of his method.

4.9 Conclusion

We presented optimisation techniques for combining constraint solvers in this
chapter. Starting from the original algorithm and its basic optimisations, we
described two orthogonal methods to achieve the task of a noteworthy op-
timisation. The iterative method is a strategy for selecting non-deterministic
decisions. It is based on the insight that component constraint problems should
be solved one by one. Otherwise one faces the danger of testing in vain sets
of linear constant restrictions that differ in choices for some component when
some other is plain unsolvable. We showed that non-deterministic decisions
can be made locally for one component without loosing soundness or complete-
ness, if these decisions are adequately propagated to the other components.
The deductive method provides a way to deduce the consequences of a cer-
tain non-deterministic decision made. One can observe quite often that once

2Personal communications.
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a decision is made certain components require that other choices have to be
made in a particular way for their subproblems to remain solvable. Thus af-
ter each non-deterministic decision the components are consulted to state what
consequences they require. This method, developed using techniques of con-
straint propagation, proves enormously effective in shrinking the search space,
provided specialised component algorithms that efficiently compute large sets
of consequences are available. To this end, the development of good deductive
component algorithms is as important as the deductive combination method
itself. The orthogonality of the iterative and the deductive method allow for a
simple integration into a common setup. We think this integrated algorithm is
a good choice for practical applications of combining constraint solvers. This
view is supported by our test results. To do even better would probably in-
clude the step away from general combination methods and solution domains
that we presented here to very particular ones that make sense only for the spe-
cial component constraint solvers and solution domains given in a particular
situation.
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Chapter 5

Rational Amalgamation

5.1 Introduction

A general combination method, in our sense, has to give answers to two prob-
lems. First, it must offer a general construction for combining two solution
domains. Second, a combination algorithm has to be given that reduces the
problem of solving “mixed” constraints over the combined solution domain to
the problem of solving “pure” constraints over the two component structures. In
Chapter 3, we described a first such general method of combination developed
by F. Baader and K. U. Schulz [10, 12, 15]: The free amalgamated product. It is
characterised as being the most general combined solution domain of all struc-
tures that can be reasonably considered as combinations of two components.
For quasi-free structures over disjoint signatures, an explicit construction of
the free amalgamated product of two components is given, and an algorithm
is presented that combines the constraint solvers of the components to gain a
constraint solver for the free amalgam.

In this chapter, we introduce a second systematic way to combine constraint
systems over quasi-free structures, called rational amalgamation. Free and ra-
tional amalgamation both yield a combined structure with “mixed” elements
that interweave a finite number of “pure” elements of the two components in a
particular way. The difference between both constructions becomes transparent
when we ignore the interior structure of these pure subelements and consider
them as construction units with a fixed arity, similar to “complex function sym-
bols”. Under this perspective, and ignoring details, mixed elements of the free
amalgam can be considered as finite trees, whereas mixed elements of the ratio-
nal amalgam are like rational trees'. The following picture gives an impression
of this view.

On this background it should not be surprising that in praxis rational amalga-
mation appears to be the preferred combination principle in situations where
the two solution structures to be combined are themselves “rational” or “cyclic”

LA possibly infinite tree is rational if it is finitely branching and has only a finite number
of distinct subtrees. See [29, 36, 70].
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Mixed element of free amalgam (1) and of rational amalgam (2).

g (1 @)

Q)

Dark (bright) ellipses represent pure
subelements of the first (second)
amalgamation component.

domains: for example, it represents the way how rational trees and rational
lists are interwoven in the solution domain of Prolog IIT [30], and a variant
of rational amalgamation has been used to combine feature structures with
non-wellfounded sets in a system introduced by W. Rounds [90].

We introduce rational amalgamation as a general construction that can be
used to combine so-called non-collapsing quasi-free structures over disjoint sig-
natures. The elements of the amalgam can in fact be regarded as rational trees
where each node is labelled with an element of one component. It is then shown
how constraint solving in the rational amalgam can be reduced to constraint
solving in the components. The decomposition scheme that is used is closely
related to the decomposition algorithm for free amalgamation, but it avoids
one non-deterministic step that is needed in the latter scheme. Hence, when
matters of efficiency become important, rational amalgamation might be the
better choice.

Let us now briefly indicate which insights could be gained from a classifica-
tion of basic methodologies for combining constraints systems. Below we shall
summarise what has been obtained so far.

1. Tt helps to understand the scale of possibilities and the general limitations
for combining constraints systems.

2. It might facilitate the design of new combined constraint systems, and
it helps to understand existing instances of combination from a general
point of view.

3. It establishes new and interesting connections between the theory of con-
straint solving and other areas such as, e.g., universal algebra and logic.

4. The relationship between different methodologies for combining constraint
systems is interesting per se, we hope to verify.

1. From our present perspective, which is explained in more detail in Sec-
tion 5.6, free and rational amalgamation, and a related construction called
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“infinite amalgamation” seem to be the most important combination principles
in a spectrum of related methods. Furthermore, we are confident that the ab-
stract definition of a quasi-free structure, as introduced in [10] and used here,
captures a maximal class of (unsorted!) structures where these combination
principles can be applied in a uniform way. This class covers most of the non-
numerical and non-finite solution domains that are used in constraint solving.
All the solution domains that are considered in the area of unification modulo
equational theories are quasi-free structures. Furthermore, the algebra of ratio-
nal trees, feature structures, and structures with finite or rational nested sets,
lists and multi sets are quasi-free structures.

2. The results presented in this chapter show, e.g., that there is a common and
general methodology behind Colmerauer’s combination of rational trees and ra-
tional lists in the solution domain of Prolog III [30] and Rounds’ combination of
feature structures with non-wellfounded sets [90]. The amalgamation technique
to be described in this chapter can be used, e.g., to obtain similar combinations
where rational trees, feature structures, rational lists, nested multi sets, or quo-
tient term algebras for collapse-free equational theories over disjoint signatures
are interweaved in arbitrary manner.

3. The purely algebraic definition of a quasi-free structure directly generalises
the notion of a free structure (see Section 3.2.2 and [15] for a thorough discus-
sion). Still, quasi-free structures have what is sometimes called the “universal
mapping property” of free structures, and a major part of the theory of free
structures as developed in universal algebra can be lifted to the case of quasi-free
structures. A detailed mathematical investigation of this point is in progress.
Furthermore, it has turned out that the methods for combining solution do-
mains developed in [10] and here, and the general methods for combining logics
described by Gabbay [44] and Pfalzgraf [81, 82] follow the same abstract idea.
See [44] for a first discussion of this issue.

4. One interesting connection between free and rational amalgamation is the
observation that the free amalgamated product is always a substructure of the
rational amalgamated product. Section 5.6 will be used to comment on item 4
in more detail.

We would like to point out that the theoretical concepts and the mathemat-
ical methods underlying “braids” and their simplification were developed in
cooperation with K. U. Schulz.

5.2 Non-collapsing Quasi-free Structures

In this section we shall introduce the class of structures for which we can use
the rational amalgamation construction (Definition 5.2.5). It will be a subclass
of quasi-free structures, which are introduced and thoroughly discussed in Sec-
tion 3.2.2. Still, we repeat here a few of the notions introduced in that section
to help the reader remember the context. The algebra of rational trees will be
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used to exemplify the concepts. In the sequel, we consider a fixed X-structure
2>, and M denotes a submonoid of Endgzl.

The stable hull (see Definition 3.2.9) of a set Aj has properties that are similar to
those of the subalgebra generated by Ag: SHyy,(Ag) is always a Y-substructure
of 2%, and Ay C SHY,(Ap). In general, however, the stable hull can be larger
than the generated subalgebra. For example, if 4> := R(X, X) denotes the
algebra of rational trees over signature ¥, if M = Endy, and if Y C X is a
subset of the set of variables, X, then SH%,(Y") contains all rational trees with
variables in Y, while Y generates all finite trees with variables in Y only.

The set X C A is an M-atom set for A” if every mapping X — A can be
extended to an endomorphism in M. If M = End%l, then X is simply called an
atom set for A*. For example, if A> := R(X, X) is the algebra of rational trees
over the set of variables X, then X is an atom set for 2A”. Remember that the
extension of every mapping X — A to an endomorphism of 2% in M is unique
(Lemma 3.2.19).

A countably infinite ¥-structure A> is a quasi-free structure, iff there exists
a submonoid M of Endy such that 2> has an infinite M-atom set X where
every element a € A is stabilised by a finite subset of X with respect to M.
(Definition 3.2.14).

Examples 3.2.17 contain a long list of examples of quasi-free structures.
Amongst them, one finds free structures, vector spaces, rational tree algebras,
hereditarily finite well-founded and non-wellfounded sets and lists, and certain
types of feature structures.

In the rest of this section, (A*, X, M) denotes a fixed quasi-free structure with
carrier A.

Lemma 5.2.1 Let o(vy,...,v;) be a positive X-formula, let m € M, and let
ai,...,ay be elements of A. Then A~ &= o(vi/ay,...,vi/ar) implies A¥ =
p(vi/m(ar),...,ve/m(ak)).

Proof. Tt is simple to see that there exists a surjective endomorphism m' €
M that coincides with m on {ai,...,ar}. The result follows from the fact
that validity of positive formulae is preserved under surjective homomorphisms
(Lemma 2.1.1). [

Lemma 5.2.2 Let o(vy,...,v;) be a positive L-formula, and let x1,..., Tk
be distinct atoms in X. Then A* = o(v1/z1,...,01/7)) implies A* |
Yoy, ... Vo, .

Proof. Let ai,...,a; be arbitrary elements of A. Since X is an M-atom
set, there exists an m € M such that m(x;) = a;, for i = 1,...,k. Hence
A* = o(vi/z1,. .. ,vi/zE) implies A* = @(vy/ay,. .., vp/ag), by Lemma 5.2.1.
It follows that A” |= Vo ... Vo . ]
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For each element a € A, there exists a unique minimal subset Y C X of the
atom set such that {a} € SH3,(Y), the stabiliser of a. For the mathematical
treatment of quasi-free structures, the concept of the stabiliser turns out to be
extremely useful. It might give a good intuition to imagine that the stabiliser
of an element « is the set of atoms “occurring” in a. If a is an element of an
algebra of rational trees over the set of variables V', then the stabiliser of a is
in fact the set of variables occurring in the rational tree a. Note, however, that
“the” set of atoms (variables) occurring, e.g., in distinct terms that represent
the same element of a quotient term algebra is not unique in general. It is
trivial to see that SH3,(Y) = {a € A | Stab3;(a) C Y}, for each Y C X. In
the sequel, further properties of stabilisers will be used. The first lemma is a
trivial consequence of the fact that stable hulls are X-substructures.

Lemma 5.2.3 Let f € X be an n-place operator and ay,...,a, € A. Then
Stabj (falai,---,an)) C Stab3({a1, ... an}).

The next lemma plays a crucial role in the rational amalgamation construction.
It will be used in many proofs.

Lemma 5.2.4 Let m € M be an endomorphism of the quasi-free structure
(A*, X, M) such that the restriction of m on X is a mapping X — X. If
Stab%(a) = {z1,...,z}, then Stab% (m(a)) C {m(z1),...,m(z)}. If m is
an automorphism, then Staby,(m(a)) = {m(z1),...,m(zy)}.

Proof. Let mj and mg be two endomorphisms in M that coincide on {m(z1),
...,m(zg)} € X. Then m; o m and mg o m are endomorphisms in M that
coincide on {z1, ...,z }. By assumption, m; om and mgom coincide on a. But
then m; and my coincide on m(a). Hence Stab%,(m(a)) C {m(z1),...,m(z;)}.
Assume that m is an automorphism, and that Stab%,(m(a)) is a proper subset
of {m(z1),...,m(z;)}. The first part of the lemma, applied to m™!, yields a
proper subset of {z1,...,zy} that stabilises a, which is impossible, by choice of

{z1,..., 2} [

We may now characterise the subclass of quasi-free structures for which we can
use the rational amalgamation construction.

Definition 5.2.5 A quasi-free structure (>, X, M) is non-collapsing if every
endomorphism m € M maps non-atoms to non-atoms (i.e., m(a) € A\ X for
alla € A\ X and all m € M).

For example, quotient term algebras for collapse-free equational theories, ratio-
nal tree algebras, feature structures, feature structures with arity, the domains
with nested, finite or rational lists, and the domains with nested, finite or ra-
tional multi sets (as mentioned in 3.2.17) are always non-collapsing.

Let us note that the domains with nested, finite or rational sets do not belong
to the class of non-collapsing quasi-free structures. The reason is that in this
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case atoms have the form {y}, where y is taken from a countably infinite set
of urelements Y. Since we do not use sorts, and since union of urelements is
not defined, the urelements itself do not belong to the structure. If y; and ys
are distinct urelements, then {y1,y2} = {y1} U {y2} is a non-atomic element.
Now any endomorphism that maps the atom {y;} to {y2} and leaves {y2} fixed,
“collapses” the non-atom {y1,y2} to the atom {yo}.2

5.3 The Domain of the Rational Amalgam

In this section we shall define the underlying domain of the rational amalgam
of two non-collapsing quasi-free structures over disjoint signatures. This is
the most complicated step of the rational amalgamation construction. For
this reason we start with a discussion that motivates the following abstract
definitions.

As we indicated in the introduction, we would like to lift the usual construction
of rational trees, where nodes are labelled with the function symbols of a fixed
signature, to a higher level where we interweave elements of distinct structures.
Unfortunately, the classical notion of a tree is not really a useful basis for
realising this idea, as long as we do not want to impose severe restrictions on
the two components. The reason is that, classically, trees are either ordered or
unordered. None of these concepts seems appropriate to model a situation where
we want to interweave, say, both ordinary terms (representing ordered trees)
with nested sets (representing unordered trees) or with elements of arbitrary
quotient term algebras (where the “tree status” is doubtful).

In this section we shall see that there exists a natural notion that captures the
idea of a generalised tree built with the elements of two structures. We introduce
the concept of a “braid” where the problem of the correct order between the
successors of a node is completely abstracted away. Basically, the links from a
parent “node” (an element of one component) to its successor nodes (a finite
number of elements belonging to distinct components) are organised by set
theoretical functions that connect suitable atoms of the parent node with its
successor elements. In this way, the ordering of the links depends (only) on the
way how atoms in the parent node are ordered.

One drawback of the concept of a braid is the fact that different braids may
represent the same object. The major part of this section will be used to show
that a nice standard normal form for each braid can be given. Then, the set
of braids in standard normal form will represent the carrier of the rational
amalgam.

In the sequel, we shall describe the rational amalgamation of two component
structures. There are, however, no difficulties to interweave any finite number
of components in the same way.

2We think that this unpleasant effect disappears when we use sorts. With sorts, it should
be possible to use the set of urelements as atom set. Of course {y1,y2} may still be mapped
to {y=}, but the latter is a non-atomic element now.
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Throughout this section (A”, X, M) and (B2,Y,N) denote two fixed non-
collapsing quasi-free structures over disjoint signatures. We assume that the
atom sets X and Y have the form X = ZwWw04 and Y = ZWOpg, where the sets
7,04, and Op are all infinite, and where O4 N Op = (. The atoms in Z will
be called bottom atoms, the atoms in O4 (Op) will be called open atoms. In
the braid construction, the bottom atoms will play the role of ordinary atoms,
or leaves. Open atoms, in contrast, can be considered as “named holes” that
are only used to link elements of both structures. With O4(a) and O4(A") we
denote the set of open atoms occurring in the stabiliser of a € A (A’ C A) with
respect to M. Similarly expressions Op(b) (Op(B’)) are used to denote the set
of open atoms occurring in the stabiliser of b € B (B’ C B) with respect to N.

An endomorphism m € M (n € N) is called admissible if m (n) leaves all
bottom atoms z € Z fixed and if m(o) € O (n(o) € Op) for all 0 € Oy
(0 € Op).> Automorphisms are called admissible if they define a permutation of
the set of open atoms while leaving bottom atoms fixed. A pair (m,n) € MxN
is called admissible if both m and n are admissible.

Lemma 5.3.1 Let A’ C A. If the admissible endomorphisms mi, ms € M
coincide on O4(A"), then my and my coincide on A'. Similarly, let B' C B. If
the admissible endomorphisms ni,ny € N coincide on Og(B'), then ny and no
coincide on B'.

5.3.1 Braids and Subbraids

Before we introduce braids, let us formalise the type of links that we shall use
to interweave elements of two components.

Definition 5.3.2 Let Oy C Oy, O C Op, let m4 : Oy — B, g : O — A,
let 7 := m4Ump. An element a € A is directly linked to b € B via 7 if there is an
o € Op(b) such that a = mp(0). Analogously b € B is directly linked to a € A
via 7 if there exists an 0 € O 4(a) such that b = m4(0). An element o € AU B
is a w-descendant of b € AU B if there exists a sequence a = ag,a1,...,a, =b
(n > 0) such that each q; is directly linked to a;4q via m, for 0 <7 <n —1.

Definition 5.3.3 A braid of type A over A”,B2 is a quintuple £ =
(a,C,D,m4,7R), where

1. a € A\ Oy,

2. C is a finite subset of A containing a. All elements of C \ {a} are non-
atomic. D is a finite set of non-atomic elements of B,

3. a4 : Oa(C) = D and 7 : Op(D) — C are mappings. For (o,e) €
w4 Ump, e is always a non-atomic element,

Intuitively, admissible endomorphisms cause a “renaming” of open atoms, compare
Lemma 5.2.4. They may identify distinct open atoms.
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4. each element in C' U D is a m-descendant of a, for 7 := m4 U 7g.

The element a is called the root of K. The elements in the sets C' and D are
called the elements of IC of type A and B respectively. The functions w4 and
wp are called the linking functions of IC of type A and B respectively.

Braids of type B, with root in B\ Op, are defined symmetrically. A braid K is
called trivial if the root of K is a bottom atom z € Z. In this case, z is the only
element of the braid. It does not make sense to distinguish between the trivial
braid (z,{z},0,0,0) of type A and the trivial braid (z,0,{z},0,0) of type B.
We identify both braids. Hence, trivial braids have mixed type.

Example 5.3.4 The graph on the left-hand side of the following figure repre-
sents a braid over two free term algebras, for signatures ¥ = {f,a} and A = {g}
respectively. In this representation, the root is the topmost element f(o01,09).
Note that this braid represents (modulo unfolding) an ordered tree, due to the
fact that there exists a fixed order between the atoms occurring in the elements

f(o1,02) and f(01,03).

On the right-hand side, we interweaved in a similar way the elements {01,090} =
{09,01} and {o01,03} = {03,01} of an algebra with nested multi sets. Now the
braid represents (modulo unfolding) an unordered tree.

We sometimes write O 4(K) and Op(K) for O4(C) and Op (D) respectively, and
O(K) denotes the union O4(K) U Op(K). A quintuple £ = (a,C,D, 74, 7RB)
that satisfies Conditions 1-3 of Definition 5.3.3 will be called a prebraid.

Definition 5.3.5 Let £ = (a,C,D,74,7mg) be a braid. The braid K’ :=
(a',C",B', 7'y, m's) (of type A or B) is a subbraid of K if o’ € CUD, C' C C,
D' C D, n'y C7a, and 7z C 7.

Sub(pre)braids of prebraids are defined in the same way. We write X' C K if
K’ is a sub(pre)braid of K.
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Example 5.3.6 Here are two subbraids of the first braid given in Exam-
ple 5.3.4. As above, the topmost element represents the root.

Lemma 5.3.7 Let K; = (a;,C;, D;, 7, 7%) be a braid, and let ™ = 7'y U 1,
fori=1,2. If a1 = ay, and if m1(0) = ma(0) for all 0 € O(K1) N O(K3), then
K1 = K,.

Proof. A simple induction shows that each mi-descendant of a; is a mo-
descendant of as, and vice versa. Hence both braids have the same elements.
The second condition given in the lemma implies that both braids have the
same linking functions. Hence K1 = k5. ]

Corollary 5.3.8 Let Ky and Ky be two prebraids and K1 C Ko. Let K be a
subbraid of K1 and let KY be a subbraid of Ko such that K} and Kfy have the
same root. Then K| = K.

Proof. Since K} and K are subbraids of K5 it is obvious that K} and K, satisfy
the conditions of Lemma 5.3.7. Hence K} = Kj. ]

Lemma 5.3.9 For each element e of a prebraid IC there exists a unique subbraid
of K with root e.

Proof. Let K = (a,C,D, s, 7g) and e € C' U D. Then e cannot be an open
atom. Let C' C C' (D' C D) be the set of m-descendants of e in C (resp. D),
where 7 = 74 U mp. Note that all elements of (C' U D') \ {e} are non-atomic
since K is a prebraid. Let 7r'A C 74 (resp. 7r93 C 7p) contain all ordered pairs
(0,c) of w4 (resp. mp) where o € O4(C") (resp. 0 € Op(D")). For each such pair
(0, c) the element c is in D' (C") since c is a m-descendant of e. Since (o, c) € ,
the element c is non-atomic. It follows that (e, C', D', 'y, 7';) is a subbraid of
K. By Corollary 5.3.8 it is the unique subbraid of K with root e. |
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5.3.2 Variants

The concrete open atoms that are used to organise links between elements of
distinct type in a given braid should be regarded as irrelevant. This motivates
the following definition.

Definition 5.3.10 Let K = (a,C,D, 74, mg) and K' = (¢/,C", D', 7'y, 7'z) be
two prebraids, say, of type A. K’ is called a wariant of K if there exists an
admissible pair of automorphisms (m,n) such that

1. d' =m(a),
2. C"={m(c) | ce C},and D' ={n(d) | d € D},

)
3. 'y := {(m(o),n(d)) | (0,d) € ma}, and
7y = {(n(0),m(c)) | (o,c) € 7p}.

Lemma 5.3.11 If two prebraids are variants, then the two subbraids given by
their roots are variants.

Proof. Let K and K’ be variants of the form as in the previous definition.
Let K1 = (a,Cy, Dy, 7!, 75) be the unique subbraid of K with root a, and let
Ko = (a,Ca, Da, 7%, %) be the unique subbraid of K’ with root a’ = m(a). The
elements in Cy U Dy are the w-descendants of a, for 7 = m4 Ung. The elements
in Cy U Dy are the n’-descendants of o/, for ' = 7y U 3. From the definition
of 'y and 73 and from Lemma 5.2.4 (second part) it follows easily that the
n'-descendants of o' = m(a) are the m resp. n -images of the m-descendants of
a. This shows that Co = {m(c) | c € C1} and D2 = {n(d) | d € D;}. The rest

is obvious. n

The following lemma shows that the notion of a variant gives rise to an equiv-
alence relation on the set of all (pre)braids. Since the set of admissible auto-
morphisms of A* (resp. B2) defines (with composition) a group, the proof is
obvious.

Lemma 5.3.12 FEach prebraid K1 is a variant of IC1. If Ko is a variant of the
prebraid IC1, then Ky is a variant of Ko. If Ko is a variant of the prebraid KCq,
and if K3 is a variant of Ka, then K3 is a variant of Ky.

Lemma 5.3.13 Let (m,n) be an admissible pair of automorphisms. Let K,
a, C', D', 7y, and 7'y be defined as in Definition 5.3.10, 1.-8. Then K' :=
(a',C", D', 7'y, 75) is a prebraid and a variant of K.

Proof. Since a € A\ O4 it follows that ' = m(a) € A\ O4, by choice
of m. Thus K’ satisfies Condition 1 of Definition 5.3.3. Since m and n are
admissible automorphisms, all elements of C’ U D' that are images of non-
atomic elements of C'U D under m and n respectively are non-atomic. Hence
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K’ satisfies Condition 2 of Definition 5.3.3. Since m and n define permutations
of 04 and Op respectively, the first component o of each pair (o,e) in 7'y U’y
is an open atom. Lemma 5.2.4 shows that o € O4(C") U Op(D"). Obviously, if
0 € O4(C"), then e € D" and if o € O4(D’), then e € C'. Moreover, e is always
non-atomic, by admissibility of m and n. Since m and n are automorphisms,
n'y and 7z are functions. By Lemma 5.2.4, the domains of 7y and 7 are
04(C") and Og(D') respectively, which shows that K’ satisfies Condition 3 of
Definition 5.3.3. Thus K’ is a prebraid. Clearly it is a variant of K. ]

Lemma 5.3.14 FEach variant of a braid is a braid.

Proof. 1t suffices to verify that each variant of a braid satisfies Condition 4 of
Definition 5.3.3. Let K, X', and (m,n) as in Definition 5.3.10. Suppose that
d € D is directly linked to ¢ € C via m4. Thus, for some o € O4(c) we have
(0,d) € ma. Lemma 5.2.4 shows that m(o) € Oa(m(c)). Clearly m(c) € C".
Since (m(o),n(d)) € «'y, the element n(d) € D' is directly linked to m(c) € C".
Now a simple induction shows that all elements of C' U D" are n’-descendants
of the new root o’ = m(a), where 7’ = n’, U 5. ]

5.3.3 Simplification of Braids

Two (pre)braids that are variants of each other are meant to denote the same
object. But then we should not distinguish between two subbraids of one and
the same (pre)braid if they are variants. In order to identify such subbraids,
we shall use admissible pairs of endomorphisms of a particular type.

Definition 5.3.15 The admissible pair of endomorphisms (m,n) is a simplifier
for the prebraid K = (a,C, D, w4, 7g) if the following conditions hold:

e Yoi,09 € O4(C): m(o1) = m(oz) implies n(wa(o1)) = n(mwa(o2)),
e Yo1,09 € Op(D): n(o1) =n(o2) implies m(rp(01)) = m(rp(02)).

