
Combination of Constraint Systems
Inaugural-Dissertationzur Erlangung des Doktorgradesder Philosophie an der Ludwig-Maximilans-Universit�atM�unchenvorgelegt vonStephan Kepser

M�unchen1998

parentibus meis

i

ii

Contents
Zusammenfassung viiAcknowledgement . xii1 The Context of Combining Constraint Systems 11.1 Constraint Systems . 11.2 Combination of Constraint Systems and Computational Linguistics 21.3 Combination of Constraint Systems 41.4 Combination of Equational Uni�cation Algorithms: A HistoricOverview . 51.5 Combination of Satis�ability Procedures 71.6 An Outline of the Thesis . 92 Preliminaries 132.1 Algebra . 132.2 Uni�cation Theory . 153 Quasi-free Structures and the Free Amalgamated Product 173.1 Introduction . 173.2 Free and Quasi-free Structures 183.2.1 Free Structures . 183.2.2 Quasi-free Structures . 213.2.3 Algebraic Properties of Quasi-free Structures 253.2.4 Logical Properties of Quasi-free Structures 273.3 Combination of Quasi-free Structures 283.3.1 Combination of Structures 283.3.2 An Amalgamation Construction for Quasi-free Structures 323.3.3 The Free Amalgamated Product of Quasi-free Structures 353.3.4 Multiple and Iterated Amalgamation 36iii

3.4 Combining Constraint Solvers for Quasi-free Structures 373.4.1 The Existential Positive Case 373.4.2 The General Positive Case 403.5 Conclusion . 424 Optimisation Techniques 454.1 Introduction . 454.2 The Base for Optimisation . 474.3 Decision Sets . 514.4 Iterative Decomposition . 554.5 An Algorithm for Computing the Variable Orderings 614.6 The Deductive Method . 634.7 Integrating the Deductive and Iterative Method 684.8 Related Work . 714.9 Conclusion . 745 Rational Amalgamation 775.1 Introduction . 775.2 Non-collapsing Quasi-free Structures 795.3 The Domain of the Rational Amalgam 825.3.1 Braids and Subbraids . 835.3.2 Variants . 865.3.3 Simpli�cation of Braids 875.3.4 Standard Normalisation 955.4 The Rational Amalgamated Product 985.4.1 Functions and Relations 985.4.2 Free Amalgamation and Rational Amalgamation 995.5 Combination of Constraint Solvers 1055.5.1 Proof of Theorem 5.5.3 1075.5.2 An Example . 1115.5.3 Proof of Theorem 5.5.5 1125.6 Conclusion . 1146 Negation in Combining Constraint Systems 1176.1 Introduction . 117iv

I Combination of Constraint Solvers 1196.2 Free Amalgamation of Negative Constraints:The General Case . 1196.3 Free Amalgamation of Negative Constraints:Ground Solvability . 1296.4 Is there a Logical Translation of Solving Problems with LCRs? . 1366.5 A Stronger Combination Result? 1386.6 Rational Combination of Negative Constraints 139II The Independence of Negative Constraints Property 1416.7 Independence Properties of Equational Theories 1416.8 Combining Equational Theories and the Independence Property . 1466.9 Independence Properties of Quasi-free Structures 1476.9.1 Generalising Basic Notions of Uni�cation Theory 1476.9.2 Unitary Quasi-free Structures 1486.10 Combining Quasi-free Structures and the Independence Property 1496.10.1 L-convex Theories and Deterministic Combination 1496.10.2 Deterministic Combination of Quasi-free Structures isUnitary . 1546.11 Conclusion . 156List of Theorems 159Bibliography 161

v

vi

ZusammenfassungDen Inhalt der Dissertation bilden verschiedene Aspekte der Kombination vonConstraint-Systemen. Der Begri� "Constraint\ l�a�t sich im Deutschen mitNeben- oder Seitenbedingung nur unvollst�andig wiedergeben. Daher lassen wirihn als Terminus technicus hier un�ubersetzt. Ein Constraint-System in unseremSinne besteht aus drei Teilen: Einer Constraint-Sprache, einem L�osungsbereichund einem Constraint-L�oser. Die Constraint-Sprache ist die Sprache, in der dieProbleme formuliert werden. Typischerweise ist sie eine Sprache erster Ordnungoder ein Fragment davon. Der L�osungsbereich ist eine algebraische Struktur, inder die Constraint-Sprache interpretiert wird. Wir betrachten dabei bestimmteL�osungsbereiche, n�amlich sogenannte quasi-freie Strukturen, die weiter untenerl�autert werden. Der Constraint-L�oser schlie�lich entscheidet ein Fragment derConstraint-Sprache, das hei�t, er entscheidet f�ur jede Formel des Fragments,ob die Formel in der L�osungsstruktur wahr ist. Das betrachtete Fragmentist dabei meist das existentielle, das hei�t, die Formeln sind Konjunktionenund Disjunktionen von Atomformeln oder negierten Atomformeln. Die in denFormeln auftretenden Variablen werden als implizit existenziell quanti�ziertbetrachtet. Die Formel ist demnach wahr in der L�osungsstruktur, wenn es eineAbbildung gibt, die den Variablen der Formel Elemente der L�osungsstruktur inder Weise zuordnet, da� die Formel in der Struktur gilt.Betrachtet man ein Constraint-System derart abstrakt, so stellt sich die Frage,was f�ur systematische Methoden zur Kombination von Constraint-Systemen esgibt. Wichtig ist uns dabei, da� die Methoden allgemeing�ultig und prinzipiel-ler Natur sind; Spezialverfahren interessieren uns weniger. Eine systematischeMethode hat demnach folgendes zu leisten: Einmal mu� sie f�ur zwei beliebigeL�osungsbereiche ein Verfahren zur Konstruktion eines kombinierten L�osungs-bereiches zur Verf�ugung stellen. Dabei soll der kombinierte L�osungsbereichm�oglichst allgemeing�ultig sein, und er sollte wesentliche strukturelle Eigenschaf-ten der Komponentenbereiche mit diesen teilen. Zum zweiten mu� die Metho-de einen Algorithmus beinhalten, der die L�osung von gemischten Constraints�uber der kombinierten Struktur erlaubt, also die beiden Constraint-L�oser derKomponenten zusammenbindet und gemischte Constraints �uber der vereinigtenConstraintsprache in reine Constraints je einer Sprache reduzieren kann, undzwar in solcher Weise, da� es f�ur die reinen Constraints unter Benutzung derConstraint-L�oser der jeweiligen Komponenten genau dann eine L�osung gibt,wenn es auch f�ur die gemischten Constraints eine L�osung in der kombiniertenL�osungsstruktur gibt. Wir verlangen weiterhin Konservativit�at in folgendemvii

Sinne: Die L�osung eines reinen Constraints aus einer Komponentensprache sollin der kombinierten L�osungsstruktur zu keinem neuen Resultat f�uhren, ein sol-cher Constraint soll in der kombinierten Struktur genau dann gelten, wenn erin der Komponentenstruktur gilt.Wenn man den Begri� von Kombination so allgemein und weit fa�t, wiewir es tun, ist es erforderlich, gewisse Einschr�ankungen bei den Komponen-tenconstraint-Systemen zu machen. Die erste wichtige Einschr�ankung betri�tdie Signaturen der Komponentenconstraint-Sprachen. Mit Signatur bezeichnetman die Menge der Konstanten, Funktionssymbole und Relationssymbole, ausder die Constraint-Sprache aufgebaut wird. Wir verlangen, da� die Signaturender Komponentensprachen disjunkt sind, das bedeutet, da� es keine Konstante,kein Funktions- oder Relationssymbol gibt, das in beiden Signaturen auftaucht.Die zweite wichtige Einschr�ankung, die wir ziehen, betri�t die L�osungsbereiche.Diese m�ussen quasi-freie Strukturen sein. Der Begri� der quasi-freien Strukturwurde von F. Baader und K. U. Schulz in [10] eingef�uhrt. Er stellt eine Ver-allgemeinerung des Begri�s der freien Struktur dar und umfa�t viele wichtigenicht-numerische, unendliche L�osungsbereiche. Unter anderem sind Termalge-bren, Quotiententermalgebren, rationale Baumalgebren, Vektorr�aume, erblichendliche fundierte und nicht fundierte Listen, Mengen und Multimengen so-wie bestimmte Arten von Feature-Strukturen alle quasi-freie Strukturen. Diewesentliche Erweiterung gegen�uber freien Strukturen besteht darin, da� die Ele-mente des Grundbereiches nicht generiert sein m�u�en. Es reicht, wenn sie inihrem Verhalten unter Abbildungen durch das, was mit ihren "Atomen\ ge-schieht, determiniert sind. Quasi-freie Strukturen sind symbolisch und unend-lich. Dies stellt eine Einschr�ankung insofern dar, da� numerische Bereiche undendliche Bereiche, die beide wichtige Bereiche f�ur Constraint-L�oser darstellen,keine quasi-freien Strukturen sind, und also unsere Methoden der Kombinationf�ur diese nicht in Frage kommen.Baader und Schulz stellen in [10, 12, 15] ein erstes allgemeines Kombinationsver-fahren vor, das wir eingehend erl�autern, da es f�ur unsere Arbeit grundlegendist. Die kombinierte L�osungsstruktur ist das sogenannte Freie AmalgamierteProdukt. Unter allen sinnvollen kombinierten Strukturen ist es dadurch cha-rakterisiert, die allgemeinste zu sein in dem Sinne, da� ein homomorphes Bilddes Freien Amalgamierten Produkts in jeder kombinierten L�osungsstruktur zu�nden ist. Die Autoren geben ein allgemeines Verfahren zur Konstruktion desFreien Amalgamierten Produkts f�ur zwei beliebige quasi-freie Strukturen an.Die geforderte Konservativit�at zeigen sie, indem sie beweisen, da�, betrachtetman jeweils nur eine Komponentensignatur, "vergi�t\ also sozusagen im Frei-en Amalgamierten Produkt die Signatur der anderen Komponente, das FreieAmalgamierte Produkt und die Komponentenstruktur isomorph sind. Die Au-toren pr�asentieren weiterhin einen Dekompositionsalgorithmus, der gemischteConstraint-Probleme in reine Constraint-Probleme der jeweiligen Komponen-ten zerlegt. Mit Hilfe dieses Dekompositionsalgorithmus beweisen sie, da� diepositive Theorie des Freien Amalgamierten Produktes entscheidbar ist, wenndie positiven Theorien der Komponentenstrukturen entscheidbar sind.viii

Der erste Teil unseres Beitrags setzt sich mit diesem Dekompositionsalgorithmusauseinander und gibt Optimierungsverfahren an. Der Dekompositionsalgorith-mus beinhaltet drei nichtdeterministische Schritte, die einen so gro�en Such-raum aufspannen, da� sich eine Implementation dieses Algorithmus schlichtverbietet. Um also den Dekompositionsalgorithmus auch f�ur Anwendungenbrauchbar zu machen, mu� man Optimierungsverfahren �nden, die den Such-raum drastisch einschr�anken. Dabei lag unser Interesse darin, m�oglichst allge-meine Verfahren zu �nden, die auf fast alle Constraint-L�oser von quasi-freienStrukturen anwendbar sind. Es werden zwei solch allgemeiner Optimierungs-verfahren vorgestellt, genannt die deduktive und die iterative Methode. Dieiterative Methode wurde f�ur den Fall entwickelt, da eine gr�o�ere Zahl vonKomponenten als nur zwei kombiniert werden. Sie beruht auf der Beobach-tung, da� das Dekompositionsverfahren in so einem Fall den Suchraum starkvergr�o�ert, da alle m�oglichen nicht-deterministischen Entscheidungen getro�enwerden, bevor auch nur eine Komponente zu l�osen versucht wird. Im Gegensatzdazu arbeitet die iterative Methode lokal. Sie legt die nicht-deterministischenEntscheidungen jeweils nur f�ur eine Komponente fest, und schreitet erst dannzur n�achsten fort, wenn ein Satz von Entscheidungen getro�en wurde, f�ur dender Komponentenconstraint-L�oser eine L�osung �ndet. Die Aufgabe bei dieseran sich einfachen Idee besteht darin, zu zeigen, da� das so modi�zierte Verfah-ren unsere Anforderung noch erf�ullt, da� es dann und nur dann eine L�osungf�ur ein gemischtes Constraint-Problem im Freien Amalgamierten Produkt gibt,wenn es L�osungen f�ur reine Constraint-Probleme in den Komponenten gibt.Die deduktive Methode beruht auf der Einsicht, da� nicht alle Entscheidungenim Dekompositionsalgorithmus nicht-deterministisch getro�en werden m�ussen.Oft stellen das zu l�osende Constraint-Problem und die einzelnen KomponentenVorgaben, wie eine bestimmte Entscheidung zu tre�en ist, soll das Problem nochl�osbar sein. Man ben�otigt dazu neue Constraint-L�oser f�ur die Komponenten,die am Proze� der Suche nach den richtigen Entscheidungen beteiligt werdenk�onnen. Diese m�ussen f�ur ein ihnen vorgelegtes reines Constraint-Problem dannnicht mehr nur L�osbarkeit feststellen, sondern auch angeben k�onnen, welcheEntscheidungen im Algorithmus wie zu tre�en sind, damit ihr reines Constraint-Problem l�osbar bleibt. Der Kombinationsalgorithmus wird bei der deduktivenMethode damit zu einer Art Moderator. Er befragt reihum die beteiligten Kom-ponentenl�oser, welche Entscheidungen wie zu tre�en sind. Wenn schlie�lich dieKomponentenl�oser keine weiteren Entscheidungen festlegen k�onnen, tri�t derKombinationsalgorithmus eine nichtdeterministische Entscheidung und beginntdie Konsultation der Komponentenl�oser erneut, bis schlie�lich auf diesem Wegealle Entscheidungen getro�en sind. Sagen dann noch alle Komponentenl�oser,da� ihre reinen Constraintprobleme l�osbar sind, so ist auch das urspr�unglichegemischte Problem l�osbar.Da die beiden Optimierungsverfahren v�ollig unabh�angig voneinander sind, las-sen sie sich in eines integrieren. Die Verfahren sind tats�achlich implementiert,um ihren E�ekt auch testen zu k�onnen. Von uns durchgef�uhrte Tests zeigen,da� viele Constraint-Probleme mit den Optimierungen um Gr�o�enordnungenschneller gel�ost werden k�onnen, und einige Probleme erst mit dem optimiertenix

Verfahren praktisch l�osbar sind.Der zweite Beitrag behandelt die sogenannte Rationale Amalgamierung. Dabeihandelt es sich um eine zweite allgemeine Kombinationsmethode neben demFreien Amalgamierten Produkt. Obwohl das Freie Amalgamierte Produkt eineallgemeinste kombinierte L�osungsstruktur darstellt, gibt es doch in der Pra-xis Kombinationen, die nicht Instanzen des Freien Amalgamierten Produktessind. Beispiele daf�ur sind Arbeiten von A. Colmerauer [29, 30] �uber die Kom-bination von rationalen B�aumen und rationalen Listen, sowie Arbeiten vonW. Rounds [90] und A. Moshier & C. Pollard [75] �uber die Kombination vonFeature-Strukturen und nicht-fundierten Mengen. In allen diesen F�allen sinddie Komponentenstrukturen "rational\. Freie Amalgamierung ist daher nichtdie Kombination der Wahl f�ur diese Constraint-Systeme, da die Elemente in derkombinierten L�osungsstruktur nicht rational, sondern endlich sind, das hei�t,gemischte Constraints, in denen ein unendlich h�au�ger Wechsel von der einenKomponente in die andere verlangt wird, sind im Freien Amalgamierten Pro-dukt nicht l�osbar.Dies ist der Ansatzpunkt der Rationalen Amalgamierung. Sie stellt eine kom-binierte L�osungsstruktur bereit, in der rationale Elemente vorhanden, mithinsolche Constraints l�osbar sind. Damit ist Rationale Amalgamierung die Me-thode der Wahl bei der Kombination von rationalen Komponentenstrukturen.Sie liefert ein allgemeines Konstruktionsverfahren f�ur eine rationale kombinierteL�osungsstruktur, gegeben zwei beliebige sogenannte nicht-kollabierende quasi-freie Strukturen. Auch f�ur diese kombinierte L�osungsstruktur l�a�t sich zeigen,da� bei Einschr�ankung auf jeweils eine Signatur nur einer Komponente diekombinierte Struktur isomorph ist zur Komponentenstruktur. Damit ist dieForderung nach Konservativit�at erf�ullt. Wir beweisen, da� das Freie Amalga-mierte Produkt bis auf Isomorphie eine Teilstruktur der Rationalen Amalgamie-rung ist. Auch das folgende Theorem zeigt die Nat�urlichkeit der Konstruktion:Die rationale Amalgamierung zweier rationaler Baumalgebren �uber disjunktenSignaturen ist isomorph zur rationalen Baumalgebra �uber der vereinigten Si-gnatur. Der Dekompositionsalgorithmus f�ur Rationale Amalgamierung ist einevereinfachte Variante des Algorithmus f�ur das Freie Amalgamierte Produkt; derletzte der drei nichtdeterministischen Schritte ist bei Rationaler Amalgamierungnicht erforderlich. Mithilfe dieses Dekompositionsalgorithmus l�a�t sich zeigen,da� die L�osbarkeit von gemischten Constraints in der Rationalen Amalgamie-rung entscheidbar ist, wenn die L�osbarkeit reiner Constraints (mit gewissentechnischen Zusatzbedingungen) in den Komponentenstrukturen entscheidbarist. Damit ist ein zweites allgemeines Kombinationsverfahren gegeben.Der dritte Beitrag befa�t sich mit Negation bei der Kombination von Con-straint-Systemen. Die Constraints, die in den bisherigen Teilen betrachtetwurden, waren allesamt positive Constraints, enthielten also weder Negationnoch Implikation. Nun ist aber insbesondere die Implikation ein sprachlichesMittel, auf das man bei der Formulierung von Constraint-Problemen ungernverzichtet. Sie wird beispielsweise verwendet, um Constraint-Entailment aus-zudr�ucken, das bei der Reduktion von Constraintmengen wichtig ist. In einemersten Teil setzen wir uns daher mit der Kombination von Constraint-Systemen,x

deren Sprachen Negation enthalten, auseinander. Dabei gehen wir vom Frei-en Amalgamierten Produkt als kombinierter L�osungsstruktur aus und verwen-den als Algorithmus eine Erweiterung des Dekompositionsalgorithmus um dieBehandlung negativer Formeln, aber ohne neue nichtdeterministische Schrit-te. Wir zeigen, da� das existenzielle Fragment der vereinigten Signatur, alsoKonjunktionen und Disjunktionen von gemischten Atomformeln und gemisch-ten negierten Atomformeln, im Freien Amalgamierten Produkt entscheidbar ist,wenn die existenziellen Fragmente der Komponenten mit gewissen technischenZusatzbedingungen entscheidbar sind. Weiterhin geben wir Bedingungen f�urdie L�osungen in den Komponenten an, unter denen sich im Freien Amalgamier-ten Produkt Grundl�osungen f�ur gemischte Constraint-Probleme �nden lassen,da bei Constraint-Problemen mit Negation oftmals ein besonderes Interesse anGrundl�osungen besteht. Leider kann man aus Arbeiten von R. Treinen [113] er-kennen, da� sich im allgemeinen im Freien Amalgamierten Produkt auch dannkein gr�o�eres Quantorenfragment als das existenzielle entscheiden l�a�t, wenndies in den Komponenten m�oglich ist. Es ergibt sich au�erdem, da� RationaleAmalgamierung f�ur die Kombination von Constraint-Systemen mit Negationh�ochstens in Spezialf�allen geeignet ist, allgemein jedoch nicht.Im zweiten Teil dieses Beitrags geht es um die sogenannte Unabh�angigkeits-eigenschaft negativer Constraints. Ein Constraint-System besitzt die Un-abh�angigkeitseigenschaft, wenn f�ur jede Konjunktion von positiven Constraintsund jede Konjunktion von negativen Constraints gilt: Die beiden Konjunktio-nen sind zusammen l�osbar genau dann, wenn f�ur jeden negativen Constraintdie Konjunktion positiver Constraints zusammen mit dem negativen Constraintl�osbar ist. Man kann also die negativen Constraints unabh�angig voneinan-der l�osen. Diese Eigenschaft ist wichtig in praktischen Constraint-L�osern. Sieerm�oglicht es, einen Constraint-L�oser nur f�ur positive Constraints zu entwickelnund mit diesem dennoch mithilfe einer �Ubersetzung auch negative Constraintszu l�osen. Zuerst einmal ohne Ber�ucksichtigung von Kombinationen untersuchenwir, welche quasi-freien Strukturen die Unabh�angigkeitseigenschaft besitzen,wobei wir einen besonderen Blick auf Gleichungstheorien werfen, da diese einewichtige Rolle unter den quasi-freien Strukturen spielen. F�ur Gleichungstheo-rien ergibt sich, da� unit�are Theorien die Unabh�angigkeitseigenschaft besitzen,�nit�are aber nicht. Es gibt Theorien vom Typ 0, die die Unabh�angigkeitseigen-schaft besitzen. F�ur die Kombination von Gleichungstheorien erh�alt man fol-gendes Modularit�atsresultat: Das Freie Amalgamierte Produkt zweier unit�arer,regul�arer und kollaps-freier Theorien ist wieder unit�ar, hat mithin also die Un-abh�angigkeitseigenschaft. Blickt man nun allgemeiner auf quasi-freie Struk-turen, so sieht man, da� auch hier die unit�aren Strukturen die Unabh�angig-keitseigenschaft besitzen. Und es gibt in�nit�are Strukturen mit Unabh�angig-keitseigenschaft. Zum Abschlu� l�a�t sich auch das Modularit�atsresultat ver-allgemeinern. Das Freie Amalgamierte Produkt zweier unit�arer, regul�arer undnicht kollabierender quasi-freier Strukturen ist wieder unit�ar, hat somit die Un-abh�angigkeitseigenschaft.Diese Forschungsarbeit entstand im Rahmen eines Kooperationsprojekts andem Klaus U. Schulz, Franz Baader und J�orn Richts beteiligt waren. Daherxi

wurden einge Resultate in Zusammenarbeit mit ihnen entwickelt. Wann immerdies der Fall ist, ist dies entsprechend im Text vermerkt.
AcknowledgementThis research was carried out at the Centre for Language and InformationProcessing (Centrum f�ur Informations- und Sprachverarbeitung, CIS) at theLudwig-Maximilians-University of Munich, and I would like to thank this insti-tution for its support.Most of all, I would like to thank my advisor Klaus Schulz. Without his help,encouragement, patience, and adhortations, this thesis would have never cometo exist. I cannot count the amount of hints and advises he gave and the timeand energy he spent to help realise this project.I am also grateful to our project partners at the University of Aachen, FranzBaader and J�orn Richts who did not only prove to be �ne collaborators butalso always had an open ear for discussions.My thank goes also to the German Research Council (Deutsche Forschungsge-sellschaft, DFG) for �nancing this research project as part of their focus project\Deduktion", and to the European Union for providing travelling funds as partof the Esprit project \Constructions in Computational Logic".

xii

Chapter 1The Context of CombiningConstraint Systems
1.1 Constraint SystemsConstraint systems date back as far as to the mid nineteen sixties, when staticconstraints were used to describe little toy worlds made of simple geometricobjects and constraint solvers had to reason whether an object could be ontop of another one (e.g., [110]). They gained signi�cantly in interest duringthe eighties when constraint programming merged with the �eld of logic pro-gramming to constraint logic programming (see [55] for an overview). From thelogic programming side, this merge was natural, since constraints had alreadybeen present in logic programming: Uni�cation can be seen as implicitely in-troducing equality constraints over terms. This step was made explicit in thedevelopment of Prolog II [29]. Theoretical concepts were proposed by J. Jaf-far and J.-L. Lassez in [54]. From there, it is only a small step to introduceall kinds of constraints and to develop constraint solvers for di�erent domainslike linear arithmetic over the real numbers, expressions over Boolean algebras,constraints over string domains or feature trees and more. Nowadays, thereare several commercial constraint systems and solvers available in a growingmarket.There exists another area in which constraint solving is gaining interest, namelyautomated theorem proving and term rewriting. In automated theorem proving,one is faced with the problem that certain axioms will lead to non-termination,because these axioms are always applicable. Examples are commutativity orassociativity of a function symbol. As a solution to this problem, G. Plotkin[85] proposed to integrate these axioms into the deduction engine, more specif-ically into the uni�cation algorithm. M. Stickel prosecuted this idea presentingresolution modulo a theory in [108]. A similar problem exists in term rewrit-ing, where the above mentioned axioms seen as equations turn out to be non-orientable. For commutativity, this is easily understood: Which side of theaxiom should be seen as more complex, which one as reduced, when they areabsolutely symmetrical? It is no coincidence, that the solution proposed here by1

J.-P. Jouannaud & H. Kirchner [58] as well as L. Bachmair [18] is similar: Thesenon-orientable equations should be handled by the uni�cation process. Unfor-tunately, equational uni�cation, especially uni�cation modulo associativity andcommutativity, which is the one that is used the most, is not completely wellbehaved in that a simple uni�cation problem can have a huge number of di�er-ent uni�ers. A solution to this di�culty can be the introduction of constraints.Instead of computing and applying all uni�ers, one poses the constraint thatthe uni�cation problem should remain solvable in further computation steps.Systems based on this idea were proposed by H. J. B�urkert [24] and R. Nieuwen-huis & A. Rubio [78, 91] in the �eld of automated deduction and by C. andH. Kirchner [66] in the �eld of term rewriting.All of these areas are faced with the following problem. In principle, a constraintsolver can be seen as a search engine. Therefore there is no such thing asa general problem solver, because a \general" domain would be huge and nosearch in it could ever terminate in acceptable time. A constraint solver canonly be e�cient, if it is designed for a particular domain, best a richly structureddomain, because only the employment of as much knowledge about the speci�cdomain as is at hand avoids the otherwise threatening explosion of the searchspace. Hence a constraint solver must be domain speci�c. On the other hand,non-trivial problems are heterogeneous, not restricted to a single domain. Ifyou want to use a constraint system to model some part of the real world, thendi�erent aspects of it will be described by constraints over di�erent domains,unless one forces anything into a single view. In automated theorem proving andterm rewriting, there are also several di�erent theories involved, if statementsto be proven become more complex.To overcome the problem that constraint solvers must be domain speci�c whileinteresting problems are heterogeneous one needs methods to combine the dif-ferent constraint solvers. Ideally, the heterogeneous constraints should be inter-preted in a combined solution domain that shares relevant structural propertieswith the di�erent component constraint domains involved. Hence one needs aconstruction method for such a combined solution domain. And there shouldbe a constraint solver for the combined solution domain with the followingproperties. It should not be a new solver, rather e�ectively and e�ciently re-duce mixed constraints to pure constraints of the participating components inorder to use their e�cient constraint solvers to solve the problem. And thistranslation of mixed constraints into pure constraints of the di�erent compo-nents should take place in such a way that there is a solution for the mixedconstraints in the combined domain if and only if the pure constraints havesolutions in their respective solution domains. This sketches the general task.1.2 Combination of Constraint Systems and Com-putational LinguisticsConstraint systems play an important role in linguistics, too. Classical govern-ment and binding theory [27] describes syntactic well-formedness in terms of2

principles, parameterised by languages, that any well-formed utterance has toful�l. One can regard these principles as constraints on the grammaticality ofsyntactic structures. This view gains strength, if one looks at principle basedparsing. Parsers for GB-theory [34, 56, 69, 115] are indeed incarnations of con-straint solvers, the syntactic structure they calculate for a given input utteranceis a solved form of the set of constraints consisting of the string or phonologicalrepresentation of the utterance and the linguistic principles and parameters.The branch of linguistics following Head-driven Phrase Structure Grammar [86,87] is even clearer related to constraint systems. In this theory, linguistic entitiesare described by means of feature structures which are sets of constraints. Andlinguistic principles are also expressed by complex feature structures. Parsersfor HPSG (see, e.g., [45, 46, 57]) are hence constraint solvers for the domainof feature structures. The constraint set to be solved consists of the linguistictheory and a small feature structure representing the input utterance. And thefull linguistic analysis of the utterance in relation to the theory, expressed againas a feature structure, can be regarded as the normal form of the utterancefeature structure on the background of the constraints coding the linguistictheory.It is also in this area that we can �nd instance of combination in linguistics.Many linguists demand to extend feature structures to include lists and setsor multi sets of feature structures. W. Rounds [90] as well as A. Moshier &C. Pollard [75] propose frameworks for integrating sets and feature structures.We regard these as instances of combination of a feature theory as one compo-nent and the theory of lists or (multi-) sets as the second component. Anothersuch instance of combination with feature structures can be found in works byJ. D�orre and A. Eisele [39, 40], who consider the integration of disjunctionsinto feature structures. From our abstract point of view, this exempli�es thecombination of feature structures with Boolean algebras. The advantage ofour perspective lies in the clear separation of the di�erent component theoriesinvolved, feature structures on one side and sets or Boolean algebras on theother. Consequently, certain decidability results about versions of \enriched"feature structures that we di�cult to obtain in their original setting, come outmuch simpler, if one regards the \enriched" feature structures as instances ofcombination.On the long run, computational linguistics is not just concerned with syntacticparsing, but with all aspects of natural language processing, and that includessemantic and pragmatic evaluations of expressions and utterances. Since speak-ers never utter anything involved in their thoughts, but rely on the intelligenceand knowledge of their audience, pragmatics leads almost instantly to the �eldsof reasoning about the world and deduction. In other words, comprehensivecomputer linguistics systems need deductive components. And in these com-ponents, the problems one is faced with contain most naturally bits and piecesof many di�erent theories, since the world to reason about is heterogeneous.Hence, the need for combining di�erent reasoning components and di�erentconstraint systems is quite strong in this area. We admit that these theses areideas on the long term future of language comprehension systems. But we are3

convinced that these topics will become important. And we see our work asbasic research that generally investigates methods and principles available.1.3 Combination of Constraint SystemsLet us now present a general framework of our work and explain the problems wewould like to deal with. A constraint system in our sense consists of three parts:a constraint language, a solution domain, and a constraint solver. The �rstcomponent of a constraint system is the constrait language. We will exclusivelylook at �rst order languages and fragments thereof. Higher order constraintlanguages are not very relevant, since most properties expressible in them areundecidable; that says, one cannot really do much constraint solving in them.A solution domain is an algebraic structure which is used to interpret the con-straint language. The solution domains we will be looking at are always in�nite.This certainly constitutes a restriction, especially since there are many e�cientconstraint solving techniques for �nite domains, but the in�niteness of the do-main is required for our type of combination. Still, not every in�nite domainwill be right for our purposes. We are interested in symbolic, non-numericalsolution domains of a fairly general character. Solution domains that ful�l theseproperties and are suitable for combination are called quasi-free structures. Wewill explain this notion, that was introduced by F. Baader and K. U. Schulzin [10], in Section 3.2.2. Quasi-free structures generalise free structures andhence comprise solution domains such as term algebras and quotien term al-gebras. But also vector spaces, rational tree algebras, well-founded and non-wellfounded lists, sets and multi sets are quasi-free structures. This shows thatmany important non-numerical in�nite solution domains are indeed covered.A constraint solver is an algorithm that decides the constraint language or afragment of it. In other words, given a formula, the constraint solver stateswhether the formula holds true in the solution domain. Very often, con-straints are just conjunctions of atomic formulae, variables appearing in themare thought of as being implicitely existentially quanti�ed. Other fragmentswe will consider are the existential fragment { conjunctions and disjunctions ofatoms and negated atoms { and the positive theory, which permits arbitraryquanti�cation of conjunctions and disjunctions of atoms.Given these constraint systems, we are interested in systematic ways of com-bining them. A combination is systematic, if it provides the following. It givesan explicit construction mechanism to gain a combined solution domain giventhe solution domains of the components. The combined solution domain shouldagain be a quasi-free structure, and it should share relevant structural prop-erties with its components. Secondly, there must be an algorithm that solves\mixed" constraints in the combined solution domain by reducing them to pureconstraints in the components in such a way that a mixed constraint is valid inthe combined solution domains if and only if the corresponding pure constraintsare valid in the component solution domains. We also demand conservativenessin the sense that a pure constraint over the language of just one component is4

true in the combined solution domain if and only if it is true in the component.Evaluation of pure constraints should not lead to new results.An important restriction in combination concerns the signatures of the com-ponent systems. A signature comprises the sets of constants, function andpredicate symbols that are used to construct the constraint language. In thecombinations we will look at, we always assume the signatures to be disjoint,i.e., to share no constants, function or predicate symbols, even if we do notstate so explicitely. This restriction may seem severe, but to date no-one hascome up with decent results on combining constraint systems over non-disjointsignatures.1.4 Combination of Equational Uni�cation Algo-rithms: A Historic OverviewEquational theories are amongst the most prominent quasi-free structures. Andalthough we gave a rather abstract de�nition of the research problem, the ques-tion of combination has its strongest roots in uni�cation theory. Uni�cation isthe underlying operation in automated deduction as well as in rewriting. It isas fundamental to them as is calculus for mathematics. Since the �eld is toolarge, we will not give here an overview over uni�cation theory or its history.The interested reader is referred to [17] instead. Rather we describe the devel-opments that led to the question of how to combine equational theories and thesolutions proposed to this question. Doing so we preassume a certain familiar-ity with the notions of uni�cation theory. All these notions are explained inSection 2.2.In his pioneering work on automated deduction, J. A. Robinson [89] describes in1965 an algorithm designed to e�ciently decide the applicability of a deductionrule. This algorithm is syntactic uni�cation. It should be mentioned thatuni�cation was already described more than 30 years before in the work byJ. Herbrand [50], which unfortunately became forgotten.The further development of uni�cation was driven by the insight that certainaxioms in automated deduction like commutativity (C=ff(x; y) = f(y; x)g) orassociativity (A=ff(x; f(y; z)) = f(f(x; y); z)g) of a function symbol f leadto non-termination. Similarly, in term rewriting, the very same equations ofcommutativity or associativity cannot be oriented. In 1972, G. Plotkin [85] pro-posed to stick these axioms into the uni�cation algorithm, that is not performsyntactic uni�cation, but uni�cation modulo an equational theory. He also gavea uni�cation algorithm modulo commutativity and described a non-terminatingprocedure for uni�cation modulo associativity.The problem of giving an algorithm for uni�cation modulo commutativity andassociativity, one that is particularly important since most function symbolsin automated deduction are commutative and associative, was solved indepen-dently in 1975 by M. Stickel [106] and M. Livesey & J. Siekmann [67] by showingthat this kind of uni�cation can be reduced to the solving of linear Diophantine5

equations over the non-negative integers. But these algorithms were algorithmsfor AC-uni�cation with constants. Additional free function symbols in the uni-�cation problems could not be handled.In 1981, M. Stickel [107] presented a general AC-uni�cation algorithm, butcould not prove its termination. This termination problem remained open forquite some time until F. Fages [42, 43] was able to solve it in 1984. The di�cultyof this problem exposed the importance of more general questions. Given analgorithm for equational uni�cation with constants, is there a general method toextend it into a general equational uni�cation algorithm? And given algorithmsfor uni�cation with constants in two di�erent equational theories over disjointsignatures, is there a principled way to gain a uni�cation algorithm for thecombined equational theory to solve uni�cation problems with mixed terms?In 1985, C. Kirchner [64, 65] presented a �rst solution for a special subcase.Both component theories have to be collapse-free and subterm collapse free.An equational theory E is subterm collapse free if no term is ever E-equal toone of its proper subterms. That same year, K. Yelick [117, 118] proposed acombination method that works for collapse-free regular component theoriesbased on a generalisation of Stickel's algorithm. In 1986, A. Herold [52] pre-sented a di�erent method to combine collapse-free regular equational theories.Also in that year, E. Tid�en [111] found a combination method for collapse-freeequational theories. Another special method was proposed by A. Boudet, J.-P. Jouannaud & M. Schmidt-Schau� [22] in 1989. In their algorithm, only oneof the component theories bears restrictions. It has to be so-called cycle-free.An equational theory is cycle-free, if any uni�cation problem of the form x = twhere t is a non-variable term and x 2 Var(t) has no solution. The secondcomponent theory is unrestricted. But one needs a further algorithm to �nitelysolve so-called constant elimination problems1.Finally in 1988, M. Schmidt-Schau� [92, 93] presented a general solution tothe combination problem where no restrictions are imposed on the componenttheories. The requirements are a uni�cation algorithm for uni�cation with con-stants for both component theories, which entails that the component theoriesmust be �nitary; and a constant elimination algorithm for both components. In1990, A. Boudet [20, 21] described a more e�cient version of this combinationmethod.All of the above described methods require that all occurring uni�cation prob-lems and constant elimination problems have always �nite complete sets ofsolutions in the component theories and actually calculate and use these solu-tions. Hence they are not suitable, if the component algorithms are decisionprocedures, i.e., procedures that just state solvability of a given problem anddo not compute complete sets of solutions. And for in�nitary theories, only de-cision procedures can be given. An example of such a theory is the theory A of1A constant elimination problem in a theory E is a �nite set f(c1; t1); : : : ; (cn; tn)g wherethe ci's are free constants not occurring in the signature of E and the ti's are terms. A solutionto such a problem is a substitution � such that for all i (1 � i � n) there exists a term t0i notcontaining the constant ci with t0i =E �(ti). 6

an associative function symbol. A non-terminating procedure that enumeratesall uni�ers of a given problem was already presented by G. Plotkin [85] backin 1972. In 1977, G. S. Makanin [71] showed that A-uni�cation with constantsis decidable. But the decidability of general A-uni�cation remained an openproblem. Based on the ideas of M. Schmidt-Schau� and A. Boudet, and mo-tived by this problem, F. Baader and K. U. Schulz developed a combinationmethod for decision procedures [5, 14] in 1992. They show how to reduce thedecidability of combined uni�cation problems to the decidability of pure uni�-cation problems with so-called linear constant restrictions in the components.The authors subsequently extended these results to constraint solving. The fol-lowing year, they showed that this method can be extended to handle combineddisuni�cation problems, i.e., equations and disequations between mixed terms[6, 9]. By using algebraic methods, they proved that the positive theory ofthe combination of equational theories is decidable provided the positive theo-ries of the components are decidable [8]. And they generalised the componentsfrom equational theories to quasi-free structures, which comprise many solutiondomains for constraint solving [10] in 1995.1.5 Combination of Satis�ability ProceduresThere exists a di�erent type of combination of theories in the literature, that wewill call here cooperation in order to distinguish it from our type of combination.In this view, a theory is a (deductively closed) set of sentences of �rst order logic.A decision procedure determines whether a universal sentence is satis�able inthat theory, that is to say, whether there exists a model of the theory and theuniversal sentence. The problem of cooperation of decision procedures thencan be described as follows. Given decision procedures for theories over disjointsignatures, is there a general method to construct a decision procedure for thecombined theories to decide universal sentences over the joined signature.The question of cooperation of decision procedures appeared �rst in the latenineteen seventies in the context of automated program veri�cation. Re-searchers were confronted with the problem that programs typically containheterogeneous constructs such as lists or arrays and arithmetical expressionsover reals or integers. While decision procedures for fragments of such theo-ries were known, the task was to devise coordination methods to decide mixedformulae. Building upon earlier work on the augmentation of the universal frag-ment of Presburger arithmetics by uninterpreted predicates and functions [99],R. Shostak developed an integrative cooperation method, which was intendedlynot very modular, for theories with normal forms for interpreted predicates andfunctions in [100].About the same time, G. Nelson and D. Oppen [76, 77] devised a general methodfor the cooperation of decision procedures based on the exchange of equationsand disequations of variables between the component procedures. Their ap-proach was clearly modular, but rather procedural. D. Oppen [80] o�ers amore declarative non-deterministic version. Recently, C. Tinelli and M. Ha-7

randi [112] gave a simpli�ed proof of the Nelson-Oppen cooperation procedure.C. Ringeissen [88] o�ers a di�erent perspective and generalises the results tocertain non-disjoint combinations.Although combination and cooperation are related, there are di�erences to benoted. Cooperation connects decision procedures for satis�ability, while com-bination deals with validity. The component procedures in cooperation henceare searching for a model, in combination they test validity in a speci�c givenmodel. And in cooperation, the combined solution domains are trivial.In cooperation, one is interested in satis�ability. Consequently, a componentdecision procedure tries to �nd a structure that is a model for the theory andfor the �rst-order sentence to be solved. There is no particular interest on thequalities of the model, with the exception that the model should be in�nite {at least for the Nelson-Oppen-procedure { to be suitable for cooperation. Incombination, there is no search for an arbitrary model. Rather, the model isgiven, namely a quasi-free structure. The component decision procedure thenchecks, whether the given (pure) constraint is true in the given structure. Thereason is that in combination, one is interested in validity. And quasi-freestructures as generalisations of free structures share their property, shown byMal'cev [73], of being the characteristic model for a theory in the following sense.A positive sentence (or a positive constraint) is valid, i.e., true in all structures ofa given theory, if and only if it is true in the quasi-free structure of that theory.Hence validity of a positive constraint can be tested by deciding if it holdstrue in the quasi-free structure. For negative constraints, this characterisationis no longer valid. But a solution in the quasi-free structure still presents ageneral solution in some sense. Another important point is that, practically,constraint solvers are not model generators or model seekers. Typically, thesolution domain is built-in and hence �xed. What they perform is to check,if a constraint is true in that domain. So combination is more appropriate forconstraint solvers, because it assumes that the component solution domains aregiven, and quasi-free structures comprise many important solution domains.As explained above, combination does not only deliver an algorithm to reducethe solution of mixed constraints to the solution of pure constraints in the com-ponents, but also an explicit construction of a combined solution domain. Thiscombined solution domain, which should share relevant structural propertieswith its components, is the domain where mixed constraints are interpreted.Since we are interested in validity, the combined solution domain has to be aquasi-free structure, too. This is the reason why we need an explicit construc-tion method. In the case of coordination, the situation is simpler. If thereare in�nite models for the pure sentences, a combined model can be gainedby means of a bijection between their universes, which always exists after thecomponent universes have been brought to equal cardinality by an applica-tion of the L�owenheim-Skolem Theorem. A consequence of this fact is thatthe decomposition algorithm for coordination is also simpler than the one forcombination. Indeed, the decomposition algorithm for combination consists ofthree non-deterministic steps, while the one for coordination contains only the8

�rst one of these non-deterministic steps.1.6 An Outline of the ThesisThe next chapter is a chapter on technical preliminaries introducing conceptsand notions from algebra and uni�cation theory that we will make use of later.Chapter 3 is devoted to the description of quasi-free structures and the freeamalgamated product. We quote here work by F. Baader and K. U. Schulz[12, 15] to introduce concepts and notions fundamental to our work. Quasi-freestructures are the solution domains we assume in our constraint systems. Asgeneralisations of free structures, they comprise many important non-numericalin�nite solution domains such as term algebras and quotient term algebra, ra-tional tree algebras, hereditarily �nite well-founded and non-wellfounded lists,sets and multi sets, vector spaces, and certain feature structures. Quasi-freestructures have a simple, purely algebraic de�nition. While in a free structure,every element of the domain must be �nitely generated, this is no longer re-quired with quasi-free structures. It su�ces that each element has a kind ofa \handle" that can be used to determine the image of this element under anarbitrary homomorphism.The free amalgamated product constitutes a �rst systematic way to combineconstraint systems. It comes equipped with a general method that, given twoarbitrary quasi-free structures, constructs a combined solution domain and adecomposition algorithm to solve \mixed" constraints, i.e., constraints builtover the language of the joint signature, by reducing them to pure constraintsin the components. The free amalgamated product as solution domain is char-acterised by the important property of being the most general combination oftwo quasi-free structures in the sense that every other combination contains ahomomorphic image of it. To show the above demanded conservativeness, wepresent the theorem that the reduct of the free amalgamated product to onecomponent signature is isomorphic to the component structure. The decompo-sition algorithm translates mixed constraints over the joint signature into pureconstraints of the component signatures in such a way, that a solution for amixed constraint exists in the free amalgamated product if and only if thereare solutions of the translated pure constraints in the component domains. Thecore of the algorithm consists of three non-deterministic steps that guess an in-formation exchange about variables occurring in both components' constraintsafter translation. On the base of this algorithm, Baader and Schulz show thatthe positive fragment of the constraint language of the joint signature is decid-able in the free amalgamated product, provided the positive fragments of thecomponent constraint languages over their signatures are both decidable.Our �rst contribution, Chapter 4, examines this decomposition algorithm andprovides optimisation techniques therefor. The three non-deterministic stepsmentioned above span a search space that huge that in a practical implementa-tion, even small constraint problems are intractable. To overcome this problem,9

one has to �nd methods which drastically shrink the search space. Our inter-est was to �nd general methods that should be applicable to a wide rangeof quasi-free structures and their constraint solvers. Two such optimisationmethod are presented, called the iterative and the deductive method. The it-erative method is designed for the combination of more than two constraintsolvers; and the higher the number of solvers combined, the more importantthis method becomes. It is based on the observation, that the original decom-position algorithm largely expands the search space in such a case, because itmakes all non-deterministic decisions for all components �rst, before testingthe �rst component problem for solvability. The iterative method localises non-deterministic choices, it tries to solve a single component �rst by guessing thosenon-deterministic choices that are relevant for that component and proceeds tothe next component only after it could solve the current one. The di�culty ofthis simple idea lies in proving that the thus amended decomposition algorithmis still correct and complete, i.e., that the mixed constraints have a solution ifand only if the the iterative method �nds one for each pure component problem.The deductive method is based on the insight that not every decision has tobe made non-deterministically. Indeed, one can �nd that in many cases theconstraint problem at hand and the component solution domains and constraintsolvers determine certain choices in the sense that only if they are made inone particular way, the problem is solvable. To use the deductive method,one needs new component constraint solvers, which have to do more than justdecide whether a pure constraint problem is solvable. They must be capable ofcomputing which choices have to be made deterministically in what way in orderto keep their component problem solvable. The combination algorithm hencebecomes kind of a moderator. It asks the component solvers, which decisionscan be made deterministically and in what way, percolating these informationsfrom component solver to component solver. Only after no new decisions canbe made deterministically, it picks one non-deterministic choice. Thereafter itstarts again consulting the component solvers, and so on, until all decisions aremade. If then still all component solvers state their pure constraint problem issolvable, then the original mixed problem has a solution.Since the two optimisation methods are totally independent of each other, onecan easily integrate them into a common system. In order to test the e�ciencyof the optimisation, we implemented several versions of them. The test resultsprovided show that many problems can be solved several orders of magnitudefaster than with the original algorithm by Baader & Schulz. And there are someexamples that cannot be solved in reasonable time without the optimisationmethods.The concept of rational amalgamation is introduced in Chapter 5. It estab-lishes a second systematic way of combining constraint systems. Although thefree amalgamated product is the most general combination method, there areexamples of combination that are not instances of the free amalgamated prod-uct. Work by A. Colmerauer on the combination of rational tree algebras andrational nested lists [29, 30] and work by W. Rounds [90] and A. Moshier &C. Pollard [75] on the combination of feature structures and non-wellfounded10

sets are such examples. In all of these cases, the component structures are\rational", they contain in�nite (but periodic) elements. In such a situation,the free amalgamated product is not the combination of choice, because theelements in the combined solution domain are always �nite. Mixed constraintsthat demand an in�nite number of transitions from one component to the otherare therefore unsolvable in the free amalgamated product.This is where rational amalgamation steps in. It provides a combined solutiondomain that contains rational elements and hence allows to solve such mixedconstraints. Therefore, rational amalgamation is the method of choice whencombining constraint domains that are themselves rational. It comes equippedwith a general construction method for a rational combined solution domain,given two arbitrary so-called non-collapsing quasi-free structures. For this com-bined solution domain, we show that the reduct to just one component signatureis isomorphic to that component domain ensuring in this way the demandedconservativeness. We proof that the free amalgamated product is { up to iso-morphism { a substructure of rational amalgamation. The following theoremshows the naturalness of the construction, too: the rational amalgamation oftwo rational tree algebras over disjoint signatures is isomorphic to the rationaltree algebra of the joint signatures. The decomposition algorithm for rationalamalgamation is a simpli�ed variant of the one for the free amalgamated prod-uct; the �nal of the three non-deterministic steps is not required in rationalamalgamation. Using this decomposition algorithm, we show that solvabilityof mixed constraints is decidable in the rational amalgamation, if solvabilityof pure constraints (with certain technical requirements) is decidable in bothcomponent domains. For the special class of rational non-collapsing structures,the positive existential theory of the rational amalgamation is decidable, if thepositive universal-existential theory is decidable in both components.Finally, Chapter 6 deals with negation in combining constraint systems. Theconstraints we mentioned so far were exclusively positive constraints, they con-tained neither negation nor implication. But clearly, implication is a desirabletool when formulating constraint problems. For example, constraint entailmentcannot be expressed without it. And constraint entailment is used to decidewhether one constraint subsumes or entails another when reducing constraintsin a constraint solver (see, e.g., the constraint solver Oz [49, 103]). Negation isalso an important part of the constraint language in Prolog II and III [29, 30].Thus we investigate combinations of constraint systems that contain negationin their constraint languages in a �rst part of this chapter. The combined solu-tion domain we use is again the free amalgamated product, and the algorithmis an extension of the decomposition algorithm to handle negative formulae,but one that does not introduce new non-deterministic steps. We show thatthe existential theory of the free amalgamated product over the joint signa-tures is decidable, if the existential theories of both components (with certaintechnical restrictions) are decidable. Furthermore we give conditions for thesolutions in the components under which there exists a ground solution in thefree amalgamated product, since there is a special interest in ground solutions,if the constraint problems contain negation. Work by R. Treinen [113] lets us11

see that in general, it is not possible to solve a larger quanti�er fragment in thefree amalgamated product than just the existential one, even if one can solve alarger fragment in the components. We also show that Rational Amalgamationis in general a solution domain not suited for the combination of constraintsystems with negation.The second part of this chapter deals with the so-called independence propertyof negative constraints. A constraint system has the independence property, i�for every conjunction of positive constraints and every conjunction of negativeconstraints we have: The two conjunctions together are solvable if and only iffor each negative constraint the conjunction of positive constraints plus thatnegative constraint is solvable. In this case, the negative constraints can besolved separately. This property is very important for real world constraintsolvers. It enables the development of constraint solvers that solely solve posi-tive constraints and can still handle negative ones by some means of translation.Firstly ignoring combination, we investigate which quasi-free structures own theindependence property. Especially we consider equational theories, since theyare an important subclass of quasi-free structures. For equational theories, weshow that unitary theories have the independence property, while �nitary donot. There theories of type 0 that own the independence property. For the com-bination of equational theories, one gains the following modularity result: Thefree amalgamated product of two unitary, regular and collapse-free equationaltheories is again unitary, and hence as the independence property. Generalisingto quasi-free structures, we �nd that unitary structures have the independenceproperty. And there are in�nitary structures with the independence property.Finally, we lift the modularity result to the combination of quasi-free structures.The free amalgamated product of two unitary, regular and non-collapsing quasi-free structures is again unitary, and thus has the independence property.This research was carried out as part of a cooperative project, in whichKlaus U. Schulz, Franz Baader, and J�orn Richts participated. Some of theresults were therefore developed in cooperation with them. Whenever this isthe case, their contributions are clearly marked in the text.

