UNIVERSITAT MUNCHEN
CENTRUM FUR INFORMATIONS- UND
SPRACHVERARBEITUNG

Extending the Type Checker of SML by
Polymorphic Recursion

A Correctness Proof

Martin Emms & Hans Leif3

CIS-Bericht-96-101

20. Januar 1997

Verantwortlich:

Petra Maier, Centrum fir Informations- und Sprachverarbeitung,
Universitat Miinchen, Oettingenstr. 67, 80538 Minchen
EMAIL: pmaier@cis.uni-muenchen.de

Extending the type checker of SML
by polymorphic recursion

A correctness proof

Martin Emms and Hans Leif3

{emms,leiss}@cis.uni-muenchen.de
Centrum fir Informations-
und Sprachverarbeitung
Universitat Munchen
D-80538 Oettingenstr. 67, Germany

Abstract. We describe an extension of the type inference of Standard ML that
covers polymorphic recursion. For any term ¢ of SML, a type scheme 7 and a system
L of inequations between (simple) types is computed, such that the types of ¢ are the
instances of 7 by substitutions S that satisfy L.

The inequation constraints I are computed bottom-up in a modification of Milner’s
algorithm W. The correctness proof is complicated by the fact that unknowns for
polytypes are needed — in contrast to type inference for SML.

1 Introduction

Functional programming languages like ML[19], Miranda[23], or Haskell[?], have made stat-
ically typed polymorphic languages popular. Their success depends to a large extend on the
following properties of the underlying type system of Damas/Milner[2]:

- typability of an untyped term is decidable,

for typable terms, a schema representing the set of its types can be inferred automatically,

the declaration of polymorphic values by the user is supported,

well-typed terms do not cause run-time type errors.

However, these properties were achieved by restricting polymorphism somewhat: (i) A-
abstraction is monomorphic: a function may accept arguments of different (monomorphic)
types, but the argument must be used with the same type at each occurrence in the body of
the function, (ii) Recursion is monomorphic: at each occurrence in its definition, a recursive
function « must be used with the (monomorphic) type 7 of its defining term e:

uf{e:rtle:r
I'kvalrecz=e:{z: 7}’

Rec Value Dec

where 7' is the universal closure of 7 relative to the environment I' and {z : 7'} the
extension of the environment effected by the declaration.

While it is impossible to allow polymorphic A-abstraction without loosing the existence of
principal types, Mycroft[20] has shown that the Damas-Milner type system could be relaxed
to allow polymorphic recursion. This Milner-Mycroft (or ML*-) type system replaces the
above rule of the Damas-Milner system by the rule

rufe 7 e 7
I'kvalrecz=e:{z: 7'}’

(Poly)Rec Value Dec

The system still has the subject-reduction property, is type-sound, and has the principal
types property. Mycroft proposed a semi-algorithm to compute principal types for MLT-
typable terms, but on every untypable term, this semi-algorithm diverges. Henglein[4, 5] and
LeiB[13, 14] proposed semi-algorithms based on semiuntfication, which terminate also on all
known examples of terms untypable in the Milner-Mycroft system. Actually, semiunification
is equivalent to Milner-Mycroft-typability, cf. Henglein[5] and Kfoury e.a.[12].

But unfortunately, semiunification is an undecidable problem, as shown by Kfoury e.a.[11].
So the decidability of typability is lost under an extension of ML by polymorphic recursion. It
therefore seems unreasonable to use the Milner-Mycroft type system in a real programming
language: there are programs on which automatic type inference will not terminate.

However, an extension of ML by polymorphic recursion could still be of some practical value:

1. Some useful recursive programs can be typed in the Milner-Mycroft system, while they
are untypable in the Damas-Milner system. Moreover, all terms typable in the Damas-
Milner system are typable in the Milner-Mycroft system as well, and since the principal
type is at least as general, the same program can be used in more situations when typed
in the second system.

2. When polymorphic recursion —occasionally— is needed in practice, programmers seem
to be irritated by the behaviour of ML’s type checker: not only is there an artifical
distinction in polymorphism within and outside a recursive definition, but it is also
impossible to make (current implementations of) ML respect a correct Milner-Myroft-
type when provided by the programmer. (For examples of typing anaomalies raised by
monomorphic recursion of ML, see Mycroft[20], Henglein[5], Kfoury e.a.[12].)

3. The importance of the complexity of type inference has to be judged from a practical
point of view, not just from its theoretical worst-case analysis. As is well known, the
type inference problem for ML is DEXPTIME complete (see [9, 16]), but the actual
behaviour in programming practice for more than a decade led to the belief that it
was linear. A similar difference between theoretical and practical complexity is expected
to hold for type inference with polyporphic recursion (cf. Henglein[5]). The (limited)
practical experience with our implementation of polymorphic recursion for SML showed
no significant slow-down of type inference.

Moreover, since program development is done interactively, the danger of a non-terminating
compilation is low: a type checker consuming unreasonably much time or space resources
would be stopped by the programmer anyway.

Adding polymorphic recursion to SML makes the type system more homogeneous: recursive
functions are then type-uniform in the same way inside and outside of the definig term.

We think that only practice can tell which type discipline is most helpful in actual program-
ming. Therefore, we have implemented type inference with the Milner-Mycroft system as
a modification of the compiler of SML of New Jersey[1], a widely used version of SML. It
allows the programmer to switch between the two type systems, and handles the full lan-
guage of SML of New Jersey, including some features —such as flexible records and datatype
declarations— that will not be discussed below. (For details, see the documentation Emms[3].)

The rest of this paper is organized as follows. In section 2, we will present definitions of
the Damas-Milner and the Milner-Mycroft type systems, and recall its relation to semi-
unification. Section 3 introduces a method of performing type inference for the Milner-
Myecroft calculus in the style of algorithm W of Milner[18]. Section 3.2 gives an intuitive
description of our semi-algorithm W7 for MLT. Since it was intended for actual implemen-
tation, we also discuss some sublte points that arise from the aim of staying close to existing
type checkers for SML. Section 3.3 gives the formal details of the algorithm. Its correctness
and weak completeness are proven in section 4.

The methods for inferring Milner-Mycroft-types given by Henglein[5] and Kfoury e.a.[12]
are in the style of Curry. They are discussed in the appendix, along with a variant of W7
and some implementation details.

2 The type systems of ML and ML™

2.1 Terms and types

The term language we use is a A-calculus with declarations, in the following notation of a
sublanguage of SML (cf. Milner e.a.[19]):

FErpressions e :=x variable

| (e-e) application

| (fnz=>¢) Junction abstraction

| (letdine end) local declaration
Declarations :=valzx=e value declaratuion

| valreca=e recursive value declaration

We refer to such terms also as MIL-programs, ignoring some further restrictions met in
SML, for example that the expression in a recursive value declaration has to be a function
abstraction. Metavariables e, s,¢ are used to range over terms, and variables are taken from
an enumerated sets IVar. (In the examples we also use appropiatly typed constants.)

As is done in SML, on the level of types we distinguish between

Monotypes 7 :=« type variable
| (r—1) function space
Polytypes 7T :=71 unquantified type
| Yo7 quantified type

We use «, 3,7, 6 for type variables, taken from an enumerated infinite set TV and p,o, 7
for mono- and @, 7 for polytypes. By FV(T) we mean the set of type variables free in T.

An environment I 1s a finite partial function from individual variables to polytypes, written
as a set of typing statements x . 7. The type variables free in I' are

FV(IN) :={a|forsomez:Tin I, « € FV(T)}.

A type substitution S 1s a partial function from type variables to monotypes. A monotype 7
is @ (generic) instance of &, written as @ > 7, if 7 results from & by instantiating all bound
variables of @ with monomorphic types, i.e. if 7 = So for the quantifier free part ¢ of &
and a substitution S which is the identity on F'V(7). We say 1 » @2, if 71 > 7 for each
monotype 7 such that & > 7.

For an environment I and a polytype 7, by 7/ we mean the universal closure of T with
respect to I', obtained from 7 by quantifying (in the order of occurrence from left to right)
all its free type variables except those of F'V(I7).

COoNVENTION: The bound individual variables of a term are pairwise distinct, and disjoint
from its free variables. In ST, we assume that S is the identity on the bound variables of
7, and that none of these is a free variable of the image of S. Hence, if 7 = V3 7, then

ST=VBSr.

2.2 The Damas-Milner and Milner-Mycroft type systems

The set {7 |I'|-e: 7} of types of a term e, relative to an environment I' that contains
an assumption x : I'(x) for each # free in e, is inductively defined by a type-assignment
calculus, see Figure 1. The first six typing rules define’ the Damas-Milner-calculus, which
we will also refer to as ML. The Milner-Mycroft-calculus, referred to as ML%, is obtained
by replacing the sixth rule by the last one.

Lemmal. In ML and MLt we have for any substitution S:
Iff—e:7 then ST me: St. If I'|=d : {x : 7'} then ST'|-d : {z : S(7')}.

Proof By induction on e resp d. Consider a polymorphic recursive declaration and assume
. . —Sr

I'l-valrecz=e: {x:7'}. By induction, ST U{z : S(FI)} |-e: Sr. If St = S(71), the

claim follows by an application of the typing rule. But since bound variables do not occur

in the domain or range of substitutions, 5 = S(7!) holds. O

Lemma 2. Suppose G1 > Go. If Iy :Go|-e:7, then Iy :T1|-e: 7.
If Iy Gy —d:{x: 7072} then Iy : &y —d: {x:7v]

! The calculi of Milner[2] and Mycroft[20] use V-introduction and -elimination rules on the right of
. We work with syntax-directed versions like the one of Milner e.a.[19], for the sublanguage we are
concerned with. Note that the quantified variables in inferred typing statements of declarations
are fixed.

I'(z) =T

Var ———— if z is a variable
I'kax:7
F—e:rl—w', Il—ey: 7
. LS
|-eiex: T
. I'u{s:7}—e:7
Functions 7
I'(fnz=>e): 7 — 1
I'i—d: 1", r'ul'le:r
Let -
I'letdineend: 7
I'ke:
Value Dec Feir

I'lvalz=e:{c:7}

Tu{z:7}le:r

I'l-valrecz=e: {z:7}

Rec Value Dec

T'u{e: 71} e 7

I'-valrecz=e: {c:7}

(Poly)Rec Value Dec

Fig. 1. Typing rules for ML and ML*

Proof Again, we only consider a polymorphic recursive declaration. Suppose
I y:Gs-valreca=e: {x:7¥72},

By the typing rule, me must have I,y : 72, = : 7IYT2 e 1. As T, > To, we have FV(7y) C
FV(@2), hence 71'¥71 » #1'W72 Therefore, by induction we get I,y : &,z : 7Yt —e : 7.
By the typing rule, this implies the claim. a

2.3 Examples of polymorphic recursion

Two defects of monomorphic recursion that are overcome by polymorphic recursion are
demonstrated by the following examples. The first shows that while SML allows the definition
of datatypes with increasing type parameters, it forbids recursion along the structure of its
data. The second shows that monomorphic recursion reduces the power of simultaneous
definitions.

Example 1. Recursive functions on recursively defined datatypes whose type parameters
increase at the recursive occurrence:

Suppose? we store data of type o, indexed by structured keys, in a datastructure a-trie:

datatype key =
Atom of int | Pair of key #* key
datatype ’a trie =
Empty | Branch of ((int * ’a) list) * ((’a trie) trie)

For atomic keys, the data are stored in the first component, a list, while for pairs of keys, the
data for all keys with the same first component are grouped into a trie organized according
to the second component of keys. The (partial) function

fun find (Branch((c,a)::1,_), Atom(d)) =
if d=c then a else find (Branch(l, Empty), Atom(d))
| find (Branch(_,t), Pair(p,q)) = find (find (t,p), q)

is untypable in SML: since a-iries contain («-trie)-subtries, functions recurring along the
structure of a-tries need more complex types at recursive calls than at top level. The principal
Milner-Mycroft type of find is a-trie X key — «, as one would expect.

Example 2. In simultaneous recursive definitions, a residual function sometimes needs dif-
ferent types at different occurrences. In the following example, f is needed with the types
a-list — «-list and [-list — (-list:

fun F (x : ’’a list, atob : ’’a -> ’’b, bstoa : ’’b list -> ’’a) =
let val rec f = fn x => if x = [] then []
else (bstoa (g x))::(f (t1 x))
and g = fn x => if x = [] then []
else (atob (hd x))::(f (g (t1 x)))
in £ x end;

In ML, I can be typed only when o = 3 (where "o means that there is a decidable equality
on type «), with principal type

Faur Foa-list X (o — o) x (a-list — o) — a-list,
imposing unnecessary restrictions on the use of . In ML%, we have the more general typing

Fur+ Fa-list X (o — B) x (B-list — o) — a-list.

Mycroft[20] reports an example of an M L-untypable simultaneous recursion that arose from
trying to avoid duplicated code. Also, ML conflicts with using simultaneous definitions to
structure a program: the simultaneous definition

2 We simplify an example reported by C.Elliot on the SML-electronic forum in 1991, who stores
information indexed by terms and adds continuation functions to cover failure cases. R.Milner
and P.Wadsworth have met similar examples in the development of the first ML-implementations
in the seventies.

fun f(x,y) = (g(0,x),g(true,y)) and glu,v) = v

is untypable in ML, since the residual function ¢ is used with inconsistent types within the

definition. While
Fyrs [rax B —axp, g axpf—p,

one can type f under the monomorphic recursion of ML only when defining g independently.

2.4 Polymorphic recursion and semiunification

Where type inference for ML depends on solving equational constraints of types, type infer-
ence for MLT additionally involves solving matchability constraints. In a ML*-derivation

o7l e(o o™ a™ .)T

I'lFvalrecz=e:{z:7}

, (1)

the types 7; of the occurrences of # in e are generic instances of the assumed type z : 7/,

1.e.

FF>7'1,...,FF>TH.

Since the derived type 7 of e is the quantifier free part of 7', this means there are substitu-
tions 11, ..., T, with

Tir=7 and T;3=p forpeFV(FD), i=1,...,n (2)

Definition 3. A substitution 7" safisfies the matching statement 7 C o between monotypes
7,0, if Tt = 0. The restriction of T to FV(r) will be called the matching substitution of
TCo.

Hence

7' > 1, <= some T} satisfies {7 C; U {yC; v |y € FV(I)}. (3)

In order to infer MLT-types for recursive declarations val rec & = e, an environment I' = U A
and suitable monotypes 7 = Ua, 7y = Uay, ..., 7, = Uaq, will be obtained from the solution
U of a set of constraints. These constraints are partly determined by e and additionally
contain

alCyay,...,aC, ay, §C16,...,8C, 68, b€ FV(AQ)
with type unknowns «, «, ..., @, and an initial environment A. These matchability con-

straints ensure that the solution satisfies the condition (2) (where 8 € FV(U$)) forced by
the typing rule.