Lemma 5.3.16 Let (m,n) be a simplifier for the prebraid IC. Then (m,n) is
a simplifier for each subprebraid of K.

Proof. Let K' = (a/,C', D', x',, 7";) be a subprebraid of K = (a,C, D, 74, 7).
Then C' C C and D' C D. Hence O4(C") C O4(C) and Op(D') C Op(D).
Moreover, the functions 74 and 7'y C w4 (7p and 7y C 7p) coincide on O 4(C”)
(resp. Op(D")). The rest is obvious. ]

Definition 5.3.17 Let (m,n) be a simplifier for the prebraid £ = (a,C,
D,ma,m5). The image of K with respect to (m,n) is the prebraid K£(m™) .=
(a/,C'", D' 7'\, m'5) with the following components:*

“Using Lemma 5.2.4 and the fact that both 2% and B4 are non-collapsing it is trivial to
verify that (™™ is a prebraid.
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L a = m(a),

2. C":={mfc) | ce€ C} and
'={ (d) | d € D},

3. 7y = {{m(0),n(d)) | (o,d) € ma,m(0) € O4(C")}, and
:={(n(0),m(c)) | {0,c) € mp,n(0) € Op(D')}.

Now assume that K is a braid. The braid-image of K with respect to (m,n),
KM ig the unique subbraid of (™" with root a'.

Example 5.3.18 The following figure represents the braid-image of the braid
on the left-hand side in Example 5.3.4 under the simplification (m,n) where m
maps o3 to 0o and n maps uz to us:

The next lemma gives a refinement of Lemma 5.3.16.

Lemma 5.3.19 Let (m,n) be a simplifier for the prebraid IC, let Ky be the
unique subbraid of IC with root e, where e is an element of K of type A (resp. B).

Then /C§m’n> is the unique subbraid of KKU™™) with root m(e) (resp. n(e)).

Proof. It follows directly from Definition 5.3.17 that ICgm’"> is a subbraid of the

prebraid K(™™) . Obviously m(e) (resp. n(e)) is the root of /C§m’n>. Now use
Corollary 5.3.8. m

There is one technical point behind the definition of a simplifier that will
cause some difficulties in the further development. Assume, in the situation
of Definition 5.3.17, that O4(C) = {o1,...,0t} and Op(D) = {u1,...,u}.
Then there is no guarantee that O4(C") = {m(o1),...,m(ox)} and Op(D’) =
{n(u1),...,n(u;)}. In fact, Lemma 5.2.4 only shows the inclusion O4(C") C

{m(o1),...,m(ox)}
Definition 5.3.20 The set
({m(0) | 0 € 04(C)}\ 04(C")) U ({n(o) |0 € Op(D)}\ Op(D"))

is called the set of pending atoms of the simplification step leading from K to
Jc(mn)
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As we shall see, pending atoms complicate the treatment of simplification. In
principle we could restrict the amalgamation construction to a class of struc-
tures for which we can replace the inclusion from Lemma 5.2.4 mentioned above
by an equality. In this case pending atoms cannot occur, image and braid im-
age always coincide, and we could dispense with prebraids at all. However, our
motivation was to give a general construction. For this reason we shall not
follow this line.

Lemma 5.3.21 Assume, in the situation of Definition 5.3.17, that o € O 4(C)
and m(o) is not a pending atom of the simplification step leading from K to

K(mm) . Then 7'y (m(0)) = n(ra(0)).

Proof. A trivial consequence of the definition of 7/, as given in 5.3.17. |

While we are mainly interested in simplification of braids, it turns out to be
simpler to treat simplification of prebraids in advance.

Lemma 5.3.22 Let (mq,nq) be a simplifier for the prebraid Koy and (mg,nsg)
be a simplifier for the prebraid K1 = /C((]ml’m). Assume that mso and no do
not identify any pending atom of the simplification step leading from Kq to

K1 with another atom. Then (mg o my,ng o ny) is a simplifier for Ko and
K(mzoml,ngonl) _ K(mz,ng)
0 =M .

Proof. Let K; = {(a;, C;, Dy, 'y, mls), for i = 0,1. We may assume that both are
of type A. Let (m,n) := (mgomq,nyony). If m(o) = m(o') for 0,0’ € O 4(Ch),
then either mq(0) = my(0’), or my(0) # m1(0’) and mo(my(0)) = ma(mq(0)).
In the former case we know that nj(7%(0)) = n1(7%(0')) since (my,n;) is a
simplifier for Ky. Hence n(7%(0)) = n(r%(0’)). In the latter case, neither
m1(o) nor my(o’) can be pending, by assumption. Hence mi(0) and mq(o')
are in O4(K1). By Lemma 5.3.21, ni(7%(0)) = 7! (m1(0)) and ny (7% (0")) =
74 (m1(0")). Since ma(m1(0)) = ma(mi(0')) and (ma, ns) is a simplifier for K,
this implies that

n2(n1(73(0))) = na(m (m1(0))) = n2(r (ma(0))) = nz(ni (3(0)).

n(o’) implies m (7% (0)) = m(7%(0')), for all 0,0’ € O4(Dy). Hence (m,n) is a

simplifier for K.
The prebraids /C(()m2°m1’n2°n2) and /Cgm%nz) have the same root ma(mi(ag)). Tt

is trivial that they have the same elements. But then it follows easily that they
have the same linking functions. |

Hence in both cases n(7%(0)) = n(7%(0')). Symmetrically it follows that n(o) =
)

Corollary 5.3.23 Let (my,n1) be a simplifier for the prebraid Ko and (mg,ng)

be a simplifier for the prebraid Ky = }C((]ml’"l),

(m,n) for Ko such that K[(]m’n) = Kgm%nz).

Then there exists a simplifier
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Proof. Tt follows from Lemma 5.3.1 that there exists a simplifier (mf,nb) of
K1 such that (mf,n}) does not identify any pending atom of the simplification

step leading from Ky to Ky with another atom, and ICng’m) = Kgmé’ng). Let

(m,n) := (mhomy,nhony). Then, by the previous lemma, IC[(]m’") = Kﬁmé’"{z) =
’C(mz,ng). [ |
1

Let I be a prebraid. We have seen that a simplifier (m,n) that yields a per-
mutation of @4 and Op leads to the variant K™ of K (Lemma 5.3.13). The
same is true under weaker assumptions. By Lemma 5.3.1, the image fclman)
is completely determined by the images of the elements in O 4(K) and Op(K)
under the endomorphisms m and n respectively. Hence we obtain

Lemma 5.3.24 Let (m,n) be a simplifier for the prebraid IC. If the restrictions
of m and n on O4(K) and Op(K) respectively are injective, then K™™ is q
variant of K.

Call a simplifier (m,n) for K strict if the restriction of m on O4(K) or
the restriction of n on Op(K) is not injective. Lemma 5.2.4 shows that
|O(K™™)| < |O(K)] if (m,n) is strict. It follows that

Lemma 5.3.25 |O(K)| gives an upper bound on the length of every sequence
of strict simplifications for the prebraid IC.

A prebraid K’ is called irreducible if K' does not have a strict simplifier. We
want to show that all irreducible prebraids that can be reached from a prebraid
K by simplification are variants. For this purpose, the following lemma is needed
that shows that simplification of prebraids is “locally confluent”.

Lemma 5.3.26 Let (my1,n1) and (mo,n2) be two simplifiers for the prebraid
Ko, let K1 and Ky be the images of Ko under (m1,n1) and (ma,ng) respectively.
Then there exist a simplifier (mg,n3) for K1 and a simplifier (my,nyg) for Ko
such that K§m3’n3) = ICém4’n4).

Proof. Let K; = (a;, C;, D;, w'y, w5, for i = 0,1,2. The endomorphisms m; and
n1 define equivalence relations ~% and ~% on O 4(Cp) and Op(Dy) respectively,
where elements are equivalent with respect to ~! (~%) iff they have the same
image under m; (n1). The endomorphisms mgy and ng define similar equivalence
relations N%& and NQB on O 4(Cy) and Op(Dy) respectively. Let NA:ZNL L N%:
(~% U ~24)* denote smallest equivalence relation on O4(Kp) that extends ~
and ~%. Similarly, let ~p denote the smallest equivalence relation on Og(Ky)
that extends ~% and ~%. Choose a system of representants for ~4 and a
similar system for ~p. We shall write rep(o) for the representant of [o] with
respect to ~4 (~p), for 0 € O4(K) (0 € Op(K)).

The elements of O4(Cy) have the form mi(oyx) for o4 € 04(Cy), by
Lemma 5.2.4. If, for 04,0y € O4(Cy), mi(oa) = mi(dy) € O4(C1), then
04 ~Y o'y and rep(oa) = rep(0’;). Thus
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e the mapping mi(oa) — rep(oa) (oa € O4(Ch)) is welldefined. It can
be extended to an admissible endomorphism m3 € M. Similarly the
mapping ni(og) — rep(op) (op € Op(Dy)) is welldefined and can be
extended to an admissible endomorphism n3 € N.

Symmetrically we can show

e the mapping ms(04) — rep(oa) (o4 € O4(Cy)) is welldefined and can
be extended to an admissible endomorphism my4 € M, and the mapping
na(og) — rep(og) (op € Op(Dy)) is welldefined and can be extended to
an admissible endomorphism n4 € N.

We have (%)
mg(myi(oa)) =rep(oa) = ma(ma(oa)) (04 € Oa(Ch))
ng(ni(op)) =rep(op) = na(nz(op)) (0B € Op(Dy))
and, by Lemma 5.3.1, (%)
ma(mi(c)) = ma(ma(c))  (c€ Ch)

n3(ni(d)) = na(na(d)) (d € Dy).

Clearly (ms, n3) and (ma4,n4) are admissible. We shall now show that (ms,n3) is
a simplifier for KC1. Let (0], b}), (0, by) € 7} and suppose that m3(0}) = m3(oh).
We have to verify that n3(b}) = ng(by). For i = 1,2, there exists 0; € O4(Cp)
and b; := 79(0;) € Dy such that o = my(o;) and b, = nq(b;). Since ms
identifies 0] and o, we know that o; ~4 02. Thus there exists a sequence
01 = U1,U3...,ur = o0 such that each pair (u;, u;11) belongs either to ~}4
or to ~%4 (1 < i < k). Let d; := 7%(u;), for i = 1,...,k. Thus d; € Dy
(1 < i < k) and we have by = d; and by = di. Now (mq,n1) and (me,ns)
are simplifiers. Thus, if (u;,u;11) €~Y, then ny(d;) = n1(d;11), which implies
ns (m(dl)) = N3 (nl(di+1)), and if (ui, Ui+1> EN%, then ng (dz) = ng(di_H), which
implies ng(na(d;)) = ng(na(dit1)) and, by (xx), ng(ni(d;)) = nsg(ni(dit1)).
Therefore we obtain in fact

n3 (b)) = n3(n1(b1)) = na(ni(ba)) = nz(by).

We have shown that (ms,n3) is a simplifier for ;. Symmetrically it follows
that (mg4,n4) is a simplifier for KCo.

The two prebraids ICgm‘q”nS) and ICgm“’n‘l) have the same root ms3(m1(ag)), by
(xx). It is trivial to see that (xx) also implies that {ms(m(c)) | ¢ € Cp} is the
set of elements of type A of both prebraids, and {ns(ni(d)) | d € Dy} is the set
of elements of type B of both prebraids. But then it follows easily that both
prebraids have the same linking functions, which means that they are identical.
]
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Theorem 5.3.27 FEach sequence of iterated strict simplifications that starts
from the prebraid IC has length < |O(K)|. If K' is an irreducible prebraid that is
obtained from I by a sequence of simplifications, then there exists a simplifier
(m,n) for IC such that Kmn) = K If two irreducible prebraids K1 and Ko can
be reached from K by sequences of simplifications, then K1 and KCo are variants.

Proof. The first statement is Lemma 5.3.25. The second statement follows
from Corollary 5.3.23 with a trivial induction. If X’y and Ky are two irreducible
prebraids that are obtained from K by sequences of simplifications, then both
prebraids can be obtained from K by a single simplification step, by Corol-
lary 5.3.23. Lemma 5.3.26 shows that there exists a prebraid K3 that can be
reached from Ky and Ky by simplification. Since KC; and Ky are irreducible,
these simplification steps are not strict. Hence Ky, Ko and K3 are variants, by
Lemma 5.3.12 and Lemma 5.3.24. ]

Before we treat simplification of braids, let us mention three properties of irre-
ducible prebraids.

Lemma 5.3.28 (a) If the prebraid K = {(a,C,D,m4,7B) is irreducible, then
w4 and g are injective.

(b) If K' is a subbraid of the irreducible prebraid K, then K' is irreducible.

(c) If K1 and Ko are subbraids of the irreducible prebraid I, and if K1 and Ko

are variants, then KC; = Ks.

Proof. (a) Assume that 74, say, is not injective. Then there exist elements
(01,b1) and (09,b1) in T4 where 07 and o0y are distinct. Let m € M be an
admissible endomorphism that maps o; to 02 and leaves all other atoms fixed,
let n be the identity on B. Now (m,n) is a strict simplifier for K, thus we get
a contradiction.

(b) Assume, to get a contradiction, that (m,n) is a strict simplifier for K'.
Let K = (a,C,D,7ma,7p), let £' = (d/,C'", D', 7'y, 75). Let X4 = O4(C)\
04(C"), let Yp = Op(D) \ Op(D'). By Lemma 5.3.1 we may assume that m
(n) leaves the elements of X4 (Yg) fixed. If {m(o) | 0 € O4(C")} N X4 =0 =
{n(o) | 0 € Op(D")} NYp, then m (n) only identifies open atoms of O(K')
and it is easy to see that (m,n) is a strict simplifier for K, which yields a
contradiction. In the other case, let m' be an admissible automorphism such
that {m'(m(0)) |0 € OA(C")}N X4 =0, let n’ be an admissible automorphism
such that {n/(n(0)) | 0o € Op(D')} NYp = 0. Let m* denote the endomorphism
that coincides with m’om on O4(C") and leaves all other open atoms fixed. Let
n* denote the endomorphism that coincides with n' on on Og(D’) and leaves
all other open atoms fixed. Then (m*,n*) is a strict simplifier for I, which
yields a contradiction.

(c) Let K = (a,C, D, 74, 7g), let K; = (a;, C;, D;, 7'y, 7} (i = 1,2). Assume
that IC; and Ko are variants, but Ky # K. There exists a pair of admissible
automorphisms (m,n) such that Iy = ICgm’n). Without loss of generality we

have (¢): there exists an 0* € O4(C4) such that o* # m(o*) € O4(Cs).
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Consider an element o' € O 4(Cy). If all elements of the “orbit”

0f, oft :==m(op), 05 :=m(of), o5 :=m(oy)...

are in O4(C1), then this sequence contains only a finite number of distinct
elements, say, 0()4, . ,0,‘?. In the other case, let k& be the first index in the
sequence 0, 1,... such that of & O4(C1). This implies that o) € O4(C3). The
set {0p,...,04} is called the m-trace tr,,(04') of 0y. Let ~, be the smallest
equivalence relation on O4(C1) U O4(Cy) such that o ~,, o' whenever o and
o' both belong to the m-trace tr(o?) of the same element 0* € 0 4(C}). Since
m is an injective function, the equivalence classes of ~,, are just the maximal
m-traces. For each equivalence class [0'], , choose a representant rep([o*]., ).
Let ms € M be the admissible endomorphism that maps each 0 € O4(C;) U
0A(C) to the representant rep([o?], ) and leaves other atoms fixed. Since
o4 € 04(Cy) implies that m(o?) € 04(Cy), and since both atoms have the
same representant, we know that me,(m(0?)) = ms(0?) for all 04 € O4(C).
This implies, by Lemma 5.3.1, that meo(m(a)) = ms(a) for all a € C;.

Symmetrically, we may define the n-traces tr,(0”) of elements o® € Op(D)),
just by replacing O4(C;) by Op(D;) (i = 1,2) and m by n. We obtain the
equivalence relation ~,, by “identifying” all elements that belong to the same n-
trace tr,(o?), for some o € Op(Dy). For each equivalence class [0®]., choose
a representant rep([o®].,). Let ns € N be the admissible endomorphism that
maps each of € Op(D;) U Op(Ds) to the representant rep([o?].,) and leaves
other atoms fixed. We have n..(n(0?)) = ny(0?) for all o? € Op(D;), and
Noo(1(b)) = no(b) for all b € Dy.

We want to show that (ma, 7o) is a simplifier for . Suppose that m..(0) =
Meo(0") for open atoms o # o' € O4(K). We may assume that there exists a

sequence o = o0y, 01, ...,01 = o of elements of O (C;)UO 4(Cy), where at least

»Vr
the elements of',...,02 | are in O 4(C)), such that ot = mi(op'), for 0 < i < r.
Let b; := WA(Of‘) (0 < i < r). Note that at least the elements by, ...,b,_1 are
in D; since Ky is a subbraid of K and 74 and 7r114 coincide on O4(C1). Since
(0f',bg) € 7y we know, by choice of (m,n), that (m(og),n(b)) € 74 C 7a,
which means that b; = n(by). Similarly we see that b; = n’(by) for i =0,...,r.
But then we have

Moo (b0) = Moo (1(bg)) = Moo (b1) = ... = Noo(br—1) = Noo(n(br—1)) = 1o (br)

Thus n identifies the ma-images of 0 = of' and o' = o2. Symmetrically, if

Noo(0) = No(0') for atoms 0,0’ € Op(K), then m identifies the mp-images of
o and o'. Therefore (muo,Moo) is in fact a simplifier for K. But (Mmoo, Neo) 18
strict, by (¢). This is a contradiction. Thus K1 = Ks. [

We shall now turn to simplification of braids. First we shall show that the
result of two consecutive simplification steps may be obtained by a single sim-
plification, similarly as for prebraids. We have to adapt the notion of a pending
atom to the new situation.

93



Definition 5.3.29 Let (m,n) be a simplifier for the braid £ = (a,C,D,
ma,7B). Let K{™m) = (a/ C', D' '\, %). Then the set

({m(0) | 0 € 0A(C)}\ 0a(C")) U ({nlo) | 0 € Op(D)}\ Op(D"))

is called the set of pending atoms of the simplification step from /C to the braid
image (™),

Note that this is really a new notion. The set of pending atoms of the simplifi-
cation step from K to the braid image K{™™ is a superset of the set of pending
atoms of the simplification step from X to the image K™™) but both sets are
not necessarily identical.

Lemma 5.3.30 Let (mq,n1) be a simplifier for the braid Koy, let (ma,n2) be a

simplifier for its braid image K1 := ICéml’m>. Assume that my and ne do not

identify any pending atom of the simplification step leading from Ky to the braid

image KC1 with another atom. Then (mgomy,nyony) is a simplifier for Ky and

IC(()m2om1 ,n20n1) _ K§m2’n2> .

Proof. Exactly as in the corresponding proof of Lemma 5.3.22 it follows

that (mg o mq,ne o ny) is a simplifier for y. Our assumptions guaran-
tee that (mo,ms) is also a simplifier for IC(()ml’nl) such that mo and ny do
not identify any pending atom of the simplification step leading from Iy to
the image K(()ml’m) with another atom. Hence Lemma 5.3.22 implies that
(,C((]m1,n1))(m2,n2) = K(()m2°m1’n2on1). Now K; = IC((]ml’n1> is a subbraid of the

(m1,n1)

prebraid K, and both have the same root. Lemma 5.3.19 shows that

’C§m2’n2> is the unique subbraid of (K(()ml’"l))(mmw) _ )C(()mwm,nzonl) siven by
its root, namely ]Cém2°m1an2°n1>_ '

Corollary 5.3.31 Let (mqy,nq) be a simplifier for the braid Ko, let (me,ns) be

(m1,n1) .

a simplifier for the braid image K1 = K
(m,n) for Ko such that IC[(]m’n> = K§m2’n2>.

Then there exists a simplifier

Proof. 1t follows from Lemma 5.3.1 that there exists a simplifier (mf,nb) of
K1 such that (mf,n}) does not identify any pending atom of the simplification

step leading from K to the braid image K; with another atom, and ICY'”’M) =
K§m2’n2>. Let (m,n) := (m o my,n, ony). Then, by the previous lemma,
IC(()”%") — ICY’l,z’"’z) — K:§m2’n2>- -

Theorem 5.3.32 Let K = Ko, K1,...,Kr be a sequence of braids such that
each braid K;11 is the braid image of KC; under a strict simplification, for i =
0,....,k —1. Then k < |O(K)|. If K" is an irreducible braid that is reached
from IC by a sequence of consecutive simplification steps (always taking braid
images), then there exists a simplifier (m,n) for K such that K{™™ = K'. If two
irreducible braids K1 and Ko can be reached from K by sequences of consecutive
simplification steps (always taking braid images), then K1 and Ko are variants.
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Proof. The first statement is trivial. The second statement follows from Corol-
lary 5.3.31 by a simple induction. Assume that Iy and Ky are two irreducible
braids that can be reached from IC by sequences of consecutive simplification
steps, always taking braid images. Then there exist simplifiers (mq,n;) and
(mg,n9) of K such that K1 = KCmini) and Ky = K{m2m2) The prebraids
KCmna) and K(Mm2m2) are not necessarily irreducible. But we may add fur-
ther simplification steps (m/},n}) and (mb,nb) such that (KL1:m1))(m1m1) and
(K(m2m2))(m5.m5) are irreducible. By Lemma 5.3.16, (m/,n}) and (mb,nb) are
— obviously non-strict — simplifiers for K1 and Ky respectively. It follows that
K1 and ICY”I“nI1> are variants, and similarly for Iy and ICémfpn(ﬁ_ By Theo-
rem 5.3.27, the two prebraids (K(m1m1))minh) and (KM2:2))(m5m5) are vari-
ants. By Lemma 5.3.11, the two subbraids given by their roots — which are,
by Lemma 5.3.19, ICY”I“nI1> and ICémé’n{Z> — are variants. Hence Ky and Ky are

variants, by Lemma 5.3.12. ]

On the basis of Theorem 5.3.32 we may introduce the following equivalence
relation on the set of all braids.

Definition 5.3.33 Two braids are called equivalent if they can be simplified
to the same irreducible braid image. If K is a braid, [K] denotes the set of all
braids that are equivalent to /C.

Since two braids that are variants are obviously equivalent it is easy to see that
we get in fact an equivalence relation. Let us also mention the following simple
consequence of Theorem 5.3.32:

Lemma 5.3.34 If two irreducible braids are equivalent, they are variants.

5.3.4 Standard Normalisation

In order to define the underlying domain of the rational amalgam we shall
now introduce a standard normal form for each braid. Let O be a subset of
the set @4 of open atoms of A* that has the same cardinality as the set of all
equivalence classes of non-trivial® braids of type B. Similarly, let O% be a subset
of the set Op of open atoms of B that has the same cardinality as the set of
all equivalence classes of non-trivial braids of type A. Let A := SHmM(Z uoy),
and let B2 := SHY(Z U O%). Lemma 3.2.13 shows

Lemma 5.3.35 FEvery bijection between Z U O% and Z U Oy extends to a 3-
isomorphism between A and A*. Similarly every bijection between ZU0% and
Z U Op extends to a A-isomorphism between B2 and B2,

We may now enumerate the elements of O% and of OF in the form

04 = {oi | K is a nontrivial braid of type B},
Op = {opq | K is a nontrivial braid of type A}.

5Compare Definition 5.3.3.
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This means that [K] — o[x) establishes a bijection between the set of all equiv-
alence classes of non-trivial braids of type A (B) and Op (O%).

Let K = (a,C,D, 7w, m5) be a prebraid. For each open atom o € O4(C)
(o € Op(D)) we say that o points in K to K' iff K" is the unique subbraid of K
with root m4(0) (75(0))°.

Definition 5.3.36 A prebraid K is in standard normal form if O4(K) U
Op(K) C 0% U Oj and if every open atom o € O4(K) U Op(K) points in
K to a subbraid K’ such that o = o/

With A® B we denote the set of all braids over 2% and B in standard normal
form. Note that trivial braids are always in standard normal form. Note also
that the elements of a prebraid in standard normal form are in > U B2 (this
follows from the remarks after Lemma 5.2.2).

Lemma 5.3.37 FEvery prebraid in standard normal form is irreducible.

Proof. Let K = (a,C, D, 74, 7g) be a prebraid in standard normal form. As-
sume, to get a contradiction, that (m,n) is a strict simplifier for . Without
loss of generality we may assume that m(o;) = m(oy) for distinct open atoms
01,09 € O4(C). Let d; := mw4(0;), and let ; denote the subbraid of K with root
d;, for i = 1,2. Since (m,n) is a simplifier, n(d;) = n(dy). By Lemma 5.3.16,
(m,n) is a simplifier for £ and 5. By Lemma 5.3.19, ICEmm) is the unique
subbraid of K™ with root n(d;), for i = 1,2. Since n(dy) = n(dy), also
ICYn’n> = ,Cém,n) which implies that ; and Ky are equivalent. Since K is in
standard normal form it follows that o; = ojx,] = o[x,] = 02, which contradicts
our assumption. ]

Proposition 5.3.38 Let K be a prebraid. Let (m,n) denote the admissible pair
of endomorphisms that maps each o € O4(K) U Op(K) to oy where K' is the
unique subbraid of K such that o points to K'. Then (m,n) is a simplifier for
K and K™ 45 in standard normal form.

