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Extending the type checker of SMLby polymorphic recursionA correctness proofMartin Emms and Hans Lei�femms,leissg@cis.uni-muenchen.deCentrum f�ur Informations-und SprachverarbeitungUniversit�at M�unchenD-80538 Oettingenstr. 67, GermanyAbstract. We describe an extension of the type inference of Standard ML thatcovers polymorphic recursion. For any term t of SML, a type scheme � and a systemL of inequations between (simple) types is computed, such that the types of t are theinstances of � by substitutions S that satisfy L.The inequation constraints L are computed bottom-up in a modi�cation of Milner'salgorithm W . The correctness proof is complicated by the fact that unknowns forpolytypes are needed { in contrast to type inference for SML.1 IntroductionFunctional programming languages like ML[19], Miranda[23], or Haskell[?], have made stat-ically typed polymorphic languages popular. Their success depends to a large extend on thefollowing properties of the underlying type system of Damas/Milner[2]:- typability of an untyped term is decidable,- for typable terms, a schema representing the set of its types can be inferred automatically,- the declaration of polymorphic values by the user is supported,- well-typed terms do not cause run-time type errors.However, these properties were achieved by restricting polymorphism somewhat: (i) �-abstraction is monomorphic: a function may accept arguments of di�erent (monomorphic)types, but the argument must be used with the same type at each occurrence in the body ofthe function, (ii) Recursion is monomorphic: at each occurrence in its de�nition, a recursivefunction x must be used with the (monomorphic) type � of its de�ning term e:Rec Value Dec � [ fx : �g j� e : �� j� val recx = e : fx : �� g ,where �� is the universal closure of � relative to the environment � and fx : �� g theextension of the environment e�ected by the declaration.



While it is impossible to allow polymorphic �-abstraction without loosing the existence ofprincipal types, Mycroft[20] has shown that the Damas-Milner type system could be relaxedto allow polymorphic recursion. This Milner-Mycroft (or ML+-) type system replaces theabove rule of the Damas-Milner system by the rule(Poly)Rec Value Dec � [ fx : �� g j� e : �� j� valrecx = e : fx : ��g .The system still has the subject-reduction property, is type-sound, and has the principaltypes property. Mycroft proposed a semi-algorithm to compute principal types for ML+-typable terms, but on every untypable term, this semi-algorithmdiverges. Henglein[4, 5] andLei�[13, 14] proposed semi-algorithms based on semiuni�cation, which terminate also on allknown examples of terms untypable in the Milner-Mycroft system. Actually, semiuni�cationis equivalent to Milner-Mycroft-typability, cf. Henglein[5] and Kfoury e.a.[12].But unfortunately, semiuni�cation is an undecidable problem, as shown by Kfoury e.a.[11].So the decidability of typability is lost under an extension ofML by polymorphic recursion. Ittherefore seems unreasonable to use the Milner-Mycroft type system in a real programminglanguage: there are programs on which automatic type inference will not terminate.However, an extension ofML by polymorphic recursion could still be of some practical value:1. Some useful recursive programs can be typed in the Milner-Mycroft system, while theyare untypable in the Damas-Milner system. Moreover, all terms typable in the Damas-Milner system are typable in the Milner-Mycroft system as well, and since the principaltype is at least as general, the same program can be used in more situations when typedin the second system.2. When polymorphic recursion {occasionally{ is needed in practice, programmers seemto be irritated by the behaviour of ML's type checker: not only is there an arti�caldistinction in polymorphism within and outside a recursive de�nition, but it is alsoimpossible to make (current implementations of) ML respect a correct Milner-Myroft-type when provided by the programmer. (For examples of typing anaomalies raised bymonomorphic recursion of ML, see Mycroft[20], Henglein[5], Kfoury e.a.[12].)3. The importance of the complexity of type inference has to be judged from a practicalpoint of view, not just from its theoretical worst-case analysis. As is well known, thetype inference problem for ML is DEXPTIME complete (see [9, 16]), but the actualbehaviour in programming practice for more than a decade led to the belief that itwas linear. A similar di�erence between theoretical and practical complexity is expectedto hold for type inference with polyporphic recursion (cf. Henglein[5]). The (limited)practical experience with our implementation of polymorphic recursion for SML showedno signi�cant slow-down of type inference.Moreover, since program development is done interactively, the danger of a non-terminatingcompilation is low: a type checker consuming unreasonably much time or space resourceswould be stopped by the programmer anyway.Adding polymorphic recursion to SML makes the type system more homogeneous: recursivefunctions are then type-uniform in the same way inside and outside of the de�nig term.2



We think that only practice can tell which type discipline is most helpful in actual program-ming. Therefore, we have implemented type inference with the Milner-Mycroft system asa modi�cation of the compiler of SML of New Jersey[1], a widely used version of SML. Itallows the programmer to switch between the two type systems, and handles the full lan-guage of SML of New Jersey, including some features {such as exible records and datatypedeclarations{ that will not be discussed below. (For details, see the documentation Emms[3].)The rest of this paper is organized as follows. In section 2, we will present de�nitions ofthe Damas-Milner and the Milner-Mycroft type systems, and recall its relation to semi-uni�cation. Section 3 introduces a method of performing type inference for the Milner-Mycroft calculus in the style of algorithm W of Milner[18]. Section 3.2 gives an intuitivedescription of our semi-algorithmW+ for ML+. Since it was intended for actual implemen-tation, we also discuss some sublte points that arise from the aim of staying close to existingtype checkers for SML. Section 3.3 gives the formal details of the algorithm. Its correctnessand weak completeness are proven in section 4.The methods for inferring Milner-Mycroft-types given by Henglein[5] and Kfoury e.a.[12]are in the style of Curry. They are discussed in the appendix, along with a variant of W+and some implementation details.2 The type systems of ML and ML+2.1 Terms and typesThe term language we use is a �-calculus with declarations, in the following notation of asublanguage of SML (cf. Milner e.a.[19]):Expressions e := x variablej (e � e) applicationj (fnx => e) function abstractionj (let d in e end) local declarationDeclarations d := valx = e value declaratuionj val recx = e recursive value declarationWe refer to such terms also as ML-programs, ignoring some further restrictions met inSML, for example that the expression in a recursive value declaration has to be a functionabstraction. Metavariables e; s; t are used to range over terms, and variables are taken froman enumerated sets IV ar. (In the examples we also use appropiatly typed constants.)As is done in SML, on the level of types we distinguish betweenMonotypes � := � type variablej (� ! � ) function spacePolytypes � := � unquanti�ed typej 8�� quanti�ed type3



We use �; �; ; � for type variables, taken from an enumerated in�nite set TV , and �; �; �for mono- and �; � for polytypes. By FV (� ) we mean the set of type variables free in � .An environment � is a �nite partial function from individual variables to polytypes, writtenas a set of typing statements x : � . The type variables free in � areFV (� ) := f� j for some x : � in � , � 2 FV (� )g:A type substitution S is a partial function from type variables to monotypes. A monotype �is a (generic) instance of �, written as � � � , if � results from � by instantiating all boundvariables of � with monomorphic types, i.e. if � = S� for the quanti�er free part � of �and a substitution S which is the identity on FV (�). We say �1 � �2, if �1 � � for eachmonotype � such that �2 � � .For an environment � and a polytype � , by �� we mean the universal closure of � withrespect to � , obtained from � by quantifying (in the order of occurrence from left to right)all its free type variables except those of FV (� ).Convention: The bound individual variables of a term are pairwise distinct, and disjointfrom its free variables. In S� , we assume that S is the identity on the bound variables of� , and that none of these is a free variable of the image of S. Hence, if � = 8� � , thenS� = 8� S� .2.2 The Damas-Milner and Milner-Mycroft type systemsThe set f � j � j� e : � g of types of a term e, relative to an environment � that containsan assumption x : � (x) for each x free in e, is inductively de�ned by a type-assignmentcalculus, see Figure 1. The �rst six typing rules de�ne1 the Damas-Milner-calculus, whichwe will also refer to as ML. The Milner-Mycroft-calculus, referred to as ML+, is obtainedby replacing the sixth rule by the last one.Lemma1. In ML and ML+ we have for any substitution S:If � j� e : � then S� j� e : S� . If � j� d : fx : �� g then S� j�d : fx : S(�� )g.Proof By induction on e resp d. Consider a polymorphic recursive declaration and assume� j� val recx = e : fx : �� g. By induction, S� [ fx : S(�� )g j� e : S� . If S�S� = S(�� ), theclaim follows by an application of the typing rule. But since bound variables do not occurin the domain or range of substitutions, S�S� = S(�� ) holds. 2Lemma2. Suppose �1 � �2. If �; y : �2 j� e : � , then �; y : �1 j� e : � .If �; y : �2 j� d : fx : ��;y:�2g, then �; y : �1 j� d : fx : ��;y:�1g.1 The calculi of Milner[2] and Mycroft[20] use 8-introduction and -elimination rules on the right of`. We work with syntax-directed versions like the one of Milner e.a.[19], for the sublanguage we areconcerned with. Note that the quanti�ed variables in inferred typing statements of declarationsare �xed. 4



Var � (x) � �� j�x : � , if x is a variableApp � j� e1 : � 0 ! � ; � j�e2 : � 0� j� e1e2 : �Functions � [ fx : � 0g j� e : �� j� (fnx=> e) : � 0 ! �Let � j�d : � 0; � [ � 0 j� e : �� j�letdin e end : �Value Dec � j� e : �� j�valx= e : fx : �� gRec Value Dec � [ fx : �g j� e : �� j�valrecx= e : fx : �� g|(Poly)Rec Value Dec � [ fx : �� g j�e : �� j�valrecx= e : fx : �� gFig. 1. Typing rules for ML and ML+Proof Again, we only consider a polymorphic recursive declaration. Suppose�; y : �2 j� valrecx = e : fx : ��;y:�2g:By the typing rule, me must have �; y : �2; x : ��;y:�2 j� e : � . As �1 � �2, we have FV (�1) �FV (�2), hence ��;y:�1 � ��;y:�2 . Therefore, by induction we get �; y : �1; x : ��;y:�1 j� e : � .By the typing rule, this implies the claim. 22.3 Examples of polymorphic recursionTwo defects of monomorphic recursion that are overcome by polymorphic recursion aredemonstrated by the following examples. The �rst shows that while SML allows the de�nitionof datatypes with increasing type parameters, it forbids recursion along the structure of itsdata. The second shows that monomorphic recursion reduces the power of simultaneousde�nitions.Example 1. Recursive functions on recursively de�ned datatypes whose type parametersincrease at the recursive occurrence: 5



Suppose2 we store data of type �, indexed by structured keys, in a datastructure �-trie:datatype key =Atom of int | Pair of key * keydatatype 'a trie =Empty | Branch of ((int * 'a) list) * (('a trie) trie)For atomic keys, the data are stored in the �rst component, a list, while for pairs of keys, thedata for all keys with the same �rst component are grouped into a trie organized accordingto the second component of keys. The (partial) functionfun find (Branch((c,a)::l,_), Atom(d)) =if d=c then a else find (Branch(l, Empty), Atom(d))| find (Branch(_,t), Pair(p,q)) = find (find (t,p), q)is untypable in SML: since �-tries contain (�-trie)-subtries, functions recurring along thestructure of�-tries need more complex types at recursive calls than at top level. The principalMilner-Mycroft type of �nd is �-trie� key ! �, as one would expect.Example 2. In simultaneous recursive de�nitions, a residual function sometimes needs dif-ferent types at di�erent occurrences. In the following example, f is needed with the types�-list ! �-list and �-list ! �-list:fun F (x : ''a list, atob : ''a -> ''b, bstoa : ''b list -> ''a) =let val rec f = fn x => if x = [] then []else (bstoa (g x))::(f (tl x))and g = fn x => if x = [] then []else (atob (hd x))::(f (g (tl x)))in f x end;In ML, F can be typed only when � = � (where 00� means that there is a decidable equalityon type �), with principal type`ML F : �-list � (�! �)� (�-list ! �)! �-list;imposing unnecessary restrictions on the use of F . In ML+, we have the more general typing`ML+ F : �-list � (�! �) � (�-list ! �)! �-list:Mycroft[20] reports an example of an ML-untypable simultaneous recursion that arose fromtrying to avoid duplicated code. Also, ML conicts with using simultaneous de�nitions tostructure a program: the simultaneous de�nition2 We simplify an example reported by C.Elliot on the SML-electronic forum in 1991, who storesinformation indexed by terms and adds continuation functions to cover failure cases. R.Milnerand P.Wadsworth have met similar examples in the development of the �rst ML-implementationsin the seventies. 6



fun f(x,y) = (g(0,x),g(true,y)) and g(u,v) = vis untypable in ML, since the residual function g is used with inconsistent types within thede�nition. While `ML+ f : �� � ! �� �; g : �� � ! �;one can type f under the monomorphic recursion of ML only when de�ning g independently.2.4 Polymorphic recursion and semiuni�cationWhere type inference for ML depends on solving equational constraints of types, type infer-ence for ML+ additionally involves solving matchability constraints. In a ML+-derivation...�; x : �� j� e(: : : x�1 : : : x�n : : :) : �� j� valrecx = e : fx : �� g ; (1)the types �i of the occurrences of x in e are generic instances of the assumed type x : �� ,i.e. �� � �1; : : : ; �� � �n:Since the derived type � of e is the quanti�er free part of �� , this means there are substitu-tions T1; : : : ; Tn withTi� = �i and Ti� = � for � 2 FV (�� ); i = 1; : : : ; n: (2)De�nition3. A substitution T satis�es the matching statement � v � between monotypes�; �, if T� = �. The restriction of T to FV (� ) will be called the matching substitution of� v �.Hence �� � �i () some Ti satis�es f� vi �ig [ f  vi  j  2 FV (� ) g: (3)In order to infer ML+-types for recursive declarations val recx = e, an environment � = U�and suitable monotypes � = U�; �1 = U�1; : : : ; �n = U�n will be obtained from the solutionU of a set of constraints. These constraints are partly determined by e and additionallycontain �v1 �1; : : : ; �vn �n; � v1 �; : : : ; � vn �; � 2 FV (�)with type unknowns �; �1; : : : ; �n and an initial environment �. These matchability con-straints ensure that the solution satis�es the condition (2) (where � 2 FV (U�)) forced bythe typing rule. 7