Definition4. A semiunification problemin Cq,...,C, is a multi-set L of equations, 7 = o,
and inequations, 7 C; o with 1 < 7 < n, between monotypes 7 and o. A solution of L is an
n+ 1 tuple (U, Ty, ...,T,) of substitutions, such that

Ur=Ucforeach r=0cin L,and T;Ur =Ugc foreach rC,ocin L, =1,... n.

Call U a semiunifier of L and T3, ..., Ty, its residual matching substitutions.® The solution
(U,T1,...,1y) is more general than a solution (U',17,...,T,),if U =py) RU for some
substitution R.

We say L holds, if Id is the semiunifier of some solution (Id,T3,...,T,) of L.

Remark 1. Note that semiunification does not behave like unification:

(a) If L holds and S is some substitution, SL may not hold, it may even be unsolvable: take
L=1{aC8— B} and S =[(y —) — 7/al.

(b) If S is a most general semiunifer of L, then S may have more variables than L: take
L ={a; — a2 C 3} and S = [B1 — B2/5]. (The semiunifier S = [@; — a3/3] is not

most general.)

By the above, it is clear that semiunifiability and MLT-typability are closely related. In fact,
for a variant of MLt without declarations and recursive expressions rec x = e instead —called
ML™ for the rest of this section—, Henglein[5] and Kfoury e.a.[12] have shown:

Theorem 5. Henglein[5], Kfoury e.a.[12] The problems

MIYP :={e|I'btyy+e:1 for some I''7} and
SUP :={L|some (UT,...,T,) solves L}

are polynomial-time reducible to each other.

The reduction of MLT P to SUP uses a type inference method in the style of Curry: to each
subterm t of e, one associates a type variable «; and a finite set L; of equational or matcha-
bility constraints. From a semiunifier U of L, one gets I' = { @ : U(e,) | « is free in e } and
7= Ul(e,) such that I'Fyr4 e 0 7.

However, one has to be careful in defining L;, since these constraints depend not only on
the subexpression ¢ and its position in e: if ¢ is an occurrence of a rec-bound variable x,
the environment of the subexpression recx =s binding x has to be taken into account (cf. I’
occurs in (2). A similar remark applies to let-bound variables x.).

Remark. This has been overlooked in Henglein[5], whence his algorithm needs a correction
(see Section 5.1). The constraints given by Kfoury e.a.[12] take the scope relations of bind-
ings into account. However, this proof is via an embedding of MLt into A-calculus with

? Note that T; is a simultaneous matching for all Ur C; Uo with 7 C; o in L.

polymorphic recursion and polymorphic abstraction, but no let, which is then reduced to
SUP. Therefore, it gives the constraints needed for MLT-type inference only implicitly.

The interplay of monomorphic A-binding and polymorphic rec-binding as well as the han-
dling of declarations in the scope of recursions deserve a more explicit treatment. This, and
the connection to principal MLT-types, is given in our semi-algorithm W7 below.

For the sake of completeness, we recall some known properties of semiunification:

Theorem 6. 1. Fach solvable instance of the semiunification problem has a most general

solution.(Pudldk[21])

2. There are rewriting procedures that turn any solvable instance of the semiunification
problem nto a ‘solved form’, from which a most general solution can be extracted.

(Henglein[5], Leif${14], Kfoury e.a.[?])
3. The semiuntfication problem is undecidable for instances with at least two inequation
relations and at least one binary function symbol. (Kfoury e.a.[11])

4. The semiunification problem s decidable
a) for instances with only one inequation relation. (Kapur e.a.[8]),

b) for instances with only monadic function symbols. (Henglein/Leifi[15])

We remark that 4 a) implies that Milner-Mycroft-typability is decidable for linear polymor-
phic recursion, i.e. when a recursive function occurs only once in its defining term. A similar
subclass cannot be derived from 4 b), since the binary — is the main constructor of type
expressions.

We will only use most general semiunifiers satisfying a slight restriction. A semiunifier U of
L trivially renames o, if Ua # « is a variable and Ua ¢ FV(UR) for all variables 8 # « in
L. For example, if L = {y — vyC o — B} and «, 8,v,6 are different, U = [8/«, 3/5,6/7]

trivially renames ~, but not «.

Proposition7. If L has a solution, then it has a most general semiunifier that does not
trivially rename variables of L.

Proof By induction on the number of variables of L that are trivially renamed by a most
general semiunifier. Suppose (U, T4, ...,7T,) is a most general solution of L where U trivially
renames « to o’ = Ua. Let & be a fresh variable, and

U:=la/a,a/d1U, Tj:=la/a,a/d]T;[a)ad /o).

Then (U, T, ..., T,) is a solution of L. Tt is a most general solution, since if a semiunifier U’
of L equals RU on L, it equals (R[e/4&, o//oz])[j on L. Suppose v in L is trivially renamed
by [7, but not by U. Then Uy must be a variable, and either v = Uy or Uy € FV(Up) for
some 3 # v in L. In the second case, it follows that U'y € FV(UB), so U would not trivially
rename 7. In the first case, we have v ¢ {a, o/} since U renames a to o'; but since Uy # 7,
we must have ¥y = Uy € {a,a’}, a contradiction. Since Ua = «, U trivally renames less
variables of L than U. a

Remark. To type ML’s let x = e in s end, one also has to find a polytype T for z together
with instances T > 11,...,T7 > 7, for occurrences of x in s. This can also be done in the
style of Curry, i.e. using equational and matchability constraints, see Kfoury e.a.[10]. The
constraints that arise this way are so-called acyclic semiunification problems, a decidable
subproblem of semiunification.

3 Milner-style type inference of polymorphic recursion

As noted above, type inference for MLT can in principle be done in the style of Curry. In
order to extend compilers for ML by polymorphic recursion, however, one has to stay closer
to existing type checkers of ML. These are based on Milner’s[18] type inference algorithm
W, which differs from Curry’s style in some respects.

3.1 Milner’s type inference algorithm W for ML

Milner’s W, which we split into (Waee, Werp) to fit to the distinction between declarations
and expressions in SML, takes an environment I' and an expression e (resp. a declaration
d) and returns a failure report or a pair (5, 7), consisting of a substitution S to update the
environment I" and a type 7 for e (resp. a pair (S, {x : 7}) with a typing statement z : 7
for d) (see Figure 2). (S can be seen as a solved form of the equational constraints in a
Curry-style method.)

An algorithm mgu that computes a most general unifier of two types is used to construct

S. (Cf. Herbrand[6], Robinson[22], Martelli[17].)

For comparison with our extension W7 for MLT, we state the well-known properties of W.
We say S =p T if the substitutions S and 7" agree on FV(I'). SI" is obtained from I' by
replacing assumptions x : 7 by : ST. A typing of expression e modulo I' is (represented
by) a pair (S, 7) such that SI" Fpsz e : 7. Similarly for declarations.

Theorem 8. (Damas/Milner[2]) Let I' be an environment that contains an assumption for
each free variable of the expression e resp. declaration d. Then

(a) If Wewp(I'ye) = (S, 7), then for all (S', 1) the following are equivalent:
(i) S'T Fypoe: 1,
(ii) For some substitution U, 8" =p US and 7' = Ur.
(b) If Waee(I',d) = (S, {x : T}) and T = VB7, then for each (S',{x : T}) the following are

equivalent:
(i) S'T by d:{x 7T},
(ii) For some substitution U, 8" =p US and T = Ea

(¢) If Wewp(I',€) = fail, there is no (S',7') such that S'I' by e - 70 If Waee(I, d) = fail,
there is no (S',x : &) such that S'T"Fpyp d: {x T},

10

- WefP(F’ x) = (Id’ 7[6//6])a
if I'(z) =Vp7, where 3’ are fresh copies of 8,
- We;gp(F, €1 - 62) = (USQSl, Ua),
if (51, T1) = W@xp(F, 61)
(52, 7'2) = We:cp(slslf, 62)
U = mgu(S271, 72 —), where « is a fresh variable.
— Wewp(I, (fnz=>e)) = (S5, Sa — 1),
if (S,7) = Weap(I'U{z : a}, €), where « is a fresh variable,

— Woesp(I, letdineend) = (5251, p),
if (Sl’ {x :F}) = Wdec(Fa d)
(S2,p) = Weap(S1 T U{z : T}, €)
— Wyee(I, valz =€) = (S, {z : Vi7}),
if (S,7)=Weap(Ie)
f=FV(r)— FV(SI)

— Wyee(I, valrec f=¢) = (US, {f:vp5 UT}),
if (S,7)=Weap(I,f:a, e), with « fresh,
U= mgu(Sa,),
B=FV(Ur)— FV(UST)
— Wezp resp. Wy, returns fadl,
if the call to mgu or one of the recursive calls to Wezp or Wy,
returns fael.

Fig. 2. The type assignment function W for ML

From Weep (I,) = (S, 7) one obtains SI' ke @ 7, the principal ML-type of e modulo I,
by choosing U = Id in (ii). The corresponding holds for declarations.

In the proof, one shows that the substitutions combined during the recursive calls of W
correspond to combinations of and substitutions into MI-derivations.* These arise from
solving equational type constraints (for application expressions and recursive declarations).
The proof uses that if U is a unifier for an equation, so is any refinement SU.

For Wt and ML*-derivations below, the situation is more complicated: when typing a
recursively declared variable z, we have to weaken a temporary assumption z : 7 to some
suitable # : @ with 7 > 7. Therefore, Lemma 1 will not be sufficient to prove our analog of
Theorem 8 for ML™T.

Remark. Observe that W can type let-expressions without setting up inequation con-
straints, because 1t traverses its input terms in a specific order: for let d ine end, the dec-
laration d is typed before its scope e is, introducing a polytype assumption & : 7T in the
environment for e. All type variables free in T are monotype parameters of the derivation,
since they occur as well in the type of some (monomorphic) A- or rec-bound variable with

* Lemma 1 for ML is implicitly contained in the direction (ii) = (i) of Theorem 8.

11

wider scope than x. The quantifier structure of these assumptions x : T need not to be
changed when derivations are instantiated.

3.2 An informal description of W* for ML*

Our aim is to provide an extension W7 of Milner’s W that allows one to infer principal
ML*-types for actual programs written in SML, if they are MLT-typable, and to detect
their MLT-untypability as often as possible, otherwise; whether examples of nontermination
—predicted by theory, but as yet unconstructed— also occur in practice, remains to be seen.
Staying close to W has several advantages over an algorithm in the style of Curry/Hindley:

— an implementation is easier to realize for a full programming language, by modifying the
code of an existing typechecker for SML (as we did for SML of New Jersey),

— the behaviour of the typechecker should not differ from the one for SML for recursion-
free programs; in particular, let-expressions would not envolve the solution of (acyclic)
semiunification problems,®

— the sequential nature of the typechecker should make error reports more specific, since
it would solve inequation constraints at each recursive declaration rather than at the
top node of a term.

A sequential treatment of type inference for MLT, however, raises two problems that have
to be explained to make the code of W* below understandable.

Problem 1 To infer a principal MLT-typing for a recursive declaration, valrec x =e, mod-
ulo an environment I, one has to introduce a polytype unknown « in order to first infer a
principal type 7 of the defining expression e modulo the environment I, z : Va.a. Knowing
7, the strong assumption z : Yoo will be weakened to a suitable 2 : @ (with e : 7). Hence:

1. The specialization of derivations needed is not just the substitution of free type parame-
ters by monotypes, but also the weakening = : 7 > & : & of polytype assumptions, which
we describe by substitutions instantiating polytype unknowns. For any inferred typing,
Wt outputs a constraint set L that defines ‘specializing’ substitutions: only semiunifiers
of L turn the inferred typing into a weakened MLT-typing.

2. For declarations d in e, the quantifiers of their inferred typings d : {y : V8.c} can not
be obtained —as in ML- by quantifying all variables not in the environment I" at d: type
variables of ¢ that occur in instances of the assumption @ : Ya.ar have to be treated as if
they occurred in I'; in order to respect the possiblity of later weakenings « : Voo > x : 7.

Therefore, the clauses of le'ec and Wy, differ in the type quantifiers they introduce: in

le'ec, only those variables of the type of the defining expression are quantified that are
known to never occur in specializations of the current environment.

® The clause for let—expressions in W7 essentially is the same as in W. Still, the derived types for
locally declared variables may differ, because a 1let-expression embedded in recursive declarations
may contain a polymorphic recursion variable - whose poly(!)type is only approximately known
when typing the let-expression.

12

Note also that if d is val(rec) y = ¢ and x occurs in ¢, then any occurrence of y in the
scope of d contains an implicit occurrence of in e, which has to enter the typing of .

Problem 2 In a Curry-style type inference for ML*, the typing of an occurrence of a rec-
or let-bound variable x involves matchability constraints about types in the environment of
the declaration resp. expression binding . To stay close to implementations of W, we avoid
introducing scope relations in the environment (cf. section 5.1) or attributing variables with
the environment of their binding position. Instead, we keep the typing of variables simple
and shift the burden to the (less frequent) typing of A-expressions:

1. The input environment is split into two partial functions, one for A-bound variables, and
the other for rec/let-bound variables (possibly containing assumptions with unknown
polytypes).

2. When typing an occurrence of a rec- or let-bound z, we add matchability constraints
for all types of A-assumptions in the environment of the occurrence of x, not just for
those in the environment of the binding of z.

3. When typing a A-subexpression e of the declaration resp. expression of a rec- or let-
bound variable x, we retract the matchability constraints for types of the A-assumption
that were added when typing occurrences of z in e.

Thus, typing proceedes as if all A-bound variables of an environment had wider scope than
all its rec- and let-bound variables. When discharching a A-assumption, part of the true
scope relations becomes available, and matchability constraints are adjusted. Therefore, in
Werp and W;'}Upthe clauses both for variables and for A-expressions differ.

Some of the above aspects will become clearer from an informal description of the typing of
a recursive declaration.® The typing of valrec z = is done in two phases:

Phase I: From I',x : « and e, Wjj,cp infers a type 7, a substitution .S with Sa = «, and a set

L of inequations. The result (L, S, 7) represents a derivation which ends in

(S, FT'U{x o)y = (S, M U{x :Vaa} Fyp+ e, (4)
under an appropriate specialization (S, " U{x : a}) of ' U{x : a}, with Ya.a = S_oz<S’F)
Its leaves are represented by L, recording matchability constraints to be satisfied under any
weakening (TS, I"U{x : a}) of (S, I"U{x : a}). (The assumed polytype unknowns never
occur in derived type expressions, but they will occur in the constraints L.)