Proof. Let (mqy,nq) be a simplifier for K = (a,C, D, w4, 7p) such that £y :=
ICmm1) g irreducible. If my identifies the open atoms 0,0 € ©4(C), then n,
identifies d := m4(0) and d' := 7w4(0'). It follows that o and o’ point in K to
subbraids that receive the same braid image under the simplification (mq,nq).
Hence these subbraids are equivalent, which implies that m(o) = m(o'). It
follows that the mapping ma : mi(0) — m(o) (o € O4(C)) is well-defined.
Symmetrically it follows that the mapping ns : nyi(0) — n(o) (o € Op(D)) is
well-defined. Both mappings can be extended to admissible endomorphisms for
which we shall use the same symbols.

5Compare Lemma 5.3.9.
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Obviously mgy o my (resp. ny o ny) and m (resp. n) coincide on O4(C)
(resp. Op(D)). Hence mg o m; (resp. ng o ny) and m (resp. n) coincide on
C (resp. D), by Lemma 5.3.1.

We shall now show that (m,n) is a simplifier for K. Assume that m(o) = m(0'),
for 0,0' € O4(C). This means, by the definition of m, that o and o' point in
K to equivalent subbraids K’ and K", with roots d := m4(0) and d’' := w4(0).
We want to show that o and o' are already identified by m;. Let K| and
KY denote the braid images of K’ and K" under the simplification (mq,n1)
respectively. Then K' and K} are equivalent, and similarly for £” and K.
Since K' and K" are equivalent, this implies that £} and K are equivalent.
But £} and K/ are subbraids of the irreducible prebraid Ky, by Lemma 5.3.19.
Part (b) of Lemma 5.3.28 shows that £} and K are irreducible. Since they
are equivalent, both are variants, by Lemma 5.3.34. Part (c) of Lemma 5.3.28
shows that K} = KY. The root of K} is nq(d), and the root of K is nq(d’).
Hence ni(d) = ni(d') and n(d) = na(ni(d)) = na(ni(d')) = n(d').

Symmetrically it follows that n(o) = n(o’) always implies that m(7p(0)) =
m(np(0')), for all 0,0’ € Og(D). This shows that (m,n) is in fact a simplifier
for K. Obviously £(™") is in standard normal form. |

Definition 5.3.39 The process where we apply to a given (pre)braid C the
simplifier (m,n) that maps each open atom o € O(K), pointing in K to the
subbraid X', to the open atom o) € O U Op will be called standard simpli-
fication of K. The prebraid K(™") (braid K{™™) will be called the standard
(braid) normal form of K.

Obviously all subbraids of a prebraid in standard normal form are again in
standard normal form.

Lemma 5.3.40 For each braid K there exists ezactly one braid K' in standard
normal form such that K and K' are equivalent.

Proof. We have seen that standard normalisation yields a braid in standard
normal form that is equivalent to . If £ and K" are braids in standard normal
form that are equivalent to K, then X' and K" are irreducible (Lemma 5.3.37)
and variants, by Lemma 5.3.34. It follows that there exists an admissible pair
of automorphisms (m,n) such that K" = K'™™ . Let o € O4(K') point in K’
to K1. Then m(o) points in K" to /C§m’n> and Ky and ICYn’n) are equivalent.
Since K’ and K" are in standard normal form, o = o, = Opyc(mm)) = m(o).
Hence m coincides on the elements of K’ of type A with identity. A symmetrical
argument shows that n coincides on the elements of X' of type B with identity.
[

Definition 5.3.41 Let o € O U Of. We say that o represents the unique
braid K in standard normal form such that o = o).
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Lemma 5.3.42 Given e € (A, U B,) \ (0% UO%) there ezists a unique braid
K € A® B such that e is the root of K.

Proof. Let e € (A, UB,) \ (0% UO}). We may assume that e € A, \ O%. Let
Oa(e) = {o1,...,0,}, and let o; represent the braid in standard normal form
Ki = (e, Ci, D, iy, 7). Let C := U, C;U{e}, D := U, Dj,ma := U, 74U
Ho,ppei) 1 =1,...,n}, and 7 := Uiy 7. Then K = (e,C, D, 74, 7B) €
A ® B has root e.

Conversely, let K = (e,C,D,mq,mp) € A ® B. Since each open atom o; in
O 4(e) represents a unique braid &; to which it points in K, the structure of K
is completely determined by e. |

5.4 The Rational Amalgamated Product

In the first part of this section we introduce functions and relations on A® B that
interpret the symbols of the joint signature XUA. With this step, the definition
of the rational amalgamated product is complete. In the second subsection we
add some evidence for the naturalness of rational amalgamation. We consider
the case where the two components are non-collapsing quasi-free structures
(A%, X, Endy) and (B2,Y, End}) over disjoint signatures. This is the situation
where we can build both the free amalgam and the rational amalgam with our
actual methods.

Theorem 5.4.1 The free amalgamated product is — modulo isomorphism — a
substructure of the rational amalgamated product.

This shows that there are interesting relationships between distinct amalgama-
tion constructions.

We consider also a particular class of amalgamation components.

Theorem 5.4.2 The rational amalgamated product of two algebras of rational
trees over disjoint signatures is isomorphic to the algebra of rational trees over
the combined signature.

This shows that our general construction, complicated as it might appear, yields
the expected result when we consider more concrete situations. The proof of
the theorem is due to K. U. Schulz and can be found in [97, 98].

5.4.1 Functions and Relations
Given the underlying domain of the rational amalgam of 2~ and B> as con-

structed above, there is now a perfectly natural way to introduce functions and
relations that interpret the symbols of the mixed signature 3 UA. Basically, we
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shall use bijections to “copy” the L-structure (A-structure) of A (B2) onto
A ® B. Consider the functions rooty : A® B — A, and rootg : A® B — B,:

the root of K if I is trivial or has type A
o) € O% if K is non-trivial and has type B.

rootA(K) := {

{ the root of K if K is trivial or has type B

rootp(k) = o) € Op if K is non-trivial and has type A.

As a direct consequence of Lemma 5.3.42 we obtain
Lemma 5.4.3 The functions roots and rootg are bijections.
Here is now the definition of the rational amalgamated product.

Definition 5.4.4 The rational amalgamated product A¥ ® B2 of A and B2
is the following (X U A)-structure with carrier A ® B:

1. Let f € X be an n-ary function symbol, let K,..., K, € A® B. We
define foom (K1, .., Kn) = root " (fa. (roota(Ky),. .., roota(Kp))).

2. Let p € ¥ be an n-ary predicate symbol, let Kq1,...,K, € A® B. We
define A% © B2 = p(Ky,...,K,) iff AT |= p(roota (K1), ..., root4(Ky)).

The interpretation of the function symbols ¢ € A and the predicate symbols
g € Ain A* ® B2 is defined symmetrically, using rootp.

Theorem 5.4.5 As a X-structure, A © B2, A% and A are isomorphic, and
rooty : AX @ B2 = AT is a B-isomorphism. As a A-structure, A> © B>, B2,
and %*A are isomorphic, and rootp : AX © B2 — %*A is a A-isomorphism.

Proof. Recall that 2* and 2> are isomorphic, and similarly for 8% and B2.
Lemma 5.4.3 and Definition 5.4.4 imply that rooty : A* ® B> — AT is a
Y-isomorphism and rootg : A ® B2 — B2 is a A-isomorphism. [

Theorem 5.4.5 makes clear that rational amalgamation is not a construction
that can be used, say, to construct a rational tree algebra for a given signature
¥ out of the finite tree algebra for ¥. Even if B2 consists of atoms only, the
rational amalgam > ® B2, considered as a X-structure, is isomorphic to A>.

5.4.2 Free Amalgamation and Rational Amalgamation
In this subsection we shall prove Theorem 5.4.1. We define the notion of an

acyclic braid and show that the set of all acyclic braids in standard normal
form is a substructure of the rational amalgamated product. It is then possible
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to prove that the free amalgamated product of the two component structures
is isomorphic to this substructure.”

Definition 5.4.6 A prebraid K = (a,C, D, 7wy, wp) is called acyclic if there
is no sequence ey, es...,e, of elements in C'U D, of length n > 2, such that
e1 = e, and every element e; is directly linked® via 7 = 74 U wp to €it+1, for
1=1,...,n—1. If £ is acyclic, the depth of K is the largest number n such
that there is a sequence ey, ..., e, of elements of ' where each element e; is
directly linked to e;y1 via w, for ¢« = 1,...,n — 1. We write AC for the set of
acyclic braids.

Lemma 5.4.7 Let (m,n) be a simplifier for the acyclic braid K. Then the
braid image K™ s an acyclic braid.

Proof. We may assume that K = (a,C, D, m, wg) is of type A. Let K(mn) =
(m(a),C", D', x'y, 7). We show that the prebraid £™™) is acyclic. Assume, to
get a contradiction, that there is a sequence e; ..., e, of elements in C' U D', of
length n > 2, such that e; = e, and every element e; is directly linked to e;41
via ' := 7y Unly, for i = 1,...,n— 1. An element a of K is called interesting
if its image m(a) resp. n(a) occurs in the sequence e; ...,e,. An element O
of K is called a daughter of an element b of K if b is directly linked to b via
mi=maUTpR.

Since K is acyclic, there has to be an interesting element a € C U D such
that no daughter of a is interesting. Without loss of generality we assume that
a € C. Hence m(a) occurs in ey ...,e,, say, as element e; (we may assume
that i > 1). Since e; ; is directly linked to m(a) = e; in K™ there exists
a link (o0,e;_1) € «'y where 0 € O4(m(a)). Let Oa(a) = {o1,...,0,} and
bi := ma(o;), for i = 1,... k. Thus {by,...,b;} is the set of daughters of a
in £. From Lemma 5.2.4 it follows that o has the form o = m(o;), for some
1 < < k. Hence, since 7'y is a function, it follows from Definition 5.3.17 that
(0,ej—1) = (m(0;),n(b;)) and n(b;) = e¢;_1. But this implies that the daughter
b; of a is interesting, which contradicts our choice of a. ]

Proposition 5.4.8 The set AC' of all acyclic braids of A ® B forms a sub-
structure of A> © B2,

Proof. Let f € % be an n-ary function symbol, let Ky,...,X, be acyclic
elements of A¥ ® B2, We have to show that the braid

faoms (K1, ..., Kn) = root ! (fa. (root a(Ky), ..., roota(Kp)))

"With the actual methods, the free amalgamated product can only be built for quasi-
free structures (A%, X, M) and (B2,Y,N) over disjoint signatures, where M = Endy and
N = End3. Hence we have to assume that the two components are non-collapsing and
M = Endy and N = End%.

8Compare Definition 5.3.2.
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is acyclic. The elements of O4({roota(K1),...,root4(KCy,)} represent — in the
sense of Definition 5.3.41 — acyclic subbraids. By Lemma 5.2.3,

Oua(fa, (roota(Ky), ..., roota(Ky)) C Oa({roota(Ki),...,roots(K,)}

and the open atoms in a* := fy (roots(K1),...,root4(K,)) represent acyclic
subbraids. If a* € 2, \ 0%, then K := root,'(a*) is the unique braid
in standard normal form with root ¢*. Since all open atoms of the root
of I represent acyclic subbraids, C itself is acyclic. In the other case, if
a* = 0 € Ox({roota(K1),...,root4(KC;,)} is an atom, then it represents an
acyclic braid in standard normal form K of type B. But K := root}'(a*).
We have seen that the set of all acyclic braids represents a Y-substructure of
A¥ © B2, Symmetrically it follows that this set represents a A-substructure of

A> @ BA. ]

We use the symbol AC for the substructure of acyclic braids.

We consider the amalgamation base (Z, (A%, Z), (B, Z)). Braids over (A%, Z)
and (B2, Z) are constructed by proceeding to non-collapsing superstructures
(AZ,Z U O4) and (B, Z U Op) where O (Op) are the open atoms of A%
(B2). We have to show that there are homomorphisms e, : (2~, Z) — AC and
e : (B>, 7Z) — AC such that (AC,e4,ep) closes the amalgamation base, i.e.,
AC is an amalgamation. Secondly, we have to show that it is the “smallest”
amalgamation in the following sense. Let (D,d4,dp) be another amalgamation
where (A%, Z) is quasi-free for ®* and (B2, Z) is quasi-free for D2. Then
there exists a unique homomorphism A : AC — ® such that hoey = d4 and
hoeg =dpg.

Definition 5.4.9 Define Uy == {2 € Oy | 3a € Ay : = € Stab®=(a),
root;lio (a) € ACY} the set of open atoms occurring in acyclic braids and anal-
ogously Up := { € Op | 3b € By : z € Stab%“’(b),rootgio(b) € AC}.
Define A, := SH%OO(Z UUa) and AT as its quasi-free structure; define
B, := SH%OO (Z UlUp) and B% as its quasi-free structure.

Lemma 5.4.10 There exists a qf-isomorphism sma : (A2, ZUO,) — (A2, ZU
Uy) and a gf-isomorphism smp : (B, Z U Op) — (B2, Z UUg).

Proof. Since there exists a bijection between ZUQO4 and ZUU 4 (resp. between
Z UQOp and Z UUp), this is an application of Lemmata 5.2 and 5.3, p. 27 in
[11] which state the contents of our lemma in general terms. [

The elements of A, and B, are now mapped onto acyclic braids by means of
the functions root;lio and rootg,io.

Lemma 5.4.11 The function rootzio is an isomorphism between AL and AC*.
The function rootgio is an isomorphism between B2 and AC®.
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Proof. The function root;lio is a homomorphism by definition, and so is its

inverse roots. . All we need to show is that root;io is surjective onto AC™.
So let a € AC be an acyclic braid. If a = (z,{z},0,0,0) for some z € Z,
then clearly a = root;io(z). If a is of type A, then there is an o' € Ay
with a = root;lio(a’) and Stab®>(a’) C Uy U Z. Thus Stab™> (a') C A, and
a' € A,. If a is of type B, then there is an 0o € O4 such that a = root;io(o)
and 0 € Uy C A, by definition.

The argument for rootgio is analogue. |

Note, that rOOtZ; is not a ¢f-isomorphism. The elements of U4 are atoms

in 2. Their images under root;io are complex braids and not the atoms
(2,{2},0,0,0) where z € Z.

Lemma 5.4.12 The structure (A>, Z) is quasi-free for AC*, (B>, Z) is quasi-
free for ACA.

Proof. The structures (%%, Z) and (A2, ZUU,) are qf-isomorphic, and A and
AC* are isomorphic. n

Now, we can define the embedding homomorphisms e4 : (%A%, Z) — AC and
eg : (B>,Z) — AC . Consider the map z — (z,{z},0,0,0) for each z €
Z. Since (A%, Z) is quasi-free for AC”, there exists a unique extension to a
homomorphism. We take e4 to be this unique extension. And ep is the unique
extension of that map from B to AC.

Lemma 5.4.13 The triple (AC,ea,ep) closes the given amalgamation base
(Z7 (9[27 Z)? (%A7 Z))'

Proof. The embedding homomorphism from Z to (2%, Z) is idz. And by
definition of ey, for every z € Z C A holds es(z) = (z,{z},0,0,0). idz is also
the embedding homomorphism from Z to (B2, Z). And ep(2) = (z,{z},0,0,0),
t00. So clearly e1(z) = ex(2). [

Proposition 5.4.14 AC is the free amalgamated product of the amalgamation
base (7, (A%, Z), (B2, 7).

Proof. Let (D,da,dg) be another amalgamation where (A%, Z) is quasi-free
for ®F and (B2, 7) is quasi-free for D*. The functions d4 and dp are the
embedding - (resp. A- ) homomorphism from A¥ (B2) to D (D?) such
that d4 and dp coincide on Z. We have to show that there exists a unique
¥ U A-homomorphism h : AC™YA — DZUA that satisfies

dA:hoeA anddB:hoeB.

The situation is illustrated by the following figure.
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Since (A%, Z) and (A2, ZUU,) are qf-isomorphic, (AZ, ZUU,) is also quasi-free
for D by Lemma 3.2.26. And (8%, Z UlUp) is quasi-free for D2,

Definition of the homomorphism
For k > 0, define AC* to be that subset of AC' that contains all braids of depth
at most k.

o

We start with the following simple observation. A given mapping h¥ : AC* — D
induces two partial mappings k¥ := {(roots_(a),d) | (a,d) € h*¥} : A, — D
and h% := {(rootp_ (a),d) | (a,d) € h¥} : B, — D.

We define an ascending tower of mappings h° C h! C h2... where h* : AC* —
D for k =0,1,2,.... Thus we have h% - hh - h?q... and hOB C h}g C hQB....
At each step of the construction of this tower, we will show that

h]j‘ can be extended to a ¥-homomorphism ggﬁ)_D (AT = D, (5.1)
h% can be extended to a A-homomorphism ggi)_ D B = DA, .

The construction will proceed by an induction over the depth of a braid.

For the base case, consider first a braid (z,{z},0,0,0) where 2 € Z. Define
RO((z,{2},0,0,0)) := da(z) = dg(z). Now consider a braid (a, {a},0,0,0) of
depth 0 and type A. Then Stab®<(a) C Z. The mapping K% : Z — D has
an extension to a Y-homomorphism from A to D%, because (A, 7 UU,) is
quasi-free for ®>. And all such extensions to a ¥-homomorphism that agree on
7 coincide on SH,,(Z) by Lemma 3.2.24. Let d € D be the unique value that
all extensions deliver. Set h°({a, {a},0,0,0)) := d. If the braid (a,{a},0,0,0)
of depth 0 is of type B, we define h%((a, {a},0,0,0)) := e, the unique value of
the extension of b : Z — D to a A-homomorphism from B2 to D2,

We have to show that Condition (5.1) holds for h%. But this is simple. For a
braid (a, {a},0,0,0) of type A we just defined h’%(a) to be the unique value of
the homomorphic extension of h¥ restricted to Z, and for a braid (b, 0, {b},0, 0)
of type B we know root4_, of it to be an atom in Ux. So, since (AT, Z UU,)
is quasi-free for D> the mapping h% can be extended to a Y-homomorphism

91(23— D 2> — D®. Analogously, A% can be extended to a A-homomorphism

9 B DA,

For the induction step, we suppose that hF is already defined. Let a =
(d',E,F,mp,mr) be a braid of type A of depth k+ 1. Then a’ = roots__(a) and
Stab%e(a') C Z UU,. Every element u € Stab® (a') NUy, is the A-name of an
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acyclic B-braid of depth at most k. Thus hX (u) is already defined. By induc-

tion hypothesis, h’ﬁx is extendable to a Y-homomorphism ggi)_ LR 2l§ — D>,

Define h¥*+1(a) := 91(4]?7 p(a’). This choice is not arbitrary. Since h% is defined
on the stabiliser of a/, all extensions of h’j‘ to a X-homomorphism must yield
the same value for a’ by Lemma 3.2.24. For braids b of depth < k, we define
RFF1(b) := BF(b).

We must show now, that Condition (5.1) holds for A5, Let V := (ZUlUs) N

dom(h%). So the set V¥ is the restriction of the domaln of k¥ to the atoms. Let
hV/;‘LD be the restriction of % to V. Since (A2, ZUlU,) is quasi-free for D, the

mapping hyk_p U {(z, h%"(2)) | z € dom(R¥T1)\ dom(h%)} can be extended to

a Y-homomorphism g(kH) AZ — D*. We will show that g( ) extends h'jfl.
Let a € dom(h¥). Then by construction of h¥ we know Stab%( ) € dom(Rk),
and thus Stab®(a) C VK. Hence hE'! and hvfllch agree on Stab®®(a). By
Lemma 3.2.24 every homomorphic extension yields the same value, namely,
hk(a). Let a € dom(h%™)\ dom(h%) be a non-atom. The last paragraph’s

argument shows that Stab®®(a) C dom(hX); thus analogously to the above case,
hEL and th{—D agree on Stab®® (a). Now h¥™(a) is exactly defined to be what
all homomorphic extensions yield. Finally, let z € dom(h%"")\ dom(h*) be an
atom. Then immediately by definition of ggit%, we see ga, () = h5(2). And
that completes the proof that Condition (5.1) still holds for h]j‘"'l. An analogous

argument can be made for h’gfl.

We use the above described tower to define b := Ujsq h*. Let ha := Ugpsg b :
Ay = D and hp = Up>g hlfg : Bo — D be the ma_ppings induced by h. We
claim that A 4 is a ©-homomorphism. So, let f € ¥ be an n-ary function symbol,
p € XJ an n-ary predicate symbol, and by, ...,b, € A,. Choose k to be the max-
imum of the depths of rootZ;(bl), e ,rootzio(bn) and rootzio(f(bl, ceaybn)).
Since h4 extends h ", and since the latter mapping can be extended to a -

homomorphism 91(40)— p, it follows that

ha(f(bi,-...bn)) = BS(f(br,...,bn))
)

= gV L (f by b))

= f(gifj o)y 0% (ba))

= F(RE (b)), BE (b))

= f(ha(by),...,ha(byn)), and

(9" <>...,951“3,D<bn>>
P (B1), .. 1 (b))
p(ha(br), -, ha(bn).

A similar argument shows that hp is a A-homomorphism. It remains to be
shown that h is a 3 U A-homomorphism and the factorising homomorphism.
First note that h = hy o rooty.,, = hp o rootp_. In fact, let a be a braid of
depth . Then h(a) = h'(a) = h'y(roota, (a)) = ha(roota(a)) and h(a) =

p(bl,...,bn) = p
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hl(a) = hlz(rootp_, (a)) = hp(rootp_ (a)).
Let f € ¥ U A be an n-ary function symbol, and a4,...,a, € AC. Suppose
f €X. (The case f € A is similar.) Then

h(f(ay,...,an)) = ha(roota, (f(a,...,an)))
= ha(roota,, (rootA (f(roota(a1),...,roota(ay)))))
= ha(f(roota_(ay),...,roota(ay)))
= f(ha(roota(a1)),...,ha(roota, (ay)))

(
f(h(ar), ... h(an)).

Let p € ¥ U A be an n-ary predicate symbol, and aq,...,a, € AC. Again we
suppose p to be in ¥ without restricting generality. Then

plat,...,ay) <= p(roota,(ai),...,roota, (ay))
= p(ha(roota(a1)),...,ha(roota (ay)))
<~ p(h(ay),...,h(ay))-

The composition h o ey is a ¥-homomorphism from (A, Z) to ©*. And for all
z € Z we have h(ea(z)) = h((z{z},0,0,0)) = da(z) by definition of e4 and h.
Since (A*, Z) is quasi-free for D%, it follows that h o ey and d4 coincide on A.
Similarly we can show that h o eg and dp coincide on B. This shows that h is
the factoring homomorphism (or, categorically speaking, mediating morphism).

Uniqueness of the homomorphism
Assume that g : ACTY2 — ©>Y2 is another ¥ U A-homomorphism such that

goes=dsand goep =dp (5.2)

g induces a ¥-homomorphisms g4 : (AZ, ZUlU,) — D and a A-homomorphism
: (B2, Z UlUp) — D>, We will show by induction on the depth of a braid
that g=h.

By definition of eq,ep and (5.2), g((z,{z},0,0,0)) = di(z) = da(z) for all
z € Z. Thus g and h coincide on Z and also g4 =z ha,gp =z hp. Let
a ¢ Z and (a,{a},0,0,0) be a type A braid of depth 0. Then Stab®*(a) C Z.
Therefore g4 and h4 coincide on a, because (A2, Z UlU,) is quasi-free for D*.
Hence g and h coincide on (a, {a}, 0,0, 0).

Now suppose that g and h coincide on all braids with depth at most k. Consider
a braid a = (¢/, E, F, 7, 7r) of type A of depth k + 1. Then o' = roots_ (a)
and Stab™ (a’) C Z UU,. Every element u € Stab®*(a’) NU, is the A-name
of an acyclic B-braid of depth at most k. By induction hypothesis, g4 and
h coincide on Stab™®(a’). Thus they coincide on o/, because (A2, Z UUy,) is
quasi-free for ®*. And hence g and h coincide on a. ]

5.5 Combination of Constraint Solvers

Our last aim is to show how constraint solvers for two component structures
can be combined to a constraint solver for their rational amalgamated product.
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Constraint solvers, as considered here, are essentially algorithms that decide
solvability of quantifier-free positive formulae in a given solution domain. We
(mostly) disregard disjunction since its integration is a triviality.

Definition 5.5.1 Let © be a signature. A ©O-constraint is a conjunction of
atomic O-formulae.

In order to decide solvability of a “mixed” (¥ U A)-constraint in a rational
amalgamated product A¥ ®B% we shall decompose it into two pure constraints
over the signatures 3 and A respectively. These output constraints are equipped
with additional restrictions of a particular type.

Definition 5.5.2 An A/N (atom/non-atom) declaration for a constraint I' is a
pair (U, W) such that U W C Var(I') is a disjoint union. Both U and W may
be empty. A solution v, of a constraint T' in a quasi-free structure (A%, X, M)
is called a solution of (I',U, W) if v4 assigns distinct atoms to the variables in
U, and arbitrary non-atomic elements of A to the variables in W.

In order to avoid some ballast in proofs we shall assume that at least one of the
two components is a non-trivial quasi-free structure, which means that it has
at least one non-atomic element. We may now formulate our main result con-
cerning combination of constraint solvers in the case of rational amalgamation.

Theorem 5.5.3 Let A¥ and B> be two non-collapsing quasi-free structures
over disjoint signatures, let A> © B> denote their rational amalgam. Assume
that at least one of the two components is a non-trivial quasi-free structure.
Then solvability of (XU A)-constraints in A © B2 is decidable if solvability of
(3- resp. A-) constraints with A/N declarations is decidable for A¥ and B>.