12

Chapter 2PreliminariesIn this chapter, we introduce basic notions of algebra and uni�cation theorythat we will make frequent use of. Structures and homomorphisms are ourfundamental tools, they are as substantial to us as hammer and nails are toa carpenter. Notions from uni�cation theory are important, even if we do notalways explicitely use them, because most de�nitions for quasi-free structuresare generalisations from uni�cation theory.2.1 AlgebraA signature � consists of a �nite set �F of function symbols and a �nite set �Pof predicate symbols, each with a �xed arity. We assume that equality \=" is alogical constant that does not occur in �P , and which is always interpreted asidentity. Given a signature � and a countably in�nite set of variables X, theset of �-terms over X, written T (�;X), is de�ned as follows: Every variablex 2 X and every constant c 2 � is a term; if f 2 �F is an n-place functionsymbol and t1; : : : ; tn are terms, then so is f(t1; : : : ; tn). An atomic �-formulais an equation s = t between �-terms s; t or a relational formula p(s1; : : : ; sm)where p is an m-ary predicate symbol in �P and s1; : : : ; sm are �-terms. Aliteral is an atomic formula or its negation. A �-formula is de�ned as follows:Every literal is a formula; if ' and is a formula and x 2 X a variable, then:';'^ ;'_ ;9x';8x' are formulas. A �-matrix is a quanti�er-free formula.A formula is called positive, if it contains no negation. A formula ' is negative,if it is equivalent to : where is a positive formula. A sentence is a formulawithout free variables. The notion t(v1; : : : ; vn) (resp. '(v1; : : : ; vn)) indicatesthat the set of all free variables of the term t (of the formula ') forms a subsetof fv1; : : : ; vng.A �-structure A� has a non-empty carrier set A, and it interprets each f 2 �Fof arity n as an n-ary (total) function fA on A and each p 2 �P of arity m asan m-ary relation pA on A. Whenever we use a Roman letter like A and anexpression A� in the same context, the former symbol denotes the carrier setof the �-structure denoted by the later expression. Sometimes we will consider13

several signatures simultaneously. If � is a subset of the signature �, thenany �-structure A� can be considered as a �-structure (called the �-reductof A�) by just forgetting the interpretation of the additional symbols. In thissituation, A� denotes the �-reduct of A�. If the signature � contains onlyfunction symbols, then the �-structure A� is called a �-algebra.We write A� j= '(a1; : : : ; an) to express that the formula '(v1; : : : ; vn) is validin A� under the evaluation that maps vi to ai 2 A (1 � i � n). Expressions ~adenote �nite sequences a1; : : : ; ak of elements inA. In order to simplify notation,we will sometimes use ~a also to denote the set fa1; : : : ; akg.A �-homomorphism between �-structures A� and B� is a mapping h : A! Bsuch that h(fA(a1; : : : ; an)) = fB(h(a1); : : : ; h(an))pA(a1; : : : ; an) =) pB(a1; : : : ; an)for all f 2 �F , p 2 �P and a1; : : : ; an 2 A. Letters h; g; : : : denote homo-morphisms and hom�A�B denotes the set of all �-homomorphisms between A�and B�. In order to increase readability, we will often use expressions of theform h�A�B to denote an element of hom�A�B . A �-endomorphism of A� isa homomorphism h : A� ! A�. With End�A we denote the monoid of allendomorphisms of the �-structure A�, with composition as operation. A �-isomorphism is a bijective �-homomorphism h : A� ! B� such thatpA(a1; : : : ; an)() pB(h(a1); : : : ; h(an))for all p 2 �P and all a1; : : : ; an 2 A. Equivalently, one can require that theinverse mapping h�1 is also homomorphic. A �-automorphism is an isomorphic�-endomorphism.If g : A ! B and h : B ! C are mappings, then h � g : A ! C denotes theircomposition. When composing several functions, we sometimes drop the � andwrite hgf for h � g � f . Let g1 : A! C and g2 : B ! D be two mappings, Wesay that g1 and g2 coincide on E � A \ B, i� g1(e) = g2(e) for all e 2 E. Fora set A we denote the identity mapping on A by idA. If A is the carrier of the�-structure A, then idA is the unit of the monoid End�A.There is an interesting connection between surjective homomorphisms and pos-itive formulae, which will be important in many subsequent correctness proofs(see [73], pp. 143f or [68] for a proof).Lemma 2.1.1 Let h : A� ! B� be a surjective homomorphism between �-structures A� and B�, '(v1; : : : ; vm) be a positive � formula, and a1; : : : ; ambe elements of A. Then A� j= '(a1; : : : ; am) implies B� j= '(h(a1); : : : ; h(am)).Expressions like ~v;~a are used to denote �nite sequences. If ~a = a1; : : : ; an is asequence of elements of A and if m is a mapping with domain A, then m(~a)denotes the sequence m(a1); : : : ;m(an). If ~v = v1; : : : ; vn, then A� j= '(~v=~a) isshorthand for A� j= '(v1=a1; : : : ; vn=an). The symbol \]" denotes disjoint setunion. With jAj we denote the cardinality of the set A. If f is a function andM a set, we de�ne the application of f onto M as f(M) := ff(m) j m 2Mg.14

2.2 Uni�cation TheoryThe aim of this section is to introduce those parts and notions of uni�cation the-ory that are necessary to understand the text. Thus this is not supposed to bean introduction to uni�cation theory in general. An excellent such introductionis [17], from which we take most technical de�nitions.In uni�cation theory, a signature � consits only of a �nite set of functionsymbols; there are no predicate symbols involved apart from equality. WithT (�;X) we denote the free term algebra of signature � generated by X. A �-substitution � is an endomorphism of T (�;X) where the set fx 2 X j �(x) 6= xgis �nite. We call this set the domain of �. If t is a term, then Var(t) denotesthe set of variables occurring in t.An equational theory over the signature � is a set E of equations between �-terms. These equations are implicitly universally quanti�ed and represent anaxiom system. With =E we denote the least congruence relation on T (�;X)that is closed under substitution and contains E; and T (�;X)==E denotes thequotient term algebra modulo =E. An equational theory E is called consistent,if x 6=E y for distinct variables x; y 2 X. E is called collapse-free, if E doesnot contain an equation of the form x = t where x 2 X is a variable and t anon-variable term. E is regular, if Var(s) = Var(t) for each equation s = t inE. E is simple, if s 6=E t for all terms s; t where s is a proper subterm of t.Let E be an equational theory with signature �. A uni�cation problem is a�nite set of equations between terms � = fs1 := t1; : : : ; sn := tng. A substitution� is a solution of � (also callled a uni�er of �), i� for all i = 1; : : : ; n holds that�(si) =E �(ti). Let � and � be two solutions of �. Then � is called moregeneral than � , if there exists a substitution � with Var(�) as domain such that� =E � � �. In this case we say that � is an instance of � or more speci�c than� and write � � � . A substitution � is called most general uni�er of �, i� eachuni�er of � is an instance of �. A set S of solutions of a uni�cation problem� is called complete, i� for every solution � of � there exists a solution � 2 Ssuch that � is an instance of �. A solution set S is minimal, i� for each twosubstitutions �; �0 2 S neither � � �0 nor �0 � � holds. Obviously, a compactrepresentation of all solutions for a uni�cation problem in terms of a minimalcomplete set is desireable. But unfortunately, such a set may not always exist.Indeed, one systematically divides equational theories by looking at these sets.An equational theory E is calledunitary, i� each solvable uni�cation problem has one most general uni�er.The best known example of such a theory is of course syntactic (or Robin-son) uni�cation, an other example is distributivity to the left (or to theright): DL = ff(g(x; y); z) = g(f(x; z); f(y; z))g.�nitary, i� each solvable uni�cation problem has a �nite minimal completeset of uni�ers.Amongst examples of such theories are commutative uni�cation (C =15

ff(x; y) = f(y; x)g) and associative-commutative uni�cation (AC = C [ff(f(x; y); z) = f(x; f(y; z))g).in�nitary, i� each solvable uni�cation problem has a minimal complete set ofuni�ers, but for at least one problem this set is in�nite.The theory of associative uni�cation, sometimes called word uni�cation,(A = ff(f(x; y); z) = f(x; f(y; z))g) is an example.of type 0, i� there exists a solvable uni�cation problem that has no minimalcomplete set of uni�ers.The theory of idempotent associative uni�cation (also called bands, AI =A [ff(x; x) = xg) is of type 0.Let E be an equational theory and � a set of terms. If it exists, we write�UE(�) for the minimal complete set of uni�ers of �, or just �U(�) in case Eis clear from context.Uni�cation problems are systematically distinguished based on what construc-tors are allowed for building the problem terms. Let E be an equational theorywith signature �. An elementary E-uni�cation problem is a �nite set � of equa-tions between �-terms. In an E-uni�cation problem with constants, the termsof the equations may also contain additional constant symbols not containedin �. An E-uni�cation problem is called general, if the terms may contain ad-ditional free function symbols. Note that every general E-uni�cation problemcan be regarded as an elementary uni�cation problem in the combined theoryE [F where F is the free theory over a suitable set of function symbols. Thefollowing facts (taken from [17]) show that it is indeed important to distinguishthese di�erent types of uni�cation.� There exists a theory, namely the theory of Abelian monoids (AC1 :=AC [ff(x; 1) = xg), which is unitary with respect to elementary uni�ca-tion, but only �nitary with respect to uni�cation with constants.� There exists an equational theory for which elementary uni�cation is de-cidable, but uni�cation with constants is undecidable.� The theory of Boolean Rings is unitary with respect to uni�cation withconstants, but only �nitary with respect to general uni�cation.In later chapters, we will make use of a speci�c variant of uni�cation withconstants. An E-uni�cation problem with constant restrictions is an ordinaryE-uni�cation problem with constants, �, where a set of variables Vc is de�nedfor each free constant c in �. A solution of the problem is an E-uni�er � wherea free constant c may not occur in �(x) for all x 2 Vc. The problem � is calledan E-uni�cation problem with linear constant restrictions (LCR) if the sets Vccan be de�ned by a linear ordering < on the variables and free constants in �by Vc := fx j x is a variable with x < cg.16

Chapter 3Quasi-free Structures and theFree Amalgamated Product
3.1 IntroductionThis chapter introduces the notions of free and quasi-free structures, discussesin general their combinations, presents a particular combination, the free amal-gamated product, and algorithms to solve mixed constraints in the free amal-gamated product. All of these concepts were developed by F. Baader andK. U. Schulz in [10, 12, 15], they are fundamental to understand our own con-tributions following in later chapters.Quasi-free structures are the solution domains for combinations. They are gen-eralisations of free algebras and free structures. In a free structure, every el-ement of its domain is �nitely generated; it is the result of a �nite numberof applications of the structure's functions to variables, the structure's gener-ators. These generators have nice properties. Every element of the domain isconstructed out of �nitely many of them by means of function application. Andin order to understand what an arbitrary homomorphism maps an element to,it is su�cient to know what this homomorphism maps its generators to. It isthis particular property, that is relevant in combination. The fact that the ele-ment is �nitely generated, is not so important. Hence the notion of generationwill be replaced by the more general one of \stabilisation". We demand thestructure to have a distinguished set, to be called atom set, such that everymapping of that set into the carrier of another structure can be extended toa homomorphism into the structure, and each element is stabilised by a �nitenumber of atoms, i.e., if we know where a homomorphism maps these stabil-ising atoms to, we already know where the element is mapped to. Quasi-freestructures comprise most non-numerical in�nite solution domains for constraintsolving. Term algebras, quotient term algebras, rational tree algebras, vectorspaces, hereditarily �nite well-founded and non-wellfounded sets and multi sets,hereditarily �nite well-founded and non-wellfounded lists, and certain featurestructures are all examples of quasi-free structures.17

We proceed to combinations of quasi-free structures discussing �rst fairly gener-ally which conditions have to be ful�lled in order to call a combination suitable.Certainly, not every combination is suitable. One can regard the trivial struc-ture of just one element in the carrier and trivial interpretation of functionsand relations as a combination. But that is clearly not our choice. We want thecombined structure to be rather general and to share relevant structural proper-ties with its components. We de�ne the notion of the free amalgamated productwhich is characterised as being the most general combination of structures. Wealso provide a concrete construction method for the free amalgamated productof two quasi-free structures.Finally we discuss the combination of constraint solvers for quasi-free struc-tures. We present a decomposition algorithm that reduces solvability of mixedconstraints over the joint signatures to solvability of pure constraints in the com-ponents. The core of the algorithm consists of three non-deterministic stepswhich together guess the way shared variables of the constraints have to bedealt with in the components in order to ensure that solutions in the compo-nents exist if and only if the mixed input problem has a solution. The maintheorem reads: The positive theory of the free amalgamated product of twoquasi-free structures is decidable, provided the positive theories are decidablein both component structures.Allmost all parts that follow in this chapter are direct quotes or transcriptionsof notions and results presented in [10, 12, 15]. This is also the reason whythis chapter contains no proofs. They can all be found in [15]. We decided toquote such extensively from these papers, because we will frequently need thenotions and results introduced there. They are really fundamental to our owncontributions, there is no way of understanding our work without a knowledgeof them.3.2 Free and Quasi-free Structures3.2.1 Free StructuresThe algebraic theory of free structures is very similar to the one for free algebras,though considerably less well-known. In the �rst subsection, we will brie
y re-call some de�nitions and results for free structures (see [28, 47, 72, 116] for moreinformation). The usual de�nition of free structures is external in the sense thatit refers to a whole class of structures. In the present context (i.e., combina-tion of structures and constraint solvers), a characterisation of free structuresin terms of their internal algebraic structure turns out to be more appropriate.An internal characterisation of free structures over countably in�nite sets ofgenerators will be used as starting point for the de�nition of quasi-free struc-tures in the second subsection. In the third and fourth subsection, we deriveuseful algebraic and logical properties of quasi-free structures.We start with the usual external characterisation of free structures.18

De�nition 3.2.1 Let K be a class of �-structures, and let A� 2 K be generatedby the set X � A. Then A� is called free in K over X i� every mapping from Xinto the carrier of a structure B� 2 K can be extended to a �-homomorphismof A� into B�.1If A� and B� are free in the same class K, and if their sets of generators havethe same cardinality, then A� and B� are isomorphic. As shown by the nexttheorem, it is not really necessary to allow for arbitrary classes of �-structuresin the de�nition of free structures. One can restrict the attention to varieties orto the singleton class consisting of the free structure. As for the case of algebras,�-varieties are de�ned as classes of �-structures that are closed under directproducts, substructures, and homomorphic images.Theorem 3.2.2 Let A� be a �-structure that is generated by X. Then thefollowing conditions are equivalent:1. A� is free over X in some class K of �-structures.2. A� is free over X in some �-variety.3. A� is free over X in fA�g.The only non-trivial part of the proof, namely \1 ! 2", follows from the factthat an algebra that is free in a class K is also free in the variety generatedby K, i.e., the closure of K under building direct products, substructures, andhomomorphic images (see [28, 72] for details).The third condition of the theorem gives a characterisation of free structuresthat is independent of any other structure. This motivates the next de�nition.De�nition 3.2.3 A �-structure A� is called free i� it is free over X in fA�gfor some subset X of A.If X is the chosen set of generators of the free structure A�, then we willsometimes indicate this by saying that (A�;X) is free. We can now give thepromised internal characterisation of free structures over countably in�nite setsof generators.Theorem 3.2.4 A �-structure A� is free over the countably in�nite set X i�1. A� is generated (as a �F -algebra) by X,2. for every �nite subset X0 of X, every mapping h0 : X0 ! A can beextended to a surjective endomorphism of A�.1Since A� is generated by X, this homomorphism is unique.19

If one is interested in the question how free structures can be constructed,the characterisation via varieties is more appropriate. We have seen in Theo-rem 3.2.2 that every free structure is free for some variety. Conversely, it canbe shown that every non-trivial variety contains free structures with sets ofgenerators of arbitrary cardinality [72]. The well-known Birkho� Theorem saysthat a class of �F -algebras is a variety i� it is an equational class, i.e., the classof models of a set of equations. For structures, a similar characterisation ispossible [72].Theorem 3.2.5 A class V of �-structures is a �-variety if, and only if, thereexists a set G of atomic �-formulae2 such that V is the class of models of G.In this situation, we say that V is the �-variety de�ned by G, and we writeV = V(G).A concrete description of free �-structures can be obtained as follows (see [72,116] for more information). Obviously, the �F -reduct of a free �-structureA� is a free �F -algebra, and thus it is (isomorphic to) an E-free �F -algebraT (�F ;X)==E for an equational theory E. In particular, the =E-equivalenceclasses [s] of �F -terms s constitute the carrier of A�. It remains to be shownhow the predicate symbols are interpreted on this carrier. Since A� is freeover X, any mapping from X into T (�F ;X)==E can be extended to a �-endomorphism of A�. This, together with the de�nition of homomorphisms ofstructures, shows that the interpretation of the predicates must be closed undersubstitution, i.e., for all p 2 �P , all substitutions �, and all terms s1; : : : ; sm,if p[[s1]; : : : ; [sm]] holds in A� then p[[s1�]; : : : ; [sm�]] must also hold in A�.Conversely, it is easy to see that any extension of the �F -algebra T (�F ;X)==Eto a �-structure that satis�es this property is a free �-structure over X.Example 3.2.6 Let �F be an arbitrary set of function symbols, and assumethat �P consists of a single binary predicate symbol�. Consider the (absolutelyfree) term algebra T (�F ;X). We can extend this algebra to a �-structure byinterpreting � as subterm ordering. Another possibility would be to take areduction ordering [37] such as the lexicographic path ordering. In both cases,we have closure under substitution, which means that we obtain a free �-structure. Constraints involving the subterm ordering or reduction orderingsare, for example, important in constraint rewriting [66].Free structures over countably in�nite sets of generators are canonical for thepositive theory of their variety in the following sense:Theorem 3.2.7 Let A� be free over the countably in�nite set X in the �-variety V(G), and let ' be a positive �-formula. Then the following are equiv-alent:2As usual, open formulae are here considered as implicitly universally quanti�ed.20

1. ' is valid in all elements of V(G), i.e., ' is a logical consequence of theset of atomic formulae G.2. ' is valid in A�.This theorem explains why it is appropriate to use free structures over count-ably in�nite sets of generators as solution structures when solving positive con-straints. The proof is a simple consequence of Lemma 2.1.1.We close this subsection by introducing one more de�nition. If (A�;X) is freein a class of �-structures K, then, by de�nition, A� 2 K. Some authors (see,e.g., [74]) do not assume A� 2 K when de�ning the notion \free for K." Wemake use of this less restrictive way of de�ning \free for K" in the followingsituation:De�nition 3.2.8 Let A� and D� be �-structures, and assume that X � Agenerates A�. (A�;X) is called free for D� if every mapping X ! D has aunique extension to a homomorphism hA�D 2 Hom�A�D.3.2.2 Quasi-free StructuresIn this section, we generalise the de�nition of free structures in order to capturetypical domains for constraint-based reasoning such as the algebra of rationaltrees. As illustrating and motivating example for the abstract de�nitions, wewill use free algebras (i.e., free structures where the relational part �R of thesignature is empty). In the sequel, let T := T (�F ; V)==E be such an algebra(i.e., T is free over X in the variety de�ned by the equational theory E, whereX consists of the =E-equivalence classes of variables).Consider an element [t] of T , i.e., the =E-equivalence class of a term t. Obvi-ously, t contains only �nitely many variables v1; : : : ; vn, which shows that [t] isgenerated by the �nite subset [v1]; : : : ; [vn] of X. Thus, the image of [t] under anendomorphism of T is determined by the images of the generators [v1]; : : : ; [vn].In particular, two endomorphisms of T that coincide on [v1]; : : : ; [vn] also coin-cide on [t].When looking at non-free structures that are used as solution structures forsymbolic constraint, one observes that they satisfy algebraic properties thatare very similar to those of free algebras. For example, consider the algebra ofrational trees where leaves are labelled by constants or variables. This algebrais not generated by the set of variables (since \generated by" talks about a �niteprocess whereas rational trees may be in�nite). Nevertheless, a rational tree tcontains only a �nite number of variables v1; : : : ; vn, and two endomorphisms ofthis algebra that coincide on these variables also coincide on t. This means thatthe variables occurring in rational trees play a role that is similar to the role ofgenerators in free algebras, even though they do not generate the algebra. Thisobservation motivates the de�nition of stable hulls and atom sets given below.21

De�nition 3.2.9 Let A0; A1 be subsets of the �-structure A�. Then A0 sta-bilises A1, i� all elements h1 and h2 of End�A that coincide on A0 also coincideon A1. For A0 � A the stable hull of A0 is the setSHA�(A0) := fa 2 A j A0 stabilises fagg:The following two lemmata show that the stable hull of a set A0 has propertiesthat are similar to those of the subalgebra generated by A0. Note, however, thatthe stable hull can be larger than the generated subalgebra (see Example 3.2.17).Lemma 3.2.10 Let A0 be a subset of the carrier A of A�. Then SHA�(A0) isa �-substructure of A�, and A0 � SHA�(A0).Lemma 3.2.11 Let A0; A1 be subsets of the �-structure A�, and let h 2 End�A.If h(A0) � SHA�(A1), then h(SHA�(A0)) � SHA�(A1).De�nition 3.2.12 The set X � A is an atom set for A� if every mappingX ! A can be extended to an endomorphism of A�.For the free algebra T generated by X, the set of generators X obviously isan atom set. Two subalgebras generated by subsets X0;X1 of X of the samecardinality are isomorphic. The same holds for atom sets and their stable hulls.Lemma 3.2.13 Let X0;X1 be atom sets of A� of the same cardinality. Thenevery bijection h0 : X0 ! X1 can be extended to an isomorphism betweenSHA�(X0) and SHA�(X1).We are now ready to introduce the main concept of this section.De�nition 3.2.14 A countably in�nite �-structure A� is called quasi-free i�A� has an in�nite atom set X where each a 2 A is stabilised by a �nite subsetof X. We denote this quasi-free structure by (A�;X).This de�nition generalises the characterisation of free structures given in The-orem 3.2.4. The countably in�nite set of generators is replaced by a countablyin�nite atom sets, but we retain some of the properties of generators. In thefree case, every element of the structure is generated by a �nite set of genera-tors, whereas in the quasi-free case it is stabilised by a �nite set of atoms. Thefollowing lemma shows that the second condition of Theorem 3.2.4 is satis�edin the quasi-free case.Lemma 3.2.15 Let X be an in�nite atom set of the countably in�nite �-structure A�, and let X0 � X be �nite. Then every mapping h0 : X0 ! Acan be extended to a surjective endomorphism of A�.22

Remark 3.2.16 Let A� be a �-structure and M be a submonoid of End�A.We obtain useful variants of the notions of \stabiliser", \stable hull", \atomset", and \quasi-free structure" by always referring toM instead of End�A. Forexample, X � A is an atom set for A� w.r.t.M if every mappingX ! A can beextended to an endomorphism inM. We say that (A�;X) is quasi-free with re-spect toM if (A�;X) satis�es the corresponding variant of De�nition 3.2.14. In[10], such structures were called simply combinable structures (SC-structures).Most of the results that we will present for quasi-free structures can be lifted tostructures A� that are quasi-free with respect to some submonoidM of End�A(see [10] for details).We will call both (A�;X) and (A�;X;M) quasi-free structures. We think thisdoes no harm, because whenever we refer to a speci�c submonoidM of End�A,we will make that explicit. In this and the next chapter,M will always be End�A,the set of all endomorphism. In the chapter on rational amalgamation, we donot expect that (A�;X) is quasi-free with respect to the whole of End�A. Thusthe quasi-free structures we consider there will have an explicit endomorphismmonoidM. In the chapter on negation, we assume that (A�;X) is quasi-freewith respect to End�A.Examples 3.2.17 The following examples show that many solution domainsfor symbolic constraints are indeed quasi-free structures.Free structures. Obviously, every free structures over a countably in�nite setof generators is a quasi-free structure. The atom set is the set of generators ofthe free structure.Vector spaces. Let K be a �eld, let �K := f+g [fsk j k 2 Kg. The K-vectorspace spanned by a countably in�nite basis X is a quasi-free structure over theatom set X. Here \+" is interpreted as addition of vectors, and sk denotesscalar multiplication with k 2 K.The algebra of rational trees. Let �F be a �nite set of function symbols, and letR�F be the algebra of rational trees ([29, 70]), where leaves are labelled withconstants from �F or with variables from the countably in�nite set V . It is easyto see that every mapping V ! R can be extended to a unique endomorphismof R�F , and that (R�F ; V) is a quasi-free structure. Note, however, that R�Fis not generated by V . In addition, it is easy to see that R�F cannot be afree structure (over any set of generators). Indeed, it is well-known that onlytrivial equations between �F -terms are valid in R�F . Thus, if R�F was free,it would be isomorphic to the absolutely free term algebra, which is not true,however [70].Hereditarily �nite sets. Let Vhfs(Y) be the set of all nested, hereditarily �nite(standard, i.e., wellfounded) sets over the countably in�nite set of \urelements"Y . Thus, each M 2 Vhfs(Y) is �nite, and the elements of M are either in Yor in Vhfs(Y), the same holds for elements of elements etc. Wellfounded meansthat there are no in�nite descending membership sequences. Since union isnot de�ned for the urelements y 2 Y , the urelements will not be treated assets here. Let X := ffyg j y 2 Y g. Let h : X ! Vhfs(Y) be an arbitrary23

mapping. We want to show that there exists a unique extension of h to amapping ĥ : Vhfs(Y)! Vhfs(Y) that is homomorphic with respect to union \["and (unary) set construction f�g. EachM 2 Vhfs(Y) can uniquely be representedin the form M = x1 [: : :[xk [fM1g [: : :[fMlg where xi 2 X, for 1 � i � k,and where the Mi are the elements of M that belong to Vhfs(Y). By induction(on nesting depth), we may assume that ĥ(Mi) is already de�ned (1 � i � l).Obviously ĥ(M) := h(x1)[: : :[h(xk)[fĥ(M1)g[: : :[fĥ(Ml)g is one and theonly way of extending ĥ in a homomorphic way to the set M of deeper nesting.For M = x 2 X we obtain ĥ(x) = h(x), thus ĥ is an extension of h. Moreover,each mapping ĥ is in fact homomorphic with respect to union \[" and unaryset construction \f�g". In addition, each set M 2 Vhfs(Y) involves only �nitelymany di�erent urelements (induction on the nesting depth). Thus, Vhfs(Y),with union \[" and unary set construction \f�g", is a quasi-free structure withatom set X.Hereditarily �nite non-wellfounded sets. Similarly it can be seen that the do-main Vhfnws(Y) of hereditarily �nite non-wellfounded sets3 over a countablyin�nite set of urelements Y , with union \[" and set construction \f�g", is aquasi-free structure over the atom set X = ffyg j y 2 Y g.Hereditarily �nite wellfounded or non-wellfounded lists. The two domainsVh
(Y) and Vhfnwl(Y) of nested, hereditarily �nite (1) wellfounded or (2) non-wellfounded lists over the countably in�nite set of urelements Y , with concate-nation \�" as binary operation and with (unary) list construction h�i : l 7! hli,are quasi-free structures over the atom set X = fhyi j y 2 Y g of all lists withone element y 2 Y . Formally, these domains can be described as the set of all(1) �nite or (2) rational trees where the topmost node has label \h i" (repre-senting a list constructor of varying �nite arity), nodes with successors havelabel \h i", and leaves have labels y 2 Y .Feature structures. Let Lab, Fea, and X be mutually disjoint in�nite sets oflabels, features, and atoms respectively. Following [2], we de�ne a feature treeto be a partial function t : Fea� ! Lab[X whose domain is pre�x closed (i.e.,if pq 2 dom(t) then p 2 dom(t) for all words p; q 2 Fea�), and in which atomsdo not label interior nodes (i.e., if t(p) = x 2 X then there is no f 2 Fea withpf 2 dom(t)). As usual, rational feature trees are required to have only �nitelymany subtrees. In addition, they must be �nitely branching.We use the set R of all rational feature trees as carrier set of a structure R�whose signature contains a unary predicate L for every label L 2 Lab, anda binary predicate f for every f 2 Fea. The interpretation LR of L in R isthe set of all rational feature trees having root label L. The interpretation fRof f consists of all pairs (t1; t2) 2 R � R such that t1(f) is de�ned and t2 isthe subtree of t1 at f . The structure R� de�ned this way can be seen as anon-ground version of the solution domain used in [2]. We will call R� thenon-ground structure of rational feature trees. We will show that the set of3Non-wellfounded sets, sometimes called hypersets, became prominent through [1]. Theycan have in�nite descending membership sequences. The hereditarily �nite non-wellfoundedsets are those having a \�nite picture", see [1] for details.24

feature trees that consist of a single leaf node that is labelled by an element ofX is an atom set of R� w.r.t. a certain monoid M (see Remark 3.2.16). Weidentify this set in the obvious way with X.Each mapping h : X ! R has a unique extension to an endomorphism of R�that acts like a substitution, replacing each leaf with label x 2 X by the featuretree h(x). With composition, the set of these substitution-like endomorphismsyields a monoidM. Thus, it is not di�cult to see that (R�;X) is quasi-free withrespect to M. However, R� has endomorphisms (not belonging to M) thatmodify non-leaf nodes (e.g., by introducing new feature-edges for such internalnodes). Since these modi�cations of non-leaf nodes are independent of theimages of elements of X, the set X is not an atom set w.r.t. all endomorphisms,and thus (R�;X) is not quasi-free.Now suppose that we introduce, following [19, 104], additional arity predicatesF for every �nite set F � Fea. The interpretation FR of F consists of all featuretrees t where the root of t has a label L 2 Lab and where F is (exactly) the set ofall features departing from the root of t. Let � be the extended signature. Then(R�;X) is a quasi-free structure. We shall call it the non-ground structure ofrational feature trees with arity.As can be seen from the previous examples, there is often an interesting groundvariant of a given quasi-free structure. The following de�nition formalises thisrelationship.De�nition 3.2.18 Let (A�;X) be a quasi-free structure such that SHA�(;) isnon-empty. Then A�G := SHA�(;) is called the ground substructure of (A�;X).3.2.3 Algebraic Properties of Quasi-free StructuresBefore we can turn to the combination of quasi-free structures, we must estab-lish some useful properties of these structures.Lemma 3.2.19 Let (A�;X) be a quasi-free structure.1. A� = SHA�(X) and every mapping X ! A has a unique extension to anendomorphism of A�.2. Let X0 � X. Then we have SHA�(X0) \X = X0.3. For all �nite sets fa1; : : : ; ang � A there exists a unique minimal �nitesubset Y of X such that fa1; : : : ; ang � SHA�(Y).The third statement of the lemma shows that the notion \is stabilised by"behaves better than the notion \is generated by." In fact, minimal sets ofgenerators need not be unique, as demonstrated by the next example.25

Example 3.2.20 We consider the quotient term algebra T (�F ; V)==E , where�F consists of one unary function symbol f , V is countably in�nite, and E =ff(x) = f(y)g. Obviously, the carrier of T (�F ; V)==E consists of the =E-classes fxig for xi 2 V and one additional class [f(�)] := ff(t) j t 2 T (�F ; V)g.It is easy to see that for all xi 2 V , the element [f(�)] of T (�F ; V)==E isgenerated by fxig. However, [f(�)] is not generated by ;. Thus, there arein�nitely many minimal sets of generators of [f(�)].De�nition 3.2.21 Let (A�;X) be a quasi-free structure, and let fa1; : : : ;ang � A. The stabiliser StabA�(a1; : : : ; an) of fa1; : : : ; ang is the (unique) mini-mal �nite subset Y of X such that fa1; : : : ; ang � SHA�(Y).For the case of term algebras (i.e., absolutely free algebras), the stabiliser of aterm is the set of variables (i.e., generators) occurring in this term. In the moregeneral case of arbitrary quasi-free structures, using this as an intuition will helpto understand the de�nitions and proofs. Note, however, that the notion of astabiliser is still well-de�ned (and turns out to be extremely useful) in contextswhere \the minimal set of generators occurring in an element" is no longerunique. The next lemma is an immediate consequence of De�nition 3.2.21 andof the de�nition of the stable hull.Lemma 3.2.22 Let (A�;X) be a quasi-free structure, and let Y be a subset ofX. Then SHA�(Y) = fa 2 A j StabA�(a) � Y g.The stabilising e�ect of StabA�(a) for a is not restricted to End�A. Under suit-able conditions on the �-structure D�, StabA�(a) stabilises a with respect toHom�A�D. Before we can formulate this in a more precise way, we must gener-alise De�nition 3.2.8 to the quasi-free case.De�nition 3.2.23 Let A�;D� be �-structures, and let X � A. (A�;X) iscalled quasi-free for D� if every mapping X ! D has a unique extension to ahomomorphism hA�D 2 Hom�A�D.Thus, the fact that a structure (A�;X) is quasi-free is the special case where(A�;X) is quasi-free for itself.Lemma 3.2.24 Let (A�;X) be quasi-free, and assume that (A�;X) is quasi-free for D�. Let h1; h2 2 Hom�A�D, a 2 A and Y � X.1. If h1 and h2 coincide on StabA�(a), then h1(a) = h2(a).2. If h1 and h2 coincide on Y , then h1 and h2 coincide on SHA�(Y).In Section 3.3.2, where we introduce a construction that combines quasi-freestructures over disjoint signatures, we need to embed a given quasi-free struc-ture into an isomorphic superstructure. Here, the usual notion of isomorphismbetween structures is not su�cient, however, since the atom sets must also betaken into account. 26

De�nition 3.2.25 Let (A�;X) and (B�; Y) be quasi-free. A qf-isomorphismbetween (A�;X) and (B�; Y) is an isomorphism h : A� ! B� that maps Xonto Y .The next lemma shows that qf-isomorphic structures are quasi-free for the sameclass of structures (in the sense introduced in De�nition 3.2.23).Lemma 3.2.26 Let (A�;X) and (B�; Y) be qf-isomorphic quasi-free struc-tures, and let D� be a �-structure. If (A�;X) is quasi-free for D�, then also(B�; Y) is quasi-free for D�. In particular, since any quasi-free structure isquasi-free for itself, (A�;X) is quasi-free for B� and (B�; Y) is quasi-free forA�.The following two results show that one can always �nd qf-isomorphic substruc-tures and superstructures of a given quasi-free structure. For free structures,showing these results is almost trivial. For quasi-free structures it requiresrather long and tedious technical proofs (see [11] for details).Lemma 3.2.27 Let (B�; Y) be a quasi-free structure. Let Z be an in�nitesubset of Y , and let C� := SHB� (Z). Then the following holds:1. (C�; Z) is quasi-free, and (B�; Y) and (C�; Z) are qf-isomorphic.2. For each c 2 C, we have StabB� (c) = StabC�(c).3. For each U � Z, SHB� (U) = SHC�(U).Theorem 3.2.28 Let (A�;X) be a quasi-free structure. Then there exists aquasi-free superstructure (B�; Y) with the following properties:1. Y nX is in�nite.2. X � Y , and A� = SHB� (X).3. (A�;X) and (B�; Y) are qf-isomorphic.4. If X � Z � Y , and if C� = SHB� (Z), then A� = SHC�(X), and (A�;X)and (C�; Z) are qf-isomorphic.3.2.4 Logical Properties of Quasi-free StructuresUsing the notion of stabilisers, the validity of positive formulae in quasi-freestructures can be characterised in an algebraic way. This characterisation isessential for the correctness proof (in [15]) of combining constraint solvers forquasi-free structures. 27

Lemma 3.2.29 Let (A�;X) be a quasi-free structure, and let
 = 8~u19~v1 : : : 8~uk9~vk '(~u1; ~v1; : : : ; ~uk; ~vk)be a positive �-sentence, where ' is a positive (not necessarily quanti�er-free)formula. Then the following conditions are equivalent:1. A� j= 8~u19~v1 : : : 8~uk9~vk '(~u1; ~v1; : : : ; ~uk; ~vk).2. There exist ~x1 2 ~X;~e1 2 ~A; : : : ; ~xk 2 ~X;~ek 2 ~A such that(a) A� j= '(~x1; ~e1; : : : ; ~xk; ~ek),(b) all atoms in the sequences ~x1; : : : ; ~xk are distinct,(c) for all j; 1 � j � k, the components of ~xj are not contained inStabA�(~e1) [: : : [StabA�(~ej�1).The role of the second condition of the lemma is very similar to one that linearconstant restrictions played in work on combining uni�cation algorithms. Thisnotion was introduced in [5]. We will present and discuss it in the chapter onoptimisation techniques.3.3 Combination of Quasi-free StructuresThis section is concerned with the problem of how to combine two quasi-freestructures over disjoint signatures into a new structure over the union of bothsignatures. First, we will introduce an algebraic framework for combining struc-tures, which is not restricted to quasi-free structures or disjoint signatures. Thisframework tries to formalise our intuition of what to expect from a canonicalcombination of two structures. We go on to describe an explicit construction forcombining two quasi-free structures over disjoint signatures, and show that theresult of this construction coincides with what our abstract framework proposesas canonical combined structure.3.3.1 Combination of StructuresLet B�11 and B�22 be two structures. What conditions should a (�1 [�2)-structure C�1[�2 satisfy to be called a \canonical combination" of B�11 andB�22 ? The central notion of this subsection will be obtained after three steps,each introducing a restriction that is motivated by the example of the com-bination of free algebras, i.e., term algebras modulo equational theories. Thestructures B�11 and B�22 will be called the components in the sequel.Restriction 1: Homomorphisms that embed the components intothe combined structure must exist. If the components share a com-mon substructure, then the embedding homomorphisms must agreeon this substructure. 28

In fact, a minimal requirement seems to be that both structures must in somesense be embedded in their combination. It would, however, be too restrictiveto demand that the components are substructures of the combined structure.For the case of consistent equational theories E1; E2 over disjoint signatures�1;�2, there exist 1{1-embeddings of T (�1; V)==E1 and T (�2; V)==E2 intoT (�1 [�2; V)==E1[E2 . For non-disjoint signatures, however, these \embed-dings" need no longer be 1{1. Note that even for disjoint signatures �1 and �2there is a common part, namely the trivial structure represented by the set Vof variables. A reasonable requirement is that elements of the common part aremapped to the same element of the combined structure by the homomorphicembeddings. To be as general as possible, we do not assume that the \commonpart" is really a substructure ofB�11 andB�22 . Instead, we assume that it is justhomomorphically embedded in both structures. These considerations motivatethe following formalisation of Restriction 1.De�nition 3.3.1 Let �1 and �2 be signatures, and let � � �1 \ �2. A triple(A�;B�11 ;B�22) with given homomorphic embeddingsh�A�B1 : A� ! B�11 and h�A�B2 : A� ! B�22is called an amalgamation base. The structure D�1[�2 closes the amalgamationbase (A�;B�11 ;B�22) i� there are homomorphismsh�1B1�D : B�11 ! D�1 and h�2B2�D : B�22 ! D�2such that h�1B1�D � h�A�B1 = h�2B2�D � h�A�B2 . We call (D�1[�2 ; h�1B1�D; h�2B2�D)an amalgamated product of (A�;B�11 ;B�22).If the embedding homomorphisms are irrelevant or clear from the context, wewill also call the structure D�1[�2 alone an amalgamated product of B�11 andB�22 over A�. For a given amalgamation base, there usually exist various struc-tures that can be used to close this base. Which one should be seen as acanonical closure? Motivated by the example of free structures, where thecanonical combined structure is again free, we are interested in \most general"amalgamated products.Restriction 2: We are interested in structures closing the amalga-mation base that are as general as possible.In principle, we consider a structure C to be more general than a structure Di� there is a homomorphism of C into D. Thus, a possible formalisation ofRestriction 2 seems to be to ask for an amalgamated product(C�1[�2 ; h�1B1�C ; h�2B2�C)such that for each amalgamated product (D�1[�2 ; h�1B1�D; h�2B2�D) of the amal-gamation base there exists a unique (�1 [�2)-homomorphism hC�D such that29

����@@@R
QQQQQs�����3 -����������������:
XXXXXXXXXXXXXXXXzA� B�11

B�22 C�1[�2 D�1[�2hA�B1hA�B2 hB1�ChB2�C hB1�D
hB2�DhC�DhBi�D = hC�D�hBi�C , for i = 1; 2. This situation is illustrated in the following�gure.It turns out, however, that requiring a most general element among all possi-ble amalgamated products is too strong. Informally, the reason is that not allamalgamated products of a given amalgamation base share \relevant" struc-tural properties with the component structures of the base. To be moreprecise, we consider the example of free algebras B�11 := T (�1; V)==E1 andB�22 := T (�2; V)==E2 , with common \substructure" A� := T (�1 \ �2; V). Thecanonical combined algebra is the free algebra T (�1 [�2; V)==E1[E2 , which isin fact most general (in the sense introduced above) among all amalgamatedproducts that satisfy E1[E2, i.e., all elements of V(E1[E2). An arbitrary prod-uct D�1[�2 of B�11 and B�22 may, however, invalidate some axioms of E1 [E2.In this case, it may not be possible to �nd an appropriate homomorphism fromT (�1 [�2; V)==E1[E2 to D�1[�2 (see [11] for an example). For this reason, weallow for the possibility of restricting the attention to a certain subclass of allamalgamated products.Restriction 3: Only admissible combinations of the two compo-nents are considered. The class of admissible structures should sharerelevant structural properties with these components.For the case of free algebras, the obvious candidate for the class of admissiblestructures is the the variety de�ned by the union of the component theories,i.e., Adm(T (�1; V)==E1 ;T (�2; V)==E2) = V(E1 [E2). An appropriate class ofadmissible structures for the quasi-free case will be obtained as a generalisationof this. In the remainder of this subsection, however, we make no assumptionon the speci�c form of the class of admissible structures. We just assume thatsuch a class is given. An amalgamated product is called admissible i� it belongsto the class of admissible structures.De�nition 3.3.2 Let (A�;B�11 ;B�22) be an amalgamation base, and assumethat a class Adm(B�11 ;B�22) of admissible (�1 [�2)-structures is �xed. Theadmissible amalgamated product (C�1[�2 ; h�1B1�C ; h�2B2�C) of B�11 and B�22 overA� is called a free amalgamated product with respect to Adm(B�11 ;B�22) i� forevery admissible amalgamated product (D�1[�2 ; h�1B1�D; h�2B2�D) of B�11 and30

B�22 over A� there exists a unique homomorphism h�1[�2C�D : C�1[�2 ! D�1[�2such thath�1B1�D = h�1[�2C�D � h�1B1�C and h�2B2�D = h�1[�2C�D � h�2B2�C :Free amalgamated products need not exist, but if they exist they are unique upto isomorphism.Theorem 3.3.3 Let (A�;B�11 ;B�22) be an amalgamation base with �xed ho-momorphic embeddings h�A�B1 : A� ! B�11 and h�A�B2 : A� ! B�22 . The freeamalgamated product of B�11 and B�22 over A� with respect to a given classAdm(B�11 ;B�22) is unique up to (�1 [�2)-isomorphism.The theorem justi�es to speak about the free amalgamated product of twostructures (provided that the embedding homomorphisms and the class of ad-missible structures are �xed). In this situation, we will sometimes denote thefree amalgamated product of B1 and B2 by B1
B2. The product operationis obviously commutative, if the de�nition of the class of admissible structuressatis�es Adm(B�11 ;B�22) = Adm(B�22 ;B�11). In order to obtain associativity aswell, we need some additional conditions on the class of admissible structures.Before formulating these restrictions, we extend the de�nition of an amalgama-tion base and of the free amalgamated product to the case of three structures.4Let � � �1 \�2 \�3. A quadruple (A�;B�11 ;B�22 ;B�33) with given homomor-phic embeddings h�A�Bi : A� ! B�ii (i = 1; 2; 3)is called a simultaneous amalgamation base. The structure D�1[�2[�3 closesthe simultaneous amalgamation base (A�;B�11 ;B�22 ;B�33) i�, for i = 1; 2; 3,there are homomorphisms h�iBi�D : B�ii ! D�i such thath�1B1�D � h�A�B1 = h�2B2�D � h�A�B2 = h�3B3�D � h�A�B3 :In this case, (D�1[�2[�3 ; h�1B1�D; h�2B2�D; h�3B3�D) is a simultaneous amalgamatedproduct of B�11 ;B�22 ;B�33 over A�.Now, assume that a class of admissible structures Adm(B�11 ;B�22 ;B�33) is �xed.The admissible simultaneous amalgamated product(C�1[�2[�3 ; h�1B1�C ; h�2B2�C ; h�3B3�C)of B�11 ;B�22 ;B�33 over A� is called a free simultaneous amalgamated productwith respect to Adm(B�11 ;B�22 ;B�33) i� for every admissible simultaneous amal-gamated product (D�1[�2[�3 ; h�1B1�D; h�2B2�D; h�3B3�D) there exists a unique ho-momorphism f�1[�2[�3C�D : C�1[�2[�3 ! D�1[�2[�3such that g�iBi�D = f�1[�2[�3C�D � h�iBi�C , for i = 1; 2; 3. As for the binary freeamalgamated product, one can show that the free simultaneous amalgamatedproduct is unique up to isomorphism, provided that it exists.4The extension to an arbitrary number n � 2 of structures should then be obvious.31

Theorem 3.3.4 (Associativity of free amalgamation)Let � � �1 \ �2 \ �3, and let A�;B�11 ;B�22 ;B�33 be structures with �xedhomomorphic embeddings h�A�B1 : A� ! B�11 , h�A�B2 : A� ! B�22 , andh�A�B3 : A� ! B�33 . Assume that the free amalgamated products B�22
B�33 ,B�11
 (B�22
B�33), B�11
 B�22 , and (B�11
 B�22)
B�33 exist, and that theclasses of admissible structures satisfyB�11
 (B�22
B�33) 2 Adm(B�11 ;B�22 ;B�33);(B�11
B�22)
B�33 2 Adm(B�11 ;B�22 ;B�33); andAdm(B�11 ;B�22 ;B�33) � Adm(B�11 ;B�22) \Adm(B�11
B�22 ;B�33) \Adm(B�22 ;B�33) \Adm(B�11 ;B�22
B�33):Then we have (B�11
B�22)
B�33 ' B�11
 (B�22
B�33), and this structure isthe free simultaneous amalgamated product of B�11 , B�22 , and B�33 over A�.The proof of this theorem, which can be found in [11], can be given on a ratherabstract level (manipulation of arrows, i.e., homomorphisms). Note, however,that proving in a particular situation that the prerequisites of the theorem aresatis�ed is usually not possible on this abstract external level; it may requiredeep knowledge about the internal structure of the involved structures.Notions of \amalgamated product," similar to the one given above, can befound in universal algebra, model theory, and in category theory (see, e.g.,[26, 41, 73]). There are, however, certain di�erences between our situation andthe typical situations in which amalgamation occurs in other areas. In algebraor model theory, amalgamation has been introduced for particular classes ofalgebraic structures such as groups, �elds, skew �elds etc. Amalgamation isstudied for such a �xed class of structures over the same signature, and it isassumed that these structures all satisfy the same set of axioms (e.g., those forgroups, �elds, skew �elds, etc.). In our case, algebras over di�erent signaturesare amalgamated, and these algebras satisfy di�erent types of axioms (or arenot de�ned by axioms at all).3.3.2 An Amalgamation Construction for Quasi-free StructuresWe describe an explicit construction for closing any amalgamation base wherethe two components are quasi-free structures over disjoint signatures. In Sec-tion 3.3.3 we will show that the constructed amalgamated product is in fact thefree amalgamated product. Having such an explicit construction rather thanjust an abstract algebraic characterisation of the free amalgamated productis important in the correctness proof of our method for combining constraintsolvers. The description of the construction given below is considerably di�erentfrom the one presented in [8, 10]. The main advantage of this new descriptionis that it allows for shorter and simpler proofs.Let (A�11 ;X) and (A�22 ;X) be quasi-free structures over disjoint signatures�1 and �2 such that A1 \ A2 = X. We consider the amalgamation base32

(X;A�11 ;A�22), where the common part is just the set of atoms X. Thus, fori = 1; 2, the embedding \homomorphisms" hX�Ai : X ! A�ii are given byidX . In order to close this amalgamation base, we �rst embed each component(A�ii ;X) into an isomorphic superstructure (B�ii ; Yi) satisfying Conditions 1{4of Theorem 3.2.28 (i = 1; 2). In addition, we assume without loss of generalitythat B1 \ B2 = X. Our goal is to construct (for i = 1; 2) a �i-structure C�ii ,which is a superstructure of A�ii and a substructure of B�ii . The constructionwill provide us with a bijection between C2 and C1 satisfying certain proper-ties. This bijection can be used to carry the �2-structure of C�22 over to C1.The (�1 [�2)-structure obtained in this way is the result of the construction.The properties of the bijection will guarantee that this result is in fact the freeamalgamated product of the component structures. For de�ning the requiredbijection, the notion of a �bre will be important.De�nition 3.3.5 Fibres are either 1-�bres or 2-�bres. A 1-�bre is of the formF = fxg for x 2 X, and a 2-�bre is of the form F = fy; bg where y 2 Yi n Xand b 2 Bj n Yj for fi; jg = f1; 2g. For a �bre F and i = 1; 2, we de�neF (i) := F \Bi. The index of a 2-�bre F is j i� F (j) is the non-atom elementof F .The �bring constructionLet b1; b2; b3; : : : be an enumeration of B1;2 := B1[B2. Using this enumeration,we construct an ascending tower of sets F0 � F1 � F2 � : : : where each Fi isa set of mutually disjoint �bres. In addition, each set Fi contains only �nitelymany 2-�bres. We start with F0 := ffxg j x 2 Xg, i.e., F0 is the set of all1-�bres. Now, assume that Fk has already been de�ned, and that all �bres ofFk are mutually disjoint. When de�ning Fk+1, we distinguish two situations.Case 1: If there exists an element b of B1;2, say in Bi, such that1. each element of the stabiliser StabBi�i (b) belongs to a �bre F 2 Fk, but2. b itself does not belong to a �bre F 2 Fk,then we proceed as follows: Let bmin be the �rst element of B1;2 (in the enumer-ation b1; b2; b3; : : :) satisfying the two Properties 1 and 2, and let i be such thatbmin 2 Bi. For the other index j 6= i, we select an atom z 2 Yj that does notbelong to any �bre of Fk. Such an atom exists sinceB�1j satis�es Condition 1 ofTheorem 3.2.28, and Fk is assumed to contain only �nitely many 2-�bres. Wede�ne Fk+1 := fbmin; zg, and Fk+1 := Fk [fFk+1g. Note that Fk+1 is indeeda 2-�bre since bmin cannot be an atom. In fact, it is easy to see that any atomx has the singleton set fxg as its stabiliser. Thus, an atom cannot satisfy theConditions 1 and 2 simultaneously.Case 2: Otherwise, we de�ne Fk+1 := Fk.By de�nition, F0 � F1 � F2 � : : :, and at each level k, all �bres of Fk aremutually disjoint. 33

Let F := Sk�0Fk. Then C1;2 := SF2F F is a subset of B1;2. Let Ci := C1;2\Bi,and Zi := C1;2 \ Yi (i = 1; 2). We say that an element of B1;2 is �bred i� itbelongs to a �bre of F . For these elements we de�ne a height.De�nition 3.3.6 For a 2 C1;2 de�ne the height of a by height(a) := k i� a isan element of the �bre Fk.So, the height of each x 2 X is 0; and the height of each non-atomic element withnon-empty stabiliser is larger then the height of each element in its stabiliser.The de�nition of the amalgamated structureThe sets C1 and C2 are indeed stable hulls.Lemma 3.3.7 Ci = SHBi�i (Zi), and thus C�ii is a �i-substructure of B�ii .Now, we de�ne appropriate bijections between C1 and C2. Each element c 2C1;2 belongs to a unique �bre Fc of F . We de�ne the bijections hi;j : Ci ! Cjby mapping each c 2 Ci to Fc(j), the unique element of Fc belonging to Cj(fi; jg = f1; 2g). Obviously this implies hi;j = hj;i�1. Note that any element xof X belongs to a 1-�bre, and thushi;j(x) = x for all x 2 X. (3.1)The bijections h1;2 and h2;1 are now used to carry the �2-structure of C�22 toC1: Let f be an n-ary function symbol of �2, let p be an n-ary predicate symbolof �2, and let a1; : : : ; an 2 C1. We de�nefC1(a1; : : : ; an) := h2;1(fC2(h1;2(a1); : : : ; h1;2(an)))pC1 [a1; : : : ; an] : () pC2 [h1;2(a1); : : : ; h1;2(an)]:In the same way, we impose the �1-structure of C�1 on C2. Thus, both C1 andC2 can be seen as (�1 [�2)-structures. Let � := �1 [�2. By construction, themappingsh1;2 and h2;1 are inverse �-isomorphisms between C�1 and C�2 . (3.2)For this reason, it is irrelevant which of these two structures is taken as resultof the construction. In the following, we use C�1 as the amalgamated structureobtained by the construction, and we will sometimes denote this structure byA�11
 A�22 .Properties of the amalgamation constructionBefore we can show that the construction really yields the free amalgamatedproduct, we must state some useful properties:(C�ii ; Zi) and (A�ii ;X) are qf-isomorphic (for i = 1; 2). (3.3)34

(3.3) follows from the fact that (for i = 1; 2) B�ii satis�es Condition 4 ofTheorem 3.2.28. In addition, by Lemma 3.2.27 we have8d 2 Ci : StabCi�i(d) = StabBi�i (d) and 8U � Zi : SHCi�i(U) = SHBi�i (U) (3.4)For i = 1; 2, each set of �bres Fk determines a set F ik := fF (i) j F 2 Fkg � Ci.Now, (3.4) and the de�nition of the �bring construction imply:If c 2 Ci n Zi is in F ik+1, then StabCi�i(c) � F ik (for i = 1; 2). (3.5)In order to show that C�1 closes the amalgamation base (X;A�11 ;A�22), we de�nehA1�C1 := idA1 and hA2�C1 := h2;1jA2 . (3.6)By de�nition of hAi�C1 and (3.1) we know thathAi�C1 jX = idX (for i = 1; 2). (3.7)Thus, hA1�C1 � hX�A1 = idX = hA2�C1 � hX�A2 , which shows:Lemma 3.3.8 The amalgamated structure C�1 obtained by the construction isan amalgamated product of A�11 and A�22 .De�nition 3.3.9 The enumeration b1; b2; b3; : : : de�nes a strict linear ordering�X on X. In addition, a strict linear ordering �i on the complements Ci nX isgiven by the order in which the elements of Ci nX are �bred: We de�ne c �i di�, for some k, c 2 F ik and d 62 F ik. With <i we denote the unique strict linearordering on Ci that extends both �X and �i, and makes each element of Xsmaller than each element of Ci nX (i = 1; 2).As an easy consequence of this de�nition, we obtain8c; d 2 Ci: c <i d i� hi;j(c) <j hi;j(d) (fi; jg = f1; 2g); (3.8)8c; d 2 Ci: c <i d implies d 62 StabCi�i(c) (i 2 f1; 2g): (3.9)Note that (3.8) is trivial, and that (3.9) follows from (3.5).3.3.3 The Free Amalgamated Product of Quasi-free StructuresIn this subsection, we will show that the amalgamation construction presentedabove really yields the free amalgamated product of the quasi-free componentstructures. In the sequel, (A�11 ;X) and (A�22 ;X) denote quasi-free structures,which are used as the input components of the amalgamation construction.We shall also refer to other entities introduced in the construction, such asC�i ;B�ii ; hi;j ;Fk, etc. First, we must �x the class of admissible structures withrespect to which the free product is to be built.35

