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1 IntroductionA general problem that arises in di�erent areas of computer science is the followingcombination problem: given two structures or theories, and two algorithms for ans-wering certain questions about these domains resp. theories, how can we systema-tically combine these algorithms in order to solve more general \mixed" input pro-blems over a suitable combined domain, or in the union of the theories? Many speci�cinstances of this problem have been exhaustively studied in the areas of automatedtheorem proving and constraint programming, such as combination of decision pro-cedures [NO79, Ri96, TH96], combination of algorithms to solve the word problem[DKR94, BT96], combination of uni�cation and matching algorithms [Ki85, He86,Ti86, Ye87, Ni89, Sc89, Bo93, BS92, DKR94], combination of disuni�cation algorithms[BS95a], and combination of constraints over non-free solution domains such as rationaltrees, feature-structures, non-wellfounded sets and lists [Col90, BS95b, KS96].In the meantime, general combination methods have been developed that solvemost of these problems from a theoretical point of view1 (e.g., [NO79, Sc89, BS92]).Still, these general combination methods are faced with a serious e�ciency problem:in these approaches, a mixed input problem is decomposed and transformed into twopure output problems that can be solved independently over the component theories.Typically, this reduction is based on a polynomial number of non-deterministic steps.Hence the combination algorithm introduces its own NP-complexity, disregardless ofthe complexity of the algorithms that are available for the components. Without furtheroptimizations, most methods are not really useful in practical applications. The presentresearch was started in a project where we tried to optimize the method for combininguni�cation algorithms for equational theories introduced in [BS92]. We investigatedhow structural properties of the component theories can be used to eliminate parts ofthe non-determinism of the general combination scheme. It was then natural to askthe following two questions, which give the background for this paper:� Which general properties of the component theories guarantee tractability of thecombination problem in the sense that there exists a deterministic and polynomialcombination algorithm?� Which properties of the component theories imply intractability in the sense thatthere cannot be a polynomial combination algorithm, assuming P 6= NP?Both questions are relevant for many combination problems, for this reason we shallnot restrict the discussion to the combination of uni�cation algorithms. On the otherhand it seems impossible to obtain general answers for all the combination problemsmentioned above since a common theoretical background for these problems is still1Strictly speaking, general methods only exist in the case where signatures of both components aredisjoint. In this paper, we shall not consider the non-disjoint case.2



missing. As a compromise between generality and speci�city we consider a varietyof combination problems that can be solved|ignoring technical di�erences|with thesame reduction technique. We discuss combination of uni�cation and disuni�cationalgorithms for disjoint equational theories, and we comment on combination of cons-traint solvers for simply combinable structures as described in [BS95b, KS96] in theconclusion. In each case, we shall only consider procedures that decide solvability of agiven problem.In the area of uni�cation theory, some results are known that show that both que-stions do not have trivial answers. Clearly, combination of theories does not necessarilylead to intractability: when we combine two empty (trivial) equational theories, we canstill use a linear uni�cation algorithm for the union of the two theories. In less trivial ca-ses, however, combination destroys tractability: solvability of associative-commutative-idempotent (ACI-) uni�cation problems with free constants is decidable in polynomialtime, but the problem of deciding solvability of ACI -uni�cation problems with addi-tional free function symbols (called general ACI -uni�cation) is NP-hard (see [KN91]).The same phenomenon holds for the theory ACUN of an associative-commutative andnilpotent function with unit, and for the theory ACUNh which contains in addition ahomomorphic unary function symbol (see [GN96] for formal de�nitions). These examp-les show that there cannot be a general polynomial algorithm for combining proceduresthat decide solvability of uni�cation problems, unless P equals NP. A correspondingresult for the case of algorithms that compute minimal complete sets of uni�ers modulo�nitary equational theories was recently obtained by by M. Hermann and P.G. Kolaitis[HK96], by proving intractability of the counting problem for general uni�cation in thetheory of abelian groups ( AG-uni�cation).Even with the negative results that are mentioned in these papers it remains unclearwhich formal properties of the theories under consideration lead to the observed blow-up of complexity when free function symbols are added. In the �rst part of this paperwe shall isolate such a property. A criterion is given that characterizes a class K ofequational theories where general E-uni�cation is always NP-hard. Using the criterionfor K we shall prove that general E-uni�cation is NP-hard for every regular equationaltheory E which contains an associative or a commutative function symbol. The theoriesA;C;AC and ACI represent instances of such theories. The criterion is not restrictedto the regular case, and it can also be used to give simple proofs for the fact that generalE uni�cation is NP-hard for the theories ACUN;ACUNh, and AG mentioned above.Of course the general complexity result do not depend on any assumption on thecomplexity of E-uni�cation with constants. For this reason we conjecture that for equa-tional theories E 2 K there is no polynomial procedure for combining algorithms thatdecide solvability of E-uni�cation problems (with constants) with similar decision pro-cedures for free (syntactic) uni�cation. It seems di�cult to prove this general conjectureas long as we do not make any concrete assumption on the form of the combination al-gorithm and its output problems. For this reason we consider one natural form of sucha combination procedure, and we show|assuming P 6= NP|that there cannot be a3