There seems to be no general way to characterise solvability of I'-constraints
with A/N declarations in purely logical terms. But for a restricted class of
component structures — a class which is of particular interest in the context of
rational amalgamation — a logical characterisation of the problems that we have
to solve in the two component structures can be given.

Definition 5.5.4 A non-collapsing quasi-free structure (2A¥, X, M) is called
rational if for every atom z € X and every element a € A there exists an
endomorphism m € M that leaves all atoms z’ # z fixed such that m(z) =
m(a).”

The algebra of rational trees over a given signature is always a rational quasi-free
structure. The same holds for feature structures, feature structures with arity,
and domains with nested, rational lists (as described in 3.2.17). For rational
quasi-free structures we obtain the following refinement and reformulation of
Theorem 5.5.3.

®The existence of such an endomorphism is trivial if z ¢ Stab%,(a). In this case we may

always take, e.g., the endomorphism m = m,_, of M that maps z to a and leaves all other
atoms fixed. The situation of interest is the case where = € Stab%,(a) and z # a.
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Theorem 5.5.5 Let A” and B> be two non-trivial rational quasi-free struc-
tures over disjoint signatures, let A © B2 denote their rational amalgam.
Then solvability of (X U A)-constraints in A* © B> is decidable if the positive
universal-ezistential theory is decidable for both components A> and B2,

Since existential quantification distributes over disjunction, the theorem may
be slightly strengthened.

Theorem 5.5.6 Let A> and B> be two non-trivial rational quasi-free struc-
tures over disjoint signatures, let AX ©B> denote their rational amalgam. Then
the positive existential theory of A> © B> is decidable if the positive universal-
existential theory is decidable for both components A* and B>.

It is interesting to contrast this formulation with the corresponding combination
result for free amalgamation. The assumptions on the components are stronger.
In oder to decide the positive existential theory of the free amalgamted product,
the positive theories of both components must be decidable (Theorem 3.4.2).
On the other hand, the quantifier fragment that can be decided in the free
amalgamted product is larger. As Theorem 3.4.1 states, the full positive theory
can be decided in the free amalgamated product, provided the positive theories
are decidable in the components.

One application of Theorem 5.5.6 is the following

Corollary 5.5.7 Rational amalgamated products A3 @- - -G)Ql%’“ have decidable
positive existential theory if the nontrivial components Qllxl are rational tree

algebras, or nested, rational lists, or feature structures'®, or feature-structures
with arity, fori=1,...,k, and if the signatures of the components are pairwise
disjoint.

Proof. For all these structures it has been shown that even the full positive
theory is decidable, see [10]. [

In the rest of this section, we prove Theorem 5.5.3 and Theorem 5.5.5.

5.5.1 Proof of Theorem 5.5.3

To prove Theorem 5.5.3 we shall give an algorithm that reduces a mixed con-
straint I in the signature (X U A) non-deterministically to a pair of constraints
with A/N declarations over the “pure” signatures ¥ and A respectively. We
shall assume that the input formula T' has the form T' = T} A TS where T'¥
is a conjunction of atomic ¥-formulae, and T'§* is a conjunction of atomic A-
formulae. Moreover we assume that I' does not contain any equation between
variables. These assumptions do not really restrict the generality of the ap-
proach. The first two steps of the decomposition algorithm in Section 3.4.1 on
page 38 show that one can transform an arbitrary (¥ U A)-constraint ¢ into a
constraint I" of the form given above, preserving solvability in both directions.

19As in Examples 3.2.17 we refer to [2], for specificity.
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Algorithm 5.5.8 The input is mixed a constraint I' = 'y A TS of the form
described above. Let Vi = Var(I'y) N Var(T'5') denote the set of shared variables
of I'. The algorithm has two steps, both are nondeterministic.

Step 1: Variable identification. Consider all possible partitions of the
set of all shared variables, V. FEach of these partitions yields one of the new
constraints as follows. The variables in each class of the partition are “identi-
fied” with each other by choosing an element of the class as representative, and
replacing in the input formula all occurrences of variables of the class by this
representative.

Step 2: Choose signature labels.  Let [T AT denote one of the formulae
obtained by Step 1, let Vi denote the set of representants of shared variables.
The set V1 is partitioned in two subsets U and W in some arbitrary way.

Let 0 =T7, let § = I'Y". For each of the choices made in Step 1 and 2, the algo-
rithm yields an output pair ((o,U, W), (5, W,U)), each component representing
a constraint with A/N declaration.

Correctness of Algorithm 5.5.8

We shall prove that Algorithm 5.5.8 is correct in the following sense.

Proposition 5.5.9 The input formula T has a solution in A ©B2> if and only
if there exists an output pair ((o,U, W), (5, W,U)) of Algorithm 5.5.8 such that
(o0,U, W) has a solution in A¥ and (6, W,U) has a solution in B>.

Note that Theorem 5.5.3 is an immediate consequence. In order to prove Propo-
sition 5.5.9 we shall assume that the two components A= and B2 are quasi-free
structures of the form (A, X, M) and (B2,Y,N) respectively. First we show
soundness.

Lemma 5.5.10 If, for some particular output pair ((o,U, W), (0, W,U)) of Al-
gorithm 5.5.8, (o,U,W) has a solution in A* and (5,W,U) has a solution in
B2 then the input constraint T is solvable in A @ BA.

Proof. The output formulae ¢ and § may be written in the form I'} (i, i, ')
and T'Q (&, W, Ua), where @ = wuy,...,uy, denotes the sequence of all elements
of U, where 4 = wy,...,w, denotes the sequence of all elements of W, and
where ¥ (resp. ¥a) stands for the non-shared variables occurring in T'Y and
'Y respectively. The proof has now three steps. In the first step, the given
solutions of the output constraints are used to construct similar solutions of a,
more specific form. In the second step, these latter solutions are used to define
suitable braids. In the third step we apply standard normalisation to these
braids. This will yield a solution of the input constraint.

1. By assumption, there exists a solution p4 of TT in A¥ such that the
elements poa(wy),...,pua(um) are distinct atoms of 2A¥, and the elements
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pa(wr),...,pa(w,) are non-atomic elements of A”. If some of the atoms
pa(ur), ..., pa(upy) are bottom atoms, then we apply an automorphism m; €
M such that the elements in {mq(ua(u1)),...,m1(na(um))} are distinct open
atoms. In the other case, let m; := id. If the stabilisers of the elements
my(pa(wy)),...,mi(pa(wy)) contain open atoms oy,...,0; that do not be-
long to {mi(pa(u1)),...,mi(na(um))}, then we apply an endomorphism meo
that maps the atoms o1,...,0; to some bottom atom z and leaves the atoms
{mi(pa(ur)),...,mi(ua(um))} fixed. In the other case, let my := id. Since 'Y
is a positive formula, v4 := 4 o mq 0 my is a solution of FIE, by Lemma 5.2.1.
We have

(1) the elements x1 := va(u1),...,Tm := va(uy) are distinct open atoms,

(2) the elements a; := vg(wy),...,a, := v4(w,) are non-atomic,

(3) the open atoms occurring in the stabilisers of the elements a,...,a, are
in {z1,...,2mn}, and

(4) A¥ = Iy T (4/7,6/a).

(2) follows from the fact 2% is non-collapsing, (3) follows from Lemma 5.2.4,
and (4) follows from the fact that v4 solves I'Y. Symmetrically we can show
that there exists a solution v of T9 in B4 such that

(5) the elements y := vg(wy), ...,y := vp(w,) are distinct open atoms,
(6) the elements by :=vg(u1),...,bn := vp(uy) are non-atomic,
(7) the open atoms occurring in the stabilisers of the elements by, ..., by, are

in {yla"'ayn}a and
(8) B = 3ia T (a/b, /5.
2. Let mq = {{z3,b;) | i = 1,...,m}, let np := {{ys,a;) | 7 = 1,...,n}.

1
Properties (1)-(3) and (5)—(7) show that for each e € @ (e € b), the tuple
Ke:={e,{a1,...,an}t,{b1,..., by}, ma,7mB) is a prebraid of type A (B).

3. Fix some e € @Ub. Let (m3,n3) be the standard normaliser for K.. By
Lemma 5.2.1, (4), and (8),

A Iy F%(ﬁ/m?,(ff')ﬂﬁ/ms(@')),
B2 | Ioa DR (d/ns(b), /ns (7).

A Ty DY (G/ms(F), w/ms(d@)),
B | Fa TP (i/ns(b), 5 /n3(7))-
Now Theorem 5.4.5 shows that

AT @ BE = iy T2 (i/root 4 (ms()), 5 /root ;' (ms(@))),

A¥ © B2 | Foa TR (d/rooty' (n3(b)), @/roots' (n3(7))).
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Consider an element z; of . Assume that z; points in I, to the subbraid
K" with root b;. Then m3(z;) = oyr. Let K; be the subbraid of jelmana)
with root ng(b;). By Lemma 5.3.19, K’ and K; are equivalent. It follows that
ms(z;) = ork,]- The braid K; is non-trivial and of type B, and it is the unique
braid in standard normal form with root nz(b;) (Prop. 5.3.38, Lemma 5.3.42).
Hence root;' (m3(z;)) = K;. The element n3(b;) is a non-atomic element of B.
Hence TOOtBl(n3(5)) = K; is the unique braid in standard normal form with
root n3(b;). Thus we have seen that root ' (m3 (7)) = rootgl(n3(g)). Similarly
it follows that rooty'(n3(7)) = root;'(ms(@)). This shows that the formula
I'Y A T2 obtained after Step 1 has a solution in 2% ® B%. Obviously this
implies that the input constraint I' has a solution in A= @ BA. [ ]

Next, we show completeness of the Algorithm 5.5.8.

Proposition 5.5.11 If the input constraint ' has a solution in A> © B2, then
there exists an output pair ({o,U, W), (6, W,U)) of Algorithm 5.5.8 such that
(o0,U, W) has a solution in A and (5, W,U) has a solution in B>.

Proof. Assume that T has a solution paep in A* © BA,

In Step 1 of Algorithm 5.5.8 we identify two shared variables v and v' of Vj if,
and only if, paeop(v) = paes(v'). With this choice, paep is a solution of the
formula I'T AT that is reached after Step 1, and p4op assigns distinct values
in AX © B2 to all variables of V;.

By Theorem 5.4.5, root o paep (resp. rootg o asp) is a solution of o = T'Y
in AT (resp. of § = I'Y in BL) that does not identify two variables of V;.

By assumption, one of the two component structures, 2>, say, is non-trivial.
In Step 2, we choose as U the set of all variables u of V; such that psop(u)
is a non-trivial braid of type B. Consequently, W contains all variables w of
V1 such that pgep(w) is a trivial braid or a non-trivial braid of type A. The
definition of root, implies that roots o pasp(u) is an open atom of 91*2, for all
u € U, and root, o iaop(w) is a non-atomic element or a bottom atom of A=,
for all w € W. Let m; € M be an endomorphism that maps all the bottom
atoms of the set {roots o paep(w) | w € W} to a non-atomic element of A and
leaves all other atoms fixed. Since 2* is non-collapsing, all elements of the set
{myorootsopssp(w) | w e W} are non-atomic. Since o is a positive formula,
Lemma 5.2.1 implies that v4 := mq o roots o paep is a solution of (o, U, W) in
o,

On the other hand the definition of rootp implies that rootp o paep(w) is an
atom of B2, for all w € W, and roots o o (u) is a non-atomic element of
B2, for all u € U. This shows that (§, W, U) has a solution in B%.

But then, by Lemma 5.3.35, (o, U, W) has a solution in 2> and (§, W,U) has a
solution in B2, m

110



5.5.2 An Example

In order to illustrate Algorithm 5.5.8, we discuss a little example problem in
the combination of rational trees and non-wellfounded multi sets. Let W =
{wy,we,ws, ...}, V1 = {vy,v3,vs5,...} and V5 = {vy,v9,v4,...} be infinite sets
of variables. Let ¥ = {{-},U} be the signature of multi sets where {-} is unary
set construction and U is set union. To simplify notation, we assume that {-}
is of arbitrary finite arity. Let Vig..(WW U V1) denote the domain of hereditarily
finite non-wellfounded multi sets over W U V;.'!' Let A = {a,g,h} be the
signature of the rational tree algebra 82 (A, W U V5) where a is a constant, g a
unary and f a binary function symbol. The constraint problem we consider is

I'={y=9),z=9({a,2}),z = {g({a, 2}),y, f({a, a}, {g(w), f(a, 2)})}}.

Since T is not in decomposed form, we first transform it into this form by means
of variable abstraction to receive I' = I'j AT'§* where

T8 = {y=g),z=glxa),xo2 = a, 723 = g(w25), T24 = f (26, 227),
Tog = @, T29 = a, T3 = a,x30 = g(w),x31 = f(a,z)}
and
U5 = {01 = {7, 2},7 = {x03,y, 204}, 225 = {T2s, 2},
Tos = {%29, %32}, Tor = {Z30, %31} }.

In Step 1 of the algorithm, we choose the following partion of the variables
(where the bold variable is the representant of the class):

[X22, €28, 129, 3332], [X21, $25], [3323, Z], [Y]a [X], [X24], [Xze], [X27], [Xso], [X31]-
After this identification, the problem looks as follows
It = {y=g),z= (3721) T2 = a,T24 = f(%26, T27),
z30 = g(w), z31 = f(a, )}

and

IT = {721 = {702, 2}, 7 = {2,y, 3oa}, To6 = {22, T2}, w27 = {m30, 731} }.
In Step 2, we choose the atom/non-atom declaration ({y, z, z22, 24, 30, 31},
{®, 291,26, T27}).

Now, the constraint problem with A/N declaration (I'®,{z, 91, T2, 27},
{y, 2,292, T4, T30, 231 }) clearly has a solution in R (A, W U V3):

Y — ggqgqg... o2 H—r Q
z +— g(v2) Tol — U
T4 — f(v4,06) Tog > V4
z30 = g(wy) Ta7 —r Vg
z31 — f(a,vs) T > Vg
w = wi

See Examples 3.2.17.
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This is a solution of 'Y, and all elements in {x, 21, 296, 227} are mapped to
different atoms in W U V5, while all variables in {y, z, x99, x24, T30, %31} are
mapped to non-atoms.

The constraint problem with A/N declaration (I'Y, {y, z, 222, T24, 30, 31 },
{z, 91, T26, x27}) has a solution in Vi (W UV;):

To1 {7)1,?)3} T — {713,7)57'07}
Lo — {v1,v1} To7 = {vg,v11}
o9 —r U1 Z — U3

Y — Us To4 > U7
T30 = V9 31 = U1

This solves FIE, and the variables {y, z, 22, T24, 230, 31 } are mapped to different
atoms, while the variables {z, 91, Tog, T27} are mapped to non-atoms.

Hence by Theorem 5.5.3, there is a solution of I'. The following figure shows
how this solution looks like.

b O
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5.5.3 Proof of Theorem 5.5.5

In order to proof Theorem 5.5.5 we shall use the following variant of Algo-
rithm 5.5.8.

Algorithm 5.5.12 The input constraint I', and Steps 1 and 2, remain as
above. The output of Algorithm 5.5.12 consists of the two positive universal-
existential sentences

o = Vi3, » TT
and

§ = Var3advy o T
where @ (w) represent the variables in U (resp. W), ¥ x represents the non-
shared variables in FIE, and 7 A represents the non-shared variables in FIA.
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Proposition 5.5.13 The input formula T has a solution in 2A> ® B2 if and
only if there exists an output pair (0,6) of Algorithm 5.5.12 such that A* | o
and B> = 0.

Theorem 5.5.5 is an immediate consequence. In order to prove Proposi-
tion 5.5.13 we shall first show that Algorithm 5.5.12 is sound. As above we
shall assume that the two components 2> and B4 have the form (2%, X, M)
and (B2,Y,N) respectively.

Lemma 5.5.14 If, for some output pair (0,6) of Algorithm 5.5.12, A* = o
and B2 = 0, then T is solvable in AX @ B2,

Proof. Assume that A¥ = Vidw3vy s [T and B2 | VaiFado a TP, Let
U= Ul,...,Unp, let W = wq,...,w,. For each variable u; we select a distinct
atom z; € X of A (1 <14 < m), and for each variable w; we select a distinct
atom y; € Y of B (1 < j < n). Then there are elements a,...,a, € A and
bi,...,by € B such that

A¥ | Fihp TT(d/7,5/a)
B Fia TP/, d/9).
We distinguish two cases.

First case: x; # a; and b; # y;, for all1 <i<n and 1 <j <m. Since A is
non-trivial, we may choose an endomorphism m; € M that maps all atoms in
the set {a1,...,an} to a non-atomic element @ € A and fixes all other atoms.
In particular, m; leaves the atoms z1,...,z,, fixed, by assumption. Since A>
is non-collapsing, all elements in the set {mi(ay),...,mi(a,)} are non-atomic.
Since I'} is a positive formula we have

QLE |: 361,2 F%(ﬁ/fa w/ml (a’))a

by Lemma 5.2.1. It follows that the 3-constraint with A/N declaration,
(T¥,U, W), has a solution in A*.

Symmetrically we may choose an endomorphism n; € N such that all elements
in {ny(b1),...,n1(by)} are non-atomic and

B | A a TR (/1 (), 5 /y).

It follows that the A-constraint with A/N declaration, (I'f*, W, U), has a solu-
tion in B2. Now Lemma 5.5.10 shows that the input formula T has a solution
in A” © B2,

Second case: Without loss of generality, ©; = aj, for some 1 < i < m and
1 <j <n. We consider the new formula I 5, (' o) that is obtained by
replacing all occurrences of w; in Flz (resp. FIA) by u;. Consider the pair with the
formulae ¢’ = Va3w'3v), x» T 5, and ¢’ = Va'Iu3v; A T o, where the sequence
w' is obtained from w by refnoving w;. Obviously, (o’ ,’5’ ) is again an output
pair of Algorithm 5.5.12. We claim that A% = ¢’ and B |= §'.
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We have
A = 3y p T (i), ' [d),

where @ denotes the sequence ay,...,a;—1,0;11,-..,0,. Since X is an M-atom
set, for each sequence ¢ = ¢q,...,cn, of elements of A there exists an endomor-
phism mg € M such that ma(x;) = ¢;, for 1 < i < m. Now Lemma 5.2.1 shows
that 2> |= o’

Since (B2,Y,N) is rational, there exists an endomorphism ny € N that leaves
all atoms but y; fixed such that no(y;) = n2(b;). By Lemma 5.2.1,

B |= Fi 4 T A (i0/na(B), &' /7)),

where the sequence 7/ is obtained from 7 by removing y;. Since the elements in
the sequence i/ are distinct atoms it follows as above that B4 = .

In this second case we have seen that we can construct a new output pair (o', d")
of Algorithm 5.5.12 such that 2A* |= o’ and B |= §'. Moreover, the number of
variables in (o, ") is strictly smaller than the number of variables in (o, §). We
may now use the same subcase analysis as above, replacing (o, d) by (¢',4’), and
iterate this contraction of formulae, if necessary. After a finite number of steps
we reach an output pair that satisfies all the assumptions that we made for
(0,6) in the first subcase. As we have seen, this shows that the input formula
I has a solution in A ® B2, |

As the last step, we show completeness of Algorithm 5.5.12.

Lemma 5.5.15 If the input constraint T has a solution in A> © B>, then there
exists an output pair (o,08) of Algorithm 5.5.12 such that A |= o and B> = 6.

Proof. Lemma 5.5.11 shows that Algorithm 5.5.8 has an output pair ((T'T,
U, W), (&, W,U)) such that (Y, U, W) has a solution in 2% and (I'f, W,U)
has a solution in B2. In 2%, variables of U are interpreted as distinct atoms
in X under the given solution. Lemma 5.2.2 shows that 2% = Vi3 » T'T.
In B2, variables of W are interpreted as distinct atoms in Y under the given
solution. By Lemma 5.2.2, BA = Vai3u3v a I‘IA. This shows that the sentences
o = Vudw3v, x I'Y and 6 := Vaida3v, a I‘lA of the corresponding output pair
(0,6) of Algorithm 5.5.12 are valid in 2A” and B2 respectively. [

5.6 Conclusion

In this chapter, we introduced rational amalgamation, a general methodology
for combining constraint systems. The concept of a braid presents a way to
interweave arbitrary elements of two quasi-free structures, in that a particular
set of atoms, the open atoms in the stabiliser of an element of one structure
are used as pointers to elements in the other structure. The amalgamation is
rational in the sense that one may interweave only a finite number of elements
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in one and the same braid, but if one follows a pointer chain in a braid, cycles
are permitted. We showed that for each braid there exists a standard normal
form. And the set of braids in normal form is consequently used as the carrier
for rational amalgamation. Together with the algebraic structure defined on top
of it, this rational amalgam is the combined solution domain. We showed that
the reduct of the rational amalgam to a component signature is isomorphic to
the component structure proving this way conservativeness of the combination.
We also saw that the free amalgamated product is — modulo isomorphism — a
substructure of the rational amalgam. And the rational amalgamation of two
rational tree algebras is isomorphic to the rational tree algebra over the union of
the signatures. We presented a decomposition algorithm to reduce the solving
of mixed constraints in the rational amalgam to solving pure constraints in
the components. The algorithm is similar to the decomposition algorithm for
free amalgamation, but contains only two non-deterministic steps. We proved
that solvability of mixed constraints over the joint signature in the rational
amalgam is decidable, if solvability of pure constraints with so-called atom-
non-atom declarations is decidable in both components. For the subclass of so-
called rational quasi-free structures, the result can be described in purely logical
terms. The existential positive theory of the rational amalgam is decidable,
provided the universal-existential positive theory is decidable in the component
structures.

The present chapter, in connection with the discussion of free amalgamation in
Chapter 3 and [10, 15], seems to suggest a new view of the problem of combin-
ing solution domains and constraint solvers. There is now strong evidence that
the situation considered in Chapter 3 and here — the construction of “mixed”
elements of a combined domain, given the “pure” elements of two component
structures as construction units — is quite similar to the process of building the
elements of a single structure, given the symbols of a fixed signature as con-
struction units. We are confident that this analogy will help to isolate the most
important methods for combining structures over disjoint signatures, and to un-
derstand the relationship and the differences between different amalgamation
constructions.

When we compose elements, given the symbols of a fixed signature, three differ-
ent structures may be obtained in a direct way, depending on the composition
principle, namely the free term algebra, the algebra of rational trees, and the
algebra of infinite trees. The privileged role of these three algebras, and the
rich amount of interesting relationships between them, are now well-understood
(e.g., [3, 35, 36, 70]). We believe that free amalgamation, rational amalgamation
and a further construction called “infinite amalgamation” (still to be investi-
gated) reflect this role on the higher level of amalgamation constructions. Many
of the results that we have obtained for free and rational amalgamation can be
interpreted in this sense:

e The universality-property of the free amalgamated product reflects the
status of the free term algebra as the absolutely free ¥-algebra.

e We saw that the free amalgamated product is always a substructure of
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the rational amalgamated product. This reflects the fact that the free
term algebra is always a substructure of the algebra of rational trees.

e [t is well-known that the unification algorithm for the algebra of rational
trees can be considered as the variant of the unification algorithm for the
free term algebra where we omit the occur-check. Similarly, the decom-
position scheme for rational amalgamation as given here is — essentially
— the decomposition scheme for free amalgamation where we omit the
“interstructural” occur-check that is provided by the choice of a linear
ordering in the latter scheme.

We would not be surprised if more principles, techniques and theorems, well-
known on the level of tree constructions, could be lifted to the level of combining
structures. Our experience with rational amalgamation seems to indicate that
this is a difficult, but promising line of research if we want to understand the
scale of possibilities, and the limitations for combining solution domains and
constraint solvers.
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Chapter 6

Negation in Combining
Constraint Systems

6.1 Introduction

The need of negation in constraint solving is so obvious that it hardly requires
an explanation. Formulation of many problems just naturally involve some type
of negation. Negation is also required for implication and constraint entailment,
and both are used heavily in actual implementations of constraint solvers when
reducing sets of constraints. In previous chapters however, the constraints we
had been looking at were exclusively positive; there was no negation involved so
far. The underlying hidden reason thereof was given very early in Lemma 2.1.1
that states that surjective homomorphisms preserve positive formulae. This
lemma figures prominently in many correctness proofs, even if we did not always
explicitly cite it. Hence one could think that handling negative constraints in
combining constraint solvers is impossible. But already back in 1993, F. Baader
and K. U. Schulz [6] showed that the combination technique for deciding com-
bined equational unification problems they had published the year ago [5] can
be extended to the combination of disunification problems. Thus the question
naturally arises, whether the results obtained for combining equational disuni-
fication problems can be extended to the more general case of solving positive
and negative constrains in combinations of quasi-free structures. The correct-
ness proof given in [6] (see also [9]) uses complicated rewriting methods and is
very technical in nature. Even if one is able to manually check the individual
deduction steps in the proof, one cannot gain any insight for why the combi-
nation theorem is correct. Quasi-free structures on the other hand are defined
algebraically, rewriting methods are thus not applicable. This forced us to have
a fresh look at the problem.