De�nition 3.3.10 Let (X;A�11 ;A�22) be an amalgamation base, where both(A�11 ;X) and (A�22 ;X) are quasi-free structures over disjoint signatures. Thenwe chooseAdm(A�11 ;A�22) := fD�1[�2 j (A�ii ;X) is quasi-free for D�i , for i = 1; 2gas the class of admissible structures.Theorem 3.3.11 C�1 = A�11
 A�22 is the free amalgamated product of thequasi-free structures A�11 and A�22 with respect to the class Adm(A�11 ;A�22) ofadmissible structures de�ned above.3.3.4 Multiple and Iterated AmalgamationThe explicit amalgamation construction introduced above can easily be gener-alised to a construction that combines an arbitrary number n � 2 of quasi-freestructures over disjoint signatures.5 The { here omitted { proof for the theoremin the above subsection can also be generalised to show that the extended con-struction yields the n-fold simultaneous free amalgamated product, providedthat the following obvious generalisation of the class of admissible structures isused: Adm(A�11 ; : : : ;A�nn) =fD�1[:::[�n j A�ii is quasi-free for D�i ; for 1 � i � ng: (3.10)In this subsection, we show that it is not really necessary to introduce the ex-plicit amalgamation construction for the case n > 2 since the free amalgamatedproduct can also be obtained by iterated application of the construction to twostructures. Obviously, iterated application is only possible if the structure ob-tained by the construction is again quasi-free. The following proposition showsthat this prerequisite is satis�ed.Proposition 3.3.12 The free amalgamated product of two quasi-free structureswith common atom set X is a quasi-free structure with atom set X.Corollary 3.3.13 (A�11
 A�22 ;X) is a quasi-free structure that is quasi-freefor each D� 2 Adm(A�11 ;A�22).Obviously, the set of admissible structures, as introduced in De�nition 3.3.10,satis�es Adm(A�11 ;A�22) = Adm(A�22 ;A�11). Thus, free amalgamation of quasi-free structures is commutative. Since the amalgamation construction can beiterated, the question arises whether the construction is associative as well.This question is answered to the a�rmative by showing that the assumptions ofTheorem 3.3.4 are satis�ed. Thereby, the theorem also shows that simultaneousfree Amalgamation and iterated free Amalgamation yield the same result.5It is even possible to amalgamate a countably in�nite number of quasi-free structures inthis way. 36

Theorem 3.3.14 Free amalgamation of quasi-free structures with disjoint sig-natures over the same atom set is associative, and free simultaneous amalga-mation coincides with iterated free amalgamation.3.4 Combining Constraint Solvers for Quasi-freeStructuresLet (A�11 ;X) and (A�22 ;X) be quasi-free structures over disjoint signatures �1and �2, and let C�1 = A�11
 A�22 denote their free amalgamated product, asconstructed in the previous section, where � = �1[�2. This section is devotedto the presentation of the following combination result for constraint solversover quasi-free structures.Theorem 3.4.1 The positive theory of C�1 = A�11
 A�22 is decidable, providedthat the positive theories of the quasi-free structures A�11 and A�22 are decidable.First, we show how constraint solvers for the positive theories of A�11 and A�22can be combined to a constraint solver for the existential positive theory ofA�11
A�22 . In a second subsection, it is shown that this result can be lifted tothe full positive theory of A�11
 A�22 .3.4.1 The Existential Positive CaseIn this subsection, we present a restricted version of Theorem 3.4.1.Theorem 3.4.2 The existential positive theory of C�1 = A�11
A�22 is decidable,provided that the positive theories of the quasi-free structures A�11 and A�22 aredecidable.The same theorem can be proved for the simultaneous free amalgamated prod-uct of n � 2 quasi-free components over disjoint signatures. To keep thingssimpler, we restrict our attention to the case n = 2.The decomposition algorithm described below decomposes an existential pos-itive �-sentence '0 into a �nite set of pairs (�; �), where � is a positive �1-sentence and � is a positive �2-sentence. This algorithm coincides with the onedescribed in [8], where it has been used in the restricted context of combinationproblems for free structures. Steps similar to Step 1, 3, and the labelling inStep 4 are present in most methods for combining uni�cation algorithms. Nel-son & Oppen's combination method for universal theories [77] explicitly usesStep 1, and implicitly, Step 3 is also present.Before we can describe the algorithm, we must introduce some notation. In thefollowing, V denotes an in�nite set of variables used by the �rst-order languagesunder consideration. Let t be a �-term. This term is called pure i� it is either37

a �1-term or a �2-term. An equation is pure i� it is an equation betweenpure terms of the same signature. A relational formula p[s1; : : : ; sm] is pure i�s1; : : : ; sm are pure terms of the signature of p. Now assume that t is a non-pureterm whose topmost function symbol is in �1. A subterm s of t is called aliensubterm of t i� its topmost function symbol belongs to �2 and every propersuperterm of s in t has its top symbol in �1. Alien subterms of terms with topsymbol in �2 are de�ned analogously. For a relational formula p[s1; : : : ; sm],alien subterms are de�ned as follows: if si has a top symbol whose signature isdi�erent from the signature of p then si itself is an alien subterm; otherwise,any alien subterm of si is an alien subterm of p[s1; : : : ; sm].The decomposition algorithmLet '0 be an existential positive �-sentence. Without loss of generality, wemay assume that '0 has the form 9~u0
0, where
0 is a conjunction of atomicformulae. Indeed, since existential quanti�ers distribute over disjunction, asentence 9~u0 (
1 _
2) is valid i� 9~u0
1 or 9~u0
2 is valid.Step 1: Transform non-pure atomic formulae.(1) Equations s = t of
0 where s and t have topmost function symbolsbelonging to di�erent signatures are replaced by (the conjunction of) twonew equations u = s; u = t, where u is a new variable. The quanti�erpre�x is extended by adding an existential quanti�cation for u.(2) As a result, we may assign a unique label �1 or �2 to each atomicformula that is not an equation between variables. The label of an equa-tion s = t is the signature of the topmost function symbols of s and/or t.The label of a relational formula p[s1; : : : ; sm] is the signature of p.(3) Now alien subterms occurring in atomic formulae are successively re-placed by new variables. For example, assume that s = t is an equationin the current formula, and that s contains the alien subterm s1. Letu be a variable not occurring in the current formula, and let s0 be theterm obtained from s by replacing s1 by u. Then the original equationis replaced by (the conjunction of) the two equations s0 = t and u = s1.The quanti�er pre�x is extended by adding an existential quanti�cationfor u. The equation s0 = t keeps the label of s = t, and the label of u = s1is the signature of the top symbol of s1. Relational atomic formulae withalien subterms are treated analogously. This process is iterated until allatomic formulae occurring in the conjunctive matrix are pure. It is easyto see that this is achieved after �nitely many iterations.Step 2: Remove atomic formulae without label.Equations between variables occurring in the conjunctive matrix are re-moved as follows: If u = v is such an equation then one removes 9u fromthe quanti�er pre�x and u = v from the matrix. In addition, every occur-rence of u in the remaining matrix is replaced by v. This step is iterateduntil the matrix contains no equations between variables.38

Let '1 be the new sentence obtained this way. The matrix of '1 can be writtenas a conjunction
1;�1^
1;�2 , where
1;�1 is a conjunction of all atomic formulaefrom '1 with label �1, and
1;�2 is a conjunction of all atomic formulae from'1 with label �2. There are three di�erent types of variables occurring in '1:shared variables occur both in
1;�1 and in
1;�2 ; �1-variables occur only in
1;�1 ; and �2-variables occur only in
1;�2 . Let ~u1;�1 be the tuple of all �1-variables, ~u1;�2 be the tuple of all �2-variables, and ~u1 be the tuple of all sharedvariables.6 Obviously, '1 is equivalent to the sentence9~u1 (9~u1;�1
1;�1 ^ 9~u1;�2
1;�2) :The next two steps of the algorithm are nondeterministic, i.e., a given sentenceis transformed into �nitely many new sentences. Here the idea is that theoriginal sentence is valid i� at least one of the new sentences is valid.Step 3: Variable identi�cation.Consider all possible partitions of the set of all shared variables. Each ofthese partitions yields one of the new sentences as follows. The variablesin each class of the partition are \identi�ed" with each other by choosingan element of the class as representative, and replacing in the sentenceall occurrences of variables of the class by this representative. Quanti�ersfor replaced variables are removed.Let 9~u2 (9~u1;�1
2;�1 ^ 9~u1;�2
2;�2) denote one of the sentences obtained byStep 3, where ~u2 denotes the sequence of all representatives of shared variables.Step 4: Choose signature labels and ordering.We choose a label �1 or �2 for every (shared) variable in ~u2, and a linearordering < on these variables.For each of the choices made in Step 3 and 4, the algorithm yields a pair (�; �)of sentences as output.Step 5: Generate output sentences.The sentence 9~u2(9~u1;�1
2;�1 ^ 9~u1;�2
2;�2) is split into two sentences� = 8~v19~w1 : : : 8~vk9~wk9~u1;�1
2;�1and � = 9~v18~w1 : : : 9~vk8~wk9~u1;�2
2;�2 :Here ~v1 ~w1 : : : ~vk ~wk is the unique re-ordering of ~u2 along <. The variables~vi (~wi) are the variables with label �2 (label �1).Thus, the overall output of the algorithm is a �nite set of pairs of sentences.Note that the sentences � and � are positive formulae, but they need no longerbe existential positive formulae.6The order in these tuples can be chosen arbitrarily.39

Correctness of the decomposition algorithmIf one of the output pairs is valid, then the original sentence is valid. But also,if the input sentence is valid, then there exists a valid output pair.Proposition 3.4.3 C�1 j= '0 if and only if A�11 j= � and A�22 j= � for someoutput pair (�; �).Obviously, Theorem 3.4.2 follows immediately.3.4.2 The General Positive CaseThe goal of this subsection is to show that the decomposition method intro-duced above can be extended such that it becomes possible to decide validityof general positive sentences in the free amalgamated product C�1 = A�11
A�22 .The main idea is to transform positive sentences (with arbitrary quanti�er pre-�x) into existential positive sentences by Skolemising the universally quanti�edvariables.7 In principle, the decomposition algorithm for positive sentences isnow applied twice to decompose the input sentence into three positive sen-tences �; �; �, whose validity must respectively be decided in A�11 , A�22 , and theabsolutely free term algebra over the Skolem functions.The extended decomposition algorithmThe input is a positive sentence '1 in the mixed signature �1[�2. We assumethat '1 is in prenex normalform, and that the matrix of '1 is in disjunctivenormalform. The algorithm proceeds in two phases.Phase 1: Via Skolemisation of universally quanti�ed variables, '1 is trans-formed into an existential sentence '01 over the signature �1 [�2 [�1. Here�1 is the signature consisting of all the new Skolem function symbols that havebeen introduced.Suppose that '01 is of the form 9~u1(W
1;i), where the
1;i are conjunctions ofatomic formulae. Obviously, '01 is equivalent to W(9~u1
1;i), and thus it issu�cient to decide validity of the sentences 9~u1
1;i. Each of these sentences isused as input for the decomposition algorithm.The atomic formulae in
1;i may contain symbols from the two (disjoint) sig-natures �1 and �2 [�1. In Phase 1 we treat the sentences 9~u1
1;i by means ofSteps 1{5 of the decomposition algorithm, �nally splitting them into positive�1-sentences � and positive (�2[�1)-sentences '2. Thus, the output of Phase 1is a �nite set of pairs (�;'2).7We are Skolemising universally quanti�ed variables since we are interested in validity ofthe sentence and not in satis�ability. 40

Phase 2: In the second phase, '2 is treated exactly as '1 was treated before,applying Skolemisation to universally quanti�ed variables and Steps 1{5 of thedecomposition algorithm a second time. Now we consider the two (disjoint)signatures �2 and � = �1 [�2, where �2 contains the Skolem functions thatare introduced by the Skolemisation step of Phase 2. We obtain output pairsof the form (�; �), where � is a positive sentence over the signature �2 and �is a positive sentence over the signature �. Together with the correspondingsentence � (over the signature �1) we thus obtain triples (�; �; �) as output.For each of these triples, the sentence � is now tested for validity in A�11 , �is tested for validity in A�22 , and � is tested for validity in the absolutely freeterm algebra T (�;X) with countably many generators X, i.e., the free algebraover X for the class of all �-algebras.8 We have seen that this structure is aquasi-free structure with atom set X (Examples 3.2.17 (3)).Correctness of the extended decomposition algorithmWe must show that the original sentence '1 is valid i� for one of the out-put triples, all three components are valid in the respective structures. The {here not presented { proof depends on the following lemma, which exhibits aninteresting connection between Skolemisation and free amalgamation with anabsolutely free algebra.Lemma 3.4.4 Let A�1 be a quasi-free structure with atom set X, and let
be a positive �-sentence. Suppose that the existential positive sentence
0 isobtained from
 via Skolemisation of the universally quanti�ed variables in
,introducing the set of Skolem function symbols �. Let A�2 := T (�;X) be theabsolutely free term algebra over � with generators X, and let C�[�1 be the freeamalgamated product of A�1 and A�2 . Then A�1 j=
 if, and only if, C�[�1 j=
0.Correctness of the extended decomposition algorithm is an easy consequence ofthis lemma.Proposition 3.4.5 C�1[�21 j= '1 if, and only if, there exists an output triple(�; �; �) such that A�11 j= �, A�22 j= �, and T (�;X) j= �, where � consists ofthe Skolem functions introduced in Phases 1 and 2 of the algorithm.The proposition shows that decidability of the positive theory of the free amal-gamated product A�11
 A�22 can be reduced to decidability of the positivetheories of A�11 , A�22 , and of an absolutely free term algebra T (�;X). It iswell-known that the whole �rst-order theory of absolutely free term algebras isdecidable [33, 70, 72]. Thus, Theorem 3.4.1 follows immediately. In connectionwith the Theorems 3.3.12 and 3.3.14, the following generalisation is obtained.8Note that � contains no predicate symbols.41

Theorem 3.4.6 If (A�11 ;X); : : : ; (A�nn ;X) are quasi-free structures over dis-joint signatures, then the full positive theory of the free simultaneous amalga-mated product A�11
 � � �
 A�nn is decidable, provided that the positive theoriesof all structures A�ii are decidable (1 � i � n).3.5 ConclusionThis chapter's purpose was to introduce fundamental concepts of combiningconstraint systems. We presented the notion of a quasi-free structure explor-ing its algebraic and logical properties. Quasi-free structures comprise manyimportant non-numerical in�nite solution domains for constraint solving suchas quotient term algebras, rational tree algebras, vector space, sets, multisetsand lists and certain feature structures. We discussed the properties a suit-able combination of structures should have, namely sharing relevant structuralproperties with the components and being rather general. We introduced thefree amalgamated product of two structures which is characterised by beingthe most general combination of two quasi-free structures and gave an explicitconstruction how to obtain the free amalgamated product for arbitrary quasi-free structures. Finally we drew our attention to the combination of constraintsolvers presenting a non-deterministic algorithms to reduce the solving of mixedconstraints over the joint signatures to solving of pure constraints in the com-ponents. By means of correctness of this algorithm we showed that the positivetheory of the free amalgamated product is decidable, provided the positive the-ories of the component quasi-free structures are decidable.On this given base, it is three di�erent aspects of combining constraint systemsthat we would like to investigate in the next chapters. Firstly, the decompositionalgorithm introduced is meant to be clear and simple. In its current form, itis well suited for explaining the method and proving its correctness. But itis highly non-deterministic, and hence totally unsuitable for implementation.We will present the search space spanned by the non-deterministic steps ofthe algorithm underpinning thereby the imminent need for optimisations andexplore systematic, generally applicable optimisation methods. We will see thatthere are two principled ways to reduce the non-determinism which togethercan shrink the search space for certain input problems by several orders ofmagnitude.Another aspect faces the amalgamation construction. The free amalgamatedproduct has the nice characterising property of being the most general combi-nation of quasi-free structures. But is it the only general combination construc-tion? We will see that there is another combination, namely rational amalga-mation, which constitutes a very general combined solution domain for a largeclass of quasi-free structures. In opposite to free amalgamation, rational amal-gamation allows an in�nite number of switchings from one component to theother in the elements of the combined solution domain, and therefor permitsthe solution of mixed cyclic equations or constraints.Finally, we investigate to what extend negation can be handled in combination.42

The constraints in the last chapter will be literals, atoms or negated atoms,while they are just (positive) atoms in the other chapters. We will �nd thefree amalgamated product to be a combined solution domain suitable for com-bining mixed positive and negative constraints. Indeed, mixed constraint overthe joint signatures of the components can be solved in the free amalgamatedproduct, if the pure constraints together with some technical requirements canbe solved in the quasi-free component structures. We will also take a look atthe independence property of negative constraints. For a given structure, theindependence property states that a conjunction of negative constraints is solv-able, if each negative constraint is solvable in isolation, ignoring the others.This is quite a useful property in actual constraint solving. We explore generalproperties that a quasi-free structure must have in order to own the indepen-dence property. And we also derive a modularity result stating under whichconditions the independence property of two component quasi-free structuresis inherited by their free amalgamated product.

43

44

Chapter 4Optimisation Techniques
4.1 IntroductionThe previous chapter described a fairly general combination algorithm for con-straint solvers for quasi-free structures over disjoint signatures. For reasons ofexpository clarity, and also to simplify correctness proofs, no e�ort was madein trying to lay out the algorithm in an e�cient way. The part of the algorithmthat introduces the complexity are the three non-deterministic steps of variableidenti�cation, labelling and ordering. The search space spanned by the com-bination of all di�erent choices that can be made in these three steps is huge;it is indeed that huge that a naive implementation of the algorithm is in praxideemed to non-termination even for small input problems. In a subsequentsubsection on the complexity of the algorithm, we will show this in detail.The consequence of this simple observation is obviously, that any implementa-tion of the algorithm must employ optimisation techniques. In principle, thereare two di�erent ways to handle the problem. For the task of combining twoparticular given constraint systems, one could start by de�ning a special com-bined solution domain and then develop a very speci�c decomposition algorithmfor combining the two constraint solvers at hand. This may be the solution ofchoice, if for a concrete implementation speed is more important than anythingelse.The line we would like to follow here is a one that is interested in general opti-misation techniques applicable to a large number of constraint systems. Espe-cially, we want to pro�t from general results presented in the previous chapter.Therefore we choose to keep the free amalgamated product as combined solu-tion domain. And we take its decomposition algorithm as a starting point forour optimisation rather then developing a new one from scratch. In this way,we may not be able to provide the most e�cient combination algorithm for twospeci�c constraint solvers { and it is important to see that we do not claim thisand hence do not compete with speci�c combination algorithms { but providestrategies that are usable in many circumstances and allow the integration ofseveral diverse constraint solvers in a suitable amount of time without being45

forced to redesign everything.In principle, there are two di�erent general methods of optimisation we willpresent. The �rst one is called the iterative method. It is based on the insightthat in a combination of many constraint solvers it is not wise to make allnon-deterministic choices for all components �rst and only then simultaneouslytest solvability in all components. It turns out to be more sensible to restrictattention to one component at a time and �nd a set of non-deterministic choicesfor which the component solver can solve its subproblem. Though this seemsclear, the di�culty in this method lies in showing that neither correctness norcompleteness of the combination algorithm is lost, something that is far fromobvious. This method's use is meaningful only, when more than two constraintsolvers are combined, and with a growing number of components it shows itsfull strength.The second optimisation method we will present is called the deductive method.The underlying observation here is that many choices need not be made non-deterministically. The input problem and the component constraint systemsfrequently enforce certain decisions to be made in a particular fashion, becauseotherwise the problem would be plain unsolvable. These choices can be madedeterministically, and what is more, choices made in a particular fashion inline with demands of one component can trigger new deterministic decisionsto keep subproblems of other components solvable. Hence one needs new com-ponent constraint solvers that are capable of deducing what decisions can bemade deterministically on the base of their subproblem and the choices made sofar. And one needs a new combination algorithm that consults the componentsolvers after a non-deterministic decision was made to �nd out which determin-istic ones it involves and uses constraint propagation techniques to circulatedecisions between the component solvers. The impact of this method is enor-mous. It turns out that in many cases there is enough information available inthe constraint systems to shrink the non-deterministic search space by ordersof magnitude.This chapter heavily relies on [61]. The optimisation methods described abovewere originally designed for the combination of equational uni�cation algorithm;and it is that, what the technical report describes. But these methods can beapplied to the more general case of combining constraint solvers straight for-wardly. The original combination algorithm for combining constraint solvers, asdescribed in the previous chapter, di�ers from the one for combining uni�cationalgorithms (as presented in [14]) only in the obvious way. Every predicate dif-ferent from equality must be puri�ed (i.e., alien subterms must be abstractedaway) and assigned to the component the signature of which it belongs to.Thus only a small extension in the puri�cation step is needed, the three mainsteps, the non-deterministic guessing of the variable identi�cation, labelling andordering remain the same.On the terminological side, we replaced the notion constraint as used in [61] bythe notion decision. Since we are describing the more general case of combiningconstraint solvers and not just equational uni�cation algorithms, we would end46

up using the word \constraint" for both the input problem and the individualnon-deterministic choices, and that would only cause a lot of confusion.The optimisation methods and the above cited report are a co-production withJ. Richts. He developed and implemented the deductive method and the deduc-tive component algorithms for equational uni�cation. All these are described indetail in his forthcoming doctoral dissertation. The author's contribution is thedevelopment of the iterative method and the integration of the two methods.He also implemented the deductive component algorithm for feature structures.The �rst section of this chapter shortly reviews the original combination algo-rithm and explains its complexity. It also presents some basic optimisationsthat are obvious or long known and should be taken into account by any im-plementation. The second section introduces the concept of a decision as atechnical term thereby laying out a common framework for describing bothmethods. The following two sections are devoted to introducing and describ-ing our two optimisation methods. We will thereafter show that it is easy tointegrate them into a common system and present some run time results toempirically support our theoretical claims. Finally, since Boudet [20, 21] devel-oped optimisation techniques for combining uni�cation algorithms that showcertain similarities to our work, we spend some time to detail the di�erencesand similarities of the two approaches.In this chapter, a constraint problem is a conjunction of atomic formulae. Vari-ables occurring therein are implicitly existentially quanti�ed.4.2 The Base for OptimisationThe Original Combination AlgorithmIn this section, we brie
y recapitulate the original combination algorithm asdescribed in the previous chapter while at the same time extending it from 2to n constraint solvers that are combined simultaneously. For i = 1; : : : ; n(n � 2), let �i be pairwise disjoint signatures and � := Sni=1�i. The inputproblem � is a conjunction of atomic constraints over �. We say that � is indecomposed form, if � has the form Sni=1 �i where each �i is a pure constraintproblem of component i over the signature �i. Any constraint problem � canbe transformed into a constraint problem in decomposed form that is solvable,i� the original problem is solvable, by a simple deterministic preprocessing step,namely variable abstraction. In the following, we will therefore always assumethat a constraint problem is in decomposed form Sni=1 �i.The combination algorithm consists of three non-deterministic steps which re-sult in a linear constant restriction for the constraint problem. The notion of alinear constant restriction is introduced for uni�cation problems at the end ofSection 2.2. Let � be a constraint problem in decomposed form.Step 1: Variable identi�cation Non-deterministically choose a partitioning� of Var(�) and a representative for each class. In all constraints, replace each47

variable by its representative. We obtain a new formula �0 := V�0i. Let Y bethe set of representatives.Step 2: Labelling Non-deterministically choose a labelling function Lab :Y ! f�1; : : : ;�ng.Step 3: Ordering Non-deterministically choose a strict linear order <L onthe variables Y .Step 4: Component solvers For i = 1; : : : ; n, form constraint problems withconstant restrictions: in �i treat each x 2 Y with Lab(x) 6= �i as a free constantand use the linear constant restrictions induced by <L.Theorem 4.2.1 The input problem � has a solution in the free amalgamatedproduct, if and only if there exists an output tuple (�01; : : : ;�0n) with Lab and <Lin Step 4 such that for i = 1; : : : ; n the constraint problem with linear constantrestriction (�0i; (Lab; <L)) has a solution.A proof of this theorem can be found in [15]. For clarity, Let us de�ne thenotion of a solution for a constraint problem with linear constant restriction inone of the components.De�nition 4.2.2 Let (A�ii ;X) be a quasi-free structure. Let L = (Lab; <L)be a linear constant restriction, and �i a constraint problem over signature�i. A substitution � is a called a solution of the constraint problem withlinear constant restriction (�i; L), i� it is a solution of �i and for every variablex 2 dom(Lab) with Lab(x) 6= �i holds �(x) 2 X, and for all variables x; y 2dom(Lab) with Lab(x) = �i;Lab(y) 6= �i; x <L y holds �(y) =2 StabAi(�(x)).If the constraint problem is positive, i.e., contains no negation, as we assumein this chapter, then constraint problems with linear constant restrictions canbe translated into purely logic problems, as is shown in Lemma 3.2.29.Complexity of the Original Combination AlgorithmThe above algorithm contains three non-deterministic steps. By guessing theright variable identi�cation, labelling and ordering, one can �nd a solutionin polynomial time. Hence the algorithm belongs to the complexity classnondeterministic-polynomial time (NP). But any implementation has to be de-terministic, thus the above classi�cation is not really satisfactory. We willnow give a bound for the search tree spanned by the combinations of di�erentchoices that can be made. Suppose that there are n component systems and kvariables.11The following basic combinatorial notions and formulae can be found in any book on thissubject. A particular constructive approach that we consulted is [105].48

In Step 1, we have to calculate an upper bound for all partitions of k Variables.The number of partitions of a k element set is known as the k-th Bell numberBk. It can be recursively calculated by the formulaB0 = 1; Bk+1 = kXr=0 kr!Br :But there is a more appropriate way for our purposes. The choices in Steps 2and 3 are not independent of the choices in the �rst step, they depend on thenumber of remaining representatives. The number of ways to partition a kelement set into r partitions is called the Sterling number of the second kind.It is de�ned by sk;r := 1r! rXj=0(�1)r�j rj!jkand can be recursively calculated bysk;r = sk�1;r�1 + r � sk�1;r :Now, the k-th Bell number Bk = kXr=1 sk;rby de�nition of Bell numbers and Sterling numbers of the second kind.Let r be the number of representatives remaining after variable identi�cationin the �rst step. In Step 2, the labels for the variables (after identi�cation) arechosen independent of each other. Thus there arenrdi�erent variable labellings.In Step 3, we are looking for all linear orders of the representatives. Thus wehave to consider all permutations of a r element sequence, and it is known thatthere are r!many.Hence, the size of the search space is given bykXr=1 sk;r � nr � r! :A deterministic implementation of the algorithm is in the complexity class de-terministic (singly-) exponential time. To gain an intuition on the size of thesearch space, consider a small input problem with 3 component systems and 5variables. Then there are exactly 52923 di�erent leaf nodes in the search tree.So, even small problems are practically intractable. This obviates the need foroptimisation techniques. 49

Basic OptimisationsThe following optimisations are very straightforward and should be taken intoaccount in any implementation. They have already been discussed by otherauthors or are obvious. We mention them here for the sake of completeness.Only variables occurring in more than one component constraint �i have to beconsidered by the combination algorithm. Hence we de�ne the set of combina-tion variables or shared variables U := fx j 9i; j : i 6= j; x 2 Var(�i) \Var(�j)gand use Ui := U\Var(�i) to denote the set of combination variables of constraint�i. Only combination variables need to be considered in the non-deterministicsteps. Because if L is a linear constant restriction containing only combinationvariables such that (�; L) is solvable, then L can be extended to a linear con-stant restriction L0 with all variables that has an identical set of solutions. Thisfact was discovered independently by Boudet [20, 21] and Baader & Schulz [5].Secondly, two di�erent linear orderings <L1 and <L2 may lead to the sameconstraint problems with linear constant restrictions. Suppose that the order-ings <L1 and <L2 di�er only in the order of two variables with identical labelwhich are adjacent w.r.t. <L1 and <L2 . Then the restrictions on atoms thatcan occur in the stabilisers of other elements induced by these orderings areidentical and the constraint problem with linear constant restriction obtainedfrom <L1 is solvable i� the problem obtained from <L2 is solvable. Thus thealgorithm does not need to consider the ordering of variables with identical la-bel if no variable with di�erent label lies between them in the chosen ordering.The orderings we will use in the following are therefore only quasi-linear : eachtwo variables which have di�erent labels must be ordered.Thirdly, the set of pure constraint problems can be partitioned in such a waythat each class of constraint problems can be solved independently of the othersby the following. We call two pure constraint problems interrelated i� theyshare a variable. A class of constraint problems is a connected component withrespect to this \interrelated"-relation. If two constraint problems belong todi�erent classes, they do not even indirectly share variables. Thus they aretotally independent of each other and can therefore be solved independently.Hence, we will assume that the constraint problem we must solve consists ofjust one class of interrelated constraint problems.We generalise the notion of a linear constant restriction to respect the �rst twooptimisations mentioned above and to include the variable identi�cation givenin the �rst step of the combination algorithm. A generalised linear constantrestriction over a set of variables U is a triple L = (�;Lab; <L) where � is apartition of U , Lab : U ! f�1; : : : ;�ng is a labelling function, and <L is apartial ordering of U with the following properties (we use �� to denote theequivalence relation induced by �):� Lab obeys the identi�cation induced by � (Lab(x) = Lab(y) if x �� y),� <L obeys � (x0 <L y0 if x0 �� x, y0 �� y, and x <L y), and50

� each two variables with di�erent labels are ordered in <L (x <L y ory <L x if Lab(x) 6= Lab(y)).A substitution � solves (�i; L) in the quasi-free structure (A�ii ;X), i� � solves�i, and for all x; y 2 U� �(x) = �(y) if x �� y,� �(x) 2 X whenever Lab(x) 6= �i, and� �(y) =2 StabAi(�(x)) whenever Lab(y) 6= Lab(x) = �i and x <L y.By item two, all variables that receive a label di�erent from �i are treatedas constants by �. By item three, the use of these constants in � is furtherrestricted. Two generalised linear constant restrictions L1 and L2 over U arecalled equivalent, if they have identical partitions and labelling functions andtheir orders di�er at most in ordering variables of identical label. This de�nitioninduces an equivalence relation on all generalised linear constant restrictions fora given set of variables U . If L1 and L2 are equivalent and a substitution �solves (�; L1), then � also solves (�; L2).Proposition 4.2.3 The input problem � has a solution in the free amalga-mated product, if and only if there exists a generalised linear constant restric-tion L = (�;Lab; <L) over U , the combination variables of �, such that forthe output tuple ((�1; L); : : : ; (�n; L)) each constraint problem with generalisedlinear constant restriction (�i; L) has a solution.It is clear that an optimised algorithm will compute just one generalised linearconstant restriction for each equivalence class.4.3 Decision SetsThe original algorithm makes all non-deterministic decisions �rst, and onlythereafter it calls the component algorithms to determine whether the inputproblem with the thus chosen constant restriction is solvable. Our optimisa-tions interleave these two parts. Hence we have to deal with linear constantrestrictions which are only partially speci�ed, i.e., restrictions representing thechoices already made but making no statements about the decisions still open.In order to describe these partial constant restrictions and to have a commonframework for describing our optimisations on a formal level, we introduce thenotion of decision sets. Each element in such a set describes a single non-deterministic decision. There exist �ve di�erent types of decisions.De�nition 4.3.1 Let U be the set of variables. A decision is an expressionof the form x := y, x 6 _= y, x _� y, x _7! �i, or x 6 _7! �i, where x; y 2 U and1 � i � n. The decision x _< y is used as an abbreviation for x _� y; x 6 _= y.With L(U) we denote the decision language.51

Sets of decisions (for a set of variables U) are { as usual { read conjunctively.In order to represent the two options when making a decision, we de�ne thenegation of a decision.De�nition 4.3.2 Let d be a decision. Its negation :d is de�ned as follows::x := y := x 6 _= y, :x 6 _= y := x := y,:x _7! �j := x 6 _7! �j, :x 6 _7! �j := x _7! �j,:x _� y := y _< x.These rules of negation re
ect the three non-deterministic steps of the algo-rithm: Two variables have to be identi�ed or treated as di�erent variables;each variable has to be treated as a variable or like a constant in a particularcomponent constraint problem; and two variables with distinct labels have tobe ordered in one way or the other. In the following we formally de�ne thiscorrespondence between sets of decisions and linear constant restrictions.De�nition 4.3.3 Let U be a set of variables. A generalised linear constantrestriction L = (�;Lab; <L) over U satis�es a decision set D, if the followingholds: x �� y if x := y 2 D; x 6�� y if x 6 _= y 2 D;Lab(x) = �i if x _7! �i 2 D; Lab(x) 6= �i if x 6 _7! �i 2 D;x <L y or x �� y if x _� y 2 D:The set of linear constant restrictions satisfying D is denoted by L(D). Twosets of decisions D1 and D2 are equivalent if L(D1) = L(D2). A set D is calledinconsistent if L(D) = ;.So, the decisions are interpreted by a generalised linear constant restriction ina straightforward way.De�nition 4.3.4 A decision set D is called closed ifD = fd j every L 2 L(D) satis�es fdgg:This de�nition implies that for each decision set D there is exactly one closedset which is equivalent to D; this set is called the closure of D. This closurecan be computed e�ciently; one has to consider that := denotes a congruence,_< stands for an ordering, and x _7! �i represents a functional relation. Forexample, a closure always contains x := x for all variables x 2 U , the twodecisions x := y 2 D and y _< z 2 D imply that x _< z is in the closure of D, andthe closure of fx _7! �ig contains x 6 _7! �j for all i 6= j. In the following we willalways assume that sets of decisions are closed, i.e., when adding decisions toa set we assume that the closure is formed immediately. With CL(U) we denotethe set of all closed decision sets. There are two special closed decision sets.The �rst one is the closure of the empty decision set, denoted C?. The secondone is the closure of any inconsistent set, namely C> = L(U).We have the following syntactic characterisation of closure.52

Lemma 4.3.5 Let D be a set of decisions over variables U . D is closed, i� forall x; y; z 2 Ux := x 2 D,x := y 2 D =) y := x 2 D,x := y; y := z 2 D =) x := z 2 D,x 6 _= y 2 D =) y 6 _= x 2 D,x := y; y 6 _= z 2 D =) x 6 _= z 2 D,x _7! �i 2 D =) x 6 _7! �j 2 D for all j 6= i,x := y; x _7! �i 2 D =) y _7! �i 2 D,x _7! �i; y _7! �j 2 D; i 6= j =) x 6 _= y 2 D,x _< y; y _< z 2 D =) x _< z 2 D,x := y; y _< z 2 D =) x _< z 2 D,x _< y; y := z 2 D =) x _< z 2 D,x _< y 2 D =) x 6 _= y 2 D.Proof. It is straight forward to check that if D is closed all of the aboveconditions must hold. Thus the only interesting part is to see that the conditionscharacterise closure. So letD ful�l these conditions. We have to show that everydecision that is satis�ed by all linear constant restrictions L 2 L(D) is alreadycontained in D. Decisions satis�ed by all L 2 L(D) are those ones that followfrom the de�nition of a generalised linear constant restriction.Let L = (�;Lab; <L) be a generalised linear constant restriction. The �rstpart, �, is a partition of U . It interprets := and 6 _=. Thus := is always re
exive,symmetric and transitive in the closure of D, 6 _= is symmetric and :=-closed.Hence the �rst �ve conditions.The second component, Lab, is a labelling function that obeys �. Condition sixcorresponds to function-hood and conditions seven and eight re
ect that Labrespects �.The third component, <L, is a partial order that obeys � and orders each twovariables with di�erent labels. Condition nine give the transitivity of the partialorder. Conditions ten to twelve re
ect that <L obeys �. Since the de�nition of<L only demands that two variables of di�erent labels be ordered, but not theway they are, di�erent linear constant restrictions may order them di�erently.Hence there can't be any decision satis�ed by all linear constant restrictionsin L(D) resulting from that part of the de�nition of <L. Since this is all thede�nition demands there are no more conditions required.We need a criterion when a set of decisions already represents one linearconstant restriction constructed by the algorithm, i.e., when no more non-deterministic decisions have to be made.De�nition 4.3.6 A set of decisions D is complete, if all generalised linearconstant restriction in L(D) are equivalent.From this de�nition and the one above it follows that there is a one-to-onecorrespondence between the equivalence classes of generalised linear constantrestrictions over U and closed and complete sets of decisions for U .53

In order to test inconsistency and completeness in the algorithm, we need asyntactic formulation of these properties. This is provided by the followinglemma.Lemma 4.3.71. A closed set of decisions D is inconsistent i� d 2 D and :d 2 D for somedecision d.2. A closed and consistent set of decisions D (for variables U) is completei� for all x; y 2 Ueither x := y 2 D or x 6 _= y 2 D, andeither x _< y 2 D or y _< x 2 D if x _7! �i; y 6 _7! �i 2 D, andx _7! �i 2 D for one �i.Proof. The characterisation of consistency is obviously correct.Let D be a consistent closed and complete set. Since all generalised linearconstant restrictions in L(D) are equivalent, all their partitions and labellingfunctions are identical. As the partition and labelling function are total on U ,clearly for all x; y 2 U : either x := y 2 D or x 6 _= y 2 D and there is an i � nwith x _7! �i 2 D by D being closed.All generalised linear constant restrictions in L(D) order all pairs of variableswith di�erent label, and since they are equivalent, their ordering informationon those variables that di�er in label are identical. Thus for all x; y 2 U withx _7! �i; y 6 _7! �i either x _< y 2 D or y _< x 2 D, because D is closed.Suppose D is consistent and closed and ful�ls the three conditions. Let L1 =(�1;Lab1; <L1) and L1 = (�2;Lab2; <L2) be two generalised linear constantrestrictions that satisfy D. For all x; y 2 U either x := y 2 D or x 6 _= y 2 D.Therefore for all x; y 2 U either x ��1 y and x ��2 y or x 6��1 y and x 6��2 y.Thus �1 = �2.For all x 2 U there is an i such that x _7! �i 2 D. Therefore for all x 2 U :Lab1(x) = Lab2(x) = �i. And thus Lab1 = Lab2.For all x; y 2 U such that there is an i with x _7! �i; y 6 _7! �i 2 D eitherx _< y 2 D or y _< x 2 D. Thus either x <L1 y and x <L2 y or y <L1 x andy <L2 x. Therefore <L1 and <L2 order all pairs of variables that di�er in labelidentical. Therefore, L1 and L2 are equivalent and D is complete.De�nition 4.3.8 Let (A�ii ;X) be a quasi-free structure over signature �i. Aconstraint problem with decision set is a �nite set of atomic �i-constraints �(read conjunctively) together with a set of decisions D. A substitution � is asolution of (�;D), if � is a solution of � and for all variables x; y 2 U� if x := y 2 D then �(x) = �(y),� if x 6 _= y 2 D then �(x) 6= �(y),� if x 6 _7! �i 2 D then �(x) 2 X,� if x _7! �i; y 6 _7! �i; x _< y 2 D then �(y) =2 StabAi(�(x)).54

4.4 Iterative DecompositionThe PrincipleAmajor disadvantage of the original method is late detection of failure. Supposethe input problem consists of constraint problems of �ve di�erent componentsand that the second sub constraint problem { and thus the whole problem { isunsolvable. The original method always makes all decisions for all constraintproblems. In order to detect the insolvability of the second component, alldecisions for all the following components must be considered as well beforetesting solvability. Thus the whole search tree of the remaining constraintproblems must be considered before the algorithm establishes that at any leafof this tree the second component is unsolvable, independently of the decisionsmade for later components.Avoiding this problem is the main goal of the iterative decomposition method:components are solved iteratively, one component at a time. All decisions inthe non-deterministic steps are made locally, for the current component only,and after that, this component is tested for solvability. So we start by non-deterministically choosing a variable identi�cation, a labelling, and an orderingthat solves the �rst component problem. And we proceed from one compo-nent constraint problem to another by making the choices necessary to solvethe next component problem while respecting previously made choices. If itturns out that previously made choices make the current component problemunsolvable, we have to backtrack to the previous component problem and tryanother set of choices. Making choices locally just for one component problemmeans the following. We identify or discriminate variables of the current com-ponent problem, only. We label variables of the current component problem,and furthermore we only determine whether a variable receives the signature ofthe current component problem as label or whether it is treated as a constantin this component. And just the variables of the current component problemare ordered.The advantages of the iterative decomposition are twofold. Firstly, iterativedecomposition remedies the disadvantage of late detection of insolvability asdescribed above. If a component problem is unsolvable, this is detected whentrying to solve this component problem. Therefore no decisions about latercomponent problems will be made.Secondly, the search space is reduced as compared to the original algorithmby avoiding certain super
uous choices. Even under the assumption that allcomponent problems of the input constraint problem are interrelated, there arevariable identi�cations and orderings that are not needed. For example, if twovariables do not occur commonly in one component problem after all identi�-cations being made, then ordering them either way does not a�ect solvability.Since iterative decomposition can make decisions only on variables that occurtogether in at least one component problem, these super
uous choices will notbe made. 55

The AlgorithmBefore we present the algorithm, we have to de�ne a condition when all choicesfor one component constraint problem have been made. Recall that Ui denotesthe set of combination variables of problem �i.De�nition 4.4.1 A decision set D is complete for component i, i� for all vari-ables x; y 2 Uieither x := y 2 D or x 6 _= y 2 D, andeither x _7! �i 2 D or x 6 _7! �i 2 D, andeither x _< y 2 D or y _< x 2 D if x _7! �i; y 6 _7! �i 2 D.In the following description, we collect previously made decisions in the formof sets of decisions Di. Each set Di will be a consistent closed set of decisionscollecting the choices we have made so far. De�ne D0 := Clo(;), i.e., the initialset of decisions is trivial.For component problems i := 1 to n repeat the following stepsStep 1: Variable Identi�cationChoose a partition � amongst the variables Ui. De�neD0i;= := fx := y j x �� ygand D0i; 6= := fx 6 _= y j x 6�� yg. The partition � must be chosen in such away, that Di�1 [D0i;= [D0i; 6= is consistent. This means that previously madeidenti�cations and discriminations must be observed.Step 2: LabellingChoose some set V � Ui to form the labelling decision set D0i;Lab := fx _7! �i jx 2 V g [fx 6 _7! �i j x 2 Ui n V g in such a way that Di�1 [D0i;= [D0i; 6= [D0i;Labis consistent. Therefore labels are assigned to whole classes of the partition �,and a label can only be assigned to variables that have not yet received one.Step 3: OrderingChoose a set of ordering decisions D0i;< � fx _< y; y _< x j x; y 2 Ui and x _7!�i; y 6 _7! �i 2 D0i;Labg such that each pair x; y 2 Ui with distinct labels is orderedand Di�1[D0i;=[D0i; 6=[D0i;Lab[D0i;< is consistent. This implies amongst otherthings that the order is non-cyclic and that previous ordering decisions arerespected.De�ne Di as the closure of Di�1[D0i;=[D0i; 6=[D0i;Lab[D0i;<. De�ne DijUi � Dias the subset of Di that contains only decisions over the variable set Ui.Step 4: Testing the Component Problem �i with Decision SetIf there is a �i-substitution that solves (�i;DijUi), continue with the nextcomponent problem. Otherwise choose another set of decisions. If no otherchoice is left for the current component problem �i, backtrack over componentsi� 1; : : : ; 1, i.e., try another choice in the preceding components.Proposition 4.4.2 The input problem � is solvable, i� there is a set Dn suchthat for each i = 1; : : : ; n the component problem with decision set (�i;DijUi) issolvable. 56

Note that testing (�i;DijUi) for solvability can be performed by the same com-ponent algorithms as are used in the original algorithm.It is a quite subtle task to enumerate all the possible consistent extensions ofa given decision set without relying on an ine�cient generate and test method.For the �rst two steps, this task is not too di�cult. For the third step, thedescription of such an enumeration algorithm is rather involved. It followsin Section 4.5. We will now give syntactic criteria for when an extension isconsistent.Lemma 4.4.3 In Step 1, Di�1[D0i;=[D0i; 6= is consistent, i� the following twoconditions are true: both x �� y if x := y 2 Di�1, and x 6�� y if x 6 _= y 2 Di�1for all x; y 2 Ui.Proof. If Di�1 [D0i;=[D0i; 6= is consistent, then clearly the two conditions hold.For the inverse direction, Di�1 and D0i;= [D0i; 6= are consistent. So the only wayinconsistencies can arise by d 2 Di�1 and :d 2 D0i;= [D0i; 6= for some decisiond. This can only happen by either x := y 2 Di�1 and x 6�� y or x 6 _= y 2 Di�1and x �� y for some x; y 2 Ui.Lemma 4.4.4 In Step 2, Di�1 [D0i;= [D0i; 6= [D0i;Lab is consistent, i� thefollowing two conditions are true: both [x]� � V for all x 2 V , and V \ fx j9j < i : x _7! �j 2 Di�1g = ;.Proof. IfDi�1[D0i;=[D0i; 6=[D0i;Lab is consistent, then clearly the two conditionshold. For the inverse direction, Di�1 [D0i;= [D0i; 6= and D0i;Lab are consistent.There are two ways inconsistencies can arise. There can be some decision dsuch that d 2 Di�1 [D0i;= [D0i; 6= and :d 2 D0i;Lab. Or the inconsistency occurswhen forming the closure of Di�1 [D0i;= [D0i; 6= [D0i;Lab. The former casecan only happen if there is an x 2 V such that x _7! �j 2 Di�1 for somej < i. The latter case occurs only, when x 6 _7! �i 2 D0i;Lab and x _7! �i 2Clo(Di�1 [D0i;= [D0i; 6= [D0i;Lab) n (Di�1 [D0i;= [D0i; 6= [D0i;Lab). This happens,when x := y 2 Di�1 [D0i;= [D0i; 6= and y _7! �i 2 D0i;Lab. Thus there is a y suchthat y 2 V but [y]� 6� V .Correctness and CompletenessWe presume the correctness and completeness of the original decompositionwith basic optimisations, as stated in Proposition 4.2.3.CorrectnessLemma 4.4.5 For each i with 1 � i � n, the decision set DijUi is closed,consistent and complete for component i.57

Proof. DijUi is consistent as a subset of the consistent set Di. DijUi is closed,because it is the reduction of the closed set Di that contains all decisions overvariables Ui.Let x; y 2 Ui. Then either x := y 2 DijUi or x 6 _= y 2 DijUi due to Step 1 of thealgorithm. And either x _7! �i 2 DijUi or x 6 _7! �i 2 DijUi due to Step 2. Ifx _7! �i; y 6 _7! �i 2 DijUi then immediately by Step 3 either x _< y 2 DijUi ory _< x 2 DijUi . Therefore DijUi is complete for component i by De�nition 4.4.1.Proposition 4.4.6 If for all i with 1 � i � n there exists a �i-substitution �ithat solves (�i;DijUi), then the input problem � is solvable.Proof. Dn is consistent by de�nition. De�ne the following generalised linearconstant restriction L = (�;Lab; <L) by� x �� y, i� x := y 2 Dn,� Lab(x) = (�i; if x _7! �i 2 Dn;�n; otherwise;� <L is given by any consistent extension ofx <L y, if x _< y 2 Dnthat orders each two variables with di�erent labels.L satis�es Dn, and if �i solves (�i;DijUi) then �i solves (�i; L). Thus the inputproblem � is solvable due to correctness of the original algorithm (Proposi-tion 4.2.3).CompletenessThe aim is to show the followingProposition 4.4.7 If the input problem � is solvable, then � is solvable byiterative decomposition.We will prove this proposition using the completeness of the original algorithmwith basic optimisations. Due to the completeness of the original algorithm, ifthe input problem is solvable, there exists a generalised linear constant restric-tion L such that the output tuples ((�i; L))1�i�n are solvable. This generalisedlinear constant restriction is used to guide the choices that will be made in eachiteration of the iterative method.De�nition 4.4.8 Let L = (�; <L;Lab) be a generalised linear constant re-striction. De�ne 58

the set of equality decisionsD#= := fx := y j x �� y and 9i � n : x; y 2 Uig,the set of disequality decisionsD#6= := fx 6 _= y j x 6�� y and 9i � n : x; y 2 Uig,the set of labelling decisionsD#Lab := fx _7! �i j Lab(x) = �i and x 2 Uig,the set of ordering decisions as the setD#< := fx _< y j x <L y;9j : x; y 2 Uj ; (Lab(x) = �j;Lab(y) 6= �j) or (Lab(x) 6= �j ;Lab(y) = �j)g:Set D#L, the decision set induced by L, as the closure of the union D#=[D#6=[D#< [D#Lab.Lemma 4.4.9 D#L is a closed consistent set.Lemma 4.4.10 Let �i be a constraint problem. Let L = (�;Lab; <L) be alinear constant restriction and D#L the decision set induced thereby. Then(�i; L) is solvable , if and only if (�i;D#LjUi) is solvable, where D#LjUi is D#Lrestricted to decisions over variables Ui.Proof. If (�i; L) is solvable, then (�i;D#LjUi) is solvable, because the decisionset D#LjUi induced by L contains only a subset of the decisions of L.For the inverse direction, suppose � solves (�i;D#LjUi). If for x; y 2 Ui : �(x) =�(y), then x := y 2 D#LjUi and therefore x �� y.Now let x �� y. Then x := y 2 D#LjUi by de�nition of D#L and therefore�(x) = �(y).Let for y 2 Ui : Lab(y) = �j with j 6= i. If y 2 Uj , then y _7! �j 2 D#LjUi .If y =2 Uj , then there is no k such that y _7! �k 2 D#LjUi . In both casesy _7! �i =2 D#LjUi . Therefore �(x) 2 X as demanded.Let for x; y 2 Ui : Lab(x) = �j ;Lab(y) = �i; j 6= i and �(x) 2 Stab(�(y)).Then y _7! �i 2 D#LjUi ; and x 6 _7! �i 2 D#LjUi according to the same argumentas in the previous paragraph. Therefore x _< y 2 D#LjUi and x <LjUi y byde�nition of D#LjUi .We now have to show that D#L is a potential decision set calculated by theiterative decomposition.Lemma 4.4.11 Let (�; L) be a solvable component problem with decision setL. Then the induced decision set D#L can be constructed by the iterative de-composition, i.e., D#L = Dn.Proof. In each component i, we make the following choices. Two variablesx; y 2 Ui are identi�ed according to D#L, that is, i� x := y 2 D#L, then x :=y 2 D0i;=; i� x 6 _= y 2 D#L, then x 6 _= y 2 D0i; 6=. I� x _7! �i 2 D#L, thenx _7! �i 2 D0i;Lab. I� x _< y 2 D<, then x _< y 2 D0i;<.59

Claim 1: For 0 � i � n: Di is consistent and Di � D#L.Proof of Claim 1:D0 = ; is obviously consistent and a subset of D#L.Let i > 0. Di�1 � D#L by hypothesis. D0i;=;D0i; 6=;D0i;Lab and D0i;< are subsets ofD#L by de�nition, thus Di�1[D0i;=[D0i; 6=[D0i;Lab[D0i;< is consistent, becauseit is a subset of the consistent set D#L. Di de�ned as the closure of the aboveunion is a subset of D#L by monotonicity of the closure operator and consistent,because it is a subset of a consistent set.Claim 2: D#L = Dn.Proof of Claim 2:Dn � D#L by Claim 1.Let x := y 2 D#L, then x := y 2 Clo(D#=). D#= = Sni=1D0i;= by de�nition, thusClo(D#=) = Clo(Sni=1D0i;=) � Dn.Let x 6 _= y 2 D#L. Then, by de�nition, x 6 _= y 2 Clo(D#= [D#6=). D#= � Dnby the above. If w 6 _= z 2 D#6=, then there is a j such that w; z 2 Uj , and thusw 6 _= z 2 D0j; 6=. Therefore D#6= � Dn. Thus x 6 _= y 2 Dn, since Dn is closed.Let x _7! �i 2 D#L for some i. Then x 2 Ui by de�nition, and thereforex _7! �i 2 D0i;Lab � Dn.Concerning the ordering, D#< = Sni=1D0i;< by de�nition. Clo(D#= [D#6=) =Clo(Sni=1D0i;= [Sni=1D0i; 6=) by the above. Now x _< y 2 D#L implies x _< y 2Clo(D#< [D#= [D#6=) = Clo(Sni=1D0i;< [Sni=1D0i;= [Sni=1D0i; 6=) � Dn.Claim 3: All of the above choices of the sets D0i;=;D0i; 6=;D0i;Lab;D0i;< are validas steps in iterative decomposition.Proof of Claim 3:That all of these choices can be made consistently, is shown by Claim 1.For variable identi�cation, the partitioning is directly given by the equivalenceclasses that result when restricting the equality and disequality decisions of D#Lto the variables of a particular component problem, as done in D0i;= and D0i; 6=.For labelling, the generalised linear constant restrictions ensure that each vari-able receives only one label and that classes of variables that are identi�edreceive one and the same label.For ordering, D0i;< contains only ordering decisions on variables of componenti. It respects the variable identi�cation, because the generalised linear constantrestriction (�; <L;Lab) does so. And, by de�nition, each pair x; y 2 Ui of vari-ables where one has component i as label while the other has not is ordered inD0i;<.Proof of Proposition 4.4.7.Let � be solvable. By Proposition 4.2.3 there exists a generalised linear constantrestriction L = (�; <L;Lab) such that the output tuples ((�i; L))1�i�n havea solution. By Lemma 4.4.10 the output tuples ((�i;D#LjUi))1�i�n with theinduced decision set D#L are solvable. By Lemma 4.4.11, there exists a set ofchoices of the iterative algorithm such that the decision set D#L is constructedthereby. 60