\polynomial optimization" of the algorithm given in [BS92] for combining E-uni�cationwith free uni�cation in the case where E 2 K.When we look for properties that guarantee tractability of combination problems,a useful idea has been introduced already in 1980 in a related context. Oppen [Op80]considered combinations of decidable theories where each component theory is givenby means of a quanti�er-free axiomatization2. He introduced the notion of a \convex"theory and showed|under some additional technical assumptions|that polynomialsatis�ability checkers for formulae in disjunctive normal form for convex theories overdisjoint signatures can be lifted to a polynomial satis�ability checker for mixed formulaein disjunctive normal form in the union of the theories.3In the second part of this paper we show that the abstract idea of convexity canbe applied to the context of combined (dis)uni�cation algorithms. Due to the complexnature of this combination problem, the appropriate notion of convexity turns out tobe more complicated than in Oppen's situation. We introduce the new concept of an L-convex equational theory. This notion refers to a constraint language L that is used todescribe sets of admissible \linear constant restrictions" for (dis)uni�cation problems.For L-convex equational theories over disjoint signatures, a deterministic treatment ofcombined (dis)uni�cation problems is always possible. We show that unitary regularand collapse-free equational theories are L-convex. If polynomial uni�cation algorithmsare available for both component theories, this leads to a polynomial algorithm fordeciding solvability of disuni�cation problems in the union of the two theories. In theconclusion we indicate how the new notion of L-convexity can be lifted to the classof simply combinable (SC-) structures introduced in [BS95b]. Polynomial combinationtechniques for solving positive constraints over feature structure domains and rationaltrees could be obtained on this basis.2 PreliminariesA signature consists of a �nite set of function symbols, each of �xed arity. Let � be asignature, and let Var denote a disjoint countably in�nite set of variables. The set of�-terms with variables in Var is de�ned as usual. With T (�;Var) we denote the freeterm algebra for the signature �. A �-substitution is an endomorphism � of T (�;Var)such that the set fx 2 Var j �(x) 6= xg is �nite. Symbols �; �; �; �, possibly withsubscripts, always denote substitutions. If � and � are substitutions, then � �� denotestheir composition, where � is applied �rst. If t is a term, then Var(t) denotes the setof variables occurring in t. The size of a term is de�ned as usual.An equational theory with signature � is a set E of equations between �-terms.With =E we denote the least congruence relation on T (�;Var) that is closed under2The signatures of the theories are assumed to be disjoint.3See the conclusion (Section 5) for a brief comparison of both problems and methods.4



substitution and contains E, and T (�;Var)= =E denotes the quotient term algebramodulo =E . An equational theory E is called consistent if x 6=E y for distinct variablesx; y 2 Var. E is called collapse-free if E does not contain an equation of the formt = x where t is a non-variable term and x 2 Var. E is regular if Var(s) = Var(t)for all equations s = t of E. For a detailled explanation of these notions and for anintroduction to equational uni�cation we refer to [BS94].Remark 2.1 The following facts can easily be proved for collapse-free (1.) respectivelyregular (2.) consistent equational theories:1. 8x 2 Var; t 2 T (�;Var) : x =E t i� t = x.2. 8x 2 Var; s; t 2 T (�;Var) : x 2 Var(s) and s =E t implies x 2 Var(t).Let E be an equational theory with signature �. An elementary E-uni�cationproblem is a �nite set  of equations between �-terms. Sometimes we shall write as a conjunction of equations. An E-uni�cation problem with constants is a �nite setof equations between (� [ �)-terms, where � is a set of \free" constants, i.e., a setof constants not occurring in �. A general E-uni�cation problem is a �nite set ofequations between (�[�)-terms, where � is a set of free function symbols of arbitraryarity. Note that each general E-uni�cation problem can be considered as an elementaryuni�cation problem in the combined theory E [ F where F denotes the free (empty)theory over the set of functions symbols �.Let  be an elementary E-uni�cation problem of the form fs1 = t1; : : : ; sn = tng.A solution (or a uni�er) of  is a �-substitution � such that �(si) =E �(ti), fori = 1; : : : ; n. It should be clear that solutions of E-uni�cation problems with constants,or solutions of general E-uni�cation problems, may use the additional free symbolsoccurring in the problem itself.An elementary E-disuni�cation problem is a �nite set  of equations and negatedequations (written in the form s 6= t) between �-terms. A solution of an elementary E-disuni�cation problem  is a �-substitution � such that �(s) =E �(t) (resp. �(s) 6=E�(t)) for all (dis-)equations s = t (resp. s 6= t) in . As in the case of uni�cationproblems, this notion can be lifted to E-disuni�cation problems with constants andto general E-disuni�cation problems in the obvious way. It should be mentioned thatwe consider here only one possible semantics for disuni�cation problems. Often theseproblems are also solved over the ground term algebra modulo E, the initial algebrafor E. For a more thourough description of disuni�cation we refer to [B�ur88, Com91].An equational theory E is unitary if every elementary E-uni�cation problem  hasa most general uni�er, i.e., a uni�er � such that for every uni�er � of  there exists asubstitution � such that �(x) =E �(�(x)) for all x 2 Var().Let  be an elementaryE-(dis)uni�cation problem over the signature �, letVar() �5