This chapter is divided into two parts. The first one covers the solving of pos-
itive and negative mixed constraints in the combination of constraint systems.
When looking at negative constraints, one often distinguishes two cases, and
we do this here, too: A general case in which the solutions of problems may
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contain variables or atoms and a ground case where all solution elements must
be ground. For the general case, we will show that the existential theory of
mixed constraints is decidable in the free amalgamated product, if conjunctions
of pure constraints with linear constant restrictions are decidable in the com-
ponent structures. For the ground case we present the following result. The
existential theory of the ground substructure of the free amalgamated product
is decidable, if the existence of so-called restrictive solutions of pure constraints
with linear constant restrictions is decidable in the components. In the second
half of this part, we try to see if these results can be strengthened or expressed
in less technical terms, i.e., without the notion of a linear constant restriction.
We will also show that in general, these results cannot be carried over rational
amalgamation, the other principled method of combination.

The second part of this chapter deals with the independence property of nega-
tive constraints. A constraint system is said to have the independence property,
if the solvability of a conjunction of positive constraints and a conjunction of
negative constraints can be reduced to solving each single negative conjunct to-
gether with the conjunction of positive constraints. In other words, if for some
negative constraints, each of them is solvable separately, then their conjunc-
tion is solvable. This property plays an important role in real world constraint
solvers that cope with negative constraints (see, e.g., [49]). Quite often, these
constraint solvers can handle only positive constraints in an efficient manour.
The independence property can then be used to reduce negative constraints in
such solvers in the following way. First one solves the conjunction of the positive
constraints to see if they have a solution at all. Then for each negative con-
straint, one constructs the dual positive one and tries to solve the conjunction
of the positive constraints enlarged by the dual. If this is not solvable, then the
negative constraint can be solved. If the solution is identical to the one for the
constraints without the dual, the negative constraint cannot be solved. If the
solution is more specific than that for the constraints without the dual, then
the negative constraint is solvable. The independence property ensures that
processing each of the negative constraints separately this way still provides a
decision procedure for the whole conjunction of negative constraints.

The aim of this second part is to give a modularity result for the independence
property, that is to state under which circumstance the free amalgamated prod-
uct owns the independence property provided the component structures do so.
We will finally show: The free amalgamation of two unitary regular and non-
collapsing quasi-free structures has the independence property. To get there
is quite a way. First we look at a particular subclass of quasi-free structures,
namely equational theories and unification, since there is not yet any discussion
of this topic for these prototypical quasi-free structures. We find that unitary
equational theories have the independence property, while finitary do not. We
also present a special class of equational theories, the monoidal or commuta-
tive theories and prove that the whole class has the independence property
showing thereby that there are non-unitary theories that have the indepen-
dence property. Then we give a first modularity result. Based on work by
K. U. Schulz [94], who shows that there exists a deterministic combination al-
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gorithm for the combination of unitary regular collapse-free equational theories,
we demonstrate that the combination of unitary regular collapse-free equational
theories is again unitary and hence has the independence property. We proceed
by lifting these results to quasi-free structures. We prove that unitary quasi-
free structures have the independence property. And generalising the proofs for
combining equation theories, we show that the combination of unitary regular
and non-collapsing quasi-free structures is again unitary.

In this chapter, a constraint problem is a conjunction of literals, i.e., of atomic
and negated atomic formulae.

Part 1

Combination of Constraint Solvers

6.2 Free Amalgamation of Negative Constraints:
The General Case

In this section, we show that solving mixed constraints in the free amalgama-
tion can be reduced to solving pure constraints in the components, even if the
constraints contain negations. The type of problems we have to solve in the
components are constraint problems with linear constant restrictions. Problems
with linear constant restrictions are defined in 4.2.2. Remember that a linear
constant restriction L = (Lab, <r,) consists of a labelling and a linear order of
the shared variables. A solution of a constraint problem with linear constant
restriction (I'*, L) is a solution of I'* such that each variable in the domain of
Lab that is not assigned to 3 must be mapped to an atom, and this atom must
not appear in the stabiliser of any element that is a solution of a variable which
is strictly smaller according to the order <;. Now we can present the main
theorems of the first part.

Theorem 6.2.1 Let (AT1, X) and (A2, X) be two quasi-free structures over
disjoint signatures. The solvability of mized 31 U Yo constraint problems, i.e.,
conjunctions of literals, in the free amalgamated product 91121 (XJAE2 is decidable,
if solvability of constraint problems with linear constant restrictions is decidable

in both components (A=, X) and (232, X).

Since existential quantifiers distribute over disjunctions, we can strengthen our
result a little bit.

Theorem 6.2.2 Let (AT, X) and (A2, X) be two quasi-free structures over
disjoint signatures. The existential theory (and the universal theory) of the free
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amalgamated product 91121 ®A§2 is decidable, if solvability of constraint problems
with linear constant restrictions is decidable in both components (Q[lzl,X) and
(2,2, X).

One application of this theorem is the following

Corollary 6.2.3 The existential theory of the free amalgamated product of the
following signature-disjoint component quasi-free structures is decidable:

e free algebras defined by these equational theories

the empty theory (syntactic unification),

the theory A of an associative function symbol,

— the theory AC of an associative-commutative function symbol,

the theory ACI of an associative-commutative-idempotent function
symbol,

e rational tree algebras,
e feature structures

e well-founded sets, multi-sets and lists.

Proof. Decidability of disunification problems with linear constant restrictions
in the free theory and the theories A, AC, and ACI was proven by F. Baader and
K. U. Schulz in [9]. Decidability of disunification problems with linear constant
restrictions in rational tree algebras follows directly from the result for the free
theory. Decidability of constraint problems with linear constant restrictions in
feature structures is a simple corollary of the work by G. Smolka and R. Treinen
[104] and the work by P. van Roy, M. Mehl, and R. Scheidhauer [114]. Finally,
decidability of constraint problems with linear constant restrictions in sets,
multi-sets and lists can be reduced to corresponding disunification problems in
the theories ACI, AC, and A respectively. |

The Decomposition Algorithm

As stated above, we would like to solve mixed positive and negative constraints
in the free amalgamated product of two quasi-free by reduction to solving pure
constraints in the components. Hence we need a decomposition algorithm.
The one that follows below is very similar to the algorithm in Section 3.4.1
designed for decomposing positive constraints. The main extension deals with
disequations. Disequations should only occur between variables. Thus if s # ¢
is a disequation between pure terms s,¢, we replace that disequation by two
new equations x; = s,xz9 = t and the disequation x; # 9. Negated predicates
different from equality are handled in a straight forward manour in that alien
subterms are removed by variable abstraction. Additionally, we ensure that no
two representatives after variable identification receive the same solution value
by introducing a disequation ry # 79 for each two different representatives r1, rs.
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The decomposition algorithm is almost the same as the one given by F. Baader
& K. U. Schulz in [9] for disunification problems, it is minimally extended to
handle negated predicates different from disequality.

Algorithm 6.2.4 The input [’y is a constraint problem over signature ¥ :=
Y U Xo.

Step 1: variable abstraction
Alien subterms are successively replaced by new variables until all literals and
terms occurring in the system are pure.

Step 2: split non-variable disequations and non-pure equations

Each disequation of the form s # ¢ (where s or ¢ is not a variable) is replaced
by two equations x = s,y = ¢ and a disequation x # y, where x and y are
always new variables. Each non-pure equation of the form s =t is replaced by
two equations x = s,z = ¢, where x is always a new variable.

Step 3: variable identification

Non-deterministically choose a partition of the set of all shared variables of
the constraint problem such that whenever the constraint problem contains a
disequation z # y then x and y belong to different classes of the partition.
The variables of each class are identified by choosing a representative for each
class and replacing each variable by its representative. In addition, add the
disequation x # y for each pair z,y of distinct representatives to the system, if
this disequation is not already present.

Step 4: variable labelling and ordering

For a given system, choose a mapping Lab from the set of variables into the set
of theory labels {1, X5} and a strict linear order < on the variables. This pair
L = (Lab, <1,) gives rise to a linear constant restriction.

Step 5: split systems

A given system I'y is split into two systems I's; U I'so where I's ; contains
only 1-(dis)equations and 1-literals and T's o contains only 2-(dis)equations and
2-literals. Additionally, the system I's; must contain all disequations = # y
where x or y has label ;. This means that disequations between variables
of distinct labels are put into both subsystems. The subsystems can now be
considered as constraint problems with linear constant restriction.

Soundness

In this subsection, we prove that the above algorithm is sound.

Proposition 6.2.5 The input problem Ty is solvable, if there exists an output
pair (T's 1,T's.2) and a linear constant restriction L such that (T's 1, L) is solvable
in (AT, X) and (U5, L) is solvable in (A2, X).

Before we can present the proof, we need some technical preparations and lem-
mata.
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Lemma 6.2.6 Let m : (A*, X) — (B>,Y) be a qf-isomorphism.
If Stab®(a) = {x1,...,z,}, then Stab®(m(a)) = {m(z1),...,m(z,)}.

Proof. Let Stab®(a) = {z1,...,z,}. Firstly, we show that Stab®(m(a)) C
{m(z1),...,m(zn)}. Let v1,1n € End% such that vy and 15 coincide on
{m(z1),...,m(zn)}. Since m and its inverse are qf-isomorphisms, the 2-
endomorphisms m~'vym and m~'vem coincide on {z1,...,7,}. Because a
is stabilised by {z1,...,2,}, also m lvym ={a} m~'vem which is the same as
m~ 'y ={m(a)} m~'v,. Since m~! is a qf-isomorphism, vy =(m(a)} V2-

Now suppose Stab®(m(a)) is a proper subset of {m(z1),...,m(z,)}. Then
a = m~'(m(a)) is stabilised by a proper subset of m~'({m(z1),...,m(z,)}) =
{z1,...,z,} which contradicts the choice of {z1,...,z,}. [

Lemma 6.2.7 Let L be a linear constant restriction and o; be a solution of
(Ts,4, L) and z,y two distinct variables in I's ; (where i = 1,2). Then o;(x) #
oi(y), i.e., o; is injective.

Proof. If z,y € Var(I's;) and z # y, then z and y must be different representa-
tives of different classes after variable identification in Step 3. By definition of
Step 3, we add the disequation = # y. Therefore z # y € I's;. Since o; solves
I's;, we have o;(z) # o;(y). [

Lemma 6.2.8 Let (A”,X) be a quasi-free structure and o be a solution of
the constraint problem with linear constant restriction (T',Lab,<). Let p :
(A*, X) — (B>,Y) be a qf-isomorphism. Then poo is a solution of (I', Lab, <)
in (B>,Y), i.e., qf-isomorphisms preserve solutions.

Proof. Since p is an isomorphism, po is a solution of I'. We have to show that
respecting linear constant restrictions is preserved under gf-isomorphisms.

Let Lab(z) = A and A # X.

Then o(z) € X, because o solves the linear constant restriction.

Then po(x) € X, because p is a gf-isomorphism.

Let Lab(z) = A, Lab(y) = A, A # ¥ and = # y.

Then o(z) # o(y), because o solves the linear constant restriction.

Then po(x) # po(y), because u is injective.

Let © <y, Lab(z) = X, Lab(y) = A and A # X.

Then o(y) ¢ Stab®(o(z)), because o solves the linear constant restriction.
Then po(y) ¢ wu(Stab®(o(x))) = Stab®(uo(z)), because p is injective where
the equality is justified by Lemma 6.2.6. [

Definition 6.2.9 Let (¢}, X) be the free amalgamated product of (A, X)
and (452, X) and hy 5 the gf-isomorphism between (€7, Z;) and (€3, Z3). The
shadow of an element o € C is defined recursively:
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Sd(a) := {a} U StabS (a) U {Sd(h12(z)) | = € Staby (a)}. Analogously, the
shadow of b € (5 is defined as Sd(b) := {b} U Stab%(b) U {Sd(h2,1(y)) |y €
Stab$? (b).

An element b € Sd(a) is called a bottom element, iff Sd(b) = {b}. The set
Bottom(Sd(a)) denotes the set of all bottom elements in the shadow of a.

Intuitively speaking, the shadow of an element is the element and “everything
below” it where one descends via the ladder constructed by the stabilisers and
the isomorphisms hj2 and hy ;. So the shadow contains the element, its sta-
biliser, the fibre images of the stabiliser elements, their stabilisers, the fibre
images thereof and so on, everything pending below the element via stabilisers
and fibre images.

Lemma 6.2.10 The shadow of every element is finite. Its bottom elements are
elements with empty stabiliser or atoms in X.

Proof. For all elements a € C; U5 holds a € Sd(a). If z € X, then z is fibred
with itself, and Stab(z) = {z}. Thus Sd(z) = {z}. If b € C}, U C5 is such that
Stab(b) = (), then clearly sd(b) = {b}. Any other element has a non-empty
stabiliser which is not fibred with itself, hence the shadow contains at least the
stabilisers and their fibre images, and the element is not a bottom element.

The shadow of an element a can be seen as a tree with the element as its
root. Since each element has a finite stabiliser, the tree is finitely branching.
A branch in the tree is a sequence (ai,as,as,...) such that a; = a, for all
i,7 > 1 :4 # j implies a; # a;, and for each ¢ > 1 either a;y is the fibre
image of a; or a;11 € Stab(a;). Now remember the definition of the height of
an element (Def. 3.3.6 on page 34). Clearly, if a;;1 is the fibre image of a;,
then height(a;;1) = height(a;). And if a;41 € Stab(a;), then height(a;+1) <
height(a;), because a;+1 # a; and therefore a; is non-atomic. Hence, for each
i > 1 : height(ai+2) < height(a;). The height stepwise decreases in a branch.
But since the height of a, the root, is finite, the height can decrease only a finite
number of steps. Therefore, each branch must be finite. |

Proof of the soundness proposition (Proposition 6.2.5).

Let €} be the free amalgamated product of (25", X) and (452, X), and let
o1 be the solution of (I's1,L) in (2", X) and gy the solution of (I'sz, L) in
(252, X) where L = (Lab,<p). Let hip : € — €5 be the gf-isomorphism
between €7 and €3.

Let hy : AT — €7 be the gf-isomorphism between 25" and €7'. Then hio;
solves (s 1, L) in €' (€}) by Lemma 6.2.8.

Let ho : A32 — €52 be the qf-isomorphism between 232 and €52. Then hooy
solves (T's 2, L) in €3> by Lemma 6.2.8.

Let V' = Var(I's,1) U Var(I's 2) be the set of all variables. If we had hy 2hi01(v) =
hooy(v) for all v € V, then we would be done, because then, obviously, hioq
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would be a solution of I's 2 in 612. Since the solutions oy and o9 are found
independently of each other, we cannot expect this condition to hold a priory.
And we do not want to restrict the type of admitted solutions in the compo-
nents. So the task is to show that the given solutions hio; and hooo can be
transformed by means of automorphisms in such a way that finally the value
of a variable v € V under hjoy is the fibre image of the value under hoos. We
call this the fibring condition for v. The use of automorphisms is required to
handle negative constraints: While endomorphisms preserve only the validity
of positive formulae, automorphisms preserve validity of arbitrary formulae.

The generalised linear constant restriction L contains a linear order <y, of the
variables V. Let vy, v2,vs,...,v, be the enumeration of the variables alongside
the order. By induction on this enumeration we prove that there exist solutions
lin of (I's1, L) and l; o of (I's 2, L) such that for all variables v; with j < i we have
hip o li1(vj) = li2(vj), that is the first ¢ variables fulfil the fibring condition.
But this simple statement alone is too weak. In an induction step, we may
need to apply an automorphism exchanging two atoms in order to establish the
fibring condition for the current variable. The difficult part consists in showing
that this automorphism does not dissolve the fibring conditions for variables
already handled. This is where the shadows of elements well be needed. We
assume that every variable occurring in the shadows of the first ¢ variables
already fulfils the fibring condition. And we show that the automorphisms are
the identity on the shadows of the first ¢ variables and hence do not dissolve an
already established fibring condition.

Before we start the induction, we sort out a simple subcase. Let X be par-
titioned as Xo W X7 W X9 where X; and X, are infinite, Xy has at least
n elements, and Xy N (Stab®™ (hyoy(V)) U Stab®(hooo(V))) = 0. Define
Vz == {v € V | hioi(v) € Z1 and heoa(v) € Zo} and V; := V \ Vz. In
other words, V7 is the set of all those variables which are mapped to an atom
in €71 as well as €52 and Vj is its complement, i.e., one of the solution elements
is a non-atom for each of these variables.

Define the following two gf-isomorphisms. For all variables v € Vz choose a
new atom z € Xy and mappings p; : h1o1(v) <+ 2! and po : haoa(v) <+ 2.
Since o is injective (Lemma 6.2.7) and h; is a qf-isomorphism, all the hyoy(v)’s
are distinct, and the x’s are distinct by choice. Thus p; is a permutation on
Z1. Therefore there is a unique extension to a gf-automorphism m; : & —
¢;. By Lemma 6.2.8, m hyo; solves (I's;,L). Analogously, my is the unique
extension of the permutation py on Z5 to a gf-automorphism, and mohoos solves
(5,2, L). Furthermore, since every element z € X constitutes a 1-fibre and thus
hip(x) = z, we see that for every variable v such that both m1hi01(v) € Z; and
7T2h,20'2(1)) € Z5 holds 7r2h202(v) = h1’27T1h10'1 (’U) That is to say for v € Vz the
fibring condition holds.

We will now prove by induction over the variables vy, v, ..., v, as given by the
linear order <y, that for 2 =0, ... ,n the following 4 properties hold.

1a <+ b denotes the permutation of ¢ and b, i.e., a — b and b — a.
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1. There is an assignment [;; : V' — C; such that [;; solves (I's ;, L) and
there is an assignment [; 9 : V' — C3 such that [; 5 solves (I's 2, L).

2. For every variable v € Viz: 1;2(v) = hi2l;1(v) € Xo.

3. Define
Si = JSd(li1(v)) U | Sd(li2(vy)).
J<i J<i
For every variable v such that [; ;1 (v) € S; or l;2(v) € S; holds [;2(v) =
hl’gli’l(v).

4. Stab®(1;1(Vy)) C S; U X1, Stab®2(1;2(V3)) C S; U Xo.

Before we dive into the technicalities of the induction, a few comments are in
place. The aim of the induction is to show that we can transform the given
solutions m1hio1 and mohooo stepwise by means of automorphisms in such a
way that finally for every variable v € V' the fibring condition holds. The first
property says we still have solutions for (I's 1, L) and (I's 2, L). For variables
in Vz, those variables that are assigned an atom in both solutions, the fibring
condition is already established. Ttem (2) says we do not loose this property.
In each step of the induction, we consider a particular variable v;. For this
v;, we want to establish the fibring condition. Now, in one of the solutions,
the variable is assigned to an atom; and there is another atom, the atom that
the non-atom in the other solution is fibred to. So in order to establish the
fibring condition, we want to apply the transposition that exchanges these two
atoms. The difficult problem is, of course, to show that this transposition does
not dissolve the fibring conditions of those variables we have already taken
handled. That is what Properties (3) and (4) have to ensure. The set S; is the
union of all shadows of all solutions for variables up to v; in the enumeration.
We demand that for each such element in S; that is the solution of any variable
we can be sure that the fibring condition holds. And Property (4) gives us a
strong control over the stabilisers of non-atom solutions. Either they are in S;,
which means we have already taken care of them. Or they are in X (resp. X3),
which means they are harmless.

Induction Base:

Define firstly the following map lAg,l : Z1 — X1 by permuting every z €
Stab®! (w1 h1o1(Vz)) with a different atom in X;. Tt extends uniquely to a
gf-automorphism l~0,1 of (€1, 7). Define 1y := l~0,17r1h101. Then [y solves
(Cs1, L).

Analogously define lA[]’Q : Zy — X5 by permuting every z € Stab® (7r2h202~(VZ))

with a different atom in X,. It extends uniquely to a gf-automorphism [y 2 of
(Q:Q, Zg) Define 10’2 = 10’27T2h20'2. Then 10’2 solves (F5’2,L). This shows (].)

For every x € X, by definition loi(z) = x and lpo(2) = z. Thus for variable v €
Vzt 10’2(’0) = 10,27r2h202(v) = 7T2h20'2(’0) = h1’27T1h10'1(’U) = h1,210,1771hf10'1(v) =
hl,ng,l(v). This shows (2)

So = 0, thus (3) is trivially true.
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Finally Stab® (Ip1(V5)) C X1 and Stab®2(lp2(V;)) C Xo immediately by defi-
nition.

Induction Step: Let Lab(v;11) = 3. — The argument for Lab(v;11) = %5 is
analogue. — We have to distinguish three cases.

Induction Step 1: v;11 € V.

Define li+1,1 = li,l and li+1’2 = li,g. Clearly, li+1,1 solves (F5’1,L) and li+1’2
solves (I's 2, L) by induction hypothesis. And for every variable v € V it holds
that /;412(v) = h12li+1,1(v) € Xo by induction hypothesis, too.

Because ;11,1 (vi+1) € Xo, the shadow Sd(l;41,1(vit1)) = {lix1,1(vi41)}. Hence
Sit1 =5; U {li+1,1 ('Ui-l—l)} by definition.

Let v be a variable such that ;11 1(v) € Siy1 or liy12(v) € Siy1.

Then li+1,1(’v) = li,l(v) € S; or li+1,2(’v) = li,g(v) € S; and thus li+1,2(v) =
hi2lit1,1(v) by induction hypothesis.

Orliy1,1(v) =11 (v) = i (vig1) or Lip12(v) = lia(v) =l 2(vig1) and [ 2(v) =
hipliz1,1(v) € Xy was just shown.

For k = 1,2 we have l;41 = [; and therefore also Stabc’“(lHl,k(VZ)) =
Stab® (I; x(V)). Furthermore S; U Xj, C Sj11 U X;. Thus (4) holds by in-
duction hypothesis.

Induction Step 2: Vi+1 € VZ and li,g(vi_H) = hl’Qli’l(’UH_l).

This is another simple case. Again define l;11,1 :=1;1 and [;11 2 :=l; 2. Prop-
erties (1) and (2) are satisfied by induction hypothesis.

Since v;41 € Vz and Lab(vi11) = %1, we know [; 1(v;41) is a non-atom and
li’2(vi+1) is an atom. Therefore Sd(li,g(’vprl)) = {li’2(01+1)} U Sd(li,l(UiJrl))
by definition of shadows and S;y1 = S; U Sd(l;2(vi+1)). For a variable v
such that li+1,1(v) € S; or li+1,2(v) € S; we have li+1,2(v) = h1,21i+1’1(v)
by induction hypothesis. For the variable v;;1, it is trivially the case. Re-
mains the case that [;1(v) € Sd(l;1(vi+1)) or l;2(v) € Sd(l;1(vit1)). Now,
Stab® (I;11,1 (viy1)) C S; U X1 by (4) of the induction hypothesis. Define
X! := X7 NStab®™ (I;11.1(vi41)). Then Sd(l;1(vig1)) C Si U X} U {li1(vis1)}-
If ;1 (v) € S;, then [;12(v) = hi2lit1,1(v) by induction hypothesis. The case
li1(v) € X{ is impossible: Suppose [;;(v) € X1, then v <, v;4; by the linear
constant restriction — [; 1(v) € Stab(l;1(v + 1)) is allowed only, if v <7, v;41.
Then l;112(v) = higlit1,1(v) € X again by induction hypothesis. Therefore
hio1(v) € Z; and haoa(v) € Zs, because [; ) is a gf-isomorphism. Thus v € Vy
and ;1 (v) € Xp. Contradiction, since Xo N X = 0.

If I;2(v) € S;, then lj41 2(v) = hy2li4+1,1(v) again by induction hypothesis. The
case lj2(v) € X| is impossible: Suppose [;2(v) € X, then v <7, v;41 by the lin-
ear constant restriction. Then [, 11 2(v) = hy2li+1,1(v) € X again by induction
hypothesis and we end in the same contradiction as above.

For k = 1,2 we have l;41 = [; and therefore also Stabc’“(lHl,k(VZ)) =
Stab® (I; x(V)). Furthermore S; U Xj C Sj11 U X;. Thus (4) holds by in-
duction hypothesis.

Induction Step 3: v;11 € V; and [; 2(vit1) # hi2lig(vig1).
Let Yi+1 = li’Q(Ui+1) € 75 and Ziyl = h1,2li,1(vi+1) € Zs. Define the following
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permutation ¢, : Zo — Zy by y;11 <+ z;+1. Then ¢;4; extends uniquely
to a gf-automorphism 7; ;. Define l;;1; = [;1 and l;112 := 7Tj41l;2. Then
li1,1 solves (I's 1, L) by induction hypothesis. And ;112 solves (I's2, L) by
Lemma 6.2.8 and induction hypothesis for /; ».

Furthermore, we can establish the following facts

(a) ziy1 € Zo \ X and especially z;11 ¢ X2 or X;.
This is a consequence of the definition of the fibring construction.

(b) Zi+1 ¢ Sl
(If zj11 € S;, then ho1(ziy1) = li1(vig1) € S; by definition of shadows,
then zj11 = hi2li1(vig1) = lia(vig1) = yi41 by induction hypothesis.)

(c) ziy1 ¢ Stab®2(1;2(Vy)) and 241 ¢ Stab® (1;1(V3)).
(Sta\,bclC (li,k:(VZ)) CSUXy, k= 1,2.)

(d) yi+1 € Xz, yit1 & Si-
(yir1 € S; U Xo by induction hypothesis (4) and y;11 € S; = y;11 =

Zi+1-)

By (a) and (d), 741 is the identity on Xj. Therefore for all v € Vy: l;112(v) =
Tli’Q(’U) = li,g(v) = hl,gliyl(v) = h1,21i+1’1(v) € Xy. This shows Property (2)

By (b) and (d), 7,41 is the identity on S;.