4.5 An Algorithm for Computing the Variable Or-deringsThe description for choosing linear orderings in the iterative algorithm laysout only the conditions that an actual implementation has to ful�l. It is nota method for computing them. In this section we want to give a concretealgorithm, the one that is actually used in the implementation. The key pointof the di�culty is the best use of the already given partial order that one hasto respect when constructing the current one. One could generate all possibleorderings and use the given partial order as a �lter. But that would naturallylead to many orderings constructed in vain. The optimal solution would be onethat integrates the �lter into the construction and produces only such orderingsthat are compatible with the partial ordering. Of course we also want to respectthe basic optimisation that two adjacent variables with identical label (here:current component or not current component) need not be ordered relative toeach other. All of these demands are ful�lled in the following algorithm.Function RestrictionsInput: - partial order PO from previously handle componentsgiven as a list, each element: a pair, a node and a set ofsuccessors which contains all immediate successors and maybesome morea node can can be marked as "done"(this is much simpler than actually taking the node out ofthe PO.)- list of variables of the current component VL(only combination variables are relevant)information whether variable is handled as a true variable orconstant is given (by indexing)variables can be marked, markings are* "inserted" : variable is already inserted into the linearorder* "blocking" : variable is inserted and blocks othervariables in the PO above itself from being inserted laterConstruction of one orderLet LO be the linear order to be constructed,Set LO := [] (empty list)Let VO be the list of variables still to insertSet VO := VL (without markings)Let V/C-flag be a flag indicating whether the last block constructedwas a block of variables or constants.Non-deterministically set V/C-flag to V or C.While VO =\= [] do{(Construction of the next block)Let BE-flag be a flag stating whether the current block is stillemptySet BE-flag := true 61

Invert V/C-flag (V <--> C)If there are only variables of type V/C-flag left in VOAppend VO to LO and exit the loop(Step through VO from left to right)For each element X in VO{If X is the last element of type V/C-flag in VOand BE-flag = true,take Xelsenon-deterministically choose XLet SG be the set of elements below X in POSet SG := Suborder(X, PO, VL)If SG =\= [] do{Set BE-flag := falseDelete SG from VOAppend SG to LOMark X in VL as "blocking"Mark all other elements form SG in VL as "inserted"Mark all elements from SG as "done" in PO}}Delete all marks from VL;}Remove all marks in PO.Compute the linear constant restrictions from LO and call theConstraint solving algorithm of the current component problem.If the solver was successful,Integrate LO in POelsebacktrack choosing a new LO.Function SuborderInput: Variable XPartial order PO with mark signsList of variables of the current componentwith markings VLOutput: If X can be integrated into the current linear order, thesuborder below X in PO, else the empty list.X can be integrated into the current linear order, if for allvariables Y below X in PO holds:Y is not in the current component (in VL)orY is of the same type (variable or constant) as X and not marked as"blocking".The returned suborder is a list of variables that still have to beappended to the quasi-linear order under construction.62

If X is not in PO (a new variable, not handled so far)exit the function with return value [X].Let Stack be a stack of elements from PO still to be processedSet Stack := [X]Let CL be a list of elements which don't need to be processed anymore.Set CL := [].Let SG be the suborder to be returnedSet SG := [].While Stack =\= [] do{Set Y := Top(Stack)Set Stack := Pop(Stack)(Examine Y)If Y is marked as "done" in POjust continueIf Y has a label different from Xor Y is marked as "blocking" in VLset SG := [], Stack := []If Y is not in VL (not in current component)or Y is marked as "inserted" in VL{Set CL := CL (set-) union Successors of Y (in PO)Set Stack := Push(Successors of Y minus CL, Stack)}else (Y in current component, not inserted, unmarked){Set CL := CL union Successors of YSet Stack := Push(Successors of Y minus CL, Stack)Set SG := [Y|SG] (append Y to SG)}}Return SG.4.6 The Deductive MethodThe method to describe in this section relies on the fact that many decisionsin the search space are not really non-deterministic, but rather determinedby demands of the components. It has been developed by J. Richts and isexplained in full detail in his doctoral dissertation. We present it here, becauseany description of optimisation techniques would be incomplete without it, andalso because the method has been developed in a co-operative project with us.The deductive and the iterative method are integrated to form one system.A severe disadvantage of the original combination algorithm is that all non-deterministic decisions are made blindfolded without respecting the require-ments that the components may impose. For example, if a component is an63

equational theory Ei that is collapse-free and the problem contains an equationx = f(: : : y : : :) where f 2 �i, then x must receive label �i. If Ei is also regularthen the problem is unsolvable if y 6 _7! �i 2 D and x _< y 2 D. Hence thealgorithm can choose x _7! �i 2 D deterministically and take into account thaty 6 _7! �i 2 D implies y _< x 2 D.As the example shows, some decisions that have been deduced earlier in onecomponent can be used to deduce new decisions in another component. Thispossible interplay between di�erent components suggests to use a method wherecomponent algorithms computing new decisions are called alternately in the be-ginning of the combination algorithm and whenever a non-deterministic choicehas been made: Starting with some initial decisions, each component algorithmcomputes new decisions; these new decisions are added to the current set ofdecisions, which is used when calling the other component algorithms. Whenthis process comes to an end because no new decisions can be deduced, the nextnon-deterministic choice has to be made by the combination algorithm. Afterthis choice the process of computing new consequences can be started again.At any step of computing the consequences, a component algorithm may returnthe information that its subproblem has become unsolvable with the current setof decisions. Thereby, unsolvable branches of the search tree can be detectedearlier.Obviously, this method requires new component algorithms that are capable ofcomputing consequences implied by the component structure, the problem, andthe decisions computed so far. A quasi-free structure for which such an algo-rithm does not exist can still be used in this method, but it cannot contribute tothe deductive process. It is clearly the quality of the deductive component al-gorithms that decides the amount of optimisation achieved. The optimisationsof our component algorithms go quite beyond using only syntactic propertiesof theories as in the example above. The goal is to deduce as much informationas is possible with a reasonable e�ort.The AlgorithmFirst we de�ne the task of the new deductive component algorithms. Theirinput is a pure constraint problem and a set of decisions which need not becomplete. The result is a set of decisions that follows from the constraintproblem and the input decisions. If the input is unsolvable, the result may alsobe an inconsistent set of decisions.De�nition 4.6.1 Let (�;D) be a constraint problem with decision set. Thedecision set D is a consequence of (�;D), i� D is contained in every completedecision set D0 � D with (�;D0) is solvable, i.e.,C �\fD0 j D � D0;D0 is complete for �; and (�;D0) is solvable g:Note that C = ; is always a consequence and that the solution need not be in-consistent if (�;D0) is unsolvable for all complete extensionsD0 ofD. Therefore,64

the standard algorithms for constraint problems with linear constant restrictionsmust be called in the end when a complete set of decisions is reached. In thesubsection on component algorithms, we discuss how deductive and componentalgorithms co-operate.Now we can describe the algorithm. The termination condition in case of successis that the set of decisions is complete, as given in Lemma 4.3.7. In the following,D denotes the current set of decisions, initialised with D := ;.RepeatDeduce consequences:RepeatFor each component i,call the component algorithm of component i to calculatenew consequences D of (�i;D),set the new current set of decisions D := D [CUntil D is inconsistentor no component algorithm computes new decisions.If D is consistent and not completeSelect next choice:Select a decision d =2 D such that D [fdg is consistent.Non-deterministically choose eitherD := D [fdg orD := D [f:dgUntil D is inconsistent or completeReturn D.Like the algorithms presented so far, this algorithm non-deterministically com-putes a decision set D for which each (�i;DjUi) has to be tested for solvability.Proposition 4.6.2 The input problem � is solvable, i� the algorithm computesa consistent decisions set D such that for each i = 1; : : : ; n the constraint prob-lem with decision set (�i;DjUi) is solvable.A proof of this proposition can be found in Richts' doctoral dissertation.Deterministic CombinationIt is interesting to observe that there exists a class of constraint systems forwhich the deductive combination algorithm has PTIME complexity, which en-tails that all steps can be made deterministically. In [94, 96], K. U. Schulz givesa general description of a PTIME combination algorithm for certain equationaltheories. This algorithm is extended to the combination of quasi-free structuresin Chapter 6. The class of structures that are deterministically combinable isquite restricted. Currently, only unitary regular collapse-free structures areknown to belong to it. 65

Although our deductive component algorithm is designed for the general case,it turns out to be an implementation of the deterministic algorithm when ap-plied to component algorithms satisfying the conditions imposed in [94, 96] andChapter 6. Our component algorithms for uni�cation in the empty theory, forrational tree algebras, and for feature structures meet these conditions. Thus,when applied to these structures, our combination algorithm runs determinis-tically. This deterministic behaviour shows the great impact of interchangingdecisions between component algorithms.Component AlgorithmsIn order to prune the search space signi�cantly, new component algorithms areneeded for the deductive method. When designing these algorithms one shouldtake into account the special way in which they are called. Many constraintsolving algorithms, especially standard uni�cation algorithms, are \one shot"algorithms: They are started only once with all information they need given andcompute �nal results. Deductive component algorithms must be able to copewith partial information and deliver a meaningful but not not necessarily the�nal result. More importantly, when receiving new information the algorithmsshould not restart computation from scratch but rather continue on the baseof their prior internal states. Otherwise, the search space would be partiallyshifted from the combination algorithm to the deductive component algorithms.The same holds for the standard component algorithms for constraint problemswith linear constant restrictions that perform a complete test at the end of thecombination algorithm: They should take into account the information alreadycomputed by the corresponding deductive component algorithms. Thus thereshould be a strong coupling of the standard and the deductive algorithm.Note that there is no need for completeness in the deductive component algo-rithm. The algorithm need not compute all decisions implied by the input andit need not return an inconsistent set if the problem is unsolvable. Thus an al-gorithm returning always the empty set would be correct. This would not resultin any optimisation, but it enables us to use every quasi-free structure in thedeductive combination algorithm for which an algorithm for solving constraintproblems with generalised linear constant restrictions exists. In the other ex-treme it might not be advisable to compute new decisions at any cost; thereshould be a careful consideration between optimisations of the combination al-gorithm resulting from new decisions and a higher complexity of the deductivecomponent algorithm.We developed deductive component algorithms for particular equational theo-ries and equational uni�cation: For the free theory, A, AC, and ACI. This is notthe place to give a detailed description of these algorithms. In the following,we rather outline the ideas underlying them.The deductive algorithm for the free theory is based on computing the mostgeneral uni�er (mgu). Identi�cation, labelling, and ordering can easily be com-puted from this mgu. The mgu has to be computed only once, namely when the66

deductive algorithm is called for the �rst time. When the algorithm is calledwith some new identi�cation x := y, which was deduced by another deductivealgorithm, uni�cation of the terms mgu(x) and mgu(y) has to be performed.All other decisions do not trigger any computation. This method can be inte-grated in the quasi-linear algorithm described in [17] where terms and uni�ersare represented as directed acyclic graphs.The theory A = fx+(y+z) = (x+y)+zg, i.e., the theory of an associative func-tion symbol + is basically the theory of free word equations. The deductivecomponent algorithm translates the input into word equations and simpli�esthem. The simpli�cation steps allow the computation of new identi�cation, la-belling and ordering information. This is an example of a deductive componentalgorithm which does not compute all consequences. Hence we need to callthe standard algorithm for A-uni�cation with linear constant restrictions in theend.For the theory AC = fx+(y+z) = (x+y)+z;x+y = y+xg, i.e., the theory ofan associative and commutative function symbol +, the deductive algorithm isbased on [107]. First, the set of minimal solutions of the homogeneous Diophan-tine equations corresponding to the uni�cation problem is computed. Some ofthese solutions can be deleted with the help of the existing decisions. From theremaining set of solutions, information about labelling, ordering and identi�ca-tion can be deduced.The set of minimal solutions has to be recomputed when new identi�cation deci-sions occur. This might seem to be a drawback at �rst glance, since computingthe solutions of Diophantine equations can be a time-consuming task; but itcannot be worse than in the original combination algorithm, i.e., Diophantineequations are not solved more often, since this happens at most once for everypartition of variables. Unfortunately, the number of minimal solutions of theDiophantine equations can be exponential in the size of the uni�cation problem.But at least we do not need to compute complete sets of uni�ers, which caneven be doubly-exponential in number.In the theory of Abelian monoids, ACI = AC[fx+x = xg, the binary functionsymbol is associative, commutative and idempotent. In [59] an algorithm wasgiven that decides solvability of ACI -uni�cation with constants. The main ideais to set up Horn clauses which describe the solvability of the equations. Weextended this idea by de�ning more general Horn clauses such that variablescan be turned into constants during the algorithm without changing the formof the Horn clauses. The algorithm works by propagating truth values throughthe clauses signalling insolvability when a contradiction occurs. New decisionscan be deduced from the literals in the Horn clauses labelled with truth valuesduring this propagation. Again, the Horn clauses must be set up from scratch,when new identi�cation decisions occur.The algorithms for the free theory and for the theories AC and ACI have incommon that they behave like decision procedures for uni�cation with linearconstant restrictions if called with a complete set of decisions, i.e., they returna correct and complete answer. Therefore the �nal test does not need to com-67

pute anything; it can simply return the result achieved by the correspondingdeductive component algorithm.Rational Trees and Feature StructuresAs examples of a quasi-free structures which are not an equational theories theauthor implemented rational tree algebras and feature structures of the Smolkaand Treinen variety [104]. The algorithm for rational tree algebras is a simpleextension of the algorithm for syntactic uni�cation. The occurs-check has to beleft out and the computation of new decisions is a bit more complicated sincecertain cyclic solution which are impossible in the free theory have to be takeninto account.We introduced feature structures as examples of quasi-free structures in 3.2.17.The implementation employs techniques for integrating record like data types(as feature structures) into logic programming frameworks developed by VanRoy, Mehl and Scheidhauer [114]. Upon �rst call, the internal graph-like repre-sentation of the feature theory is constructed and used to calculate new iden-ti�cation, labelling and ordering information. This representation needs to beconstructed only once. Later on, new incoming identi�cation information doesnot trigger a complete new setup, rather starts a feature structure uni�cationof the the two structures pending below the newly identi�ed variables. Addi-tional information can be read out of the new structures, if uni�cation succeeds.Incoming labelling or ordering information triggers no uni�cation. Labelling in-formation can help to deduce more information on the ordering. The algorithmis designed in such a way that it behaves like a decision procedure for fea-ture constraint problems with linear constant restrictions when called with acomplete set of decisions.4.7 Integrating the Deductive and Iterative MethodThe two methods described above can easily be integrated. The iterativemethod is a selection strategy for non-deterministic steps, while the deductivemethod deduces deterministic consequences from the decisions already made.Therefore integration is achieved by plugging the iterative selection strategyinto the deductive algorithm. The combined method looks as follows. Supposecomponent constraint problems �1 to �i�1 are solved, the current decision setis D, and D is not complete for component i, the current component. Select adecision d =2 D over the variables of component i such that D[fdg is consistent.Nondeterministically choose d or its negation and add it to D. Compute conse-quences and add them to D. If D is still not complete for component i, selectthe next decision for this component. If D is complete and (�i;DjUi) is solv-able, proceed to the next component problem. Otherwise perform backtrackingand make an alternative choice for one of the decisions made so far.The method to compute consequences of a non-deterministic decision should beamended to the new selection strategy as follows. Components that are already68

solved cannot contribute any new decisions. Consequently only componentsthat still have non-deterministic choices left open are consulted.TestsThe above described optimisation methods and component algorithms havebeen implemented in Common Lisp using the Keim toolkit [53]. Indeed, thereexists an implementation for the following component algorithms: for the freetheory, the theories A, AC, and ACI and also for rational tree algebras andfeature constraints. Several versions of the combintion algorithms representingdi�erent levels of optimisation are also implemented to test the speci�c contri-butions that the individual methods provide. Hence there is an implementationof the original combination algorithm with basic optimisations, two versions ofthe iterative method, two of the deductive method and two of the integratedsolution. In the following we show some results of our optimisations. In or-der to test our algorithms with examples that occur in practice we used thereveal theorem prover [25]. For some example theorems, we collected all uni-�cation problems that are generated and solved by reveal while proving them.These theorems (and the corresponding sets of uni�cation problems) containfree function symbols and constants and one or two AC-symbols.Table 4.1 gives an overview of the run time for some sets of uni�cation problems.The �rst six lines contain all uni�cation problems that have to be solved byreveal during the proof search or completion of the respective example. The�rst three examples are very simple completions or proofs and the next threeare more complex theorems from the reveal distribution. All examples exceptthe �rst one contain two AC-symbols and several free symbols. The last threeexamples, containing several AC and ACI symbols, are added to demonstratethe potential of the iterative method. An empty cell in the columns indicatesthat the algorithm was aborted after running one hour.We want to emphasise the di�erences between column `ded' and `ded-'. Column`ded-' shows the run time of the algorithm when using only syntactic propertiesas described in [14]; a comparison with column `ded' demonstrates the power ofthe deductive method and the deductive component algorithms. The run timedecreases dramatically for most examples and some examples even cannot besolved in suitable time when using only syntactic properties.The �rst six examples present an unexpected de�cit in performance increasewhen using the iterative selection strategy in the deductive method (comparecolumns `i+d' and `ded'). This requires an explanation. Note that the numberof backtracking steps is about the same. The equations in the example setscontain at most two AC-function symbols besides the free symbols. And ourdeductive component algorithms for AC and for the free theory are very so-phisticated; they are capable of deducing such an amount of decisions that theremaining search space is to small to be shrinkable by the iterative selectionstrategy. The last three examples show that the use of the iterative selectionstrategy can lead to a speed-up by more than one order of magnitude. The equa-69

Time in seconds BktrkExample Size i+d ded i+d- ded- it+ it orig i+d dedAbelian group 29 3.7 3.7 5.0 5.0 3.2 11.6 17.2 4 4Boolean ring 51 3.2 3.2 4.8 4.8 2.7 3.5 3.3 0 0Boolean algebra 122 15.8 15.7 20.5 24.5 807 12 12exboolston 87 12 12 948 997 17 14exgrobner 1002 154 155 1442 1488 65 66exuqsl2 404 109 108 74 74AC*{ACI* 1 1 16 101 74 385 8.2 15 16 103AC*{ACI* 2 1 31 407 393 413 841 13 205AC*{ACI* 3 1 67 557 204 248 22 192Legend: Bktrk: Number of Backtracking Steps; i+d: Integration of Iterative and DeductiveMethod; ded: Deductive Method; i+d-: Iterative & Deductive Method, but AC-componentreplaced by one that uses only collapse-freeness and regularity; ded-: Deductive Method, butAC-component replaced by one that uses only collapse-freeness and regularity; it+: IterativeMethod alone, plus using collapse-freeness and regularity once at the start; it: IterativeMethod alone; orig: Original unoptimised algorithm.Table 4.1: Run time of some example setstions in these examples contain several AC and ACI -function symbols besidesfree function symbols. It is a general observation that the iterative method isadvantageous, if the number of components is large or the deductive componentalgorithms do not deduce many decisions.In order to get more examples, we developed a test set generator. With it,one generates sets of random combined uni�cation problems over signaturescontaining several function symbols from di�erent theories. Certain means weretaken to ensure that about half of the generated problems are solvable. Table 4.7presents some run time results for these randomly generated problem sets. Thesignature contains 2 A, 2 AC, 0{3 ACI and several free function symbols. Theproblems are that complex that a use of a combination method di�erent fromthe deductive combination makes no sense at all.It is interesting to observe that with these problems, the iterative selectionstrategy is not always the best choice. There are examples (sets 2, 3, and 15)in which the iterative selection strategy is superior. On the other hand, in thesets 1, 5, 6, and 18 it is much worse than a strategy which �rstly settles allvariable identi�cation and discrimination decisions for all component problems.It is currently not clear what the conditions are under which one should choosethe iterative selection strategy, and when to rather use the other strategy. Thepresence of several collapsing theories is important, but there are several col-lapsing theories both in those examples where the iterative selection strategyworks well and in those where it
ounders. In all these examples, it seemsimportant to make the \right" decisions �rst, but there is at current no way tostate what the \right" decisions are. 70

Set Equations term- # ACI Ded+Iter Deddepth time bktrk time bktrk1 199/98 6 3 816 1953 81 1522 200/99 6 3 232 780 >1h3 199/101 6 3 330 800 1158 19824 200/127 6 3 58 250 42 1105 200/97 6 3 1362 3971 141 4016 200/113 6 3 >1h 103 2957 200/112 6 3 676 2217 189 6898 200/100 5 0 19 1 19 19 200/90 5 0 67 33 75 3310 200/95 5 0 16 1 15 111 200/87 5 0 20 7 21 1012 200/89 5 0 21 8 21 813 200/99 5 1 32 50 31 3014 200/93 5 1 21 47 26 2215 200/109 5 1 154 394 3931 1233516 200/116 5 1 26 50 30 3117 200/107 5 2 319 1116 83 14718 200/106 5 2 1250 2627 44 10719 200/95 5 2 178 462 58 16920 200/108 5 2 99 414 43 159Legend: The signature of these problems consists of 2 A, 2 AC, 0{3 ACI and several freefunction symbols. Equations: number of equations in set and number of solvable equations;term depth: maximal depth of terms; # ACI : Number of ACI-function symbols in signa-ture; Ded+Iter: deductive combination with iterative selection strategy; Ded: deductivecombination with a selection strategy that chooses all identi�cations �rst; bktrk: number ofbacktracking steps.Table 4.2: Run time of randomly generated example setsAnother observation is that there is no simple, e.g., linear, connetion betweenthe run time and the number of backtracking steps. Obviously, some backtrack-ing steps require a lot of time, because they appear high up in the search tree,while others that are close to the leaf nodes of the search tree have a very smallin
uence on the run time.4.8 Related WorkWe presented an optimised algorithm for deciding combined constraint prob-lems on the basis of the iterative and the deductive method. The test sectionindicates that the optimisations deliver an impressive speed-up over the practi-cally unusable naive implementation. But for most equational theories E, the71

complexity of general E-uni�cation is NP-hard (see [94, 95]). Since generalE-uni�cation can be regarded as a combination of E-uni�cation with constantsand syntactic uni�cation, it therefore follows, that no algorithm how optimisedit may be will ever be capable of solving all uni�cation problems in polynomialtime, unless NP = P . This means though we see the practical usability of ouralgorithm, we do not claim that all problems are solved.The work that is most closely related to ours is the one by Boudet [20, 21],where an e�cient method for combining equational uni�cation algorithms thatcompute complete sets of uni�ers is presented. The most important di�erenceis that our algorithm is designed to handle combined decision problems forconstraint systems while Boudet's computes complete sets of uni�ers for equa-tional uni�cation problems. Consequently, the theories combinable by Boudet'smethod must be �nitary equational theories, i.e., the minimal complete set ofuni�ers always has to be �nite. This is not the case for decision procedures.For equational theories, this may not make such a big di�erence, because mosttheories used in theorem proving are �nitary. An exception is the theory A ofan associative function symbol, which is in�nitary, but decidable. The decisionprocedure given by Makanin [71] has EXPSPACE complexity (see [48]) whichis quite bad, but, e.g., no worse than computing complete sets of AC-uni�ers.Hence it could well become usable for certain applications.If one progresses from uni�cation theory to constraint solving, it is of course im-portant that one is not forced to calculate and apply sets of uni�ers. Quasi-freestructures such as rational tree algebras and feature structures are e�cientlydecidable, but uni�ers cannot be computed for them due to their nature. Con-sequently, Boudet's method cannot be used here. We, on the other hand, im-plemented deductive components for these structures to show their practicalusability.For the restriction to �nitary equational theories, Boudet describes a methodto simulate the algorithm by Baader and Schulz within his framework. Butunfortunately under these conditions, he looses all the optimisations he hadearlier introduced. His simulation is indeed a naive implementation of thedecision procedure by Baader and Schulz. And there is no way to enhance thesituation with his optimisation techniques, because they rely on informationresulting from the computed sets of uni�ers.Our algorithm contains three sources of non-determinism, namely the variableidenti�cation, the labelling and the ordering. Boudet's algorithm possesses anequivalent for each of the three sources of non-determinism. Variable identi-�cation is exactly matched, it occurs in the Ei-resolution step. Labelling andordering occur, too, but in a somewhat di�erent setting. Boudet's labellingrule, called Mark, is applied only after a theory con
ict is discovered. In con-trast, we always label all variables. But Boudet's labelling is superior onlyat �rst sight. What is the reason for the need of a labelling? A con
ict inwhich two theories simultaneously try to instantiate one and the same variable.If both theories are collapse-free, the situation cannot be remedied, the inputproblem has no solution. Both algorithms have special optimisations to han-72

dle collapse-free theories. A resolution of the theory con
ict is possible only,if one theory has collapsing axioms. In that case, it is a matter of chance, ifBoudet's algorithm is superior. If, by coincidence, the uni�ers that are selectedin the resolution steps in Boudet's algorithm happen to be compatible, i.e., thecollapse axiom is used to avoid the theory con
ict, Boudet needs no labelling.If coincidentally a di�erent pair of uni�ers is chosen, the theory con
ict arises,and an application of hisMark rule is required. Our algorithm does not makea blind shot to see if it hits by coincidence a non-con
icting pair of uni�ers, butlabels straight away. This is obviously not much worse.Boudet's method of handling the ordering is advantageous. His algorithmguesses a particular ordering of a pair of variables only in case where the solu-tion computed so far contains a (compound) cycle. In our method, it dependson the component algorithms. If the component algorithms are good, they maybe able to determine the order of a pair of variables. Otherwise we have toguess the order non-deterministically.Boudet's algorithm contains a further source of non-determinism that is totallyabsent in our algorithm: The choice of a particular uni�er in the Ei-resolutionstep. If the task is to compute all uni�ers for a given combined uni�cationproblem, there is no other way, one has to compute complete sets of uni�ers inall Ei-resolution steps. But Boudet also aims at deciding uni�cation problemswith his method. In this case the selection of a particular uni�er out of thecomplete set of uni�ers for a single component resolution step introduces asource of non-determinism, that is not required.It is questionable that picking a uni�er out of a complete set of uni�ers isa promising strategy. There is little doubt about its correctness. But thenon-determinism contained seems to be inappropriately handled. Especiallythe arbitrary selecting contains a mixture of don't-know and don't-care non-determinism. What does that mean? A single uni�er contains all the infor-mation that is special to this particular solution of the problem as well as thegeneral information that is common to all solutions, because the problem can-not be solved elsehow. Suppose a uni�er identi�es two variables. Unfortunatelyone cannot determine whether this identi�cation is proprietary to this uni�er orshared by all uni�ers in the complete set. But it makes an important di�erence.If the identi�cation is special for this uni�er, it is a don't-know non-determinism,otherwise it is a don't-care non-determinism. Suppose solving the overall prob-lem fails because of this identi�cation. In the don't-care case, no backtrackingis required; since all uni�ers share this identi�cation, any uni�er is as bad asthe one chosen. In the don't-know case, the situation is di�erent. Then onemust backtrack to �nd a uni�er that avoids the failure causing identi�cation.Thus one should rather know whether the choice one makes is a don't-know ora don't-care choice. It is this problem that the deductive method tries to tackle.It is the task of the deductive components to �nd out as much as possible aboutthe "don't-care" part, the part that must be present in any solution indepen-dent of what particular solution one �nally picks. So, by deducing what part iscommon to all solutions, one can avoid a lot of unnecessary backtracking.73

There is still another problem in using sets of solutions. As stated, Boudet doesnot just test a component for solvability, he calculates a uni�er and uses thatuni�er. The uni�er is interpreted as a solved form of the component problem. Soin a sense, it is a component problem, but a trivially solved one. Now, there areequational theories, for which the solved form of a uni�cation problem can beexponentially large in the size of the input problem. An example of such a theoryis AC, as can be seen in [38]. Thus after a resolution step, Boudet's algorithmcontinues computation with a component that may have grown exponentially insize. The point is, there is no guarantee that each component is solved only once.Later resolutions of di�erent components, especially certain identi�cations ofshared variables, may cause the earlier solved component to be no longer insolved form. Hence it has to be solved again, but now it may be { due to earlierresolution { exponentially larger. And the resolution step may again lead toan exponential growth in size. This is the reason why currently the worstcase complexity of Boudet's algorithm is unknown. As seen by J. Richts andA. Boudet himself,2 it seems possible that the complexity is k-EXPTIME forsome k � 2 or even non-elementary. On the other hand, the decision problemis in NP and a naive implementation of the unoptimised algorithm by Baaderand Schulz is singly-exponential, as shown in Subsection 4.2.We conclude with a positive observation. An important aspect of the itera-tive method is the localisation of choices. This strategy is very much presentin Boudet's algorithm. The variables considered for identi�cation in an Ei-resolution step are the ones of the component constraint problem to be currentlyresolved. Variables subject to the Mark rule are the ones that caused a clash,so they are certainly local to the problem and the components involved. Andvariables subject to the Cycle-rule are variables in a compound cycle. Againthese are local to the components involved in the cycle. One could argue thatthe localisation in Boudet's method is driven to the utmost point, which is astrength of his method.4.9 ConclusionWe presented optimisation techniques for combining constraint solvers in thischapter. Starting from the original algorithm and its basic optimisations, wedescribed two orthogonal methods to achieve the task of a noteworthy op-timisation. The iterative method is a strategy for selecting non-deterministicdecisions. It is based on the insight that component constraint problems shouldbe solved one by one. Otherwise one faces the danger of testing in vain setsof linear constant restrictions that di�er in choices for some component whensome other is plain unsolvable. We showed that non-deterministic decisionscan be made locally for one component without loosing soundness or complete-ness, if these decisions are adequately propagated to the other components.The deductive method provides a way to deduce the consequences of a cer-tain non-deterministic decision made. One can observe quite often that once2Personal communications. 74

a decision is made certain components require that other choices have to bemade in a particular way for their subproblems to remain solvable. Thus af-ter each non-deterministic decision the components are consulted to state whatconsequences they require. This method, developed using techniques of con-straint propagation, proves enormously e�ective in shrinking the search space,provided specialised component algorithms that e�ciently compute large setsof consequences are available. To this end, the development of good deductivecomponent algorithms is as important as the deductive combination methoditself. The orthogonality of the iterative and the deductive method allow for asimple integration into a common setup. We think this integrated algorithm isa good choice for practical applications of combining constraint solvers. Thisview is supported by our test results. To do even better would probably in-clude the step away from general combination methods and solution domainsthat we presented here to very particular ones that make sense only for the spe-cial component constraint solvers and solution domains given in a particularsituation.

75

76

Chapter 5Rational Amalgamation
5.1 IntroductionA general combination method, in our sense, has to give answers to two prob-lems. First, it must o�er a general construction for combining two solutiondomains. Second, a combination algorithm has to be given that reduces theproblem of solving \mixed" constraints over the combined solution domain tothe problem of solving \pure" constraints over the two component structures. InChapter 3, we described a �rst such general method of combination developedby F. Baader and K. U. Schulz [10, 12, 15]: The free amalgamated product. It ischaracterised as being the most general combined solution domain of all struc-tures that can be reasonably considered as combinations of two components.For quasi-free structures over disjoint signatures, an explicit construction ofthe free amalgamated product of two components is given, and an algorithmis presented that combines the constraint solvers of the components to gain aconstraint solver for the free amalgam.In this chapter, we introduce a second systematic way to combine constraintsystems over quasi-free structures, called rational amalgamation. Free and ra-tional amalgamation both yield a combined structure with \mixed" elementsthat interweave a �nite number of \pure" elements of the two components in aparticular way. The di�erence between both constructions becomes transparentwhen we ignore the interior structure of these pure subelements and considerthem as construction units with a �xed arity, similar to \complex function sym-bols". Under this perspective, and ignoring details, mixed elements of the freeamalgam can be considered as �nite trees, whereas mixed elements of the ratio-nal amalgam are like rational trees1. The following picture gives an impressionof this view.On this background it should not be surprising that in praxis rational amalga-mation appears to be the preferred combination principle in situations wherethe two solution structures to be combined are themselves \rational" or \cyclic"1A possibly in�nite tree is rational if it is �nitely branching and has only a �nite numberof distinct subtrees. See [29, 36, 70]. 77

Mixed element of free amalgam (1) and of rational amalgam (2).

(1) (2)

Dark (bright) ellipses represent pure
subelements of the first (second)
amalgamation component.

...

domains: for example, it represents the way how rational trees and rationallists are interwoven in the solution domain of Prolog III [30], and a variantof rational amalgamation has been used to combine feature structures withnon-wellfounded sets in a system introduced by W. Rounds [90].We introduce rational amalgamation as a general construction that can beused to combine so-called non-collapsing quasi-free structures over disjoint sig-natures. The elements of the amalgam can in fact be regarded as rational treeswhere each node is labelled with an element of one component. It is then shownhow constraint solving in the rational amalgam can be reduced to constraintsolving in the components. The decomposition scheme that is used is closelyrelated to the decomposition algorithm for free amalgamation, but it avoidsone non-deterministic step that is needed in the latter scheme. Hence, whenmatters of e�ciency become important, rational amalgamation might be thebetter choice.Let us now brie
y indicate which insights could be gained from a classi�ca-tion of basic methodologies for combining constraints systems. Below we shallsummarise what has been obtained so far.1. It helps to understand the scale of possibilities and the general limitationsfor combining constraints systems.2. It might facilitate the design of new combined constraint systems, andit helps to understand existing instances of combination from a generalpoint of view.3. It establishes new and interesting connections between the theory of con-straint solving and other areas such as, e.g., universal algebra and logic.4. The relationship between di�erent methodologies for combining constraintsystems is interesting per se, we hope to verify.1. From our present perspective, which is explained in more detail in Sec-tion 5.6, free and rational amalgamation, and a related construction called78

\in�nite amalgamation" seem to be the most important combination principlesin a spectrum of related methods. Furthermore, we are con�dent that the ab-stract de�nition of a quasi-free structure, as introduced in [10] and used here,captures a maximal class of (unsorted!) structures where these combinationprinciples can be applied in a uniform way. This class covers most of the non-numerical and non-�nite solution domains that are used in constraint solving.All the solution domains that are considered in the area of uni�cation moduloequational theories are quasi-free structures. Furthermore, the algebra of ratio-nal trees, feature structures, and structures with �nite or rational nested sets,lists and multi sets are quasi-free structures.2. The results presented in this chapter show, e.g., that there is a common andgeneral methodology behind Colmerauer's combination of rational trees and ra-tional lists in the solution domain of Prolog III [30] and Rounds' combination offeature structures with non-wellfounded sets [90]. The amalgamation techniqueto be described in this chapter can be used, e.g., to obtain similar combinationswhere rational trees, feature structures, rational lists, nested multi sets, or quo-tient term algebras for collapse-free equational theories over disjoint signaturesare interweaved in arbitrary manner.3. The purely algebraic de�nition of a quasi-free structure directly generalisesthe notion of a free structure (see Section 3.2.2 and [15] for a thorough discus-sion). Still, quasi-free structures have what is sometimes called the \universalmapping property" of free structures, and a major part of the theory of freestructures as developed in universal algebra can be lifted to the case of quasi-freestructures. A detailed mathematical investigation of this point is in progress.Furthermore, it has turned out that the methods for combining solution do-mains developed in [10] and here, and the general methods for combining logicsdescribed by Gabbay [44] and Pfalzgraf [81, 82] follow the same abstract idea.See [44] for a �rst discussion of this issue.4. One interesting connection between free and rational amalgamation is theobservation that the free amalgamated product is always a substructure of therational amalgamated product. Section 5.6 will be used to comment on item 4in more detail.We would like to point out that the theoretical concepts and the mathemat-ical methods underlying \braids" and their simpli�cation were developed incooperation with K. U. Schulz.5.2 Non-collapsing Quasi-free StructuresIn this section we shall introduce the class of structures for which we can usethe rational amalgamation construction (De�nition 5.2.5). It will be a subclassof quasi-free structures, which are introduced and thoroughly discussed in Sec-tion 3.2.2. Still, we repeat here a few of the notions introduced in that sectionto help the reader remember the context. The algebra of rational trees will be79

used to exemplify the concepts. In the sequel, we consider a �xed �-structureA�, andM denotes a submonoid of End�A.The stable hull (see De�nition 3.2.9) of a set A0 has properties that are similar tothose of the subalgebra generated by A0: SHAM(A0) is always a �-substructureof A�, and A0 � SHAM(A0). In general, however, the stable hull can be largerthan the generated subalgebra. For example, if A� := R(�;X) denotes thealgebra of rational trees over signature �, if M = End�A, and if Y � X is asubset of the set of variables, X, then SHAM(Y) contains all rational trees withvariables in Y , while Y generates all �nite trees with variables in Y only.The set X � A is an M-atom set for A� if every mapping X ! A can beextended to an endomorphism inM. IfM = End�A, then X is simply called anatom set for A�. For example, if A� := R(�;X) is the algebra of rational treesover the set of variables X, then X is an atom set for A�. Remember that theextension of every mapping X ! A to an endomorphism of A� inM is unique(Lemma 3.2.19).A countably in�nite �-structure A� is a quasi-free structure, i� there existsa submonoid M of End�A such that A� has an in�nite M-atom set X whereevery element a 2 A is stabilised by a �nite subset of X with respect to M.(De�nition 3.2.14).Examples 3.2.17 contain a long list of examples of quasi-free structures.Amongst them, one �nds free structures, vector spaces, rational tree algebras,hereditarily �nite well-founded and non-wellfounded sets and lists, and certaintypes of feature structures.In the rest of this section, (A�;X;M) denotes a �xed quasi-free structure withcarrier A.Lemma 5.2.1 Let '(v1; : : : ; vk) be a positive �-formula, let m 2 M, and leta1; : : : ; ak be elements of A. Then A� j= '(v1=a1; : : : ; vk=ak) implies A� j='(v1=m(a1); : : : ; vk=m(ak)).Proof. It is simple to see that there exists a surjective endomorphism m0 2M that coincides with m on fa1; : : : ; akg. The result follows from the factthat validity of positive formulae is preserved under surjective homomorphisms(Lemma 2.1.1).Lemma 5.2.2 Let '(v1; : : : ; vk) be a positive �-formula, and let x1; : : : ; xkbe distinct atoms in X. Then A� j= '(v1=x1; : : : ; vk=xk) implies A� j=8v1; : : : 8vk '.Proof. Let a1; : : : ; ak be arbitrary elements of A. Since X is an M-atomset, there exists an m 2 M such that m(xi) = ai, for i = 1; : : : ; k. HenceA� j= '(v1=x1; : : : ; vk=xk) implies A� j= '(v1=a1; : : : ; vk=ak), by Lemma 5.2.1.It follows that A� j= 8v1 : : : 8vk '. 80

For each element a 2 A, there exists a unique minimal subset Y � X of theatom set such that fag 2 SHAM(Y), the stabiliser of a. For the mathematicaltreatment of quasi-free structures, the concept of the stabiliser turns out to beextremely useful. It might give a good intuition to imagine that the stabiliserof an element a is the set of atoms \occurring" in a. If a is an element of analgebra of rational trees over the set of variables V , then the stabiliser of a isin fact the set of variables occurring in the rational tree a. Note, however, that\the" set of atoms (variables) occurring, e.g., in distinct terms that representthe same element of a quotient term algebra is not unique in general. It istrivial to see that SHAM (Y) = fa 2 A j StabAM (a) � Y g, for each Y � X. Inthe sequel, further properties of stabilisers will be used. The �rst lemma is atrivial consequence of the fact that stable hulls are �-substructures.Lemma 5.2.3 Let f 2 � be an n-place operator and a1; : : : ; an 2 A. ThenStabAM(fA(a1; : : : ; an)) � StabAM(fa1; : : : ang).The next lemma plays a crucial role in the rational amalgamation construction.It will be used in many proofs.Lemma 5.2.4 Let m 2 M be an endomorphism of the quasi-free structure(A�;X;M) such that the restriction of m on X is a mapping X ! X. IfStabAM(a) = fx1; : : : ; xkg, then StabAM(m(a)) � fm(x1); : : : ;m(xk)g. If m isan automorphism, then StabAM(m(a)) = fm(x1); : : : ;m(xk)g.Proof. Let m1 and m2 be two endomorphisms inM that coincide on fm(x1);: : : ;m(xk)g � X. Then m1 � m and m2 � m are endomorphisms in M thatcoincide on fx1; : : : ; xkg. By assumption, m1 �m and m2�m coincide on a. Butthen m1 and m2 coincide on m(a). Hence StabAM(m(a)) � fm(x1); : : : ;m(xk)g.Assume that m is an automorphism, and that StabAM(m(a)) is a proper subsetof fm(x1); : : : ;m(xk)g. The �rst part of the lemma, applied to m�1, yields aproper subset of fx1; : : : ; xkg that stabilises a, which is impossible, by choice offx1; : : : ; xkg.We may now characterise the subclass of quasi-free structures for which we canuse the rational amalgamation construction.De�nition 5.2.5 A quasi-free structure (A�;X;M) is non-collapsing if everyendomorphism m 2 M maps non-atoms to non-atoms (i.e., m(a) 2 A n X forall a 2 A nX and all m 2M).For example, quotient term algebras for collapse-free equational theories, ratio-nal tree algebras, feature structures, feature structures with arity, the domainswith nested, �nite or rational lists, and the domains with nested, �nite or ra-tional multi sets (as mentioned in 3.2.17) are always non-collapsing.Let us note that the domains with nested, �nite or rational sets do not belongto the class of non-collapsing quasi-free structures. The reason is that in this81

case atoms have the form fyg, where y is taken from a countably in�nite setof urelements Y . Since we do not use sorts, and since union of urelements isnot de�ned, the urelements itself do not belong to the structure. If y1 and y2are distinct urelements, then fy1; y2g = fy1g [fy2g is a non-atomic element.Now any endomorphism that maps the atom fy1g to fy2g and leaves fy2g �xed,\collapses" the non-atom fy1; y2g to the atom fy2g.25.3 The Domain of the Rational AmalgamIn this section we shall de�ne the underlying domain of the rational amalgamof two non-collapsing quasi-free structures over disjoint signatures. This isthe most complicated step of the rational amalgamation construction. Forthis reason we start with a discussion that motivates the following abstractde�nitions.As we indicated in the introduction, we would like to lift the usual constructionof rational trees, where nodes are labelled with the function symbols of a �xedsignature, to a higher level where we interweave elements of distinct structures.Unfortunately, the classical notion of a tree is not really a useful basis forrealising this idea, as long as we do not want to impose severe restrictions onthe two components. The reason is that, classically, trees are either ordered orunordered. None of these concepts seems appropriate to model a situation wherewe want to interweave, say, both ordinary terms (representing ordered trees)with nested sets (representing unordered trees) or with elements of arbitraryquotient term algebras (where the \tree status" is doubtful).In this section we shall see that there exists a natural notion that captures theidea of a generalised tree built with the elements of two structures. We introducethe concept of a \braid" where the problem of the correct order between thesuccessors of a node is completely abstracted away. Basically, the links from aparent \node" (an element of one component) to its successor nodes (a �nitenumber of elements belonging to distinct components) are organised by settheoretical functions that connect suitable atoms of the parent node with itssuccessor elements. In this way, the ordering of the links depends (only) on theway how atoms in the parent node are ordered.One drawback of the concept of a braid is the fact that di�erent braids mayrepresent the same object. The major part of this section will be used to showthat a nice standard normal form for each braid can be given. Then, the setof braids in standard normal form will represent the carrier of the rationalamalgam.In the sequel, we shall describe the rational amalgamation of two componentstructures. There are, however, no di�culties to interweave any �nite numberof components in the same way.2We think that this unpleasant e�ect disappears when we use sorts. With sorts, it shouldbe possible to use the set of urelements as atom set. Of course fy1; y2g may still be mappedto fy2g, but the latter is a non-atomic element now.82

Throughout this section (A�;X;M) and (B�; Y;N) denote two �xed non-collapsing quasi-free structures over disjoint signatures. We assume that theatom sets X and Y have the form X = Z]OA and Y = Z]OB , where the setsZ;OA, and OB are all in�nite, and where OA \ OB = ;. The atoms in Z willbe called bottom atoms, the atoms in OA (OB) will be called open atoms. Inthe braid construction, the bottom atoms will play the role of ordinary atoms,or leaves. Open atoms, in contrast, can be considered as \named holes" thatare only used to link elements of both structures. With OA(a) and OA(A0) wedenote the set of open atoms occurring in the stabiliser of a 2 A (A0 � A) withrespect toM. Similarly expressions OB(b) (OB(B0)) are used to denote the setof open atoms occurring in the stabiliser of b 2 B (B0 � B) with respect to N .An endomorphism m 2 M (n 2 N) is called admissible if m (n) leaves allbottom atoms z 2 Z �xed and if m(o) 2 OA (n(o) 2 OB) for all o 2 OA(o 2 OB).3 Automorphisms are called admissible if they de�ne a permutation ofthe set of open atoms while leaving bottom atoms �xed. A pair (m;n) 2M�Nis called admissible if both m and n are admissible.Lemma 5.3.1 Let A0 � A. If the admissible endomorphisms m1;m2 2 Mcoincide on OA(A0), then m1 and m2 coincide on A0. Similarly, let B0 � B. Ifthe admissible endomorphisms n1; n2 2 N coincide on OB(B0), then n1 and n2coincide on B0.5.3.1 Braids and SubbraidsBefore we introduce braids, let us formalise the type of links that we shall useto interweave elements of two components.De�nition 5.3.2 Let O0A � OA, O0B � OB , let �A : O0A ! B, �B : O0B ! A,let � := �A[�B. An element a 2 A is directly linked to b 2 B via � if there is ano 2 OB(b) such that a = �B(o). Analogously b 2 B is directly linked to a 2 Avia � if there exists an o 2 OA(a) such that b = �A(o). An element a 2 A [Bis a �-descendant of b 2 A [B if there exists a sequence a = a0; a1; : : : ; an = b(n � 0) such that each ai is directly linked to ai+1 via �, for 0 � i � n� 1.De�nition 5.3.3 A braid of type A over A�;B� is a quintuple K =ha;C;D; �A; �Bi, where1. a 2 A n OA,2. C is a �nite subset of A containing a. All elements of C n fag are non-atomic. D is a �nite set of non-atomic elements of B,3. �A : OA(C) ! D and �B : OB(D) ! C are mappings. For ho; ei 2�A [�B , e is always a non-atomic element,3Intuitively, admissible endomorphisms cause a \renaming" of open atoms, compareLemma 5.2.4. They may identify distinct open atoms.83

4. each element in C [D is a �-descendant of a, for � := �A [�B .The element a is called the root of K. The elements in the sets C and D arecalled the elements of K of type A and B respectively. The functions �A and�B are called the linking functions of K of type A and B respectively.Braids of type B, with root in B nOB , are de�ned symmetrically. A braid K iscalled trivial if the root of K is a bottom atom z 2 Z. In this case, z is the onlyelement of the braid. It does not make sense to distinguish between the trivialbraid hz; fzg; ;; ;; ;i of type A and the trivial braid hz; ;; fzg; ;; ;i of type B.We identify both braids. Hence, trivial braids have mixed type.Example 5.3.4 The graph on the left-hand side of the following �gure repre-sents a braid over two free term algebras, for signatures � = ff; ag and � = fggrespectively. In this representation, the root is the topmost element f(o1; o2).Note that this braid represents (modulo unfolding) an ordered tree, due to thefact that there exists a �xed order between the atoms occurring in the elementsf(o1; o2) and f(o1; o3).
g
g

g

f

a

o1 o2

u1

u2

f
o1 o3

g
u3

g
g

g

a

u1

u2

g
u3

{o1,o2}

{o1,o3}

On the right-hand side, we interweaved in a similar way the elements fo1; o2g =fo2; o1g and fo1; o3g = fo3; o1g of an algebra with nested multi sets. Now thebraid represents (modulo unfolding) an unordered tree.We sometimes write OA(K) and OB(K) for OA(C) and OB(D) respectively, andO(K) denotes the union OA(K) [OB(K). A quintuple K = ha;C;D; �A; �Bithat satis�es Conditions 1-3 of De�nition 5.3.3 will be called a prebraid.De�nition 5.3.5 Let K = ha;C;D; �A; �Bi be a braid. The braid K0 :=ha0; C 0; B0; �0A; �0Bi (of type A or B) is a subbraid of K if a0 2 C [D, C 0 � C,D0 � D, �0A � �A, and �0B � �B.Sub(pre)braids of prebraids are de�ned in the same way. We write K0 � K ifK0 is a sub(pre)braid of K. 84

Example 5.3.6 Here are two subbraids of the �rst braid given in Exam-ple 5.3.4. As above, the topmost element represents the root.
g
g

g

f

a o1 o2

u1

u2

f
o1 o3

g
u3

g
g

a

u1

Lemma 5.3.7 Let Ki = hai; Ci;Di; �iA; �iBi be a braid, and let �i = �iA [�iB,for i = 1; 2. If a1 = a2, and if �1(o) = �2(o) for all o 2 O(K1) \ O(K2), thenK1 = K2.Proof. A simple induction shows that each �1-descendant of a1 is a �2-descendant of a2, and vice versa. Hence both braids have the same elements.The second condition given in the lemma implies that both braids have thesame linking functions. Hence K1 = K2.Corollary 5.3.8 Let K1 and K2 be two prebraids and K1 � K2. Let K01 be asubbraid of K1 and let K02 be a subbraid of K2 such that K01 and K02 have thesame root. Then K01 = K02.Proof. Since K01 and K02 are subbraids of K2 it is obvious that K01 and K02 satisfythe conditions of Lemma 5.3.7. Hence K01 = K02.Lemma 5.3.9 For each element e of a prebraid K there exists a unique subbraidof K with root e.Proof. Let K = ha;C;D; �A; �Bi and e 2 C [D. Then e cannot be an openatom. Let C 0 � C (D0 � D) be the set of �-descendants of e in C (resp. D),where � = �A [�B. Note that all elements of (C 0 [D0) n feg are non-atomicsince K is a prebraid. Let �0A � �A (resp. �0B � �B) contain all ordered pairsho; ci of �A (resp. �B) where o 2 OA(C 0) (resp. o 2 OB(D0)). For each such pairho; ci the element c is in D0 (C 0) since c is a �-descendant of e. Since ho; ci 2 �,the element c is non-atomic. It follows that he; C 0;D0; �0A; �0Bi is a subbraid ofK. By Corollary 5.3.8 it is the unique subbraid of K with root e.85

5.3.2 VariantsThe concrete open atoms that are used to organise links between elements ofdistinct type in a given braid should be regarded as irrelevant. This motivatesthe following de�nition.De�nition 5.3.10 Let K = ha;C;D; �A; �Bi and K0 = ha0; C 0;D0; �0A; �0Bi betwo prebraids, say, of type A. K0 is called a variant of K if there exists anadmissible pair of automorphisms (m;n) such that1. a0 = m(a),2. C 0 = fm(c) j c 2 Cg, and D0 = fn(d) j d 2 Dg,3. �0A := fhm(o); n(d)i j ho; di 2 �Ag, and�0B := fhn(o);m(c)i j ho; ci 2 �Bg.Lemma 5.3.11 If two prebraids are variants, then the two subbraids given bytheir roots are variants.Proof. Let K and K0 be variants of the form as in the previous de�nition.Let K1 = ha;C1;D1; �1A; �1Bi be the unique subbraid of K with root a, and letK2 = ha;C2;D2; �2A; �2Bi be the unique subbraid of K0 with root a0 = m(a). Theelements in C1 [D1 are the �-descendants of a, for � = �A [�B. The elementsin C2 [D2 are the �0-descendants of a0, for �0 = �0A [�0B . From the de�nitionof �0A and �0B and from Lemma 5.2.4 (second part) it follows easily that the�0-descendants of a0 = m(a) are the m resp. n -images of the �-descendants ofa. This shows that C2 = fm(c) j c 2 C1g and D2 = fn(d) j d 2 D1g. The restis obvious.The following lemma shows that the notion of a variant gives rise to an equiv-alence relation on the set of all (pre)braids. Since the set of admissible auto-morphisms of A� (resp. B�) de�nes (with composition) a group, the proof isobvious.Lemma 5.3.12 Each prebraid K1 is a variant of K1. If K2 is a variant of theprebraid K1, then K1 is a variant of K2. If K2 is a variant of the prebraid K1,and if K3 is a variant of K2, then K3 is a variant of K1.Lemma 5.3.13 Let (m;n) be an admissible pair of automorphisms. Let K,a0, C 0, D0, �0A, and �0B be de�ned as in De�nition 5.3.10, 1.-3. Then K0 :=ha0; C 0;D0; �0A; �0Bi is a prebraid and a variant of K.Proof. Since a 2 A n OA it follows that a0 = m(a) 2 A n OA, by choiceof m. Thus K0 satis�es Condition 1 of De�nition 5.3.3. Since m and n areadmissible automorphisms, all elements of C 0 [D0 that are images of non-atomic elements of C [D under m and n respectively are non-atomic. Hence86