Phase 2: To fit the typing rule, the assumption z : Yor.ev in (4) has to be weakened, so that the
quantifier-free part of the polytype of z is an instance of the derived type 7 of e. We solve the
constraints L[r/a] by a most general semiunifier U, if possible. Then (U(L[r/«a]),US,UT)
represents a weakened MLT-derivation ending in

—(Us,r

WS, rule:r)) = (WS, YUz - Tr "V by e UT, (5)

5 We ignore the splitting of the environment, which is relevant also in defining the updated envi-
ronment, and hence write (S, I'} for the updated environment. Details are adjusted later.

13

in which the instantiation conditions for typing occurrences of z,

——{US,I") ——{US,I'}

Ut =Ur,..., Ut - UTy,

are satisfied because U(L[r/«a]) holds. By the typing rule, this derivation is extended by

1

to an MLT-typing of valrec x=e modulo I', which is represented by the final output,

1

Remark. Phase 1 is like the first iteration of Mycroft’s[20] iterative algorithm, except that
he does not collect a set of constraints. He takes the derived type 7 of ¢ and uses z : 757}
as weakened assumption to retype e, etc.

(US, T') Fpp+ valrecz=e : {x: TS

Wi (Dvalreca=e) = (U(Llr/a) US, {z: U7 ")

3.3 The semi-algorithm W+ for inference of Milner-Mycroft types

Algorithm W, which is stated in Figure 3, takes an expression e or declaration d and
two environments A, I', with disjoint domain, as input. A contains the assumptions for
monomorphic and I those for polymorphic free variables of e or d (i.e. those considered to
be A-bound resp. val- or val rec-bound in an enclosing term).

If Wt terminates, it returns fail or a triple (L, S, 7) resp. (L,S,{z : T}), consisting of a
semiunification problem L, a substitution .S, and a type 7 resp. a typing statement {z : 7}.

Inequality relations in L are indexed with ‘fresh’ indices that correspond to occurrences of
polymorphic variables in e or d. Therefore, W7 has an implicit argument, a finite function
I:1Var — 2% where I(x) C IN enumerates the finitely many occurrences of z already
visited; we assume I(z) N I(y) = 0 for # y. For each non-binding occurrence of # in ¢ or
d, WY updates I by adding a new index to I(z).

The constraints in L related to occurrences of polymorphic variables y in I" form a subsystem
used in the clause for function abstractions:

LF::U{Ly|y:EEF}, where LY :={rC,pelLl|iclly}. (6)

For the clauses of le'ec, we need a definition. If a semiunification problem L in Cq, ..., C,
holds, its set of pattern variables is

PV(L) := U PVi(L), where PVi(L) :={a| 75,0 € L, a € FV (1), Ti(a) # &, }.
1<i<n

The set of specialized variables of L, relative to I', written spec(I', L), is the closure of FV(I)
under the relation Ry defined by

a Rp f <= forsome 1 <i<n, o € PV;(L) and § € T;(«).

By mgsu we mean a partial recursive function, which for unsolvable L. may diverge or return
fail, and for solvable L returns a most general semiunifier of L which does not trivially
rename variables of L. Such mgsu exists by Theorem 6 and Proposition 7.

14

WT is split into W;'}Up for expressions and W;Il-e

- Whp(A T, z) =
{ (0, 1d,7), if A(z) =r,

. for declarations:

(L, Id,r[a'[a, 8'/8]), if I'(x) = VBT, where
o = FV(Vfr) — FV(4),

a' = new copies of «,

3" = new copies of 3,
L={aC.a'|a€a}UlsCis|6e FV(A)},
with a fresh index 4, and I(z) := I(z) U {5}

— Wip(A T, e1-e2) = (US2Ly WU Ly, US: 51, Ua)
if (L1, S1,7m) = Wihyp(A, I er)
(L2, S2,72) = Wip (514,511 €2)

U = mgu(S271, 2 — «a), where « is a fresh variable.

- ijp(A,F, (fnz=>e)) = (L, S, Sa — 1),
if (La,S,7)= W;'}Up(A, ¢ :a,l, e), where « is a fresh vari-
able, and
Li=(La—{r'Cir' |7 CiT € Li})
Dy a7 T € IE, 5 € FV(r') — (FV(Sa) — FY(SA))}.

~ WEp(A, T, letdineend) = (S2L1U Lz, S251, p)
if (L1,51,{x:7}) =W} (AL, d)

(L2, 52, p) = Wp(S1A, 511,51 7, e)

- le'ec(A, I, valz=e) = (L, S, {z :V3r})
if (L,S,7) = Whp(A, Le)

B =FV(r)— FV(SA) — spec(ST, L)

,W+

dec

(A, I, valrecf=¢) = (U(L[T/a]), s, {f:vp5 UT})
if (L,5,7) = WEp(A L f : a, €), with o fresh,
U= mgszf(L[T/a]) N N N
B =FV({Ur)—FV(USA)—spec(UST,U(L[r/al))

- Wjﬁc‘p resp. W;Il-ec returns fael,

if the call to mgu or mgsu or one of the recursive calls to
Wg}cpor le'ec returns fazl.

Fig. 3. The type assignment function W for MLt

15

FEzample 1. Consider a recursive declaration containing a non-recursive one.

val rec £ = fn x => let val g =fny => (x = £ y; x) in g 0 end;

The local declaration of g is typed relative to A, I' = {x : 8, },{f : ey }. In a first phase, we
compute the type of the defining term Ay.(z = fy;). We assume y : 6, and introduce an
index I(f) = {1} and a fresh variable o/, for the occurrence of f to get:

W;I:Up({x : 6l‘ay : 6y}’{f : afag : ag}af) =
({O[f El O/fa(sx El 6@"63/ El 6y}aldaa})

The application fy then types as

W (6o y 8} {f rap, g a9}, fy) =
({af Ci by — B,6: Ty 6,6y E1 0y}, [0 — B/O/f]aﬁ)

Assuming that = and ; are infix operators of type VaV3 (o x & — bool) and YaVj3 (o x § —
3), respectively, we get

Wj}cp({x ey by b {frar gt (= fye)) =
({af Ly 6y — 6z, 00 T4 6xa6y Ly 6y}a [6x/6][6x - B/Of}]aéx)~

When typing Ay.(z = fy; z), the constraint §, C; 4, is withdrawn, since y now is known to
have smaller scope than the open polymorphic variables f, g:

WEp(x &} AS rap g ot My (e = fys o)) =
({af Ly 6y — by, 0, £y 617}’ [6x/6][6x - 6/043‘]’63/ - 617)

The second phase of typing the declaration of g is to generalize the type 6, — 6, of its
defining expression Ay.(x = fy;) properly. Since §, and §, occur in the constraint set in a
specialization of the polytype assumption f : ay, they must not be quantified. Hence

le'ec({x oo {f rapt,valg=Ady.(z = fy;2)) =
({af El 6y - 6xa6x El 6x}a [6x/6][6x - B/O‘;‘]a {g : 63/ - 6x}) (7)

The extended environment
AT ={x: 61, {f ap,g:6, — 6}

1s now used to type the remaining body ¢ 0 of the definition of f. Since g 1s to be polymorphic,
we put I(g) := {2} and add new constraints as in

W:elch(AaF/ag) = ({63/ EZ 6;a61‘ EZ 61‘}’Ida6; - 61‘)a
obtaining

WEL (A, T, 90) = ({6, Eyint, 6, Ty 8}, [int/6,], 62). (8)

16

By collecting the constraints and composing the substitutions of (7) and (8) to

L= {af Ly 6y - 6xa6x Ly 6x} U {63/ Lo intaéx Lo 617}’
S = [lnt/ég;][éx/ﬁ][éx - B/O‘;‘]a

we therefore get

W;'j,cp(A, I''letvalg=Ay.(x = fy;x) ing0end) = (L, S, é;).

When discharging the assumption z : §, to type the defining term for f, the constraint
8z C; 8y for occurrences ¢ of each assumption in I, i.e. for ¢ € I(f), has to be removed:

W;'j,cp(ﬁ, I'yAz.letval g=Ay.(x = fy;2) in g0 end)
= ({af E1 0y — Og, by Coint, 6y Co br }y S, b0 —)

In the second phase of typing f, we have to replace o; by the derived type 6, — 6, in the
constraints and solve the resulting system

{617 — by L, 6y - 6xa 6y L, int, Oy [6x} (9)

A most general semiunifier U must satisfy U(6,) = T1U(és) = U(by) by the first in-
equation, and then U(8,) = ThU(é,) = ToU(éy) = int by the second and third. Hence
U = [int/b,,int/b,] and

W5 (0,0, valrec f=1let...in...end) = (UL, US, {f : int — int}).

dec

Note that in typing A-abstractions, the constraints é, C; 8, must not be removed for occur-
rences § of variables already discharged: would 8, Cs 8; be missing in (9), we would infer
[:Vé:(65 — 65). But this is not an MLT-type of the declared variable, since

FiVép(8y — 8z) Fasr+ (fnz=>let...in...end) : &, — ;.

Note also that it would have been wrong to quantify &, in the type of g in (7): in the
derivation finally obtained, 6, = int.

4 Correctness and weak completeness of W™

We will now show that W is sound, weakly complete, and computes principal MLt-typings.
To define principality, we first introduce a notion of MLT-typing modulo an environment that
allows certain polytype assumptions to be weakened. This is needed to inductively prove a
principal types property for recursive declarations, where the typing obtained in phase 1 has
to be weakend in phase 2.

Think of the input A, I" of WT as the environment A,TA =AU i plus an information
that type quantifiers in 7™ binding variables o € FV(I') — FV(A) may be weakend:

17

Definition9. We call (S, 1) a typing of expression e modulo A, I' if SA,S_FSA Fuyr+e: T,

and (S, {y : T}) a typing of declaration d modulo A, I' if SA,S_FSA Fap+ d:{y: 7} The
typing (S, 7) of e modulo A, I' is principal, if for any typing (S’, 7’) of e modulo A, I" there
is a substitution U such that 7/ = U7 and 5" = US on the free variables of A, I'.

Typings (5, 7) of e modulo A, I' represent ML*-typability statements with respect to the
. ——=5A Lo . . - .

environment SA, ST, which is not just the instantiation by S of free (mono)type variables

of A,TA.7 Additionally, for y : @ in I', SFSA replaces the quantified assumption ¥ : 72 of

—A ——54A = .
I'" by y:50 viainstanting bound quantifiers of 72 not already in @.

Theorem 10. Suppose A, I' contains a type assumption for each free individual variable of
the expression e resp. declaration d. Assume that for different assumptions y1 : T1,y2 : 02

in I', FV(71) N FV(&3) C FV(A). Then

(a) IfWZ,Up(A, I'ie)=(L,S,1), then
1. Id is a semiunifier of L,
2. for all (S, 1) the following are equivalent:
(i) (S',7") is a typing of e modulo A, I,
(ii) for some semiunifier U of L, ' =ar US, and 7 =UT.
3. For different yy : T1,y2 : T2 in I', FV(ST1) N FV(ST2) C FV(SA).
(b) IfWH (A, I'd) = (L,S,{x:7}) and T = VBT, then
1. Id is a semiunifier of L,
2. for each (S',{x :7}), the following are equivalent:
(i) (S' {x :7T}) is a typing of d modulo A, T,
A

(ii) for some semiunifier U of L, ' =aopr US and 7 = Tt ,

3. For different y; : T1,y2 : T2 in I', FV(ST1) N FV(S7,) C FV(SA); moreover,
FV(T)NFV(S71) C FV(5A).
(¢) If Wj}cp(A,F, e) = fail or does not terminate, then e is not MLY-typable modulo A, T
Similarly for WT, (A, I, d).

By Claim 1 and Claim 2, (ii) = (i), with U = Id, one obtains SA,S_FSA Far+ e 7 from
WEL (A, ' e)= (L, S, 7). Claim 2, (i) = (ii), says that the typing produced by W} is the
principal MLt-typing of e modulo A, I'. Any other typing of e modulo A, I' is obtained by
applying a semiunifier of the deliverd constraint set L. Similarly for le'ec and d. Claim 3 says

" Since S may be defined on FV(I') — FV(A), ST°% cannot be written as S(TA), for which, by

. . = . .
convention, we assumed that bound variables of I" do not occur in the domain and range of S.

18

the additional hypothesis that types of polymorphic assumptions are related via monotype
parameters only is preserved, so that W1 can be used recursively.

For MLT-untypable recursive declarations, le'ec(A,F, valrecz =€) need not terminate,
since the computation of most general semiunifiers may diverge.

The proof of Theorem 10, like the one for Theorem 8, envolves showing that the combina-
tion of substitutions delivered by recursive calls of W7 corresponds to combinations and
‘specializations’ of ML*t-derivations. Since ‘specializing’ substitutions now may also weaken
polytype assumptions, the proof of (ii) = (i) implicitly shows a strengthening of Lemma 1:

Lemmall. If A,TA Fuyr+ e : 7, there is a semiunification problem L solved by Id, such
that SA,S_FSA Fur+ e ST for any semiunifier S of L.

For S not satisfying the constraints, the induced weakening of assumptions may lead to
underivable typing statements:

Erample 2. In example 1, an intermediate stage represented the MLT-typing

{&:6s, F:Yojop, g Voot byrs Ay.(z = fyyz) 2 6y — 6.
Clearly, if U(ay) = int, the constraints L = {a; Ty 8, — 85,65 Ty 65} given by W;'j,cp are
not satisfied, and indeed

{&: 8., frint, g Voot Yo+ Ay.(x = fyyz) 2 6y — 65

Observe that WT delivers a solved constraint set for each expression or declaration, but
solves semiunification constraints only in the case of recursive declarations. To combine
two subderivations, we therefore need that the constraint set I of the first remains solved
when the specializing substitution S of the second 1s applied to it. By remark 1 on p.8, SL
might be unsolvable for arbitrary S; but substitutions arising during type checking are of a
certain kind and do preserve the solvedness of previously given constraints (cf. Lemma 12
and section 5.1).

Proof of Theorem 10, by induction on the expression or declaration being typed.

We will show a few further properties, relating the input environments A, I" and the triple
(L,S,7) resp. (L,S,{z : 7}) returned by WT. To state these, we need two more definitions.

A substitution S affects the variable « if Sae # o or o« € FV(Sf3) for some § with S5 # 3.

We say “L = SALC; SA”, iff for each § € FV(SA), there is some type 7/ with 7/ C; 7/ € L
and 6 € FV(r').

The additional claims, proven simultaneously with claims 1.-3., are the following:

0. i) S does not affect variables of FV(I') — FV(4),
ii) FV(rhs(L),) N FV(ST') C FV(SA),
i) (a) PV(L)YNFV(SA,7) =0 resp. (b) PV(L)NFV(SA) =10,

19

iv) For each C; in L, L SAL; SA,
v) For eachy:o €', PV(LV) C FV(S7),
vi) For eachy:T eI, FV(L—-LV)NFV(57) C FV(54).