De�nition4. A semiuni�cation problem in v1; : : : ;vn is a multi-set L of equations, � = �,and inequations, � vi � with 1 � i � n, between monotypes � and �. A solution of L is ann+ 1 tuple (U; T1; : : : ; Tn) of substitutions, such thatU� = U� for each � = � in L, and TiU� = U� for each � vi � in L, i = 1; : : : ; n.Call U a semiuni�er of L and T1; : : : ; Tn its residual matching substitutions.3 The solution(U; T1; : : : ; Tn) is more general than a solution (U 0; T 01; : : : ; T 0n), if U 0 =FV (L) RU for somesubstitution R.We say L holds, if Id is the semiuni�er of some solution (Id ; T1; : : : ; Tn) of L.Remark 1. Note that semiuni�cation does not behave like uni�cation:(a) If L holds and S is some substitution, SL may not hold, it may even be unsolvable: takeL = f�v � ! �g and S = [( ! �)! =�].(b) If S is a most general semiunifer of L, then SL may have more variables than L: takeL = f�1 ! �2 v �g and S = [�1 ! �2=�]. (The semiuni�er S0 = [�1 ! �2=�] is notmost general.)By the above, it is clear that semiuni�ability and ML+-typability are closely related. In fact,for a variant of ML+ without declarations and recursive expressions recx = e instead {calledML+ for the rest of this section{, Henglein[5] and Kfoury e.a.[12] have shown:Theorem5. Henglein[5], Kfoury e.a.[12] The problemsML+P := f e j � `ML+ e : � for some �; � g andSUP := fL j some (U; T1; : : : ; Tn) solves L gare polynomial-time reducible to each other.The reduction of ML+P to SUP uses a type inference method in the style of Curry: to eachsubterm t of e, one associates a type variable �t and a �nite set Lt of equational or matcha-bility constraints. From a semiuni�er U of Le one gets � = fx : U (�x) j x is free in e g and� = U (�e) such that � `ML+ e : � .However, one has to be careful in de�ning Lt, since these constraints depend not only onthe subexpression t and its position in e: if t is an occurrence of a rec-bound variable x,the environment of the subexpression recx = s binding x has to be taken into account (cf. �occurs in (2). A similar remark applies to let-bound variables x.).Remark. This has been overlooked in Henglein[5], whence his algorithm needs a correction(see Section 5.1). The constraints given by Kfoury e.a.[12] take the scope relations of bind-ings into account. However, this proof is via an embedding of ML+ into �-calculus with3 Note that Ti is a simultaneous matching for all U� vi U� with � vi � in L.8



polymorphic recursion and polymorphic abstraction, but no let, which is then reduced toSUP . Therefore, it gives the constraints needed for ML+-type inference only implicitly.The interplay of monomorphic �-binding and polymorphic rec-binding as well as the han-dling of declarations in the scope of recursions deserve a more explicit treatment. This, andthe connection to principal ML+-types, is given in our semi-algorithmW+ below.For the sake of completeness, we recall some known properties of semiuni�cation:Theorem6. 1. Each solvable instance of the semiuni�cation problem has a most generalsolution.(Pudl�ak[21])2. There are rewriting procedures that turn any solvable instance of the semiuni�cationproblem into a `solved form', from which a most general solution can be extracted.(Henglein[5],Lei�[14],Kfoury e.a.[?])3. The semiuni�cation problem is undecidable for instances with at least two inequationrelations and at least one binary function symbol. (Kfoury e.a.[11])4. The semiuni�cation problem is decidablea) for instances with only one inequation relation. (Kapur e.a.[8]),b) for instances with only monadic function symbols. (Henglein/Lei�[15])We remark that 4 a) implies that Milner-Mycroft-typability is decidable for linear polymor-phic recursion, i.e. when a recursive function occurs only once in its de�ning term. A similarsubclass cannot be derived from 4 b), since the binary ! is the main constructor of typeexpressions.We will only use most general semiuni�ers satisfying a slight restriction. A semiuni�er U ofL trivially renames �, if U� 6= � is a variable and U� =2 FV (U�) for all variables � 6= � inL. For example, if L = f !  v � ! �g and �; �; ; � are di�erent, U = [�=�; �=�; �=]trivially renames , but not �.Proposition7. If L has a solution, then it has a most general semiuni�er that does nottrivially rename variables of L.Proof By induction on the number of variables of L that are trivially renamed by a mostgeneral semiuni�er. Suppose (U; T1; : : : ; Tn) is a most general solution of L where U triviallyrenames � to �0 = U�. Let ~� be a fresh variable, and~U := [~�=�; �=�0]U; ~Ti := [~�=�; �=�0]Ti [�=~�; �0=�]:Then ( ~U; ~T1; : : : ; ~Tn) is a solution of L. It is a most general solution, since if a semiuni�er U 0of L equals RU on L, it equals (R[�=~�; �0=�]) ~U on L. Suppose  in L is trivially renamedby ~U , but not by U . Then U must be a variable, and either  = U or U 2 FV (U�) forsome � 6=  in L. In the second case, it follows that ~U 2 FV ( ~U�), so ~U would not triviallyrename . In the �rst case, we have  =2 f�; �0g since U renames � to �0; but since ~U 6= ,we must have  = U 2 f�; �0g, a contradiction. Since ~U� = �, ~U trivally renames lessvariables of L than U . 29



Remark. To type ML's letx = e in s end, one also has to �nd a polytype � for x togetherwith instances � � �1; : : : ; � � �n for occurrences of x in s. This can also be done in thestyle of Curry, i.e. using equational and matchability constraints, see Kfoury e.a.[10]. Theconstraints that arise this way are so-called acyclic semiuni�cation problems, a decidablesubproblem of semiuni�cation.3 Milner-style type inference of polymorphic recursionAs noted above, type inference for ML+ can in principle be done in the style of Curry. Inorder to extend compilers for ML by polymorphic recursion, however, one has to stay closerto existing type checkers of ML. These are based on Milner's[18] type inference algorithmW, which di�ers from Curry's style in some respects.3.1 Milner's type inference algorithmW for MLMilner's W , which we split into (Wdec;Wexp) to �t to the distinction between declarationsand expressions in SML, takes an environment � and an expression e (resp. a declarationd) and returns a failure report or a pair (S; � ), consisting of a substitution S to update theenvironment � and a type � for e (resp. a pair (S; fx : �g) with a typing statement x : �for d) (see Figure 2). (S can be seen as a solved form of the equational constraints in aCurry-style method.)An algorithm mgu that computes a most general uni�er of two types is used to constructS. (Cf. Herbrand[6], Robinson[22], Martelli[17].)For comparison with our extension W+ for ML+, we state the well-known properties of W.We say S =� T if the substitutions S and T agree on FV (� ). S� is obtained from � byreplacing assumptions x : � by x : S� . A typing of expression e modulo � is (representedby) a pair (S; � ) such that S� `ML e : � . Similarly for declarations.Theorem8. (Damas/Milner[2]) Let � be an environment that contains an assumption foreach free variable of the expression e resp. declaration d. Then(a) If Wexp(�; e) = (S; � ), then for all (S0; � 0) the following are equivalent:(i) S0� `ML e : � 0,(ii) For some substitution U , S0 =� US and � 0 = U� .(b) If Wdec(�; d) = (S; fx : �g) and � = 8�� , then for each (S0; fx : �g) the following areequivalent:(i) S0� `ML d : fx : �g,(ii) For some substitution U , S0 =� US and � = U�US� .(c) If Wexp(�; e) = fail , there is no (S0; � 0) such that S0� `ML e : � 0. If Wdec(�; d) = fail ,there is no (S0; x : �) such that S0� `ML d : fx : �g.10



{ Wexp(�; x) = (Id; � [�0=�]),if � (x) = 8�� , where �0 are fresh copies of �,{ Wexp(�; e1 � e2) = (US2S1; U�),if (S1; �1) =Wexp(�; e1)(S2; �2) =Wexp(S1S1�; e2)U = mgu(S2�1; �2 ! �), where � is a fresh variable.{ Wexp(�; (fnx =>e)) = (S; S�! �),if (S; �) =Wexp(� [fx : �g; e), where � is a fresh variable,{ Wexp(�; letdin e end) = (S2S1; �),if (S1; fx : �g) =Wdec(�; d)(S2; �) =Wexp(S1� [ fx : �g; e){ Wdec(�; valx= e) = (S; fx : 8��g),if (S; �) =Wexp(�; e)� = FV (�) � FV (S� ){ Wdec(�; valrecf = e) = ( ~US; ff : 8� ~U�g),if (S; �) =Wexp(�; f : �; e), with � fresh,~U = mgu(S�; �),� = FV ( ~U�) � FV ( ~US� ){ Wexp resp. Wdec returns fail ,if the call to mgu or one of the recursive calls toWexp orWdecreturns fail .Fig. 2. The type assignment function W for MLFrom Wexp(�; e) = (S; � ) one obtains S� `ML e : � , the principal ML-type of e modulo � ,by choosing U = Id in (ii). The corresponding holds for declarations.In the proof, one shows that the substitutions combined during the recursive calls of Wcorrespond to combinations of and substitutions into ML-derivations.4 These arise fromsolving equational type constraints (for application expressions and recursive declarations).The proof uses that if U is a uni�er for an equation, so is any re�nement SU .For W+ and ML+-derivations below, the situation is more complicated: when typing arecursively declared variable x, we have to weaken a temporary assumption x : � to somesuitable x : � with � � �. Therefore, Lemma 1 will not be su�cient to prove our analog ofTheorem 8 for ML+.Remark. Observe that W can type let-expressions without setting up inequation con-straints, because it traverses its input terms in a speci�c order: for let d in e end, the dec-laration d is typed before its scope e is, introducing a polytype assumption x : � in theenvironment for e. All type variables free in � are monotype parameters of the derivation,since they occur as well in the type of some (monomorphic) �- or rec-bound variable with4 Lemma 1 for ML is implicitly contained in the direction (ii) ) (i) of Theorem 8.11



wider scope than x. The quanti�er structure of these assumptions x : � need not to bechanged when derivations are instantiated.3.2 An informal description of W+ for ML+Our aim is to provide an extension W+ of Milner's W that allows one to infer principalML+-types for actual programs written in SML, if they are ML+-typable, and to detecttheir ML+-untypability as often as possible, otherwise; whether examples of nontermination{predicted by theory, but as yet unconstructed{ also occur in practice, remains to be seen.Staying close to W has several advantages over an algorithm in the style of Curry/Hindley:{ an implementation is easier to realize for a full programming language, by modifying thecode of an existing typechecker for SML (as we did for SML of New Jersey),{ the behaviour of the typechecker should not di�er from the one for SML for recursion-free programs; in particular, let-expressions would not envolve the solution of (acyclic)semiuni�cation problems,5{ the sequential nature of the typechecker should make error reports more speci�c, sinceit would solve inequation constraints at each recursive declaration rather than at thetop node of a term.A sequential treatment of type inference for ML+, however, raises two problems that haveto be explained to make the code of W+ below understandable.Problem 1 To infer a principal ML+-typing for a recursive declaration, valrecx = e, mod-ulo an environment � , one has to introduce a polytype unknown � in order to �rst infer aprincipal type � of the de�ning expression e modulo the environment �; x : 8�:�. Knowing� , the strong assumption x : 8�:� will be weakened to a suitable x : � (with e : �). Hence:1. The specialization of derivations needed is not just the substitution of free type parame-ters by monotypes, but also the weakening x : � � x : � of polytype assumptions, whichwe describe by substitutions instantiating polytype unknowns. For any inferred typing,W+ outputs a constraint set L that de�nes `specializing' substitutions: only semiuni�ersof L turn the inferred typing into a weakened ML+-typing.2. For declarations d in e, the quanti�ers of their inferred typings d : fy : 8�:�g can notbe obtained {as in ML{ by quantifying all variables not in the environment � at d: typevariables of � that occur in instances of the assumption x : 8�:� have to be treated as ifthey occurred in � , in order to respect the possiblity of later weakenings x : 8�:� � x : � .Therefore, the clauses ofW+dec and Wdec di�er in the type quanti�ers they introduce: inW+dec, only those variables of the type of the de�ning expression are quanti�ed that areknown to never occur in specializations of the current environment.5 The clause for let-expressions in W+ essentially is the same as in W. Still, the derived types forlocally declared variables may di�er, because a let-expression embedded in recursive declarationsmay contain a polymorphic recursion variable - whose poly(!)type is only approximately knownwhen typing the let-expression. 12