Y be a �nite set of variables, and let � be another signature. A linear constant re-striction for Y is a pair L = (Lab; <L) where <L is a strict linear ordering on Yand where Lab : Y ! f�;�g is a \labelling function" that assigns to each variabley 2 Y a signature Lab(y) 2 f�;�g. The pair (; L) is called an E-(dis)uni�cationproblem with linear constant restriction. A �-substitution � solves (; L) if � solvesthe E-(dis)uni�cation problem  and if the following conditions are satis�ed:1. �(y) = y for all y 2 Y such that Lab(y) = �,2. for all x; y 2 Y : if Lab(y) = �;Lab(x) = � and if y occurs in �(x), then y <L x.Note that, by condition 1, the variables with alien label � are treated as constants in(; L).3 Intractability ResultsIn this section we shall give a criterion that can be used to show that for a given equatio-nal theory E the problem of deciding solvability of general E-(dis)uni�cation problemsis NP-hard. The power of the criterion will be illustrated in the third subsection. Sinceintractability results for combined uni�cation problems immediately generalize to thedisuni�cation case, we shall only consider combination of uni�cation algorithms in thissection. For technical reasons we start with a description of the combination proce-dure for uni�cation algorithms for equational theories given in [BS92]: the proof of thecentral proposition of the section depends on the correctness of this combination algo-rithm. At the end of this section we shall show that the criterion gives also a seriouslimitation for attempts to optimize the combination algorithm in the context of generalE-uni�cation.3.1 The combination algorithm for uni�cationLet E and F be two consistent equational theories over disjoint signatures � and �respectively. An elementary (E [ F )-uni�cation problem  is in decomposed form if has the form E [ F where the \pure" subproblems E and F are built over thesignatures � and � respectively.Suppose that we want to decide solvability of an elementary (E [ F )-uni�cationproblem 0. The following Algorithm 1, described in more detail in [BS92], reduces 0non-deterministically to a �nite number of output pairs. Each component of an outputpair represents an (E resp. F -) uni�cation problem with linear constant restriction.Algorithm 1. In the �rst step, the input problem 0 is transformed into an ele-mentary (E[F )-uni�cation problem 1 � 1;E ^1;F in decomposed form such that 06



is solvable i� 1 is solvable. In the second step, a partition � of Var(1;E ^ 1;F ) is cho-sen, and for each equivalence class of � a representant is chosen. Now all occurrencesof variables are replaced by the representant of the equivalence class that contains thevariable. We obtain the new formula 2;E ^2;F . Let Y denote the set of representants.In the third and fourth step, a labelling function Lab : Y ! f�;�g and a strict linearordering <L on Y are chosen. The output pair determined by the choices in steps 2�4,then, is ((2;E; L); (2;F ; L)), where L = (Lab; <L). In the �rst (second) component,the variables with label � (resp. �) are treated as constants.The �rst, deterministic step is based on the technique of \variable abstraction",and needs only a polynomial4 number of steps (see [BS92]). Steps 2-4, then, are non-deterministic. Following common terminology, the second step will be called \variableidenti�cation" in this paper. The main technical result of [BS92] is the followingProposition 3.1 The input problem, 0, has a solution i� there exists an output pair ofAlgorithm 1, ((2;E; L); (2;F ; L)), such that both the E-uni�cation problem with linearconstant restriction (2;E; L) has a solution and the F -uni�cation problem with linearconstant restriction (2;F ; L) has a solution.In the sequel, two details of the correctness proof for Proposition 3.1 given in [BS92]will be used.Remark 3.2 It was shown (p. 58) how given solutions �E and �F of an output pair ofAlgorithm 1 can be combined to a solution � of the input problem, 0. This combinedsolution � has the following property: if y is a representant of type �, and if the term�F (y) does not contain any �-variable, then �(y) = �F (y).Remark 3.3 It was described (p. 60) how a given solution � of an elementary (E[F )-problem can be used to de�ne choices in the non-deterministic steps of Algorithm 1that lead to an output pair ((2;E; L); (2;F ; L)) where both components are solvable.5In the second step of this construction, two variables v1 and v2 of the decomposedproblem are identi�ed i� �(v1) =E[F �(v2).3.2 A criterion for intractabilityOne notion will be needed before we can state the main technical result of this section.De�nition 3.4 Let  be an E-uni�cation problem. Let fx0; : : : ; xmg � Var() forsome m � 0, let ~x denote the sequence hx0; : : : ; xmi. A solution � of  is ~x-atomic if4Polynomial in the size of 0. This is not a sharp estimate.5The solution that is considered in [BS92] is assumed to be normalized in a particular way. But thispoint is not relevant for the present discussion. 7