Remark 2. The meaning of these conditions roughly is as follows:

(i) The polytype unknowns « € FV(I') — FV(A) of the input represent quantified type
variables, and the corresponding quantified assumption (of free polymorphic individual vari-
ables) is not weakened while inferring a type of the input expression. (Weakening of quan-
tified assumptions only occurs before discharging a polytype assumption for a recursion
variable, and for already discharged assumptions.)

(ii) Type variables in the derived type 7 (resp. body of the derived typing « : 7) or in types
of occurrences of polymorphic variables (recorded in rhs(L)) must be monotypes, if they
occur in the refined environment.

(iii) The derived type 7 of an expression does not contain type variables known to represent
polytypes; this cannot be demanded for derived typings for a declaration.

(iv) L syntactically enforces “PV(UL) N FV(USA) = 0 for all semiunifiers U of L”; with

claim 1, most of (iii) follows:

PV(L)NFV(SA) = 0. (10)

Stated less formally, allowed specializations of the (implicitly constructed) typing derivation
of the current input will not instantiate monotype parameters in SA so that they contain
polytype unknowns.

(v+vi) Polytype unknowns of FV(ST') — FV(SA) occur in L only on the left hand sides of
inequation relations of the subsystem L{" C L. More precisely, after typing an expression or
declaration, for each y : @ € I', we have

PV(LY)NFV(L—LY) =0 = PV(LY) N FV(rhs(L)). (11)

The first equation follows from a) 0.(v), 0.(vi) and 0.(iii), the second from (a) 0.(v), 0.(ii)
and 0.(ii1).

Proof of claim 3: For expressions, it follows from 0.(i). For declarations, note that 3. holds
for assumptions in I" by (b) 0.(i), and by (b) 0.(ii) it also holds for the new assumption x : 7.

Next we prove some lemmata on semiunification that are common to various cases.

Lemmal2. Let L be a semuunification problem and S a substituion. If L holds and S does
not affect pattern variables of L, then SL also holds and PV(SL) = PV(L).

Proof Let T; be matching substitutions so that (Id,Ty,...,T,) is a solution of L. Define

Ty e {Sm, if y € PV(L),

Ty, else.

20

Pick ¢ C; 7 € L where ¢ = o(a, 8) with 8 = FV(e) N PV(L).

T!So = U(T’Sa T!SB)
o(Sa, T!3) since FV(Sa) N PV(L) =0,
= U(Sa STB)
=ST;o since a N PV (L) =0
= ST

Hence (Id,TY{,...,T}) is a solution of SL. By definition, if Ty # v, then y € PV(L).

Conversely, if y € PV(L), then T;y # v for some ¢, and since S does not affect pattern
variables of I we must have Ty = ST;y # v. |

The condition that .S must not have pattern variables of L in its range excludes counterex-
amples like the following: L = {& — S C o — «} has [as pattern variable and is solved
by (Id,[a/5]), but for S = [— F/a], SL ={(8 — 8) = BE(B — B) — (8 — [} is

unsolvable.

Proposition13. Suppose Sy does not affect variables of FV(I') — FV(A).

(i) If S does not affect FV(S1I') — FV(S14), then S251 does not affect variables of
FV(I') = FV(A).

(ii) If FV(r) N FV(I') C FV(A), then FV(Si7) N FV(S1I) C FV(S1A).

Proof (i) Suppose oo € FV(I') — FV(A). Note that then o ¢ FV(S14), because otherwise
there were g € FV(A) with o € FV(S15). But since o # 3 this showed 5 # 515, and thus
S1 would affect «.

Claim 1: S351 = «. Since Sy does not affect «, we have S;ov = o and hence o € FV(S,T).
Because o ¢ FV(S14), Sy does not affect o and so 535100 = Shax = av.

Claim 2: For no # with S2518 # 8 is o € FV(S2515). Suppose we have such a g. If
a & FV(S13), there is o # v € FV(S15) with o € FV(S17). Since Sy does not affect «,
we must have S1y = v = «, a contradiction. So o € FV(516), and hence 8 = 518 = «a,
because S; does not affect o. So & = S1 and 251« # @&, contradicting claim 1. It follows
that the assumed 3 cannot exist.

(ii) Suppose 3 € FV(S1a) N FV(S1y) for @« € FV(r) and v € FV(I'). Since S; does not
affect FV(I') — FV(A), either v € FV(A), hence § € FV(514), or else S1v =y = 8 and
then g € FV(I')NFV(Sia) gives f =a € FV(r)NFV(I") C FV(A), because § = v is not
affected by S;. But 8 € FV(A) also gives § = 516 € FV(S14). a

The following two lemmata are needed for the case of recursive declarations.

Lemma14. Let U be a most general semiunifier of L that does not trivially rename variables
of L. Then U does not affect variables of L occurring only on left hand sides of inequations.

Proof Suppose v € FV(L) occurs only on left hand sides of inequations. Expand U to a
most general solution (U, Ty,...,T;,) of L. If U~ is not a variable, there is a strictly more

21

general solution, defined with a fresh variable ¥:

-~ [% ifa=q L [TUy, ifa=7
Ua = { Ua, else ' Tia:= {Tia, else.
So let U~ be the variable v, and suppose 7 is affected by U.

Case 1: ¥/ = v € FV(Us) for some 6 # Ué. Then 6 # v = U~y. Let ¥ be fresh and define
(U, T1,...,T,) by

ol if o=y o LI ifa=7,
Ve '_{(Ua)[’y/'y], else T '_{(Tioz)[’y/'y], if o £ 7

This is another solution of L: If pC;0 € L, where p = p(o, y) and Ua = 7(8, 7) for simplicity,
then

fo = (o) /) since 7 ¢ FV(0),
= (T;Up)[¥/7] since (U, Ty, ...,T,) solves p C; o,
= p(7(T:8, T /), (LU /7)) . .
= p(r(T:8,T;%), Try) since (TiU7)[7/] = (Tiy)[3/7] = T:7 = T,
= p(Li((Ua)[7/7D), TU7)
= p~(jUaa ZU’V)
=T;Up

But, contradicting the assumption, U is not as general as U:if U = SU on FV(L), we have
Sy = SUy = Uy = v, so that vy € FV(SUs) = FV(U$) since v € FV(U$s). But on the
other hand, v ¢ FV((U8)[¥/7]) = FV(U$).

Case 2: Uy = v" # 7. Since U does not trivially rename vy, we have v/ € F'V(U¢) for some
8§ # v in L. With fresh ¥4, define (U, T1,...,T,) as above, except that T;y := (T;v)[7/7].
From R R
(Ti)/1 =T7 and (TUNG/] = T/ = Tiv,

we again obtain Uo = (TL;Up)[7/7] = TyUp. Suppose U = SU on FV(L). Then Sy =
SU~ = Uy = =, whence all occurrences of 4/ in U#é turn into occurrences of v in SUé = US§.
But since v' € FV(U$) and v # 7/, there is an occurrence of 7/ in U¢ that is unchanged
when going to (Ué)[¥/v] = Ué. Again, U would not be a most general semiunifier of L. O

Lemmal5. Let L be a semiunification problem with L & SAC; SA for each C; in L,
and suppose Id 1s a semuunifier of L and 7 a type. For each semiunifier U of L there is a
semiuntfier U’ of L such that, up to renaming of bound quantifiers,

U’TUISA _ UVﬁTUSA, where B = FV(r) — FV(SA) — spec(ST, L).

Proof Define U’ by

Ul = Ua, if a € FV(SA) Uspec(ST, L),
o for some fresh variable o ¢ FV(USA, Uspec(ST, L)), else.

22

For suitable residual substitutions, (Id, T, ..., fn) and (U, Ty,...,T,) are solutions of L. To
show that U’ is a semiunifier of L, we have to find matching substitutions 77, ..., T} such
that

T/U'c =U'p foreach o C; pin L.
Let 7} be the restriction of T; to FV(USA, Uspec(ST, L)), extended to the fresh variables
by T/ = U'T;3 for 5 € B. Pick ¢ C; p € L. By choice of T; and T;,
Ty =sa Id, p="Tio, and T;=psald, Up="TUoc. (12)

Let 0 = o(a, 3), where B = F'V(0) = FV(SA) — spec(ST', L) and o« = F'V (o) — 8. By (12),
U'p=U'T;o, so the claim T/U'c = U'p amounts to

TIU'a=U'Tia and T/U'B=U'TB.

Let o € . If v € spec(ST, L), then FV(j}oz) C spec(ST, L,) and hence UTia = Ul If
a € FV(SA), then Tiao = « and hence also U'Tioe = UT;ev. Since T!U' agrees with T;U on
the free variables of SA, spee(ST, L) and, by (12), ;U = Ui from TyUeo = Up = UTjo,
this gives

TU'a=Tila=UTlia=U'Tia.
On the other hand, for 5 € B by choice of T; we also have
TIU'E = TR = 0'T:B.
Hence U’ is a semiunifier of L.
For the second claim, let « = FV(7) — 3. Since 8 ¢ FV(USA) = FV(U'SA),

USA

— VB (U, B) S =TmBr) 7,

U S
)

by definition of U(V3 7). O

We are now ready to show that W+ computes principal types for MLT-typable expressions
and declarations.

Case W} (AT, 2) =
(0, 1d, 1), if A(z) =,
(L, I, r[a Ja, B'/B]), if I'(z) = VBT, where

a=FV{Br)— FV(A),

o' = new copies of a,

3’ = new copies of 3,
L={aC;o'|a€a}lU{6C; ¢ |6 € FV(A)}

with a new relation C;, and ¢ added to I(x)

23

0. If ¢ : 7 € A, the claims are empty or trivial. If z : V87 € I, we have:
(i) Id does not affect variables at all.
(ii) By the choice of &', 3, rhs(L) and 7[a’/ax, B'/B] contain fresh variables and variables
of FV(A) only.
(iii) Variables in PV(L) = {a} do not occur in 7[a’/ax, B'/B] or FV(A).
(iv) Since C; is the only inequation relation in L, {§C; 6|6 € FV(A)} C L ensures
the claim.
(v) Fory : @ € I' with y # x, we have LY =) C FV(7), and when y = z, we have
PV(L")={a} C FV(VET).
(vi) For y : @ € I' with y # x, we have
FV(L-LY)NFV(7)C{a,a'} NFV(7) C FV(A),
since FV(YB1)NFV(7) C FV(SA), by the assumption about A, I'. For y = #, the
claim is trivial since L — L¥ =).
1. (Id,T;) is asolution of L, where T;(«) = o for each o € e, and T;(6) = § for § € FV(A).
2. The case where = : 7 is in A is left to the reader. Consider = : V3.7 € I, where
T =71(a, B,8) with § = FV(A).
(i1) = (i): Let U be a semiuinfier of L, S’ a substitution with S’ = p UId and 7/ =
U(r[e! /e, 3'/B]). Then®
— U

S'A ST ()= UT (@)~ =TvBr ~ =vBUr °.

Choose T; such that (U, T;) solves L, and let T/ be T; extended by [U8'/B]. Since
TUa=Ua, ;U =Uband T/UB=T/3=Up', we get

TUT = TU(r(@,3,8)) = U(r(o!,3,6)) = 7',

so V3 e = 7', since dom(T!) C BU(FV(UT)—FV (U A)). Tt follows that S’ A, S’—FSIA Fa:
/

T.

(i) = (ii): Let (S, 7") be a typing modulo A, I". Then S’A,S’—FS 4 Fa: 7" and

ST(z) =5var “ =Vg5r % -1,
So there is T/ with dom(T}) C BU(FV(S'T) — FV(S'A)) such that 7/ = T/S'r. Let U

K3

be the restriction of S’ to FV(A, I, a, B), extended by
Ud :=T!Sa=T/Ua and UF :=T/5'3=T,3.
Then S =4 p U and
=TSt = r[T}S'a/a, T{B/B,5'6 /8] = U(rla’ /o, B/ B]).

U is a semiunifier of L, since T/Ua = Ua', and also T/U§ = U8, because T] does not

operate on FV(5'A).

& Recall the convention that substitutions do not affect bound quantifiers.

24

(¢) W;'j,cp(A, I’y z) terminates with a value different from fail, since we assume there is a
typing assumption for & in A, I'.
Case W;‘;Up(A, I, (fnz=>¢)) = (L,S, Sao — 1),
if (Lo, S, 7)= W;'j,cp(A, z: o, I €), where « is a fresh variable, and
Li=(La—{7Ci7" |7 i eLl})
U{yCiy | TG €Ly, v € FV(r) = (FV(Sa) — FV(SA))}.

0. (i) By induction, S does not affect FV(I") — FV(A, z : «). Since o does not occur in I,
this implies the claim.
(ii) By induction, FV(rhs(Ly),7) N FV(ST) C FV(SA,z : Sa). Since FV(rhs(L)) C
FV(rhs(Ly)), it remains to show

FV(Sa) N FV(ST) C FV(SA). (13)

Clearly, if v € FV(I') N FV(A), then FV(Sa) N FV(Sy) C FV(SA). So suppose
B € FV(Sa) N FV(Sy) for some v € FV(I') — FV(A). By 0.(i), S does not affect
I'— A hence vy = Sy = § € FV(S«). But since o # v, this means that v is affected, a
contradiction. Thus, FV(Sa) N FV(Sy) = 0.

(iii) By induction, PV (L) N FV(SA, Sa,7) = B, and since PV(L) C PV(L,), this
gives PV(L)NFV(SA,So — 1) = 0.

(iv) Suppose C; occurs in L and § € FV(SA). Then C; occurs in Lg, and since Ly
SA x: Sa C; SA z: Sa, there is 7’ with 7' C; 7/ € L, and 6 € FV(r'). By definition
of L we have: if i ¢ I(y) for all y : @ € I', then 7' C; ' € L; otherwise, 6 C; § € L, since
§ € FV(SA).

(v) With the induction hypothesis, we have PV(LY) = PV(LY) C FV(S7).

(vi) Let y : & € I'. The claim follows by (13) from the induction hypothesis,

FV(Ly — L) N FV(SF) C FV(SA,x : Sa),

if we can show that FV(L — LY) C FV(L, — LY%). But if 01 C; 02 € L — LY is not in
Lo — LY, it is of the form y C; v with ¢ € I(z) for some z # y, and in this case there is
T C; 7" € Lo — LY with vy € FV (7).

1. By induction, Id is a semiunifier of L,. By the definition of L, every solution of L, is a
solution of L.

2. (i) = (i): Let U be a semiunifier of L with S’ =4 r US and ¢’ = U(Sa — 7). To show
(i), we require
A -

S’A,S’—FSI (fnz=>e): (USa —Ur)=0". (14)

Below we will modify U to obtain® a semiunifier U of L, with

- ——7U8sA
U=sas(sar) U and UST — =TST 2. (15)

® Suppose y € FV(e) where y : B € I' and L = {BC, § — 6} with ¢ € I(y), FV(Sa) = {6} and
A=90. Then U =1[6/8,6/6] is a semiunifier of L, but not of Lo = LU {6 C, é}.