Note also that if d is val(rec) y = t and x occurs in t, then any occurrence of y in thescope of d contains an implicit occurrence of x in e, which has to enter the typing of x.Problem 2 In a Curry-style type inference for ML+, the typing of an occurrence of a rec-or let-bound variable x involves matchability constraints about types in the environment ofthe declaration resp. expression binding x. To stay close to implementations ofW , we avoidintroducing scope relations in the environment (cf. section 5.1) or attributing variables withthe environment of their binding position. Instead, we keep the typing of variables simpleand shift the burden to the (less frequent) typing of �-expressions:1. The input environment is split into two partial functions, one for �-bound variables, andthe other for rec/let-bound variables (possibly containing assumptions with unknownpolytypes).2. When typing an occurrence of a rec- or let-bound x, we add matchability constraintsfor all types of �-assumptions in the environment of the occurrence of x, not just forthose in the environment of the binding of x.3. When typing a �-subexpression e of the declaration resp. expression of a rec- or let-bound variable x, we retract the matchability constraints for types of the �-assumptionthat were added when typing occurrences of x in e.Thus, typing proceedes as if all �-bound variables of an environment had wider scope thanall its rec- and let-bound variables. When discharching a �-assumption, part of the truescope relations becomes available, and matchability constraints are adjusted. Therefore, inWexp and W+expthe clauses both for variables and for �-expressions di�er.Some of the above aspects will become clearer from an informal description of the typing ofa recursive declaration.6 The typing of valrecx = e is done in two phases:Phase 1: From �; x : � and e,W+exp infers a type � , a substitution S with S� = �, and a setL of inequations. The result (L; S; � ) represents a derivation which ends inhS; � [ fx : �gi = hS; � i [ fx : 8�:�g `ML+ e : �; (4)under an appropriate specialization hS; � [ fx : �gi of � [ fx : �g, with 8�:� = S�hS;� i .Its leaves are represented by L, recording matchability constraints to be satis�ed under anyweakening hTS; � [ fx : �gi of hS; � [ fx : �gi. (The assumed polytype unknowns neveroccur in derived type expressions, but they will occur in the constraints L.)Phase 2: To �t the typing rule, the assumption x : 8�:� in (4) has to be weakened, so that thequanti�er-free part of the polytype of x is an instance of the derived type � of e. We solve theconstraints L[�=�] by a most general semiuni�er U , if possible. Then (U (L[�=�]); US; U� )represents a weakened ML+-derivation ending inhUS; � [ fx : �gi = hUS; � i [ fx : U� hUS;� ig `ML+ e : U�; (5)6 We ignore the splitting of the environment, which is relevant also in de�ning the updated envi-ronment, and hence write hS; � i for the updated environment. Details are adjusted later.13



in which the instantiation conditions for typing occurrences of x,U� hUS;� i � U�1; : : : ; U� hUS;� i � U�n;are satis�ed because U (L[�=�]) holds. By the typing rule, this derivation is extended byhUS; � i `ML+ valrecx = e : fx : U� hUS;� igto an ML+-typing of valrecx = e modulo � , which is represented by the �nal output,W+dec(�; valrecx = e) = (U (L[�=�]); US; fx : U� hUS;� ig):Remark. Phase 1 is like the �rst iteration of Mycroft's[20] iterative algorithm, except thathe does not collect a set of constraints. He takes the derived type � of e and uses x : � hS;� ias weakened assumption to retype e, etc.3.3 The semi-algorithmW+ for inference of Milner-Mycroft typesAlgorithm W+, which is stated in Figure 3, takes an expression e or declaration d andtwo environments �;� , with disjoint domain, as input. � contains the assumptions formonomorphic and � those for polymorphic free variables of e or d (i.e. those considered tobe �-bound resp. val- or val rec-bound in an enclosing term).If W+ terminates, it returns fail or a triple (L; S; � ) resp. (L; S; fx : �g), consisting of asemiuni�cation problem L, a substitution S, and a type � resp. a typing statement fx : �g.Inequality relations in L are indexed with `fresh' indices that correspond to occurrences ofpolymorphic variables in e or d. Therefore, W+ has an implicit argument, a �nite functionI : IV ar ! 2IN , where I(x) � IN enumerates the �nitely many occurrences of x alreadyvisited; we assume I(x) \ I(y) = ; for x 6= y. For each non-binding occurrence of x in e ord, W+ updates I by adding a new index to I(x).The constraints in L related to occurrences of polymorphic variables y in � form a subsystemused in the clause for function abstractions:L� :=[ fLy j y : � 2 � g; where Ly := f � vi � 2 L j i 2 I(y) g: (6)For the clauses of W+dec, we need a de�nition. If a semiuni�cation problem L in v1; : : : ;vnholds, its set of pattern variables isPV (L) := [1�i�nPVi(L); where PVi(L) := f� j � vi � 2 L; � 2 FV (� ); Ti(�) 6= �; g:The set of specialized variables of L, relative to � , written spec(�;L), is the closure of FV (� )under the relation RL de�ned by� RL � () for some 1 � i � n; � 2 PVi(L) and � 2 Ti(�):By mgsu we mean a partial recursive function, which for unsolvable L may diverge or returnfail , and for solvable L returns a most general semiuni�er of L which does not triviallyrename variables of L. Such mgsu exists by Theorem 6 and Proposition 7.14



W+ is split into W+exp for expressions and W+dec for declarations:{ W+exp(�;�; x) =� (;; Id; �); if �(x) = � ,(L; Id; � [�0=�; �0=�]); if � (x) = 8�� , where� = FV (8��) � FV (�),�0 = new copies of �,�0 = new copies of �,L = f�vi �0 j � 2 �g [ f� vi � j � 2 FV (�)g,with a fresh index i, and I(x) := I(x) [ fig{ W+exp(�;�; e1 � e2) = (US2L1 [ UL2; US2S1; U�)if (L1; S1; �1) =W+exp(�;�; e1)(L2; S2; �2) =W+exp(S1�;S1�; e2)U = mgu(S2�1; �2 ! �), where � is a fresh variable.{ W+exp(�;�; (fnx =>e)) = (L;S; S�! �),if (L�; S; �) =W+exp(�;x : �;�; e), where � is a fresh vari-able, andL := (L� � f � 0 vi � 0 j � 0 vi � 0 2 L�� g)[ f vi  j � 0 vi � 0 2 L�� ;  2 FV (� 0)� (FV (S�) � FV (S�))g:{ W+exp(�;�; letd ine end) = (S2L1 [ L2; S2S1; �)if (L1; S1; fx : �g) =W+dec(�;�; d)(L2; S2; �) =W+exp(S1�; S1�; x : �; e){ W+dec(�;�; valx= e) = (L; S; fx : 8��g)if (L;S; �) =W+exp(�;�; e)� = FV (�) � FV (S�) � spec(S�; L){ W+dec(�;�; valrecf = e) = ( ~U(L[�=�]); ~US; ff : 8� ~U�g)if (L;S; �) =W+exp(�;�; f : �; e), with � fresh,~U = mgsu(L[�=�])� = FV ( ~U�)�FV ( ~US�)�spec( ~US�; ~U(L[�=�])){ W+exp resp. W+dec returns fail ,if the call to mgu or mgsu or one of the recursive calls toW+expor W+dec returns fail .Fig. 3. The type assignment function W+ for ML+15



Example 1. Consider a recursive declaration containing a non-recursive one.val rec f = fn x => let val g = fn y => (x = f y; x) in g 0 end;The local declaration of g is typed relative to �;� = fx : �xg; ff : �fg. In a �rst phase, wecompute the type of the de�ning term �y:(x = fy;x). We assume y : �y and introduce anindex I(f) = f1g and a fresh variable �0f for the occurrence of f to get:W+exp(fx : �x; y : �yg; ff : �f ; g : �gg; f) =(f�f v1 �0f ; �x v1 �x; �y v1 �yg; Id ; �0f ):The application fy then types asW+exp(fx : �x; y : �yg; ff : �f ; g : �gg; fy) =(f�f v1 �y ! �; �x v1 �x; �y v1 �yg; [�x ! �=�0f ]; �):Assuming that = and ; are in�x operators of type 8�8� (���! bool) and 8�8� (��� !�), respectively, we getW+exp(fx : �x; y : �yg; ff : �f ; g : �gg; (x = fy;x)) =(f�f v1 �y ! �x; �x v1 �x; �y v1 �yg; [�x=�][�x ! �=�0f ]; �x):When typing �y:(x = fy;x), the constraint �y v1 �y is withdrawn, since y now is known tohave smaller scope than the open polymorphic variables f; g:W+exp(fx : �xg; ff : �f ; g : �gg; �y:(x = fy;x)) =(f�f v1 �y ! �x; �x v1 �xg; [�x=�][�x ! �=�0f ]; �y ! �x):The second phase of typing the declaration of g is to generalize the type �y ! �x of itsde�ning expression �y:(x = fy;x) properly. Since �x and �y occur in the constraint set in aspecialization of the polytype assumption f : �f , they must not be quanti�ed. HenceW+dec(fx : �xg; ff : �fg; val g =�y:(x = fy;x)) =(f�f v1 �y ! �x; �x v1 �xg; [�x=�][�x ! �=�0f ]; fg : �y ! �xg): (7)The extended environment�;� 0 = fx : �xg; ff : �f ; g : �y ! �xgis now used to type the remaining body g 0 of the de�nition of f . Since g is to be polymorphic,we put I(g) := f2g and add new constraints as inW+exp(�;� 0; g) = (f�y v2 �0y; �x v2 �xg; Id ; �0y ! �x);obtaining W+exp(�;� 0; g0) = (f�y v2 int; �x v2 �xg; [int=�0y]; �x): (8)16



By collecting the constraints and composing the substitutions of (7) and (8) toL = f�f v1 �y ! �x; �x v1 �xg [ f�y v2 int; �x v2 �xg;S = [int=�0y][�x=�][�x ! �=�0f ];we therefore getW+exp(�;�; letval g =�y:(x = fy;x) in g0 end) = (L; S; �x):When discharging the assumption x : �x to type the de�ning term for f , the constraint�x vi �x for occurrences i of each assumption in � , i.e. for i 2 I(f), has to be removed:W+exp(;; �; �x:letval g =�y:(x = fy;x) in g0 end)= (f�f v1 �y ! �x; �y v2 int; �x v2 �xg; S; �x ! �x)In the second phase of typing f , we have to replace �f by the derived type �x ! �x in theconstraints and solve the resulting systemf�x ! �x v1 �y ! �x; �y v2 int; �x v2 �xg: (9)A most general semiuni�er U must satisfy U (�y) = T1U (�x) = U (�x) by the �rst in-equation, and then U (�x) = T2U (�x) = T2U (�y) = int by the second and third. HenceU = [int=�x; int=�y] andW+dec(;; ;; valrec f = let : : :in : : :end) = (UL;US; ff : int! intg):Note that in typing �-abstractions, the constraints �x vi �x must not be removed for occur-rences i of variables already discharged: would �x v2 �x be missing in (9), we would inferf : 8�x(�x ! �x). But this is not an ML+-type of the declared variable, sincef : 8�x(�x ! �x) 6`ML+ (fnx => let : : :in : : :end) : �x ! �x:Note also that it would have been wrong to quantify �y in the type of g in (7): in thederivation �nally obtained, �y = int.4 Correctness and weak completeness of W+We will now show thatW+ is sound, weakly complete, and computes principalML+-typings.To de�ne principality, we �rst introduce a notion ofML+-typingmodulo an environment thatallows certain polytype assumptions to be weakened. This is needed to inductively prove aprincipal types property for recursive declarations, where the typing obtained in phase 1 hasto be weakend in phase 2.Think of the input �;� of W+ as the environment �;�� = � [ �� plus an informationthat type quanti�ers in �� binding variables � 2 FV (� )� FV (�) may be weakend:17



De�nition9. We call (S; � ) a typing of expression e modulo �;� if S�; S�S� `ML+ e : � ,and (S; fy : �g) a typing of declaration d modulo �;� if S�; S� S� `ML+ d : fy : �g. Thetyping (S; � ) of e modulo �;� is principal, if for any typing (S0; � 0) of e modulo �;� thereis a substitution U such that � 0 = U� and S0 = US on the free variables of �;� .Typings (S; � ) of e modulo �;� represent ML+-typability statements with respect to theenvironment S�; S�S�, which is not just the instantiation by S of free (mono)type variablesof �;��.7 Additionally, for y : � in � , S�S� replaces the quanti�ed assumption y : �� of�� by y : S�S� via instanting bound quanti�ers of �� not already in �.Theorem10. Suppose �;� contains a type assumption for each free individual variable ofthe expression e resp. declaration d. Assume that for di�erent assumptions y1 : �1; y2 : �2in � , FV (�1) \ FV (�2) � FV (�). Then(a) If W+exp(�;�; e) = (L; S; � ), then1. Id is a semiuni�er of L,2. for all (S0; � 0) the following are equivalent:(i) (S0; � 0) is a typing of e modulo �;� ,(ii) for some semiuni�er U of L, S0 =�;� US, and � 0 = U� .3. For di�erent y1 : �1; y2 : �2 in � , FV (S�1) \ FV (S�2) � FV (S�).(b) If W+dec(�;�; d) = (L; S; fx : �g) and � = 8�� , then1. Id is a semiuni�er of L,2. for each (S0; fx : �g), the following are equivalent:(i) (S0; fx : �g) is a typing of d modulo �;� ,(ii) for some semiuni�er U of L, S0 =�;� US and � = U�US�,3. For di�erent y1 : �1; y2 : �2 in � , FV (S�1) \ FV (S�2) � FV (S�); moreover,FV (� ) \ FV (S�1) � FV (S�).(c) If W+exp(�;�; e) = fail or does not terminate, then e is not ML+-typable modulo �;� .Similarly for W+dec(�;�; d).By Claim 1 and Claim 2, (ii) ) (i), with U = Id , one obtains S�; S� S� `ML+ e : � fromW+exp(�;�; e) = (L; S; � ). Claim 2, (i) ) (ii), says that the typing produced by W+exp is theprincipal ML+-typing of e modulo �;� . Any other typing of e modulo �;� is obtained byapplying a semiuni�er of the deliverd constraint set L. Similarly forW+dec and d. Claim 3 says7 Since S may be de�ned on FV (� ) � FV (�), S� S� cannot be written as S(��), for which, byconvention, we assumed that bound variables of �� do not occur in the domain and range of S.18



the additional hypothesis that types of polymorphic assumptions are related via monotypeparameters only is preserved, so that W+ can be used recursively.For ML+-untypable recursive declarations, W+dec(�;�; valrecx = e) need not terminate,since the computation of most general semiuni�ers may diverge.The proof of Theorem 10, like the one for Theorem 8, envolves showing that the combina-tion of substitutions delivered by recursive calls of W+ corresponds to combinations and`specializations' of ML+-derivations. Since `specializing' substitutions now may also weakenpolytype assumptions, the proof of (ii) ) (i) implicitly shows a strengthening of Lemma 1:Lemma11. If �;�� `ML+ e : � , there is a semiuni�cation problem L solved by Id , suchthat S�; S�S� `ML+ e : S� for any semiuni�er S of L.For S not satisfying the constraints, the induced weakening of assumptions may lead tounderivable typing statements:Example 2. In example 1, an intermediate stage represented the ML+-typingfx : �x; f : 8�f :�f ; g : 8�g:�gg `ML+ �y:(x = fy;x) : �y ! �x:Clearly, if U (�f ) = int, the constraints L = f�f v1 �y ! �x; �x v1 �xg given by W+exp arenot satis�ed, and indeedfx : �x; f : int; g : 8�g:�gg 6`ML+ �y:(x = fy;x) : �y ! �x:Observe that W+ delivers a solved constraint set for each expression or declaration, butsolves semiuni�cation constraints only in the case of recursive declarations. To combinetwo subderivations, we therefore need that the constraint set L of the �rst remains solvedwhen the specializing substitution S of the second is applied to it. By remark 1 on p.8, SLmight be unsolvable for arbitrary S; but substitutions arising during type checking are of acertain kind and do preserve the solvedness of previously given constraints (cf. Lemma 12and section 5.1).Proof of Theorem 10, by induction on the expression or declaration being typed.We will show a few further properties, relating the input environments �;� and the triple(L; S; � ) resp. (L; S; fx : �g) returned by W+. To state these, we need two more de�nitions.A substitution S a�ects the variable � if S� 6= � or � 2 FV (S�) for some � with S� 6= �.We say \L `̀ S� vi S�", i� for each � 2 FV (S�), there is some type � 0 with � 0 vi � 0 2 Land � 2 FV (� 0).The additional claims, proven simultaneously with claims 1.-3., are the following:0. i) S does not a�ect variables of FV (� )� FV (�),ii) FV (rhs(L); � ) \FV (S� ) � FV (S�),iii) (a) PV (L) \ FV (S�; � ) = ; resp. (b) PV (L) \ FV (S�) = ;,19