K0 satis�es Condition 2 of De�nition 5.3.3. Since m and n de�ne permutationsof OA and OB respectively, the �rst component o of each pair ho; ei in �0A [�0Bis an open atom. Lemma 5.2.4 shows that o 2 OA(C 0) [OB(D0). Obviously, ifo 2 OA(C 0), then e 2 D0 and if o 2 OA(D0), then e 2 C 0. Moreover, e is alwaysnon-atomic, by admissibility of m and n. Since m and n are automorphisms,�0A and �0B are functions. By Lemma 5.2.4, the domains of �0A and �0B areOA(C 0) and OB(D0) respectively, which shows that K0 satis�es Condition 3 ofDe�nition 5.3.3. Thus K0 is a prebraid. Clearly it is a variant of K.Lemma 5.3.14 Each variant of a braid is a braid.Proof. It su�ces to verify that each variant of a braid satis�es Condition 4 ofDe�nition 5.3.3. Let K, K0, and (m;n) as in De�nition 5.3.10. Suppose thatd 2 D is directly linked to c 2 C via �A. Thus, for some o 2 OA(c) we haveho; di 2 �A. Lemma 5.2.4 shows that m(o) 2 OA(m(c)). Clearly m(c) 2 C 0.Since hm(o); n(d)i 2 �0A, the element n(d) 2 D0 is directly linked to m(c) 2 C 0.Now a simple induction shows that all elements of C 0 [D0 are �0-descendantsof the new root a0 = m(a), where �0 = �0A [�0B.5.3.3 Simpli�cation of BraidsTwo (pre)braids that are variants of each other are meant to denote the sameobject. But then we should not distinguish between two subbraids of one andthe same (pre)braid if they are variants. In order to identify such subbraids,we shall use admissible pairs of endomorphisms of a particular type.De�nition 5.3.15 The admissible pair of endomorphisms (m;n) is a simpli�erfor the prebraid K = ha;C;D; �A; �Bi if the following conditions hold:� 8o1; o2 2 OA(C): m(o1) = m(o2) implies n(�A(o1)) = n(�A(o2)),� 8o1; o2 2 OB(D): n(o1) = n(o2) implies m(�B(o1)) = m(�B(o2)).Lemma 5.3.16 Let (m;n) be a simpli�er for the prebraid K. Then (m;n) isa simpli�er for each subprebraid of K.Proof. Let K0 = ha0; C 0;D0; �0A; �0Bi be a subprebraid of K = ha;C;D; �A; �Bi.Then C 0 � C and D0 � D. Hence OA(C 0) � OA(C) and OB(D0) � OB(D).Moreover, the functions �A and �0A � �A (�B and �0B � �B) coincide on OA(C 0)(resp. OB(D0)). The rest is obvious.De�nition 5.3.17 Let (m;n) be a simpli�er for the prebraid K = ha;C;D; �A; �Bi. The image of K with respect to (m;n) is the prebraid K(m;n) :=ha0; C 0;D0; �0A; �0Bi with the following components:44Using Lemma 5.2.4 and the fact that both A� and B� are non-collapsing it is trivial toverify that K(m;n) is a prebraid. 87

1. a0 := m(a),2. C 0 := fm(c) j c 2 Cg andD0 := fn(d) j d 2 Dg,3. �0A := fhm(o); n(d)i j ho; di 2 �A;m(o) 2 OA(C 0)g, and�0B := fhn(o);m(c)i j ho; ci 2 �B ; n(o) 2 OB(D0)g.Now assume that K is a braid. The braid-image of K with respect to (m;n),Khm;ni, is the unique subbraid of K(m;n) with root a0.Example 5.3.18 The following �gure represents the braid-image of the braidon the left-hand side in Example 5.3.4 under the simpli�cation (m;n) where mmaps o3 to o2 and n maps u3 to u2:
g
g

g

f

a

o1 o2

u1

u2

The next lemma gives a re�nement of Lemma 5.3.16.Lemma 5.3.19 Let (m;n) be a simpli�er for the prebraid K, let K1 be theunique subbraid of K with root e, where e is an element of K of type A (resp. B).Then Khm;ni1 is the unique subbraid of K(m;n) with root m(e) (resp. n(e)).Proof. It follows directly from De�nition 5.3.17 that Khm;ni1 is a subbraid of theprebraid K(m;n). Obviously m(e) (resp. n(e)) is the root of Khm;ni1 . Now useCorollary 5.3.8.There is one technical point behind the de�nition of a simpli�er that willcause some di�culties in the further development. Assume, in the situationof De�nition 5.3.17, that OA(C) = fo1; : : : ; okg and OB(D) = fu1; : : : ; ulg.Then there is no guarantee that OA(C 0) = fm(o1); : : : ;m(ok)g and OB(D0) =fn(u1); : : : ; n(ul)g. In fact, Lemma 5.2.4 only shows the inclusion OA(C 0) �fm(o1); : : : ;m(ok)g.De�nition 5.3.20 The set(fm(o) j o 2 OA(C)g n OA(C 0)) [(fn(o) j o 2 OB(D)g n OB(D0))is called the set of pending atoms of the simpli�cation step leading from K toK(m;n). 88

As we shall see, pending atoms complicate the treatment of simpli�cation. Inprinciple we could restrict the amalgamation construction to a class of struc-tures for which we can replace the inclusion from Lemma 5.2.4 mentioned aboveby an equality. In this case pending atoms cannot occur, image and braid im-age always coincide, and we could dispense with prebraids at all. However, ourmotivation was to give a general construction. For this reason we shall notfollow this line.Lemma 5.3.21 Assume, in the situation of De�nition 5.3.17, that o 2 OA(C)and m(o) is not a pending atom of the simpli�cation step leading from K toK(m;n). Then �0A(m(o)) = n(�A(o)).Proof. A trivial consequence of the de�nition of �0A as given in 5.3.17.While we are mainly interested in simpli�cation of braids, it turns out to besimpler to treat simpli�cation of prebraids in advance.Lemma 5.3.22 Let (m1; n1) be a simpli�er for the prebraid K0 and (m2; n2)be a simpli�er for the prebraid K1 = K(m1;n1)0 . Assume that m2 and n2 donot identify any pending atom of the simpli�cation step leading from K0 toK1 with another atom. Then (m2 � m1; n2 � n1) is a simpli�er for K0 andK(m2�m1;n2�n1)0 = K(m2;n2)1 .Proof. Let Ki = hai; Ci;Di; �iA; �iBi, for i = 0; 1. We may assume that both areof type A. Let (m;n) := (m2 �m1; n2 �n1). If m(o) = m(o0) for o; o0 2 OA(C0),then either m1(o) = m1(o0), or m1(o) 6= m1(o0) and m2(m1(o)) = m2(m1(o0)).In the former case we know that n1(�0A(o)) = n1(�0A(o0)) since (m1; n1) is asimpli�er for K0. Hence n(�0A(o)) = n(�0A(o0)). In the latter case, neitherm1(o) nor m1(o0) can be pending, by assumption. Hence m1(o) and m1(o0)are in OA(K1). By Lemma 5.3.21, n1(�0A(o)) = �1A(m1(o)) and n1(�0A(o0)) =�1A(m1(o0)). Since m2(m1(o)) = m2(m1(o0)) and (m2; n2) is a simpli�er for K1,this implies thatn2(n1(�0A(o))) = n2(�1A(m1(o))) = n2(�1A(m1(o0))) = n2(n1(�0A(o0))):Hence in both cases n(�0A(o)) = n(�0A(o0)). Symmetrically it follows that n(o) =n(o0) implies m(�0B(o)) = m(�0B(o0)), for all o; o0 2 OA(D0). Hence (m;n) is asimpli�er for K0.The prebraids K(m2�m1;n2�n2)0 and K(m2;n2)1 have the same root m2(m1(a0)). Itis trivial that they have the same elements. But then it follows easily that theyhave the same linking functions.Corollary 5.3.23 Let (m1; n1) be a simpli�er for the prebraid K0 and (m2; n2)be a simpli�er for the prebraid K1 = K(m1;n1)0 . Then there exists a simpli�er(m;n) for K0 such that K(m;n)0 = K(m2 ;n2)1 .89

Proof. It follows from Lemma 5.3.1 that there exists a simpli�er (m02; n02) ofK1 such that (m02; n02) does not identify any pending atom of the simpli�cationstep leading from K0 to K1 with another atom, and K(m2;n2)1 = K(m02;n02)1 . Let(m;n) := (m02 �m1; n02 �n1). Then, by the previous lemma, K(m;n)0 = K(m02;n02)1 =K(m2;n2)1 .Let K be a prebraid. We have seen that a simpli�er (m;n) that yields a per-mutation of OA and OB leads to the variant K(m;n) of K (Lemma 5.3.13). Thesame is true under weaker assumptions. By Lemma 5.3.1, the image K(m;n)is completely determined by the images of the elements in OA(K) and OB(K)under the endomorphisms m and n respectively. Hence we obtainLemma 5.3.24 Let (m;n) be a simpli�er for the prebraid K. If the restrictionsof m and n on OA(K) and OB(K) respectively are injective, then K(m;n) is avariant of K.Call a simpli�er (m;n) for K strict if the restriction of m on OA(K) orthe restriction of n on OB(K) is not injective. Lemma 5.2.4 shows thatjO(K(m;n))j < jO(K)j if (m;n) is strict. It follows thatLemma 5.3.25 jO(K)j gives an upper bound on the length of every sequenceof strict simpli�cations for the prebraid K.A prebraid K0 is called irreducible if K0 does not have a strict simpli�er. Wewant to show that all irreducible prebraids that can be reached from a prebraidK by simpli�cation are variants. For this purpose, the following lemma is neededthat shows that simpli�cation of prebraids is \locally con
uent".Lemma 5.3.26 Let (m1; n1) and (m2; n2) be two simpli�ers for the prebraidK0, let K1 and K2 be the images of K0 under (m1; n1) and (m2; n2) respectively.Then there exist a simpli�er (m3; n3) for K1 and a simpli�er (m4; n4) for K2such that K(m3 ;n3)1 = K(m4 ;n4)2 .Proof. Let Ki = hai; Ci;Di; �iA; �iBi, for i = 0; 1; 2. The endomorphismsm1 andn1 de�ne equivalence relations �1A and �1B on OA(C0) and OB(D0) respectively,where elements are equivalent with respect to �1A (�1B) i� they have the sameimage underm1 (n1). The endomorphismsm2 and n2 de�ne similar equivalencerelations�2A and �2B onOA(C0) andOB(D0) respectively. Let �A:=�1A t �2A=(�1A [�2A)� denote smallest equivalence relation on OA(K0) that extends �1Aand �2A. Similarly, let �B denote the smallest equivalence relation on OB(K0)that extends �1B and �2B . Choose a system of representants for �A and asimilar system for �B. We shall write rep(o) for the representant of [o] withrespect to �A (�B), for o 2 OA(K) (o 2 OB(K)).The elements of OA(C1) have the form m1(oA) for oA 2 OA(C0), byLemma 5.2.4. If, for oA; o0A 2 OA(C0), m1(oA) = m1(o0A) 2 OA(C1), thenoA �1A o0A and rep(oA) = rep(o0A). Thus90

� the mapping m1(oA) 7! rep(oA) (oA 2 OA(C0)) is wellde�ned. It canbe extended to an admissible endomorphism m3 2 M. Similarly themapping n1(oB) 7! rep(oB) (oB 2 OB(D0)) is wellde�ned and can beextended to an admissible endomorphism n3 2 N .Symmetrically we can show� the mapping m2(oA) 7! rep(oA) (oA 2 OA(C0)) is wellde�ned and canbe extended to an admissible endomorphism m4 2 M, and the mappingn2(oB) 7! rep(oB) (oB 2 OB(D0)) is wellde�ned and can be extended toan admissible endomorphism n4 2 N .We have (�)m3(m1(oA)) = rep(oA) = m4(m2(oA)) (oA 2 OA(C0))n3(n1(oB)) = rep(oB) = n4(n2(oB)) (oB 2 OB(D0))and, by Lemma 5.3.1, (��)m3(m1(c)) = m4(m2(c)) (c 2 C0)n3(n1(d)) = n4(n2(d)) (d 2 D0):Clearly (m3; n3) and (m4; n4) are admissible. We shall now show that (m3; n3) isa simpli�er for K1. Let ho01; b01i; ho02; b02i 2 �1A and suppose thatm3(o01) = m3(o02).We have to verify that n3(b01) = n3(b02). For i = 1; 2, there exists oi 2 OA(C0)and bi := �0A(oi) 2 D0 such that o0i = m1(oi) and b0i = n1(bi). Since m3identi�es o01 and o02 we know that o1 �A o2. Thus there exists a sequenceo1 = u1; u2 : : : ; uk = o2 such that each pair hui; ui+1i belongs either to �1Aor to �2A (1 � i < k). Let di := �0A(ui), for i = 1; : : : ; k. Thus di 2 D0(1 � i � k) and we have b1 = d1 and b2 = dk. Now (m1; n1) and (m2; n2)are simpli�ers. Thus, if hui; ui+1i 2�1A, then n1(di) = n1(di+1), which impliesn3(n1(di)) = n3(n1(di+1)), and if hui; ui+1i 2�2A, then n2(di) = n2(di+1), whichimplies n4(n2(di)) = n4(n2(di+1)) and, by (��), n3(n1(di)) = n3(n1(di+1)).Therefore we obtain in factn3(b01) = n3(n1(b1)) = n3(n1(b2)) = n3(b02):We have shown that (m3; n3) is a simpli�er for K1. Symmetrically it followsthat (m4; n4) is a simpli�er for K2.The two prebraids K(m3;n3)1 and K(m4;n4)2 have the same root m3(m1(a0)), by(��). It is trivial to see that (��) also implies that fm3(m1(c)) j c 2 C0g is theset of elements of type A of both prebraids, and fn3(n1(d)) j d 2 D0g is the setof elements of type B of both prebraids. But then it follows easily that bothprebraids have the same linking functions, which means that they are identical.91

Theorem 5.3.27 Each sequence of iterated strict simpli�cations that startsfrom the prebraid K has length � jO(K)j. If K0 is an irreducible prebraid that isobtained from K by a sequence of simpli�cations, then there exists a simpli�er(m;n) for K such that K(m;n) = K0. If two irreducible prebraids K1 and K2 canbe reached from K by sequences of simpli�cations, then K1 and K2 are variants.Proof. The �rst statement is Lemma 5.3.25. The second statement followsfrom Corollary 5.3.23 with a trivial induction. If K1 and K2 are two irreducibleprebraids that are obtained from K by sequences of simpli�cations, then bothprebraids can be obtained from K by a single simpli�cation step, by Corol-lary 5.3.23. Lemma 5.3.26 shows that there exists a prebraid K3 that can bereached from K1 and K2 by simpli�cation. Since K1 and K2 are irreducible,these simpli�cation steps are not strict. Hence K1, K2 and K3 are variants, byLemma 5.3.12 and Lemma 5.3.24.Before we treat simpli�cation of braids, let us mention three properties of irre-ducible prebraids.Lemma 5.3.28 (a) If the prebraid K = ha;C;D; �A; �Bi is irreducible, then�A and �B are injective.(b) If K0 is a subbraid of the irreducible prebraid K, then K0 is irreducible.(c) If K1 and K2 are subbraids of the irreducible prebraid K, and if K1 and K2are variants, then K1 = K2.Proof. (a) Assume that �A, say, is not injective. Then there exist elementsho1; b1i and ho2; b1i in �A where o1 and o2 are distinct. Let m 2 M be anadmissible endomorphism that maps o1 to o2 and leaves all other atoms �xed,let n be the identity on B. Now (m;n) is a strict simpli�er for K, thus we geta contradiction.(b) Assume, to get a contradiction, that (m;n) is a strict simpli�er for K0.Let K = ha;C;D; �A; �Bi, let K0 = ha0; C 0;D0; �0A; �0Bi. Let XA = OA(C) nOA(C 0), let YB = OB(D) n OB(D0). By Lemma 5.3.1 we may assume that m(n) leaves the elements of XA (YB) �xed. If fm(o) j o 2 OA(C 0)g \XA = ; =fn(o) j o 2 OB(D0)g \ YB , then m (n) only identi�es open atoms of O(K0)and it is easy to see that (m;n) is a strict simpli�er for K, which yields acontradiction. In the other case, let m0 be an admissible automorphism suchthat fm0(m(o)) j o 2 OA(C 0)g \XA = ;, let n0 be an admissible automorphismsuch that fn0(n(o)) j o 2 OB(D0)g \ YB = ;. Let m� denote the endomorphismthat coincides withm0�m on OA(C 0) and leaves all other open atoms �xed. Letn� denote the endomorphism that coincides with n0 � n on OB(D0) and leavesall other open atoms �xed. Then (m�; n�) is a strict simpli�er for K, whichyields a contradiction.(c) Let K = ha;C;D; �A; �Bi, let Ki = hai; Ci;Di; �iA; �iBi (i = 1; 2). Assumethat K1 and K2 are variants, but K1 6= K2. There exists a pair of admissibleautomorphisms (m;n) such that K2 = K(m;n)1 . Without loss of generality wehave (�): there exists an o� 2 OA(C1) such that o� 6= m(o�) 2 OA(C2).92

Consider an element oA0 2 OA(C1). If all elements of the \orbit"oA0 ; oA1 := m(oA0); oA2 := m(oA1); oA3 := m(oA2) : : :are in OA(C1), then this sequence contains only a �nite number of distinctelements, say, oA0 ; : : : ; oAk . In the other case, let k be the �rst index in thesequence 0; 1; : : : such that oAk 62 OA(C1). This implies that oAk 2 OA(C2). Theset foA0 ; : : : ; oAk g is called the m-trace trm(oA0) of oA0 . Let �m be the smallestequivalence relation on OA(C1) [OA(C2) such that o �m o0 whenever o ando0 both belong to the m-trace tr(oA) of the same element oA 2 OA(C1). Sincem is an injective function, the equivalence classes of �m are just the maximalm-traces. For each equivalence class [oA]�m , choose a representant rep([oA]�m).Let m1 2M be the admissible endomorphism that maps each oA 2 OA(C1)[OA(C2) to the representant rep([oA]�m) and leaves other atoms �xed. SinceoA 2 OA(C1) implies that m(oA) 2 OA(C2), and since both atoms have thesame representant, we know that m1(m(oA)) = m1(oA) for all oA 2 OA(C1).This implies, by Lemma 5.3.1, that m1(m(a)) = m1(a) for all a 2 C1.Symmetrically, we may de�ne the n-traces trn(oB) of elements oB 2 OB(D1),just by replacing OA(Ci) by OB(Di) (i = 1; 2) and m by n. We obtain theequivalence relation �n by \identifying" all elements that belong to the same n-trace trn(oB), for some oB 2 OB(D1). For each equivalence class [oB]�n , choosea representant rep([oB]�n). Let n1 2 N be the admissible endomorphism thatmaps each oB 2 OB(D1) [OB(D2) to the representant rep([oB]�n) and leavesother atoms �xed. We have n1(n(oB)) = n1(oB) for all oB 2 OB(D1), andn1(n(b)) = n1(b) for all b 2 D1.We want to show that (m1; n1) is a simpli�er for K. Suppose that m1(o) =m1(o0) for open atoms o 6= o0 2 OA(K). We may assume that there exists asequence o = oA0 ; oA1 ; : : : ; oAr = o0 of elements of OA(C1)[OA(C2), where at leastthe elements oA0 ; : : : ; oAr�1 are in OA(C1), such that oAi = mi(oA0), for 0 � i � r.Let bi := �A(oAi) (0 � i � r). Note that at least the elements b0; : : : ; br�1 arein D1 since K1 is a subbraid of K and �A and �1A coincide on OA(C1). SincehoA0 ; b0i 2 �1A we know, by choice of (m;n), that hm(oA0); n(b0)i 2 �2A � �A,which means that b1 = n(b0). Similarly we see that bi = ni(b0) for i = 0; : : : ; r.But then we haven1(b0) = n1(n(b0)) = n1(b1) = : : : = n1(bk�1) = n1(n(br�1)) = n1(br)Thus n1 identi�es the �A-images of o = oA0 and o0 = oAr . Symmetrically, ifn1(o) = n1(o0) for atoms o; o0 2 OB(K), then m1 identi�es the �B-images ofo and o0. Therefore (m1; n1) is in fact a simpli�er for K. But (m1; n1) isstrict, by (�). This is a contradiction. Thus K1 = K2.We shall now turn to simpli�cation of braids. First we shall show that theresult of two consecutive simpli�cation steps may be obtained by a single sim-pli�cation, similarly as for prebraids. We have to adapt the notion of a pendingatom to the new situation. 93

De�nition 5.3.29 Let (m;n) be a simpli�er for the braid K = ha;C;D;�A; �Bi. Let Khm;ni = ha0; C 0;D0; �0A; �0Bi. Then the set(fm(o) j o 2 OA(C)g n OA(C 0)) [(fn(o) j o 2 OB(D)g n OB(D0))is called the set of pending atoms of the simpli�cation step from K to the braidimage Khm;ni.Note that this is really a new notion. The set of pending atoms of the simpli�-cation step from K to the braid image Khm;ni is a superset of the set of pendingatoms of the simpli�cation step from K to the image K(m;n), but both sets arenot necessarily identical.Lemma 5.3.30 Let (m1; n1) be a simpli�er for the braid K0, let (m2; n2) be asimpli�er for its braid image K1 := Khm1;n1i0 . Assume that m2 and n2 do notidentify any pending atom of the simpli�cation step leading from K0 to the braidimage K1 with another atom. Then (m2 �m1; n2 �n1) is a simpli�er for K0 andKhm2�m1;n2�n1i0 = Khm2;n2i1 .Proof. Exactly as in the corresponding proof of Lemma 5.3.22 it followsthat (m2 � m1; n2 � n1) is a simpli�er for K0. Our assumptions guaran-tee that (m2; n2) is also a simpli�er for K(m1;n1)0 such that m2 and n2 donot identify any pending atom of the simpli�cation step leading from K0 tothe image K(m1;n1)0 with another atom. Hence Lemma 5.3.22 implies that(K(m1;n1)0)(m2;n2) = K(m2�m1;n2�n1)0 . Now K1 = Khm1;n1i0 is a subbraid of theprebraid K(m1;n1)0 and both have the same root. Lemma 5.3.19 shows thatKhm2;n2i1 is the unique subbraid of (K(m1;n1)0)(m2;n2) = K(m2�m1;n2�n1)0 given byits root, namely Khm2�m1;n2�n1i0 .Corollary 5.3.31 Let (m1; n1) be a simpli�er for the braid K0, let (m2; n2) bea simpli�er for the braid image K1 = Khm1;n1i0 . Then there exists a simpli�er(m;n) for K0 such that Khm;ni0 = Khm2 ;n2i1 .Proof. It follows from Lemma 5.3.1 that there exists a simpli�er (m02; n02) ofK1 such that (m02; n02) does not identify any pending atom of the simpli�cationstep leading from K0 to the braid image K1 with another atom, and Khm2;n2i1 =Khm02;n02i1 . Let (m;n) := (m02 � m1; n02 � n1). Then, by the previous lemma,Khm;ni0 = Khm02;n02i1 = Khm2;n2i1 .Theorem 5.3.32 Let K = K0;K1; : : : ;Kk be a sequence of braids such thateach braid Ki+1 is the braid image of Ki under a strict simpli�cation, for i =0; : : : ; k � 1. Then k � jO(K)j. If K0 is an irreducible braid that is reachedfrom K by a sequence of consecutive simpli�cation steps (always taking braidimages), then there exists a simpli�er (m;n) for K such that Khm;ni = K0. If twoirreducible braids K1 and K2 can be reached from K by sequences of consecutivesimpli�cation steps (always taking braid images), then K1 and K2 are variants.94

Proof. The �rst statement is trivial. The second statement follows from Corol-lary 5.3.31 by a simple induction. Assume that K1 and K2 are two irreduciblebraids that can be reached from K by sequences of consecutive simpli�cationsteps, always taking braid images. Then there exist simpli�ers (m1; n1) and(m2; n2) of K such that K1 = Khm1;n1i and K2 = Khm2;n2i. The prebraidsK(m1;n1) and K(m2;n2) are not necessarily irreducible. But we may add fur-ther simpli�cation steps (m01; n01) and (m02; n02) such that (K(m1 ;n1))(m01;n01) and(K(m2;n2))(m02;n02) are irreducible. By Lemma 5.3.16, (m01; n01) and (m02; n02) are{ obviously non-strict { simpli�ers for K1 and K2 respectively. It follows thatK1 and Khm01 ;n01i1 are variants, and similarly for K2 and Khm02 ;n02i2 . By Theo-rem 5.3.27, the two prebraids (K(m1 ;n1))(m01;n01) and (K(m2 ;n2))(m02;n02) are vari-ants. By Lemma 5.3.11, the two subbraids given by their roots { which are,by Lemma 5.3.19, Khm01 ;n01i1 and Khm02;n02i2 { are variants. Hence K1 and K2 arevariants, by Lemma 5.3.12.On the basis of Theorem 5.3.32 we may introduce the following equivalencerelation on the set of all braids.De�nition 5.3.33 Two braids are called equivalent if they can be simpli�edto the same irreducible braid image. If K is a braid, [K] denotes the set of allbraids that are equivalent to K.Since two braids that are variants are obviously equivalent it is easy to see thatwe get in fact an equivalence relation. Let us also mention the following simpleconsequence of Theorem 5.3.32:Lemma 5.3.34 If two irreducible braids are equivalent, they are variants.5.3.4 Standard NormalisationIn order to de�ne the underlying domain of the rational amalgam we shallnow introduce a standard normal form for each braid. Let O�A be a subset ofthe set OA of open atoms of A� that has the same cardinality as the set of allequivalence classes of non-trivial5 braids of type B. Similarly, letO�B be a subsetof the set OB of open atoms of B� that has the same cardinality as the set ofall equivalence classes of non-trivial braids of type A. Let A�� := SHAM(Z[O�A),and let B�� := SHBN (Z [O�B). Lemma 3.2.13 showsLemma 5.3.35 Every bijection between Z [O�A and Z [OA extends to a �-isomorphism between A�� and A�. Similarly every bijection between Z[O�B andZ [OB extends to a �-isomorphism between B�� and B�.We may now enumerate the elements of O�A and of O�B in the formO�A = fo[K] j K is a nontrivial braid of type Bg;O�B = fo[K] j K is a nontrivial braid of type Ag:5Compare De�nition 5.3.3. 95

This means that [K] 7! o[K] establishes a bijection between the set of all equiv-alence classes of non-trivial braids of type A (B) and O�B (O�A).Let K = ha;C;D; �A; �Bi be a prebraid. For each open atom o 2 OA(C)(o 2 OB(D)) we say that o points in K to K0 i� K0 is the unique subbraid of Kwith root �A(o) (�B(o))6.De�nition 5.3.36 A prebraid K is in standard normal form if OA(K) [OB(K) � O�A [O�B and if every open atom o 2 OA(K) [OB(K) points inK to a subbraid K0 such that o = o[K0].With A�B we denote the set of all braids over A� and B� in standard normalform. Note that trivial braids are always in standard normal form. Note alsothat the elements of a prebraid in standard normal form are in A�� [B�� (thisfollows from the remarks after Lemma 5.2.2).Lemma 5.3.37 Every prebraid in standard normal form is irreducible.Proof. Let K = ha;C;D; �A; �Bi be a prebraid in standard normal form. As-sume, to get a contradiction, that (m;n) is a strict simpli�er for K. Withoutloss of generality we may assume that m(o1) = m(o2) for distinct open atomso1; o2 2 OA(C). Let di := �A(oi), and let Ki denote the subbraid of K with rootdi, for i = 1; 2. Since (m;n) is a simpli�er, n(d1) = n(d2). By Lemma 5.3.16,(m;n) is a simpli�er for K1 and K2. By Lemma 5.3.19, Khm;nii is the uniquesubbraid of K(m;n) with root n(di), for i = 1; 2. Since n(d1) = n(d2), alsoKhm;ni1 = Khm;ni2 which implies that K1 and K2 are equivalent. Since K is instandard normal form it follows that o1 = o[K1] = o[K2] = o2, which contradictsour assumption.Proposition 5.3.38 Let K be a prebraid. Let (m;n) denote the admissible pairof endomorphisms that maps each o 2 OA(K) [OB(K) to o[K0] where K0 is theunique subbraid of K such that o points to K0. Then (m;n) is a simpli�er forK and K(m;n) is in standard normal form.Proof. Let (m1; n1) be a simpli�er for K = ha;C;D; �A; �Bi such that K1 :=K(m1;n1) is irreducible. If m1 identi�es the open atoms o; o0 2 OA(C), then n1identi�es d := �A(o) and d0 := �A(o0). It follows that o and o0 point in K tosubbraids that receive the same braid image under the simpli�cation (m1; n1).Hence these subbraids are equivalent, which implies that m(o) = m(o0). Itfollows that the mapping m2 : m1(o) 7! m(o) (o 2 OA(C)) is well-de�ned.Symmetrically it follows that the mapping n2 : n1(o) 7! n(o) (o 2 OB(D)) iswell-de�ned. Both mappings can be extended to admissible endomorphisms forwhich we shall use the same symbols.6Compare Lemma 5.3.9. 96

Obviously m2 � m1 (resp. n2 � n1) and m (resp. n) coincide on OA(C)(resp. OB(D)). Hence m2 � m1 (resp. n2 � n1) and m (resp. n) coincide onC (resp. D), by Lemma 5.3.1.We shall now show that (m;n) is a simpli�er for K. Assume that m(o) = m(o0),for o; o0 2 OA(C). This means, by the de�nition of m, that o and o0 point inK to equivalent subbraids K0 and K00, with roots d := �A(o) and d0 := �A(o0).We want to show that o and o0 are already identi�ed by m1. Let K01 andK001 denote the braid images of K0 and K00 under the simpli�cation (m1; n1)respectively. Then K0 and K01 are equivalent, and similarly for K00 and K001 .Since K0 and K00 are equivalent, this implies that K01 and K001 are equivalent.But K01 and K001 are subbraids of the irreducible prebraid K1, by Lemma 5.3.19.Part (b) of Lemma 5.3.28 shows that K01 and K001 are irreducible. Since theyare equivalent, both are variants, by Lemma 5.3.34. Part (c) of Lemma 5.3.28shows that K01 = K001 . The root of K01 is n1(d), and the root of K001 is n1(d0).Hence n1(d) = n1(d0) and n(d) = n2(n1(d)) = n2(n1(d0)) = n(d0).Symmetrically it follows that n(o) = n(o0) always implies that m(�B(o)) =m(�B(o0)), for all o; o0 2 OB(D). This shows that (m;n) is in fact a simpli�erfor K. Obviously K(m;n) is in standard normal form.De�nition 5.3.39 The process where we apply to a given (pre)braid K thesimpli�er (m;n) that maps each open atom o 2 O(K), pointing in K to thesubbraid K0, to the open atom o[K0] 2 O�A [O�B will be called standard simpli-�cation of K. The prebraid K(m;n) (braid Khm;ni) will be called the standard(braid) normal form of K.Obviously all subbraids of a prebraid in standard normal form are again instandard normal form.Lemma 5.3.40 For each braid K there exists exactly one braid K0 in standardnormal form such that K and K0 are equivalent.Proof. We have seen that standard normalisation yields a braid in standardnormal form that is equivalent to K. If K0 and K00 are braids in standard normalform that are equivalent to K, then K0 and K00 are irreducible (Lemma 5.3.37)and variants, by Lemma 5.3.34. It follows that there exists an admissible pairof automorphisms (m;n) such that K00 = K0hm;ni. Let o 2 OA(K0) point in K0to K1. Then m(o) points in K00 to Khm;ni1 and K1 and Khm;ni1 are equivalent.Since K0 and K00 are in standard normal form, o = o[K1] = o[Khm;ni1] = m(o).Hence m coincides on the elements of K0 of type A with identity. A symmetricalargument shows that n coincides on the elements of K0 of type B with identity.De�nition 5.3.41 Let o 2 O�A [O�B . We say that o represents the uniquebraid K in standard normal form such that o = o[K].97

Lemma 5.3.42 Given e 2 (A� [B�) n (O�A [O�B) there exists a unique braidK 2 A�B such that e is the root of K.Proof. Let e 2 (A� [B�) n (O�A [O�B). We may assume that e 2 A� n O�A. LetOA(e) = fo1; : : : ; ong, and let oi represent the braid in standard normal formKi = hei; Ci;Di; �iA; �iBi. Let C := Sni=1 Ci[feg;D := Sni=1Di; �A := Sni=1 �iA[fho[Ki]; eii j i = 1; : : : ; ng, and �B := Sni=1 �iB. Then K = he; C;D; �A; �Bi 2A�B has root e.Conversely, let K = he; C;D; �A; �Bi 2 A � B. Since each open atom oi inOA(e) represents a unique braid Ki to which it points in K, the structure of Kis completely determined by e.5.4 The Rational Amalgamated ProductIn the �rst part of this section we introduce functions and relations on A�B thatinterpret the symbols of the joint signature �[�. With this step, the de�nitionof the rational amalgamated product is complete. In the second subsection weadd some evidence for the naturalness of rational amalgamation. We considerthe case where the two components are non-collapsing quasi-free structures(A�;X;End�A) and (B�; Y;End�B) over disjoint signatures. This is the situationwhere we can build both the free amalgam and the rational amalgam with ouractual methods.Theorem 5.4.1 The free amalgamated product is { modulo isomorphism { asubstructure of the rational amalgamated product.This shows that there are interesting relationships between distinct amalgama-tion constructions.We consider also a particular class of amalgamation components.Theorem 5.4.2 The rational amalgamated product of two algebras of rationaltrees over disjoint signatures is isomorphic to the algebra of rational trees overthe combined signature.This shows that our general construction, complicated as it might appear, yieldsthe expected result when we consider more concrete situations. The proof ofthe theorem is due to K. U. Schulz and can be found in [97, 98].5.4.1 Functions and RelationsGiven the underlying domain of the rational amalgam of A� and B� as con-structed above, there is now a perfectly natural way to introduce functions andrelations that interpret the symbols of the mixed signature �[�. Basically, we98

shall use bijections to \copy" the �-structure (�-structure) of A�� (B��) ontoA�B. Consider the functions rootA : A�B ! A� and rootB : A�B ! B�:rootA(K) := (the root of K if K is trivial or has type Ao[K] 2 O�A if K is non-trivial and has type B.rootB(K) := (the root of K if K is trivial or has type Bo[K] 2 O�B if K is non-trivial and has type A.As a direct consequence of Lemma 5.3.42 we obtainLemma 5.4.3 The functions rootA and rootB are bijections.Here is now the de�nition of the rational amalgamated product.De�nition 5.4.4 The rational amalgamated product A� �B� of A� and B�is the following (� [�)-structure with carrier A�B:1. Let f 2 � be an n-ary function symbol, let K1; : : : ;Kn 2 A � B. Wede�ne fA�B(K1; : : : ;Kn) = root�1A (fA�(rootA(K1); : : : ; rootA(Kn))).2. Let p 2 � be an n-ary predicate symbol, let K1; : : : ;Kn 2 A � B. Wede�ne A� �B� j= p(K1; : : : ;Kn) i� A�� j= p(rootA(K1); : : : ; rootA(Kn)).The interpretation of the function symbols g 2 � and the predicate symbolsq 2 � in A� �B� is de�ned symmetrically, using rootB .Theorem 5.4.5 As a �-structure, A� �B�;A� and A�� are isomorphic, androotA : A� �B� ! A�� is a �-isomorphism. As a �-structure, A� �B�;B�,and B�� are isomorphic, and rootB : A� �B� ! B�� is a �-isomorphism.Proof. Recall that A� and A�� are isomorphic, and similarly for B� and B�� .Lemma 5.4.3 and De�nition 5.4.4 imply that rootA : A� � B� ! A�� is a�-isomorphism and rootB : A� �B� ! B�� is a �-isomorphism.Theorem 5.4.5 makes clear that rational amalgamation is not a constructionthat can be used, say, to construct a rational tree algebra for a given signature� out of the �nite tree algebra for �. Even if B� consists of atoms only, therational amalgam A� �B�, considered as a �-structure, is isomorphic to A�.5.4.2 Free Amalgamation and Rational AmalgamationIn this subsection we shall prove Theorem 5.4.1. We de�ne the notion of anacyclic braid and show that the set of all acyclic braids in standard normalform is a substructure of the rational amalgamated product. It is then possible99

to prove that the free amalgamated product of the two component structuresis isomorphic to this substructure.7De�nition 5.4.6 A prebraid K = ha;C;D; �A; �Bi is called acyclic if thereis no sequence e1; e2 : : : ; en of elements in C [D, of length n � 2, such thate1 = en and every element ei is directly linked8 via � = �A [�B to ei+1, fori = 1; : : : ; n � 1. If K is acyclic, the depth of K is the largest number n suchthat there is a sequence e1; : : : ; en of elements of K where each element ei isdirectly linked to ei+1 via �, for i = 1; : : : ; n � 1. We write AC for the set ofacyclic braids.Lemma 5.4.7 Let (m;n) be a simpli�er for the acyclic braid K. Then thebraid image Khm;ni is an acyclic braid.Proof. We may assume that K = ha;C;D; �A; �Bi is of type A. Let K(m;n) =hm(a); C 0;D0; �0A; �0Bi. We show that the prebraid K(m;n) is acyclic. Assume, toget a contradiction, that there is a sequence e1 : : : ; en of elements in C 0 [D0, oflength n � 2, such that e1 = en and every element ei is directly linked to ei+1via �0 := �0A [�0B , for i = 1; : : : ; n� 1. An element a of K is called interestingif its image m(a) resp. n(a) occurs in the sequence e1 : : : ; en. An element b0of K is called a daughter of an element b of K if b0 is directly linked to b via� := �A [�B .Since K is acyclic, there has to be an interesting element a 2 C [D suchthat no daughter of a is interesting. Without loss of generality we assume thata 2 C. Hence m(a) occurs in e1 : : : ; en, say, as element ei (we may assumethat i > 1). Since ei�1 is directly linked to m(a) = ei in K(m;n), there existsa link ho; ei�1i 2 �0A where o 2 OA(m(a)). Let OA(a) = fo1; : : : ; okg andbi := �A(oi), for i = 1; : : : ; k. Thus fb1; : : : ; bkg is the set of daughters of ain K. From Lemma 5.2.4 it follows that o has the form o = m(oi), for some1 � i � k. Hence, since �0A is a function, it follows from De�nition 5.3.17 thatho; ei�1i = hm(oi); n(bi)i and n(bi) = ei�1. But this implies that the daughterbi of a is interesting, which contradicts our choice of a.Proposition 5.4.8 The set AC of all acyclic braids of A � B forms a sub-structure of A� �B�.Proof. Let f 2 � be an n-ary function symbol, let K1; : : : ;Kn be acyclicelements of A� �B�. We have to show that the braidfA�B(K1; : : : ;Kn) = root�1A (fA�(rootA(K1); : : : ; rootA(Kn)))7With the actual methods, the free amalgamated product can only be built for quasi-free structures (A�; X;M) and (B�; Y;N) over disjoint signatures, where M = End�A andN = End�B. Hence we have to assume that the two components are non-collapsing andM = End�A and N = End�B.8Compare De�nition 5.3.2. 100

is acyclic. The elements of OA(frootA(K1); : : : ; rootA(Kn)g represent { in thesense of De�nition 5.3.41 { acyclic subbraids. By Lemma 5.2.3,OA(fA�(rootA(K1); : : : ; rootA(Kn)) � OA(frootA(K1); : : : ; rootA(Kn)gand the open atoms in a� := fA�(rootA(K1); : : : ; rootA(Kn)) represent acyclicsubbraids. If a� 2 A� n O�A, then K := root�1A (a�) is the unique braidin standard normal form with root a�. Since all open atoms of the rootof K represent acyclic subbraids, K itself is acyclic. In the other case, ifa� = o 2 OA(frootA(K1); : : : ; rootA(Kn)g is an atom, then it represents anacyclic braid in standard normal form K of type B. But K := root�1A (a�).We have seen that the set of all acyclic braids represents a �-substructure ofA��B�. Symmetrically it follows that this set represents a �-substructure ofA� �B�.We use the symbol AC for the substructure of acyclic braids.We consider the amalgamation base (Z; (A�; Z); (B�; Z)). Braids over (A�; Z)and (B�; Z) are constructed by proceeding to non-collapsing superstructures(A�1; Z [OA) and (B�1; Z [OB) where OA (OB) are the open atoms of A�1(B�1). We have to show that there are homomorphisms eA : (A�; Z)! AC andeB : (B�; Z) ! AC such that (AC; eA; eB) closes the amalgamation base, i.e.,AC is an amalgamation. Secondly, we have to show that it is the \smallest"amalgamation in the following sense. Let (D; dA; dB) be another amalgamationwhere (A�; Z) is quasi-free for D� and (B�; Z) is quasi-free for D�. Thenthere exists a unique homomorphism h : AC ! D such that h � eA = dA andh � eB = dB .De�nition 5.4.9 De�ne UA := fx 2 OA j 9a 2 A1 : x 2 StabA1(a);root�1A1(a) 2 ACg the set of open atoms occurring in acyclic braids and anal-ogously UB := fx 2 OB j 9b 2 B1 : x 2 StabB1(b); root�1B1(b) 2 ACg.De�ne A� := SH�A1(Z [UA) and A�� as its quasi-free structure; de�neB� := SH�B1(Z [UB) and B�� as its quasi-free structure.Lemma 5.4.10 There exists a qf-isomorphism smA : (A�1; Z[OA)! (A�� ; Z[UA) and a qf-isomorphism smB : (B�1; Z [OB)! (B�� ; Z [UB).Proof. Since there exists a bijection between Z[OA and Z[UA (resp. betweenZ [OB and Z [UB), this is an application of Lemmata 5.2 and 5.3, p. 27 in[11] which state the contents of our lemma in general terms.The elements of A� and B� are now mapped onto acyclic braids by means ofthe functions root�1A1 and root�1B1 .Lemma 5.4.11 The function root�1A1 is an isomorphism between A�� and AC�.The function root�1B1 is an isomorphism between B�� and AC�.101

Proof. The function root�1A1 is a homomorphism by de�nition, and so is itsinverse rootA1 . All we need to show is that root�1A1 is surjective onto AC�.So let a 2 AC be an acyclic braid. If a = hz; fzg; ;; ;; ;i for some z 2 Z,then clearly a = root�1A1(z). If a is of type A, then there is an a0 2 A1with a = root�1A1(a0) and StabA1(a0) � UA [Z. Thus StabA1(a0) � A� anda0 2 A�. If a is of type B, then there is an o 2 OA such that a = root�1A1(o)and o 2 UA � A� by de�nition.The argument for root�1B1 is analogue.Note, that root�1A1 is not a qf -isomorphism. The elements of UA are atomsin A�� . Their images under root�1A1 are complex braids and not the atomshz; fzg; ;; ;; ;i where z 2 Z.Lemma 5.4.12 The structure (A�; Z) is quasi-free for AC�, (B�; Z) is quasi-free for AC�.Proof. The structures (A�; Z) and (A�� ; Z[UA) are qf-isomorphic, and A�� andAC� are isomorphic.Now, we can de�ne the embedding homomorphisms eA : (A�; Z) ! AC andeB : (B�; Z) ! AC . Consider the map z 7! hz; fzg; ;; ;; ;i for each z 2Z. Since (A�; Z) is quasi-free for AC�, there exists a unique extension to ahomomorphism. We take eA to be this unique extension. And eB is the uniqueextension of that map from B to AC.Lemma 5.4.13 The triple (AC; eA; eB) closes the given amalgamation base(Z; (A�; Z); (B�; Z)).Proof. The embedding homomorphism from Z to (A�; Z) is idZ . And byde�nition of eA, for every z 2 Z � A holds eA(z) = hz; fzg; ;; ;; ;i. idZ is alsothe embedding homomorphism from Z to (B�; Z). And eB(z) = hz; fzg; ;; ;; ;i,too. So clearly e1(z) = e2(z).Proposition 5.4.14 AC is the free amalgamated product of the amalgamationbase (Z; (A�; Z); (B�; Z)).Proof. Let (D; dA; dB) be another amalgamation where (A�; Z) is quasi-freefor D� and (B�; Z) is quasi-free for D�. The functions dA and dB are theembedding �- (resp. �-) homomorphism from A� (B�) to D� (D�) suchthat dA and dB coincide on Z. We have to show that there exists a unique� [�-homomorphism h : AC�[� ! D�[� that satis�esdA = h � eA and dB = h � eB :The situation is illustrated by the following �gure.102

����@@@R
QQQQQs�����3 -����������������:
XXXXXXXXXXXXXXXXzZ A�

B� AC�[� D�[�idid eAeB dA
dB h!

Since (A�; Z) and (A�� ; Z[UA) are qf-isomorphic, (A�� ; Z[UA) is also quasi-freefor D� by Lemma 3.2.26. And (B�� ; Z [UB) is quasi-free for D�.De�nition of the homomorphismFor k � 0, de�ne ACk to be that subset of AC that contains all braids of depthat most k.We start with the following simple observation. A given mapping hk : ACk ! Dinduces two partial mappings hkA := fhrootA1(a); di j ha; di 2 hkg : A� ,! Dand hkB := fhrootB1(a); di j ha; di 2 hkg : B� ,! D.We de�ne an ascending tower of mappings h0 � h1 � h2 : : : where hk : ACk !D for k = 0; 1; 2; : : :. Thus we have h0A � h1A � h2A : : : and h0B � h1B � h2B : : :.At each step of the construction of this tower, we will show thathkA can be extended to a �-homomorphism g(k)A��D : A�� ! D�;hkB can be extended to a �-homomorphism g(k)B��D : B�� ! D�: (5.1)The construction will proceed by an induction over the depth of a braid.For the base case, consider �rst a braid hz; fzg; ;; ;; ;i where z 2 Z. De�neh0(hz; fzg; ;; ;; ;i) := dA(z) = dB(z). Now consider a braid ha; fag; ;; ;; ;i ofdepth 0 and type A. Then StabA1(a) � Z. The mapping h0A : Z ! D hasan extension to a �-homomorphism from A�� to D�, because (A�� ; Z [UA) isquasi-free for D�. And all such extensions to a �-homomorphism that agree onZ coincide on SHA�(Z) by Lemma 3.2.24. Let d 2 D be the unique value thatall extensions deliver. Set h0(ha; fag; ;; ;; ;i) := d. If the braid ha; fag; ;; ;; ;iof depth 0 is of type B, we de�ne h0(ha; fag; ;; ;; ;i) := e, the unique value ofthe extension of h0B : Z ! D to a �-homomorphism from B�� to D�.We have to show that Condition (5.1) holds for h0A. But this is simple. For abraid ha; fag; ;; ;; ;i of type A we just de�ned h0A(a) to be the unique value ofthe homomorphic extension of h0A restricted to Z, and for a braid hb; ;; fbg; ;; ;iof type B we know rootA1 of it to be an atom in UA. So, since (A�� ; Z [UA)is quasi-free for D� the mapping h0A can be extended to a �-homomorphismg(0)A��D : A�� ! D�. Analogously, h0B can be extended to a �-homomorphismg(0)B��D : B�� ! D�.For the induction step, we suppose that hk is already de�ned. Let a =ha0; E; F; �E ; �F i be a braid of type A of depth k+1. Then a0 = rootA1(a) andStabA�(a0) � Z [UA. Every element u 2 StabA�(a0) \ UA is the A-name of an103

acyclic B-braid of depth at most k. Thus hkA(u) is already de�ned. By induc-tion hypothesis, hkA is extendable to a �-homomorphism g(k)A��D : A�� ! D�.De�ne hk+1(a) := g(k)A��D(a0). This choice is not arbitrary. Since hkA is de�nedon the stabiliser of a0, all extensions of hkA to a �-homomorphism must yieldthe same value for a0 by Lemma 3.2.24. For braids b of depth � k, we de�nehk+1(b) := hk(b).We must show now, that Condition (5.1) holds for hk+1A . Let V kA := (Z [UA)\dom(hkA). So the set V kA is the restriction of the domain of hkA to the atoms. LethV kA�D be the restriction of hkA to V kA . Since (A�� ; Z[UA) is quasi-free forD�, themapping hV kA�D[fhz; hk+1A (z)i j z 2 dom(hk+1A)ndom(hkA)g can be extended toa �-homomorphism g(k+1)A��D : A�� ! D�. We will show that g(k+1)A��D extends hk+1A .Let a 2 dom(hkA). Then by construction of hkA we know StabA�(a) � dom(hkA),and thus StabA�(a) � V kA . Hence hk+1A and hV kA�D agree on StabA�(a). ByLemma 3.2.24 every homomorphic extension yields the same value, namely,hkA(a). Let a 2 dom(hk+1A) n dom(hkA) be a non-atom. The last paragraph'sargument shows that StabA�(a) � dom(hkA); thus analogously to the above case,hk+1A and hV kA�D agree on StabA�(a). Now hk+1A (a) is exactly de�ned to be whatall homomorphic extensions yield. Finally, let z 2 dom(hk+1A) n dom(hkA) be anatom. Then immediately by de�nition of g(k+1)A��D, we see gA�(z) = hk+1A (z). Andthat completes the proof that Condition (5.1) still holds for hk+1A . An analogousargument can be made for hk+1B .We use the above described tower to de�ne h := Sk�0 hk. Let hA := Sk�0 hkA :A� ! D and hB := Sk�0 hkB : B� ! D be the mappings induced by h. Weclaim that hA is a �-homomorphism. So, let f 2 � be an n-ary function symbol,p 2 � an n-ary predicate symbol, and b1; : : : ; bn 2 A�. Choose k to be the max-imum of the depths of root�1A1(b1); : : : ; root�1A1(bn) and root�1A1(f(b1; : : : ; bn)).Since hA extends hkA, and since the latter mapping can be extended to a �-homomorphism g(k)A��D, it follows thathA(f(b1; : : : ; bn)) = hkA(f(b1; : : : ; bn))= g(k)A��D(f(b1; : : : ; bn))= f(g(k)A��D(b1); : : : ; g(k)A��D(bn))= f(hkA(b1); : : : ; hkA(bn))= f(hA(b1); : : : ; hA(bn)); andp(b1; : : : ; bn) =) p(g(k)A��D(b1); : : : ; g(k)A��D(bn))() p(hkA(b1); : : : ; hkA(bn))() p(hA(b1); : : : ; hA(bn)):A similar argument shows that hB is a �-homomorphism. It remains to beshown that h is a � [�-homomorphism and the factorising homomorphism.First note that h = hA � rootA1 = hB � rootB1 . In fact, let a be a braid ofdepth l. Then h(a) = hl(a) = hlA(rootA1(a)) = hA(rootA1(a)) and h(a) =104

hl(a) = hlB(rootB1(a)) = hB(rootB1(a)).Let f 2 � [� be an n-ary function symbol, and a1; : : : ; an 2 AC. Supposef 2 �. (The case f 2 � is similar.) Thenh(f(a1; : : : ; an)) = hA(rootA1(f(a1; : : : ; an)))= hA(rootA1(root�1A1(f(rootA1(a1); : : : ; rootA1(an)))))= hA(f(rootA1(a1); : : : ; rootA1(an)))= f(hA(rootA1(a1)); : : : ; hA(rootA1(an)))= f(h(a1); : : : ; h(an)):Let p 2 � [� be an n-ary predicate symbol, and a1; : : : ; an 2 AC. Again wesuppose p to be in � without restricting generality. Thenp(a1; : : : ; an) () p(rootA1(a1); : : : ; rootA1(an))=) p(hA(rootA1(a1)); : : : ; hA(rootA1(an)))() p(h(a1); : : : ; h(an)):The composition h � eA is a �-homomorphism from (A�; Z) to D�. And for allz 2 Z we have h(eA(z)) = h(hzfzg; ;; ;; ;i) = dA(z) by de�nition of eA and h.Since (A�; Z) is quasi-free for D�, it follows that h � eA and dA coincide on A.Similarly we can show that h � eB and dB coincide on B. This shows that h isthe factoring homomorphism (or, categorically speaking, mediating morphism).Uniqueness of the homomorphismAssume that g : AC�[� ! D�[� is another � [�-homomorphism such thatg � eA = dA and g � eB = dB (5.2)g induces a �-homomorphisms gA : (A�� ; Z[UA)! D� and a �-homomorphismgB : (B�� ; Z [UB) ! D�. We will show by induction on the depth of a braidthat g = h.By de�nition of eA; eB and (5.2), g(hz; fzg; ;; ;; ;i) = d1(z) = d2(z) for allz 2 Z. Thus g and h coincide on Z and also gA =Z hA; gB =Z hB . Leta =2 Z and ha; fag; ;; ;; ;i be a type A braid of depth 0. Then StabA�(a) � Z.Therefore gA and hA coincide on a, because (A�� ; Z [UA) is quasi-free for D�.Hence g and h coincide on ha; fag; ;; ;; ;i.Now suppose that g and h coincide on all braids with depth at most k. Considera braid a = ha0; E; F; �E ; �F i of type A of depth k + 1. Then a0 = rootA1(a)and StabA�(a0) � Z [UA. Every element u 2 StabA�(a0) \ UA is the A-nameof an acyclic B-braid of depth at most k. By induction hypothesis, gA andhA coincide on StabA�(a0). Thus they coincide on a0, because (A�� ; Z [UA) isquasi-free for D�. And hence g and h coincide on a.5.5 Combination of Constraint SolversOur last aim is to show how constraint solvers for two component structurescan be combined to a constraint solver for their rational amalgamated product.105