25

Since U is a semiunifier of L, the induction hypothesis gives

~ ~ ~—USA,x:USoz ~

USA, z:USa,UST Fe:Ur

]] —U5Ap:USa ——USA]
By adding some quantifiers to strengthen U.ST' to UST , and then using
(15) to replace U by U, we have

USA, z:USa, UST % - e:Ur. (16)

Since ' =a,r US, we get
S'A USoz,S’—FS 4 Fe:Ur,

which gives (14) by an application of the typing rule for abstractions.

It remains to show the existence of a semiunifier U of Lg satisfying (15). By assumption,
U can be expanded to a solution (U, T1,...,T,) of L. If it is not a solution of L, there
is 7' C; 7 € LY and some é € FV (7')NFV(Sa)— FV(SA) such that T;U6 # Ué. Hence
for some v € FV(U§), we have T;y # v, which implies'® v € PV(Uos C; Up) for some
inequation o C; p € LY. So v is a witness that (U, Ty, ...,T;) does not solve

{6Ci6, 0Cipt resp. {7'Ci7,0Cip} C LY C La.

Modify (U, Ty, ..., T,) as follows. For each i with C; occuring in LY let
Di :={8 € FV(Sa) - FV(SA) |6 € FV(r'), 7' C; 7 € LY for some 7'},

and let PV;(UL) be the pattern variables of UL with respect to C;. Let
W= J{Wi | T occurs in LT} with W, == FV(UD;) 0 PV(UL"),

be the set of variables witnessing that (U, 11, ..., T,) does not solve L. Since U must not
be changed on D;, we can only modify U on LY to obtain a suitable U with PV;(UL')N
FV(UD;) = 0. For each v € W, let ¥ be a fresh variable, and with these put

_ 7 ifrew,
Sy = {’y, otherwise.

Using W; := 0 if C; does not occur in LT, define (ﬁ,Tl, .., Ty) by

g (B itagPV(ID),
T L SUB, else,
R Tiv, if~" = Sy for some vy € W,
Tiy'={v ify ew,
Ty, else.
Since, by induction hypothesis 0.(iii), PV (Ly) N FV(SA, Sa, 7) = 0, we have

U —S5Az:(Sa—T) U. (17)

10 else we could change 7; on v

26

To show that (ﬁ, Ti, ..., Tn) solves L, pick 0 C; p € L,. By induction hypothesis 0.(v),
FV(p)n PV(LY) C FV(rhs(La)) N PV(LEY =10

and hence ﬁp = Up by definition. If ¢ C; p € Lo — L, then, by induction hypothesis
0.(v), PV(L'YNFV (o) C PV(LEYNFV(s) =0, so

Usr=Ucs, SWNFV(Uc)=0=W;NFV(Uo),

and thus j}UJ; TiUo=TUec. Since (U, T1,...,Ty,) solves L O Ly — LY we also have
T;Uo = Up = Up, which shows that (U,T;) solves o C; p.

If o C; p€ LI N LY again we have T;Uc = Up, and it remains to show
T,UB=T,UB foreach 3 € FV(o).

If 3 ¢ PVi(L), then since 0 C; p € L, is semiunified by Id, according to claim 1., at
the same positions where 3 occurs in o it also occurs in p. This implies U = Up, so
SWAFV(UB)=0,and T;UB = UB,so FV(UB)NPV(UL') = 0 and FV(UB)NW; = 0.
Therefore, T;UB =T;UB =T;US.

If 8 € PVi(L), then T,U3 = T;SUB = TiU B since W; N FV(SUB) = 0.

Finally, if ¢ C; p € LY — LT it has the form 7/ C; 7/, and Ut = U7’ contains none of
the fresh variables of SW. Suppose 6 € FV (/). If 6§ C; 6 € LY then FV(U§) NW; C
FV(U8) N PV;(ULY) = 0, whence

TUs =T,Us = T;US = US = US.
If6C,;6 ¢ LT, then 6 € FV(Sa)—FV(SA) andso § € D; . We check T,U6 = Us (= U§).

For v € FV(U8) N W; we have Tiy' =+ (# Tiv"!), and for v € FV(U$) — W; we have
Ty = Tiy' =4/, since 7/ was not in PV;(UL?). This showed ;U = Ur' = Ur'.

Since (U, Ty, ..., Tn) solves Lo, we now know that U is a semiunifer of L,.
To finish the proof of (15), we show

- UsSA
Usr =TS,

Since U =g U, on both sides the type variables universally quantified are those not in
USA. We only have to care about § € FV(SI') — FV(SA,Sa,7) with U # UB. In
this case, 8 € PV(L!), and there is v € FV(UB) — FV(Up) that has been renamed to

a fresh 7 in U3, whence for some i,
v € FV(UD;) N PVi(UL").

Then C; is in L', which, by induction hypothesis 0.(iv), contains some 7/(8,...) C;
7'(8,...) foreach § € FV(SA). Hence FV(USA)NPV;(ULY) =0 andsoy ¢ FV(USA).
It follows that fresh variables 4 of USI" occur in Ug for 3 € FV(ST) — FV(SA) only,

and hence

= USA ~ —F—USA
USI =(..¥9..)USI = (...¥y..)US[=UST

27

are equal up to renaming of bound variables.

. iy ———=5'
(i) = (ii): Suppose for some (S, 1), we have S'A ST (fnz=>e¢) : 7. By the
typing rule for function expressions, there are monotypes 7, 7 with

A
|_

——5'A
S'Ax:T, ST Fe:m and 7'=m — 1.

——=5'A ——5'Ax: . .
We may assume that 5’1 =g o up to renaming of bound variables, because

FV(S'T)— FV(S'A) could be renamed to make it disjoint from FV(r) — FV(5'A).

Since « was fresh, we may also assume S’ = 71, so that

———8'A .5«
S'A x:Sa, ST Fe:m.

By induction, there is a semiunifier U of L,, hence of L, with S’ =a g.a.r US and
75 = Ur. So U 1s a semiunifier of L with

S'=aprUS and 7 =U(Sa—r1).
(c) Suppose (fnz =>¢€) is MLT-typable modulo A, I'. Then there are (.5, 7) such that
SAST ? |- (fnz=>e) : 7.
By the typing rule for function expressions, 7 = 7 — 7 and
SA x: Tl,S_FSA Fe:m.

Since by renaming of bound variables, we may assume FV(r) N FV(ST") C FV(SA), we
have

SA @ Tl,S_FSA’x'Tl Fe:m.
Hence for fresh «, e is typable modulo A,z : «, I'. By induction, W;'j,cp(A, z:a, T e)isa
triple (Lq, Sa, To). By the definition of W;'j,cp, it follows that W;‘;Up(A, I' (fnz =>¢)) returns
(Ly,Sa,Saa — 7o) for some L C Ly.
Case W1

e:cp(AaFa €1 ~62) = (USle U ULQ, USQSl, UOZ)
if (Ll,Sl,Tl) = W;I;vp(AaFael)
(LZa 52, TZ) = W;I:gp(SlAa SlF, 62)

U = mgu(Sam, T2 — «), where « is a fresh variable.

0. (i) By induction, Sy does not affect variables of FV(I") — FV(A) and Sz does not affect
FV(S.I')— FV(S14). By Proposition 13 (i), S351 does not affect FV(I') — FV(A). To
show that US2.S] does not affect FV(I') — FV(A), it remains to show that U does not
affect FV (S35, 1") — FV(S2514). Note that U affects only variables in FV(Sy7, 72,)
and we need not consider o ¢ FV (5251 1")— FV (5251 4). By induction hypothesis 0.(ii),

FV(Tl) n FV(Slp) g FV(Slﬂ), FV(TQ) n FV(SQSlF) g FV(SQSlA)

28

Since S2 does not affect FV(S1I") — FV(S1A), by Proposition 13 (ii) we have
FV(SQTl) n FV(SQSlF) g FV(SQSlA)

Hence, variables of FV(S2511") — FV(S2514) are not in FV(Sa7,m2) and thus not
affected by U.

(ii) From the induction hypothesis for e; we have
FV(rks(L1),n)NFV(S1T) C FV(S14),

from which, using hypothesis 0.(i) for es, Proposition 13 (ii) gives

FV(rhs(SaLy),Sam) N FV (S35 1) C FV(S2514).

By the induction hypothesis for e,, we have
FV(rhs(La)) N FV(S2511) C FV(S25,4).

Since U does not affect FV(S251 1) — FV (5251 4) we therefore have

FV(rhs(USaLy UUL2),USam) N FV(US,5,I) C FV(US2514),

by Proposition 13 (ii). The claim follows since U« is a subterm of USy7y.

(iii) By the induction hypothesis for ey,

By the construction of S; we may assume that all variables of L; that are affected by
Sa belong to FV(S14,51 "), and by induction hypothesis 0.(i) for es, they must belong
to FV(S14). Because of (18) then, Sz does not affect PV(L;) at all. By Lemma 12 and

induction hypothesis 1 for ey, SaL; holds and PV(S2L1) = PV(Ly). Hence, since Sy
does not affect PV (Ly),

PV(Sle)ﬁFV(stlﬂ,SQTl) :@, (19)
using (18) again. By the induction hypothesis for es,

PV(LQ)DFV(SZSlA,Tz) = @ (20)

Since Ls holds by induction hypothesis 1. for es, and S; L, and Lo have no inequation
relations in common, L := S2L; U Ly holds. We claim that U does not affect PV(L). By
our choice of mgu, U = mgu(Sam, 72 — «) only affects variables in FV(Sym, 12,). By
(19), (20) and since o was fresh, it is sufficient to show

FV(Sle) n PV(LQ) = @ = FV(TQ) n PV(Sle)
Note that by the construction of 7 and S from S1 A, S117, we may assume

FV(TQ) n FV(Sle) g FV(SQSlA, SQSlF).

29

Since F'V(m) N FV(S2511") C FV(52514) by induction hypothesis 0.(ii) for es, from
(19) we obtain FV(m) N PV (SsLy) = 0.

By the construction of Ls and S;, we may assume that a variable o« € FV(r) —
FV(514,5,) does not occur in Ly and is not affected by Si, whence FV(Sa) N
PV(Ls) = 0. For a« € FV(m) N FV(S14,5.1") we have o € FV(S;A) by induction
hypothesis 0.(ii) for e, and then FV(Sa) N PV(Ls) = 0 by (20). Hence FV(Sym) N
PV(LQ) == @

Having shown that U does not affect PV(L), by Lemma 12 we conclude that UL holds,
which proves claim 1, and that PV(UL) = PV(L). Since U does not affect PV (L), from
(19), (20) and « ¢ FV(L) we get the claim,

PVULYNFV(US251 A, Ua) = 0.
(iv) Let L := S3Lq1 U Ly again and C occur in UL and é € FV(US2514). Then C
occurs either in Ly or in Ls. Suppose C occurs in L. There is 6 € FV(S;A) such that
§ € FV(US361). Since, by induction, L, & S1AC S1 A, there is 7 with 8 € FV(m)

and 1y £ € Ly. Hence for 7/ := USa7y we have § € FV(r') and 7' E 7/ € US3L;. The
case when C occurs in Lo is similar. This shows that UL & US55 AC US55, A.

(v) Let y : @ € I'. We have PV(LY) C FV(S,7) by the induction hypothesis for
e1, and since Sy does not affect PV(Ly), this implies PV (S5LY) C F'V(S25:7). Since
PV(LY) C FV(S2517) by the induction hypothesis for es, for L := SyL; U Ly and
S 1= 5,51 we get

PV(LY) = PV(SoLY) U PV(LY) C FV(57).

Since U does not affect the pattern variables of L, the claim follows by Proposition 13.

(vi) Again, let y : @ € I', L := SaL; U Ly and S := S257. Since U does not affect
F(SI') — FV(SA4), it is sufficient to show

FV(L-LY)NFV(S7) C FV(SA).
Note that since Ly and Lo have no inequation relation in common,
L—1LY =(SyLy — SaLY)U (Ly — LY),
so we show the claim for each summand. By the induction hypothesis for ey,
FV(Li — LY)NFV(S17) C FV(5,4).
Since, by hypothesis 0.(i) for e2, S2 does not affect FV(S17) — FV (51 4),
FV(SsLy — S2 LYY N FV(S7) C FV(SA).
By the induction hypothesis for ey, we also have

FV(Ly — L) N FV(S7) C FV(SA).

30

1. This has been shown in the proof of 0.(iii).
2. By induction on the two calls of W1 | we have:

expr

e1) For each (S, 1), the following are equivalent:
. ——5'A
(i) S’A, 8T " ke,
(i1) for some semiunifier Uy of L1, 8" =4 r U151 and f = Uy .
e1) For each (S, 1), the following are equivalent:
. ———5'5 A
(i) §'514,8'5,T e
(i1) for some semiunifier Uy of Ly, S" =5, a5, UaS2 and 75 = Uss.
(i) = (ii): Suppose for some (5,), that S’ A, s I eq1es : 0. By the typing rule for
application expressions, for some 75 we have
S’A,S’FS 4 Fei:m,— o and S’A,S’FS 4 Feg:ri.
By the induction hypothesis for e; there i1s a semiunifier U; of L; with
S'=apr U1S and 7 —oc=Uin
and by the one for e; there is a semiunifier Us of L, with
Ui =s,a,6,0 U2S2 and 7 = Usts.

Since we may assume that FV(L1) N FV (L) € FV(S14,5.1), and the typing of ey
does not envolve FV(r)— FV(S1A), we can extend UsSs to the variables of Ly and 7
such that
U =7, UzSo.

Hence UsSomy = Uimp = 74 — o = Usmy — o, and since a was fresh, by putting
Usa = o we can modify Us to a unifier of Sy and 7 — «. Hence for some [7, we
have Us =g,71 72,0 ﬁU, and since U = mygu(Sa7i, 72 — «) only affects variables in
FV(Sam, 72 —), we can assume Usf = UUﬁ for all variables. Therefore,

S/ =Ar U151 =Ar UzSle =AT ﬁUSle and [jUOz = Uzoz = 0.
It remains to be shown that U is a semiunifier of USsL1 UULs. As we saw,
UUSle = UzSle = U1L1 and UULQ = U2L2

hold, so U is a semiunifier of both US5 Ly and U Ls. Since L1 and Lo have no inequation
relations in common, U is a semiunifier of their union.

(ii) = (i): Suppose U is a semiunifier of U Ss L, UULy, 70 = UUcq and S =Ar UUS5S.
Note that Us := UU is a semiunifier of Ly and Uy := UsSy = [jUSz 1s a semiunifier of
L1. Hence by the induction hypotheses for e; and e5 we have

UzSleﬂ, UzSlep 252514 |— €9 UQTQ, U151A, U151F Ha |— €1 . U1T1.