iv) For each vi in L, L `̀ S� vi S�,v) For each y : � 2 � , PV (Ly) � FV (S�),vi) For each y : � 2 � , FV (L � Ly) \ FV (S�) � FV (S�).Remark 2. The meaning of these conditions roughly is as follows:(i) The polytype unknowns � 2 FV (� ) � FV (�) of the input represent quanti�ed typevariables, and the corresponding quanti�ed assumption (of free polymorphic individual vari-ables) is not weakened while inferring a type of the input expression. (Weakening of quan-ti�ed assumptions only occurs before discharging a polytype assumption for a recursionvariable, and for already discharged assumptions.)(ii) Type variables in the derived type � (resp. body of the derived typing x : � ) or in typesof occurrences of polymorphic variables (recorded in rhs(L)) must be monotypes, if theyoccur in the re�ned environment.(iii) The derived type � of an expression does not contain type variables known to representpolytypes; this cannot be demanded for derived typings for a declaration.(iv) L syntactically enforces \PV (UL) \ FV (US�) = ; for all semiuni�ers U of L"; withclaim 1, most of (iii) follows: PV (L) \ FV (S�) = ;: (10)Stated less formally, allowed specializations of the (implicitly constructed) typing derivationof the current input will not instantiate monotype parameters in S� so that they containpolytype unknowns.(v+vi) Polytype unknowns of FV (S� )�FV (S�) occur in L only on the left hand sides ofinequation relations of the subsystem L� � L. More precisely, after typing an expression ordeclaration, for each y : � 2 � , we havePV (Ly) \ FV (L� Ly) = ; = PV (Ly) \ FV (rhs(L)): (11)The �rst equation follows from a) 0.(v), 0.(vi) and 0.(iii), the second from (a) 0.(v), 0.(ii)and 0.(iii).Proof of claim 3: For expressions, it follows from 0.(i). For declarations, note that 3. holdsfor assumptions in � by (b) 0.(i), and by (b) 0.(ii) it also holds for the new assumption x : � .Next we prove some lemmata on semiuni�cation that are common to various cases.Lemma12. Let L be a semiuni�cation problem and S a substituion. If L holds and S doesnot a�ect pattern variables of L, then SL also holds and PV (SL) = PV (L).Proof Let Ti be matching substitutions so that (Id ; T1; : : : ; Tn) is a solution of L. De�neT 0i := �STi; if  2 PV (L),; else.20



Pick � vi � 2 L where � = �(�;�) with � = FV (�) \ PV (L).T 0iS� = �(T 0iS�; T 0iS�)= �(S�; T 0i�) since FV (S�) \ PV (L) = ;;= �(S�; STi�)= STi� since � \ PV (L) = ;= S�:Hence (Id; T 01; : : : ; T 0n) is a solution of SL. By de�nition, if T 0i 6= , then  2 PV (L).Conversely, if  2 PV (L), then Ti 6=  for some i, and since S does not a�ect patternvariables of L we must have T 0i = STi 6= . 2The condition that S must not have pattern variables of L in its range excludes counterex-amples like the following: L = f� ! � v � ! �g has � as pattern variable and is solvedby (Id ; [�=�]), but for S = [� ! �=�], SL = f(� ! �) ! � v (� ! �) ! (� ! �)g isunsolvable.Proposition13. Suppose S1 does not a�ect variables of FV (� )� FV (�).(i) If S2 does not a�ect FV (S1� ) � FV (S1�), then S2S1 does not a�ect variables ofFV (� )� FV (�).(ii) If FV (� ) \ FV (� ) � FV (�), then FV (S1� ) \ FV (S1� ) � FV (S1�).Proof (i) Suppose � 2 FV (� )� FV (�). Note that then � =2 FV (S1�), because otherwisethere were � 2 FV (�) with � 2 FV (S1�). But since � 6= � this showed � 6= S1�, and thusS1 would a�ect �.Claim 1: S2S1� = �. Since S1 does not a�ect �, we have S1� = � and hence � 2 FV (S1� ).Because � =2 FV (S1�), S2 does not a�ect � and so S2S1� = S2� = �.Claim 2: For no � with S2S1� 6= � is � 2 FV (S2S1�). Suppose we have such a �. If� =2 FV (S1�), there is � 6=  2 FV (S1�) with � 2 FV (S1). Since S1 does not a�ect �,we must have S1 =  = �, a contradiction. So � 2 FV (S1�), and hence � = S1� = �,because S1 does not a�ect �. So � = S1� and S2S1� 6= �, contradicting claim 1. It followsthat the assumed � cannot exist.(ii) Suppose � 2 FV (S1�) \ FV (S1) for � 2 FV (� ) and  2 FV (� ). Since S1 does nota�ect FV (� )� FV (�), either  2 FV (�), hence � 2 FV (S1�), or else S1 =  = � andthen � 2 FV (� )\FV (S1�) gives � = � 2 FV (� )\FV (� ) � FV (�), because � =  is nota�ected by S1. But � 2 FV (�) also gives � = S1� 2 FV (S1�). 2The following two lemmata are needed for the case of recursive declarations.Lemma14. Let U be a most general semiuni�er of L that does not trivially rename variablesof L. Then U does not a�ect variables of L occurring only on left hand sides of inequations.Proof Suppose  2 FV (L) occurs only on left hand sides of inequations. Expand U to amost general solution (U; T1; : : : ; Tn) of L. If U is not a variable, there is a strictly more21



general solution, de�ned with a fresh variable ~:~U� := � ~; if � = U�; else ; ~Ti� := �TiU; if � = ~Ti�; else.So let U be the variable 0, and suppose  is a�ected by U .Case 1: 0 =  2 FV (U�) for some � 6= U�. Then � 6=  = U. Let ~ be fresh and de�ne( ~U; ~T1; : : : ; ~Tn) by~U� := ��; if � = (U�)[~=]; else ; ~Ti� := � (Ti)[~=]; if � = ~,(Ti�)[~=]; if � 6= ~This is another solution of L: If �vi� 2 L, where � = �(�; ) and U� = � (�; ) for simplicity,then~U� = (U�)[~=] since  =2 FV (�);= (TiU�)[~=] since (U; T1; : : : ; Tn) solves � vi �;= �(� (Ti�; Ti)[~=]; (TiU)[~=])= �(� ( ~Ti�; ~Ti~); ~Ti) since (TiU)[~=] = (Ti)[~=] = ~Ti~ = ~Ti;= �( ~Ti((U�)[~=]); ~Ti ~U)= �( ~Ti ~U�; ~Ti ~U)= ~Ti ~U�:But, contradicting the assumption, U is not as general as ~U : if ~U = SU on FV (L), we haveS = SU = ~U = , so that  2 FV (SU�) = FV ( ~U�) since  2 FV (U�). But on theother hand,  =2 FV ((U�)[~=]) = FV ( ~U�).Case 2: U = 0 6= . Since U does not trivially rename , we have 0 2 FV (U�) for some� 6=  in L. With fresh ~, de�ne ( ~U; ~T1; : : : ; ~Tn) as above, except that ~Ti := (Ti0)[~=].From (Ti)[~=] = ~Ti~ and (TiU)[~=] = (Ti0)[~=] = ~Ti;we again obtain ~U� = (TiU�)[~=] = ~Ti ~U�. Suppose ~U = SU on FV (L). Then S0 =SU = ~U = , whence all occurrences of 0 in U� turn into occurrences of  in SU� = ~U�.But since 0 2 FV (U�) and  6= 0, there is an occurrence of 0 in U� that is unchangedwhen going to (U�)[~=] = ~U�. Again, U would not be a most general semiuni�er of L. 2Lemma15. Let L be a semiuni�cation problem with L `̀ S� vi S� for each vi in L,and suppose Id is a semiuni�er of L and � a type. For each semiuni�er U of L there is asemiuni�er U 0 of L such that, up to renaming of bound quanti�ers,U 0�U 0S� = U8��US�; where � = FV (� )� FV (S�) � spec(S�;L):Proof De�ne U 0 byU 0� = �U�; if � 2 FV (S�) [ spec(S�;L),�0 for some fresh variable �0 =2 FV (US�;Uspec(S�;L)), else.22



For suitable residual substitutions, (Id ; ~T1; : : : ; ~Tn) and (U; T1; : : : ; Tn) are solutions of L. Toshow that U 0 is a semiuni�er of L, we have to �nd matching substitutions T 01; : : : ; T 0n suchthat T 0iU 0� = U 0� for each � vi � in L:Let T 0i be the restriction of Ti to FV (US�;Uspec(S�;L)), extended to the fresh variablesby T 0i�0 = U 0 ~Ti� for � 2 �. Pick � vi � 2 L. By choice of Ti and ~Ti,~Ti =S� Id ; � = ~Ti�; and Ti =US� Id ; U� = TiU�: (12)Let � = �(�;�), where � = FV (�)�FV (S�)� spec(S�;L) and � = FV (�)��. By (12),U 0� = U 0 ~Ti�, so the claim T 0iU 0� = U 0� amounts toT 0iU 0� = U 0 ~Ti� and T 0iU 0� = U 0 ~Ti�:Let � 2 �. If � 2 spec(S�;L), then FV ( ~Ti�) � spec(S�;L;) and hence U 0 ~Ti� = U ~Ti�. If� 2 FV (S�), then ~Ti� = � and hence also U 0 ~Ti� = U ~Ti�. Since T 0iU 0 agrees with TiU onthe free variables of S�; spec(S�;L) and, by (12), TiU� = U ~Ti� from TiU� = U� = U ~Ti�,this gives T 0iU 0� = TiU� = U ~Ti� = U 0 ~Ti�:On the other hand, for � 2 � by choice of ~Ti we also haveT 0iU 0� = T 0i�0 = ~U 0 ~Ti�:Hence U 0 is a semiuni�er of L.For the second claim, let � = FV (� ) � �. Since �0 =2 FV (US�) = FV (U 0S�),U 0�U 0S� = � (U 0�; U 0�)U 0S� = � (U�;�0)U 0S�= 8�0: � (U�;�0)US� = U (8� � )US�;by de�nition of U (8� � ). 2We are now ready to show that W+ computes principal types for ML+-typable expressionsand declarations.Case W+exp(�;�; x) =� (;; Id ; � ); if �(x) = � ,(L; Id ; � [�0=�;�0=�]); if � (x) = 8�� , where� = FV (8�� )� FV (�),�0 = new copies of �,�0 = new copies of �,L = f�vi �0 j � 2 �g [ f� vi � j � 2 FV (�)g,with a new relation vi, and i added to I(x)23



0. If x : � 2 �, the claims are empty or trivial. If x : 8� � 2 � , we have:(i) Id does not a�ect variables at all.(ii) By the choice of�0;�0, rhs(L) and � [�0=�;�0=�] contain fresh variables and variablesof FV (�) only.(iii) Variables in PV (L) = f�g do not occur in � [�0=�;�0=�] or FV (�).(iv) Since vi is the only inequation relation in L, f � vi � j � 2 FV (�) g � L ensuresthe claim.(v) For y : � 2 � with y 6= x, we have Ly = ; � FV (�), and when y = x, we havePV (Lx) = f�g � FV (8� � ).(vi) For y : � 2 � with y 6= x, we haveFV (L � Ly) \ FV (�) � f�;�0g \ FV (�) � FV (�);since FV (8� � ) \ FV (�) � FV (S�), by the assumption about �;� . For y = x, theclaim is trivial since L � Lx = ;.1. (Id ; Ti) is a solution of L, where Ti(�) = �0 for each � 2 �, and Ti(�) = � for � 2 FV (�).2. The case where x : � is in � is left to the reader. Consider x : 8�:� 2 � , where� = � (�;�; �) with � = FV (�).(ii) ) (i): Let U be a semiuin�er of L, S0 a substitution with S0 =�;� U Id and � 0 =U (� [�0=�;�0=�]). Then8S0�;S0� S0�(x) = U� (x)U� = U8��U� = 8�U�U�:Choose Ti such that (U; Ti) solves L, and let T 0i be Ti extended by [U�0=�]. SinceTiU� = U�0, TiU� = U� and T 0iU� = T 0i� = U�0, we getT 0iU� = T 0iU (� (�;�; �)) = U (� (�0;�0; �)) = � 0;so 8� U�U� � � 0, since dom(T 0i ) � �[(FV (U� )�FV (U�)). It follows that S0�;S0� S0� j�x :� 0.(i) ) (ii): Let (S0; � 0) be a typing modulo �;� . Then S0�;S0� S0� j�x : � 0 andS0� (x)S0� = S08��S0� = 8� S0�S0� � � 0:So there is T 0i with dom(T 0i ) � � [ (FV (S0� )� FV (S0�)) such that � 0 = T 0iS0� . Let Ube the restriction of S0 to FV (�;�;�;�), extended byU�0 := T 0iS0� = T 0iU� and U�0 := T 0iS0� = T 0i�:Then S0 =�;� U and� 0 = T 0iS0� = � [T 0iS0�=�; T 0i�=�; S0�=�] = U (� [�0=�;�0=�]):U is a semiuni�er of L, since T 0iU� = U�0, and also T 0iU� = U�, because T 0i does notoperate on FV (S0�).8 Recall the convention that substitutions do not a�ect bound quanti�ers.24