�(xi) is a variable or a free constant (i.e., a constant not occurring in the signature ofE), for i = 0; : : : ;m.Proposition 3.5 (Main Proposition) Let E be a consistent equational theory withsignature �. Suppose there exists an E-uni�cation problem with constants, , contai-ning three distinct free constants a; b, and c and variables fx0; : : : ; xmg such that for~x = hx0; : : : ; xmi1.  has ~x-atomic solutions �a; �b and �c that map x0 to a; b, and c respectively, and2. every ~x-atomic solution of  maps x0 to one of the constants a; b or c.Then solvability of general E-uni�cation problems is NP-hard.Proof. We shall show that so-called 1-in-3 problems over positive literals can beencoded as general E-uni�cation problems. Solvability of 1-in-3 problems is well-knownto be NP-complete, see [GJ79]. The size of an encoded 1-in-3 problem will be linear inthe size of the 1-in-3 problem, which will give the desired result.1. In the �rst step we show how to encode a single clause cl = hp1; p2; p3i withthree positive literals. Let a; b; c, and ~x as above. For simplicity we shall assumethat  contains just four free constants a; b; c and d. We consider the free signature� := f0; 1; fg where 0 and 1 are distinct constants and f is a ternary function symbol.Let F denote the free (empty) theory for signature �. Clearly, E [ F is a consistentequational theory and 1 6=E[F 0. Let z1; z2; z3 be three distinct variables that donot occur in . The variables z1; z2; z3 will be used to represent p1; p2; p3. For eachi 2 f1; : : : ;mg, let yi;1; yi;2; yi;3 be a collection of three new variables (not occurring in and distinct from z1; z2; z3). Let F denote the elementary F -uni�cation problemx0 = f(z1; z2; z3) ^ a = f(1; 0; 0) ^ b = f(0; 1; 0) ^ c = f(0; 0; 1) ^ d = f(1; 1; 1)^ m̂i=1xi = f(yi;1; yi;2; yi;3):In this problem, a; b; c, and d are treated as variables. With E we denote the variantof the system  where a; b; c; d are treated as variables. Now consider the elementary(E [ F )-uni�cation problem in decomposed form� := E ^ F :We shall verify the following two claims:Claim 1 For each triple (i; j; k) 2 f(1; 0; 0); (0; 1; 0); (0; 0; 1)g there exists a solution� of � such that (z1; z2; z3) is mapped to (i; j; k) under �.Claim 2 Modulo E, each solution of � maps (z1; z2; z3) either to (1; 0; 0), or to(0; 1; 0), or to (0; 0; 1). 8



Note that these claims can be interpreted in the sense that solutions of � may beused to \select" (via identi�cation with 1) exactly one of the elements z1; z2 and z3,and that each solution in fact provides for such a unique selection.Proof of Claim 1: we show that there exists a solution � of � such that (z1; z2; z3)is mapped to (1; 0; 0) under �, the other cases can be treated analoguosly. By as-sumption,  has an ~x-atomic solution �a that maps x0 to a. Consider the parti-tion � of Var(�) where two elements u; v of fa; b; c; d; x0; : : : ; xmg belong to the sameclass of � i� �a(u) = �a(v), and where the equivalence classes of the variables inVar(�) n fa; b; c; d; x0; : : : ; xmg have just one element. Note that a; b; c, and d belongto distinct equivalence classes of � since �a leaves these elements �xed. On the otherhand, x0 and a belong to the same class.We select a set of representants Y for � as follows. Let a; b; c, and d be the represen-tants of their equivalence classes. Choose any representant for the variables in ~x thatbelong to other classes of �. All the remaining equivalence classes of � have just oneelement which is the representant of the class. Let Lab be the labelling function on Ywhere the representants occurring in F receive label � and all the other representantsreceive label �. Let < be any linear ordering on Y such that all representants withlabel � are smaller than all the representants with label �. We consider the linearconstant restriction L := (Lab; <) on Y . Let 2;E and 2;F be the formulae that areobtained from E and F by replacing each occurrence of a variable by its representant.Now ((2;E; L); (2;F ; L))is a possible output pair of the Decomposition Algorithm.We claim that both components are solvable problems. First we consider (2;E ; L).The choice of the linear ordering < guarantees that (2;E; L) can be considered as ausual E-uni�cation problem with constants. In fact, since �-variables are smaller than�-variables with respect to <, the linear constant restriction L does not impose anyreal restriction on the �-variables of 2;E . The constants occurring in the problem area; b; c; d and the representants of the variables in ~x.Let � be the function that maps each atom �a(xi) to the representant of xi (0 �i � m). The choice of representants guarantees that � leaves a; b; c; and d �xed, hence� can be regarded as a �-substitution. Let �E := �a � � . We want to show that �E isa solution of (2;E; L).We have to verify that �E treats �-variables as constants. This is clear for a; b; c;and d. Let xk be the representant of xl for some 0 � k; l � m. Then �E(xk) =�(�a(xk)) = �(�a(xl)) is the representant of xl, namely xk.It remains to show that �E solves the equations of 2;E . Let s1 = s2 be an equationof 2;E , and let t1 = t2 be the corresponding equation of . Recall that ti is obtainedfrom si be replacing all occurrences of variables in ~x by their representants, for i = 1; 2.By assumption �a(t1) =E �a(t2). The choice of the partition � shows that �a(s1) =E9