Constraint solvers, as considered here, are essentially algorithms that decidesolvability of quanti�er-free positive formulae in a given solution domain. We(mostly) disregard disjunction since its integration is a triviality.De�nition 5.5.1 Let � be a signature. A �-constraint is a conjunction ofatomic �-formulae.In order to decide solvability of a \mixed" (� [�)-constraint in a rationalamalgamated product A��B� we shall decompose it into two pure constraintsover the signatures � and � respectively. These output constraints are equippedwith additional restrictions of a particular type.De�nition 5.5.2 An A/N (atom/non-atom) declaration for a constraint � is apair (U;W) such that U]W � Var(�) is a disjoint union. Both U and W maybe empty. A solution �A of a constraint � in a quasi-free structure (A�;X;M)is called a solution of h�; U;W i if �A assigns distinct atoms to the variables inU , and arbitrary non-atomic elements of A to the variables in W .In order to avoid some ballast in proofs we shall assume that at least one of thetwo components is a non-trivial quasi-free structure, which means that it hasat least one non-atomic element. We may now formulate our main result con-cerning combination of constraint solvers in the case of rational amalgamation.Theorem 5.5.3 Let A� and B� be two non-collapsing quasi-free structuresover disjoint signatures, let A� �B� denote their rational amalgam. Assumethat at least one of the two components is a non-trivial quasi-free structure.Then solvability of (�[�)-constraints in A��B� is decidable if solvability of(�- resp. �-) constraints with A/N declarations is decidable for A� and B�.There seems to be no general way to characterise solvability of �-constraintswith A/N declarations in purely logical terms. But for a restricted class ofcomponent structures { a class which is of particular interest in the context ofrational amalgamation { a logical characterisation of the problems that we haveto solve in the two component structures can be given.De�nition 5.5.4 A non-collapsing quasi-free structure (A�;X;M) is calledrational if for every atom x 2 X and every element a 2 A there exists anendomorphism m 2 M that leaves all atoms x0 6= x �xed such that m(x) =m(a).9The algebra of rational trees over a given signature is always a rational quasi-freestructure. The same holds for feature structures, feature structures with arity,and domains with nested, rational lists (as described in 3.2.17). For rationalquasi-free structures we obtain the following re�nement and reformulation ofTheorem 5.5.3.9The existence of such an endomorphism is trivial if x 62 StabAM(a). In this case we mayalways take, e.g., the endomorphism m = mx�a of M that maps x to a and leaves all otheratoms �xed. The situation of interest is the case where x 2 StabAM(a) and x 6= a.106

Theorem 5.5.5 Let A� and B� be two non-trivial rational quasi-free struc-tures over disjoint signatures, let A� � B� denote their rational amalgam.Then solvability of (� [�)-constraints in A� �B� is decidable if the positiveuniversal-existential theory is decidable for both components A� and B�.Since existential quanti�cation distributes over disjunction, the theorem maybe slightly strengthened.Theorem 5.5.6 Let A� and B� be two non-trivial rational quasi-free struc-tures over disjoint signatures, let A��B� denote their rational amalgam. Thenthe positive existential theory of A� �B� is decidable if the positive universal-existential theory is decidable for both components A� and B�.It is interesting to contrast this formulation with the corresponding combinationresult for free amalgamation. The assumptions on the components are stronger.In oder to decide the positive existential theory of the free amalgamted product,the positive theories of both components must be decidable (Theorem 3.4.2).On the other hand, the quanti�er fragment that can be decided in the freeamalgamted product is larger. As Theorem 3.4.1 states, the full positive theorycan be decided in the free amalgamated product, provided the positive theoriesare decidable in the components.One application of Theorem 5.5.6 is the followingCorollary 5.5.7 Rational amalgamated products A�11 �� � ��A�kk have decidablepositive existential theory if the nontrivial components A�ii are rational treealgebras, or nested, rational lists, or feature structures10, or feature-structureswith arity, for i = 1; : : : ; k, and if the signatures of the components are pairwisedisjoint.Proof. For all these structures it has been shown that even the full positivetheory is decidable, see [10].In the rest of this section, we prove Theorem 5.5.3 and Theorem 5.5.5.5.5.1 Proof of Theorem 5.5.3To prove Theorem 5.5.3 we shall give an algorithm that reduces a mixed con-straint � in the signature (�[�) non-deterministically to a pair of constraintswith A/N declarations over the \pure" signatures � and � respectively. Weshall assume that the input formula � has the form � = ��0 ^ ��0 where ��0is a conjunction of atomic �-formulae, and ��0 is a conjunction of atomic �-formulae. Moreover we assume that � does not contain any equation betweenvariables. These assumptions do not really restrict the generality of the ap-proach. The �rst two steps of the decomposition algorithm in Section 3.4.1 onpage 38 show that one can transform an arbitrary (� [�)-constraint ' into aconstraint � of the form given above, preserving solvability in both directions.10As in Examples 3.2.17 we refer to [2], for speci�city.107

Algorithm 5.5.8 The input is mixed a constraint � = ��0 ^ ��0 of the formdescribed above. Let V0 = Var(��0)\Var(��0) denote the set of shared variablesof �. The algorithm has two steps, both are nondeterministic.Step 1: Variable identi�cation. Consider all possible partitions of theset of all shared variables, V0. Each of these partitions yields one of the newconstraints as follows. The variables in each class of the partition are \identi-�ed" with each other by choosing an element of the class as representative, andreplacing in the input formula all occurrences of variables of the class by thisrepresentative.Step 2: Choose signature labels. Let ��1 ^��1 denote one of the formulaeobtained by Step 1, let V1 denote the set of representants of shared variables.The set V1 is partitioned in two subsets U and W in some arbitrary way.Let � = ��1 , let � = ��1 . For each of the choices made in Step 1 and 2, the algo-rithm yields an output pair (h�;U;W i; h�;W;Ui), each component representinga constraint with A/N declaration.Correctness of Algorithm 5.5.8We shall prove that Algorithm 5.5.8 is correct in the following sense.Proposition 5.5.9 The input formula � has a solution in A��B� if and onlyif there exists an output pair (h�;U;W i; h�;W;Ui) of Algorithm 5.5.8 such thath�;U;W i has a solution in A� and h�;W;Ui has a solution in B�.Note that Theorem 5.5.3 is an immediate consequence. In order to prove Propo-sition 5.5.9 we shall assume that the two components A� and B� are quasi-freestructures of the form (A�;X;M) and (B�; Y;N) respectively. First we showsoundness.Lemma 5.5.10 If, for some particular output pair (h�;U;W i; h�;W;Ui) of Al-gorithm 5.5.8, h�;U;W i has a solution in A� and h�;W;Ui has a solution inB�, then the input constraint � is solvable in A� �B�.Proof. The output formulae � and � may be written in the form ��1 (~u; ~w;~v�)and ��1 (~u; ~w;~v�), where ~u = u1; : : : ; um denotes the sequence of all elementsof U , where ~w = w1; : : : ; wn denotes the sequence of all elements of W , andwhere ~v� (resp. ~v�) stands for the non-shared variables occurring in ��1 and��1 respectively. The proof has now three steps. In the �rst step, the givensolutions of the output constraints are used to construct similar solutions of amore speci�c form. In the second step, these latter solutions are used to de�nesuitable braids. In the third step we apply standard normalisation to thesebraids. This will yield a solution of the input constraint.1. By assumption, there exists a solution �A of ��1 in A� such that theelements �A(u1); : : : ; �A(um) are distinct atoms of A�, and the elements108

�A(w1); : : : ; �A(wn) are non-atomic elements of A�. If some of the atoms�A(u1); : : : ; �A(um) are bottom atoms, then we apply an automorphism m1 2M such that the elements in fm1(�A(u1)); : : : ;m1(�A(um))g are distinct openatoms. In the other case, let m1 := id. If the stabilisers of the elementsm1(�A(w1)); : : : ;m1(�A(wn)) contain open atoms o1; : : : ; ok that do not be-long to fm1(�A(u1)); : : : ;m1(�A(um))g, then we apply an endomorphism m2that maps the atoms o1; : : : ; ok to some bottom atom z and leaves the atomsfm1(�A(u1)); : : : ;m1(�A(um))g �xed. In the other case, let m2 := id. Since ��1is a positive formula, �A := �A �m1 �m2 is a solution of ��1 , by Lemma 5.2.1.We have(1) the elements x1 := �A(u1); : : : ; xm := �A(um) are distinct open atoms,(2) the elements a1 := �A(w1); : : : ; an := �A(wn) are non-atomic,(3) the open atoms occurring in the stabilisers of the elements a1; : : : ; an arein fx1; : : : ; xmg, and(4) A� j= 9~v� ��1 (~u=~x; ~w=~a).(2) follows from the fact A� is non-collapsing, (3) follows from Lemma 5.2.4,and (4) follows from the fact that �A solves ��1 . Symmetrically we can showthat there exists a solution �B of ��1 in B� such that(5) the elements y1 := �B(w1); : : : ; yn := �B(wn) are distinct open atoms,(6) the elements b1 := �B(u1); : : : ; bm := �B(um) are non-atomic,(7) the open atoms occurring in the stabilisers of the elements b1; : : : ; bm arein fy1; : : : ; yng, and(8) B� j= 9~v� ��1 (~u=~b; ~w=~y).2. Let �A := fhxi; bii j i = 1; : : : ;mg, let �B := fhyi; aii j i = 1; : : : ; ng.Properties (1){(3) and (5){(7) show that for each e 2 ~a (e 2 ~b), the tupleKe := he; fa1; : : : ; ang; fb1; : : : ; bmg; �A; �Bi is a prebraid of type A (B).3. Fix some e 2 ~a [~b. Let (m3; n3) be the standard normaliser for Ke. ByLemma 5.2.1, (4), and (8),A� j= 9~v� ��1 (~u=m3(~x); ~w=m3(~a));B� j= 9~v� ��1 (~u=n3(~b); ~w=n3(~y)):It follows easily from Lemma 5.3.35 thatA�� j= 9~v� ��1 (~u=m3(~x); ~w=m3(~a));B�� j= 9~v� ��1 (~u=n3(~b); ~w=n3(~y)):Now Theorem 5.4.5 shows thatA� �B� j= 9~v� ��1 (~u=root�1A (m3(~x)); ~w=root�1A (m3(~a)));A� �B� j= 9~v� ��1 (~u=root�1B (n3(~b)); ~w=root�1B (n3(~y))):109

Consider an element xi of ~x. Assume that xi points in Ke to the subbraidK0 with root bi. Then m3(xi) = o[K0]. Let Ki be the subbraid of K(m3;n3)ewith root n3(bi). By Lemma 5.3.19, K0 and Ki are equivalent. It follows thatm3(xi) = o[Ki]. The braid Ki is non-trivial and of type B, and it is the uniquebraid in standard normal form with root n3(bi) (Prop. 5.3.38, Lemma 5.3.42).Hence root�1A (m3(xi)) = Ki. The element n3(bi) is a non-atomic element of B.Hence root�1B (n3(~b)) = Ki is the unique braid in standard normal form withroot n3(bi). Thus we have seen that root�1A (m3(~x)) = root�1B (n3(~b)). Similarlyit follows that root�1B (n3(~y)) = root�1A (m3(~a)). This shows that the formula��1 ^ ��1 obtained after Step 1 has a solution in A� � B�. Obviously thisimplies that the input constraint � has a solution in A� �B�.Next, we show completeness of the Algorithm 5.5.8.Proposition 5.5.11 If the input constraint � has a solution in A��B�, thenthere exists an output pair (h�;U;W i; h�;W;Ui) of Algorithm 5.5.8 such thath�;U;W i has a solution in A� and h�;W;Ui has a solution in B�.Proof. Assume that � has a solution �A�B in A� �B�.In Step 1 of Algorithm 5.5.8 we identify two shared variables v and v0 of V0 if,and only if, �A�B(v) = �A�B(v0). With this choice, �A�B is a solution of theformula ��1 ^��1 that is reached after Step 1, and �A�B assigns distinct valuesin A� �B� to all variables of V1.By Theorem 5.4.5, rootA � �A�B (resp. rootB � �A�B) is a solution of � = ��1in A�� (resp. of � = ��1 in B��) that does not identify two variables of V1.By assumption, one of the two component structures, A�, say, is non-trivial.In Step 2, we choose as U the set of all variables u of V1 such that �A�B(u)is a non-trivial braid of type B. Consequently, W contains all variables w ofV1 such that �A�B(w) is a trivial braid or a non-trivial braid of type A. Thede�nition of rootA implies that rootA � �A�B(u) is an open atom of A�� , for allu 2 U , and rootA � �A�B(w) is a non-atomic element or a bottom atom of A�� ,for all w 2 W . Let m1 2 M be an endomorphism that maps all the bottomatoms of the set frootA ��A�B(w) j w 2Wg to a non-atomic element of A andleaves all other atoms �xed. Since A� is non-collapsing, all elements of the setfm1 � rootA ��A�B(w) j w 2Wg are non-atomic. Since � is a positive formula,Lemma 5.2.1 implies that �A := m1 � rootA � �A�B is a solution of h�;U;W i inA�� .On the other hand the de�nition of rootB implies that rootB � �A�B(w) is anatom of B�� , for all w 2 W , and rootB � �A�B(u) is a non-atomic element ofB�� , for all u 2 U . This shows that h�;W;Ui has a solution in B�� .But then, by Lemma 5.3.35, h�;U;W i has a solution in A� and h�;W;Ui has asolution in B�. 110

5.5.2 An ExampleIn order to illustrate Algorithm 5.5.8, we discuss a little example problem inthe combination of rational trees and non-wellfounded multi sets. Let W =fw1; w2; w3; : : :g; V1 = fv1; v3; v5; : : :g and V2 = fv0; v2; v4; : : :g be in�nite setsof variables. Let � = ff�g;[g be the signature of multi sets where f�g is unaryset construction and [is set union. To simplify notation, we assume that f�gis of arbitrary �nite arity. Let Vhfnws(W [V1) denote the domain of hereditarily�nite non-wellfounded multi sets over W [V1.11 Let � = fa; g; hg be thesignature of the rational tree algebra R�(�;W [V2) where a is a constant, g aunary and f a binary function symbol. The constraint problem we consider is� = fy := g(y); z := g(fa; zg); x = fg(fa; zg); y; f(fa; ag; fg(w); f(a; x)g)gg:Since � is not in decomposed form, we �rst transform it into this form by meansof variable abstraction to receive �̂ = ��0 ^ ��0 where��0 = fy := g(y); z := g(x21); x22 := a; x23 := g(x25); x24 := f(x26; x27);x28 := a; x29 := a; x32 := a; x30 := g(w); x31 := f(a; x)gand ��0 = fx21 := fx22; zg; x := fx23; y; x24g; x25 := fx28; zg;x26 := fx29; x32g; x27 := fx30; x31gg:In Step 1 of the algorithm, we choose the following partion of the variables(where the bold variable is the representant of the class):[x22; x28; x29; x32]; [x21; x25]; [x23; z]; [y]; [x]; [x24]; [x26]; [x27]; [x30]; [x31]:After this identi�cation, the problem looks as follows��1 = fy := g(y); z := g(x21); x22 := a; x24 := f(x26; x27);x30 := g(w); x31 := f(a; x)gand��1 = fx21 := fx22; zg; x := fz; y; x24g; x26 := fx22; x22g; x27 := fx30; x31gg:In Step 2, we choose the atom/non-atom declaration (fy; z; x22; x24; x30; x31g;fx; x21; x26; x27g).Now, the constraint problem with A/N declaration h��1 ; fx; x21; x26; x27g;fy; z; x22; x24; x30; x31gi clearly has a solution in R�(�;W [V2):y 7! gggg : : : x22 7! az 7! g(v2) x21 7! v2x24 7! f(v4; v6) x26 7! v4x30 7! g(w1) x27 7! v6x31 7! f(a; v8) x 7! v8w 7! w111See Examples 3.2.17. 111

This is a solution of ��1 , and all elements in fx; x21; x26; x27g are mapped todi�erent atoms in W [V2, while all variables in fy; z; x22; x24; x30; x31g aremapped to non-atoms.The constraint problem with A/N declaration h��1 ; fy; z; x22; x24; x30; x31g;fx; x21; x26; x27gi has a solution in Vhfnws(W [V1):x21 7! fv1; v3g x 7! fv3; v5; v7gx26 7! fv1; v1g x27 7! fv9; v11gx22 7! v1 z 7! v3y 7! v5 x24 7! v7x30 7! v9 x31 7! v11This solves ��1 , and the variables fy; z; x22; x24; x30; x31g are mapped to di�erentatoms, while the variables fx; x21; x26; x27g are mapped to non-atoms.Hence by Theorem 5.5.3, there is a solution of �. The following �gure showshow this solution looks like.
{v3, v5, v7}

g
v2

g
w1a

f
v4 v6

f
a v8

{v1,v1} {v9,v11}
{v3,v1}

g

g

g

g
...

5.5.3 Proof of Theorem 5.5.5In order to proof Theorem 5.5.5 we shall use the following variant of Algo-rithm 5.5.8.Algorithm 5.5.12 The input constraint �, and Steps 1 and 2, remain asabove. The output of Algorithm 5.5.12 consists of the two positive universal-existential sentences � = 8~u9~w9~v1;� ��1and � = 8~w9~u9~v1;� ��1where ~u (~w) represent the variables in U (resp. W), ~v1;� represents the non-shared variables in ��1 , and ~v1;� represents the non-shared variables in ��1 .112

Proposition 5.5.13 The input formula � has a solution in A� �B� if andonly if there exists an output pair (�; �) of Algorithm 5.5.12 such that A� j= �and B� j= �.Theorem 5.5.5 is an immediate consequence. In order to prove Proposi-tion 5.5.13 we shall �rst show that Algorithm 5.5.12 is sound. As above weshall assume that the two components A� and B� have the form (A�;X;M)and (B�; Y;N) respectively.Lemma 5.5.14 If, for some output pair (�; �) of Algorithm 5.5.12, A� j= �and B� j= �, then � is solvable in A� �B�.Proof. Assume that A� j= 8~u9~w9~v1;� ��1 and B� j= 8~w9~u9~v1;� ��1 . Let~u = u1; : : : ; um, let ~w = w1; : : : ; wn. For each variable ui we select a distinctatom xi 2 X of A (1 � i � m), and for each variable wj we select a distinctatom yj 2 Y of B (1 � j � n). Then there are elements a1; : : : ; an 2 A andb1; : : : ; bm 2 B such thatA� j= 9~v1;� ��1 (~u=~x; ~w=~a)B� j= 9~v1;� ��1 (~u=~b; ~w=~y):We distinguish two cases.First case: xi 6= aj and bi 6= yj, for all 1 � i � n and 1 � j � m. Since A� isnon-trivial, we may choose an endomorphism m1 2 M that maps all atoms inthe set fa1; : : : ; ang to a non-atomic element a 2 A and �xes all other atoms.In particular, m1 leaves the atoms x1; : : : ; xm �xed, by assumption. Since A�is non-collapsing, all elements in the set fm1(a1); : : : ;m1(an)g are non-atomic.Since ��1 is a positive formula we haveA� j= 9~v1;� ��1 (~u=~x; ~w=~m1(a));by Lemma 5.2.1. It follows that the �-constraint with A/N declaration,(��1 ; U;W), has a solution in A�.Symmetrically we may choose an endomorphism n1 2 N such that all elementsin fn1(b1); : : : ; n1(bm)g are non-atomic andB� j= 9~v1;� ��1 (~u=n1(~b); ~w=y):It follows that the �-constraint with A/N declaration, (��1 ;W;U), has a solu-tion in B�. Now Lemma 5.5.10 shows that the input formula � has a solutionin A� �B�.Second case: Without loss of generality, xi = aj, for some 1 � i � m and1 � j � n. We consider the new formula �01;� (�01;�) that is obtained byreplacing all occurrences of wi in ��1 (resp. ��1) by uj . Consider the pair with theformulae �0 = 8~u9~w09~v1;� �01;� and �0 = 8~w09~u9~v1;� �01;�, where the sequence~w0 is obtained from ~w by removing wi. Obviously, (�0; �0) is again an outputpair of Algorithm 5.5.12. We claim that A� j= �0 and B� j= �0.113

We have A� j= 9~v1;� �01;�(~u=~x; ~w0=~a0);where ~a0 denotes the sequence a1; : : : ; ai�1; ai+1; : : : ; an. Since X is anM-atomset, for each sequence ~c = c1; : : : ; cm of elements of A there exists an endomor-phism m2 2M such that m2(xi) = ci, for 1 � i � m. Now Lemma 5.2.1 showsthat A� j= �0.Since (B�; Y;N) is rational, there exists an endomorphism n2 2 N that leavesall atoms but yi �xed such that n2(yi) = n2(bj). By Lemma 5.2.1,B� j= 9~v1;� �01;�(~u=n2(~b); ~w0=~y0);where the sequence ~y0 is obtained from ~y by removing yi. Since the elements inthe sequence ~y0 are distinct atoms it follows as above that B� j= �0.In this second case we have seen that we can construct a new output pair (�0; �0)of Algorithm 5.5.12 such that A� j= �0 and B� j= �0. Moreover, the number ofvariables in (�0; �0) is strictly smaller than the number of variables in (�; �). Wemay now use the same subcase analysis as above, replacing (�; �) by (�0; �0), anditerate this contraction of formulae, if necessary. After a �nite number of stepswe reach an output pair that satis�es all the assumptions that we made for(�; �) in the �rst subcase. As we have seen, this shows that the input formula� has a solution in A� �B�.As the last step, we show completeness of Algorithm 5.5.12.Lemma 5.5.15 If the input constraint � has a solution in A��B�, then thereexists an output pair (�; �) of Algorithm 5.5.12 such that A� j= � and B� j= �.Proof. Lemma 5.5.11 shows that Algorithm 5.5.8 has an output pair (h��1 ;U;W i; h��1 ;W;Ui) such that h��1 ; U;W i has a solution in A� and h��1 ;W;Uihas a solution in B�. In A�, variables of U are interpreted as distinct atomsin X under the given solution. Lemma 5.2.2 shows that A� j= 8~u9~w9~v1;� ��1 .In B�, variables of W are interpreted as distinct atoms in Y under the givensolution. By Lemma 5.2.2, B� j= 8~w9~u9~v1;� ��1 . This shows that the sentences� := 8~u9~w9~v1;� ��1 and � := 8~w9~u9~v1;� ��1 of the corresponding output pair(�; �) of Algorithm 5.5.12 are valid in A� and B� respectively.5.6 ConclusionIn this chapter, we introduced rational amalgamation, a general methodologyfor combining constraint systems. The concept of a braid presents a way tointerweave arbitrary elements of two quasi-free structures, in that a particularset of atoms, the open atoms in the stabiliser of an element of one structureare used as pointers to elements in the other structure. The amalgamation isrational in the sense that one may interweave only a �nite number of elements114

in one and the same braid, but if one follows a pointer chain in a braid, cyclesare permitted. We showed that for each braid there exists a standard normalform. And the set of braids in normal form is consequently used as the carrierfor rational amalgamation. Together with the algebraic structure de�ned on topof it, this rational amalgam is the combined solution domain. We showed thatthe reduct of the rational amalgam to a component signature is isomorphic tothe component structure proving this way conservativeness of the combination.We also saw that the free amalgamated product is { modulo isomorphism { asubstructure of the rational amalgam. And the rational amalgamation of tworational tree algebras is isomorphic to the rational tree algebra over the union ofthe signatures. We presented a decomposition algorithm to reduce the solvingof mixed constraints in the rational amalgam to solving pure constraints inthe components. The algorithm is similar to the decomposition algorithm forfree amalgamation, but contains only two non-deterministic steps. We provedthat solvability of mixed constraints over the joint signature in the rationalamalgam is decidable, if solvability of pure constraints with so-called atom-non-atom declarations is decidable in both components. For the subclass of so-called rational quasi-free structures, the result can be described in purely logicalterms. The existential positive theory of the rational amalgam is decidable,provided the universal-existential positive theory is decidable in the componentstructures.The present chapter, in connection with the discussion of free amalgamation inChapter 3 and [10, 15], seems to suggest a new view of the problem of combin-ing solution domains and constraint solvers. There is now strong evidence thatthe situation considered in Chapter 3 and here { the construction of \mixed"elements of a combined domain, given the \pure" elements of two componentstructures as construction units { is quite similar to the process of building theelements of a single structure, given the symbols of a �xed signature as con-struction units. We are con�dent that this analogy will help to isolate the mostimportant methods for combining structures over disjoint signatures, and to un-derstand the relationship and the di�erences between di�erent amalgamationconstructions.When we compose elements, given the symbols of a �xed signature, three di�er-ent structures may be obtained in a direct way, depending on the compositionprinciple, namely the free term algebra, the algebra of rational trees, and thealgebra of in�nite trees. The privileged role of these three algebras, and therich amount of interesting relationships between them, are now well-understood(e.g., [3, 35, 36, 70]). We believe that free amalgamation, rational amalgamationand a further construction called \in�nite amalgamation" (still to be investi-gated) re
ect this role on the higher level of amalgamation constructions. Manyof the results that we have obtained for free and rational amalgamation can beinterpreted in this sense:� The universality-property of the free amalgamated product re
ects thestatus of the free term algebra as the absolutely free �-algebra.� We saw that the free amalgamated product is always a substructure of115

the rational amalgamated product. This re
ects the fact that the freeterm algebra is always a substructure of the algebra of rational trees.� It is well-known that the uni�cation algorithm for the algebra of rationaltrees can be considered as the variant of the uni�cation algorithm for thefree term algebra where we omit the occur-check. Similarly, the decom-position scheme for rational amalgamation as given here is { essentially{ the decomposition scheme for free amalgamation where we omit the\interstructural" occur-check that is provided by the choice of a linearordering in the latter scheme.We would not be surprised if more principles, techniques and theorems, well-known on the level of tree constructions, could be lifted to the level of combiningstructures. Our experience with rational amalgamation seems to indicate thatthis is a di�cult, but promising line of research if we want to understand thescale of possibilities, and the limitations for combining solution domains andconstraint solvers.

116

Chapter 6Negation in CombiningConstraint Systems
6.1 IntroductionThe need of negation in constraint solving is so obvious that it hardly requiresan explanation. Formulation of many problems just naturally involve some typeof negation. Negation is also required for implication and constraint entailment,and both are used heavily in actual implementations of constraint solvers whenreducing sets of constraints. In previous chapters however, the constraints wehad been looking at were exclusively positive; there was no negation involved sofar. The underlying hidden reason thereof was given very early in Lemma 2.1.1that states that surjective homomorphisms preserve positive formulae. Thislemma �gures prominently in many correctness proofs, even if we did not alwaysexplicitly cite it. Hence one could think that handling negative constraints incombining constraint solvers is impossible. But already back in 1993, F. Baaderand K. U. Schulz [6] showed that the combination technique for deciding com-bined equational uni�cation problems they had published the year ago [5] canbe extended to the combination of disuni�cation problems. Thus the questionnaturally arises, whether the results obtained for combining equational disuni-�cation problems can be extended to the more general case of solving positiveand negative constrains in combinations of quasi-free structures. The correct-ness proof given in [6] (see also [9]) uses complicated rewriting methods and isvery technical in nature. Even if one is able to manually check the individualdeduction steps in the proof, one cannot gain any insight for why the combi-nation theorem is correct. Quasi-free structures on the other hand are de�nedalgebraically, rewriting methods are thus not applicable. This forced us to havea fresh look at the problem.This chapter is divided into two parts. The �rst one covers the solving of pos-itive and negative mixed constraints in the combination of constraint systems.When looking at negative constraints, one often distinguishes two cases, andwe do this here, too: A general case in which the solutions of problems may117

contain variables or atoms and a ground case where all solution elements mustbe ground. For the general case, we will show that the existential theory ofmixed constraints is decidable in the free amalgamated product, if conjunctionsof pure constraints with linear constant restrictions are decidable in the com-ponent structures. For the ground case we present the following result. Theexistential theory of the ground substructure of the free amalgamated productis decidable, if the existence of so-called restrictive solutions of pure constraintswith linear constant restrictions is decidable in the components. In the secondhalf of this part, we try to see if these results can be strengthened or expressedin less technical terms, i.e., without the notion of a linear constant restriction.We will also show that in general, these results cannot be carried over rationalamalgamation, the other principled method of combination.The second part of this chapter deals with the independence property of nega-tive constraints. A constraint system is said to have the independence property,if the solvability of a conjunction of positive constraints and a conjunction ofnegative constraints can be reduced to solving each single negative conjunct to-gether with the conjunction of positive constraints. In other words, if for somenegative constraints, each of them is solvable separately, then their conjunc-tion is solvable. This property plays an important role in real world constraintsolvers that cope with negative constraints (see, e.g., [49]). Quite often, theseconstraint solvers can handle only positive constraints in an e�cient manour.The independence property can then be used to reduce negative constraints insuch solvers in the following way. First one solves the conjunction of the positiveconstraints to see if they have a solution at all. Then for each negative con-straint, one constructs the dual positive one and tries to solve the conjunctionof the positive constraints enlarged by the dual. If this is not solvable, then thenegative constraint can be solved. If the solution is identical to the one for theconstraints without the dual, the negative constraint cannot be solved. If thesolution is more speci�c than that for the constraints without the dual, thenthe negative constraint is solvable. The independence property ensures thatprocessing each of the negative constraints separately this way still provides adecision procedure for the whole conjunction of negative constraints.The aim of this second part is to give a modularity result for the independenceproperty, that is to state under which circumstance the free amalgamated prod-uct owns the independence property provided the component structures do so.We will �nally show: The free amalgamation of two unitary regular and non-collapsing quasi-free structures has the independence property. To get thereis quite a way. First we look at a particular subclass of quasi-free structures,namely equational theories and uni�cation, since there is not yet any discussionof this topic for these prototypical quasi-free structures. We �nd that unitaryequational theories have the independence property, while �nitary do not. Wealso present a special class of equational theories, the monoidal or commuta-tive theories and prove that the whole class has the independence propertyshowing thereby that there are non-unitary theories that have the indepen-dence property. Then we give a �rst modularity result. Based on work byK. U. Schulz [94], who shows that there exists a deterministic combination al-118

gorithm for the combination of unitary regular collapse-free equational theories,we demonstrate that the combination of unitary regular collapse-free equationaltheories is again unitary and hence has the independence property. We proceedby lifting these results to quasi-free structures. We prove that unitary quasi-free structures have the independence property. And generalising the proofs forcombining equation theories, we show that the combination of unitary regularand non-collapsing quasi-free structures is again unitary.In this chapter, a constraint problem is a conjunction of literals, i.e., of atomicand negated atomic formulae.Part ICombination of Constraint Solvers
6.2 Free Amalgamation of Negative Constraints:The General CaseIn this section, we show that solving mixed constraints in the free amalgama-tion can be reduced to solving pure constraints in the components, even if theconstraints contain negations. The type of problems we have to solve in thecomponents are constraint problems with linear constant restrictions. Problemswith linear constant restrictions are de�ned in 4.2.2. Remember that a linearconstant restriction L = (Lab; <L) consists of a labelling and a linear order ofthe shared variables. A solution of a constraint problem with linear constantrestriction (��; L) is a solution of �� such that each variable in the domain ofLab that is not assigned to � must be mapped to an atom, and this atom mustnot appear in the stabiliser of any element that is a solution of a variable whichis strictly smaller according to the order <L. Now we can present the maintheorems of the �rst part.Theorem 6.2.1 Let (A�11 ;X) and (A�22 ;X) be two quasi-free structures overdisjoint signatures. The solvability of mixed �1 [�2 constraint problems, i.e.,conjunctions of literals, in the free amalgamated product A�11
A�22 is decidable,if solvability of constraint problems with linear constant restrictions is decidablein both components (A�11 ;X) and (A�22 ;X).Since existential quanti�ers distribute over disjunctions, we can strengthen ourresult a little bit.Theorem 6.2.2 Let (A�11 ;X) and (A�22 ;X) be two quasi-free structures overdisjoint signatures. The existential theory (and the universal theory) of the free119

amalgamated product A�11
A�22 is decidable, if solvability of constraint problemswith linear constant restrictions is decidable in both components (A�11 ;X) and(A�22 ;X).One application of this theorem is the followingCorollary 6.2.3 The existential theory of the free amalgamated product of thefollowing signature-disjoint component quasi-free structures is decidable:� free algebras de�ned by these equational theories{ the empty theory (syntactic uni�cation),{ the theory A of an associative function symbol,{ the theory AC of an associative-commutative function symbol,{ the theory ACI of an associative-commutative-idempotent functionsymbol,� rational tree algebras,� feature structures� well-founded sets, multi-sets and lists.Proof. Decidability of disuni�cation problems with linear constant restrictionsin the free theory and the theories A, AC, and ACI was proven by F. Baader andK. U. Schulz in [9]. Decidability of disuni�cation problems with linear constantrestrictions in rational tree algebras follows directly from the result for the freetheory. Decidability of constraint problems with linear constant restrictions infeature structures is a simple corollary of the work by G. Smolka and R. Treinen[104] and the work by P. van Roy, M. Mehl, and R. Scheidhauer [114]. Finally,decidability of constraint problems with linear constant restrictions in sets,multi-sets and lists can be reduced to corresponding disuni�cation problems inthe theories ACI, AC, and A respectively.The Decomposition AlgorithmAs stated above, we would like to solve mixed positive and negative constraintsin the free amalgamated product of two quasi-free by reduction to solving pureconstraints in the components. Hence we need a decomposition algorithm.The one that follows below is very similar to the algorithm in Section 3.4.1designed for decomposing positive constraints. The main extension deals withdisequations. Disequations should only occur between variables. Thus if s 6 _= tis a disequation between pure terms s; t, we replace that disequation by twonew equations x1 := s; x2 := t and the disequation x1 6 _= x2. Negated predicatesdi�erent from equality are handled in a straight forward manour in that aliensubterms are removed by variable abstraction. Additionally, we ensure that notwo representatives after variable identi�cation receive the same solution valueby introducing a disequation r1 6 _= r2 for each two di�erent representatives r1; r2.120

The decomposition algorithm is almost the same as the one given by F. Baader& K. U. Schulz in [9] for disuni�cation problems, it is minimally extended tohandle negated predicates di�erent from disequality.Algorithm 6.2.4 The input �0 is a constraint problem over signature � :=�1 [�2.Step 1: variable abstractionAlien subterms are successively replaced by new variables until all literals andterms occurring in the system are pure.Step 2: split non-variable disequations and non-pure equationsEach disequation of the form s 6 _= t (where s or t is not a variable) is replacedby two equations x := s; y := t and a disequation x 6 _= y, where x and y arealways new variables. Each non-pure equation of the form s := t is replaced bytwo equations x := s; x := t, where x is always a new variable.Step 3: variable identi�cationNon-deterministically choose a partition of the set of all shared variables ofthe constraint problem such that whenever the constraint problem contains adisequation x 6 _= y then x and y belong to di�erent classes of the partition.The variables of each class are identi�ed by choosing a representative for eachclass and replacing each variable by its representative. In addition, add thedisequation x 6 _= y for each pair x; y of distinct representatives to the system, ifthis disequation is not already present.Step 4: variable labelling and orderingFor a given system, choose a mapping Lab from the set of variables into the setof theory labels f�1;�2g and a strict linear order < on the variables. This pairL = (Lab; <L) gives rise to a linear constant restriction.Step 5: split systemsA given system �4 is split into two systems �5;1 [�5;2 where �5;1 containsonly 1-(dis)equations and 1-literals and �5;2 contains only 2-(dis)equations and2-literals. Additionally, the system �5;i must contain all disequations x 6 _= ywhere x or y has label �i. This means that disequations between variablesof distinct labels are put into both subsystems. The subsystems can now beconsidered as constraint problems with linear constant restriction.SoundnessIn this subsection, we prove that the above algorithm is sound.Proposition 6.2.5 The input problem �0 is solvable, if there exists an outputpair (�5;1;�5;2) and a linear constant restriction L such that (�5;1; L) is solvablein (A�11 ;X) and (�5;2; L) is solvable in (A�22 ;X).Before we can present the proof, we need some technical preparations and lem-mata. 121

Lemma 6.2.6 Let m : (A�;X)! (B�; Y) be a qf-isomorphism.If StabA(a) = fx1; : : : ; xng, then StabB(m(a)) = fm(x1); : : : ;m(xn)g.Proof. Let StabA(a) = fx1; : : : ; xng. Firstly, we show that StabB(m(a)) �fm(x1); : : : ;m(xn)g. Let �1; �2 2 End�B such that �1 and �2 coincide onfm(x1); : : : ;m(xn)g. Since m and its inverse are qf-isomorphisms, the A-endomorphisms m�1�1m and m�1�2m coincide on fx1; : : : ; xng. Because ais stabilised by fx1; : : : ; xng, also m�1�1m =fag m�1�2m which is the same asm�1�1 =fm(a)g m�1�2. Since m�1 is a qf-isomorphism, �1 =fm(a)g �2.Now suppose StabB(m(a)) is a proper subset of fm(x1); : : : ;m(xn)g. Thena = m�1(m(a)) is stabilised by a proper subset of m�1(fm(x1); : : : ;m(xn)g) =fx1; : : : ; xng which contradicts the choice of fx1; : : : ; xng.Lemma 6.2.7 Let L be a linear constant restriction and �i be a solution of(�5;i; L) and x; y two distinct variables in �5;i (where i = 1; 2). Then �i(x) 6=�i(y), i.e., �i is injective.Proof. If x; y 2 Var(�5;i) and x 6= y, then x and y must be di�erent representa-tives of di�erent classes after variable identi�cation in Step 3. By de�nition ofStep 3, we add the disequation x 6 _= y. Therefore x 6 _= y 2 �5;i. Since �i solves�5;i, we have �i(x) 6= �i(y).Lemma 6.2.8 Let (A�;X) be a quasi-free structure and � be a solution ofthe constraint problem with linear constant restriction (�;Lab; <). Let � :(A�;X)! (B�; Y) be a qf-isomorphism. Then ��� is a solution of (�;Lab; <)in (B�; Y), i.e., qf-isomorphisms preserve solutions.Proof. Since � is an isomorphism, �� is a solution of �. We have to show thatrespecting linear constant restrictions is preserved under qf-isomorphisms.Let Lab(x) = � and � 6= �.Then �(x) 2 X, because � solves the linear constant restriction.Then ��(x) 2 X, because � is a qf-isomorphism.Let Lab(x) = �, Lab(y) = �, � 6= � and x 6= y.Then �(x) 6= �(y), because � solves the linear constant restriction.Then ��(x) 6= ��(y), because � is injective.Let x < y, Lab(x) = �, Lab(y) = � and � 6= �.Then �(y) =2 StabA(�(x)), because � solves the linear constant restriction.Then ��(y) =2 �(StabB(�(x))) = StabB(��(x)), because � is injective wherethe equality is justi�ed by Lemma 6.2.6.De�nition 6.2.9 Let (C�1 ;X) be the free amalgamated product of (A�11 ;X)and (A�22 ;X) and h1;2 the qf-isomorphism between (C�1 ; Z1) and (C�2 ; Z2). Theshadow of an element a 2 C1 is de�ned recursively:122

Sd(a) := fag [StabC1�1(a) [fSd(h1;2(x)) j x 2 StabC1�1(a)g. Analogously, theshadow of b 2 C2 is de�ned as Sd(b) := fbg [StabC2�2(b) [fSd(h2;1(y)) j y 2StabC2�2(b).An element b 2 Sd(a) is called a bottom element, i� Sd(b) = fbg. The setBottom(Sd(a)) denotes the set of all bottom elements in the shadow of a.Intuitively speaking, the shadow of an element is the element and \everythingbelow" it where one descends via the ladder constructed by the stabilisers andthe isomorphisms h1;2 and h2;1. So the shadow contains the element, its sta-biliser, the �bre images of the stabiliser elements, their stabilisers, the �breimages thereof and so on, everything pending below the element via stabilisersand �bre images.Lemma 6.2.10 The shadow of every element is �nite. Its bottom elements areelements with empty stabiliser or atoms in X.Proof. For all elements a 2 C1 [C2 holds a 2 Sd(a). If x 2 X, then x is �bredwith itself, and Stab(x) = fxg. Thus Sd(x) = fxg. If b 2 C1 [C2 is such thatStab(b) = ;, then clearly sd(b) = fbg. Any other element has a non-emptystabiliser which is not �bred with itself, hence the shadow contains at least thestabilisers and their �bre images, and the element is not a bottom element.The shadow of an element a can be seen as a tree with the element as itsroot. Since each element has a �nite stabiliser, the tree is �nitely branching.A branch in the tree is a sequence (a1;; a2; a3; : : :) such that a1 = a, for alli; j � 1 : i 6= j implies ai 6= aj, and for each i � 1 either ai+1 is the �breimage of ai or ai+1 2 Stab(ai). Now remember the de�nition of the height ofan element (Def. 3.3.6 on page 34). Clearly, if ai+1 is the �bre image of ai,then height(ai+1) = height(ai). And if ai+1 2 Stab(ai), then height(ai+1) <height(ai), because ai+1 6= ai and therefore ai is non-atomic. Hence, for eachi � 1 : height(ai+2) < height(ai). The height stepwise decreases in a branch.But since the height of a, the root, is �nite, the height can decrease only a �nitenumber of steps. Therefore, each branch must be �nite.Proof of the soundness proposition (Proposition 6.2.5).Let C�1 be the free amalgamated product of (A�11 ;X) and (A�22 ;X), and let�1 be the solution of (�5;1; L) in (A�11 ;X) and �2 the solution of (�5;2; L) in(A�22 ;X) where L = (Lab; <L). Let h1;2 : C�1 ! C�2 be the qf-isomorphismbetween C�1 and C�2 .Let h1 : A�11 ! C�11 be the qf-isomorphism between A�11 and C�11 . Then h1�1solves (�5;1; L) in C�11 (C�1) by Lemma 6.2.8.Let h2 : A�22 ! C�22 be the qf-isomorphism between A�22 and C�22 . Then h2�2solves (�5;2; L) in C�22 by Lemma 6.2.8.Let V = Var(�5;1)[Var(�5;2) be the set of all variables. If we had h1;2h1�1(v) =h2�2(v) for all v 2 V , then we would be done, because then, obviously, h1�1123

would be a solution of �5;2 in C�1 . Since the solutions �1 and �2 are foundindependently of each other, we cannot expect this condition to hold a priory.And we do not want to restrict the type of admitted solutions in the compo-nents. So the task is to show that the given solutions h1�1 and h2�2 can betransformed by means of automorphisms in such a way that �nally the valueof a variable v 2 V under h1�1 is the �bre image of the value under h2�2. Wecall this the �bring condition for v. The use of automorphisms is required tohandle negative constraints: While endomorphisms preserve only the validityof positive formulae, automorphisms preserve validity of arbitrary formulae.The generalised linear constant restriction L contains a linear order <L of thevariables V . Let v1; v2; v3; : : : ; vn be the enumeration of the variables alongsidethe order. By induction on this enumeration we prove that there exist solutionsli;1 of (�5;1; L) and li;2 of (�5;2; L) such that for all variables vj with j � i we haveh1;2 � li;1(vj) = li;2(vj), that is the �rst i variables ful�l the �bring condition.But this simple statement alone is too weak. In an induction step, we mayneed to apply an automorphism exchanging two atoms in order to establish the�bring condition for the current variable. The di�cult part consists in showingthat this automorphism does not dissolve the �bring conditions for variablesalready handled. This is where the shadows of elements well be needed. Weassume that every variable occurring in the shadows of the �rst i variablesalready ful�ls the �bring condition. And we show that the automorphisms arethe identity on the shadows of the �rst i variables and hence do not dissolve analready established �bring condition.Before we start the induction, we sort out a simple subcase. Let X be par-titioned as X0] X1] X2 where X1 and X2 are in�nite, X0 has at leastn elements, and X0 \ (StabC1(h1�1(V)) [StabC2(h2�2(V))) = ;. De�neVZ := fv 2 V j h1�1(v) 2 Z1 and h2�2(v) 2 Z2g and V �Z := V n VZ . Inother words, VZ is the set of all those variables which are mapped to an atomin C�11 as well as C�22 and V �Z is its complement, i.e., one of the solution elementsis a non-atom for each of these variables.De�ne the following two qf-isomorphisms. For all variables v 2 VZ choose anew atom x 2 X0 and mappings p1 : h1�1(v) 7! x1 and p2 : h2�2(v) 7! x.Since �1 is injective (Lemma 6.2.7) and h1 is a qf-isomorphism, all the h1�1(v)'sare distinct, and the x's are distinct by choice. Thus p1 is a permutation onZ1. Therefore there is a unique extension to a qf-automorphism �1 : C1 !C1. By Lemma 6.2.8, �1h1�1 solves (�5;1; L). Analogously, �2 is the uniqueextension of the permutation p2 on Z2 to a qf-automorphism, and �2h2�2 solves(�5;2; L). Furthermore, since every element x 2 X constitutes a 1-�bre and thush1;2(x) = x, we see that for every variable v such that both �1h1�1(v) 2 Z1 and�2h2�2(v) 2 Z2 holds �2h2�2(v) = h1;2�1h1�1(v). That is to say for v 2 VZ the�bring condition holds.We will now prove by induction over the variables v1; v2; : : : ; vn as given by thelinear order <L that for i = 0; : : : ; n the following 4 properties hold.1a 7! b denotes the permutation of a and b, i.e., a 7! b and b 7! a.124

1. There is an assignment li;1 : V ! C1 such that li;1 solves (�5;1; L) andthere is an assignment li;2 : V ! C2 such that li;2 solves (�5;2; L).2. For every variable v 2 VZ : li;2(v) = h1;2li;1(v) 2 X0.3. De�ne Si := [j�iSd(li;1(vj)) [[j�iSd(li;2(vj)):For every variable v such that li;1(v) 2 Si or li;2(v) 2 Si holds li;2(v) =h1;2li;1(v).4. StabC1(li;1(V �Z)) � Si [X1, StabC2(li;2(V �Z)) � Si [X2.Before we dive into the technicalities of the induction, a few comments are inplace. The aim of the induction is to show that we can transform the givensolutions �1h1�1 and �2h2�2 stepwise by means of automorphisms in such away that �nally for every variable v 2 V the �bring condition holds. The �rstproperty says we still have solutions for (�5;1; L) and (�5;2; L). For variablesin VZ , those variables that are assigned an atom in both solutions, the �bringcondition is already established. Item (2) says we do not loose this property.In each step of the induction, we consider a particular variable vi. For thisvi, we want to establish the �bring condition. Now, in one of the solutions,the variable is assigned to an atom; and there is another atom, the atom thatthe non-atom in the other solution is �bred to. So in order to establish the�bring condition, we want to apply the transposition that exchanges these twoatoms. The di�cult problem is, of course, to show that this transposition doesnot dissolve the �bring conditions of those variables we have already takenhandled. That is what Properties (3) and (4) have to ensure. The set Si is theunion of all shadows of all solutions for variables up to vi in the enumeration.We demand that for each such element in Si that is the solution of any variablewe can be sure that the �bring condition holds. And Property (4) gives us astrong control over the stabilisers of non-atom solutions. Either they are in Si,which means we have already taken care of them. Or they are in X1 (resp. X2),which means they are harmless.Induction Base:De�ne �rstly the following map l̂0;1 : Z1 ! X1 by permuting every z 2StabC1(�1h1�1(V �Z)) with a di�erent atom in X1. It extends uniquely to aqf-automorphism ~l0;1 of (C1; Z1). De�ne l0;1 := ~l0;1�1h1�1. Then l0;1 solves(�5;1; L).Analogously de�ne l̂0;2 : Z2 ! X2 by permuting every z 2 StabC2(�2h2�2(V �Z))with a di�erent atom in X2. It extends uniquely to a qf-automorphism ~l0;2 of(C2; Z2). De�ne l0;2 := ~l0;2�2h2�2. Then l0;2 solves (�5;2; L). This shows (1).For every x 2 X0 by de�nition ~l0;1(x) = x and ~l0;2(x) = x. Thus for variable v 2VZ : l0;2(v) = ~l0;2�2h2�2(v) = �2h2�2(v) = h1;2�1h1�1(v) = h1;2~l0;1�1h1�1(v) =h1;2l0;1(v). This shows (2).S0 = ;, thus (3) is trivially true. 125