Stab® (1;1(V))) = Stab® (I;1(Vz)) U Stab® (I;1(V)); by the above 7,11 is the
identity on Xo D Stab®(li1(Vz)). By (¢), zip1 ¢ Stab®(li1(V)); by (d),
Yit1 € Xo, hence y; 11 ¢ Stabcl(li,l(VZ)) C S; U Xy, because X1 N Xy = (. To
sum up, 7;41 is the identity on Stab® (I;1(V)) and therefore on I; (V).

By definition, S;+1 = U;<; Sd(li4+1,1(v5))UVU;<; SA(lit1,2(v)) USA (41,1 (vit1))U
Sd(li+1,2(vz~+1)). Now, 7;11 is the identity on S;, thus Ujgi Sd(li_H,l(?}j)) U
Uj<i Sd(li+12(v5)) = Si- And Sd(lit1,2(vit1)) = {zit1} U Sd(lit1,1(vit1)) by
definition. Hence Sj11 = S; U Sd(z;41).

For a variable v, if li+1,1(v) = lz’,l (’U) € Sl then lH_LQ(’U) = li,g(v) = hl’QlH_l’l(’U)
by induction hypothesis.

If li+1,2(v) € Si, then li+1,2(v) = li’Q('U). Therefore li+1,2(v) = h1’21i+1’1(v) by
induction hypothesis.

As seen, zj11 ¢ Stab®t (lix1,1(V)), and therefore also z;41 ¢ l;11,1(V); hence
li+1,1(v) ;é Zi41- Thus, if li+1,1(v) € Sd(zi_H), then li+1,1(v) € Sd(li+1,1(vi+1)).
Now, Stab(l;11,1(vi+1)) = Stab(l; 1 (viy1) C S;UX; by induction hypothesis (4).
Define X{ =X N Stab(li+1,1(vi+1)). Then Sd(li-l—l,l(vi—i—l)) C {li+1,1(vi+1)} U
X1 US;. The case lj+1,1(v) = ljy1,1(viy1) is simple, because as a consequence
of Lemma 6.2.7 v = v; 1. The case l;;11,1(v) € S; is already taken care of. The
case liy1,1(v) € X is impossible: Suppose l;11,1(v) € X1, then v < v;4; by
the linear constant restriction. Thus l;112(v) = hi2liy1,1(v) € X. Thus both
hioi(v) € Z and hooa(v) € Zs. Therefore v € V; and [;41,1(v) € Xy which is
a contradiction since XoN X; = 0.

If li112(v) € Sd(li+1,2(vig1)) then I 2(v) = 2z or lig12(v) € S lig12(v) =
lit1,1(vi1) is impossible, because l;11,1(vi11) € C1\ Z1 and l;112(v) € C3. And
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lit12(v) ¢ X1, because l;2(v) ¢ X; by induction hypothesis (4) and z 1 ¢ X3
by (a). The case l;112(v) = 241 is simple, because 7;y; is defined such that
Zit1 = h12lit1,1(vi41). The case of l;112(v) € S; was handled above.

Finally, since li+1,1 = li,l we have Stabcl (lz'_|_1,1 (Vz)) = Stabcl (li,l(VZ)) (@ Sz U
X C Sjy1UXq. And Stab®? (li+1,2(VZ)) - (StabCZ (li,g(VZ)) \ {yi+1}) U {Zi+1}
by Lemma 6.2.6. Since z;11 € Siy1, we have Stab®(l;112(Vz)) C Sit1 U Xo.
And this ends the induction proof.

By this induction, we showed that for ¢ = n there are assignments [, ; and
In,2 such that [,, ; solves (I's 1, L) and I, 2 solves (I's 2, L) and for every variable
v €V ilp2(v) = hialy,1(v). Therefore [, 1 solves I's ; and I's 2 in ¢} and hence
also I'y. Thus there is a solution of I'g in €} by assigning each variable that
value that its representant receives by [y, 1. ]

Definition 6.2.11 As in Proposition 6.2.5 above, let o7 be a solution of
(I's,1, L) and o2 a solution of (I's 2, L). Define 01 ® oo as the solution of T’y
as constructed in the proof above.

Corollary 6.2.12 There exists a %1-isomorphism that maps o1 to 01 ® 09 and
there exists a Yo-isomorphism that maps oo to 01 ® 03.

Completeness

Proposition 6.2.13 If the input problem L'y is solvable, then there exists a
linear constant restriction L = (Lab,<) and an output pair (I's1,T'52) such
that both (I's 1, L) and (I's 2, L) are solvable.

Proof. Let o be the solution in the combined solution domain ¢} with atom
set Z1. In Step 3, we identify two variables z and y, iff o(z) = o(y). In Step 4,
variable z receives label o, iff o(z) € Z;. Otherwise z receives label ¥;. And
the order < is defined by: z < y, iff o(z) <; o(y) according to Definition 3.3.9
(on page 35). This gives the linear constant restriction L. Then o obviously
solves I'y and therefore I's ; and T's 5.

Let by : €7 — A7 be the gf-isomorphism between €3 and 2;*. Then hj o o
solves I's 1 in 91121.

For the linear constant restriction L:

If Lab(z) = 39, then o(xz) € Z; by definition of L and h; o o(z) € X by
definition of a gf-isomorphism.

If Lab(xz) = ¥9 and Lab(y) = 39 and z # y, then o(z) # o(y) by definition
of the identification in Step 3 and hy o o(z) # hy o o(y), because hy is an
isomorphism.

If x < y, Lab(z) = ¥ and Lab(y) = 3o, then by definition of the order <,
o(z) is fibred before o(y) and thus o(y) ¢ Stabgll(a(gz)). Therefore hy o o(y) ¢

Staby! (h1 0 o()).
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Let hy : €32 — 252 be the gf-isomorphism between €3> and 232. Then
hg o hy o oo solves I's 5 in QLQEQ.

For the linear constant restriction L:

If Lab(z) = ¥, then o(z) € C) \ Z;, therefore h; 3 0 0(z) € Zy by definition of
the fibring construction and hg o hy 2 0 o(z) € X, since hs is a gf-isomorphism.
If Lab(z) = ¥ and Lab(y) = ¥; and = # y, then o(z) # o(y) by definition
of the identification in Step 3. Thus hg o hy 2 0 o(z) # hg 0 h12 0 0(y), because
hg o hy 2 is an isomorphism.

If x < y, Lab(z) = 39 and Lab(y) = 31, then by definition of the order <,
o(z) is fibred before o(y) and thus h; 2 00(y) ¢ Stab%z(hl,g oo(x)). Therefore

hy o hig 0 o(y) ¢ Staby? (ha o hi 0 o(z)). =

6.3 Free Amalgamation of Negative Constraints:
Ground Solvability

To discuss ground solvability, we first have to extend the notion of a ground so-
lution known from equational unification to the more general case of quasi-free
structures. In case, where we only have a constraint problem I' without linear
constant restriction, the notion of a ground solution of I' is a straight forward
generalisation of the definition for equational theories. In an equational theory,
a solution is ground, if no solution term contains a variable. For quasi-free
structures, this just means, that the stabiliser of every solution element has to
be empty. In case, where we consider constraint problems (T', L) with linear
constant restriction L, things are a bit more complicated. In equational theo-
ries, all such variables that are assigned alien labels are considered as constants,
thus even if they appear in a solution term that contains no other variables,
this term is still considered as ground. Analogously for quasi-free structures, we
will permit the appearance of such atoms in the stabiliser of a solution element
that are themselves different solution elements. If we demanded here, too, that
stabilisers have to be empty, we would yield only trivial combination problems
with no really mixed elements. We also define the notion of a restrictive so-
lution for quasi-free structures. This notion was introduced by F. Baader &
K. U. Schulz in [9] for equational disunification problems. There it said that a
solution is restrictive, if whenever a variable is assigned a complex term in the
solution, then this term is not equivalent (modulo the equational theory) to a
variable.

Definition 6.3.1 Let I' be a constraint problem. A solution is called ground,
iff every solution element has an empty stabiliser.

Let (', L) be a constraint problem with linear constant restriction L over signa-
ture ¥. A solution o is called a ground solution, iff for every variable v € Var(T")
such that Lab(v) = ¥: o(v) is not an atom and Stab(o(v)) C o(Var(I') \ {v}).
That is the stabiliser of a non-atom solution element can only consist of atoms
that are themselves solutions of variables different from v.
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A solution o is called restrictive, iff for every variable v € Var(I') such that
Lab(v) = %: o(v) is not an atom.

For a ground solution, note that due to the linear constant restriction, the only
atoms in the stabiliser of a non-atom solution element allowed stem from solu-
tions of variables that are smaller according to the given linear order. Obviously,
every ground solution is restrictive.

This section’s main statement is the following

Theorem 6.3.2 Let (AT, X) and (A2, X) be two quasi-free structures over
disjoint signatures with infinitely many ground elements. The existential the-
ory of the ground substructure of the free amalgamated product 9[121 ® 91222 18
decidable, if the existence of restrictive solutions of pure constraint problems
with linear constant restrictions is decidable in both components (Q[lzl,X) and

(2%, X).

Remember that a ground substructure (Def. 3.2.18 on page 25) of a quasi-free
structure is just the structure of its ground elements. It would of course be
desirable to reduce ground solvability of mixed constraints in the free amalgam
to ground solvability in the components. But the decomposition algorithm given
in the last section does not permit so. We can proof a soundness proposition:

Proposition 6.3.3 Let I'g be the input problem of the Decomposition Algo-
rithm 6.2.4. Suppose there exists an output pair (I's1,T'52) and a linear con-
stant restriction L such that both (I's 1, L) and (I's 2, L) have ground solutions.
Then T'y has a ground solution.

Proof. Let €} be the combined solution domain of 2} and A3?, and let oy be
the ground solution of (T's 1, L) in A" and oy the ground solution of (I's2, L)
in 237 where I = (Lab, <). Let hy 5 : €} — €3 be the qf-isomorphism between
¢} and ¢3.

Let hy : AT — €F' be the gf-isomorphism between 25" and €', Then hio;
is a ground solution of (T's 1, L) in € (€7) by Lemma 6.2.8.

Let hy : U352 — €32 be the gf-isomorphism between 252 and €32. Then hyoy
is a ground solution of (I's2, L) in €52 by Lemma 6.2.8.

Let vy,...,v, be the enumeration of the variables V along the ordering <,
i. e. v; <wj, iff i < j. Note that there is no variable v € V' with hio1(v) € Z;
and hoos(v) € Zo, because if Lab(v) = %; (for i = 1 or ¢ = 2), then h;o;(v) is a
non-atom, since h;o; is a ground solution.

We will now prove by induction over the variables vy, vo, ..., v, as given by the
linear order < that for s = 0,...,n the following 3 properties hold.

1. There is an assignment /;; : V' — C} such that /; ; is a ground solution

of (I's;;, L) and there is an assignment /;5 : V' — Cy such that ;5 is a
ground solution of (I's 2, L).
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2. For every j <i: l;2(vj) = hi2li1(vj).

3. For every j <i: l;1(v;) is ground in (¢}, X).

Induction Base:
Define lp,; := hio1 and lp2 := hgop. Then (1) holds by the remarks above
and (2) and (3) are trivially true.

Induction Step: Let Lab(v;j;1) = ¥1. — The argument for Lab(v;11) = Xy is
analogue.

Define the following map: f¢+1 : Zy — Zy by the transposition [; 2(vj41) <+
hi2l;1(vi41). This permutation extends uniquely to a gf-automorphism l~z~+1
of (’:?2. Define li+1,2 = lNZ'_Hli,Q and li+1,1 = li,l- Then Property (1) holds
by Lemma 6.2.8. And obviously by definition of l~z~+1 we have [ 11 2(viy1) =
hi 2lig1,1 (vig1)-

Now l;a(vit1) ¢ Stab®2({l;2(v1),...,li2(v;)}): If v; < viy1 and Lab(v;) = 4
then [;2(vj) € Z3 and l;2(vj) # l;2(vip1) because I o is the composition of
injective functions. If Lab(v;) = Xg then l; 2(vi41) & Stab®(l; 2(v;)) due to the
linear constant restriction.

And h1,21i,1(vi+1) Q_f Stabc2({li’2(vl), PN ,li,g(’vi)}): If Vg < Vj41 and Lab(vj) =
Y1 then [;2(vj) € Z3 and [;2(vj) = hi2li1(v;) by induction hypothesis. Now
since vj # vj41 we have hyol;1(vj) # hi2li1(vig1), because hyol; ;1 is the com-
position of injective functions. Thus [;2(vj) # hi2li1(viy1). If Lab(vj) = 2o
then for every z € Stab®(l;o(v;)) exists a variable vy < v; with z = I;2(vy)
by definition of a ground-solution. Therefore hy sl; 1 (viy1) ¢ Stab® (l;2(v;)) by
the same argument as above.

Hence l~i+1 is the identity on /;2(v1),...,l2(v;). Thus for v; < v;41 we have
lH_LQ(’Uj) = li’Q('U]‘) = hl’QlZ”l(’Uj) = hl,gli+1,1 (’Uj) by induction hypothesis. This
shows Property (2).

Because for j < i+ 1 we know [;1 is the identity on I; 2(v;), we know ;41,1 (v;)
is ground by induction hypothesis. Because for every z € Stab® (Li1,1(vig1))
there is a v < w41 with 2z = [;11,1(v) and this ;11,1 (v) is ground by the
above, l;11 1(v;41) is ground, too. And this proof of Property (3) completes the
induction.

For i = n the above induction shows that [,, 1 is a ground solution of (I's 1, L) and
In,2 is a ground solution of (I's 2, L). Furthermore for all variables v: I, 2(v) =
h12ln,1(v). Thus I, is a ground solution of I's 5 in €. And for each variable
v, the element [, 1 (v) is ground in (€7, X). [

This shows soundness of the decomposition algorithm. Unfortunately, this algo-
rithm is not complete. In [9], Baader and Schulz give an example for equational
disunification (4.2 on page 243) that demonstrates this fact. Therefore we have
to demand the existence of restricted solutions in the components in order to
get ground solvability in the combined domain.
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Proposition 6.3.4 Assume that both 2" and A2 contain an infinite number
of ground elements®. Let Ty be the input problem of the decomposition algo-
rithm. Suppose there exists an output pair (T's1,T's2) and a linear constant
restriction L such that both (I'sy,L) and (I'sg2,L) have restricted solutions.
Then T'y has a ground solution.

Before we can present the proof, we give a little technical lemma that we will
make use of in the proof.

Lemma 6.3.5 Let (€7, X) be the free amalgamated product of (A7, X) and
(A52, X). An element ¢ € C, is ground in (¢}, X), iff Bottom(Sd(c))NX =0,
i.e., there are no atoms amongst the bottom elements of its shadow.

Proof. We prove this lemma by an induction over the depth of the shadow of
¢, where the depth of the shadow is just the length of the longest branch in the
shadow.

In the base case, ¢ is a bottom element itself. Thus Bottom(Sd(c)) = {c} and
¢ is ground in (€7, X) iff it is ground in (€7, Z;).

In the step case, c is not a bottom element.

If ¢ ¢ Z; is a non-atom and ground in (€}, X), then each element in Stabgl1 (c)
is also ground in (€}, X). By induction hypothesis, for each z € Stabgll(c):
Bottom(Sd(z)) N X = 0. Since Sd(c) = {c} U{Sd(z) | z € Stab%1 (c) we have
also Bottom(Sd(c)) N X = 0.

If ¢ € Z; is an atom and ground in (€T, X), then hys(c) is ground in (€%, X),
therefore each element in Stabg?z(hl,g(c)) is also ground in (€%, X). By induc-
tion hypothesis, for each z € Stab%z(hl,g(c)): Bottom(Sd(z)) N X = (). Hence
Bottom (Sd(h1,2(c))) N X = 0 and Bottom(Sd(c)) N X = 0.

If ¢ ¢ Z; is a non-atom and Bottom(Sd(c))NX = (), then for each z € Stabgl1 (c):
Bottom(Sd(z))N X = (. By induction hypothesis, each z € Stabgl1 (c) is ground
in (€}, X). Therefore c is ground in (€7, X).

If ¢ € Z is an atom and Bottom(Sd(c))NX = 0, then Bottom(Sd(h; 2(c)))NX =
() and for each z € Stabgz(hl,g(c)): Bottom(Sd(z)) N X = (. By induction hy-
pothesis, each z € Stab%(hm(c)) is ground in (€3, X). Therefore hy2(c) is
ground in (€3, X) and c is ground in (€}, X). [

The following proof is very similar to the soundness proof in the non-ground
case. The first difference is that due to the fact that the component solutions
are restricted, there is no variable which is assigned to an atom in both compo-
nent solutions. Hence no special treatment of those variables is required. Then,
we have to show that we always work with restricted solutions, but that is sim-
ple, because a gf-isomorphism obviously maps atoms to atoms and non-atoms
to non-atoms and thus preserves the property of a solution being restrictive.
Finally, we must show that the combined solution that we receive is actually
ground in (€7, X).

2In the following, a ground element is always an element with empty stabiliser.
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Proof of Proposition 6.3.4.

Let €} be the free amalgamated product of 27! and 232, and let o be the
restrictive solution of (I's 1, L) in 91121 and oy the restrictive solution of (T's 2, L)
in A3 where L = (Lab,<g). Let hiy : € — €5 be the gf-isomorphism
between ¢} and €5.

Let hy : AT — €71 be the gf-isomorphism between 25" and €', Then hio;
is a restrictive solution of (T's 1, L) in € (€7) by Lemma 6.2.8.

Let hy : A3> — €32 be the gf-isomorphism between 252 and €. Then hyoy
is a restrictive solution of (I's 2, L) in ¢>2 by Lemma 6.2.8.

Let v1,...,v, be the enumeration of the variables V' along the ordering <y,
i. e. v; <p, vj, iff ¢ < j. Note that there is no variable v € V' with hioy(v) € Z;
and hooa(v) € Zs, because if Lab(v) = %; (for ¢ =1 or 4 = 2), then h;0;(v) is a
non-atom, since h;o; is a restrictive solution.

Let G; C C; be the set of all ground elements with respect to (6121, Z1) such
that they are not solutions of hioy. This set is infinite, since [y has infinitely
many ground elements. Define Y5 := {y € Zy | 3b € G1 : y = h12(b)} \
Stab®?(hyoo(V)). Ya again is infinite. Analogously, let Go C Cy be the set of
all ground elements with respect to (CQE 2. Zs) such that they are not solutions of
hooo. This set is infinite, since [, has infinitely many ground elements. Define
Vii={y€Z |IEGy:y=hyi(b)}\Stab® (hio1(V)). Y1 again is infinite.

We will now prove by induction over the variables vy, vo, ..., v, as given by the
linear order <z, that for 2 =0,...,n the following 4 properties hold.

1. There is an assignment [; 1 : V' — C such that [; ; is a restrictive solution
of (T's;1, L) and there is an assignment [;5 : V' — C5 such that ;5 is a
restrictive solution of (I's o, L).

2. Define
Si = Sd(li (v)) U | Sd(li2(vy))-
J<i J<i
For every variable v such that /;;(v) € S; or [;2(v) € S; holds [; 2(v) =
hl,gli,l(v).

3. Stab® (1,1 (V)) C S; UY7, Stab®2(1;5(V)) C S; U Ya.

4. For all v € V: If Lab(v) = 3; then Bottom(Sd(l;:1(v))) N X = 0, if
Lab(v) = X then Bottom(Sd(l;2(v))) N X = 0.

Induction Base:

Define firstly the following map ZA[]’l : Z1 — Y1 by permuting every z €
Stab® (h1o1(V)) with a different atom in Y. It extends uniquely to a qf-
automorphism l~0,1 of (¢1,%;). Define Iy := l~0,1h101. Then [y, is a restrictive
solution of (I's 1, L).

Analogously define the following map le,g : Zs — Y5 by permuting every
z € Stab®2(hyoo(V)) with a different atom in Y5. It extends uniquely to a
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gf-automorphism l~0,2 of (&3, Z3). Define Iy := l~0,2h202. Then Iy is a restric-
tive solution of (I's 2, L). This shows Property (1).

So = 0, thus Property (2) is quite trivially true. And Stabcl(lo,l(V)) C Y7 and
Stab®(Ig2(V)) C Yz by definition.

Property (4) follows immediately from the above because Y; and Y5 are defined
as fibre images of ground elements in G5 resp. G.

Induction Step: Let Lab(v;11) = 3. — The argument for Lab(v;11) = ¥y is
analogue. — We have to distinguish two cases.

Induction Step 1: li,g(vi_H) = hl,gli,l(vﬂ_l).

This is a simple case. Just define /;;11 := [;1 and l;112 = [;2. Prop-
erty (1) is satisfied by the induction hypothesis. I;2(v;41) € Za, hence
li1(vig1) € SA(li41,2(vit1)). Therefore S;y1 = S;USd(l;2(vi41)). For a variable
v such that li+1,1(v) € S; or li+1,2(v) € S; we have li+1,2(v) = h1,21i+1’1(v)
by induction hypothesis. For the variable v;;1, it is trivially the case. Now,
Stabcl(li+1’1(vi+1)) C S; UY; by Property (3) of the induction hypothesis.
If li+1,1(v) or li+1,2(v) € SZ', then li+1,2(v) = hl’QlH_l’l(’U) by induction hy—
pothesis. [liy12(v) ¢ Gao: Suppose it were, then [;1;2(v) = hooa(v), since
Stab®(I;112(v)) = 0. But that contradicts the choice of G (not containing
any solution elements). [;111(v) ¢ Yi: Suppose it were, then v < v;1; due
to the linear constant restriction. Then [;12(v) = hi2l;1(v) by induction hy-
pothesis. But then [;y;2(v) € G2 by definition of Y7, and we get the same
contradiction as above. This shows Property (2). Properties (3) and (4) are
true by induction hypothesis and l; 11 =l; % (k =1,2).

Induction Step 2: I; 2(vit1) # hi12li1(vig1)-

Let Yi+1 = li’Q(Ui+1) € Zy and Ziyl = h1,2li,1(vi+1) € Z5. Define the fOllOWing
permutation ¢, : Zo — Zy by y;+1 <+ z;+1. Then ¢;41 extends uniquely
to a gf-automorphism 7; ;. Define l;;11 := l;1 and l;y12 := 711l;2. Then
li+1, is a restrictive solution of (I's 1, L) by induction hypothesis. And [;1; 2 is
a restrictive solution of (I's 2, L) by Lemma 6.2.8 and induction hypothesis for
lio.

Furthermore, we can establish the following facts

(a) zix1 & Yo, zip1 € V1.
(If 241 € Yo, then [;1(vi11) € G1, then hioi(vi41) € Gy, which contra-
dicts the choice of G;. z;4; is the fibre image of the non-atom [; ; (vi1),
hence 211 € Zo\ X and (Z2 \ X)NZ; =0.)

(b) zit1 & Si.
(If z;31 € S;, then y; 11 = 2z;11 by induction hypothesis.)

(c) ziy1 ¢ Stab®2(1;2(V)) and z;41 ¢ Stab® (I;1(V)).
(Sta\,bclC (llyk(V)) CcS;uUY, k=1, 2.)

(d) yi+1 € Y2, yiy1 ¢ S, yir1 € X, yiy1 ¢ V1.
(yir1 € S;UY5 by induction hypothesis (4) and y;11 € S; = yir1 = 2iy1.)
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By (c) and (d), 7,41 is the identity on Stab® (l;1(V)). By (b) and (d), 741 is
the identity on S;.

By definition, S;41 = Ujgi Sd(li-l-l,l(vj))UUjgi Sd(li+1,2(vj))USd(li+1,1(?)i+1))U
Sd(lj+1,2(vig1)). Now, 7y is the identity on S;, thus U< Sd(li41,1(vy)) U
Uj<i Sd(lit1,2(v5)) = Si And Sd(lit1,2(vit1)) = {zi41} U Sd(lig1,1(vig1)) by
definition. Hence Sj;1 = S; U Sd(z;41).

For a variable v, if li+1,1(v) = li,l (U) € S; then li+1,2(v) = li,g(v) = h1,21i+1’1(v)
by induction hypothesis.

If li+1,2(v) € S;, then li+1,2(’v) = li’Q(’U). Therefore li+1,2(’v) = h1’211+1,1(v) by
induction hypothesis.

If li+1,1(v) € Sd(zi+1) then li+1,1(v) = li+1,1(vi+1) or li+1,1(v) € S;, be-
cause Stab® (l;11,1(viy1)) C S; UYy by induction hypothesis. The case
liv11(v) = ziy1 is impossible, because zj;; ¢ Stabcl(li+1’1(V)). The case
lit1,1(v) € Yy is impossible, too: Suppose lj11,1(v) € Yi, then v <, vy by
the linear constant restriction. But then ;11 2(v) = hi2lit1,1(v) by induc-
tion hypothesis. And l;}12(v) = heoa(v) € G2, which contradicts the choice
of Gy. The case lj11,1(v) = liz11(vit1) is simple, 754 is defined such that
lit12(vit1) = hialiv1,1(vis1). The case of [ 1(v) € S; was already handled
above.

If li+1,2(v) € Sd(Zi+1) then li+1,2(v) = Zjy1 Or li+1,2(v) € S;. li+1,2(’v) =
lit1,1(vig1) is impossible, because l; 11,1 (vi+1) € C1\Zi and l;11,2(v) € Co. Simi-
larly, l;11.2(v) ¢ Y7, because l;+1 2(v) € Cy and Y1NCy = (. The case lj1 2(v) =
i1 is simple, because 7;41 is defined such that z;11 = hi2li11,1(vi41). The
case of [; 11 2(v) € S; was handled above. This shows Property (2).