�a(s2). Hence �(�a(s1)) =E �(�a(s2)) and �E(s1) =E �E(s2).The second system, (2;F ; L), does not contain any variable with label �, whichmeans that the linear constant restriction L does not impose a real condition. We maytreat the system as an elementary F -uni�cation problem. Recall also that a; b; c; d arefour distinct variables of (2;F ; L). Obviously, there exists a solution �F of (2;F ; L)mapping (z1; z2; z3) to (1; 0; 0).It follows now from Remark 3.2 that � has a solution � such that(�(z1); �(z2); �(z3)) = (1; 0; 0):This completes the proof of Claim 1.Proof of Claim 2: Let � be a solution of �. By Proposition 3.1 there exists asolvable output pair ((2;E; L); (2;F ; L)) of the Decomposition Algorithm. An analysisof � gives some information on the variable identi�cation step and on L. First notethat the representants of the variables a; b; c; d and x0; : : : ; xm necessarily must receivelabel � in L since otherwise (2;F ; L) would be unsolvable. For the same reason, thefour variables a; b; c; d must belong to di�erent equivalence classes of the partition thathas been selected. Without loss of generality we may assume that a; b; c, and d areused as representants of their equivalence classes. Let �E be a solution of (2;E ; L).We assume that �E leaves all variables �xed that do not occur in 2;E. We may nowconsistently extend �E, mapping each variable of E to the image of its representantunder �E. In this way, we obtain a solution �0 of E . Note that �0, similarly as�E, treats a; b; c; d and the representants of the variables in ~x as constants since theseelements are �-variables of 2;E . Therefore �0 is an ~x-atomic solution of .By the assumption of the proposition, �0 maps x0 to one of the constants a; b; c.Let us assume that �0(x0) = a. But this implies, by the choice of �0, that a is therepresentant of x0. Let z01; z02, and z03 denote the representants of the equivalence classesof z1; z2 and z3 respectively. We have seen that the problem which is reached after thevariable identi�cation step contains the equations a = f(z01; z02; z03) and a = f(1; 0; 0).By Remark 3.3 we may assume without loss of generality that in the variable iden-ti�cation step two variables u and v of � are identi�ed i� �(u) =E �(v). This meansthat � solves the equations a = f(z01; z02; z03) and a = f(1; 0; 0) modulo E. Hencef(1; 0; 0) = �(f(1; 0; 0)) =E �(f(z01; z02; z03)) = f(�(z01); �(z02); �(z03))=E f(�(z1); �(z2); �(z3)):It is well-known that the �-reducts of the joint term algebra T (�[�;Var)= =E and ofthe pure term algebra T (�;Var) are �-isomorphic. This shows that � maps (z1; z2; z3)to (1; 0; 0) modulo E.2. In the second part of the proof we show how to encode a 1-in-3 problem with clau-ses cl1; : : : ; cln containing the positive literals p1; : : : ; pk. Let z1; : : : ; zk be a �xed set of10