Finally StabC1(l0;1(V �Z)) � X1 and StabC2(l0;2(V �Z)) � X2 immediately by de�-nition.Induction Step: Let Lab(vi+1) = �1. { The argument for Lab(vi+1) = �2 isanalogue. { We have to distinguish three cases.Induction Step 1: vi+1 2 VZ .De�ne li+1;1 := li;1 and li+1;2 := li;2. Clearly, li+1;1 solves (�5;1; L) and li+1;2solves (�5;2; L) by induction hypothesis. And for every variable v 2 VZ it holdsthat li+1;2(v) = h1;2li+1;1(v) 2 X0 by induction hypothesis, too.Because li+1;1(vi+1) 2 X0, the shadow Sd(li+1;1(vi+1)) = fli+1;1(vi+1)g. HenceSi+1 = Si [fli+1;1(vi+1)g by de�nition.Let v be a variable such that li+1;1(v) 2 Si+1 or li+1;2(v) 2 Si+1.Then li+1;1(v) = li;1(v) 2 Si or li+1;2(v) = li;2(v) 2 Si and thus li+1;2(v) =h1;2li+1;1(v) by induction hypothesis.Or li+1;1(v) = li;1(v) = li;1(vi+1) or li+1;2(v) = li;2(v) = li;2(vi+1) and li+1;2(v) =h1;2li+1;1(v) 2 X0 was just shown.For k = 1; 2 we have li+1;k = li;k and therefore also StabCk(li+1;k(V �Z)) =StabCk(li;k(V �Z)). Furthermore Si [Xk � Si+1 [Xk. Thus (4) holds by in-duction hypothesis.Induction Step 2: vi+1 2 V �Z and li;2(vi+1) = h1;2li;1(vi+1).This is another simple case. Again de�ne li+1;1 := li;1 and li+1;2 := li;2. Prop-erties (1) and (2) are satis�ed by induction hypothesis.Since vi+1 2 V �Z and Lab(vi+1) = �1, we know li;1(vi+1) is a non-atom andli;2(vi+1) is an atom. Therefore Sd(li;2(vi+1)) = fli;2(vi+1)g [Sd(li;1(vi+1))by de�nition of shadows and Si+1 = Si [Sd(li;2(vi+1)). For a variable vsuch that li+1;1(v) 2 Si or li+1;2(v) 2 Si we have li+1;2(v) = h1;2li+1;1(v)by induction hypothesis. For the variable vi+1, it is trivially the case. Re-mains the case that li;1(v) 2 Sd(li;1(vi+1)) or li;2(v) 2 Sd(li;1(vi+1)). Now,StabC1(li+1;1(vi+1)) � Si [X1 by (4) of the induction hypothesis. De�neX 01 := X1 \ StabC1(li+1;1(vi+1)). Then Sd(li;1(vi+1)) � Si [X 01 [fli;1(vi+1)g.If li;1(v) 2 Si, then li+1;2(v) = h1;2li+1;1(v) by induction hypothesis. The caseli;1(v) 2 X 01 is impossible: Suppose li;1(v) 2 X 01, then v <L vi+1 by the linearconstant restriction { li;1(v) 2 Stab(li;1(v + 1)) is allowed only, if v <L vi+1.Then li+1;2(v) = h1;2li+1;1(v) 2 X again by induction hypothesis. Thereforeh1�1(v) 2 Z1 and h2�2(v) 2 Z2, because li;1 is a qf-isomorphism. Thus v 2 VZand li;1(v) 2 X0. Contradiction, since X0 \X1 = ;.If li;2(v) 2 Si, then li+1;2(v) = h1;2li+1;1(v) again by induction hypothesis. Thecase li;2(v) 2 X 01 is impossible: Suppose li;2(v) 2 X 01, then v <L vi+1 by the lin-ear constant restriction. Then li+1;2(v) = h1;2li+1;1(v) 2 X again by inductionhypothesis and we end in the same contradiction as above.For k = 1; 2 we have li+1;k = li;k and therefore also StabCk(li+1;k(V �Z)) =StabCk(li;k(V �Z)). Furthermore Si [Xk � Si+1 [Xk. Thus (4) holds by in-duction hypothesis.Induction Step 3: vi+1 2 V �Z and li;2(vi+1) 6= h1;2li;1(vi+1).Let yi+1 := li;2(vi+1) 2 Z2 and zi+1 := h1;2li;1(vi+1) 2 Z2. De�ne the following126

permutation ti+1 : Z2 ! Z2 by yi+1 7! zi+1. Then ti+1 extends uniquelyto a qf-automorphism �i+1. De�ne li+1;1 := li;1 and li+1;2 := �i+1li;2. Thenli+1;1 solves (�5;1; L) by induction hypothesis. And li+1;2 solves (�5;2; L) byLemma 6.2.8 and induction hypothesis for li;2.Furthermore, we can establish the following facts(a) zi+1 2 Z2 nX and especially zi+1 =2 X2 or X1.This is a consequence of the de�nition of the �bring construction.(b) zi+1 =2 Si.(If zi+1 2 Si, then h2;1(zi+1) = li;1(vi+1) 2 Si by de�nition of shadows,then zi+1 = h1;2li;1(vi+1) = li;2(vi+1) = yi+1 by induction hypothesis.)(c) zi+1 =2 StabC2(li;2(V �Z)) and zi+1 =2 StabC1(li;1(V �Z)).(StabCk(li;k(V �Z)) � Si [Xk, k = 1; 2.)(d) yi+1 2 X2, yi+1 =2 Si.(yi+1 2 Si [X2 by induction hypothesis (4) and yi+1 2 Si =) yi+1 =zi+1.)By (a) and (d), �i+1 is the identity on X0. Therefore for all v 2 VZ : li+1;2(v) =�li;2(v) = li;2(v) = h1;2li;1(v) = h1;2li+1;1(v) 2 X0. This shows Property (2).By (b) and (d), �i+1 is the identity on Si.StabC1(li;1(V)) = StabC1(li;1(VZ)) [StabC1(li;1(V �Z)); by the above �i+1 is theidentity on X0 � StabC1(li;1(VZ)). By (c), zi+1 =2 StabC1(li;1(V �Z)); by (d),yi+1 2 X2, hence yi+1 =2 StabC1(li;1(V �Z)) � Si [X1, because X1 \X2 = ;. Tosum up, �i+1 is the identity on StabC1(li;1(V)) and therefore on li;1(V).By de�nition, Si+1 = Sj�i Sd(li+1;1(vj))[Sj�i Sd(li+1;2(vj))[Sd(li+1;1(vi+1))[Sd(li+1;2(vi+1)). Now, �i+1 is the identity on Si, thus Sj�i Sd(li+1;1(vj)) [Sj�i Sd(li+1;2(vj)) = Si. And Sd(li+1;2(vi+1)) = fzi+1g [Sd(li+1;1(vi+1)) byde�nition. Hence Si+1 = Si [Sd(zi+1).For a variable v, if li+1;1(v) = li;1(v) 2 Si then li+1;2(v) = li;2(v) = h1;2li+1;1(v)by induction hypothesis.If li+1;2(v) 2 Si, then li+1;2(v) = li;2(v). Therefore li+1;2(v) = h1;2li+1;1(v) byinduction hypothesis.As seen, zi+1 =2 StabC1(li+1;1(V)), and therefore also zi+1 =2 li+1;1(V); henceli+1;1(v) 6= zi+1. Thus, if li+1;1(v) 2 Sd(zi+1), then li+1;1(v) 2 Sd(li+1;1(vi+1)).Now, Stab(li+1;1(vi+1)) = Stab(li;1(vi+1) � Si[X1 by induction hypothesis (4).De�ne X 01 := X1 \ Stab(li+1;1(vi+1)). Then Sd(li+1;1(vi+1)) � fli+1;1(vi+1)g [X 01 [Si. The case li+1;1(v) = li+1;1(vi+1) is simple, because as a consequenceof Lemma 6.2.7 v = vi+1. The case li+1;1(v) 2 Si is already taken care of. Thecase li+1;1(v) 2 X 01 is impossible: Suppose li+1;1(v) 2 X 01, then v <L vi+1 bythe linear constant restriction. Thus li+1;2(v) = h1;2li+1;1(v) 2 X. Thus bothh1�1(v) 2 Z1 and h2�2(v) 2 Z2. Therefore v 2 VZ and li+1;1(v) 2 X0 which isa contradiction since X0 \X1 = ;.If li+1;2(v) 2 Sd(li+1;2(vi+1)) then li+1;2(v) = zi+1 or li+1;2(v) 2 Si. li+1;2(v) =li+1;1(vi+1) is impossible, because li+1;1(vi+1) 2 C1 nZ1 and li+1;2(v) 2 C2. And127

li+1;2(v) =2 X 01, because li;2(v) =2 X1 by induction hypothesis (4) and zi+1 =2 X1by (a). The case li+1;2(v) = zi+1 is simple, because �i+1 is de�ned such thatzi+1 = h1;2li+1;1(vi+1). The case of li+1;2(v) 2 Si was handled above.Finally, since li+1;1 = li;1 we have StabC1(li+1;1(V �Z)) = StabC1(li;1(V �Z)) � Si [X1 � Si+1 [X1. And StabC2(li+1;2(V �Z)) � (StabC2(li;2(V �Z)) n fyi+1g) [fzi+1gby Lemma 6.2.6. Since zi+1 2 Si+1, we have StabC2(li+1;2(V �Z)) � Si+1 [X2.And this ends the induction proof.By this induction, we showed that for i = n there are assignments ln;1 andln;2 such that ln;1 solves (�5;1; L) and ln;2 solves (�5;2; L) and for every variablev 2 V : ln;2(v) = h1;2ln;1(v). Therefore ln;1 solves �5;1 and �5;2 in C�1 and hencealso �4. Thus there is a solution of �0 in C�1 by assigning each variable thatvalue that its representant receives by ln;1.De�nition 6.2.11 As in Proposition 6.2.5 above, let �1 be a solution of(�5;1; L) and �2 a solution of (�5;2; L). De�ne �1
 �2 as the solution of �0as constructed in the proof above.Corollary 6.2.12 There exists a �1-isomorphism that maps �1 to �1
�2 andthere exists a �2-isomorphism that maps �2 to �1
 �2.CompletenessProposition 6.2.13 If the input problem �0 is solvable, then there exists alinear constant restriction L = (Lab; <) and an output pair (�5;1;�5;2) suchthat both (�5;1; L) and (�5;2; L) are solvable.Proof. Let � be the solution in the combined solution domain C�1 with atomset Z1. In Step 3, we identify two variables x and y, i� �(x) = �(y). In Step 4,variable x receives label �2, i� �(x) 2 Z1. Otherwise x receives label �1. Andthe order < is de�ned by: x < y, i� �(x) <i �(y) according to De�nition 3.3.9(on page 35). This gives the linear constant restriction L. Then � obviouslysolves �4 and therefore �5;1 and �5;2.Let h1 : C�11 ! A�11 be the qf-isomorphism between C�11 and A�11 . Then h1 � �solves �5;1 in A�11 .For the linear constant restriction L:If Lab(x) = �2, then �(x) 2 Z1 by de�nition of L and h1 � �(x) 2 X byde�nition of a qf-isomorphism.If Lab(x) = �2 and Lab(y) = �2 and x 6= y, then �(x) 6= �(y) by de�nitionof the identi�cation in Step 3 and h1 � �(x) 6= h1 � �(y), because h1 is anisomorphism.If x < y, Lab(x) = �1 and Lab(y) = �2, then by de�nition of the order <,�(x) is �bred before �(y) and thus �(y) =2 StabC1�1(�(x)). Therefore h1 � �(y) =2StabA1�1(h1 � �(x)). 128

Let h2 : C�22 ! A�22 be the qf-isomorphism between C�22 and A�22 . Thenh2 � h1;2 � � solves �5;2 in A�22 .For the linear constant restriction L:If Lab(x) = �1, then �(x) 2 C1 n Z1, therefore h1;2 � �(x) 2 Z2 by de�nition ofthe �bring construction and h2 � h1;2 � �(x) 2 X, since h2 is a qf-isomorphism.If Lab(x) = �1 and Lab(y) = �1 and x 6= y, then �(x) 6= �(y) by de�nitionof the identi�cation in Step 3. Thus h2 � h1;2 � �(x) 6= h2 � h1;2 � �(y), becauseh2 � h1;2 is an isomorphism.If x < y, Lab(x) = �2 and Lab(y) = �1, then by de�nition of the order <,�(x) is �bred before �(y) and thus h1;2 � �(y) =2 StabC2�2(h1;2 � �(x)). Thereforeh2 � h1;2 � �(y) =2 StabA2�2(h2 � h1;2 � �(x)).6.3 Free Amalgamation of Negative Constraints:Ground SolvabilityTo discuss ground solvability, we �rst have to extend the notion of a ground so-lution known from equational uni�cation to the more general case of quasi-freestructures. In case, where we only have a constraint problem � without linearconstant restriction, the notion of a ground solution of � is a straight forwardgeneralisation of the de�nition for equational theories. In an equational theory,a solution is ground, if no solution term contains a variable. For quasi-freestructures, this just means, that the stabiliser of every solution element has tobe empty. In case, where we consider constraint problems (�; L) with linearconstant restriction L, things are a bit more complicated. In equational theo-ries, all such variables that are assigned alien labels are considered as constants,thus even if they appear in a solution term that contains no other variables,this term is still considered as ground. Analogously for quasi-free structures, wewill permit the appearance of such atoms in the stabiliser of a solution elementthat are themselves di�erent solution elements. If we demanded here, too, thatstabilisers have to be empty, we would yield only trivial combination problemswith no really mixed elements. We also de�ne the notion of a restrictive so-lution for quasi-free structures. This notion was introduced by F. Baader &K. U. Schulz in [9] for equational disuni�cation problems. There it said that asolution is restrictive, if whenever a variable is assigned a complex term in thesolution, then this term is not equivalent (modulo the equational theory) to avariable.De�nition 6.3.1 Let � be a constraint problem. A solution is called ground,i� every solution element has an empty stabiliser.Let (�; L) be a constraint problem with linear constant restriction L over signa-ture �. A solution � is called a ground solution, i� for every variable v 2 Var(�)such that Lab(v) = �: �(v) is not an atom and Stab(�(v)) � �(Var(�) n fvg).That is the stabiliser of a non-atom solution element can only consist of atomsthat are themselves solutions of variables di�erent from v.129

A solution � is called restrictive, i� for every variable v 2 Var(�) such thatLab(v) = �: �(v) is not an atom.For a ground solution, note that due to the linear constant restriction, the onlyatoms in the stabiliser of a non-atom solution element allowed stem from solu-tions of variables that are smaller according to the given linear order. Obviously,every ground solution is restrictive.This section's main statement is the followingTheorem 6.3.2 Let (A�11 ;X) and (A�22 ;X) be two quasi-free structures overdisjoint signatures with in�nitely many ground elements. The existential the-ory of the ground substructure of the free amalgamated product A�11
 A�22 isdecidable, if the existence of restrictive solutions of pure constraint problemswith linear constant restrictions is decidable in both components (A�11 ;X) and(A�22 ;X).Remember that a ground substructure (Def. 3.2.18 on page 25) of a quasi-freestructure is just the structure of its ground elements. It would of course bedesirable to reduce ground solvability of mixed constraints in the free amalgamto ground solvability in the components. But the decomposition algorithm givenin the last section does not permit so. We can proof a soundness proposition:Proposition 6.3.3 Let �0 be the input problem of the Decomposition Algo-rithm 6.2.4. Suppose there exists an output pair (�5;1;�5;2) and a linear con-stant restriction L such that both (�5;1; L) and (�5;2; L) have ground solutions.Then �0 has a ground solution.Proof. Let C�1 be the combined solution domain of A�11 and A�22 , and let �1 bethe ground solution of (�5;1; L) in A�11 and �2 the ground solution of (�5;2; L)in A�22 where L = (Lab; <). Let h1;2 : C�1 ! C�2 be the qf-isomorphism betweenC�1 and C�2 .Let h1 : A�11 ! C�11 be the qf-isomorphism between A�11 and C�11 . Then h1�1is a ground solution of (�5;1; L) in C�11 (C�1) by Lemma 6.2.8.Let h2 : A�22 ! C�22 be the qf-isomorphism between A�22 and C�22 . Then h2�2is a ground solution of (�5;2; L) in C�22 by Lemma 6.2.8.Let v1; : : : ; vn be the enumeration of the variables V along the ordering <,i. e. vi < vj , i� i < j. Note that there is no variable v 2 V with h1�1(v) 2 Z1and h2�2(v) 2 Z2, because if Lab(v) = �i (for i = 1 or i = 2), then hi�i(v) is anon-atom, since hi�i is a ground solution.We will now prove by induction over the variables v1; v2; : : : ; vn as given by thelinear order < that for i = 0; : : : ; n the following 3 properties hold.1. There is an assignment li;1 : V ! C1 such that li;1 is a ground solutionof (�5;1; L) and there is an assignment li;2 : V ! C2 such that li;2 is aground solution of (�5;2; L). 130

2. For every j � i: li;2(vj) = h1;2li;1(vj).3. For every j � i: li;1(vj) is ground in (C�1 ;X).Induction Base:De�ne l0;1 := h1�1 and l0;2 := h2�2. Then (1) holds by the remarks aboveand (2) and (3) are trivially true.Induction Step: Let Lab(vi+1) = �1. { The argument for Lab(vi+1) = �2 isanalogue.De�ne the following map: l̂i+1 : Z2 ! Z2 by the transposition li;2(vi+1) 7!h1;2li;1(vi+1). This permutation extends uniquely to a qf-automorphism ~li+1of C�22 . De�ne li+1;2 := ~li+1li;2 and li+1;1 := li;1. Then Property (1) holdsby Lemma 6.2.8. And obviously by de�nition of ~li+1 we have li+1;2(vi+1) =h1;2li+1;1(vi+1).Now li;2(vi+1) =2 StabC2(fli;2(v1); : : : ; li;2(vi)g): If vj < vi+1 and Lab(vj) = �1then li;2(vj) 2 Z2 and li;2(vj) 6= li;2(vi+1) because li;2 is the composition ofinjective functions. If Lab(vj) = �2 then li;2(vi+1) =2 StabC2(li;2(vj)) due to thelinear constant restriction.And h1;2li;1(vi+1) =2 StabC2(fli;2(v1); : : : ; li;2(vi)g): If vj < vi+1 and Lab(vj) =�1 then li;2(vj) 2 Z2 and li;2(vj) = h1;2li;1(vj) by induction hypothesis. Nowsince vj 6= vi+1 we have h1;2li;1(vj) 6= h1;2li;1(vi+1), because h1;2li;1 is the com-position of injective functions. Thus li;2(vj) 6= h1;2li;1(vi+1). If Lab(vj) = �2then for every z 2 StabC2(li;2(vj)) exists a variable vk < vj with z = li;2(vk)by de�nition of a ground-solution. Therefore h1;2li;1(vi+1) =2 StabC2(li;2(vj)) bythe same argument as above.Hence ~li+1 is the identity on li;2(v1); : : : ; li;2(vi). Thus for vj < vi+1 we haveli+1;2(vj) = li;2(vj) = h1;2li;1(vj) = h1;2li+1;1(vj) by induction hypothesis. Thisshows Property (2).Because for j < i+1 we know ~li+1 is the identity on li;2(vj), we know li+1;1(vj)is ground by induction hypothesis. Because for every z 2 StabC1(li+1;1(vi+1))there is a v < vi+1 with z = li+1;1(v) and this li+1;1(v) is ground by theabove, li+1;1(vi+1) is ground, too. And this proof of Property (3) completes theinduction.For i = n the above induction shows that ln;1 is a ground solution of (�5;1; L) andln;2 is a ground solution of (�5;2; L). Furthermore for all variables v: ln;2(v) =h1;2ln;1(v). Thus ln;1 is a ground solution of �5;2 in C�1 . And for each variablev, the element ln;1(v) is ground in (C�1 ;X).This shows soundness of the decomposition algorithm. Unfortunately, this algo-rithm is not complete. In [9], Baader and Schulz give an example for equationaldisuni�cation (4.2 on page 243) that demonstrates this fact. Therefore we haveto demand the existence of restricted solutions in the components in order toget ground solvability in the combined domain.131

Proposition 6.3.4 Assume that both A�11 and A�22 contain an in�nite numberof ground elements2. Let �0 be the input problem of the decomposition algo-rithm. Suppose there exists an output pair (�5;1;�5;2) and a linear constantrestriction L such that both (�5;1; L) and (�5;2; L) have restricted solutions.Then �0 has a ground solution.Before we can present the proof, we give a little technical lemma that we willmake use of in the proof.Lemma 6.3.5 Let (C�1 ;X) be the free amalgamated product of (A�11 ;X) and(A�22 ;X). An element c 2 C1 is ground in (C�1 ;X), i� Bottom(Sd(c))\X = ;,i.e., there are no atoms amongst the bottom elements of its shadow.Proof. We prove this lemma by an induction over the depth of the shadow ofc, where the depth of the shadow is just the length of the longest branch in theshadow.In the base case, c is a bottom element itself. Thus Bottom(Sd(c)) = fcg andc is ground in (C�1 ;X) i� it is ground in (C�11 ; Z1).In the step case, c is not a bottom element.If c =2 Z1 is a non-atom and ground in (C�1 ;X), then each element in StabC1�1(c)is also ground in (C�1 ;X). By induction hypothesis, for each z 2 StabC1�1(c):Bottom(Sd(z)) \ X = ;. Since Sd(c) = fcg [fSd(z) j z 2 StabC1�1(c) we havealso Bottom(Sd(c)) \X = ;.If c 2 Z1 is an atom and ground in (C�1 ;X), then h1;2(c) is ground in (C�2 ;X),therefore each element in StabC2�2(h1;2(c)) is also ground in (C�2 ;X). By induc-tion hypothesis, for each z 2 StabC2�2(h1;2(c)): Bottom(Sd(z)) \X = ;. HenceBottom(Sd(h1;2(c))) \X = ; and Bottom(Sd(c)) \X = ;.If c =2 Z1 is a non-atom and Bottom(Sd(c))\X = ;, then for each z 2 StabC1�1(c):Bottom(Sd(z))\X = ;. By induction hypothesis, each z 2 StabC1�1(c) is groundin (C�1 ;X). Therefore c is ground in (C�1 ;X).If c 2 Z1 is an atom and Bottom(Sd(c))\X = ;, then Bottom(Sd(h1;2(c)))\X =; and for each z 2 StabC2�2(h1;2(c)): Bottom(Sd(z)) \X = ;. By induction hy-pothesis, each z 2 StabC2�2(h1;2(c)) is ground in (C�2 ;X). Therefore h1;2(c) isground in (C�2 ;X) and c is ground in (C�1 ;X).The following proof is very similar to the soundness proof in the non-groundcase. The �rst di�erence is that due to the fact that the component solutionsare restricted, there is no variable which is assigned to an atom in both compo-nent solutions. Hence no special treatment of those variables is required. Then,we have to show that we always work with restricted solutions, but that is sim-ple, because a qf-isomorphism obviously maps atoms to atoms and non-atomsto non-atoms and thus preserves the property of a solution being restrictive.Finally, we must show that the combined solution that we receive is actuallyground in (C�1 ;X).2In the following, a ground element is always an element with empty stabiliser.132

Proof of Proposition 6.3.4.Let C�1 be the free amalgamated product of A�11 and A�22 , and let �1 be therestrictive solution of (�5;1; L) in A�11 and �2 the restrictive solution of (�5;2; L)in A�22 where L = (Lab; <L). Let h1;2 : C�1 ! C�2 be the qf-isomorphismbetween C�1 and C�2 .Let h1 : A�11 ! C�11 be the qf-isomorphism between A�11 and C�11 . Then h1�1is a restrictive solution of (�5;1; L) in C�11 (C�1) by Lemma 6.2.8.Let h2 : A�22 ! C�22 be the qf-isomorphism between A�22 and C�22 . Then h2�2is a restrictive solution of (�5;2; L) in C�22 by Lemma 6.2.8.Let v1; : : : ; vn be the enumeration of the variables V along the ordering <L,i. e. vi <L vj, i� i < j. Note that there is no variable v 2 V with h1�1(v) 2 Z1and h2�2(v) 2 Z2, because if Lab(v) = �i (for i = 1 or i = 2), then hi�i(v) is anon-atom, since hi�i is a restrictive solution.Let G1 � C1 be the set of all ground elements with respect to (C�11 ; Z1) suchthat they are not solutions of h1�1. This set is in�nite, since A1 has in�nitelymany ground elements. De�ne Y2 := fy 2 Z2 j 9b 2 G1 : y = h1;2(b)g nStabC2(h2�2(V)). Y2 again is in�nite. Analogously, let G2 � C2 be the set ofall ground elements with respect to (C�22 ; Z2) such that they are not solutions ofh2�2. This set is in�nite, since A2 has in�nitely many ground elements. De�neY1 := fy 2 Z1 j 9b 2 G2 : y = h2;1(b)g n StabC1(h1�1(V)). Y1 again is in�nite.We will now prove by induction over the variables v1; v2; : : : ; vn as given by thelinear order <L that for i = 0; : : : ; n the following 4 properties hold.1. There is an assignment li;1 : V ! C1 such that li;1 is a restrictive solutionof (�5;1; L) and there is an assignment li;2 : V ! C2 such that li;2 is arestrictive solution of (�5;2; L).2. De�ne Si := [j�iSd(li;1(vj)) [[j�iSd(li;2(vj)):For every variable v such that li;1(v) 2 Si or li;2(v) 2 Si holds li;2(v) =h1;2li;1(v).3. StabC1(li;1(V)) � Si [Y1, StabC2(li;2(V)) � Si [Y2.4. For all v 2 V : If Lab(v) = �1 then Bottom(Sd(li;1(v))) \ X = ;, ifLab(v) = �2 then Bottom(Sd(li;2(v))) \X = ;.Induction Base:De�ne �rstly the following map l̂0;1 : Z1 ! Y1 by permuting every z 2StabC1(h1�1(V)) with a di�erent atom in Y1. It extends uniquely to a qf-automorphism ~l0;1 of (C1; Z1). De�ne l0;1 := ~l0;1h1�1. Then l0;1 is a restrictivesolution of (�5;1; L).Analogously de�ne the following map l̂0;2 : Z2 ! Y2 by permuting everyz 2 StabC2(h2�2(V)) with a di�erent atom in Y2. It extends uniquely to a133

qf-automorphism ~l0;2 of (C2; Z2). De�ne l0;2 := ~l0;2h2�2. Then l0;2 is a restric-tive solution of (�5;2; L). This shows Property (1).S0 = ;, thus Property (2) is quite trivially true. And StabC1(l0;1(V)) � Y1 andStabC2(l0;2(V)) � Y2 by de�nition.Property (4) follows immediately from the above because Y1 and Y2 are de�nedas �bre images of ground elements in G2 resp. G1.Induction Step: Let Lab(vi+1) = �1. { The argument for Lab(vi+1) = �2 isanalogue. { We have to distinguish two cases.Induction Step 1: li;2(vi+1) = h1;2li;1(vi+1).This is a simple case. Just de�ne li+1;1 := li;1 and li+1;2 := li;2. Prop-erty (1) is satis�ed by the induction hypothesis. li;2(vi+1) 2 Z2, henceli;1(vi+1) 2 Sd(li+1;2(vi+1)). Therefore Si+1 = Si[Sd(li;2(vi+1)). For a variablev such that li+1;1(v) 2 Si or li+1;2(v) 2 Si we have li+1;2(v) = h1;2li+1;1(v)by induction hypothesis. For the variable vi+1, it is trivially the case. Now,StabC1(li+1;1(vi+1)) � Si [Y1 by Property (3) of the induction hypothesis.If li+1;1(v) or li+1;2(v) 2 Si, then li+1;2(v) = h1;2li+1;1(v) by induction hy-pothesis. li+1;2(v) =2 G2: Suppose it were, then li+1;2(v) = h2�2(v), sinceStabC2(li+1;2(v)) = ;. But that contradicts the choice of G2 (not containingany solution elements). li+1;1(v) =2 Y1: Suppose it were, then v < vi+1 dueto the linear constant restriction. Then li+1;2(v) = h1;2li;1(v) by induction hy-pothesis. But then li+1;2(v) 2 G2 by de�nition of Y1, and we get the samecontradiction as above. This shows Property (2). Properties (3) and (4) aretrue by induction hypothesis and li+1;k = li;k (k = 1; 2).Induction Step 2: li;2(vi+1) 6= h1;2li;1(vi+1).Let yi+1 := li;2(vi+1) 2 Z2 and zi+1 := h1;2li;1(vi+1) 2 Z2. De�ne the followingpermutation ti+1 : Z2 ! Z2 by yi+1 7! zi+1. Then ti+1 extends uniquelyto a qf-automorphism �i+1. De�ne li+1;1 := li;1 and li+1;2 := �i+1li;2. Thenli+1;1 is a restrictive solution of (�5;1; L) by induction hypothesis. And li+1;2 isa restrictive solution of (�5;2; L) by Lemma 6.2.8 and induction hypothesis forli;2.Furthermore, we can establish the following facts(a) zi+1 =2 Y2, zi+1 =2 Y1.(If zi+1 2 Y2, then li;1(vi+1) 2 G1, then h1�1(vi+1) 2 G1, which contra-dicts the choice of G1. zi+1 is the �bre image of the non-atom li;1(vi+1),hence zi+1 2 Z2 nX and (Z2 nX) \ Z1 = ;.)(b) zi+1 =2 Si.(If zi+1 2 Si, then yi+1 = zi+1 by induction hypothesis.)(c) zi+1 =2 StabC2(li;2(V)) and zi+1 =2 StabC1(li;1(V)).(StabCk(li;k(V)) � Si [Yk, k = 1; 2.)(d) yi+1 2 Y2, yi+1 =2 Si, yi+1 =2 X, yi+1 =2 Y1.(yi+1 2 Si[Y2 by induction hypothesis (4) and yi+1 2 Si =) yi+1 = zi+1.)134

By (c) and (d), �i+1 is the identity on StabC1(li;1(V)). By (b) and (d), �i+1 isthe identity on Si.By de�nition, Si+1 = Sj�i Sd(li+1;1(vj))[Sj�i Sd(li+1;2(vj))[Sd(li+1;1(vi+1))[Sd(li+1;2(vi+1)). Now, �i+1 is the identity on Si, thus Sj�i Sd(li+1;1(vj)) [Sj�i Sd(li+1;2(vj)) = Si. And Sd(li+1;2(vi+1)) = fzi+1g [Sd(li+1;1(vi+1)) byde�nition. Hence Si+1 = Si [Sd(zi+1).For a variable v, if li+1;1(v) = li;1(v) 2 Si then li+1;2(v) = li;2(v) = h1;2li+1;1(v)by induction hypothesis.If li+1;2(v) 2 Si, then li+1;2(v) = li;2(v). Therefore li+1;2(v) = h1;2li+1;1(v) byinduction hypothesis.If li+1;1(v) 2 Sd(zi+1) then li+1;1(v) = li+1;1(vi+1) or li+1;1(v) 2 Si, be-cause StabC1(li+1;1(vi+1)) � Si [Y1 by induction hypothesis. The caseli+1;1(v) = zi+1 is impossible, because zi+1 =2 StabC1(li+1;1(V)). The caseli+1;1(v) 2 Y1 is impossible, too: Suppose li+1;1(v) 2 Y1, then v <L vi+1 bythe linear constant restriction. But then li+1;2(v) = h1;2li+1;1(v) by induc-tion hypothesis. And li+1;2(v) = h2�2(v) 2 G2, which contradicts the choiceof G2. The case li+1;1(v) = li+1;1(vi+1) is simple, �i+1 is de�ned such thatli+1;2(vi+1) = h1;2li+1;1(vi+1). The case of li+1;1(v) 2 Si was already handledabove.If li+1;2(v) 2 Sd(zi+1) then li+1;2(v) = zi+1 or li+1;2(v) 2 Si. li+1;2(v) =li+1;1(vi+1) is impossible, because li+1;1(vi+1) 2 C1nZ1 and li+1;2(v) 2 C2. Simi-larly, li+1;2(v) =2 Y1, because li+1;2(v) 2 C2 and Y1\C2 = ;. The case li+1;2(v) =zi+1 is simple, because �i+1 is de�ned such that zi+1 = h1;2li+1;1(vi+1). Thecase of li+1;2(v) 2 Si was handled above. This shows Property (2).Since li+1;1 = li;1 we have StabC1(li+1;1(V)) = StabC1(li;1(V)) � Si [Y1 �Si+1 [Y1. And StabC2(li+1;2(V)) = (StabC2(li;2(V)) n fyi+1g) [fzi+1g. Sincezi+1 2 Si+1, we have StabC2(li+1;2(V)) � Si+1 [Y2. This shows Property (3).To show Property (4), we �rst note that since �i+1 is the identity on Si theproperty holds for all variables v < vi+1 by induction hypothesis. Furthermore,since StabC1(li+1;1(V)) = StabC1(li;1(V)) the property also holds for all vari-ables v with Lab(v) = �1 which includes vi+1. Remain the variables v > vi+1with Lab(v) = �2. By induction hypothesis (3), StabC2(li;2(v) � Si [Y2.Since �i+1 is the identity on Si, there is only one interesting case, namelyyi+1 2 StabC2(li;2(v)). Otherwise, �i+1 is the identity on StabC2(li;2(v)) and theproperty follows from the induction hypothesis. If yi+1 2 StabC2(li;2(v)) thenzi+1 2 StabC2(li+1;2(v)) by de�nition of �i+1. But zi+1 is �bred with li+1;1(vi+1)for which we already know that Bottom(Sd(li+1;1(vi+1))) \X = ;. ThereforeBottom(Sd(li+1;2(v))) \X = ;, too.This ends the induction proof.By this induction, we showed that for i = n there are assignments ln;1 and ln;2such that ln;1 is a restricted solution of (�5;1; L) and ln;2 is a restrictive solutionfor (�5;2; L) and for every variable v 2 V : ln;2(v) = h1;2ln;1(v). Thereforeln;1 solves �5;2 in C�1 and hence also �4. It remains to show that the solutionelements in ln;1 are all ground in (C�1 ;X). Let v 2 V . If Lab(v) = �1, thenBottom(Sd(ln;1(v))) \X = ; by Property (4) of the induction. If Lab(v) = �2,135

then ln;1(v) = h2;1ln;2(v) and Bottom(Sd(ln;2(v))) \ X = ;. Therefore alsoBottom(Sd(ln;1(v)))\X = ;. Thus for all v 2 V we have that ln;1(v) is groundin (C�1 ;X) by Lemma 6.3.5.Proposition 6.3.6 If the input problem �0 has a ground solution, then thereexists a linear constant restriction L and an output pair (�5;1;�5;2) such thatboth (�5;1; L) and (�5;2; L) have a restrictive solution.The completeness proof is a very small extension of the completeness proof inthe non-ground case.Proof. Let � be the ground solution in the combined solution domain (C�1 ;X),and Z1 the atom set of C�11 . In Step 3, we identify two variables x and y, i��(x) = �(y). In Step 4, variable x receives label �2, i� �(x) 2 Z1. And theorder < is de�ned by: x < y, i� �(x) <i �(y) according to De�nition 3.3.9.This gives the linear constant restriction L. Then � obviously solves �4 andtherefore �5;1 and �5;2.Because � is ground, for every variable v: either �(v) 2 Z1 or h1;2�(v) 2 Z2,but not both: Suppose both �(v) 2 Z1 and h1;2�(v) 2 Z2. For every z 2 Z1nX:h1;2(z) 2 C2 n Z2 and for every z0 2 Z2 nX: h2;1(z0) 2 C1 n Z1 by de�nition ofthe �bring construction. Thus �(v) 2 X and h1;2�(v) 2 X and �(v) = h1;2�(v)by de�nition of the �bring construction. But then �(v) is not ground.Let h1 : C�11 ! A�11 be the qf-isomorphism between C�11 and A�11 . Then h1�solves (�5;1; L) in A�11 by the completeness proof in the general case. h1� isrestrictive, because if Lab(v) = �1 then �(v) 2 C1 n Z1 by the above, andqf-isomorphisms map non-atoms to non-atoms.Let h2 : C�22 ! A�22 be the qf-isomorphism between C�22 and A�22 . Then h2h1;2�solves (�5;2; L) in A�22 by the completeness proof in the general case. Andh2h1;2� is restrictive, because if Lab(v) = �2 then �(v) 2 C2 nZ2 by the above,and qf-isomorphisms map non-atoms to non-atoms.6.4 Is there a Logical Translation of Solving Prob-lems with LCRs?Unfortunately, the notion of a linear constant restriction is a purely technical,not very elegant one. Thus it would be nice, if we were able to translate it intoa purely logical problem. But this task proves di�cult, and it is indeed unlikelythat there will be a general solution.De�nition 6.4.1 A formula ' is called positive, i� it is constructed by con-junction, disjunction, existential and universal quanti�cation of atomic formu-lae, i.e., contains no negation or implication.A formula is called negative, i� is equivalent to a formula :' where ' is apositive formula. 136

In [15], F. Baader and K. U. Schulz show that for positive formulae, the solvingof problems with linear constant restrictions is equivalent to solving the fullpositive theory by proving that solving a formula with linear constant restrictionis equivalent to solving the formula with an alternating quanti�er pre�x. Wepresented this statement as Lemma 3.2.29 in the section introducing quasi-free structures. The key insight there is that the atoms (of the linear constantrestriction) play indeed the role of universal elements. But when under the scopeof (an odd number of) negations, the atoms loose their universality property,they behave almost like any other element. This can be shown by the followingProposition 6.4.2 Let (A�;X) be a quasi-free structure and
 = 9v1 : : : vl '(v1; : : : ; vl)be a negative �-sentence, where ' is a negative formula and v1; : : : ; vl all freevariables occurring in it. Then the following conditions are equivalent:1. A� j= 9v1 : : : vl '(v1; : : : ; vl).2. There exist a k � l2 and ~x1 2 ~X;~e1 2 ~A; : : : ~xk 2 ~X;~ek 2 ~A such that(a) j~x1 [: : : [~xk [~e1 [: : : [~ekj = l,(b) A� j= '(~x1; ~e1 : : : ; ~xk; ~ek),(c) all atoms in the sequences ~x1; : : : ; ~xk are distinct,(d) for all j; 1 � j � k, the components of ~xj are not contained inStabA�(~e1) [: : : [StabA�(~ej�1).Proof. For the non-trivial part, letA� j= 9v1 : : : vl '(v1; : : : ; vl):Then there are a k � l2 and elements ~a1 2 ~A;~b1 2 ~A; : : : ;~ak 2 ~A;~bk 2 ~A suchthat j~a1 [: : : [~ak [~b1 [: : : [~bkj = l andA� j= '(~a1;~b1; : : : ;~ak;~bk):Let ~x1 2 ~X; ~y1 2 ~X; : : : ; ~xk 2 ~X; ~yk 2 ~X be sequences of atoms such that allatoms in the sequence ~x1; ~y1; : : : ; ~xk; ~yk are di�erent. The mapping h0 that mapsthe sequences ~x1 to ~a1, ~y1 to ~b1; : : : ; ~xk to ~ak, ~yk to ~bk can be extended to asurjective homomorphism h. ThenA� j= '(h(~x1); h(~y1); : : : ; h(~xk); h(~yk))by assumption and thereforeA� j= '(~x1; ~y1; : : : ; ~xk; ~yk)since surjective homomorphisms preserve validity of positive formulae. Thisshows Condition (b). Conditions (c) and (d) follow immediately by the choice137

of the atoms all being di�erent and the fact that each atom is its own stabiliser.Unfortunately, this proposition also indicates that it is very unlikely to �nd atranslation of problems with linear constant restrictions into problems expressedin purely logic terms in the general case. Consider an atom (from the linearconstant restriction) that appears both in a positive and in a negative context.In the positive context, it would be translated into a universally quanti�edvariable. In the negative context, the same variable had to be existentiallyquanti�ed, which is obviously impossible. There are no quanti�ers that behavesometimes this way sometimes another. And a general translation of the atomby a universally quanti�ed variable is not correct.6.5 A Stronger Combination Result?We showed that the existential fragment of the free amalgamated product isdecidable provided conjunctions of literals with linear constant restrictions aredecidable in the components. A natural question to ask is, if we can decide alarger quanti�er pre�x fragment that just the existential one. This issue appearsto be even more interesting, since F. Baader and K. U. Schulz [10] showed thatfor the case of purely positive constraints, the full positive theory, i.e., arbitraryquanti�er pre�xes, can be decided in the free amalgamated product. The answerwe give in this section is a negative one. We will provide counterexamples fromthe �eld of equational uni�cation for the general as well as for the ground case.Undecidability of the �3-Fragment in the General CaseSolvability of disuni�cation problems with linear constant restrictions for thefree theory and the theory of an AC-function symbol is shown to be decidableby F. Baader and K. U. Schulz in [9]. Therefore the existential theory of thefree algebra of one AC-symbol and any �nite number of free function symbolsis decidable. Even better, the full �rst order theory of both the free theory [33,70, 72] and the theory of an AC-function symbol and any number of constants[101] is decidable.On the other hand, the �3-fragment of the �rst order theory of an AC-functionsymbol, one free function symbol and one constant over the free algebra isshown to be undecidable by R. Treinen [113].Proposition 6.5.1 There exists an instance of combination, namely the com-bination of the theory of an AC-symbol and the free theory, the �3-fragment ofwhich is undecidable, though the full �rst order theories of both components aredecidable.This result leaves a gap: What about the �2-fragment? And indeed, for thetheory of one AC-function, one free function and one constant over the free138

algebra, it is an open question whether or not the �2-fragment is decidable.For the case of combination, a look at the ground case will show that there isno hope.Undecidability of the �2-Fragment in the Ground CaseThe example in this subsection is given by the combination of the associativetheory with the free theory. In [9], F. Baader and K. U. Schulz prove the decid-ability of the existential theory of the initial algebra of the signature consistingof one associative function symbol, one free function symbol and one constant.This result is obtained by as follows: The solvability of disuni�cation problemswith linear constant restrictions over the initial algebra is shown for the freetheory and the associative theory. And one of the main results of that paper isthe decidability of the existential fragment of the initial algebra of the combinedsignatures provided decidability of disuni�cation problems with linear constantrestrictions in the components.On the other hand, R. Treinen ([113]) shows the undecidability of the �2-fragment of the ground term algebra of the signature containing one associativefunction, one free function and one constant.6.6 Rational Combination of Negative ConstraintsIn the previous sections, the combined solution domain was always the freeamalgamated product. There exists another standard combined solution do-main, namely rational amalgamation, as introduced in Chapter 5. So, onemay expect that it is possible to solve negative constraints also in the rationalamalgam. But unfortunately, this is not the case. We show that by means ofa simple example, the combination of rational trees. Let signature � = ffgand � = fgg where both f and g are unary and X = fx1; x2; x3; : : :g be anin�nite set of variables. Let R(�;X) be the algebra of rational trees over fand R(�;X) the algebra of rational trees over g. Their rational amalgamR(�;X)�R(�;X) is isomorphic to R(�[�;X), the algebra of rational treesover f and g (see Theorem 5.4.2). Consider the following disuni�cation prob-lem � = fx := f(z1); z1 := g(z2); z2 := f(z3); z3 := g(x); x 6 _= z2; z1 6 _= z3g. Thisproblem has a solution in the components, but it has no solution in the rationalamalgam. In the labelling step of the decomposition algorithm, we choose thefollowing indexing of the variables: x _7! �; z2 _7! �; z1 _7! �; z3 _7! �. Thesubsystem �� = fx := f(z1); z2 := f(z3); x 6 _= z2; z1 6 _= z3g has as one solutionfx 7! f(x1); z1 7! x1; z2 7! f(x2); z3 7! x2g. Since x1 6= x2, the disequationsare clearly solved. The subsystem �� = fz1 := g(z2); z3 := g(x); x 6 _= z2; z1 6 _= z3ghas as one solution fz1 7! g(x1); z2 7! x1; z3 7! g(x2); x 7! x2g. But � is un-solvable in R(� [�;X): Obviously, x = f(g(f(g(x)))), so x must be mappedto the in�nite tree fgfgfgfg : : :. And z2 = f(g(f(g(z2)))), so z2 must also bemapped to the in�nite tree fgfgfgfg : : :. But then, the disequation x 6 _= z2 isviolated. 139

It is of course simple to regain soundness of the decomposition algorithm byseverely restricting the admissible solutions in the components. But then, onefaces completeness problems. There seems to be no general way out of thisdilemma.

140

Part IIThe Independence of Negative Con-straints PropertyThe constraint problems we consider in this chapter are conjunctions of literals.Clearly, every such constraint problem � can be written as �+^Vki=1 C�i where�+ is the conjunction of all positive constraints (atoms) of � and Vki=1C�i isthe conjunction of all negative constraints (negated atoms) of �. If we do notneed to refer to speci�c negative constraints, we abbreviate Vki=1 C�i by ��.De�nition A theory has the independence of negative constraints property, i�for every constraint problem � we have:� is solvable, i�for every i = 1; : : : ; k the conjunction �+ ^ C�i is solvable.6.7 Independence Properties of Equational TheoriesIn equational theories, the only negative constraints are of course disequations.For a general introduction to disuni�cation theory, we refer the reader to [31,32, 33]. It is easy to see that we can restrict our attention to those cases wherethe only disequations occurring are disequations between variables. Because ifs 6 _= t is a disequation and x and y are new variables, then s 6 _= t is equivalent tox := s; y := t; x 6 _= y. Remember that we write �U(�+) for the minimal completeset of uni�ers of a uni�cation problem �+, if this set exists.Lemma 6.7.1 Let E be an equational theory of uni�cation type di�erentfrom 0. Let � be a disuni�cation problem where �� contains only disequationsbetween variables occurring in �+. If � has a solution �, then one substitution� from the minimal complete set of uni�ers of �+ more general than � is asolution of �.Proof. Let �U(�+) be the minimal complete set of uni�ers for �+ and � asolution of �. Since � is a solution of �+, there must be a � 2 �U(�+) suchthat � is an instance of � . Now for any two variables x; y 2 Var(�+): if�(x) =E �(y) then �(x) =E �(y). Thus if �(x) 6=E �(y) then �(x) 6=E �(y).Therefore � is a solution of ��.In the above lemma, if �� contains variables not occurring in �+, then thesevariables are only constrained to be mapped to solution elements di�erent fromother variables in ��. Thus these types of disequations only impose restrictionson the minimal size of a �nite solution domain. But since all our solution141

domains are in�nite, disequations between variables not occurring in �+ do notimpose any restrictions at all here.Unitary TheoriesTheorem 6.7.2 Let E be a unitary equational theory. Then E has the inde-pendence of negative constraints property.Proof. This is an immediate consequence of Lemma 6.7.1. Let for i � k theproblem �+ ^ C�i have a solution. Then for all i � k: the mgu � of �+ is asolution of �+ ^C�i . Thus � is a solution of �+ ^C�1 ^ : : : ^ C�k .In a later subsection, we will show that the inverse (i.e., independence propertyentailing E being unitary) is not true.Equational Theories without Independence PropertyIn this section, we prove the following statement: If an equational theory is suchthat one of its uni�cation problems has a minimal complete set of uni�ers of�nite cardinality, but no single most general uni�er, then this theory does nothave the independence property. The incomparability of the solutions is usedto construct disequations that can be solved individually, but not collectively.Lemma 6.7.3 Let E be a non-unitary equational theory. Let � be a uni�cationproblem with variables X and �1 and �2 be two solutions of � with domain Xsuch that neither �1 is more general than �2 nor vice versa. Then there existsa disequation for which �1 is not a solution, but �2 is.Proof. We can assume that both �1 and �2 are idempotent.Now �1 is not more general than �2, that isthere is no substitution � such that �2(x) =E � � �1(x) for every x 2 X, i.e.for every substitution � there is an x 2 X such that �2(x) 6=E � � �1(x).In particular, if we choose � to be �2 we get: There is an x 2 X such that�2(x) 6=E �2 � �1(x).Now consider the disequation x 6 _= �1(x). The above shows that �2 is a solution.But since �1 is idempotent, clearly �1(x) = �1 ��1(x); thus �1 is no solution.This section's claim is now a simple consequence.Lemma 6.7.4 Let E be a non-unitary equational theory. Let � be a uni�cationproblem with variables X and f�1; : : : ; �ng (where n > 1) be a minimal completeset of solutions of � with domain X. Then there exists a set of disequationsfd1; : : : ; dng such that for each i = 1; : : : ; n the problem � ^ di is solvable, but� ^ fd1; : : : ; dng is not. 142

Proof. Again, we can assume that the solutions �1; : : : ; �n are idempotent.For each i = 1; : : : ; n consider the solutions �i and some �j where j 6= i. Bythe above lemma, there is an x 2 X such that �j solves x 6 _= �i(x), but �i doesnot. De�ne di to be x 6 _= �i(x). Then � ^ di is solvable, �j is a solution. But� ^ fd1; : : : ; dng is not, because every solution of it is an instance of some �iand each di excludes �i (and its instances) from the set of solutions.Theorem 6.7.5 Let E be an equational theory that has a uni�cation problemwhere the cardinality of the minimal complete set of uni�ers is �nite and largerthan 1. Then E has not the independence property.Corollary 6.7.6 Let E be a �nitary equational theory. Then E has not theindependence property.The theory A of an associative function symbol and constants has not the in-dependence property.For the second statement, consider the following A-uni�cation problem withconstants, written as a word uni�cation problem: axb := yybb where a and bare constants and x and y are variables. It has the following two most generalsolutions: f(x 7! ab; y 7! a); (x 7! zazb; y 7! az)g where z is a new variableranging over (nonempty) words over a and b. It is trivial to check that thetwo substitutions are solutions. To see that they they form a minimal completeset, consider the way the Plotkin algorithm [85] would solve the uni�cationproblem. Clearly, y must either be mapped to a, which immediately gives the�rst solution, or a is a proper pre�x of the solution for y, which gives rise tothe second solution. The solution for x is in both cases always immediatelydetermined by the solution for y.Commutative Theories have the Independence PropertyIn this section, we present a whole class of equational theories, the so-calledcommutative theories, which have the independence property. Commutativetheories were studied independently by Franz Baader [4] and Werner Nutt [79]who calls them \monoidal theories". Amongst these theories, there is the the-ory AMh of Abelian monoids with a homomorphism, which is not unitary. Thisshows that the property of being of uni�cation type unitary and the indepen-dence property are not equivalent.The following heavily draws from results by F. Baader on commutative theoriesin [4]. The results about uni�cation (i.e. no disequations) can be found there.The proposition that commutative theories have the independence property (forelementary uni�cation) is new, a fruit of cooperation with F. Baader.W. Nutt's de�nition of a monoidal theory is based on the signature and thereforeeasier to grasp then F. Baader's category-theoretical de�nition. Thus we giveit �rst and provide some examples.Let E be a set of identities. Then E (and the equational theory de�ned by E)is called monoidal, i� it satis�es the following properties:143

1. The signature of E contains one binary function symbol �, one nullaryfunction symbol 1, and all other function symbols are unary.2. The symbol � is associative and commutative, i.e., ((x �y) �z) =E (x �(y �z))and (x � y) =E (y � x) hold.3. The symbol 1 is a unit for �, i.e., (x � 1) =E x holds.4. Every unary function symbol h is a homomorphism for � and 1, i.e., h(x �y) =E h(x) � h(y) and h(1) =E 1 hold.The list of examples that follows is taken from [4].Example 6.7.7 We consider the following signatures:�1 := f�; 1g where � is binary and 1 is nullary.�2 := �1 [f�1g and �3 := �1 [fhg where �1 and h are unary.�4 := �2 [�3.1. The theory of Abelian monoids.The signature is �1 and AM := fx �(y �z) = (x �y) �z; x �y = y �x; x �1 = xg.2. The theory AIM of idempotent Abelian monoids.The signature is �1 and AIM := AM [fx � x = xg.3. The theory AMh of Abelian monoids with one homomorphism.The signature is �3 and AMh := AM [fh(x) � h(y) = h(x � y); h(1) = 1g.4. The theory AIMh of idempotent Abelian monoids with one homomor-phism. The signature is �3 and AIMh := AIM [fh(x) � h(y) =h(x � y); h(1) = 1g.5. The theory AMi of Abelian monoids with an involution.The signature is �3 and AMi := AM[fh(x)�h(y) = h(x�y); h(h(x)) = xg.6. The theory AIMi of idempotent Abelian monoids with an involution.The signature is �3 and AIMi := AMi [fx � x = xg.7. The theory AGm of Abelian groups of exponent m (m 2 IN). The signa-ture is �2 and AGm := AM [fx � x�1 = 1; xm = 1g. AG = AG0 is thetheory of Abelian groups.8. The theory AGi of Abelian groups with an involution.The signature is �4 and AGi := AG [AMi.9. The theory AGh of Abelian groups with a homomorphism.The signature is �4 and AGh := AG [fh(x) � h(y) = h(x � y); h(1) = 1g.For the following discussion we need to introduce at least some of the categorytheory terminology of [4]. Of course, we cannot give an introduction to categorytheory here. In short, a category is a collection of objects and a collectionof morphisms between these objects such that composition of morphisms isassociative and each object has a unit morphism, the identity map of the object.An object A is called a zero object, if for each object B there exists a uniquemorphism from A to B and a unique morphism from B to A. A product of two144

objects A and B consists of an object A�B and two morphisms �A : A�B ! Aand �B : A � B ! B such that for every other object D and morphismsdA : D ! A and dB : D ! B there exists a unique morphism d! : D ! A �Bwith dA = �A � d! and dB = �B � d!. The coproduct is the dual of the product.Therefore a coproduct of two objects A and B consists of an object A+B andtwo morphisms iA : A ! A + B and iB : B ! A + B such that for everyother object E and morphisms eA : A ! E and eB : B ! E there exists aunique morphism e! : A+B ! E with eA = e! � iA and eB = e! � iB . For moreinformation, see [83] for example.If E is an equational theory, and X a set of variables, then let FE(X) be thefree algebra over the variety of E with generators X.Let � = hsi := ti; 1 � i � niE be an E-uni�cation problem and X be the �niteset of variables x occurring in some si or ti. Evidently, we can consider si andti as elements of FE(X). Since we do not distinguish between =E-equivalentuni�ers, any E-uni�er of � can be regarded as a homomorphism of FE(X) intoFE(Y) for some �nite set Y (of variables). Let I = fx1; : : : ; xng be a set ofcardinality n. We de�ne homomorphisms�; � : FE(I)! FE(X) by �(xi) := si and �(xi) := ti (i = 1; : : : ; n):Now � : FE(X) ! FE(Y) is an E-uni�er of �, i� �(�(xi)) = �(si) = �(ti) =�(�(xi)) for i = 1; : : : ; n, i.e., i� �� = �� . Thus an E-uni�cation problem can bewritten as a pair h� = �iE of morphisms �; � : FE(I)! FE(X) in the followingcategory:De�nition 6.7.8 ([4]:3.1) Let E be an equational theory and V be a denu-merable set. Then the category C(E) is de�ned as follows:� The objects of C(E) are the algebras FE(X) for �nite subsets X of V .We denote the class of these objects by F (E).� The morphisms of C(E) are the homomorphisms between these objects.� The composition of morphisms is the usual composition of mappings.For morphisms � : FE(X) ! FE(Y);
 : FE(X) ! FE(Z) we have
 �E �, i�there is a morphism � : FE(Z)! FE(Y) such that � = �
.De�nition 6.7.9 An equational theory E is commutative, i� its category C(E)is semiadditive, i.e., C(E) has a zero object, every pair of objects has a coprod-uct, and product and coproduct coincide.From now on, let E be a commutative theory.Lemma 6.7.10 ([4]:6.2) Let � = hsj := tjiE be an elementary E-uni�cationproblem and let f�1; : : : ; �ng be a �nite complete set of E-uni�ers of �. Thenthere exists an E-uni�er � of � such that the singleton f�g is a complete set ofE-uni�ers of �. 145

Lemma 6.7.11 ([4]:6.3) Let � = hsj := tjiE be an elementary E-uni�cationproblem and let U = f�1; �2; �3; : : :g be an in�nite set of E-uni�ers such thatthe �i do not lie (w. r. t. �E) above a single E-uni�er of �. Then there doesnot exist a minimal complete set �U(�).The proofs can be found in [4].Lemma 6.7.12 ([4]:9.3) The theory AMh is of uni�cation type zero.Thus for elementary uni�cation, every uni�cation problem of the theory AMheither has at most one most general uni�er or no minimal complete set ofuni�ers. An example of a problem with no minimal complete set of uni�ers ishh(x1)h(x2) := x2h(h(x3))iAMh. The solutions have the form x1 7! z; x2 7!h(z) � h2(z) � : : : � hn+1(z); x3 7! hn(z) for each n � 0.Theorem 6.7.13 For elementary disuni�cation problems, commutative theo-ries have the independence of negative constraints property.Proof. This proof follows closely the one of Lemma 6.2 in [4]. Let E be acommutative theory. Let � = h� := �; hxi 6 _= yii1�i�kiE be an elementarydisuni�cation problem where xi; yi 2 X. Clearly, if � has a solution
, then
 is a solution of �i := h� := �; xi 6 _= yiiE for 1 � i � k. For the non-trivialdirection, let
i be a solution of �i for all 1 � i � n. Then each
i is a solutionof h� = �iE . We show that there is an E-uni�er
 of h� = �iE which is moregeneral then each
i. We have �; � : FE(I)! FE(X) and
i : FE(X)! FE(Yi).With Y := Y1] : : :] Yk, FE(Y) is the coproduct and product of the FE(Yi).Let �1; : : : ; �k be the corresponding projections. Then there exists a uniquemorphism
 : FE(X) ! FE(Y) such that
i = �i
 for 1 � i � k. Themorphism
 is an E-uni�er of h� = �iE , since
� =
� i� �i
� = �i
� fori = 1; : : : ; k (by de�nition of product). And
 is more general then each
i,since
i = �i
 by de�nition.Therefore for all x; y 2 X, if
(x) =
(y), then
i(x) =
i(y). By contraposition,for all x; y 2 X if
i(x) 6=
i(y), then
(x) 6=
(y). Thus from
i(xi) 6=
i(yi)follows
(xi) 6=
(yi), and
 solves hxi 6 _= yii1�i�k. This shows that
 is asolution of �.Corollary 6.7.14 There exists an equational theory, namely AMh, which hasthe independence property, but is not unitary.6.8 Combining Equational Theories and the Inde-pendence PropertyIn this section, we present conditions under which the independence property ofequational theories is preserved under combination. These conditions are quiterestrictive as the following theorem shows.146