(c) W+exp(�;�; x) terminates with a value di�erent from fail , since we assume there is atyping assumption for x in �;� .Case W+exp(�;�; (fnx => e)) = (L; S; S�! � ),if (L�; S; � ) =W+exp(�;x : �; �; e), where � is a fresh variable, andL := (L� � f � 0 vi � 0 j � 0 vi � 0 2 L�� g)[ f vi  j � 0 vi � 0 2 L�� ;  2 FV (� 0)� (FV (S�) � FV (S�))g:0. (i) By induction, S does not a�ect FV (� )�FV (�;x : �). Since � does not occur in � ,this implies the claim.(ii) By induction, FV (rhs(L�); � ) \ FV (S� ) � FV (S�; x : S�). Since FV (rhs(L)) �FV (rhs(L�)), it remains to showFV (S�) \ FV (S� ) � FV (S�): (13)Clearly, if  2 FV (� ) \ FV (�), then FV (S�) \ FV (S) � FV (S�). So suppose� 2 FV (S�) \ FV (S) for some  2 FV (� ) � FV (�). By 0.(i), S does not a�ect� ��, hence  = S = � 2 FV (S�). But since � 6= , this means that  is a�ected, acontradiction. Thus, FV (S�) \ FV (S) = ;.(iii) By induction, PV (L�) \ FV (S�; S�; � ) = ;, and since PV (L) � PV (L�), thisgives PV (L) \ FV (S�; S�! � ) = ;.(iv) Suppose vi occurs in L and � 2 FV (S�). Then vi occurs in L�, and since L� `̀S�; x : S� vi S�; x : S�, there is � 0 with � 0 vi � 0 2 L� and � 2 FV (� 0). By de�nitionof L we have: if i =2 I(y) for all y : � 2 � , then � 0 vi � 0 2 L; otherwise, � vi � 2 L, since� 2 FV (S�).(v) With the induction hypothesis, we have PV (Ly) = PV (Ly�) � FV (S�).(vi) Let y : � 2 � . The claim follows by (13) from the induction hypothesis,FV (L� � Ly�) \ FV (S�) � FV (S�; x : S�);if we can show that FV (L � Ly) � FV (L� � Ly�). But if �1 vi �2 2 L � Ly is not inL� � Ly�, it is of the form  vi  with i 2 I(z) for some z 6= y, and in this case there is� 0 vi � 0 2 L� � Ly� with  2 FV (� 0).1. By induction, Id is a semiuni�er of L�. By the de�nition of L, every solution of L� is asolution of L.2. (ii)) (i): Let U be a semiuni�er of L with S0 =�;� US and �0 = U (S� ! � ). To show(i), we require S0�;S0� S0� j� (fnx => e) : (US�! U� ) = �0: (14)Below we will modify U to obtain9 a semiuni�er ~U of L� with~U =S�;x:(S�!�) U and ~US� ~US� = US�US�: (15)9 Suppose y 2 FV (e) where y : � 2 � and L = f� vi � ! �g with i 2 I(y), FV (S�) = f�g and� = ;. Then U = [�=�; �=�] is a semiuni�er of L, but not of L� = L [ f� vi �g.25



Since ~U is a semiuni�er of L�, the induction hypothesis gives~US�; x : ~US�; ~US� ~US�;x: ~US� j� e : ~U�:By adding some quanti�ers to strengthen ~US� ~US�;x: ~US� to ~US� ~US�, and then using(15) to replace ~U by U , we haveUS�; x : US�; US�US� j� e : U�: (16)Since S0 =�;� US, we get S0�;x : US�; S0� S0� j� e : U�;which gives (14) by an application of the typing rule for abstractions.It remains to show the existence of a semiuni�er ~U of L� satisfying (15). By assumption,U can be expanded to a solution (U; T1; : : : ; Tn) of L. If it is not a solution of L�, thereis � 0vi � 0 2 L�� and some � 2 FV (� 0)\FV (S�)�FV (S�) such that TiU� 6= U�. Hencefor some  2 FV (U�), we have Ti 6= , which implies10  2 PV (U� vi U�) for someinequation � vi � 2 L� . So  is a witness that (U; T1; : : : ; Tn) does not solvef� vi �; � vi �g resp. f� 0 vi � 0; � vi �g � L�� � L�:Modify (U; T1; : : : ; Tn) as follows. For each i with vi occuring in L� , letDi := f � 2 FV (S�) � FV (S�) j � 2 FV (� 0); � 0 vi � 0 2 L�� for some � 0 g;and let PVi(UL) be the pattern variables of UL with respect to vi. LetW :=[ fWi j vi occurs in L� g with Wi := FV (UDi) \ PVi(UL� );be the set of variables witnessing that (U; T1; : : : ; Tn) does not solve L�. Since U must notbe changed on Di, we can only modify U on L� to obtain a suitable ~U with PVi( ~UL� )\FV ( ~UDi) = ;. For each  2W , let ~ be a fresh variable, and with these putS := � ~; if  2W ,; otherwise.Using Wi := ; if vi does not occur in L� , de�ne ( ~U; ~T1; : : : ; ~Tn) by~U� = �U�; if � =2 PV (L� );SU�; else,~Ti0 = 8<:Ti; if 0 � S for some  2W ,0 if 0 2Wi,Ti0; else.Since, by induction hypothesis 0.(iii), PV (L�) \ FV (S�; S�; � ) = ;, we have~U =S�;x:(S�!�) U: (17)10 else we could change Ti on  26



To show that ( ~U; ~T1; : : : ; ~Tn) solves L�, pick �vi � 2 L�. By induction hypothesis 0.(v),FV (�) \ PV (L� ) � FV (rhs(L�)) \PV (L�� ) = ;and hence ~U� = U� by de�nition. If � vi � 2 L� � L�� , then, by induction hypothesis0.(v), PV (L� ) \ FV (�) � PV (L�� ) \ FV (�) = ;, so~U� = U�; SW \ FV (U�) = ; = Wi \ FV (U�);and thus ~Ti ~U� = ~TiU� = TiU�. Since (U; T1; : : : ; Tn) solves L � L��L�� , we also haveTiU� = U� = ~U�, which shows that ( ~U; ~Ti) solves � vi �.If � vi � 2 L�� \ L� , again we have TiU� = U�, and it remains to show~Ti ~U� = TiU� for each � 2 FV (�):If � =2 PVi(L), then since � vi � 2 L� is semiuni�ed by Id , according to claim 1., atthe same positions where � occurs in � it also occurs in �. This implies ~U� = U�, soSW\FV ( ~U�) = ;, and TiU� = U�, so FV (U�)\PVi(UL� ) = ; and FV (U�)\Wi = ;.Therefore, ~Ti ~U� = ~TiU� = TiU�.If � 2 PVi(L), then ~Ti ~U� = ~TiSU� = TiU� since Wi \ FV (SU�) = ;.Finally, if � vi � 2 L�� � L� , it has the form � 0 vi � 0, and ~U� 0 = U� 0 contains none ofthe fresh variables of SW . Suppose � 2 FV (� 0). If � vi � 2 L� , then FV (U�) \Wi �FV (U�) \ PVi(UL� ) = ;, whence~Ti ~U� = ~TiU� = TiU� = U� = ~U�:If �vi� =2 L� , then � 2 FV (S�)�FV (S�) and so � 2 Di . We check ~Ti ~U� = ~U� (= U�).For 0 2 FV (U�) \Wi we have ~Ti0 = 0 (6= Ti0!), and for 0 2 FV (U�)�Wi we have~Ti0 = Ti0 = 0, since 0 was not in PVi(UL� ). This showed ~Ti ~U� 0 = U� 0 = ~U� 0.Since ( ~U; ~T1; : : : ; ~Tn) solves L�, we now know that ~U is a semiunifer of L�.To �nish the proof of (15), we show~US� ~US� = US�US�:Since ~U =S� U , on both sides the type variables universally quanti�ed are those not inUS�. We only have to care about � 2 FV (S� ) � FV (S�; S�; � ) with ~U� 6= U�. Inthis case, � 2 PV (L� ), and there is  2 FV (U�) � FV ( ~U�) that has been renamed toa fresh ~ in ~U�, whence for some i, 2 FV (UDi) \ PVi(UL� ):Then vi is in L� , which, by induction hypothesis 0.(iv), contains some � 0(�; : : :) vi� 0(�; : : :) for each � 2 FV (S�). Hence FV (US�)\PVi(UL� ) = ; and so  =2 FV (US�).It follows that fresh variables ~ of ~US� occur in ~U� for � 2 FV (S� ) � FV (S�) only,and hence ~US�US� = (: : :8~ : : :) ~US� = (: : :8 : : :) US� = US�US�27



are equal up to renaming of bound variables.(i) ) (ii): Suppose for some (S0; � 0), we have S0�;S0�S0� j� (fnx => e) : � 0. By thetyping rule for function expressions, there are monotypes �1; �2 withS0�; x : �1; S0�S0� j� e : �2 and � 0 = �1 ! �2:We may assume that S0� S0� = S0�S0�;x:�1 up to renaming of bound variables, becauseFV (S0� ) � FV (S0�) could be renamed to make it disjoint from FV (�1) � FV (S0�).Since � was fresh, we may also assume S0� = �1, so thatS0�; x : S0�; S0�S0�;x:S0� j� e : �2:By induction, there is a semiuni�er U of L�, hence of L, with S0 =�;x:�;� US and�2 = U� . So U is a semiuni�er of L withS0 =�;� US and � 0 = U (S�! � ):(c) Suppose (fnx => e) is ML+-typable modulo �;� . Then there are (S; � ) such thatS�; S�S� j� (fnx => e) : � :By the typing rule for function expressions, � = �1 ! �2 andS�; x : �1; S�S� j� e : �2:Since by renaming of bound variables, we may assume FV (� ) \ FV (S� ) � FV (S�), wehave S�; x : �1; S�S�;x:�1 j� e : �2:Hence for fresh �, e is typable modulo �;x : �; � . By induction, W+exp(�;x : �; �; e) is atriple (L�; S�; ��). By the de�nition of W+exp, it follows that W+exp(�;� (fnx => e)) returns(L�� ; S�; S��! ��) for some L�� � L�.Case W+exp(�;�; e1 � e2) = (US2L1 [ UL2; US2S1; U�)if (L1; S1; �1) =W+exp(�;�; e1)(L2; S2; �2) =W+exp(S1�;S1�; e2)U = mgu(S2�1; �2 ! �), where � is a fresh variable.0. (i) By induction, S1 does not a�ect variables of FV (� )�FV (�) and S2 does not a�ectFV (S1� )�FV (S1�). By Proposition 13 (i), S2S1 does not a�ect FV (� )�FV (�). Toshow that US2S1 does not a�ect FV (� )� FV (�), it remains to show that U does nota�ect FV (S2S1� )� FV (S2S1�). Note that U a�ects only variables in FV (S2�1; �2; �)and we need not consider � =2 FV (S2S1� )�FV (S2S1�). By induction hypothesis 0.(ii),FV (�1) \ FV (S1� ) � FV (S1�); FV (�2) \ FV (S2S1� ) � FV (S2S1�):28



Since S2 does not a�ect FV (S1� )� FV (S1�), by Proposition 13 (ii) we haveFV (S2�1) \ FV (S2S1� ) � FV (S2S1�):Hence, variables of FV (S2S1� ) � FV (S2S1�) are not in FV (S2�1; �2) and thus nota�ected by U .(ii) From the induction hypothesis for e1 we haveFV (rhs(L1); �1) \FV (S1� ) � FV (S1�);from which, using hypothesis 0.(i) for e2, Proposition 13 (ii) givesFV (rhs(S2L1); S2�1) \FV (S2S1� ) � FV (S2S1�):By the induction hypothesis for e2, we haveFV (rhs(L2)) \ FV (S2S1� ) � FV (S2S1�):Since U does not a�ect FV (S2S1� )� FV (S2S1�) we therefore haveFV (rhs(US2L1 [ UL2); US2�1) \FV (US2S1� ) � FV (US2S1�);by Proposition 13 (ii). The claim follows since U� is a subterm of US2�1.(iii) By the induction hypothesis for e1,PV (L1) \ FV (S1�; �1) = ;: (18)By the construction of S2 we may assume that all variables of L1 that are a�ected byS2 belong to FV (S1�;S1� ), and by induction hypothesis 0.(i) for e2, they must belongto FV (S1�). Because of (18) then, S2 does not a�ect PV (L1) at all. By Lemma 12 andinduction hypothesis 1 for e1, S2L1 holds and PV (S2L1) = PV (L1). Hence, since S2does not a�ect PV (L1), PV (S2L1) \ FV (S2S1�;S2�1) = ;; (19)using (18) again. By the induction hypothesis for e2,PV (L2) \ FV (S2S1�; �2) = ;: (20)Since L2 holds by induction hypothesis 1. for e2, and S2L1 and L2 have no inequationrelations in common, L := S2L1[L2 holds. We claim that U does not a�ect PV (L). Byour choice of mgu, U = mgu(S2�1; �2 ! �) only a�ects variables in FV (S2�1; �2; �). By(19), (20) and since � was fresh, it is su�cient to showFV (S2�1) \ PV (L2) = ; = FV (�2) \ PV (S2L1):Note that by the construction of �2 and S2 from S1�;S1� , we may assumeFV (�2) \ FV (S2L1) � FV (S2S1�;S2S1� ):29



Since FV (�2) \ FV (S2S1� ) � FV (S2S1�) by induction hypothesis 0.(ii) for e2, from(19) we obtain FV (�2) \ PV (S2L1) = ;.By the construction of L2 and S2, we may assume that a variable � 2 FV (�1) �FV (S1�;S1� ) does not occur in L2 and is not a�ected by S2, whence FV (S�) \PV (L2) = ;. For � 2 FV (�1) \ FV (S1�;S1� ) we have � 2 FV (S1�) by inductionhypothesis 0.(ii) for e1, and then FV (S�) \ PV (L2) = ; by (20). Hence FV (S2�1) \PV (L2) = ;.Having shown that U does not a�ect PV (L), by Lemma 12 we conclude that UL holds,which proves claim 1, and that PV (UL) = PV (L): Since U does not a�ect PV (L), from(19), (20) and � =2 FV (L) we get the claim,PV (UL) \ FV (US2S1�;U�) = ;:(iv) Let L := S2L1 [ L2 again and v occur in UL and � 2 FV (US2S1�). Then voccurs either in L1 or in L2. Suppose v occurs in L1. There is �1 2 FV (S1�) such that� 2 FV (US2�1). Since, by induction, L1 `̀ S1� v S1�, there is �1 with �1 2 FV (�1)and �1 v �1 2 L1. Hence for � 0 := US2�1 we have � 2 FV (� 0) and � 0 v � 0 2 US2L1. Thecase when v occurs in L2 is similar. This shows that UL `̀ US2S1�v US2S1�.(v) Let y : � 2 � . We have PV (Ly1) � FV (S1�) by the induction hypothesis fore1, and since S2 does not a�ect PV (L1), this implies PV (S2Ly1) � FV (S2S1�). SincePV (Ly2) � FV (S2S1�) by the induction hypothesis for e2, for L := S2L1 [ L2 andS := S2S1 we get PV (Ly) = PV (S2Ly1) [ PV (Ly2) � FV (S�):Since U does not a�ect the pattern variables of L, the claim follows by Proposition 13.(vi) Again, let y : � 2 � , L := S2L1 [ L2 and S := S2S1. Since U does not a�ectF (S� )� FV (S�), it is su�cient to showFV (L � Ly) \FV (S�) � FV (S�):Note that since L1 and L2 have no inequation relation in common,L� Ly = (S2L1 � S2Ly1) [ (L2 � Ly2);so we show the claim for each summand. By the induction hypothesis for e1,FV (L1 � Ly1) \ FV (S1�) � FV (S1�):Since, by hypothesis 0.(i) for e2, S2 does not a�ect FV (S1�)� FV (S1�),FV (S2L1 � S2Ly1) \ FV (S�) � FV (S�):By the induction hypothesis for e2, we also haveFV (L2 � Ly2) \ FV (S�) � FV (S�):30