Since liy11 = l;;1 we have Stab® (liz12(V)) = Stab® (Lia(V)) C S;UY) C
Si+1 UY;. And Stab®? (li+1’2(V)) = (StabQ (ll’Q(V)) \ {yi_H}) U {zi-i-l}- Since
Zit1 € Si+1, we have Stab® (lix12(V)) C Sit1 UY;. This shows Property (3).

To show Property (4), we first note that since 7,11 is the identity on S; the
property holds for all variables v < v;41 by induction hypothesis. Furthermore,
since Stab® (I;411(V)) = Stab® (I, 1(V)) the property also holds for all vari-
ables v with Lab(v) = ¥ which includes v; 1. Remain the variables v > v;41
with Lab(v) = ¥3. By induction hypothesis (3), Stab®(l;2(v) C S; U Ya.
Since 7;41 is the identity on S;, there is only one interesting case, namely
yir1 € Stab®(I;2(v)). Otherwise, 7;41 is the identity on Stab®2(l; 5(v)) and the
property follows from the induction hypothesis. If y; 11 € Stab®?(l;5(v)) then
zi11 € Stab®2(l;41.2(v)) by definition of 7;, . But 21 is fibred with ;1 1(viy1)
for which we already know that Bottom(Sd(li+1,1(vi+1))) N X = 0. Therefore
Bottom (Sd(l;+1,2(v))) N X = 0, too.

This ends the induction proof.

By this induction, we showed that for ¢ = n there are assignments [,,; and [;, »
such that [, 1 is a restricted solution of (I's 1, L) and I, o is a restrictive solution
for (I's2, L) and for every variable v € V: [,2(v) = hialy1(v). Therefore
l5,,1 solves I's o in 612 and hence also I'y. It remains to show that the solution
elements in [, ; are all ground in (¢}, X). Let v € V. If Lab(v) = X1, then
Bottom (Sd(l,,1(v))) N X = 0 by Property (4) of the induction. If Lab(v) = 3o,
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then I,1(v) = hoily2(v) and Bottom(Sd(l,2(v))) N X = 0. Therefore also
Bottom(Sd (/5,1 (v))) N X = (. Thus for all v € V' we have that [, ; (v) is ground
in (€}, X) by Lemma 6.3.5. ]

Proposition 6.3.6 If the input problem T'y has a ground solution, then there
exists a linear constant restriction L and an output pair (I's1,T'52) such that
both (I's.1, L) and (I's 2, L) have a restrictive solution.

The completeness proof is a very small extension of the completeness proof in
the non-ground case.

Proof. Let o be the ground solution in the combined solution domain (€}, X),
and Z; the atom set of 0121_ In Step 3, we identify two variables z and y, iff
o(z) = o(y). In Step 4, variable x receives label ¥o, iff o(z) € Z;. And the
order < is defined by: z < y, iff o(x) <; o(y) according to Definition 3.3.9.
This gives the linear constant restriction L. Then o obviously solves I'y and
therefore F5,1 and F5,2.

Because o is ground, for every variable v: either o(v) € Z; or hyg0(v) € Zo,
but not both: Suppose both o(v) € Z; and hy20(v) € Zs. For every z € Z;\ X:
h12(z) € Cy \ Zy and for every 2’ € Zy \ X: he;(2') € C \ Z; by definition of
the fibring construction. Thus o(v) € X and hip0(v) € X and o(v) = hy20(v)
by definition of the fibring construction. But then o(v) is not ground.

Let hy : €71 — A7 be the gf-isomorphism between €' and A", Then hio
solves (I's 1, L) in 91121 by the completeness proof in the general case. hio is
restrictive, because if Lab(v) = ¥; then o(v) € C; \ Z1 by the above, and
gf-isomorphisms map non-atoms to non-atoms.

Let hy : €57 — 32 be the gf-isomorphism between €32 and 252, Then hohy o0
solves (I's2,L) in 9[52 by the completeness proof in the general case. And
hahy o0 is restrictive, because if Lab(v) = ¥ then o(v) € Ca\ Z3 by the above,
and gf-isomorphisms map non-atoms to non-atoms. |

6.4 Is there a Logical Translation of Solving Prob-
lems with LCRs?

Unfortunately, the notion of a linear constant restriction is a purely technical,
not very elegant one. Thus it would be nice, if we were able to translate it into
a purely logical problem. But this task proves difficult, and it is indeed unlikely
that there will be a general solution.

Definition 6.4.1 A formula ¢ is called positive, iff it is constructed by con-
junction, disjunction, existential and universal quantification of atomic formu-
lae, i.e., contains no negation or implication.

A formula 1 is called negative, iff 1) is equivalent to a formula —p where ¢ is a
positive formula.
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In [15], F. Baader and K. U. Schulz show that for positive formulae, the solving
of problems with linear constant restrictions is equivalent to solving the full
positive theory by proving that solving a formula with linear constant restriction
is equivalent to solving the formula with an alternating quantifier prefix. We
presented this statement as Lemma 3.2.29 in the section introducing quasi-
free structures. The key insight there is that the atoms (of the linear constant
restriction) play indeed the role of universal elements. But when under the scope
of (an odd number of) negations, the atoms loose their universality property,
they behave almost like any other element. This can be shown by the following

Proposition 6.4.2 Let (A*, X) be a quasi-free structure and

v=3vr...00(v1,...,01)

be a negative X-sentence, where @ is a negative formula and vy, ...,v; all free
variables occurring in it. Then the following conditions are equivalent:

1A = vy oo o(vr,. .., vp).

2. There exist a k < % and ¥ € X,é'l € ff,fi’k € )z,é’k € A such that
(a) |1 U...UZUELU...Uék| =1,
(b) le ): @(flagl ---7fk7€k)7
(c) all atoms in the sequences T1,...,Ty are distinct,

(d) for all j,1 < j < k, the components of Z; are not contained in
Stab® (1) U... U Stabs(&j_1).
Proof. For the non-trivial part, let
A = Jor ... p(v, ..., 0).

Then there are a k < % and elements d; € [f, b € [f,...,c’ik € [f, l;k € A such
that |@; U...Udp Ub U...Uby| =1 and

912 ): @(51,51,. .. ,c‘ik,l;k).

—

Let #1 € X,ih € X,..., % € X,J, € X be sequences of atoms such that all
atoms in the sequence T, 71, . . . , Tk, Ui are different. The mapping i’ that maps
the sequences 7 to ay, ¥1 to 51, .o, X to dg, Ui to Z;k can be extended to a
surjective homomorphism A. Then

A™ = o(h(Z1), R(i1), - - -, (@k), (k)

by assumption and therefore

le ): @(flagla' .. 7:8]4:7?7]9)

since surjective homomorphisms preserve validity of positive formulae. This
shows Condition (b). Conditions (¢) and (d) follow immediately by the choice
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of the atoms all being different and the fact that each atom is its own stabiliser.
[

Unfortunately, this proposition also indicates that it is very unlikely to find a
translation of problems with linear constant restrictions into problems expressed
in purely logic terms in the general case. Consider an atom (from the linear
constant restriction) that appears both in a positive and in a negative context.
In the positive context, it would be translated into a universally quantified
variable. In the negative context, the same variable had to be existentially
quantified, which is obviously impossible. There are no quantifiers that behave
sometimes this way sometimes another. And a general translation of the atom
by a universally quantified variable is not correct.

6.5 A Stronger Combination Result?

We showed that the existential fragment of the free amalgamated product is
decidable provided conjunctions of literals with linear constant restrictions are
decidable in the components. A natural question to ask is, if we can decide a
larger quantifier prefix fragment that just the existential one. This issue appears
to be even more interesting, since F. Baader and K. U. Schulz [10] showed that
for the case of purely positive constraints, the full positive theory, i.e., arbitrary
quantifier prefixes, can be decided in the free amalgamated product. The answer
we give in this section is a negative one. We will provide counterexamples from
the field of equational unification for the general as well as for the ground case.

Undecidability of the ¥3;-Fragment in the General Case

Solvability of disunification problems with linear constant restrictions for the
free theory and the theory of an AC-function symbol is shown to be decidable
by F. Baader and K. U. Schulz in [9]. Therefore the existential theory of the
free algebra of one AC-symbol and any finite number of free function symbols
is decidable. Even better, the full first order theory of both the free theory [33,
70, 72] and the theory of an AC-function symbol and any number of constants
[101] is decidable.

On the other hand, the Y3-fragment of the first order theory of an AC-function
symbol, one free function symbol and one constant over the free algebra is
shown to be undecidable by R. Treinen [113].

Proposition 6.5.1 There exists an instance of combination, namely the com-
bination of the theory of an AC-symbol and the free theory, the Y3-fragment of
which is undecidable, though the full first order theories of both components are
decidable.

This result leaves a gap: What about the Xo-fragment? And indeed, for the
theory of one AC-function, one free function and one constant over the free
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algebra, it is an open question whether or not the Ys-fragment is decidable.
For the case of combination, a look at the ground case will show that there is
no hope.

Undecidability of the ¥,-Fragment in the Ground Case

The example in this subsection is given by the combination of the associative
theory with the free theory. In [9], F. Baader and K. U. Schulz prove the decid-
ability of the existential theory of the initial algebra of the signature consisting
of one associative function symbol, one free function symbol and one constant.
This result is obtained by as follows: The solvability of disunification problems
with linear constant restrictions over the initial algebra is shown for the free
theory and the associative theory. And one of the main results of that paper is
the decidability of the existential fragment of the initial algebra of the combined
signatures provided decidability of disunification problems with linear constant
restrictions in the components.

On the other hand, R. Treinen ([113]) shows the undecidability of the 3,-
fragment of the ground term algebra of the signature containing one associative
function, one free function and one constant.

6.6 Rational Combination of Negative Constraints

In the previous sections, the combined solution domain was always the free
amalgamated product. There exists another standard combined solution do-
main, namely rational amalgamation, as introduced in Chapter 5. So, one
may expect that it is possible to solve negative constraints also in the rational
amalgam. But unfortunately, this is not the case. We show that by means of
a simple example, the combination of rational trees. Let signature ¥ = {f}
and A = {g} where both f and ¢ are unary and X = {z1,z9,23,...} be an
infinite set of variables. Let 2R(X, X) be the algebra of rational trees over f
and R(A, X) the algebra of rational trees over g. Their rational amalgam
R(E, X) ©R(A, X) is isomorphic to R(EUA, X), the algebra of rational trees
over f and g (see Theorem 5.4.2). Consider the following disunification prob-
lem T' = {z = f(21),21 = g(22),22 = f(23),23 = g(x),x # 22,21 # 23}. This
problem has a solution in the components, but it has no solution in the rational
amalgam. In the labelling step of the decomposition algorithm, we choose the
following indexing of the variables: z +v» 3,29 v» X271 = A,z3 = A. The
subsystem I's, = {z = f(21),22 = f(23),2 # 29,21 # 23} has as one solution
{z — f(z1),21 = x1,20 — f(x2),23 — z2}. Since x1 # 2, the disequations
are clearly solved. The subsystem I'a = {21 = g(22), 23 = g(x),z # 22,21 # 23}
has as one solution {z; — g(z1),22 — z1,23 — g(x2),z — z2}. But ' is un-
solvable in R(X U A, X): Obviously, z = f(g(f(g(z)))), so x must be mapped
to the infinite tree fgfgfgfg.... And zo = f(g9(f(g(22)))), so zo must also be
mapped to the infinite tree fgfgfgfg.... But then, the disequation x # z5 is
violated.
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It is of course simple to regain soundness of the decomposition algorithm by
severely restricting the admissible solutions in the components. But then, one
faces completeness problems. There seems to be no general way out of this
dilemma.
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Part 11

The Independence of Negative Con-
straints Property

The constraint problems we consider in this chapter are conjunctions of literals.
Clearly, every such constraint problem I' can be written as I' A /\le C,” where
't is the conjunction of all positive constraints (atoms) of ' and /\le C; is
the conjunction of all negative constraints (negated atoms) of I'. If we do not

need to refer to specific negative constraints, we abbreviate /\le C; by I'.

Definition A theory has the independence of negative constraints property, iff
for every constraint problem I' we have:

I" is solvable, iff
for every i = 1,...,k the conjunction 't A C; is solvable.

6.7 Independence Properties of Equational Theories

In equational theories, the only negative constraints are of course disequations.
For a general introduction to disunification theory, we refer the reader to [31,
32, 33]. It is easy to see that we can restrict our attention to those cases where
the only disequations occurring are disequations between variables. Because if
s # t is a disequation and z and y are new variables, then s # ¢ is equivalent to
x = s,y =t,z # y. Remember that we write uU(T'") for the minimal complete
set of unifiers of a unification problem I'", if this set exists.

Lemma 6.7.1 Let E be an equational theory of unification type different
from 0. Let I be a disunification problem where I'™ contains only disequations
between variables occurring in . If T' has a solution o, then one substitution
T from the minimal complete set of unifiers of T more general than o is a
solution of .

Proof. Let pU(T'") be the minimal complete set of unifiers for Tt and o a
solution of I'. Since o is a solution of I'", there must be a 7 € pU(I'") such
that o is an instance of 7. Now for any two variables z,y € Var(I'"): if
7(z) =g 7(y) then o(z) =g o(y). Thus if o(z) #g o(y) then 7(z) #g 7(y).
Therefore 7 is a solution of I'". [

In the above lemma, if I'~ contains variables not occurring in I'*, then these
variables are only constrained to be mapped to solution elements different from
other variables in I'". Thus these types of disequations only impose restrictions
on the minimal size of a finite solution domain. But since all our solution
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domains are infinite, disequations between variables not occurring in I'" do not
impose any restrictions at all here.

Unitary Theories

Theorem 6.7.2 Let E be a unitary equational theory. Then E has the inde-
pendence of negative constraints property.

Proof. This is an immediate consequence of Lemma 6.7.1. Let for ¢ < k the
problem I'" A C;” have a solution. Then for all 4 < k: the mgu p of 't is a
solution of I'" A C;". Thus 4 is a solution of TY ACT AL..ACY . [

In a later subsection, we will show that the inverse (i.e., independence property
entailing E being unitary) is not true.

Equational Theories without Independence Property

In this section, we prove the following statement: If an equational theory is such
that one of its unification problems has a minimal complete set of unifiers of
finite cardinality, but no single most general unifier, then this theory does not
have the independence property. The incomparability of the solutions is used
to construct disequations that can be solved individually, but not collectively.

Lemma 6.7.3 Let E be a non-unitary equational theory. Let I’ be a unification
problem with variables X and py and po be two solutions of I' with domain X
such that neither ui is more general than puo nor vice versa. Then there exists
a disequation for which py is not a solution, but sy is.

Proof. We can assume that both py and po are idempotent.

Now p1 is not more general than ps, that is

there is no substitution A\ such that us(z) =g Ao ui(z) for every z € X, i.e.
for every substitution \ there is an z € X such that ps(x) #pg A o uy(z).

In particular, if we choose A to be us we get: There is an z € X such that
p2(z) #E pi2 0 p ().

Now consider the disequation = # p1(z). The above shows that s is a solution.
But since py is idempotent, clearly p(z) = pq o uq(z); thus gy is no solution. m

This section’s claim is now a simple consequence.

Lemma 6.7.4 Let E be a non-unitary equational theory. Let I' be a unification
problem with variables X and {u1,...,un} (where n > 1) be a minimal complete
set of solutions of I' with domain X. Then there exists a set of disequations
{dy,...,dy} such that for each i = 1,...,n the problem T' A d; is solvable, but
I'A{di,...,dy} is not.
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Proof. Again, we can assume that the solutions p1, ..., i, are idempotent.

For each @ = 1,...,n consider the solutions y; and some p; where j # i. By
the above lemma, there is an z € X such that p; solves z # p;(z), but p; does
not. Define d; to be z # pi(x). Then I' A d; is solvable, ;1; is a solution. But
' A{d,...,dp} is not, because every solution of it is an instance of some y;
and each d; excludes p; (and its instances) from the set of solutions. [

Theorem 6.7.5 Let E be an equational theory that has a unification problem
where the cardinality of the minimal complete set of unifiers is finite and larger
than 1. Then E has not the independence property.

Corollary 6.7.6 Let E be a finitary equational theory. Then E has not the
independence property.

The theory A of an associative function symbol and constants has not the in-
dependence property.

For the second statement, consider the following A-unification problem with
constants, written as a word unification problem: axb = yybb where a and b
are constants and z and y are variables. It has the following two most general
solutions: {(z — ab,y — a),(x — zazb,y — az)} where z is a new variable
ranging over (nonempty) words over ¢ and b. It is trivial to check that the
two substitutions are solutions. To see that they they form a minimal complete
set, consider the way the Plotkin algorithm [85] would solve the unification
problem. Clearly, y must either be mapped to a, which immediately gives the
first solution, or a is a proper prefix of the solution for y, which gives rise to
the second solution. The solution for z is in both cases always immediately
determined by the solution for y.

Commutative Theories have the Independence Property

In this section, we present a whole class of equational theories, the so-called
commutative theories, which have the independence property. Commutative
theories were studied independently by Franz Baader [4] and Werner Nutt [79]
who calls them “monoidal theories”. Amongst these theories, there is the the-
ory AMh of Abelian monoids with a homomorphism, which is not unitary. This
shows that the property of being of unification type unitary and the indepen-
dence property are not equivalent.

The following heavily draws from results by F. Baader on commutative theories
in [4]. The results about unification (i.e. no disequations) can be found there.
The proposition that commutative theories have the independence property (for
elementary unification) is new, a fruit of cooperation with F. Baader.

W. Nutt’s definition of a monoidal theory is based on the signature and therefore
easier to grasp then F. Baader’s category-theoretical definition. Thus we give
it first and provide some examples.

Let E be a set of identities. Then E (and the equational theory defined by E)
is called monoidal, iff it satisfies the following properties:
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1. The signature of E contains one binary function symbol -, one nullary
function symbol 1, and all other function symbols are unary.

2. The symbol - is associative and commutative, i.e., ((z-y)-z) =g (z-(y-2))
and (z -y) =g (y - x) hold.

3. The symbol 1 is a unit for -, i.e., (z-1) =g z holds.

4. Every unary function symbol A is a homomorphism for - and 1, i.e., h(z -
y) =g h(z) - h(y) and h(1) =g 1 hold.

The list of examples that follows is taken from [4].

Example 6.7.7 We consider the following signatures:

¥ := {,1} where - is binary and 1 is nullary.

Yy =% U{"'} and ¥3 := ¥ U {h} where ~! and h are unary.
Yy = Yo U X3,

1. The theory of Abelian monoids.
The signature is X1 and AM := {z-(y-2) = (z-y)-z,2-y =y-z,2-1 = z}.

2. The theory AIM of idempotent Abelian monoids.
The signature is £; and AIM := AMU {z -z = z}.

3. The theory AMh of Abelian monoids with one homomorphism.
The signature is ¥3 and AMh := AMU {h(z) - h(y) = h(z -y),h(1) = 1}.

4. The theory AIMh of idempotent Abelian monoids with one homomor-
phism. The signature is ¥3 and AIMh := AIM U {h(z) - h(y) =

h(z -y),h(1) = 1}.
5. The theory AMi of Abelian monoids with an involution.
The signature is ¥3 and AMi:= AMU{h(x)-h(y) = h(z-y), h(h(z)) = z}.
6. The theory AIMi of idempotent Abelian monoids with an involution.
The signature is 3 and AIMi:= AMiU {z -z = z}.

7. The theory AG,, of Abelian groups of exponent m (m € IN). The signa-
ture is 9 and AG,, := AMU{z -z~ ! = 1,2 = 1}. AG = AG is the
theory of Abelian groups.

8. The theory AGi of Abelian groups with an involution.
The signature is ¥4 and AGi:= AGU AMi.

9. The theory AGh of Abelian groups with a homomorphism.
The signature is ¥4 and AGh:= AG U {h(x) - h(y) = h(z - y), h(1) = 1}.

For the following discussion we need to introduce at least some of the category
theory terminology of [4]. Of course, we cannot give an introduction to category
theory here. In short, a category is a collection of objects and a collection
of morphisms between these objects such that composition of morphisms is
associative and each object has a unit morphism, the identity map of the object.
An object A is called a zero object, if for each object B there exists a unique
morphism from A to B and a unique morphism from B to A. A product of two
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objects A and B consists of an object Ax B and two morphisms w4 : AxB — A
and g : A x B — B such that for every other object D and morphisms
dg: D — A and dg: D — B there exists a unique morphism d!: D —+ A x B
with dy = m4 od! and dp = wp o d!. The coproduct is the dual of the product.
Therefore a coproduct of two objects A and B consists of an object A + B and
two morphisms 74 : A -+ A+ B and ig : B = A + B such that for every
other object F and morphisms e4 : A — F and ep : B — FE there exists a
unique morphism e! : A+ B — E witheq = eloiy and eg = el o ip. For more
information, see [83] for example.

If E is an equational theory, and X a set of variables, then let F(X) be the
free algebra over the variety of E with generators X.

Let T' = (s; = t;;1 <14 < n)g be an E-unification problem and X be the finite
set of variables x occurring in some s; or t;. Evidently, we can consider s; and
t; as elements of F(X). Since we do not distinguish between =pg-equivalent
unifiers, any E-unifier of I can be regarded as a homomorphism of Fr(X) into
Fgr(Y) for some finite set Y (of variables). Let I = {xi,...,z,} be a set of
cardinality n. We define homomorphisms

o,7: Fg(I) - Frg(X) by o(z;) :== s; and 7(z;) :=¢t; (i=1,...,n).

Now 0 : Fg(X) — Fg(Y) is an E-unifier of T, iff (o (x;)) = d(s;) = 6(t;) =
d(r(z;)) fori =1,...,n, ie., iff o = d7. Thus an E-unification problem can be
written as a pair (o = 7)g of morphisms 0,7 : Fg(I) — Fg(X) in the following
category:

Definition 6.7.8 ([4]:3.1) Let E be an equational theory and V be a denu-
merable set. Then the category C'(E) is defined as follows:

e The objects of C(FE) are the algebras Fg(X) for finite subsets X of V.
We denote the class of these objects by F(E).

e The morphisms of C'(E) are the homomorphisms between these objects.

e The composition of morphisms is the usual composition of mappings.

For morphisms o : Fg(X) — Fp(Y),y : Fg(X) — Fg(Z) we have v <p o, iff
there is a morphism A : Fg(Z) — Fg(Y) such that o = Ay.

Definition 6.7.9 An equational theory F is commutative, iff its category C(F)
is semiadditive, i.e., C'(E) has a zero object, every pair of objects has a coprod-
uct, and product and coproduct coincide.

From now on, let £ be a commutative theory.
Lemma 6.7.10 ([4]:6.2) Let I' = (s; = tj)r be an elementary E-unification
problem and let {o1,...,0,} be a finite complete set of E-unifiers of I'. Then

there exists an E-unifier o of I' such that the singleton {c} is a complete set of
E-unifiers of T.
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Lemma 6.7.11 ([4]:6.3) Let I' = (s; = tj)g be an elementary E-unification
problem and let U = {01,02,03,...} be an infinite set of E-unifiers such that
the o; do not lie (w. r. t. <g) above a single E-unifier of T'. Then there does
not exist a minimal complete set pU (T).

The proofs can be found in [4].
Lemma 6.7.12 ([4]:9.3) The theory AMh is of unification type zero.

Thus for elementary unification, every unification problem of the theory AMh
either has at most one most general unifier or no minimal complete set of
unifiers. An example of a problem with no minimal complete set of unifiers is
(h(z1)h(z2) = x2h(h(x3))) Apqp- The solutions have the form z; — 2,z
h(z)-h%(2) - ...  h"1(2), 23 = h"(z) for each n > 0.

Theorem 6.7.13 For elementary disunification problems, commutative theo-
ries have the independence of negative constraints property.

Proof. This proof follows closely the one of Lemma 6.2 in [4]. Let E be a
commutative theory. Let I' = (0 = 7,(z; # ¥i)i<i<k)E be an elementary
disunification problem where z;,y; € X. Clearly, if T' has a solution =y, then
v is a solution of T'; := (o = 7,2; # y;)p for 1 < i < k. For the non-trivial
direction, let ; be a solution of I'; for all 1 < ¢ < n. Then each ~; is a solution
of (o = 7). We show that there is an E-unifier 7y of (¢ = 7)r which is more
general then each ;. We have 0,7 : Fg(I) — Fg(X) and v; : Fg(X) — Fr(Y)).
With Y := Y1 W... WYy, Fr(Y) is the coproduct and product of the Fg(Y;).
Let m,...,m be the corresponding projections. Then there exists a unique
morphism v : Fg(X) — Fg(Y) such that v; = my for 1 < ¢ < k. The
morphism v is an F-unifier of (¢ = 7)g, since yo = y7 iff myo = myr for
i = 1,...,k (by definition of product). And 7 is more general then each ~;,
since y; = m;y by definition.

Therefore for all z,y € X, if y(z) = v(y), then v;(z) = 7;(y). By contraposition,

for all z,y € X if %(x) # 7i(y), then y(z) # ¥(y). Thus from vi(z;) # 7i(y:)
follows y(z;) # v(yi), and 7 solves (x; # y;)i<i<k- This shows that v is a
solution of T. -

Corollary 6.7.14 There exists an equational theory, namely AMh, which has
the independence property, but is not unitary.