Theorem 6.8.1 Let E and F be two unitary regular and collapse-free theoriesover disjoint signatures. Then the combined theory E [F is again unitary,regular, and collapse-free.Regularity and collapse-freeness are properties of the axioms of E and F . If thesignatures are disjoint, then theses properties are clearly preserved in the unionE [F . Thus the main statement of the theorem is that the combination oftwo unitary regular and collapse-free theories is again unitary. Unfortunately,the requirement that E and F be regular and collapse-free cannot be weakenedas the following example shows. Consider the theory of Boolean rings, whichis neither regular nor collapse-free. It is known (see [17]) that in this theory,uni�cation with constants is unitary. But general uni�cation is �nitary. Andin any theory, general uni�cation can be regarded as an instance of combininguni�cation with constants in that theory with syntactic uni�cation.The above demanded requirements are rather restrictive. There are only two\natural" theories which come to mind that are both unitary and regular andcollapse-free. One is of course syntactic uni�cation. And the other is single-sided distributivity, such as distributivity to the left (DL = ff(g(x; y); z) =g(f(x; z); f(y; z))g) and distributivity to the right.We will not prove the theorem here, because it is a special case of Theo-rem 6.10.17 that we present later. A direct proof of the above theorem wouldinvolve complicated rewriting methods. The introduction of an enormous tech-nical apparatus only to see later that we can prove the theorem in a moregeneral way seems a waste. The proof of the general theorem uses clear alge-braic methods and is shorter than a speci�c proof can be.6.9 Independence Properties of Quasi-free Struc-tures6.9.1 Generalising Basic Notions of Uni�cation TheoryBefore we can start to extend the results of the previous sections to quasi-freestructures, it is necessary to generalise some basic notions of uni�cation theoryto quasi-free structures.Remember that our constraint problems are existentially quanti�ed conjunc-tions of literals.De�nition 6.9.1 Let � be a positive constraint problem of the quasi-free struc-ture (A�;X). Let � and � be two solutions of �. We say � is more generalthan � with respect to the variables in � (and write � �� �), i� there existsan endomorphism m 2 End�A such that m is the identity on X n StabA(rng(�))and for all x 2 Var(�) holds m � �(x) = �(x).A set S of solutions for � is called complete, i� for every solution � of � thereexists a solution � 2 S with � �� � . 147

A set S of solutions for � is called minimal, i� for all �; �0 2 S : � �� �0 =)� = �0.With these notions, we can de�ne the solution type of a quasi-free structure.De�nition 6.9.2 A quasi-free structure (A�;X) is calledunitary, i� for every positive constraint problem a minimal complete set ofsolutions exists and has cardinality at most one.�nitary, i� for every positive constraint problem a minimal complete set ofsolutions exists and has �nite cardinality.in�nitary, i� every positive constraint problem has a minimal complete set ofsolutions (but this set may be in�nite).of type 0, i� there is a positive constraint problem that has no minimal com-plete set of solutions.Remember that by De�nition 5.2.5 a quasi-free structure (A�;X) is called non-collapsing, i� every endomorphism m 2 End�A maps non-atoms to non-atoms.In order to de�ne the notion regular for quasi-free structures, we start with thefollowing observation, which is a generalisation of Lemma 5.2.4.Lemma 6.9.3 Let (A�;X) be a quasi-free structure, m 2 End�A an endomor-phism, and a 2 A some element. Suppose StabA(a) = fx1; : : : xkg. ThenStabA(m(a)) � Ski=1 StabA(m(xi)) = StabA(m(StabA(a))).Proof. Let m1;m2 2 End�A be two endomorphisms such that they coincide onSki=1 StabA(m(xi)). We show they coincide on m(a). If m1 and m2 coincide onSki=1 StabA(m(xi)), then they coincide on fm(x1); : : : ;m(xk)g. Then m1 � mand m2 �m coincide on fx1; : : : ; xkg = StabA(a), hence m1 �m(a) = m2 �m(a),in other words, m1 and m2 coincide on m(a).De�nition 6.9.4 A quasi-free structure (A�;X) is regular, i� for allm 2 End�Aand all a 2 A : StabA(m(a)) = StabA(m(StabA(a))).6.9.2 Unitary Quasi-free StructuresLemma 6.9.5 Let (A�;X) be a quasi-free structure of solution type di�erentfrom 0. Let � = �+ ^ �� be a constraint problem. If � has a solution � , thenone solution � from the minimal complete set of solutions of �+ more generalthan � is a solution of �. 148

Proof. Let �S(�+) be the minimal complete set of solutions of �+ and � a solu-tion of �. Since � is a solution of �+, there exists a � 2 �S(�+) with � � � , i.e.,there is an endomorphismm 2 End�A withm�(x) = �(x) for all x 2 Var(�). Be-cause endomorphisms preserve negative constraints in countercurrent direction,� is a solution of ��.Theorem 6.9.6 Let (A�;X) be a unitary quasi-free structure.Then (A�;X) has the independence property.Proof. This is an immediate consequence of the above lemma. Let � = �+ ^Vki=1 C�i and for all 1 � i � k the problem �+ ^ C�i have a solution. Then forall 1 � i � k : the most general solution � of �+ is a solution of C�i . Thus �solves �.It is worth mentioning that G. Smolka and R. Treinen [104] give an exampleof a quasi-free structure which is not an equational theory, is of type in�nitaryand has the independence property, namely their feature trees with arity.6.10 Combining Quasi-free Structures and the Inde-pendence PropertyThis section's aim is to lift the modularity result for equational theories (6.8.1)to the more general case of quasi-free structures. The theorem to be showntherefore reads as follows.Theorem 6.10.1 Let (A�;X) and (B�;X) be two unitary regular non-collapsing quasi-free structures over disjoint signatures. Then the free amal-gamated product A�
B� is again unitary, regular and non-collapsing.That the free amalgamated product is regular and non-collapsing is again asimple consequence of the fact that the components are, and that the signaturesare disjoint. Endomorphisms in the free amalgamated product are pairs ofendomorphisms of the component structures. If both components are regularand non-collapsing, the so is the pair, signature disjointness presupposed.In this section, we will refer frequently to [94]. The paper contains a determin-istic combination algorithm for unitary regular collapse-free theories. We showhere that the algorithm computes a most general solutions.6.10.1 L-convex Theories and Deterministic CombinationIn this subsection, we will brie
y recall all relevant de�nitions and results aboutL-convex theories and deterministic combination as presented in Sections 4.3and 4.4 of [94]. The notions of decision sets and generalised linear constant149

restrictions were de�ned in our Section 4.3 in the chapter on optimisation tech-niques. It is important to note that what is called a \generalised linear constantrestriction" in [94], is called here a \complete decision set". Let U be a set ofvariables. For us, a generalised linear constant restriction is not a set of con-straints, but a triple (�;Lab; <) where � is a partition of the variables U , Laba labelling function, and < a partial order on U .Although not stated explicitly, the deterministic combination algorithm pre-sented by K. U. Schulz in [94] is not just designed for the combination of equa-tional theories, but also for combining quasi-free structures. In the deterministicalgorithm, one just has to replace all references to equational theories by quasi-free structures. And the proofs of the propositions that we will subsequentlypresent in their general form are still valid.Proposition 6.10.2 Let � be a �[�-constraint problem in decomposed form�� [�� [�6=. Let U = Var(�). Then � is solvable if and only if there existsa complete decision set CL on U , where �6= � CL, such that the �-constraintproblem with decision set (��[�6=; CL) is solvable and the �-constraint problem(�� ^ � 6=; CL) is solvable.Proof. First assume that the � [�-constraint problem � has a solution. ByProposition 6.2.13 there exists a linear constant restriction L such that (�5;�; L)has a solution �� in (A�;X) and (�5;�; L) has a solution �� in (B�;X). Weuse the linear constant restriction and the variable identi�cation with repre-sentation function � that maps each variable to its representative in Step 3 ofAlgorithm 6.2.4 to construct a complete decision set. LetC= := fx := y j �(x) = �(y)g [fx 6 _= y j �(x) 6= �(y)g;CLab := fx _7! � j Lab(�(x)) = �g [fx _7! � j Lab(�(x)) = �g;C< := fx _< y j �(x) <L �(y)g;and let CL be the closure of C= [CLab [C<. Note that � 6= � C=. And CLis clearly complete. Since the only di�erence between �5;� and �� ^ � 6= is thevariable identi�cation, �� � � is a solution of �� ^ � 6=. And �� � � respects CLby de�nition of CL. Hence �� � � solves (�� ^ � 6=; CL). Analogously, �� � �solves (�� ^ �6=; CL).For the inverse direction, assume there exists a complete decision set CL with�6= � CL such that (��^�6=; CL) has solution �� and (��^� 6=; CL) has solution��. The equation decisions in CL form an equivalence relation. Choose arepresentant for each equivalence class and let � be the function that maps eachvariable to its representant. De�ne a linear constant restriction L = (Lab; <)as follows. For each labelling decision x _7! � (resp. x _7! �) set Lab(�(x)) = �(resp. �). Choose an arbitrary extension of the partial order f�(x) < �(y) jx _< y 2 CLg to a linear order <. Since the only di�erence between �5;�and �� ^ �6= is the variable identi�cation, �� is a solution of �5;�, even ifnot all variables in the domain of �� appear in �5;� due to the identi�cation.The de�nition of Lab ensures that the labelling informations of CL and L are150

the same modulo variable identi�cation. The ordering decisions in CL do notnecessarily form a linear order. But by de�nition of a complete set of decisions,each two variables with di�erent labels are ordered. Hence any linear extensionof the ordering information will give rise to the same constant restrictions, asexplained in Section 4.2. And �� respects the ordering decisions. Therefore ��solves (�5;�; L), and, analogously, �� solves (�5;�; L). By Proposition 6.2.5, �has a solution.Corollary 6.10.3 Let � = ��
 �� as in De�nition 6.2.11. Then � is asolution of �, i� �� is a solution of (�� ^ �6=; CL) and �� is a solution of(�� ^ � 6=; CL).De�nition 6.10.4 Let U be a set of variables. A complete decision set CL 2CL(U) is called a faithful extension of C 2 CL(U), if C � CL and if C and CLhave the same set of equality decisions.Lemma 6.10.5 Let C 6= C>3 be a decision set in CL(U). Then C has a faithfulextension to a complete decision set CL 2 CL(U).The proof is given in [94].De�nition 6.10.6 The decision set C2 2 CL(U) is a cover point for the con-straint problem with decision set (�; C1), if C1 � C2, and for each completedecision set CL 2 CL(U) that faithfully extends C2 there exists a solution of(�; CL).The cover point C2 of (�; C1) is called a universal cover point for (�; C1), ifC2 � CL for all complete decision sets CL 2 CL(U) where C1 � CL and theconstraint problem with decision set (�; CL) is solvable.De�nition 6.10.7 The quasi-free structure (A�;X) is L-convex, i� for everyconstraint problem with decision set (�; C) there exists a universal cover point.(A�;X) is e�ectively L-convex, if there exists an algorithm that computes auniversal cover point for each constraint problem with decision set (�; C).Let (A�;X) and (B�;X) denote two e�ectively L-convex quasi-free structuresover disjoint signatures � and � respectively. We shall now give a deterministiccombination algorithm that may be used to decide solvability of �[�-constraintproblems.Deterministic Combination AlgorithmThe input of the algorithm is a � [�-constraint problem �. We may assumethat � is in decomposed form ��^��^�6= where �6= is the set of all disequationsbetween variables. Steps 1 and 2 of the Decomposition algorithm 6.2.4 show3Remember that in the text following De�nition 4.3.4, C> was de�ned as the closure ofany inconsistent decision set. 151

that each constraint problem can be transformed into one in decomposed formby a simple preprocessing step. Let U := Var(�) and n := jUj. The algorithmis organised in a series of rounds. Each round has a pure � (respectively �)constraint problem (�I ; C) with decision set C, where I 2 f�;�g and C 6= C>.The input for the �rst round is (��; C1), where C1 := C? = Clo(;).Round 1: We compute a universal cover point C2 2 CL(U) for (��; C1) withrespect to (A�;X). If C2 = C>, then we stop with failure. In the other case,(��; C2) is the input for round 2.Round k � 2: Assume that the input for this round is (�I ; Ck), whereI 2 f�;�g. We compute a universal cover point Ck+1 2 CL(U) for (�I ; Ck) withrespect to the given quasi-free structure. The algorithm stops in two cases:(i) If Ck+1 = C>, then we stop with failure.(ii) In the other case, if Ck+1 and Ck have the same set of equality constraints,then we stop with success.In the remaining case, the J -constraint problem with decision set (�J ; Ck+1),where fI; Jg = f�;�g, is the input for round k + 1.Proposition 6.10.8 The Deterministic Combination Algorithm terminates af-ter at most n+ 1 rounds.The proof of this proposition can be found in [94].Proposition 6.10.9 The Deterministic Combination Algorithm stops withsuccess if and only if the input problem � has a solution in the free amalga-mated product A�
B�.Proof. The subsequent proof is a variant of the proof for Proposition 4.16of [94]. We present it here to gain a useful corollary.First assume that the � [�-constraint problem � has a solution. By Proposi-tion 6.10.2 there exists a complete decision set CL with �6= � CL such that the�-constraint problem (��^�6=; CL) and the �-constraint problem (��^�6=; CL)are solvable. Let C1; : : : ; Ck (k � 1) denote the sequence of universal coverpoints that are computed in the rounds of the Deterministic Combination Al-gorithm. Obviously, C1 = C? � CL. Assume that i < k and Ci � CL. Let(�I ; Ci) be the input for round i, where I 2 f�;�g. The fact that Ci+1 isa universal cover point for (�I ; Ci) implies that Ci+1 � CL. It follows thatCk � CL, and the algorithm does not stop with failure. Hence it stops withsuccess.Now assume that the algorithm stops with success, say in round l � 2. Supposethat the input problem of round l is the I-constraint problem (�I ; Cl), whereI 2 f�;�g. Choose an arbitrary faithful extension of Cl to a complete decisionset CL. Lemma 6.10.5 shows that such a faithful extension exists. Condition (ii)152

for round l ensures that CL is also a faithful extension of Cl�1. Since Cl andCl�1 are cover points, we know that both (�I ; CL) and (�J ; CL) (with fI; Jg =f�;�g) are solvable constraint problems with decision set CL. It follows fromProposition 6.10.2 that the � [�-constraint problem � is solvable.Corollary 6.10.10 For every complete decision set CL such that (��; CL) and(��; CL) are solvable, the last universal cover point Ck of the DeterministicCombination Algorithm lies below CL, i.e., Ck � CL.The following technical lemma on regular structures will be used frequently insubsequent proofs.Lemma 6.10.11 Let (A�;X) be a unitary regular non-collapsing quasi-freestructure. Let (�; C) be constraint problem with decision set, where fu _7!�; v _7! �; u _< vg � C. And let � be the most general solution of (�; C)and � another solution of it. If �(u) 2 StabA(�(v)) then �(u) 2 StabA(�(v)).Proof. Since � is the most general solution and � is a solution, there exists anendomorphism � such that for all x 2 Var(�) : �(x) = ��(x). Because u _7!� 2 C and � is a solution, �(u) 2 X. From �(u) 2 StabA(�(v)) follows ��(u) 2�(StabA(�(v))) which implies �(u) 2 �(StabA(�(v))). Therefore StabA(�(u)) �StabA(�(StabA(�(v)))). Since �(u) 2 X, we know StabA(�(u)) = �(u). Hence�(u) 2 StabA(�(StabA(�(v)))), which implies �(u) 2 StabA(��(v)) because �is regular. Therefore �(u) 2 StabA(�(v)).Proposition 6.10.12 Let (A�;X) be a unitary regular non-collapsing quasi-free structure. Then (A�;X) is L-convex.Proof. Let (�; C1) be a constraint problem. We have to show that there existsa universal cover point for (�; C1).4In the �rst case, there exists no complete decision set CL 2 CL(U) such thatC1 � CL and (�; CL) is solvable. In this case, C> is a universal cover point for(�; C1).In the non trivial case, we assume there exists a complete decision set CLsuch that C1 � CL and (�; CL) has solution �. By de�nition, � solves �1 :=� ^Vu :=v2C1 u := v. Let � be the most general solution of �1, letC= := fu := v j u; v 2 U ; �(u) = �(v)gC� := fu _7! � j u 2 U ; �(u) =2 XgC< := fu _< v j u; v 2 U ; �(u) 2 StabA(�(v)); �(v) =2 X;u _7! � 2 C1gand let C denote the closure of C1 [C= [C� [C<. Obviously, all equations ofC are in C=.4Please note that X denotes the atom set, and U denotes the set of variables.153

We have to show that C is a cover point for (�; C1). Let C 0L be a completedecision set on U that faithfully extends C. We show that � is a solution of(�; C 0L): Clearly, � solves �; and since C 0L faithfully extends C also �(u) = �(v)i� u := v 2 C 0L. For labelling decisions, let u 2 U and u _7! � 2 C 0L. Thenu _7! � =2 C� � C 0L and �(u) 2 X. For ordering decisions, assume thatu _7! �; v _7! �; u _< v 2 C 0L. Then v _7! � =2 C � C 0L and �(v) 2 X.u 6 _= v 2 C 0L because C 0L is closed, and u 6 _= v 2 C because C 0L faithfully extendsC. Hence �(u) 6= �(v). Now suppose �(v) 2 StabA(�(u)). Then �(u) =2 X andv _< u 2 C � C 0L, which is a contradiction since u _< v 2 C 0L.Remains to prove that C is a universal cover point for (�; C1). Let CL, �,�1 and � as above. Since � is a solution of �1, there exists an endomorphism� 2 End�A such that �(v) = ��(v) for all v 2 U . In order to show that C � CLit su�ces to prove that (C=[C�[C=)) � CL since CL is closed and C1 � CL.Firstly, let u := v 2 C=. Then �(u) = �(v) and �(u) = ��(u) = ��(v) = �(v).By de�nition, u := v 2 CL.Secondly, let u _7! � 2 C�. Then �(u) =2 X, the set of atoms. Since � isnon-collapsing, also �(u) = ��(u) =2 X. Hence u _7! � =2 CL by de�nition of asolution, and thus u _7! � 2 CL since CL is a complete decision set.Thirdly, let u _< v 2 C<. Then u _7! � 2 C1 � CL. From the de�nition of C<it follows that �(u) 2 StabA(�(v)) and �(v) =2 X. Then �(v) = ��(v) =2 X,because � is non-collapsing. Hence v _7! � =2 CL and thus v _7! � 2 CL.Since u _7! � 2 CL we know �(u) 2 X by de�nition of a solution. Finally,�(u) 2 StabA(�(v)) by Lemma 6.10.11. Because u and v have di�erent labelsin CL, they must be ordered due to closure of CL. Thus either u _< v 2 CL orv _< u 2 CL. But � is a solution and �(u) 2 StabA(�(v)), therefore u _< v 2 CL.6.10.2 Deterministic Combination of Quasi-free Structures isUnitaryThus the task is to show that deterministic combination of L-convex unitaryquasi-free structures is unitary. To do this, we prove that a regular non-collapsing quasi-free structure is unitary with respect to solving constraint prob-lems with decision sets provided it is unitary for problems with constants. Andwe have to show that every solution of a constraint problem in the free amalga-mated product is an instance of the solution that the Deterministic CombinationAlgorithm computes.Lemma 6.10.13 Let (A�;X) be a non-collapsing regular quasi-free structure.If (A�;X) is unitary with respect to constraint problems with constants, then itis unitary with respect to problems with decision sets.Proof. Let (�; C) be a problem with decision set C 2 CL(Y). The equalitydecisions C= give rise to an equivalence relation on the set of variables Y .154

Choose a representant for each equivalence class and replace each variable in(�; C) by its representant to obtain (�1; C1). Clearly, (�; C) and (�1; C1) areequisolvable5. Now for each labelling decision u _7! � 2 C1 with � 6= �choose a new constant �u (not contained in � or �) and replace u by �u in(�1; C1) obtaining (�2; C2). Again, (�1; C1) and (�2; C2) are equisolvable, andthe equality and labelling decisions of C are now coded into �2. Let � be themost general solution of �2, and let �u _< x 2 C2. If �(�u) 2 StabA(�(x)) then forevery instance � of � also �(�u) 2 StabA(�(x)) by Lemma 6.10.11 since �u =2 �.Therefore, if � violates an ordering decision, then so does every instance of it.So, let � be a solution of (�2; C2). Then � is an instance of � and the aboveshows that � solves (�2; C2).Before we can proof the main theorem, we need a few technical lemmata.Lemma 6.10.14 Let (A�;X) be a unitary non-collapsing regular quasi-freestructure and � an elementary constraint problem. Let C1; C2 2 CL(U) andC1 � C2. Let � be the most general solution of (�; C1) and � a solution of(�; C2). Then � is an instance of �.Proof. Since C1 � C2, clearly � also solves (�; C1). If � is the most generalsolution of (�; C1), then � is an instance of it.Lemma 6.10.15 Let (A�;X) be a unitary non-collapsing regular quasi-freestructure and let � be an elementary constraint problem. Let C 2 CL(U) and �the most general solution of (�; C). Let CL � C be a faithful extension to acomplete decision set such that (�; CL) is solvable. Then � is the most generalsolution of (�; CL).Proof. Let � be a solution of (�; CL). Then � is an instance of � by the abovelemma, i.e., there is an endomorphism � 2M with � = ��. Therefore if � is asolution, it is the most general one. So, we show that � is a solution of (�; CL).The only decisions of CL that concern us are ones not contained in C. SinceCL is a faithful extension, these can only be labelling or ordering decisions.Let x _7! � 2 CL n C where � 6= �. Then �(x) 2 X and also �(x) 2 X,because (A�;X) is non-collapsing. Let u _7! �; x _7! �; u _< x 2 CL. Then�(u) =2 StabA(�(x)) because � is a solution. Hence �(u) =2 StabA(�(x)) due toLemma 6.10.11. Thus � is a solution of (�; CL).Lemma 6.10.16 Let � � � and a1; a2 be two qf-isomorphisms. Then a1� �a2�.Proof. If � � �, then there is an endomorphism � such that � = ��. Nowa1� = a1�� = a1�id� = a1�a�12 a2�. Hence a1�a�12 is an endomorphism � 0 suchthat a1� = � 0a2�, which shows a1� � a2�.5There is an NP -algorithm that translates solutions of one into solutions of the other andback. 155

Theorem 6.10.17 Let � be a � [�-constraint problem of A�
B� and � asolution of �. Then � is an instance of �, the solution that the DeterministicCombination Algorithm computes.Proof. We assume � is in decomposed form �� ^ �� ^ � 6=. Since � has solu-tion, the Deterministic Combination Algorithm stops with success by Proposi-tion 6.10.9, say after k steps with universal cover point Ck. By Lemma 6.10.13,there exists a most general solution �� of the constraint problem (��^� 6=; Ck)and a most general solution �� of (�� ^ �6=; Ck). Choose an arbitrary faithfulextension to a complete decision set CK of Ck. By Lemma 6.10.15, �� is themost general solution of (�� ^ �6=; CK) and �� is the most general solution of(�� ^ � 6=; CK). Thus � := ��
 �� is a solution of � by Corollary 6.10.3.Now, let � be a solution of �. There exists a complete decision set CL andsolutions �� of (�� ^ �6=; CL) and �� of (�� ^ �6=; CL) with � = ��
 �� byProposition 6.10.2. By Corollary 6.10.10, Ck � CL. Therefore �� is an instanceof �� and �� is an instance of �� by Lemma 6.10.14. By Corollaries 6.10.3and 6.2.12, the combined solutions � = ��
�� and � = ��
�� are constructedout of the component solutions solely by isomorphisms. Hence � is an instanceof � by Lemma 6.10.16.6.11 ConclusionIn this chapter, we analysed the role of negation in the combination of constraintsystems. In the �rst part, we were concerned with how to reduce solvabilityof mixed constraints in the free amalgamated product of two quasi-free struc-tures to solvability of pure constraints in the components. We showed that theexistential theory of the free amalgamated product of two quasi-free structuresis decidable, if the solvability of pure constraint problems with linear constantrestrictions is decidable in both components. Furthermore, the existential the-ory of the ground substructure of the free amalgamated product is decidable,provided the existence of restrictive solutions for pure constraint problems withlinear constant restrictions is decidable in both components. We saw that wecannot solve a large quanti�er fragment in the free amalgamated product thanthe existential theory and that the technical notion of a linear constant restric-tion could not be translated into purely logical terms. We also had to learnthat rational amalgamation is not suitable for combining constraint systemswith negation in the constraint languages.In the second part, we discussed the independence of negative constraints prop-erty. We started with a look at the independence property in the context ofequational uni�cation to �nd that unitary equational theories have the indepen-dence property, while �nitary have not. We also presented a modularity resultfor equational uni�cation stating that the union of two signature-disjoint equa-tional theories is unitary, if the components are unitary, regular and collapse-free. 156

We lifted these results to quasi-free structures. A quasi-free structure has theindependence property, if it is unitary. And the �nal modularity result statesthat the free amalgamation of unitary regular and non-collapsing quasi-freestructures is again unitary and thus has the independence property.

157

158

List of Theorems
Lemma 2.1.1 14De�nition 3.2.1 19Theorem 3.2.2 19De�nition 3.2.3 19Theorem 3.2.4 19Theorem 3.2.5 20Example 3.2.6 20Theorem 3.2.7 20De�nition 3.2.8 21De�nition 3.2.9 22Lemma 3.2.10 22Lemma 3.2.11 22De�nition 3.2.12 22Lemma 3.2.13 22De�nition 3.2.14 22Lemma 3.2.15 22Remark 3.2.16 23Examples 3.2.17 23De�nition 3.2.18 25Lemma 3.2.19 25Example 3.2.20 26De�nition 3.2.21 26Lemma 3.2.22 26De�nition 3.2.23 26Lemma 3.2.24 26De�nition 3.2.25 27Lemma 3.2.26 27Lemma 3.2.27 27Theorem 3.2.28 27Lemma 3.2.29 28De�nition 3.3.1 29De�nition 3.3.2 30Theorem 3.3.3 31Theorem 3.3.4 32De�nition 3.3.5 33De�nition 3.3.6 34

Lemma 3.3.7 34Lemma 3.3.8 35De�nition 3.3.9 35De�nition 3.3.10 36Theorem 3.3.11 36Proposition 3.3.12 36Corollary 3.3.13 36Theorem 3.3.14 37Theorem 3.4.1 37Theorem 3.4.2 37Proposition 3.4.3 40Lemma 3.4.4 41Proposition 3.4.5 41Theorem 3.4.6 42Theorem 4.2.1 48De�nition 4.2.2 48Proposition 4.2.3 51De�nition 4.3.1 51De�nition 4.3.2 52De�nition 4.3.3 52De�nition 4.3.4 52Lemma 4.3.5 53De�nition 4.3.6 53Lemma 4.3.7 54De�nition 4.3.8 54De�nition 4.4.1 56Proposition 4.4.2 56Lemma 4.4.3 57Lemma 4.4.4 57Lemma 4.4.5 57Proposition 4.4.6 58Proposition 4.4.7 58De�nition 4.4.8 58Lemma 4.4.9 59Lemma 4.4.10 59Lemma 4.4.11 59

De�nition 4.6.1 64Proposition 4.6.2 65Lemma 5.2.1 80Lemma 5.2.2 80Lemma 5.2.3 81Lemma 5.2.4 81De�nition 5.2.5 81Lemma 5.3.1 83De�nition 5.3.2 83De�nition 5.3.3 83Example 5.3.4 84De�nition 5.3.5 84Example 5.3.6 85Lemma 5.3.7 85Corollary 5.3.8 85Lemma 5.3.9 85De�nition 5.3.10 86Lemma 5.3.11 86Lemma 5.3.12 86Lemma 5.3.13 86Lemma 5.3.14 87De�nition 5.3.15 87Lemma 5.3.16 87De�nition 5.3.17 87Example 5.3.18 88Lemma 5.3.19 88De�nition 5.3.20 88Lemma 5.3.21 89Lemma 5.3.22 89Corollary 5.3.23 89Lemma 5.3.24 90Lemma 5.3.25 90Lemma 5.3.26 90Theorem 5.3.27 92Lemma 5.3.28 92De�nition 5.3.29 93159

Lemma 5.3.30 94Corollary 5.3.31 94Theorem 5.3.32 94De�nition 5.3.33 95Lemma 5.3.34 95Lemma 5.3.35 95De�nition 5.3.36 96Lemma 5.3.37 96Proposition 5.3.38 96De�nition 5.3.39 97Lemma 5.3.40 97De�nition 5.3.41 97Lemma 5.3.42 98Theorem 5.4.1 98Theorem 5.4.2 98Lemma 5.4.3 99De�nition 5.4.4 99Theorem 5.4.5 99De�nition 5.4.6 100Lemma 5.4.7 100Proposition 5.4.8 100De�nition 5.4.9 101Lemma 5.4.10 101Lemma 5.4.11 101Lemma 5.4.12 102Lemma 5.4.13 102Proposition 5.4.14 102De�nition 5.5.1 106De�nition 5.5.2 106Theorem 5.5.3 106De�nition 5.5.4 106Theorem 5.5.5 107Theorem 5.5.6 107Corollary 5.5.7 107Algorithm 5.5.8 108

Proposition 5.5.9 108Lemma 5.5.10 108Proposition 5.5.11 110Algorithm 5.5.12 112Proposition 5.5.13 113Lemma 5.5.14 113Lemma 5.5.15 114Theorem 6.2.1 119Theorem 6.2.2 119Corollary 6.2.3 120Algorithm 6.2.4 121Proposition 6.2.5 121Lemma 6.2.6 122Lemma 6.2.7 122Lemma 6.2.8 122De�nition 6.2.9 122Lemma 6.2.10 123De�nition 6.2.11 128Corollary 6.2.12 128Proposition 6.2.13 128De�nition 6.3.1 129Theorem 6.3.2 130Proposition 6.3.3 130Proposition 6.3.4 131Lemma 6.3.5 132Proposition 6.3.6 136De�nition 6.4.1 136Proposition 6.4.2 137Proposition 6.5.1 138Lemma 6.7.1 141Theorem 6.7.2 142Lemma 6.7.3 142Lemma 6.7.4 142Theorem 6.7.5 143Corollary 6.7.6 143

Example 6.7.7 144De�nition 6.7.8 145De�nition 6.7.9 145Lemma 6.7.10 145Lemma 6.7.11 146Lemma 6.7.12 146Theorem 6.7.13 146Corollary 6.7.14 146Theorem 6.8.1 147De�nition 6.9.1 147De�nition 6.9.2 148Lemma 6.9.3 148De�nition 6.9.4 148Lemma 6.9.5 148Theorem 6.9.6 149Theorem 6.10.1 149Proposition 6.10.2 150Corollary 6.10.3 151De�nition 6.10.4 151Lemma 6.10.5 151De�nition 6.10.6 151De�nition 6.10.7 151Proposition 6.10.8 152Proposition 6.10.9 152Corollary 6.10.10 153Lemma 6.10.11 153Proposition 6.10.12 153Lemma 6.10.13 154Lemma 6.10.14 155Lemma 6.10.15 155Lemma 6.10.16 155Theorem 6.10.17 156

160

Bibliography[1] Peter Aczel. Non-wellfounded Sets. Number 14 in CSLI Lecture Notes.CSLI, Stanford University, USA, 1988.[2] Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka. A Feature-basedConstraint System for Logic Programming With Entailment. TheoreticalComputer Science, 122:263{283, 1994.[3] Andre Arnold and Maurice Nivat. The Metric Space of In�nite Trees. Al-gebraic and Topological Properties. Fundamenta Informaticae, 3(4):445{476, 1980.[4] Franz Baader. Uni�cation Properties of Commutative Theories: A Cat-egorical Treatment. In Proceedings of the Conference on Category The-ory and Computer Science, LNCS 389, pages 273{299, Manchester (UK),1989. Springer{Verlag.[5] Franz Baader and Klaus Schulz. Uni�cation in the Union of DisjointEquational Theories: Combining Decision Procedures. In Deepak Kapur,editor, Automated Deduction, Proceedings CADE-11, LNAI 607, pages50{65. Springer-Verlag, 1992.[6] Franz Baader and Klaus Schulz. Combination Techniques and DecisionProblems for Disjuni�cation. In Claude Kirchner, editor, Rewriting Tech-niques and Applications, Proceedings RTA-93, LNCS 690, pages 301{315.Springer-Verlag, 1993.[7] Franz Baader and Klaus U. Schulz. Combination of Constraint SolvingTechniques: An Algebraic Point of View. Technical Report CIS-Bericht-94-75, CIS, Universit�at M�unchen, 1994. Long version of [8].[8] Franz Baader and Klaus U. Schulz. Combination of Constraint SolvingTechniques: An Algebraic Point of View. In Jieh Hsiang, editor, RewritingTechniques and Applications, Proceedings RTA-95, LNCS 914, pages 352{366. Springer-Verlag, 1995. Short version of [7].[9] Franz Baader and Klaus U. Schulz. Combination Techniques and DecisionProblems for Disuni�cation. Theoretical Computer Science, 142:229{255,1995. 161

[10] Franz Baader and Klaus U. Schulz. On the Combination of SymbolicConstraints, Solution Domains, and Constraint Solvers. In Ugo Monta-nari and Francesca Rossi, editors, Principles and Practice of ConstraintProgramming, Proccedings CP'95, LNCS 976, pages 380{397. Springer-Verlag, 1995.[11] Franz Baader and Klaus U. Schulz. On the Combination of SymbolicConstraints, Solution Domains, and Constraint Solvers. Technical ReportCIS-Bericht-95-120, CIS, Universit�at M�unchen, 1995.[12] Franz Baader and Klaus U. Schulz. Combination of Constraint Solversfor Free and Quasi-Free Structures. Technical Report CIS-Bericht-96-90,CIS, Universit�at M�unchen, 1996.[13] Franz Baader and Klaus U. Schulz, editors. Frontiers of Combining Sys-tems: Proceedings of the 1st International Workshop, Munich (Germany),volume 3 of Applied Logic Series. Kluwer Academic Publishers, 1996.[14] Franz Baader and Klaus U. Schulz. Uni�cation in the Union of DisjointEquational Theories: Combining Decision Procedures. Journal of Sym-bolic Computation, 21:211{243, 1996.[15] Franz Baader and Klaus U. Schulz. Combination of Constraint Solvers forFree and Quasi-Free Structures. Theoretical Computer Science, 192:107{161, 1998.[16] Franz Baader and Klaus U. Schulz. Uni�cation Theory. In WolfgangBibel and Peter H. Schmitt, editors, Automated Deduction. A Basis forApplications, pages 225{263. Kluwer Academic Publishers, 1998.[17] Franz Baader and J�org H. Siekmann. Uni�cation Theory. In Dov M.Gabbay, Christopher J. Hogger, and John Alan Robinson, editors, Hand-book of Logic in Arti�cial Intelligence and Logic Programming, volume 2,pages 41{125. Oxford University Press, 1994.[18] Leo Bachmair. Canonical equational proofs. Progress in Theoretical Com-puter Science. Birkh�auser, Boston, 1991.[19] Rolf Backofen and Gert Smolka. A Complete and Recursive Feature The-ory. Theoretical Computer Science, 146:243{268, 1995.[20] Alexandre Boudet. Uni�cation in a Combination of Equational Theories:An E�cient Algorithm. In Stickel [109], pages 292{307, 1990.[21] Alexandre Boudet. Combining Uni�cation Algorithms. Journal of Sym-bolic Computation, 16(6):597{626, 1993.[22] Alexandre Boudet, Jean-Pierre Jouannaud, and Manfred Schmidt-Schau�. Uni�cation in Boolean Rings and Abelian Groups. Journal ofSymbolic Computation, 8:449{477, 1989.162

[23] Alan Bundy, editor. Automated Deduction, Proceedings CADE-12,Nancy, France, LNAI 814. Springer-Verlag, 1994.[24] Hans-J�urgen B�urckert. A Resolution Principle for Clauses with Con-straints. In Stickel [109], pages 178{192, 1990.[25] Ta Chen and Siva Anantharaman. STORM: A Many-to-one Associative-commutative Matcher. In Jieh Hsiang, editor, Rewriting Techniques andApplications, Proceedings RTA-95, LNCS 914, pages 414{419. Springer-Verlag, 1995.[26] Greg Cherlin. Model Theoretic Algebra: Selected Topics. Number 521 inLecture Notes in Mathematics. Springer-Verlag, 1976.[27] Noam Chomsky. Lectures on Government and Binding. Foris Publica-tions, Dordrecht, Holland, 1981.[28] Paul M. Cohn. Universal Algebra. Harper & Row, New York, 1965.[29] Alain Colmerauer. Equations and Inequations on Finite and In�niteTrees. In Institute for New Generation Computer Technology, editor, Pro-ceedings of the 2nd International Conference on Fifth Generation Com-puting Systems, pages 85{99, Tokyo, 1984. Ohmsha et al.[30] Alain Colmerauer. An Introduction to PROLOG III. Communications ofthe ACM, 33:69{90, 1990.[31] Hubert Comon. Uni�cation et disuni�cation: Th�eorie et applications.PhD thesis, I.N.P. de Grenoble, France, 1988.[32] Hubert Comon. Disuni�cation: A Survey. In Jean-Louis Lassez andGordon Plotkin, editors, Computational Logic, pages 322{359. MIT Press,1991.[33] Hubert Comon and Pierre Lescanne. Equational Problems and Disuni�-cation. Journal of Symbolic Computation, 7:371{425, 1989.[34] Tom Cornell. Description Theory, Licensing Theory and Principle-BasedGrammars and Parsers. PhD thesis, University of California at Los An-geles, 1992.[35] Bruno Courcelle. In�nite Trees in Normal Form and Recursive EquationsHaving a Unique Solution. Mathematical Systems Theory, 13:131{180,1979.[36] Bruno Courcelle. Fundamental Properties of In�nite Trees. TheoreticalComputer Science, 25:95{169, 1983.[37] Nachum Dershowitz. Termination of Rewriting. Journal of SymbolicComputation, 3:69{116, 1987. 163

[38] Eric Domenjoud. A Technical Note on AC-Uni�cation. The Number ofMinimal Uni�ers of the Equation �x1 + � � � + �xp :=AC �y1 + � � � + �yq.Journal of Automated Reasoning, 8:39{44, 1992.[39] Jochen D�orre and Andreas Eisele. Uni�cation of Disjunctive FeatureDescriptions. In Proceedings of the 26th Annual Meeting of the ACL,State University of New York at Bu�alo, pages 286{294, Bu�alo, NewYork, 1988.[40] Jochen D�orre and Andreas Eisele. Feature Logic with Disjunctive Uni�-cation. In Proceedings of the 13th International Conference on Computa-tional Linguistics, volume 2, pages 100{105, Helsinki, Finland, 1990.[41] Manfred Droste and R�udiger G�obel. Universal Domains and the Amalga-mation Property. Mathematical Structures in Computer Science, 3:137{159, 1993.[42] Fran�cois Fages. Associative-commutative Uni�cation. In Robert E.Shostak, editor, 7th International Conference on Automated Deduction,Proceedings CADE-7, LNCS 170, pages 194{208, New York, 1984. Sprin-ger-Verlag.[43] Fran�cois Fages. Associative-Commutative Uni�cation. Journal of Sym-bolic Computation, 3:257{275, 1987.[44] Dov M. Gabbay. An Overview of Fibred Semantics and the Weavingof Logics. In Franz Baader and Klaus U. Schulz, editors, Frontiers ofCombining Systems, volume 3 of Applied Logic Series, pages 1{55. KluwerAcademic Publishers, 1996.[45] Dale Gerdemann. Parsing as Tree Traversal. In COLING 94, Proceedingsof the 15 International Conference on Computational Linguistics, pages396{400, 1994.[46] Dale Gerdemann and Paul King. The Correct and E�cient Implementa-tion of Appropriateness Speci�cations for Typed Feature Structures. InCOLING 94, Proceedings of the 15 International Conference on Compu-tational Linguistics, pages 956{960, 1994.[47] George Gr�atzer. Universal Algebra. Springer-Verlag, Berlin, second edi-tion, 1979.[48] Claudio Guti�errez. Satis�ability of Word Equations with Constants isin Exponential Space. In Proceedings of the 39th Annual Symposiumon Foundations of Computer Science, FOCS 98, pages 112{119. IEEEComputer Science Press, 1998.[49] Martin Henz, Gert Smolka, and J�org W�urtz. Oz-A Programming Lan-guage for Multi-Agent Systems. In Ruzena Bajcsy, editor, 13th Interna-tional Joint Conference on Arti�cial Intelligence, volume 1, pages 404{409. Morgan Kaufmann Publishers, 1993.164

[50] Jacques Herbrand. Recherches sur la Th�eorie de la D�emonstration.Travaux de la Societ�e des Sciences et des Lettres de Varsovie, ClasseIII, 33(128), 1930. Reprinted in [51].[51] Jacques Herbrand. Logical Writings. Edited by Warren D. Goldfarb.D. Reidel Publishing Company, Dordrecht, Holland, 1971.[52] Alexander Herold. Combination of Uni�cation Algorithms. In J�org H.Siekmann, editor, 8th International Conference on Automated Deduction,Proceedings CADE-8, LNCS 230, pages 450{469. Springer-Verlag, 1986.[53] Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, DanNesmith, J�orn Richts, and J�org H. Siekmann. KEIM: A Toolkit for Au-tomated Deduction. In Bundy [23], pages 807{810, 1994.[54] Joxan Ja�ar and Jean-Louis Lassez. Constraint Logic Programming. InProceedings of the 14th ACM Symposium on Principles of ProgrammingLanguages, pages 111{119, 1987.[55] Joxan Ja�ar and Michael J. Maher. Constraint Logic Programming: ASurvey. Journal of Logic Programming, 19:503{581, 1994.[56] Mark Johnson. Deductive Parsing: The Use of Knowledge of Language.In Principle-Based Parsing: Computation and Psycholinguistics, pages39{64. Kluwer, Dordrecht, 1991.[57] Mark Johnson. Constraint-based Natural Language Parsing. Ms., BrownUniversity/ESSLLI 1995 coursenotes, August 1995.[58] Jean-Pierre Jouannaud and H�el�ene Kirchner. Completion of a Set of Rulesmodulo a set of Equations. SIAM Journal on Computing, 15:1155{1195,1986.[59] Deepak Kapur and Paliath Narendran. Complexity of Uni�cation Prob-lems with Associative-Commutative Operators. Journal of AutomatedReasoning, 9:261{288, 1992.[60] Stephan Kepser. Negation in Combining Constraint Systems. In Maartende Rijke and Dov M. Gabbay, editors, Frontiers of Combining Systems'98,APLS. Kluwer Academic Publishers, 1998.[61] Stephan Kepser and J�orn Richts. Optimisation Techniques for CombiningUni�cation Algorithms. Technical Report LTCS-Report-96-04, Theoret-ical Computer Science Lab, RWTH Aachen, Germany, 1996. Availableat ftp://www-lti.informatik.rwth-aachen.de/pub/papers/1996/LTCS-Rep-96-04.ps.gz.[62] Stephan Kepser and J�orn Richts. Optimisation Techniques for CombiningConstraint Solvers. In Maarten de Rijke and Dov M. Gabbay, editors,Frontiers of Combining Systems'98, APLS. Kluwer Academic Publishers,1998. 165

[63] Stephan Kepser and Klaus U. Schulz. Combination of Constraint Sys-tems II: Rational Amalgamation. In Eugene Freuder, editor, Principlesand Practice of Constraint Programming, Proceedings CP96, LNCS 1118,pages 282{296. Springer{Verlag, 1996. Long version in [97].[64] Claude Kirchner. M�ethodes et Outils de Conception Syst�ematique d'Al-gorithmes d'Uni�cation dans les Th�eories Equationelles. Th�ese d'�Etat,Universit�e de Nancy I, France, 1985.[65] Claude Kirchner. From Uni�cation in Combination of Equational Theo-ries to a New AC-uni�cation Algorithm. In Hassan A��t-Kaci and MauriceNivat, editors, Resolution of Equations in Algebraic Structures, Volume 2:Rewriting Techniques, pages 171{210. Academic Press, New York, 1987.[66] Claude Kirchner and H�el�ene Kirchner. Constrained Equational Reason-ing. In Gaston H. Gonnet, editor, Proceedings of SIGSAM 1989 Inter-national Symposium on Symbolic and Algebraic Computation: ISSAC'89,pages 382{389. ACM Press, 1989.[67] Mike Livesey and J�org H. Siekmann. Uni�cation of AC-terms (Bags)and ACI -terms (Sets). Technical Report 3-76, Institut f�ur Informatik I,University of Karlsruhe, 1976.[68] Roger C. Lyndon. Properties Preserved Under Homomorphisms. Paci�cJournal of Mathematics, 9:143{154, 1959.[69] Benjam��n Mac��as. An Incremental Parser for Government-Binding The-ory. PhD thesis, University of Cambridge, 1990.[70] Michael J. Maher. Complete Axiomatizations of the Algebras of Finite,Rational and In�nite Trees. In 3rd Logic in Computer Science Conference.IEEE, 1988.[71] Gennadij Semjonovitch Makanin. The Problem of Solvability of Equationsin a Free Semigroup. Mat. USSR Sbornik, 32, 1977.[72] Anatolij Ivanovi�c Mal'cev. The Metamathematics of Algebraic Systems.Edited by Benjamin Franklin Wells, volume 66 of Studies in Logic. North-Holland Publishing Company, 1971.[73] Anatolij Ivanovi�c Mal'cev. Algebraic Systems. Volume 192 of DieGrundlehren der mathematischen Wissenschaften in Einzeldarstellung.Springer-Verlag, Berlin, 1973.[74] Karl Meinke and John V. Tucker. Universal Algebra. In Samson Abram-ski, Dov M. Gabbay, and Tom S. E. Maibaum, editors, Handbook of Logicin Computer Science, volume 1, pages 189 { 411. Clarendon Press, Ox-ford, UK, 1992.[75] M. Andrew Moshier and Carl J. Pollard. The Domain of Set-valued Fea-ture Structures. Linguistics and Philosophy, 17:607{631, 1994.166

[76] Greg Nelson. Combining Satis�ability Procedures by Equality-sharing.Contemporary Mathematics, 29:201{211, 1984.[77] Greg Nelson and Derek C. Oppen. Simpli�cation by Cooperation of De-cision Procedures. ACM Transactions on Programming Languages andSystems, 1(2):245{257, 1979.[78] Robert Nieuwenhuis and Albert Rubio. AC-superposition with Con-straints: No AC-uni�er Needed. In Alan Bundy, editor, Proceedings of the12th International Conference on Automated Deduction, Nancy, France,LNAI, pages 545{559. Springer, 1994.[79] Werner Nutt. Uni�cation in Monoidal Theories. In Stickel [109], pages618{632, 1990.[80] Derek C. Oppen. Complexity, Convexity and Combination of Theories.Theoretical Computer Science, 12:291{302, 1980.[81] Jochen Pfalzgraf. Logical Fiberings and Polycontextural Systems. InPhilippe Jorrand and Jozef Kelemen, editors, Fundamentals of Arti�cialIntelligence Research, LNAI 535, pages 170{184. Springer-Verlag, 1991.[82] Jochen Pfalzgraf and Karel Stokkermans. On Robotics Scenarios andModeling with Fibred Structures. In Jochen Pfalzgraf and DongmingWang, editors, Automated Practical Reasoning: Algebraic Approaches,Springer Series Texts and Monographs in Symbolic Computation, pages53{80. Springer-Verlag, 1995.[83] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. MITPress, Cambridge, USA, 1991.[84] Don Pigozzi. The Join of Equational Theories. Colloquium Mathe-maticum, XXX:15{25, 1974.[85] Gordon D. Plotkin. Building-in Equational Theories. Machine Intelli-gence, 7:73{90, 1972.[86] Carl J. Pollard and Ivan A. Sag. Information-Based Syntax and Seman-tics, Volume I: Fundamentals. Number 13 in CSLI Lecture Notes. CSLI,Stanford University, USA, 1987.[87] Carl J. Pollard and Ivan A. Sag. Head-driven Phrase Structure Grammar.Studies in Contemporary Linguistics. CSLI & University of Chicago Press,1994.[88] Christophe Ringeissen. Cooperation of Decision Procedures for the Sat-is�ability Problem. In Baader & Schulz [13], pages 121{140, 1996.[89] John Alan Robinson. A Machine-oriented Logic Based on the ResolutionPrinciple. Journal of the ACM, 12(1):23{41, 1965.167

[90] William C. Rounds. Set Values for Uni�cation Based Grammar For-malisms and Logic Programming. Technical Report CSLI-88-129, CSLI,Stanford University, 1988.[91] Albert Rubio. Theorem Proving modulo Associativity. In Hans Kleine-B�uning, editor, Computer Science Logic, Proceedings CSL'95, Paderborn,Germany, LNCS 1092, pages 452{467. Springer, 1995.[92] Manfred Schmidt-Schau�. Uni�cation in a Combination of Arbitrary Dis-joint Equational Theories. In Ewing Lusk and Ross Overbeek, editors, 9thInternational Conference on Automated Deduction, Proceedings CADE-9,LNCS 310, pages 378{396. Springer-Verlag, 1988.[93] Manfred Schmidt-Schau�. Uni�cation in a Combination of Arbitrary Dis-joint Equational Theories. Journal of Symbolic Computation, 8(1,2):51{99, 1989.[94] Klaus U. Schulz. Combining Uni�cation and Disuni�cation Algorithms|Tractable and Intractable Instances. Technical Report CIS-Bericht-96-99,CIS, Universit�at M�unchen, 1996.[95] Klaus U. Schulz. A Criterion for Intractability of E-uni�cation with FreeFunction Symbols and Its Relevance for Combination of Uni�cation Algo-rithms. In Hubert Comon, editor, Rewriting Techniques and Applications,Proceedings RTA-97, LNCS 1232, pages 284{298. Springer-Verlag, 1997.[96] Klaus U. Schulz. Tractable and Intractable Instances of CombinationProblems for Uni�cation and Disuni�cation. Journal of Logic and Com-putation, 1999.[97] Klaus U. Schulz and Stephan Kepser. Combination of Constraint Sys-tems II: Rational Amalgamation. Technical Report CIS-Bericht-96-86,CIS, Universit�at M�unchen, 1996. Long version of [63].[98] Klaus U. Schulz and Stephan Kepser. Combination of Constraint Sys-tems II: Rational Amalgamation. Theoretical Computer Science, 1999.[99] Robert E. Shostak. A Practical Decision Procedure for Arithmetic withFunction Symbols. Journal of the ACM, 26(2):351{360, April 1979.[100] Robert E. Shostak. Deciding Combinations of Theories. Journal of theACM, 31(1):1{12, 1984.[101] Thoralf Skolem. �Uber einige Satzfunktionen in der Arithmetik. Skrifter,Vitenskapsakademiet i Oslo, I(7):1{28, 1930. Reprinted in [102].[102] Thoralf Skolem. Selected Works in Logic. Edited by Jens Erik Fenstad.Universitetsforlaget, Oslo, 1970.[103] Gert Smolka. The Oz Programming Model. In Jan van Leeuwen, edi-tor, Computer Science Today, LNCS 1000, pages 324{343, Berlin, 1995.Springer-Verlag. 168

[104] Gert Smolka and Ralf Treinen. Records for Logic Programming. Journalfor Logic Programming, 18(3):229{258, 1994.[105] Dennis Stanton and Dennis White. Constructive Combinatorics. Un-dergraduate Texts in Mathematics. Springer Verlag, Berlin, New York,1986.[106] Mark E. Stickel. A Complete Uni�cation Algorithm for Associative-commutative Functions. In Proceedings of the 4th International JointConference on Arti�cial Intelligence, pages 71{82, Tblisi, USSR, 1975.[107] Mark E. Stickel. A Uni�cation Algorithm for Associative-CommutativeFunctions. Journal of the ACM, 28(3):423{434, 1981.[108] Mark E. Stickel. Automated Deduction by Theory Resolution. Journalof Automated Deduction, 1(4):333{356, 1985.[109] Mark E. Stickel, editor. Automated Deduction, Proceedings CADE-10,LNAI 449, Berlin, Germany, 1990. Springer{Verlag.[110] Ian Sutherland. A Man-machine Graphical Communication System. PhDthesis, Massachusetts Institute of Techology, 1963.[111] Erik Tid�en. Uni�cation in Combinations of Collapse-free Theories withDisjoint Sets of Function Symbols. In J�org H. Siekmann, editor, Interna-tional Conference on Automated Deduction, Proceedings CADE-8, LNCS230, pages 431{449. Springer-Verlag, 1986.[112] Cesare Tinelli and Mehdi Harandi. A New Correctness Proof of theNelson{Oppen Combination Procedure. In Baader & Schulz [13], pages103{120, 1996.[113] Ralf Treinen. A New Method for Undecidability Proofs of First OrderTheories. Journal of Symbolic Computation, 14:437{457, 1992.[114] Peter Van Roy, Michael Mehl, and Ralf Scheidhauer. Integrating e�-cient records into concurrent constraint programming. In 8th Interna-tional Symposium on Programming Languages, Implementations, Logic,and Programs (PLILP96), Aachen, September 1996.[115] Hugo Volger. Principle Languages and Principle Based Parsing. TechnicalReport Arbeitspapiere des Sonderforschungsbereichs 340; 82, Universit�atStuttgart, 1997.[116] Nikolai Weaver. Generalized Varieties. Algebra Universalis, 30:27{52,1993.[117] Katherine A. Yelick. Combining Uni�cation Algorithms for Con�ned Reg-ular Equational Theories. In Jean-Pierre Jouannaud, editor, RewritingTechniques and Applications, Proceedings RTA-85, LNCS 202, pages 365{380. Springer-Verlag, 1985. 169

[118] Katherine A. Yelick. Uni�cation in Combinations of Collapse-Free Regu-lar Theories. Journal of Symbolic Computation, 3:153{181, 1987.

170