distinct variables. The clause cli will be encoded by the elementary (E[F )-uni�cationproblem �i that is obtained from the formula � de�ned above in the following way.If cli has the form hpq; pr; psi, then we use the variables zq; zr; zs instead of z1; z2; z3.Clearly, zq; zr; zs encode pq; pr; ps just as z1; z2; z3 encoded p1; p2; p3 before. For allother variables occurring in � (in particular for a; b; c; d and the variables in ~x) weuse a fresh copy for each of the subproblems �i (to be denoted ai; bi; xi0; : : :). In thisway, the general E-uni�cation problems �1 ; : : : ; �n share only variables in fz1; : : : ; zkg.Modulo the values of these variables they can be solved independently. Now �1 ; : : : ; �nis used for encoding cl1; : : : ; cln.Assume that the 1-in-3 problem cl1; : : : ; cln has a solution. Then there exists amapping S : fz1; : : : ; zkg ! f0; 1g such that in each problem �i , with equation xi0 =f(zq; zr; zs), say, exactly one of the variables zq; zr; zs is mapped to 1 under S, whilethe remaining two variables are mapped to 0. It follows from Claim 1 that �i has asolution �i such that (zq; zr; zs) is mapped to (S(zq); S(zr); S(zs)) under �i. Since thedistinct subproblems �1 ; : : : ; �n share only variables in fz1; : : : ; zkg it follows that thegeneral E-uni�cation problem �1 ^ : : : ^ �n has a solution.Conversely, if �1 ^ : : : ^ �n has a solution, then Claim 2 shows that there existsa mapping S : fz1; : : : ; zkg ! f0; 1g respectively S0 : fp1; : : : ; pkg ! f0; 1g whichrepresents a solution of the 1-in-3 problem cl1; : : : ; cln.Before we look at some applications of the Main Proposition we consider in moredetail the situation where �1 ^ : : : ^ �n is used as the input of the DecompositionAlgorithm. We want to show that from every partition � of Var(�1 ^ : : : ^ �n) in thevariable identi�cation step that leads to a solvable output pair we can read of a solutionof cl1; : : : ; cln. In the sequel, E and  are as in the Main Proposition and expressionscli; �i ; xi0; ai; bi; ci etc. refer to the same entities as in the previous proof. If � is apartition of X := Var(�1 ^ : : : ^ �n), then [x]� denotes the equivalence class of x 2 Xwith respect to �.De�nition 3.6 A partition � of Var(�1^: : :^�n) is locally correct if, for all i = 1; : : : ; n,the equivalence classes [ai]�; [bi]� and [ci]� are pairwise distinct and xi0 2 [ai]�[ [bi]�[[ci]�.Proposition 3.7 Assume that we reach, for input �1 ^ : : :^ �n, a solvable output pairof the Decomposition Algorithm, selecting the partition � of Var(�1 ^ : : : ^ �n) in thevariable identi�cation step. Then � is locally correct.Proof. This follows as in the proof of Claim 2 above.Given a locally correct partition � on Var(�1 ^ : : :^ �n), we de�ne, for each clausecli = hpq; pr; psi in cl1; : : : ; cln, a local truth value assignment Si� : fpq; pr; psg ! f0; 1g11



in the following way. Assume that �i contains the equationsxi0 = f(zq; zr; zs); ai = f(1; 0; 0); bi = f(0; 1; 0); ci = f(0; 0; 1):Then Si� has the following form, depending on whether (1) xi0 2 [ai]�, (2) xi0 2 [bi]�,or (3) xi0 2 [ci]�:(1) Si� := 264 pq 7! 1pr 7! 0ps 7! 0 375 ; (2) Si� := 264 pq 7! 0pr 7! 1ps 7! 0 375 ; (3) Si� := 264 pq 7! 0pr 7! 0ps 7! 1 375 :Let S� := Sni=1 Si� denote the union of these local truth value assignments.Proposition 3.8 Assume that we reach, for input �1^: : :^�n, the output pair ((E; L); (F ; L))of the Decomposition Algorithm, selecting the locally correct partition � of Var(�1^: : :^�n) in the variable identi�cation step. Let pq 2 fp1; : : : ; pkg. If, for some 1 � i � n,Si�(pq) = 1 (resp. Si�(pq) = 0), then the representant z0q of [zq]� is mapped to 1 (resp.0) under every solution of F .Proof. We may assume that cli has the form hpq; pr; psi. Assume �rst that Si�(pq) =1. Then xi0 2 [ai]�, by de�nition of Si�. Let y; z0q; z0r; z0s denote the representants ofai; zq; zr and zs in F respectively. Then F contains the equations y = f(z0q; z0r; z0s)and y = f(1; 0; 0) and the result follows. In the other case, where Si�(pq) = 0, we knowthat xi0 2 [bi]� or xi0 2 [ci]�. The rest is as in the �rst case.Proposition 3.9 Assume that we reach, for input �1 ^ : : :^ �n, a solvable output pair((E; L); (F ; L)) of the Decomposition Algorithm, selecting the locally correct partition� of Var(�1 ^ : : : ^ �n) in the variable identi�cation step. Then S� solves cl1; : : : ; cln.Proof. Since (F ; L) is solvable it follows from the previous proposition that twolocal assignments Si� and Si� agree on the common literals in their domain, for 1 �i; j � n. Hence S� is a truth value assignment on fp1; : : : ; pkg. The form of the Si�shows that S� solves cl1; : : : ; cln.3.3 ApplicationsIn this subsection we shall use the criterion given in the Main Proposition to prove thatgeneral E-uni�cation is NP-hard for all the theories mentioned in the introduction. Be-fore we consider these theories, we give two much more general results. In the followingtwo theorems we consider theories that have an associative or a commutative functionsymbol. It should be clear that these function symbols may have other properties aswell. 12