Since Uy = UUSsm = U(UTQ — Ua) = Usts — Usa, the typing rule for application
expressions can be applied and gives

- —— UUS,5,4 -
UUSQSlA,UUSQSlF |—6162 ZUUO[,

which establishes the claim.

31

3. This is proved similar to the case for 1let d in e end.

Case W;‘;Up(A, I'y letdineend) = (S2 L1 U Ly, S251, p)

if (Ly,S1,{z:7})= le'ec(A,F, d)
(LZaSZap) = W+ (Slﬂaslpa$: Fa 6)

exp

0. (i) By induction, Sy does not affect F'V(I')— FV(A) and Sy does not affect FV (S, 1, x :
T) — FV(S14). Proposition 13 gives the claim.

(ii) By induction on d, FV (rhs(L1), T)NFV(S11") C FV(S1A). Note that, in particular,
for each y: T € I we have

FV(S17)NFV(T) C FV(S14),

so that —together with 0.(i)- the extended environment S1 A, ST« : 7 fulfills the as-
sumption for applying W, to e. Hence, the induction hypothesis for e gives FV (rhs(L2), p)N

exp
FV(S25:1") C FV(S2514). Using Proposition 13, we can combine the induction hy-
potheses to obtain

FV(ThS(SQLl U Lz),p) n FV(SQSlF) - FV(SQSlA)

(iii) We first show that Sy does not affect PV(L;). All variables of L, affected by S
belong to FV(S1 4,511, 7). By hypothesis 0.(i) for e, Sy does not affect FV(S1I,z :
T) — FV(S14), and by hypothesis 0.(iii) for d,

PV(L1)NFV(S;4)=10,
so Sy does not affect PV(L;) at all. We can now prove the claim
PV(SaLi U L) N FV(S52514,p) = 0.

By the induction hypothesis 0.(iii) for d, PV (L1)NFV(S;A) = (§, and since Sy does not
affect PV (Ly), this gives

PV(SaL1) N FV(5,5,A4) = 0.
For PV(S3L1) N FV(p), note that by hypothesis 0.(ii) for e,
FV(p) N FV(S2S51T,ST) C FV(S525,4).
Since FV(p) NPV (SaL1) C FV(p) N FV(S251 4,525 T, 557), we get
PV(SaL1)NFV(52514,p)=0.

By the induction hypothesis for e, we also have PV (L2) N FV(S251 4, p), and the claim
is proven.

(iv) Use the induction hypotheses 0.(iv) for d and e, similar as for e; - es.

32

(v) Suppose y : @ € I'. Let S := S35 and L := S2L; U La. By induction on d,
PV(LY) C FV(S5,7), and since S5 does not affect PV(Ly), this implies

PV(SyLY) C FV/(5,5,7).

On the other hand, by induction on e we have PV (LY) C FV(525,7), and the claim
PV(LY) C FV(S7) follows.

(vi) Suppose y : @ € I', and let S := S257 and L := SaL; U L. Since Ly and Ly have
no inequation relation in common,

L—LY =(SyLy — SaLY)YU (Ly — LY).
By the induction hypotheses for d,
FV(Li — L) N FV(S17) C FV(S14),
and since, by hypothesis 0.(i) for e, S2 does not affect FV(S11") — FV(S1 4),
FV(SsLy — S2 LYY N FV(S7) C FV(SA).
By the induction hypothesis for e, we also have
FV(Ly— L) N FV(S7) C FV(SA).

The claim FV(L — LY) N FV(S7) C FV(SA) is shown.

1. By induction, L; and L hold. Since —as shown above— Sy does not affect PV(Ly), by
Lemma 12, S3L; holds. Since Ly and SsL; have no inequation relations in common,

S5L1 U Ly holds.
2. Let T = VB7. From the recursive calls to W7, by induction we have

d) For each (S',{x :T}), the following are equivalent:
(i) (8", {x:7}) is a typing of d modulo A, I’
(i1) for some semiunifier Uy of L, 8" =4 r U151 and 7 = WUISIA
e) For all (5, p'), the following are equivalent:
(i) (9, p") is a typing of e modulo S1 A, 51z : T
(ii) for some semiunifier Uy of Ly, S" =g, A 5,105 U252 and p/ = Usp.
(i) = (ii): Suppose (S5, p') is a typing of let d ine end modulo A, I'. According to the
typing rule for let-expressions, for some & : & we have

S’A,S’—FSA|—d:{x:E} and S’A,S’—FSA,JL‘:E Fe:p.

By the induction hypothesis for d, there is a semiunifier U; of L; with

_ U514
S'=ar U1S and T=UiT .

33

The typing for e can hence be written as

U151A,U151F ISIA,l‘ . UlT

Uy 514 ,
Fe:p.

. —U15:,4 ——U,5,4
Of course we can strengthen the assumption : Uy7 ' tox:U;7 ' . Then, by the
induction hypothesis for e, there is a semiunifier Us of Lo with

Ui =s,a 5007 UsS2 and p' = Usp.

It follows that S* =a p U151 =a r U2S2S1. Because FV(L1)NFV(Ly) C FV(S14,51,7),
we can modify Us on F'V(S2L1)—FV (52514, 5251 I'SsT) so that UsSe Ly = Uy Ly. Then
Us 1s a semiunifier of both L, and S; L1, and since these have no ineqaution relations in
common, Us is a semiunifier of So L1 U L.

(i1) = (i): Let Us be a semiunifier of SaLy U Ly with S" =a r U25251 and p/ = Usp.
Then Uy := UsS5 is a semiunifier of L1, and by the induction hypothesis for d we have

151 U154

U151A,U151F 4 |—d:{l‘:U1T }

By the induction hypothesis for d also, FV(7T) C FV (S, A)Uspec(S1 T, L1). If we modify
the semiunifier U1 as in Lemma 15, we get the stronger typing

U0 SiA, TS T L d e T 04 (21)

Since Us is also a semiunifier of Ly, by the induction hypothesis for e we obtain that
(UzS2,p") = (U1, p') is a typing of e modulo S1 A, S1 1Mz : 7, i.e.

Uy S14, U5 ISIA,JL‘ : WUISIA e:p. (22)
An application of the typing rule for let-expressions to (21) and (22) gives

U151

Uy S14, U5 A|—1etdineend:p/.

Since U151 =a,r S, this shows that (57, p’) is a typing of let d ine end modulo A, I".

(¢) Suppose let dine end is typable modulo A, I'. Then there are S* and p’ such that
S'A, S’—FSIA Fletdineend: p'.
By the typing rule for let-expressions, there is a polytype T with
S’A,S’—FSIA Fd:{z:5} and S’A,S’—FSIA,JL‘ cole:p,
where F'V(7) C FV(S’A,S’—FSIA) = FV(S’A). By induction on d,

W+

dec

(AT, d) = (L1,51,{x:T})
for some L1, 51 and T = VB 7. By 2.(ii), there is a semiunifier U of Ly such that

S’ =A,r US; and E:WUSIA.

34

Since we now have oA Uea

USiAUS T 7' eUr 7' ey,
e 1s typable modulo S1A,511 ¢ : 7, and since T > 7, also modulo S14,5 1,z : 7. By
induction,

W;Izvp(slﬂ’ SlFa €T Fa 6) = (LZa SZap)
for suitable Ly, Ss, p. The claim follows by definition of Wt (A I', let dine end).

exp

Case WT

dec

(A, T, valrec f=¢) = (U(L[r/a]),US,{f :YBUTY})
if (L,S,7) =W, (A, I, f:a, e), with a fresh,
U= mgsqu[T/oz]) } } }
B=FV({Ur)— FV(USA) — spec(UST,U(L[r/a]))

0. (i) By induction, S does not affect F'V (I, f : a) = F'V(A), whence by Proposition 13 it is
sufficient to show that U does not affect FV(ST") — FV(SA). Since mgsu(L[r/«a]) does

not trivially rename variables of L[7/«a], by Lemma 14 it suffices to show that variables

of FV(ST') — FV(SA) do not occur in rhs(L[r/a]).

Since « is not affected by S, it is not in FV(SA). Hence by induction hypothesis 0.(ii),
a = Sa € FV(ST, f: «) also cannot be in FV(rhs(L)). So rhs(L) = rhs(L[r/«]), and
by induction hypothesis 0.(ii),

FV(rhs(L[r/a])) N FV(ST) = FV(rhs(L)) 0 FV(ST) C FV(SA).

(ii) By induction, FV(rhs(L),7) N FV (ST, f : Sa) C FV(SA), and since rhs(L) =
rhs(L[r/a]), this extends to

FV(rhs(L[T/a]),)N FV(ST) C FV(SA).
Since U does not affect FV(ST)— FV(SA), by Proposition 13 we get
FV(rhs(U(L[r/a])),Ur) N FV(USI) C FV(USA).

(iii) By claim 1., there are residual substitutions (71, ...,7;) such that (1d,Ty,...,T,)
solves U(L[r/a]). So for each ¢ and each § € FV(USA), 6§ C; 6§ € U(L[r/a]) is solved by
(Id, T;), i.e. T;6 = 6 is not a pattern variable with respect to T;. This showed

PV(U(L[r/a])) N FV(USA) = 0. (23)

(iv) Suppose C; occurs in [j(L[T/oz]) and & € FV(ﬁSA). Then C; occurs in L, and
there is &' € FV(SA) such that § € FV(U6'). By induction, there is 7/ C; 7/ € L with
8 € FV(7'). Note that 7' C; 7/ € L[r/«], since o ¢ rhs(L) as shown under 0.(i). Hence
Ur'C, Ur' € U(L[r/a]) and 6§ € FV(U7').

(v) Suppose y : & € I'. By induction hypothesis 0.(vi) for e,
FV(L - LY)YNFV(Sa) C FV(SA),

35

and since by hypothesis 0.(i) for e, S does not affect FV(I', f : a) — FV(A), this shows
that a = Sa does not occur in L — Lf; Hence, since y # f, we have o ¢ FV(LY) and
therefore U(L[r/a])¥ = U(LY[r/a]) = U(LY).

To show

PV(U(L[r/a])¥) C FV(US?),
we look at PV(LY). By the induction hypothesis and 0.(iii) for e, we have
PV(LY) C FV(S7) — FV(SA),

and since U does not affect FV(ST)y— FV(SA), it does not affect PV(LY). By Lemma
12 and Lemma 14, we get

PV(U(L[r/a])?) = PV(Q(U’)) = U(IfV(Ly)) i
C FV(UST) — FV(USA) C FV(US7).
(vi) Suppose y : & € I'. Since
U(Llr/a]) = U(L[r/a]) = U((L - L¥)[r/a])),
it is sufficient to show
FV(U(L = LY)[r/a]))N FV(US7) C FV(USA). (24)
By the induction hypothesis and 0.(ii) for e,
FV(L— LY, 7)NFV(57) C FV(54),

and since U does not affect FV(ST') — FV(SA), this gives (24).

. Since U is a semiunifier of L[r/a], U(L[r/a]) is solved, i.e. has Id as a semiunifier.

. By the induction hypothesis, for all (S’, /) the following are equivalent:

(i) S’A,S’—FS A,f:S’—ozS 4 Fe:r
(i) for some semiunifier U’ of L, S" =a r .o U'S and 7 = U'r.

1) = (i1): Let (57, {f : @}) be a typing of valrec f =e modulo A, I'. By the typing rule
g g
for polymorphic recursion, there is a monotype 7/ with
S’A,S’FSA,f:E|—e:T/ and F=71" 2.

Since « did not occur in A, I" and we can assume that it does not occur in the range of
S, we may modify S’ so that S’a = 7/. Then (S’, 7') is a typing of e modulo A, I, f : .
By induction, there is a semiunifier U’ of I such that

s’ =ATfa U'S and 7 =U'r.
Since Sa = a by hypothesis 0.(i), one has U'a = U'Sa = S’ = 7/ = U'r, and

hence U’ is a semiunifier of L[r/a]. Its most general semiunifier U is a factor of U, i.e.

U' =11rja) UU for some U.

36

If f € FV(e), then o occurs in L, so U'r = UU7 and L contains some C; with i € I(f).
Since L = SA C; SA by induction hypothesis 0.(iv), each 6 € FV(SA) occurs in an
inequation of L[r/«]. This gives U’ =g UU and hence

U'SA —UUsA
U'r =UUr

By our choice of mgsu we can assume that U does not affect FV(SI'") — FV(L[r/a]),
and hence that U’ =gr UU as well. Because UU is a semiunifier of L[r/a], we have
found a semiunifier U of U(L[r/«]) such that

7 ' —UTSA
S'=ar UUS and 7=1 e . (25)

If f ¢ FV(e), then o does not occur in L, so L = L[r/a] and hence U = Id by induction
hypothesis 1. Then U’ is a semiunifier U/ of U(L[r/a]) = L satisfying (25). Hence (ii)
holds.

J. —UUSsA .
(ii) = (i): Let U be asemiunifier of UL[UT/«] such that & = UU T and S" =Ar UUS.
Then U’ := UU is a semiunifier of L[7/a]. From induction hypotheses 0.(i) and 0.(ii)
it follows that o« ¢ FV(r) U FV(SI,SA), and so & and S’ restricted to FV(A,TI')
remain unchanged when modifying U’ and S’ on «. Hence, redefining U’ := U’7 and
S'a :=U'Sa, U' is a semiunifier of L with S =4 r .o U’S. By the induction hypothesis,

S’A,S’—FS A,f:S’—ozS 4 Fe:U'r
Since, by induction hypothesis 0.(i), Sae = « and therefore S'a = U'Sev = Ul = U'r,

=5 —=—5'A U'sA
we get S’ =U'r =U'r =7, and so

S’A,S’—FSA,f:E|— e:U't and 7=0Urr °.

By the typing rule for recursive declarations, it follows that (S, {f : @}) is a typing of
valrec f=e modulo A, I

(¢) Suppose valrecz=¢ is typable modulo A, I'. Then there are S’ and 7/ with

S’A,S’FS 4 l-valrecr=e:{xr:7'}.

’
—5

/:T

By the (polymorphic) typing rule for (rec), 7/ and

S’A,S’—FSIA, x: FSIA Fe:r.
Hence for fresh o we can assume

S’A,S’—FSIA, ¢ Fa Fe:r.
By induction, there are L, S and 7 such that

W;'j,cp(A, Iz:a, e)=(L,51).

37

By 2.(ii), there is a semiunifier U of L with
s’ =ar US and ' =Ur,

which is a semiunifier of L[7/a], as was shown in proving 2.(ii) from 2.(i). By our assumption
about mgsu, we have mgsu(L[r/a]) = U # fail, and hence le'ec(A, I'y valrecz=¢) =
(U(L[r/a]), US,¥B 7) for suitable 3.