1. This has been shown in the proof of 0.(iii).2. By induction on the two calls of W+exp, we have:e1) For each (S0; � 01), the following are equivalent:(i) S0�;S0�S0� j� e1 : � 01,(ii) for some semiuni�er U1 of L1, S0 =�;� U1S1 and � 01 = U1�1.e1) For each (S0; � 02), the following are equivalent:(i) S0S1�;S0S1�S0S1� j� e2 : � 02(ii) for some semiuni�er U2 of L2, S0 =S1�;S1� U2S2 and � 02 = U2�2.(i) ) (ii): Suppose for some (S0; �), that S0�;S0� S0� j� e1e2 : �. By the typing rule forapplication expressions, for some � 02 we haveS0�;S0� S0� j� e1 : � 02 ! � and S0�;S0� S0� j� e2 : � 02:By the induction hypothesis for e1 there is a semiuni�er U1 of L1 withS0 =�;� U1S1 and � 02 ! � = U1�1and by the one for e2 there is a semiuni�er U2 of L2 withU1 =S1�;S1� U2S2 and � 02 = U2�2:Since we may assume that FV (L1) \ FV (L2) � FV (S1�;S1� ), and the typing of e2does not envolve FV (�1)�FV (S1�), we can extend U2S2 to the variables of L1 and �1such that U1 =L1;�1 U2S2:Hence U2S2�1 = U1�1 = � 02 ! � = U2�2 ! �, and since � was fresh, by puttingU2� = � we can modify U2 to a uni�er of S2�1 and �2 ! �. Hence for some ~U , wehave U2 =S2�1;�2;� ~UU , and since U = mgu(S2�1; �2 ! �) only a�ects variables inFV (S2�1; �2 ! �), we can assume U2� = ~UU� for all variables. Therefore,S0 =�;� U1S1 =�;� U2S2S1 =�;� ~UUS2S1 and ~UU� = U2� = �:It remains to be shown that ~U is a semiuni�er of US2L1 [ UL2. As we saw,~UUS2L1 = U2S2L1 = U1L1 and ~UUL2 = U2L2hold, so ~U is a semiuni�er of both US2L1 and UL2. Since L1 and L2 have no inequationrelations in common, ~U is a semiuni�er of their union.(ii)) (i): Suppose ~U is a semiuni�er of US2L1[UL2, �2 = ~UU� and S0 =�;� ~UUS2S1.Note that U2 := ~UU is a semiuni�er of L2 and U1 := U2S2 = ~UUS2 is a semiuni�er ofL1. Hence by the induction hypotheses for e1 and e2 we haveU2S2S1�;U2S2S1�U2S2S1� j� e2 : U2�2; U1S1�;U1S1�U1S1� j� e1 : U1�1:Since U1�1 = ~UUS2�1 = ~U (U�2 ! U�) = U2�2 ! U2�, the typing rule for applicationexpressions can be applied and gives~UUS2S1�; ~UUS2S1� ~UUS2S1� j� e1e2 : ~UU�;which establishes the claim. 31



3. This is proved similar to the case for let d in e end.Case W+exp(�;�; let d in e end) = (S2L1 [L2; S2S1; �)if (L1; S1; fx : �g) =W+dec(�;�; d)(L2; S2; �) =W+exp(S1�;S1�; x : �; e)0. (i) By induction, S1 does not a�ect FV (� )�FV (�) and S2 does not a�ect FV (S1�; x :�) � FV (S1�). Proposition 13 gives the claim.(ii) By induction on d, FV (rhs(L1); �)\FV (S1� ) � FV (S1�). Note that, in particular,for each y : � 2 � we have FV (S1�) \ FV (� ) � FV (S1�);so that {together with 0.(i){ the extended environment S1�;S1�; x : � ful�lls the as-sumption for applyingW+exp to e. Hence, the induction hypothesis for e gives FV (rhs(L2); �)\FV (S2S1� ) � FV (S2S1�). Using Proposition 13, we can combine the induction hy-potheses to obtainFV (rhs(S2L1 [ L2); �) \ FV (S2S1� ) � FV (S2S1�):(iii) We �rst show that S2 does not a�ect PV (L1). All variables of L1 a�ected by S2belong to FV (S1�;S1�; �). By hypothesis 0.(i) for e, S2 does not a�ect FV (S1�; x :�) � FV (S1�), and by hypothesis 0.(iii) for d,PV (L1) \FV (S1�) = ;;so S2 does not a�ect PV (L1) at all. We can now prove the claimPV (S2L1 [ L2) \ FV (S2S1�; �) = ;:By the induction hypothesis 0.(iii) for d, PV (L1)\FV (S1�) = ;, and since S2 does nota�ect PV (L1), this gives PV (S2L1) \FV (S2S1�) = ;:For PV (S2L1) \ FV (�), note that by hypothesis 0.(ii) for e,FV (�) \ FV (S2S1�; S2� ) � FV (S2S1�):Since FV (�) \ PV (S2L1) � FV (�) \ FV (S2S1�;S2S1�; S2�), we getPV (S2L1) \FV (S2S1�; �) = ;:By the induction hypothesis for e, we also have PV (L2)\FV (S2S1�; �); and the claimis proven.(iv) Use the induction hypotheses 0.(iv) for d and e, similar as for e1 � e2.32



(v) Suppose y : � 2 � . Let S := S2S1 and L := S2L1 [ L2. By induction on d,PV (Ly1) � FV (S1�), and since S2 does not a�ect PV (L1), this impliesPV (S2Ly1) � FV (S2S1�):On the other hand, by induction on e we have PV (Ly2) � FV (S2S1�), and the claimPV (Ly) � FV (S�) follows.(vi) Suppose y : � 2 � , and let S := S2S1 and L := S2L1 [ L2. Since L1 and L2 haveno inequation relation in common,L� Ly = (S2L1 � S2Ly1) [ (L2 � Ly2):By the induction hypotheses for d,FV (L1 � Ly1) \ FV (S1�) � FV (S1�);and since, by hypothesis 0.(i) for e, S2 does not a�ect FV (S1� )� FV (S1�),FV (S2L1 � S2Ly1) \ FV (S�) � FV (S�):By the induction hypothesis for e, we also haveFV (L2 � Ly2) \ FV (S�) � FV (S�):The claim FV (L� Ly) \ FV (S�) � FV (S�) is shown.1. By induction, L1 and L2 hold. Since {as shown above{ S2 does not a�ect PV (L1), byLemma 12, S2L1 holds. Since L2 and S2L1 have no inequation relations in common,S2L1 [ L2 holds.2. Let � = 8�� . From the recursive calls to W+, by induction we haved) For each (S0; fx : �g), the following are equivalent:(i) (S0; fx : �g) is a typing of d modulo �;�(ii) for some semiuni�er U1 of L1, S0 =�;� U1S1 and � = U1�U1S1�e) For all (S0; �0), the following are equivalent:(i) (S0; �0) is a typing of e modulo S1�;S1�; x : �(ii) for some semiuni�er U2 of L2, S0 =S1�;S1�;x:� U2S2 and �0 = U2�.(i) ) (ii): Suppose (S0; �0) is a typing of let d in e end modulo �;� . According to thetyping rule for let-expressions, for some x : � we haveS0�;S0� S0� j�d : fx : �g and S0�;S0�S0�; x : � j� e : �0:By the induction hypothesis for d, there is a semiuni�er U1 of L1 withS0 =�;� U1S1 and � = U1�U1S1�:33



The typing for e can hence be written asU1S1�;U1S1�U1S1�; x : U1�U1S1� j� e : �0:Of course we can strengthen the assumption x : U1�U1S1� to x : U1�U1S1�. Then, by theinduction hypothesis for e, there is a semiuni�er U2 of L2 withU1 =S1�;S1�;x:� U2S2 and �0 = U2�:It follows that S0 =�;� U1S1 =�;� U2S2S1. Because FV (L1)\FV (L2) � FV (S1�;S1�; �),we can modifyU2 on FV (S2L1)�FV (S2S1�;S2S1�S2� ) so that U2S2L1 = U1L1. ThenU2 is a semiuni�er of both L2 and S2L1, and since these have no ineqaution relations incommon, U2 is a semiuni�er of S2L1 [ L2.(ii) ) (i): Let U2 be a semiuni�er of S2L1 [ L2 with S0 =�;� U2S2S1 and �0 = U2�.Then U1 := U2S2 is a semiuni�er of L1, and by the induction hypothesis for d we haveU1S1�;U1S1�U1S1� j� d : fx : U1�U1S1�g:By the induction hypothesis for d also, FV (� ) � FV (S1�)[spec(S1�;L1). If we modifythe semiuni�er U1 as in Lemma 15, we get the stronger typingU1S1�;U1S1�U1S1� j� d : fx : U1�U1S1�g: (21)Since U2 is also a semiuni�er of L2, by the induction hypothesis for e we obtain that(U2S2; �0) = (U1; �0) is a typing of e modulo S1�;S1�; x : � , i.e.U1S1�;U1S1�U1S1�; x : U1�U1S1� j� e : �0: (22)An application of the typing rule for let-expressions to (21) and (22) givesU1S1�;U1S1�U1S1� j�let d in e end : �0:Since U1S1 =�;� S0, this shows that (S0; �0) is a typing of let d in e end modulo �;� .(c) Suppose let d in e end is typable modulo �;� . Then there are S0 and �0 such thatS0�;S0�S0� j�let d in e end : �0:By the typing rule for let-expressions, there is a polytype � withS0�;S0�S0� j� d : fx : �g and S0�;S0�S0�; x : � j� e : �0;where FV (�) � FV (S0�;S0�S0�) = FV (S0�). By induction on d,W+dec(�;�; d) = (L1; S1; fx : �g)for some L1; S1 and � = 8� � . By 2.(ii), there is a semiuni�er U of L1 such thatS0 =�;� US1 and � = U�US1�:34



Since we now have US1�;US1�US1�; x : U�US1� j� e : �0;e is typable modulo S1�;S1�; x : � , and since � � � , also modulo S1�;S1�; x : � . Byinduction, W+exp(S1�;S1�; x : � ; e) = (L2; S2; �)for suitable L2; S2; �. The claim follows by de�nition of W+exp(�;�; let din e end).Case W+dec(�;�; val rec f = e) = ( ~U (L[�=�]); ~US; ff : 8� ~U�g)if (L; S; � ) =W+exp(�;�; f : �; e), with � fresh,~U = mgsu(L[�=�])� = FV ( ~U� )� FV ( ~US�)� spec( ~US�; ~U (L[�=�]))0. (i) By induction, S does not a�ect FV (�; f : �)�FV (�), whence by Proposition 13 it issu�cient to show that ~U does not a�ect FV (S� )�FV (S�). Since mgsu(L[�=�]) doesnot trivially rename variables of L[�=�], by Lemma 14 it su�ces to show that variablesof FV (S� )� FV (S�) do not occur in rhs(L[�=�]).Since � is not a�ected by S, it is not in FV (S�). Hence by induction hypothesis 0.(ii),� = S� 2 FV (S�; f : �) also cannot be in FV (rhs(L)). So rhs(L) = rhs(L[�=�]), andby induction hypothesis 0.(ii),FV (rhs(L[�=�]))\ FV (S� ) = FV (rhs(L)) \ FV (S� ) � FV (S�):(ii) By induction, FV (rhs(L); � ) \ FV (S�; f : S�) � FV (S�), and since rhs(L) =rhs(L[�=�]), this extends toFV (rhs(L[�=�]); � )\ FV (S� ) � FV (S�):Since ~U does not a�ect FV (S� )� FV (S�), by Proposition 13 we getFV (rhs( ~U (L[�=�])); ~U� ) \ FV ( ~US� ) � FV ( ~US�):(iii) By claim 1., there are residual substitutions (T1; : : : ; Tn) such that (Id ; T1; : : : ; Tn)solves ~U (L[�=�]). So for each i and each � 2 FV ( ~US�), �vi � 2 ~U (L[�=�]) is solved by(Id ; Ti), i.e. Ti� = � is not a pattern variable with respect to Ti. This showedPV ( ~U (L[�=�]))\ FV ( ~US�) = ;: (23)(iv) Suppose vi occurs in ~U (L[�=�]) and � 2 FV ( ~US�). Then vi occurs in L, andthere is �0 2 FV (S�) such that � 2 FV ( ~U�0). By induction, there is � 0 vi � 0 2 L with�0 2 FV (� 0). Note that � 0 vi � 0 2 L[�=�], since � =2 rhs(L) as shown under 0.(i). Hence~U� 0 vi ~U� 0 2 ~U (L[�=�]) and � 2 FV ( ~U� 0).(v) Suppose y : � 2 � . By induction hypothesis 0.(vi) for e,FV (L � Lf ) \ FV (S�) � FV (S�);35



and since by hypothesis 0.(i) for e, S does not a�ect FV (�; f : �)� FV (�), this showsthat � = S� does not occur in L � Lf . Hence, since y 6= f , we have � =2 FV (Ly) andtherefore ~U (L[�=�])y = ~U (Ly[�=�]) = ~U (Ly).To show PV ( ~U (L[�=�])y) � FV ( ~US�);we look at PV (Ly). By the induction hypothesis and 0.(iii) for e, we havePV (Ly) � FV (S�)� FV (S�);and since ~U does not a�ect FV (S� )�FV (S�), it does not a�ect PV (Ly). By Lemma12 and Lemma 14, we getPV ( ~U (L[�=�])y) = PV ( ~U (Ly)) = ~U (PV (Ly))� FV ( ~US�)� FV ( ~US�) � FV ( ~US�):(vi) Suppose y : � 2 � . Since~U (L[�=�])� ~U (L[�=�])y = ~U ((L � Ly)[�=�]));it is su�cient to showFV ( ~U ((L� Ly)[�=�]))\ FV ( ~US�) � FV ( ~US�): (24)By the induction hypothesis and 0.(ii) for e,FV (L � Ly ; � )\ FV (S�) � FV (S�);and since ~U does not a�ect FV (S� ) � FV (S�), this gives (24).1. Since ~U is a semiuni�er of L[�=�], ~U(L[�=�]) is solved, i.e. has Id as a semiuni�er.2. By the induction hypothesis, for all (S0; � 0) the following are equivalent:(i) S0�;S0� S0�; f : S0�S0� j� e : � 0(ii) for some semiuni�er U 0 of L, S0 =�;�;f :� U 0S and � 0 = U 0� .(i)) (ii): Let (S0; ff : �g) be a typing of valrec f = e modulo �;� . By the typing rulefor polymorphic recursion, there is a monotype � 0 withS0�;S0� S0�; f : � j� e : � 0 and � = � 0S0�:Since � did not occur in �;� and we can assume that it does not occur in the range ofS0, we may modify S0 so that S0� = � 0. Then (S0; � 0) is a typing of e modulo�;�; f : �.By induction, there is a semiuni�er U 0 of L such thatS0 =�;�;f :� U 0S and � 0 = U 0�:Since S� = � by hypothesis 0.(i), one has U 0� = U 0S� = S0� = � 0 = U 0� , andhence U 0 is a semiuni�er of L[�=�]. Its most general semiuni�er ~U is a factor of U 0, i.e.U 0 =L[�=�] U ~U for some U . 36