Theorem 3.10 Let E be an equational theory that contains an associative functionsymbol \�". If E is regular, then the problem of deciding solvability of general E-uni�cation problems is NP-hard.Proof. Consider the E-un�cation problem with constants  of the formy � x � z = a � a � b � c � c:Let ~x := hxi. Since � is associative, it is obvious that  has ~x-atomic solutions thatmap x to a; b, and c respectively. Now let � be any ~x-atomic solution of . We have�(y) � �(x) � �(z) =E a � a � b � c � c. Since E is regular, the atom �(x) of the left-handside must occur on the right-hand side (Remark 2.1). It follows that �(x) is a; b, or c.By Proposition 3.5, general E-uni�cation is NP-hard.Theorem 3.11 Let E be an equational theory that contains a commutative functionsymbol \f". If E is regular, then the problem of deciding solvability of general E-uni�cation problems is NP-hard.Proof. Consider the E-un�cation problem with constants  of the formf(f(x; y); f(u; v)) = f(f(a; b); f(b; c)):Let ~x := hxi. Since f is commutative, it is obvious that  has ~x-atomic solutions thatmap x to a; b, and c respectively. Now let � be any ~x-atomic solution of . We havef(f(�(x); �(y)); f(�(u); �(v))) =E f(f(a; b); f(b; c)). Since E is regular, the atom �(x)of the left-hand side must occur on the right-hand side. It follows that �(x) is a; b, orc. By Proposition 3.5, general E-uni�cation is NP-hard.The theorems show, for example, that general E-uni�cation is NP-hard for thefollowing equational theories E: the theory A of an associative function symbol, thetheory C of a commutative function symbol, the theory AC of an associative andcommutative function symbol, and the theory ACI of an associative, commutative andidempotent function symbol.The Main Propositon can be strengthened if we know that the algorithms for thecomponent theories are NP-algorithms.Theorem 3.12 Let E be an equational theory that satis�es the criterion of the MainProposition. Assume that there exists an NP-algorithm for deciding solvability of E-uni�cation problems with linear constant restrictions. Then the problem of decidingsolvability of general E-uni�cation problems is NP-complete.Proof. This follows immediately from Proposition 3.5 with Consequence 5 (pg. 216)of Theorem 2.1 in [BS96]. 13



Corollary 3.13 Let E be a regular equational theory that contains an associative orcommutative function symbol. Of there exist an NP algorithm for deciding solvabilityof E-uni�cation problems with linear constant restrictions, then the problem of decidingsolvability of general E-uni�cation problems is NP-complete.Let us now look at the non-regular theories mentioned in the introduction.Corollary 3.14 Solvability of general E-uni�cation problems is NP-hard for the theo-ries E = ACUN;ACUNh, and AG (to be de�ned below).Proof. In each case, we shall give a particular E-uni�cation problem with constants,, and we shall show that this problem has the properties mentioned in the MainProposition.Associativity, Commutativity, Nilpotency with Unit (ACUN). This theory, discus-sed in [GN96], is formulated over the binary nilpotent AC-symbol + and the constant0. The axioms for nilpotency and unity are x + x = 0 and x + 0 = x. We considerthe problem  of the form x+ y + z = a+ b+ c and choose ~x = hx; y; zi. It is obviousthat  has ~x-atomic solutions that map x to a; b, and c respectively. Conversely, let� be an ~x-atomic solution of . If the atoms �(x); �(y); and �(z) are distinct, thenf�(x); �(y); �(z)g = fa; b; cg and we are done. But it is easy to see that an ~x-atomicsolution of  cannot identify two (or three) of the atoms �(x); �(y); and �(z).Associativity, Commutativity, Nilpotency with Unit and Homomorphism (ACUNh).This theory, also discussed in [GN96], is similar to ACUN. There is one additionalfunction symbol h, the additional axioms are h(x+ y) = h(x)+ h(y) and h(0) = 0. Wemay use the same uni�cation problem as in the case of ACUN.Theory of Abelian Groups ( AG). The signature of the theory AG, which is treatedin [HK96], has a binary associative and commutative function symbol +, a unary symbol�, and a constant e. The axioms are x + e = x; x + (�x) = e; x + y = y + x, and(x+ y) + z = x+ (y+ z). We consider the problem  of the form x+ y+ z = a+ b+ cand choose ~x = hx; y; zi. Again it is trivial to see that this AG-uni�cation problemsatis�es the requirements mentioned in the Main Propositon.It is interesting to note that all the problems that we used to verify the criterion ofthe Main Proposition are matching problems since the right-hand side is always ground.We assume that the complexity results of this section can be generalized to proceduresthat decide solvability of general E-matching problems.
14