5 Appendix

5.1 Curry-style type inference for polymorphic recursion

Our algorithm W is intended to be implementable as a modification of existing compilers
for SML, which are based on Milner’s Y. For comparison, we sketch the MLT-type inference
methods that follow from Henglein[5] and Kfoury[12] characterizations of ML*-typability in
Curry’s style. The paper most directly concerned with MLT is Henglein’s. As it contains a
substantial error, we first sketch a correction.

Henglein translates the Milner-Mycroft calculus into a syntax-directed calculus, which is the
one given in Figure 1 above except that he uses rec-expressions rather than declarations,
with the typing rule (equivalent to)
ru{e 7Y e:r, 7 >0

I'(recz=e):0c

(PolyRec)

To obtain a quantifier-free description of Milner-Mycroft-typability, an environment I 1s
represented by (I, &), where I is I" with all type quantifiers removed, and « a sequence of
type variables such that FV(I') = FV(I") N «. For each expression e, he defines a system
of equations and inequations, SEI(I", «, €) as in Figure 4.

It is then claimed that (Corollary 8 of [5]) when (I, &) represents I,

I'bym+ e: 7 for some I'' 7 <= SEI(I", «,€) has a semiunifier. (26)

As remarked eralier, this is wrong, since the clause for typing a variable does not take the
context of its binding position into account — which is needed for occurrences of recursion
variables. '' This can be seen from the fact that this context occurs in the constraints
motivated from the typing rule (See section 2, (2)).

A correction is most easily obtained by revising the notion of environment, so that both
(a) scope relations between variable bindings and (b) the difference between monomorphic
A-bindings and polymorphic rec/let-bindings can be recovered from an environment.

Let a scoped (quantifier-free) environment I' contain statements Az : 7, for free variables
of e that are considered A-bound, and statements x : 7 for variables x considered rec-
or let-bound in a global term containing e. Let I" be a list of such assumptions, linearly

1 The statement of Theorem 4 in [5], from which the corollary is derived, also is wrong, even for
applicative expressions like x - 0, since the substitution is not applied to the context.

38

SEI(I'",o,z) = ({I'"(2) C oy, o Ea},ay),
where a4, C is fresh
SEI(I'",a,lets = ¢ ins end)
=(LeUL,U{as = ae, 005 = et }, vier),
where ay, avjer is fresh,
(Le,ae) = SEI(I, a, €),
(Le,as) = SEI(I" U{z : az}, @, 8),
SEI(I', a,recz=¢)
= LeU{as = ae, ac Caree, a Cal,are)
where oy, ayec, C is fresh,
(Le,ae)=SENIM U{z:as},a,e).
SEI(I'" o, Az.e) = (Le U{ay — e = an}, an),
where a4, ay is fresh,
(Le,ae) = SEIIM U{z: az}, (o, az),€),
SEI(I o, 4) = (LU Ly Ufay — asr = as}, ast),
where a4 1s fresh,
(Ls,as) = SEI(I", o, 5),
(L¢, o) = SEI(I" i, t),

Fig. 4. Henglein’s constraints in Curry-style

ordered by >p from left to right, corresponding to decreasing scope of the respective binding
operators in the global term. A new assumption « : 7 (with smallest scope) is appended to
I' at the end, yielding I';z : 7.

If Ax : 7 € I' is an assumption for a A-bound variable, then the constraints L, defined via
SEI(I',x) = (L, a,) when typing an occurrence of #, contain 7 C o and 7 E 7, which is
equivalent to the constraint 7 = a,. Hence A-bound variables get monomorphic types.

If x : 7 € I' is an assumption for a rec— or let-bound variable, the constraints defined
for an occurrence of # only say that 7 C «, and ¢ C ¢ for each A-bound variable y : o
having wider scope than . (For rec- or let-bound variables y with wider scope than x, we

need not demand ¢ C o, since type variables of o will be suitably quantified in the context
——=AST

S)
Let S_FASF be the MLT-environment obtained from a scoped environment I" and a substi-
tution S as the set of the following typing assumptions:

(i) every Az : 7in I is replaced by Az : St, and

I e . .
v * is obtained from St by

.. . . —A — S
1) every x : 7 1n I is replaced by = : St where z : ST
Yy p Yy)

39

SEI(Iz) = ({rCa., aCal,a),
where a4, C is fresh,
a={oc|Xy:0>r Nz:7}
SEI(I Az.e) = (Le U{ay — ae = an}, an),
where a4, oy is fresh,
(Leyae) = SEI(I; Az : g, €),
SEI(I,s-t) = (L. UL U{a; — au = as},aq),
where a4 1s fresh,
(Le,as) = SEI(T s),
(Lt, a¢) = SEI(I 1),
SEI(I')letz = e ins end)
= (LeUL:U{as = ae, 05 = et} rer),
where ay, avjer 18 fresh,
(Le,ae) = SEI(I €),
(Leyas) = SEI(I; 5 : ag,s),
SEI(I',recz =¢)
= (Le U{az = ae, ac Caree, a Cal,arec)
where oy, ayec, C is fresh,
(Leyae) = SEI(I; ¢ : ag,e),
a={o|Ay:0cin I.}

Fig. 5. Constraints in Curry-style for scoped environments

universally quantifying all its type variables not in
U{FV(SU) |Ay:0 >p x:7}.

This modification of Henglein’s algorithm is correct in the following sense:

Theorem 16. Let I' be a scoped environment, e an expression and (L,a.) = SEI(I,e). For
any substitution S,

——AST , o

Sr Fyr+e:7 <= S is a semiunifier of L and 7 = Sa.. (27)

Proof (Sketch) We skip the case of variables(!) and only consider the case of a recursive
expression. Let (L, aye.) = SEI(Irecx=¢), and (L., a.) = SEI(I';x :) with fresh a,.
<—: Let S be a semiunifier of L. Since S also is a semiunifier of L., by induction we have

AS([eag)

Sz ay) Far+ et Sa..

40

Note that

AS([eag) — 2SIz

Sz ay) :S_FASFU{x:Sax t.
Let T := S_FASF and 7 := Sa, = Sa,. Note that 7 = FASF“, and so
TU{l‘ZFF} Fur+ e T

Since S solves a, C e, and o Co for all Ay : 0 >p 1 oy (with the same residual matcher),

we also have 71 » Sarec. An application of the typing rule (PolyRec) gives
T = S_FASF Far+ rece=c : Sape. (28)
—: Conversely, if (28) holds, by the typing rule (PolyRec) there is some 7 such that
Tu{z: Ff} Far+ e:7 and e Sttyee.

We find that
— al ——AS5([Nza,
Tu{e: 7Y =S(I2:ay,) (Fivea),

so by induction, S is a semiunifier of L, and 7 = Sa.. Because 7 > Sy, there is a

o . . . + =T
substitution 7" instantiating bound quantifiers of 7' = Sa,. so that T'r = T'Sa. = Sapes.

Since the variables free in I’ = S_FASF are mapped to themselves, we have T'So = So for

each Ay : o in I'. Hence (S, T') solve the inequations o Cavpe. and o Co for Ay : ¢ in I'. From

_7 ——1TI AS(Mxae)@ . . .
v:7 = 2:5x, =u:Say, () we also get Sa, = Sa,. Thus, S is a semiunifier of

L. O

From the equivalence (27) a principal types property follows: If (L, a.) = SEI(I,e) and U
is the most general semiunifier of L, then Ua. must be a principal MLt-type of ¢ ‘modulo
the scoped environment I’ (in a suitable sense).

To typecheck a term using an equivalence like (27), there are two ways to proceed:

(i) Process the entire term first, compute its constraint system, find a most general semiuin-
fier (if possible), and compute from it the principal type and environment modification.
This method has the drawback that type errors can hardly be localized from the full
constraint set of the term.

(ii) Process the term in a fixed order and for each subterm you meet, compute its constraint
system, try to find its semiunifier, compute its principal type and corresponding modifi-
cation of the environment, and with modified environment, go on to the next subterm.
This method allows one to report type errors for untypable subterms, relative to their
environment determined by the traversal — just as it is done in ML.

In the ML case, however, the solution of two subproblems can efficiently be combined,
while in the case of MLT this is not obviously possible, due to properties of semiuni-
fication: Suppose (L1, 1) = SEI(I,e1) with S; = mgsu(Ly), for a first subexpression,
followed by (La, as) = SEI(S11, e2) with Sy = mgsu(Lz). Then Sy Ly is solved, but ap-
plying the solution S5 of Lo might make S7 77 unsolved: 5557 need not be a solution of
Ly (cf. remark 1 on p.8. If L; is equational then S35 is a solution of L1). As a remedy,
one might explicitly call mgsu to solve S351L1 U S2Ly. This would have the drawback
of calling the potenially expensive mgsu at every node of a term.

41

These methods of type inference for polymorphic recursion follow from both Henglein[5] and
Kfoury e.a[12]. The most important advantage of our W is the following: the complex proof
of Theorem 10 shows that one can have the benefit of localized error reports (from typing
subterms in turn as in (ii)), but that —for a particular traversal of terms— no additional calls
to mgsu as in (ii) are needed: inequational constraints have to be solved only at recursive
declaration-subterms. Perhaps these advantages could also be obtained with an adaption
of the Curry-style approach; but then the correctness proof would probably involve the
subtleties seen in Theorem 10.

Other differences are that we treat monomorphic and polymorphic variables (in contrast to
[12]), and expressions and declarations (in contrast to [5] and [12]).

5.2 A variation of W:;Up exploiting scope information

Our algorithm W7 uses sets A, I' of typing assumptions to represent the environment

AU T, This has the drawback that when typing a variable occurrence of a polymor-
phic assumption y : @ € I', the monomorphic part A of the enviroment does not distinguish
between assumptions ¢ : 7 where has wider scope than y from assumptions z : p where
z has smaller scope than y - a distinction used in the constraints for the typing rule for
polymorphic recursions. Consequently, in the var-clause of Wj}cp one may add constraints
6, C, 6, that are unnecessary, and in the A-clause therefore has to subtract some.

Therefore, it seems that considering the environment as a set, though appropriate for an anal-
ysis of ML-typing and —as shown above— still possible for ML*, is not the proper approach
in a Milner-style type inference procedure for ML™. Had we scope information available (for
example, by considering the environment as a list), then one might add less constraints in
the var-clause and avoid the substraction of constraints in the A-clause. The corresponding
clauses of W would have to be replaced by:

Case W, (A, I,) =
(0, 1d, 1), if A(z) =,
(L, Id,r[o [, B'/8]), if I'(x) = VBT, where

a=FV{Br)— FV(A),

o' = new copies of a,

3’ = new copies of 3,

L={aGd |acealtU{dC; 8|6 € FV (A},
with a new relation C;, and ¢ added to I(x), where
Ay, ={z:0€ Az has wider wider scope than « }

Case Wt (A, I, (fnz=>e)) = (L, S, Sao — 1),

exp

if (L,S,7)= W;'j,cp(A, z:a, I e), where « is a fresh variable.
Some changes in the claims of Theorem 10 seem to be necessary, in particular:

1. Change A,TA by putting T4 = {2:7% |x:0eTl}.

42

2. Instantiate I'(z) = VB7 by copying only a = FV(VB1) — FV(A,).

Additional changes in the auxiliary claims 0.i) - 0.vi) of the main proof will be necessary
as well. Though we have not considered a modification of Theorem 10 in detail, the case of
A-abstractions can be expected to be much simpler.

While this might lead to simplifications of the proof, one also needs an efficient implementa-
tion environments with scope information. Qur representation of an environment by partial
functions reflects what is done in the compiler of SML of New Jersey, where type informa-
tion is stored in updatable reference cells of variables. No relational information (like scope
inclusions) is directly available.

5.3 Implementation details

The compiler of SML of New Jersey[l] proceeds in several phases. In the first phase, an
abstract syntax tree of the term to be typed is constructed by the parser, which introduces
fresh names for individual variables. Hence we can assume that free and bound variables are
disjoint and no variable 1s bound twice.

The next phase consists of an elaboration of the abstract syntax tree; essentially, a fresh
type variable a, is stored in a cell referenced by all occurrences of x.

The third phase is the computation of a principal type for the given expression or declaration.
While traversing the term, principal types of subterms are computed using W, as well as
substitutions of types for type variables. These substitutions are realized as updates of the
type reference cells. Note that there is no explicit set of typing assumptions maintained.
Instead, the environment exists implicitly only, as the position of a subterm and the values
of the type reference cells.

Quantification of type variables is controlled by their depth, an updatable attribute of type
variables. The depth of «; is set to the nesting depth of the binding position of . When a
type variable « is unified with a type expression o, the depth of & and each type variable 3
of ¢ is adjusted to min{depth(«), depth(5)}.

In the case of a declaration d = valz =e or d = val rec x = e, quantification of type variables
is realized as follows. If 7 is the computed principal type of e and ST its environment, we
need z : 77 as additional assumption when typing the scope of d. The context ST is
available as the position of d in the global term and the contents of the reference cells of
variables bound on the path to d. To find which of the free type variables of 7 have to be
quantified to give 77, once simply compares their depth with the depth of the the binding
position d of x; those with larger depth have to be quantified.

The type-checker of SML of New Jersey has two disjoint kinds of type variables, free and
bound ones. Therefore, type quantifiers need not be written explicitly. When a type variable
has to be quantified, it is replaced be a fresh ‘bound’ one. Instantiation of ‘bound’ type
variables in typing an occurrence of = is done by replacing the bound variables of the
assumed type x : VB 1 by fresh ‘free’ type variables 8’ in 7 (with depth infinity.)

To implement W7, the following modifications have been made:

43

Variables To type an occurrence of a variable with assumption x : 7 in context A, I', we
need FV(T) — FV(4), i.e. we must know which type variables occur in an assumption
type of a monomorphic individual variable. We simply collect the assumption types of
A-bound individual variables in a list, the A- or rule-bound types. On lookup in this list,
the types are decomposed and replaced by the type variables they contain. Since lookup
in a list is slow, a better solution would be to add an attribute to type variables; we
hesitated to do so in order not to modify the SML-type of type resp. type variable.

Declarations For declarations val x =e with derived type 7 for e in the context SA, ST
we need to return a suitably quantified typing = : 7. While for ML we have 7 = 7°2 for
ML™ the special type variables (those in spec(ST, L)) must not be quantified. These are
identified via their depth attributes. (On creating fresh copies of type variables when
typing a variable occurrence, the copy gets the same depth as its original.) Similarly for
recursive declarations, with Ut and spee(UST,UL[UT/«]) instead.

Inequations We use a very simple representation of an inequation constraint set: a list of
triples (0,4, 7) for o C; 7. To find a most general semiunifier, reduction rules (like those
of Henglein[5]) are applied in a certain order, until the system is in a solved form that
allows one to read off the most general semiunifier. The treatment of inequations 7 C; «
involves a ‘generalized occurs check’” to exclude chains aC; ...Cy 7 5; v in L with some
non-variable type; this is a global, hence potentially expensive test.