If f 2 FV (e), then � occurs in L, so U 0� = U ~U� and L contains some vi with i 2 I(f).Since L `̀ S� vi S� by induction hypothesis 0.(iv), each � 2 FV (S�) occurs in aninequation of L[�=�]. This gives U 0 =S� U ~U and henceU 0�U 0S� = U ~U�U ~US�:By our choice of mgsu we can assume that ~U does not a�ect FV (S� ) � FV (L[�=�]),and hence that U 0 =S� U ~U as well. Because U ~U is a semiuni�er of L[�=�], we havefound a semiuni�er U of ~U (L[�=�]) such thatS0 =�;� U ~US and � = � 0S0� = U 0�U 0S� = U ~U�U ~US�: (25)If f =2 FV (e), then � does not occur in L, so L = L[�=�] and hence ~U = Id by inductionhypothesis 1. Then U 0 is a semiuni�er U of ~U (L[�=�]) = L satisfying (25). Hence (ii)holds.(ii)) (i): Let U be a semiuni�er of ~UL[ ~U�=�] such that � = U ~U�U ~US� and S0 =�;� U ~US.Then U 0 := U ~U is a semiuni�er of L[�=�]. From induction hypotheses 0.(i) and 0.(ii)it follows that � =2 FV (� ) [ FV (S�; S�), and so � and S0 restricted to FV (�;� )remain unchanged when modifying U 0 and S0 on �. Hence, rede�ning U 0� := U 0� andS0� := U 0S�, U 0 is a semiuni�er of L with S0 =�;�;f :� U 0S. By the induction hypothesis,S0�;S0�S0�; f : S0�S0� j� e : U 0�:Since, by induction hypothesis 0.(i), S� = � and therefore S0� = U 0S� = U 0� = U 0� ,we get S0�S0� = U 0�S0� = U 0�U 0S� = �, and soS0�;S0�S0�; f : � j� e : U 0� and � = U 0�S0�:By the typing rule for recursive declarations, it follows that (S0; ff : �g) is a typing ofvalrec f = e modulo �;� .(c) Suppose val recx = e is typable modulo �;� . Then there are S0 and � 0 withS0�;S0�S0� j� valrecx = e : fx : � 0g:By the (polymorphic) typing rule for (rec), � 0 = � 0S0� andS0�;S0� S0�; x : � 0S0� j� e : � 0:Hence for fresh � we can assumeS0�;S0� S0�; x : S0�S0� j� e : � 0:By induction, there are L; S and � such thatW+exp(�;�; x : �; e) = (L; S; � ):37



By 2.(ii), there is a semiuni�er U of L withS0 =�;� US and � 0 = U�;which is a semiuni�er of L[�=�], as was shown in proving 2.(ii) from 2.(i). By our assumptionabout mgsu, we have mgsu(L[�=�]) = ~U 6= fail , and hence W+dec(�;�; val recx = e) =( ~U (L[�=�]); ~US; 8� � ) for suitable �.5 Appendix5.1 Curry-style type inference for polymorphic recursionOur algorithmW+ is intended to be implementable as a modi�cation of existing compilersfor SML, which are based on Milner'sW . For comparison, we sketch the ML+-type inferencemethods that follow from Henglein[5] and Kfoury[12] characterizations of ML+-typability inCurry's style. The paper most directly concerned with ML+ is Henglein's. As it contains asubstantial error, we �rst sketch a correction.Henglein translates the Milner-Mycroft calculus into a syntax-directed calculus, which is theone given in Figure 1 above except that he uses rec-expressions rather than declarations,with the typing rule (equivalent to)(PolyRec) � [ fx : �� g j� e : � ; �� � �� j� (recx = e) : �To obtain a quanti�er-free description of Milner-Mycroft-typability, an environment � isrepresented by (� 0;�), where � 0 is � with all type quanti�ers removed, and � a sequence oftype variables such that FV (� ) = FV (� 0) \�. For each expression e, he de�nes a systemof equations and inequations, SEI (� 0;�; e) as in Figure 4.It is then claimed that (Corollary 8 of [5]) when (� 0;�) represents � ,� `ML+ e : � for some �; � () SEI(� 0;�; e) has a semiuni�er. (26)As remarked eralier, this is wrong, since the clause for typing a variable does not take thecontext of its binding position into account { which is needed for occurrences of recursionvariables. 11 This can be seen from the fact that this context occurs in the constraintsmotivated from the typing rule (See section 2, (2)).A correction is most easily obtained by revising the notion of environment, so that both(a) scope relations between variable bindings and (b) the di�erence between monomorphic�-bindings and polymorphic rec/let-bindings can be recovered from an environment.Let a scoped (quanti�er-free) environment � contain statements �x : � , for free variablesof e that are considered �-bound, and statements x : � for variables x considered rec-or let-bound in a global term containing e. Let � be a list of such assumptions, linearly11 The statement of Theorem 4 in [5], from which the corollary is derived, also is wrong, even forapplicative expressions like x � 0, since the substitution is not applied to the context.38



SEI (� 0; �; x) = (f� 0(x)v �x; �v �g; �x);where �x; v is freshSEI (� 0; �; letx = e ins end)= (Le [ Ls [ f�x = �e; �s = �letg; �let);where �x; �let is fresh;(Le; �e) = SEI (� 0; �; e);(Ls; �s) = SEI (� 0 [ fx : �xg; �; s);SEI (� 0; �; recx = e)= Le [ f�x = �e; �e v �rec; � v �g; �rec)where �x; �rec; v is fresh;(Le; �e) = SEI (� 0 [ fx : �xg; �; e):SEI (� 0; �; �x:e) = (Le [ f�x ! �e = ��g; ��);where �x; �� is fresh;(Le; �e) = SEI (� 0 [ fx : �xg; (�;�x); e);SEI (� 0; �; s � t) = (Ls [ Lt [ f�t ! �st = �sg; �st);where �st is fresh;(Ls; �s) = SEI (� 0; �; s);(Lt; �t) = SEI (� 0; �; t);Fig. 4. Henglein's constraints in Curry-styleordered by �� from left to right, corresponding to decreasing scope of the respective bindingoperators in the global term. A new assumption x : � (with smallest scope) is appended to� at the end, yielding � ;x : � .If �x : � 2 � is an assumption for a �-bound variable, then the constraints L, de�ned viaSEI (�; x) = (L;�x) when typing an occurrence of x, contain � v �x and � v � , which isequivalent to the constraint � = �x. Hence �-bound variables get monomorphic types.If x : � 2 � is an assumption for a rec- or let-bound variable, the constraints de�nedfor an occurrence of x only say that � v �x and � v � for each �-bound variable y : �having wider scope than x. (For rec- or let-bound variables y with wider scope than x, weneed not demand � v �, since type variables of � will be suitably quanti�ed in the contextS��S� .)Let S��S� be the ML+-environment obtained from a scoped environment � and a substi-tution S as the set of the following typing assumptions:(i) every �x : � in � is replaced by �x : S� , and(ii) every x : � in � is replaced by x : S� �S�;x, where x : S��S�;x is obtained from S� by39



SEI (�; x) = (f� v �x; �v �g; �x);where �x; v is fresh;� = f � j �y : � �� (�)x : � gSEI (�; �x:e) = (Le [ f�x ! �e = ��g; ��);where �x; �� is fresh;(Le; �e) = SEI (� ; �x : �x; e);SEI (�; s � t) = (Ls [ Lt [ f�t ! �st = �sg; �st);where �st is fresh;(Ls; �s) = SEI (�; s);(Lt; �t) = SEI (�; t);SEI (�; letx = e in s end)= (Le [ Ls [ f�x = �e; �s = �letg; �let);where �x; �let is fresh;(Le; �e) = SEI (�; e);(Ls; �s) = SEI (� ; x : �x; s);SEI (�; recx = e)= (Le [ f�x = �e; �e v �rec; �v �g; �rec)where �x; �rec; v is fresh;(Le; �e) = SEI (� ; x : �x; e);� = f � j �y : � in �: gFig. 5. Constraints in Curry-style for scoped environmentsuniversally quantifying all its type variables not in[ fFV (S�) j �y : � �� x : � g:This modi�cation of Henglein's algorithm is correct in the following sense:Theorem16. Let � be a scoped environment, e an expression and (L;�e) = SEI (�; e). Forany substitution S,S� �S� `ML+ e : � () S is a semiuni�er of L and � = S�e: (27)Proof (Sketch) We skip the case of variables(!) and only consider the case of a recursiveexpression. Let (L;�rec) = SEI (�; recx = e), and (Le; �e) = SEI (� ;x : �x) with fresh �x.(=: Let S be a semiuni�er of L. Since S also is a semiuni�er of Le, by induction we haveS(� ;x : �x)�S(� ;x:�x) `ML+ e : S�e:40



Note that S(� ;x : �x)�S(� ;x:�x) = S� �S� [ fx : S�x�S�;xg:Let � := S��S� and � := S�x = S�e. Note that �� = ��S�;x, and so� [ fx : �� g `ML+ e : �:Since S solves �ev�rec and �v� for all �y : � �� x : �x (with the same residual matcher),we also have �� � S�rec. An application of the typing rule (PolyRec) gives� = S��S� `ML+ recx = e : S�rec: (28)=): Conversely, if (28) holds, by the typing rule (PolyRec) there is some � such that� [ fx : �� g `ML+ e : � and �� � S�rec:We �nd that � [ fx : �� g = S(� ;x : �x)�S(� ;x:�x);so by induction, S is a semiuni�er of Le and � = S�e. Because �� � S�rec, there is asubstitution T instantiating bound quanti�ers of �� = S�e� so that T� = TS�e = S�rec.Since the variables free in � = S��S� are mapped to themselves, we have TS� = S� foreach �y : � in � . Hence (S; T ) solve the inequations �ev�rec and �v� for �y : � in � . Fromx : �� = x : S�e� = x : S�x�S(� ;x:�x);x we also get S�x = S�e. Thus, S is a semiuni�er ofL. 2From the equivalence (27) a principal types property follows: If (L;�e) = SEI (�; e) and Uis the most general semiuni�er of L, then U�e must be a principal ML+-type of e `modulothe scoped environment � ' (in a suitable sense).To typecheck a term using an equivalence like (27), there are two ways to proceed:(i) Process the entire term �rst, compute its constraint system, �nd a most general semiuin-�er (if possible), and compute from it the principal type and environment modi�cation.This method has the drawback that type errors can hardly be localized from the fullconstraint set of the term.(ii) Process the term in a �xed order and for each subterm you meet, compute its constraintsystem, try to �nd its semiuni�er, compute its principal type and corresponding modi�-cation of the environment, and with modi�ed environment, go on to the next subterm.This method allows one to report type errors for untypable subterms, relative to theirenvironment determined by the traversal { just as it is done in ML.In the ML case, however, the solution of two subproblems can e�ciently be combined,while in the case of ML+ this is not obviously possible, due to properties of semiuni-�cation: Suppose (L1; �1) = SEI (�; e1) with S1 = mgsu(L1), for a �rst subexpression,followed by (L2; �2) = SEI (S1�; e2) with S2 = mgsu(L2). Then S1L1 is solved, but ap-plying the solution S2 of L2 might make S1L1 unsolved: S2S1 need not be a solution ofL1 (cf. remark 1 on p.8. If L1 is equational then S2S1 is a solution of L1). As a remedy,one might explicitly call mgsu to solve S2S1L1 [ S2L2. This would have the drawbackof calling the potenially expensive mgsu at every node of a term.41