6.8 Combining Equational Theories and the Inde-
pendence Property
In this section, we present conditions under which the independence property of

equational theories is preserved under combination. These conditions are quite
restrictive as the following theorem shows.
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Theorem 6.8.1 Let E and F be two unitary reqular and collapse-free theories
over disjoint signatures. Then the combined theory E U F is again unitary,
reqular, and collapse-free.

Regularity and collapse-freeness are properties of the axioms of F and F. If the
signatures are disjoint, then theses properties are clearly preserved in the union
E U F. Thus the main statement of the theorem is that the combination of
two unitary regular and collapse-free theories is again unitary. Unfortunately,
the requirement that F and F' be regular and collapse-free cannot be weakened
as the following example shows. Consider the theory of Boolean rings, which
is neither regular nor collapse-free. It is known (see [17]) that in this theory,
unification with constants is unitary. But general unification is finitary. And
in any theory, general unification can be regarded as an instance of combining
unification with constants in that theory with syntactic unification.

The above demanded requirements are rather restrictive. There are only two
“natural” theories which come to mind that are both unitary and regular and
collapse-free. One is of course syntactic unification. And the other is single-
sided distributivity, such as distributivity to the left (D;, = {f(g(z,y),2) =
g(f(z,2), f(y,2))}) and distributivity to the right.

We will not prove the theorem here, because it is a special case of Theo-
rem 6.10.17 that we present later. A direct proof of the above theorem would
involve complicated rewriting methods. The introduction of an enormous tech-
nical apparatus only to see later that we can prove the theorem in a more
general way seems a waste. The proof of the general theorem uses clear alge-
braic methods and is shorter than a specific proof can be.

6.9 Independence Properties of Quasi-free Struc-
tures

6.9.1 Generalising Basic Notions of Unification Theory

Before we can start to extend the results of the previous sections to quasi-free
structures, it is necessary to generalise some basic notions of unification theory
to quasi-free structures.

Remember that our constraint problems are existentially quantified conjunc-
tions of literals.

Definition 6.9.1 Let I' be a positive constraint problem of the quasi-free struc-
ture (A”, X). Let o and 7 be two solutions of I'. We say o is more general
than 7 with respect to the variables in I' (and write o <p 7), iff there exists
an endomorphism m € Endj such that m is the identity on X \ Stab®(rng(o))
and for all z € Var(I') holds m o o(x) = 7(x).

A set S of solutions for T" is called complete, iff for every solution 7 of T there
exists a solution o € S with o <p 7.
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A set S of solutions for I' is called minimal, iff for all 0,0’ € S : 0 <p 0/ —
!/
o=oao.

With these notions, we can define the solution type of a quasi-free structure.

Definition 6.9.2 A quasi-free structure (2%, X) is called

unitary, iff for every positive constraint problem a minimal complete set of
solutions exists and has cardinality at most one.

finitary, iff for every positive constraint problem a minimal complete set of
solutions exists and has finite cardinality.

infinitary, iff every positive constraint problem has a minimal complete set of
solutions (but this set may be infinite).

of type O, iff there is a positive constraint problem that has no minimal com-
plete set of solutions.

Remember that by Definition 5.2.5 a quasi-free structure (A, X) is called non-
collapsing, iff every endomorphism m € Endgt maps non-atoms to non-atoms.
In order to define the notion regular for quasi-free structures, we start with the
following observation, which is a generalisation of Lemma 5.2.4.

Lemma 6.9.3 Let (A, X) be a quasi-free structure, m € Endg an endomor-
phism, and a € A some element. Suppose Stab®(a) = {z1,...z3}. Then

Stab®(m(a)) C UF_, Stab®(m(z;)) = Stab™(m(Stab®(a))).

Proof. Let my,mo € End%:l be two endomorphisms such that they coincide on
k¥ Stab®(m(z;)). We show they coincide on m(a). If m; and my coincide on

U%_, Stab™(m(z;)), then they coincide on {m(z1),...,m(z;)}. Then m; o m
and mgy om coincide on {z1,...,z;} = Stab®(a), hence my om(a) = myom(a),
in other words, my and my coincide on m(a). [

Definition 6.9.4 A quasi-free structure (A, X) is regular, iff for all m € Endy
and all a € A : Stab®(m(a)) = Stab®(m(Stab™(a))).

6.9.2 Unitary Quasi-free Structures

Lemma 6.9.5 Let (A”, X) be a quasi-free structure of solution type different
from 0. Let T =T" AT~ be a constraint problem. If I’ has a solution T, then
one solution o from the minimal complete set of solutions of It more general
than 7 is a solution of T'.
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Proof. Let uS(I'") be the minimal complete set of solutions of I't and 7 a solu-
tion of I". Since 7 is a solution of ['", there exists a 0 € uS(I'") with o < 7, i.e.,
there is an endomorphism m € Endy with mo(z) = 7(z) for all z € Var(T"). Be-
cause endomorphisms preserve negative constraints in countercurrent direction,
o is a solution of I'". [

Theorem 6.9.6 Let (A”, X) be a unitary quasi-free structure.
Then (A*, X) has the independence propertsy.

Proof. This is an immediate consequence of the above lemma. Let [' = I'T A
AE C; and for all 1 <4 <k the problem I'" A C;” have a solution. Then for
all 1 <7 <k : the most general solution p of I'" is a solution of C;". Thus u
solves T'. |

It is worth mentioning that G. Smolka and R. Treinen [104] give an example
of a quasi-free structure which is not an equational theory, is of type infinitary
and has the independence property, namely their feature trees with arity.

6.10 Combining Quasi-free Structures and the Inde-
pendence Property

This section’s aim is to lift the modularity result for equational theories (6.8.1)
to the more general case of quasi-free structures. The theorem to be shown
therefore reads as follows.

Theorem 6.10.1 Let (A*, X) and (B>, X) be two unitary regular non-
collapsing quasi-free structures over disjoint signatures. Then the free amal-
gamated product A> @ B> is again unitary, regular and non-collapsing.

That the free amalgamated product is regular and non-collapsing is again a
simple consequence of the fact that the components are, and that the signatures
are disjoint. Endomorphisms in the free amalgamated product are pairs of
endomorphisms of the component structures. If both components are regular
and non-collapsing, the so is the pair, signature disjointness presupposed.

In this section, we will refer frequently to [94]. The paper contains a determin-
istic combination algorithm for unitary regular collapse-free theories. We show
here that the algorithm computes a most general solutions.

6.10.1 L-convex Theories and Deterministic Combination
In this subsection, we will briefly recall all relevant definitions and results about

L-convex theories and deterministic combination as presented in Sections 4.3
and 4.4 of [94]. The notions of decision sets and generalised linear constant
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restrictions were defined in our Section 4.3 in the chapter on optimisation tech-
niques. It is important to note that what is called a “generalised linear constant
restriction” in [94], is called here a “complete decision set”. Let U be a set of
variables. For us, a generalised linear constant restriction is not a set of con-
straints, but a triple (II, Lab, <) where II is a partition of the variables U, Lab
a labelling function, and < a partial order on U.

Although not stated explicitly, the deterministic combination algorithm pre-
sented by K. U. Schulz in [94] is not just designed for the combination of equa-
tional theories, but also for combining quasi-free structures. In the deterministic
algorithm, one just has to replace all references to equational theories by quasi-
free structures. And the proofs of the propositions that we will subsequently
present in their general form are still valid.

Proposition 6.10.2 Let " be a ¥ U A-constraint problem in decomposed form,
s UTAUTL. LetU = Var(T'). Then T is solvable if and only if there exists
a complete decision set Cr, on U, where I'x C C,, such that the X-constraint
problem with decision set (I'sUI'x, Cr) is solvable and the A-constraint problem
(Ca AT, Cr) is solvable.

Proof. First assume that the ¥ U A-constraint problem I' has a solution. By
Proposition 6.2.13 there exists a linear constant restriction L such that (I's »;, L)
has a solution oy, in (2%, X) and (T's.a, L) has a solution oa in (B2, X). We
use the linear constant restriction and the variable identification with repre-
sentation function p that maps each variable to its representative in Step 3 of
Algorithm 6.2.4 to construct a complete decision set. Let

C- = {z=y|p)=p)}u{zs#y|p(x)#ry}
Crab = {z+» I |Lab(p(z)) =X} U{z > A Lab(p(z)) = A},

Cc = {z <yl px) <z p(y)},

and let C7, be the closure of C— U Cp,, U C<. Note that I'x C C=. And (7,
is clearly complete. Since the only difference between I's 5, and I's AT is the
variable identification, oy, o p is a solution of I's AT'.. And oy, o p respects Cf,
by definition of Cr,. Hence ox o p solves (I's AT'x,Cr). Analogously, oa o p
solves ('a AT, Cy,).

For the inverse direction, assume there exists a complete decision set C, with
Iz C Cp, such that (I AT, C) has solution oy, and (I'a AT, Cr,) has solution
oa. The equation decisions in Cf form an equivalence relation. Choose a
representant for each equivalence class and let p be the function that maps each
variable to its representant. Define a linear constant restriction L = (Lab, <)
as follows. For each labelling decision z ++ ¥ (resp. z =+ A) set Lab(p(z)) = %
(resp. A). Choose an arbitrary extension of the partial order {p(z) < p(y) |
z <y € Cr} to a linear order <. Since the only difference between T's 5,
and I's ATz is the variable identification, oy is a solution of I's s, even if
not all variables in the domain of o5 appear in I's s due to the identification.
The definition of Lab ensures that the labelling informations of Cr, and L are
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the same modulo variable identification. The ordering decisions in C7, do not
necessarily form a linear order. But by definition of a complete set of decisions,
each two variables with different labels are ordered. Hence any linear extension
of the ordering information will give rise to the same constant restrictions, as
explained in Section 4.2. And oy respects the ordering decisions. Therefore oy,
solves (I's »;, L), and, analogously, oa solves (I's o, L). By Proposition 6.2.5, I'
has a solution. |

Corollary 6.10.3 Let 0 = ox ® oa as in Definition 6.2.11. Then o is a
solution of I', iff ox is a solution of (I's AT'x,Cr) and oa is a solution of
(Ca A [, Cr).

Definition 6.10.4 Let I/ be a set of variables. A complete decision set Cj, €
Cr(u) is called a faithful extension of C' € Cry), if € C O, and if C and C,
have the same set of equality decisions.

Lemma 6.10.5 Let C # C13 be a decision set in Cewy- Then C has a faithful
extension to a complete decision set Cr, € Cryy-

The proof is given in [94].

Definition 6.10.6 The decision set Cy € C(y) is a cover point for the con-
straint problem with decision set (I',C}), if C1 C Cs, and for each complete
decision set O, € Cr(y) that faithfully extends Cy there exists a solution of
(Fa CL)

The cover point Co of (T',Cy) is called a universal cover point for (T',Cy), if
Cy C O, for all complete decision sets Cp, € Cry) where €7 C Cf, and the
constraint problem with decision set (T, C7,) is solvable.

Definition 6.10.7 The quasi-free structure (A*, X) is L-conves, iff for every
constraint problem with decision set (I, C') there exists a universal cover point.

(A*, X) is effectively L-convex, if there exists an algorithm that computes a
universal cover point for each constraint problem with decision set (I', C).

Let (A%, X) and (B2, X) denote two effectively L-convex quasi-free structures
over disjoint signatures 3 and A respectively. We shall now give a deterministic
combination algorithm that may be used to decide solvability of S UA-constraint
problems.

Deterministic Combination Algorithm

The input of the algorithm is a ¥ U A-constraint problem I'. We may assume
that I" is in decomposed form I's AT A AT’ where I', is the set of all disequations
between variables. Steps 1 and 2 of the Decomposition algorithm 6.2.4 show

3Remember that in the text following Definition 4.3.4, C'tv was defined as the closure of
any inconsistent decision set.
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that each constraint problem can be transformed into one in decomposed form
by a simple preprocessing step. Let U := Var(I') and n := |U|. The algorithm
is organised in a series of rounds. Each round has a pure X (respectively A)
constraint problem (I'7, C') with decision set C, where I € {¥, A} and C # Cr.
The input for the first round is (T's, C1), where C; := C'| = Clo({)).

Round 1:  We compute a universal cover point Cy € Cryy for (I's, C1) with
respect to (A%, X). If Cy = CT, then we stop with failure. In the other case,
(C'a, C5) is the input for round 2.

Round k£ > 2:  Assume that the input for this round is (I'7,C)), where
I € {¥,A}. We compute a universal cover point Cy1 € Cry) for (I'r, Cy) with
respect to the given quasi-free structure. The algorithm stops in two cases:

(i) If Cx41 = C, then we stop with failure.

(ii) In the other case, if Cy, 1 and C} have the same set of equality constraints,
then we stop with success.

In the remaining case, the J-constraint problem with decision set (T';, Ck11),
where {I,J} = {3, A}, is the input for round %k + 1.

Proposition 6.10.8 The Deterministic Combination Algorithm terminates af-
ter at most n + 1 rounds.

The proof of this proposition can be found in [94].

Proposition 6.10.9 The Deterministic Combination Algorithm stops with
success if and only if the input problem I' has a solution in the free amalga-
mated product A¥ @ BA.

Proof. The subsequent proof is a variant of the proof for Proposition 4.16
of [94]. We present it here to gain a useful corollary.

First assume that the 3 U A-constraint problem I has a solution. By Proposi-
tion 6.10.2 there exists a complete decision set C7, with I'x C Cf, such that the
¥-constraint problem (' AT, C7,) and the A-constraint problem (Fa AT, Cr)
are solvable. Let Cy,...,C) (k > 1) denote the sequence of universal cover
points that are computed in the rounds of the Deterministic Combination Al-
gorithm. Obviously, Cy = C| C Cf. Assume that i < k and C; C Cr. Let
(T'r, Ci) be the input for round ¢, where I € {¥,A}. The fact that Cj; is
a universal cover point for (T'y, C;) implies that C;1; C Cp. Tt follows that
Cr C Cpr, and the algorithm does not stop with failure. Hence it stops with
success.

Now assume that the algorithm stops with success, say in round [ > 2. Suppose
that the input problem of round [ is the I-constraint problem (I'z, C}), where
I € {¥,A}. Choose an arbitrary faithful extension of C; to a complete decision
set Cr,. Lemma 6.10.5 shows that such a faithful extension exists. Condition (ii)
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for round [ ensures that C7, is also a faithful extension of C;_;. Since C} and
C)—1 are cover points, we know that both (I'y,Cr) and (I'y, Cr) (with {I,J} =
{X, A}) are solvable constraint problems with decision set Cr,. It follows from
Proposition 6.10.2 that the ¥ U A-constraint problem I' is solvable. |

Corollary 6.10.10 For every complete decision set Cp, such that (T'x, Cr) and
(TCa,CL) are solvable, the last universal cover point Cy of the Deterministic
Combination Algorithm lies below Cr,, i.e., Cy C CT.

The following technical lemma on regular structures will be used frequently in
subsequent proofs.

Lemma 6.10.11 Let (A, X) be a unitary regular non-collapsing quasi-free
structure. Let (I',C) be constraint problem with decision set, where {u
Ao v Biu < v} C C. And let p be the most general solution of (T,C)
and o another solution of it. If u(u) € Stab™(u(v)) then o(u) € Stab®(a(v)).

Proof. Since p is the most general solution and o is a solution, there exists an
endomorphism v such that for all z € Var(') : o(z) = vu(z). Because u +
A € C and o is a solution, o(u) € X. From pu(u) € Stab™(u(v)) follows vpu(u) €
v(Stab®((v))) which implies o(u) € v(Stab™(i4(v))). Therefore Stab®(o (1)) C
Stab®(v(Stab®(1(v)))). Since o(u) € X, we know Stab®(o(u)) = o(u). Hence
o(u) € Stab®(v(Stab®(1(v)))), which implies o(u) € Stab®(vu(v)) because v
is regular. Therefore o(u) € Stab®(o(v)). [

Proposition 6.10.12 Let (A”,X) be a unitary regular non-collapsing quasi-
free structure. Then (A%, X) is L-convex.

Proof. Let (I',CY) be a constraint problem. We have to show that there exists
a universal cover point for (T, C;).*

In the first case, there exists no complete decision set Cp, € Cr(y) such that
Cy C Cp, and (T', C}) is solvable. In this case, Ct is a universal cover point for
(T, Ch).

In the non trivial case, we assume there exists a complete decision set Cp,
such that C; C Cy, and (T',C}) has solution o. By definition, o solves T'y :=
I'AANyzpec, w =v. Let p be the most general solution of I'y, let

C- = {u=v|u,veld,ulu)=upn)}
Cy = {u~X|ueld,u(u) ¢ X}
Co = {u<v|uveldpulu)eStab®(u(v)), u(v) ¢ X,uvrs AeCp}

and let C' denote the closure of Cy UC_ U Cy U C.. Obviously, all equations of
C are in C_.

“Please note that X denotes the atom set, and &/ denotes the set of variables.
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We have to show that C is a cover point for (I',C;). Let C} be a complete
decision set on U that faithfully extends C. We show that u is a solution of
(T, C7): Clearly, u solves I'; and since C faithfully extends C also p(u) = p(v)
iff u= v € C}. For labelling decisions, let v € Y and u — A € C}. Then
ur X ¢ Cy C O} and pu(u) € X. For ordering decisions, assume that
urs B Au<ov € Cp. Thenov s X ¢ C C ) and p(v) € X.
u # v € C because C7 is closed, and u # v € C because C} faithfully extends
C. Hence p(u) # p(v). Now suppose u(v) € Stab®(p(u)). Then p(u) ¢ X and
v <u € C C Cf, which is a contradiction since u < v € C7.

Remains to prove that C' is a wuniversal cover point for (I',Cy). Let Cp, o,
I'1 and p as above. Since o is a solution of 'y, there exists an endomorphism
v € Endy such that o(v) = vu(v) for all v € U. In order to show that C' C Cf,
it suffices to prove that (C—UCx,UC—,) C (Y, since (Y, is closed and C; C C7..

Firstly, let w = v € C=. Then p(u) = p(v) and o(u) = vu(u) = vu(v) = o(v).
By definition, u = v € (.

Secondly, let u v ¥ € Cx. Then u(u) ¢ X, the set of atoms. Since v is
non-collapsing, also o(u) = vu(u) ¢ X. Hence u - A ¢ Cr, by definition of a
solution, and thus u v+ ¥ € C, since (Y, is a complete decision set.

Thirdly, let w < v € C.. Then u ++ A € C; C Cp. From the definition of C.
it follows that u(u) € Stab™(u(v)) and p(v) ¢ X. Then o(v) = vu(v) ¢ X,
because v is non-collapsing. Hence v ¥~ A ¢ Cp and thus v v+ ¥ € Cf.
Since u v A € C, we know o(u) € X by definition of a solution. Finally,
o(u) € Stab®*(o(v)) by Lemma 6.10.11. Because u and v have different labels
in C7,, they must be ordered due to closure of C,. Thus either u < v € CJ, or
v < u € Cp. But o is a solution and o(u) € Stab® (o (v)), therefore u < v € Cf.
]

6.10.2 Deterministic Combination of Quasi-free Structures is
Unitary

Thus the task is to show that deterministic combination of L£-convex unitary
quasi-free structures is unitary. To do this, we prove that a regular non-
collapsing quasi-free structure is unitary with respect to solving constraint prob-
lems with decision sets provided it is unitary for problems with constants. And
we have to show that every solution of a constraint problem in the free amalga-
mated product is an instance of the solution that the Deterministic Combination
Algorithm computes.

Lemma 6.10.13 Let (A%, X) be a non-collapsing reqular quasi-free structure.
If (A%, X) is unitary with respect to constraint problems with constants, then it
s unitary with respect to problems with decision sets.

Proof. Let (I',C) be a problem with decision set C' € Cr(y). The equality
decisions C— give rise to an equivalence relation on the set of variables Y.
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Choose a representant for each equivalence class and replace each variable in
(T, C) by its representant to obtain (I'y,Cy). Clearly, (I',C) and (I';,Cy) are
equisolvable®. Now for each labelling decision u ++ A € C; with A # %
choose a new constant u (not contained in 3 or I') and replace v by « in
(T'1, Cy) obtaining (T'y, C5). Again, (I'y,Cy) and (T2, Cy) are equisolvable, and
the equality and labelling decisions of C' are now coded into I';. Let u be the
most general solution of T'y, and let @ < x € Cy. If (@) € Stab™(uu(x)) then for
every instance o of y also (@) € Stab®(o(x)) by Lemma 6.10.11 since @ ¢ .
Therefore, if u violates an ordering decision, then so does every instance of it.
So, let o be a solution of (I'y, C3). Then o is an instance of p and the above
shows that p solves (T'y, C5). [

Before we can proof the main theorem, we need a few technical lemmata.

Lemma 6.10.14 Let (A, X) be a unitary non-collapsing reqular quasi-free
structure and T' an elementary constraint problem. Let Cy,Cy € Cryy and
Cy C Cy. Let p be the most general solution of (I',C1) and o a solution of
(T, C5). Then o is an instance of .

Proof. Since Cy C Oy, clearly o also solves (I',Cy). If p is the most general
solution of (I', C1), then o is an instance of it. [

Lemma 6.10.15 Let (A, X) be a unitary non-collapsing reqular quasi-free
structure and let I' be an elementary constraint problem. Let C' € Cpyy and p
the most general solution of (T',C). Let C;, O C be a faithful extension to a
complete decision set such that (I, Cp) is solvable. Then p is the most general
solution of (T',Cp,).

Proof. Let o be a solution of (I, Cr). Then o is an instance of y by the above
lemma, i.e., there is an endomorphism v € M with ¢ = vu. Therefore if p is a
solution, it is the most general one. So, we show that 4 is a solution of (T, Cp.).
The only decisions of (', that concern us are ones not contained in C. Since
Cr, is a faithful extension, these can only be labelling or ordering decisions.
Let x v» A € Cp \ C where A # ¥. Then o(z) € X and also u(z) € X,
because (A”, X) is non-collapsing. Let u v+ A,z v+ X,u < x € Cr. Then
o(u) ¢ Stab®(o(x)) because o is a solution. Hence p(u) ¢ Stab™(u(z)) due to
Lemma 6.10.11. Thus 4 is a solution of (I, Cr). [

Lemma 6.10.16 Let 0 > u and ay,as be two qf-isomorphisms. Then a0 >
as .

Proof. If ¢ > pu, then there is an endomorphism v such that ¢ = vu. Now
a10 = a1V = avidy = awa;lag,u. Hence a,luagl is an endomorphism v’ such
that ajo = v'asu, which shows a0 > asp. m

®There is an NP-algorithm that translates solutions of one into solutions of the other and
back.
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Theorem 6.10.17 Let T’ be a ¥ U A-constraint problem of A @ B> and o a
solution of I'. Then o is an instance of u, the solution that the Deterministic
Combination Algorithm computes.

Proof. We assume I is in decomposed form I's AT'A AT'». Since I' has solu-
tion, the Deterministic Combination Algorithm stops with success by Proposi-
tion 6.10.9, say after k steps with universal cover point C%. By Lemma 6.10.13,
there exists a most general solution uyx; of the constraint problem (I's AT, C)
and a most general solution pa of (Ca AT, Ck). Choose an arbitrary faithful
extension to a complete decision set Cx of Cy. By Lemma 6.10.15, ux is the
most general solution of (I's AT, Ck) and pa is the most general solution of
(Ca AT%,Ck). Thus p:= ps ® pa is a solution of I' by Corollary 6.10.3.

Now, let o be a solution of I'. There exists a complete decision set C, and
solutions oy, of (I'y AT'%,Cr) and oA of (IA AT, Cr) with 0 = 05 ® oA by
Proposition 6.10.2. By Corollary 6.10.10, C, C Cr.. Therefore oy is an instance
of uy and oa is an instance of yua by Lemma 6.10.14. By Corollaries 6.10.3
and 6.2.12, the combined solutions 0 = oy ®ca and p = ux®ua are constructed
out of the component solutions solely by isomorphisms. Hence ¢ is an instance
of u by Lemma 6.10.16. [

6.11 Conclusion

In this chapter, we analysed the role of negation in the combination of constraint
systems. In the first part, we were concerned with how to reduce solvability
of mixed constraints in the free amalgamated product of two quasi-free struc-
tures to solvability of pure constraints in the components. We showed that the
existential theory of the free amalgamated product of two quasi-free structures
is decidable, if the solvability of pure constraint problems with linear constant
restrictions is decidable in both components. Furthermore, the existential the-
ory of the ground substructure of the free amalgamated product is decidable,
provided the existence of restrictive solutions for pure constraint problems with
linear constant restrictions is decidable in both components. We saw that we
cannot solve a large quantifier fragment in the free amalgamated product than
the existential theory and that the technical notion of a linear constant restric-
tion could not be translated into purely logical terms. We also had to learn
that rational amalgamation is not suitable for combining constraint systems
with negation in the constraint languages.

In the second part, we discussed the independence of negative constraints prop-
erty. We started with a look at the independence property in the context of
equational unification to find that unitary equational theories have the indepen-
dence property, while finitary have not. We also presented a modularity result
for equational unification stating that the union of two signature-disjoint equa-
tional theories is unitary, if the components are unitary, regular and collapse-
free.
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We lifted these results to quasi-free structures. A quasi-free structure has the
independence property, if it is unitary. And the final modularity result states
that the free amalgamation of unitary regular and non-collapsing quasi-free
structures is again unitary and thus has the independence property.
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