Although semiunification is undecidable, examples where this procedure loops remain
to be constructed. (The number of variables in a system may grow under reductions.)

Abstraction When typing an abstraction (fnx =>e¢) according to W, we have to adjust
the constraint set L delivered in WH(A U {z : a}, I'Je) = (L4, S, 7). First we have to
identify the inequations of the form 7 C; 7 in L, where ¢ represents an occurrence of a
polymorphic individual variable in the context, i.e. i € I(y) with some y : 7 € I'. Then
T C; 7 has to be replaced by all ¥ C; v with vy € FV(7),y € FV(Sa) — FV(SA).

The current implementation described in Emms[3] does not, perform the first step in the
case of abstractions properly, as was revealed when carrying out this proof. 2

A proper treatment would give an additional attribute to individual variables, the nesting
depth d of their binding. This would be passed into inequations when typing variable
occurrences, giving 75, gy 7. If (fnx =>¢) has binding depth d; and d < dg, 7 Ciya) T
in L, would be replaced by v C; (4) 7 for the type variables v ¢ F'V(Sa) — FV(SA).

5.4 An example of inferring a type with W+

We demonstrate our implementation on an example, due to Stefan Kahrs and communicated
by Thorsten Altenkirch. The idea is to define the set n-Lam of A-terms with free variables
among vy, . . ., v,. Since SML does not have types depending on individual terms, the number
n is coded as an n-fold iteration of a type constructor.

12 Tt tries to identify the relevant variables through the attributes available in datatypes as they are
in the compiler. It is correct at least for terms where recursive declarations occur at top level and
do not contain further declarations.

44

If type ’a represents an initial segment {1,... n} of numbers, type ’a Lift represents
{1,...,n+ 1}, consisting of a new element n + 1 and old elements 1,... n:

datatype ’a Lift =
new | old of ’a;

To define a datatype ’a Lam of A-terms in vy, ..., v,, we need an increasing type parameter:
if ¢’s free variables are among {vy, ..., vy41}, those of Av,11.t are among {vy, ..., v, }:

datatype ’a Lam =
var of ’a
| app of (’a Lam) * (’a Lam)
| abs of (’a Lift) Lam;

To define substitutions, suppose for indices k of type ’a we have A-terms f(k) whose free
variables have indices j of type ’b. The substitution of the v; by f(k) in an ’a Lam-term ¢
would then be defined by bindLam f t:

fun bindLam f (var x) = f x
| bindLam f (app (t,u)) = app (bindLam f t,bindLam f u)
| bindLam f (abs t) = abs (bindLam (liftLam f) t)

and liftLam f new = var new
| 1liftLam £ (old x) = bindLam (var o old) (f x);

Since bindLam is applied to the arguments £ and 1iftLam £, which are of different type, this
recursive definition is untypable in SML. The following trace, extended by some comments,
shows how the types

fn : (’a -> ’b Lam) -> ’a Lam -> ’b Lam
fn : (’a => ’b Lam) -> ’a Lift -> ’b Lift Lam

bindLam
liftLam

are inferred by our extended type checker for SMLT. To simplify the presentation, in we
omit the case of applications.

For the constructors, SMLT infers a context Gamma.

Phase 1: From unknown polytype assumptions, infer approximate type kernels and inequa-
tion constraints

. . . . where
W+(Delta,Gamma+{ bindLam :’a_bind, liftLam :’a_lift },

(body_bind,body_lift)) = (S, L, (tau_bind,tau_lift)),

45

Id on assumed

(’a_bind <18

(Pa_lift <7
(’a_bind <8

zZ ->
U -

tau_bind
tau_lift

types,

(’X -> X Lift Lam)

-> 'Y -> ’V Lift Lam)
(’Z => ’Y Lam) -> ’T)
T > ’Z Lift Lam -> ’Y Lift Lam)

’Y Lam) -> ’Z Lam
W) -> U Lift —->

-> ’Y Lam
'Y Lift Lam

Phase 2: Solve L[tau_bind/’a_bind, tau_lift/’a_lift]

((’Z => ’Y Lam) -> ’Z Lam -> ’Y Lam

<18 (X —>

’X Lift Lam) -> W -> °V Lift Lam)

(C°U -> ’W) -> °U Lift -> ’V Lift Lam

<7

(’Z -> ’Y Lam) -> °T)

((’Z => ’Y Lam) -> ’Z Lam -> ’Y Lam

<6

’T => ’Z Lift Lam -> ’Y Lift Lam)

By decomposition to subterms:

’T)

(’z <18 ’X)

(’Y <18 X Lift)

(’Z Lam <18 W)

(’Y <18 1’V Lift)

U <7 °2)

(W <7 ’Y Lam)

(°U Lift -> °V Lift Lam <7
(’Z -> ’Y Lam <6 ’T)

(’Z <6 Z Lift)

(’Y <6 Y Lift)

By unifying rh-sides of equal lh-sides in <18 (*°X ="V):

(’zZ <18
(’Y <18
(’Z Lam

’V)
'V Lift)
<18 W)

Cu <7
Cw <7
(’U Lift

’Z)
’Y Lam)
->

'V Lift Lam <7

’T)

46

(’Z -> ’Y Lam <6 °’T)
(’Z <6 °Z Lift)
(’Y <6 Y Lift)

By expanding ’W to ’S Lam in <18 and <7 and decomposing:

(’z <18 V)
(’Y <18 ’V Lift)
(’zZ <18 ’8)

v <7 °2)
(’s <7 ’Y)
(’U Lift -> ’V Lift Lam <7 °’T)

(’Z -> ’Y Lam <6 °’T)
(’Z <6 °Z Lift)
(’Y <6 Y Lift)

By unifying rh-sides of equal lh-sides in <18: (*V="85)

(’zZ <18 ’8)
(’Y <18 S Lift)

v <7 °2)
(’s <7 ’Y)
(’U Lift -> ’S Lift Lam <7 °’T)

(’Z -> ’Y Lam <6 °’T)
(’Z <6 °Z Lift)
(’Y <6 Y Lift)

By expanding °T to (°Q Lift -> R Lift Lam) in <7, <6 and decomposing:

(’zZ <18 ’8)
(’Y <18 S Lift)

U <7 °Z)
(’s <7 ’Y)
(’s <7 ’R)
U <7 Q)

(’Z <6 ’Q Lift)
(’Y <6 R Lift)
(’Z <6 °Z Lift)
(’Y <6 Y Lift)

47

By unifying rh-sides of equal lh-sides in <7 (°Z = ’Q, ’Y =’R) and removing duplicates
in <6 we get the solved system :

(’Q <18 ’S)
(R <18 ’S Lift)

U <7 Q)
(’s <7 ’R)

(’Q <6 ’Q Lift)
(’R <6 R Lift)

The semiunifier of the initial system is the composition of substitutions made, i.e.

:= °Q, ’Y :=’R)
:= ’Q Lift —> ’R Lift Lam)
:=’S) o ("W := ’S Lam) o (’X := V)

The inferred types of bindLam,liftLam are obtained by applying sU to

tau_bind = (°Z -> ’Y Lam) -> ’Z Lam —> ’Y Lam
tau_lift = (°U -> W) -> U Lift -> 'V Lift Lam

and then generalizing relative to sUDelta,sUGamma. Hence:

)

bindLam
liftLam

fn :

(-> ’b Lam) -> ’a Lam -> ’b Lam
fn : (°

-> ’b Lam) -> ’a Lift -> ’b Lift Lam

a
a

5.5 Trace of detecting an untypability with Wt

We give an example of a nested recursion that is untyptble in ML*. The user may choose
between inspecting a full trace of the inequation solving and an abbreviated form. In the
abbreviated form, for each recursive declaration, the inequation system before and after
solutionis presented. The list of type variables in the inequations that occur in assumptions
of A-bound individual variables is shown as the 'rulebound’ list - following the terminology
of SML where ’rules’ of the form 'pattern of argument => result’ can be used instead
of simple variable binding by A.

Consider the following nested recursion:
val rec £ = fn x => let
val rec g = (fny => £ y)
in
(g1, g x)

end;

Typing the inner recursion, assuming {f:’Z, x:’W}, gives:

48

val rec g = (fn y => <exp> <exp>)

initial problem
(’zZ <2 Y -> ’X) (* from (£:°Z y:’Y) :’X *)
the rulebound: ’W

solved system is

(’zZ <2 Y -> ’X)

the rulebound: W

g:’Y > ’X (x dec : { g:{°Y>"X} } =)

Although °Y,’X do not occur in the environment, they are not quantified, since they are

specializations of the unknown poly-assumption £:°Z. However, the types ’Y, ’X are in the
following treated as polytypes, not as monotypes.

Now type the outer recursion:

val rec £ = (fn x => let <dec> in <exp> end)

initial problem

X <7 V) (x (g:’Y->’X x:°U):°V %)
¢y <7 U)
(X <6 ’T) (x (g:’Y->’X 1:int):’T *)

(’Y <6 int)
(U => T * °V <2 Y -> ’X)

(* (fn x => let ... end): U -> T * ’V x)
the rulebound:

Error: extended occurs check fail in semiunify
problem inequation

(’Z * Y <2 ’X)

in current system

X <7 °Y)
Cw <7 V)
(X <6 °Z)

(’W <6 int)
(°V ->Z *x’Y <2 W -> ’X)

in declaration:
val rec £ = (fn x => let <dec> in <exp> end)

The problematioc inequation is obtained by decomposing the last one in the system. Com-
bined with the first, the type checker detects that via ’Z * ’Y <2 ’X and ’X <7 ’Y, the
variable *Y occurs as a proper ‘subterm’ of itself; hence the system cannot have a solution
by type expressions.

49

6 Conclusion

We have presented an extension of Damas-Milner type inference to Milner-Mycroft type
inference that is fairly close to the code of type checkers in existing compilers for SML.

The correctness and weak completeness proof is relatively subtle and more complicated than
those for methods in Curry’s style. The main reason is that we separate inequational and
equational constraints in such a way that equational constraints can be executed as updates
of type reference cells during type inference, while inequational constraints are only solved
when typing a recursively declared variable, and automatically remain solved in all other
cases — in particular on applying updates. This allows type inference with polymorphic
recursion in an incremental way, with inequation solving localized as much as possible.

From a logical point of view, an inductive proof of the principal types property is complicated
because when comparing typing derivations, a less general derivation need not just be a
parametric instance of a given one, but may additionally have weaker universal assumptions.

Acknowledgement: An implementation of semiunification (by Robert Stark) and the im-
plementation of polymorphic recursion for SML of New Jersey, Version 0.93, (by Martin
Emms) were supported by the Deutsche Forschungsgemeinschaft, Le 788/1-1.

The theoretical work was supported by the European Community under Esprit Basic Re-
search Action 7232 - ‘Common Foundation of Functional and Logic Programming Lan-
guages’.

Notice: MIRANDA is a trademark of Research Software, Ltd.

References

1. D. MacQueen e.a. Standard ML of New Jersey, Version 0.93. AT& T Bell Laboratories, 1993.

[SV]

. L. Damas and R. Milner. Principal type-schemes for functional programs. In Proceedings of
the 9th ACM Symposium on Principles of Programming Languages, pages 207-212, 1982.

3. M. Emms. Documentation for polyrec_sml: An extension of SML with typechecking for poly-
morphic recursion. Technical Report CIS-Bericht-96-88, Universitat Minchen, Centrum fir
Informations- und Sprachverarbeitung, 1996.

4. F. Henglein. Polymorphic Type Inference and Semi- Unification. PhD thesis, Courant Institute
of Mathematical Sciences, May 1989. Technical Report 443, Computer Science Department,
New York University.

5. F. Henglein. Type inference with polymorphic recursion. ACM Transactions on Programming
Languages and Systems, 15:253-289, 1993.

6. J. Herbrand. Recherches sur la theorie de la demonstration. In FEerits logiques de Jacques
Herbrand. PUF, Paris, 1968. thése de Doctorat d’Etat, Université de Paris (1930).

7. R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions of the
American Mathematical Society, 146:29—60, 1969.

8. D. Kapur, D. Musser, P. Narendran, and J. Stillman. Semi-unification. In Proceedings of the
8th Conference on Foundations of Software Technology and Theoretical Computer Science.
Pune, India, December 21 - 23, 1988, pages 435 — 454. Springer LNCS 338, 1988.

50

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. A. Kfoury, J. Tiuryn, and P. Urzyczyn. ML typability is DEXPTIME-complete. In Proc. 15th

Coll. on Trees in Algebra and Programming (CAAP), Copenhagen, Denmark, pages 206-220.
Springer, May 1990. Lecture Notes in Computer Science, Vol. 431.

A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML-typability. Journal of the ACM,
1997

A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. The undecidability of the semi-unification problem.
In 22nd Annual ACM Symposium on Theory of Computing. Baltimore, Maryland, pages 468 —
476, May 1990.

A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type reconstruction in the presence of polymorphic
recursion. ACM Transactions on Programming Languages and Systems, 15(2):290-311, 1993.

H. Leiff. Semi-unification and type inference for polymorphic recursion. Bericht INF2-ASE-5-
89, Siemens AG, Minchen, May 1989.

H. Leil. Polymorphic Recursion and Semi-Unification. In E. Borger, H. Kleine-Biining, and
M. M. Richter, editors, CSL ’89. 3rd Workshop on Computer Science Logic. Kaiserslautern,
FRG, October 2—6, 1989, pages 211-224. Springer LNCS 440, 1990.

H. Leif and F. Henglein. A decidable case of the semi-unification problem. In A. Tarlecki,
editor, 16th International Symposium on Mathematical Foundations of Computer Science. Kaz-
imierz Dolny, Poland, Sept. 1991, pages 318 — 327. Springer LNCS 520, 1991.

H. G. Mairson. Deciding ML typability is complete for deterministic exponential time. In
Prooceedings of the 17th ACM Symposium on Principles of Programming Languages, pages
382-401. ACM, January 1990.

A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on Pro-
gramming Languages and Systems, 4:258-282, 1982.

R. Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17:348-375, 1978.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.

A. Mycroft. Polymorphic type schemes and recursive definitions. In International Symposium
on Programming. 6th Colloquium. Toulouse, April 17-19, 1984, pages 217-228. Springer LNCS
167, 1984.

P. Pudldk. On a unification problem related to Kreisel’s conjecture. Commentationes Mathe-
maticae Universitatis Carolinae, 29(3):551-556, 1988.

J. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12:23-41,
1965.

D. A. Turner. Miranda: a non-strict functional language with polymorphic types. In Proceed-

ings of the IFIP International Conference on Fuctional Programming Languages and Computer
Architecture. Springer LNCS 201, 1985.

51