These methods of type inference for polymorphic recursion follow from both Henglein[5] andKfoury e.a[12]. The most important advantage of ourW+ is the following: the complex proofof Theorem 10 shows that one can have the bene�t of localized error reports (from typingsubterms in turn as in (ii)), but that {for a particular traversal of terms{ no additional callsto mgsu as in (ii) are needed: inequational constraints have to be solved only at recursivedeclaration-subterms. Perhaps these advantages could also be obtained with an adaptionof the Curry-style approach; but then the correctness proof would probably involve thesubtleties seen in Theorem 10.Other di�erences are that we treat monomorphic and polymorphic variables (in contrast to[12]), and expressions and declarations (in contrast to [5] and [12]).5.2 A variation of W+exp exploiting scope informationOur algorithm W+ uses sets �;� of typing assumptions to represent the environment� [ ��. This has the drawback that when typing a variable occurrence of a polymor-phic assumption y : � 2 � , the monomorphic part � of the enviroment does not distinguishbetween assumptions x : � where x has wider scope than y from assumptions z : � wherez has smaller scope than y - a distinction used in the constraints for the typing rule forpolymorphic recursions. Consequently, in the var-clause of W+exp one may add constraints�z vi �z that are unnecessary, and in the �-clause therefore has to subtract some.Therefore, it seems that considering the environment as a set , though appropriate for an anal-ysis of ML-typing and {as shown above{ still possible for ML+, is not the proper approachin a Milner-style type inference procedure for ML+. Had we scope information available (forexample, by considering the environment as a list), then one might add less constraints inthe var-clause and avoid the substraction of constraints in the �-clause. The correspondingclauses of W+ would have to be replaced by:Case W+exp(�;�; x) =� (;; Id ; � ); if �(x) = � ,(L; Id ; � [�0=�;�0=�]); if � (x) = 8�� , where� = FV (8�� )� FV (�),�0 = new copies of �,�0 = new copies of �,L = f�vi �0 j � 2 �g [ f� vi � j � 2 FV (�x)g,with a new relation vi, and i added to I(x), where�x = f z : � 2 � j z has wider wider scope than x gCase W+exp(�;�; (fnx => e)) = (L; S; S�! � ),if (L; S; � ) =W+exp(�;x : �; �; e), where � is a fresh variable.Some changes in the claims of Theorem 10 seem to be necessary, in particular:1. Change �;�� by putting �� := fx : ��x j x : � 2 � g.42



2. Instantiate � (x) = 8�� by copying only � = FV (8�� )� FV (�x).Additional changes in the auxiliary claims 0.i) - 0.vi) of the main proof will be necessaryas well. Though we have not considered a modi�cation of Theorem 10 in detail, the case of�-abstractions can be expected to be much simpler.While this might lead to simpli�cations of the proof, one also needs an e�cient implementa-tion environments with scope information. Our representation of an environment by partialfunctions reects what is done in the compiler of SML of New Jersey, where type informa-tion is stored in updatable reference cells of variables. No relational information (like scopeinclusions) is directly available.5.3 Implementation detailsThe compiler of SML of New Jersey[1] proceeds in several phases. In the �rst phase, anabstract syntax tree of the term to be typed is constructed by the parser, which introducesfresh names for individual variables. Hence we can assume that free and bound variables aredisjoint and no variable is bound twice.The next phase consists of an elaboration of the abstract syntax tree; essentially, a freshtype variable �x is stored in a cell referenced by all occurrences of x.The third phase is the computation of a principal type for the given expression or declaration.While traversing the term, principal types of subterms are computed using W, as well assubstitutions of types for type variables. These substitutions are realized as updates of thetype reference cells. Note that there is no explicit set of typing assumptions maintained.Instead, the environment exists implicitly only, as the position of a subterm and the valuesof the type reference cells.Quanti�cation of type variables is controlled by their depth, an updatable attribute of typevariables. The depth of �x is set to the nesting depth of the binding position of x. When atype variable � is uni�ed with a type expression �, the depth of � and each type variable �of � is adjusted to minfdepth(�); depth(�)g.In the case of a declaration d = valx = e or d = val recx = e, quanti�cation of type variablesis realized as follows. If � is the computed principal type of e and S� its environment, weneed x : �S� as additional assumption when typing the scope of d. The context S� isavailable as the position of d in the global term and the contents of the reference cells ofvariables bound on the path to d. To �nd which of the free type variables of � have to bequanti�ed to give �S� , once simply compares their depth with the depth of the the bindingposition d of x; those with larger depth have to be quanti�ed.The type-checker of SML of New Jersey has two disjoint kinds of type variables, free andbound ones. Therefore, type quanti�ers need not be written explicitly. When a type variablehas to be quanti�ed, it is replaced be a fresh `bound' one. Instantiation of `bound' typevariables in typing an occurrence of x is done by replacing the bound variables of theassumed type x : 8� � by fresh `free' type variables �0 in � (with depth in�nity.)To implementW+, the following modi�cations have been made:43



Variables To type an occurrence of a variable x with assumption x : � in context �;� , weneed FV (� ) � FV (�), i.e. we must know which type variables occur in an assumptiontype of a monomorphic individual variable. We simply collect the assumption types of�-bound individual variables in a list, the �- or rule-bound types. On lookup in this list,the types are decomposed and replaced by the type variables they contain. Since lookupin a list is slow, a better solution would be to add an attribute to type variables; wehesitated to do so in order not to modify the SML-type of type resp. type variable.Declarations For declarations valx = e with derived type � for e in the context S�; S� ,we need to return a suitably quanti�ed typing x : � . While for ML we have � = �S�, forML+ the special type variables (those in spec(S�;L)) must not be quanti�ed. These areidenti�ed via their depth attributes. (On creating fresh copies of type variables whentyping a variable occurrence, the copy gets the same depth as its original.) Similarly forrecursive declarations, with U� and spec(US�;UL[U�=�]) instead.Inequations We use a very simple representation of an inequation constraint set: a list oftriples (�; i; � ) for � vi � . To �nd a most general semiuni�er, reduction rules (like thoseof Henglein[5]) are applied in a certain order, until the system is in a solved form thatallows one to read o� the most general semiuni�er. The treatment of inequations � vi �involves a `generalized occurs check' to exclude chains �vj : : :vk � vi � in L with somenon-variable type; this is a global, hence potentially expensive test.Although semiuni�cation is undecidable, examples where this procedure loops remainto be constructed. (The number of variables in a system may grow under reductions.)Abstraction When typing an abstraction (fnx => e) according to W+, we have to adjustthe constraint set L delivered in W+(� [ fx : �g; �; e) = (L�; S; � ). First we have toidentify the inequations of the form � vi � in L�, where i represents an occurrence of apolymorphic individual variable in the context, i.e. i 2 I(y) with some y : � 2 � . Then� vi � has to be replaced by all  vi  with  2 FV (� );  =2 FV (S�) � FV (S�).The current implementation described in Emms[3] does not perform the �rst step in thecase of abstractions properly, as was revealed when carrying out this proof. 12A proper treatment would give an additional attribute to individual variables, the nestingdepth d of their binding. This would be passed into inequations when typing variableoccurrences, giving � vi;y(d) � . If (fnx => e) has binding depth dx and d < dx, � vi;y(d) �in L� would be replaced by  vi;y(d)  for the type variables  =2 FV (S�) � FV (S�).5.4 An example of inferring a type withW+We demonstrate our implementation on an example, due to Stefan Kahrs and communicatedby Thorsten Altenkirch. The idea is to de�ne the set n-Lam of �-terms with free variablesamong v1; : : : ; vn. Since SML does not have types depending on individual terms, the numbern is coded as an n-fold iteration of a type constructor.12 It tries to identify the relevant variables through the attributes available in datatypes as they arein the compiler. It is correct at least for terms where recursive declarations occur at top level anddo not contain further declarations. 44



If type 'a represents an initial segment f1; : : : ; ng of numbers, type 'a Lift representsf1; : : : ; n+ 1g, consisting of a new element n+ 1 and old elements 1; : : : ; n:datatype 'a Lift =new | old of 'a;To de�ne a datatype 'a Lam of �-terms in v1; : : : ; vn, we need an increasing type parameter:if t's free variables are among fv1; : : : ; vn+1g, those of �vn+1:t are among fv1; : : : ; vng:datatype 'a Lam =var of 'a| app of ('a Lam) * ('a Lam)| abs of ('a Lift) Lam;To de�ne substitutions, suppose for indices k of type 'a we have �-terms f(k) whose freevariables have indices j of type 'b. The substitution of the vk by f(k) in an 'a Lam-term twould then be de�ned by bindLam f t:fun bindLam f (var x) = f x| bindLam f (app (t,u)) = app (bindLam f t,bindLam f u)| bindLam f (abs t) = abs (bindLam (liftLam f) t)and liftLam f new = var new| liftLam f (old x) = bindLam (var o old) (f x);Since bindLam is applied to the arguments f and liftLam f, which are of di�erent type, thisrecursive de�nition is untypable in SML. The following trace, extended by some comments,shows how the typesbindLam = fn : ('a -> 'b Lam) -> 'a Lam -> 'b LamliftLam = fn : ('a -> 'b Lam) -> 'a Lift -> 'b Lift Lamare inferred by our extended type checker for SML+. To simplify the presentation, in weomit the case of applications.For the constructors, SML+ infers a context Gamma.Phase 1: From unknown polytype assumptions, infer approximate type kernels and inequa-tion constraintsW+(Delta,Gamma+{ bindLam :'a_bind, liftLam :'a_lift },(body_bind,body_lift)) = (S, L, (tau_bind,tau_lift)),where
45



S = Id on assumed types,L = ('a_bind <18 ('X -> 'X Lift Lam)-> 'W -> 'V Lift Lam)('a_lift <7 ('Z -> 'Y Lam) -> 'T)('a_bind <6 'T -> 'Z Lift Lam -> 'Y Lift Lam)tau_bind = ('Z -> 'Y Lam) -> 'Z Lam -> 'Y Lamtau_lift = ('U -> 'W) -> 'U Lift -> 'V Lift LamPhase 2: Solve L[tau_bind/'a_bind, tau_lift/'a_lift](('Z -> 'Y Lam) -> 'Z Lam -> 'Y Lam<18 ('X -> 'X Lift Lam) -> 'W -> 'V Lift Lam)(('U -> 'W) -> 'U Lift -> 'V Lift Lam<7 ('Z -> 'Y Lam) -> 'T)(('Z -> 'Y Lam) -> 'Z Lam -> 'Y Lam<6 'T -> 'Z Lift Lam -> 'Y Lift Lam)By decomposition to subterms:('Z <18 'X)('Y <18 'X Lift)('Z Lam <18 'W)('Y <18 'V Lift)('U <7 'Z)('W <7 'Y Lam)('U Lift -> 'V Lift Lam <7 'T)('Z -> 'Y Lam <6 'T)('Z <6 'Z Lift)('Y <6 'Y Lift)By unifying rh-sides of equal lh-sides in <18 ('X ='V):('Z <18 'V)('Y <18 'V Lift)('Z Lam <18 'W)('U <7 'Z)('W <7 'Y Lam)('U Lift -> 'V Lift Lam <7 'T) 46



('Z -> 'Y Lam <6 'T)('Z <6 'Z Lift)('Y <6 'Y Lift)By expanding 'W to 'S Lam in <18 and <7 and decomposing:('Z <18 'V)('Y <18 'V Lift)('Z <18 'S)('U <7 'Z)('S <7 'Y)('U Lift -> 'V Lift Lam <7 'T)('Z -> 'Y Lam <6 'T)('Z <6 'Z Lift)('Y <6 'Y Lift)By unifying rh-sides of equal lh-sides in <18: ('V='S)('Z <18 'S)('Y <18 'S Lift)('U <7 'Z)('S <7 'Y)('U Lift -> 'S Lift Lam <7 'T)('Z -> 'Y Lam <6 'T)('Z <6 'Z Lift)('Y <6 'Y Lift)By expanding 'T to ('Q Lift -> 'R Lift Lam) in <7, <6 and decomposing:('Z <18 'S)('Y <18 'S Lift)('U <7 'Z)('S <7 'Y)('S <7 'R)('U <7 'Q)('Z <6 'Q Lift)('Y <6 'R Lift)('Z <6 'Z Lift)('Y <6 'Y Lift) 47



By unifying rh-sides of equal lh-sides in <7 ('Z = 'Q, 'Y ='R) and removinq duplicatesin <6 we get the solved system :('Q <18 'S)('R <18 'S Lift)('U <7 'Q)('S <7 'R)('Q <6 'Q Lift)('R <6 'R Lift)The semiuni�er of the initial system is the composition of substitutions made, i.e.sU = ('Z := 'Q, 'Y :='R)o ('T := 'Q Lift -> 'R Lift Lam)o ('V := 'S) o ('W := 'S Lam) o ('X := 'V)The inferred types of bindLam,liftLam are obtained by applying sU totau_bind = ('Z -> 'Y Lam) -> 'Z Lam -> 'Y Lamtau_lift = ('U -> 'W) -> 'U Lift -> 'V Lift Lamand then generalizing relative to sU Delta,sUGamma. Hence:bindLam = fn : ('a -> 'b Lam) -> 'a Lam -> 'b LamliftLam = fn : ('a -> 'b Lam) -> 'a Lift -> 'b Lift Lam5.5 Trace of detecting an untypability withW+We give an example of a nested recursion that is untyptble in ML+. The user may choosebetween inspecting a full trace of the inequation solving and an abbreviated form. In theabbreviated form, for each recursive declaration, the inequation system before and aftersolutionis presented. The list of type variables in the inequations that occur in assumptionsof �-bound individual variables is shown as the 'rulebound' list - following the terminologyof SML where 'rules' of the form 'pattern of argument => result' can be used insteadof simple variable binding by �.Consider the following nested recursion:val rec f = fn x => let val rec g = (fn y => f y)in (g 1, g x)end;Typing the inner recursion, assuming ff:'Z, x:'Wg, gives:48



val rec g = (fn y => <exp> <exp>)initial problem('Z <2 'Y -> 'X) (* from (f:'Z y:'Y) :'X *)the rulebound: 'Wsolved system is('Z <2 'Y -> 'X)the rulebound: 'Wg:'Y -> 'X (* dec : { g:{'Y->'X} } *)Although 'Y,'X do not occur in the environment, they are not quanti�ed, since they arespecializations of the unknown poly-assumption f:'Z. However, the types 'Y,'X are in thefollowing treated as polytypes, not as monotypes.Now type the outer recursion:val rec f = (fn x => let <dec> in <exp> end)initial problem('X <7 'V) (* (g:'Y->'X x:'U):'V *)('Y <7 'U)('X <6 'T) (* (g:'Y->'X 1:int):'T *)('Y <6 int)('U -> 'T * 'V <2 'Y -> 'X)(* (fn x => let ... end): 'U -> 'T * 'V *)the rulebound:Error: extended occurs check fail in semiunifyproblem inequation('Z * 'Y <2 'X)in current system('X <7 'Y)('W <7 'V)('X <6 'Z)('W <6 int)('V -> 'Z * 'Y <2 'W -> 'X)in declaration:val rec f = (fn x => let <dec> in <exp> end)The problematioc inequation is obtained by decomposing the last one in the system. Com-bined with the �rst, the type checker detects that via 'Z * 'Y <2 'X and 'X <7 'Y, thevariable 'Y occurs as a proper 'subterm' of itself; hence the system cannot have a solutionby type expressions. 49
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