3.4 Impossibility of polynomial combination and limitations for opti-mizing the combination algorithmIn view of the complexity results of the previous subsections it is natural to ask if ifthe following conjecture is true: Assume that P 6= NP. Let E be an equational theorythat satis�es the criterion of the Main Proposition. Then there cannot be any polyno-mial combination algorithm that reduces solvability of general E-uni�cation problems tosolvability of E-uni�cation problems with constants plus solvability of free (syntactic)uni�cation problems. When we look carefully at the conjecture, we see that it is di�cultto interpret it in a precise and non-vague way. In fact, when we are talking here aboutE-uni�cation with constants, we do of course not want to exclude \closely related"output problems such as, e.g., E-uni�cation with linear constant restriction. Actually,we do not see any general and convincing de�nition of the type of output problem thatone would still be willing to accept. Because of this vagueness there seems to be noway to prove or refute the conjecture. We shall now introduce one possible formaliza-tion of the conjecture that arises naturally if one tries to optimize the DecompositionAlgorithm in the context of general E-uni�cation. Here the conjecture can be veri�ed.De�nition 3.15 A polynomial optimization of the Decomposition Algorithm for ge-neral E-uni�cation is an algorithm that accepts as input an arbitrary general E-uni�cation problem 0 and computes in polynomial time a �nite set M of output pairs((E; L); (F ; L)) of E- resp. free uni�cation problems with linear constant restrictionsuch that 0 is solvable i�, for some output pair in M , both components are solvable.More speci�cally we demand that each output pair in M is also a possible output pairof the original Decomposition Algorithm.Theorem 3.16 Let E 2 K. Then there exists no polynomial optimization of the De-composition Algorithm for general E-uni�cation, unless P = NP .Proof. Assume that there exists a polynomial optimization. We shall then showhow solvability of 1-in-3 problems over positive literals can be decided in polynomialtime, which yields the desired contradiction. We refer to the notations introduced at theend of Subsection 3.2. Given a 1-in-3 problem cl1; : : : ; cln, we encode it into a generalE-uni�cation problem �1 ^ : : : ;^�n as in the proof of the Main Proposition. We use�1 ^ : : : ;^�n as the input of the polynomial optimization. The output set M containsonly a polynomial number of output pairs. From M , we eliminate all pairs that arebased on a partition � of Var(�1 ^ : : : ;^�n) which is not locally correct. Let M0 bethe new set. We claim that cl1; : : : ; cln has a solution i� S� yields a solution, for somepartition � of Var(�1^: : : ;^�n) that was used for an output pair inM0. In fact, assumethat cl1; : : : ; cln is solvable. Then �1 ^ : : : ;^�n is solvable (as we saw in the proof ofthe Main Proposition) and M contains a solvable output pair. By Proposition 3.7, M0contains a solvable output pair. Hence the claim follows from Proposition 3.9. Clearly,15



the computation of all relations S� for partitions � used in M0 needs only polynomialtime in the size of cl1; : : : ; cln under the given assumptions.4 Tractable combined disuni�cation problemsIn this section we shall isolate a class of equational theories where there exists a generaldeterministic and polynomial method for combining disuni�cation algorithms. Ourstarting point is the decomposition algorithm for solving disuni�cation problems in theunion of disjoint equational theories given in [BS95a].4.1 The combination algorithm for disuni�cationLet E and F be two equational theories over disjoint signatures � and � respectively.An elementary (E [F )-disuni�cation problem is in decomposed form if it has the formE ^ F ^ 6= where E (F ) is a �nite set of pure �-equations (resp. �-equations) andwhere  6= is a �nite set of disequations between variables.Suppose that we want to decide solvability of an elementary (E [ F )-disuni�cationproblem 0. The following Algorithm 2, described in more detail in [BS95a], reduces 0non-deterministically to a �nite number of output pairs. Each component of an outputpair represents an (E resp. F -) disuni�cation problem with linear constant restriction.Algorithm 2. In the �rst step, the input problem 0 is transformed into an ele-mentary (E [ F )-disuni�cation problem 1 in the decomposed form 1;E ^ 1;F ^ 1;6=such that 0 is solvable i� 1 is solvable. In the second step, a partition � of Var(1) ischosen. This partition must satisfy the following requirement: if u 6= v is a disequationof 1;6=, then u and v must not belong to the same equivalence class w.r.t. �. For eachequivalence class of � a representant is chosen. Now all occurrences of variables arereplaced by the representant of the equivalence class that contains the variable. Weobtain the new formula 2;E ^ 2;F ^ 2;6=. Let Y denote the set of representants. Inthe third and fourth step, a labelling function Lab : Y ! f�;�g and a strict linearordering <L on Y are chosen. The output pair determined by the choices in steps 2�4,then, is ((2;E ^ 2;6=; L); (2;F ^ 2;6=; L)), where L = (Lab; <L). In the �rst (second)component, the variables with label � (resp. �) are treated as constants.Similarly as for Algorithm 1, the �rst step is deterministic and needs only a poly-nomial number of steps. The number of variables of 1 is linear in the size of 0. Thefollowing proposition was proved in [BS95a] (see Prop. 3.3, p. 237).Proposition 4.1 The input problem, 0, has a solution in T (� [ �;Var)= =E[F i�there exists an output pair of the Algorithm 2, ((2;E^2;6=; L); (2;F^2;6=; L)), such thatboth the E-disuni�cation problem with linear constant restriction (2;E ^ 2;6=; L) has a16



solution and the F -disuni�cation problem with linear constant restriction (2;F^2;6=; L)has a solution.4.2 Constrained disuni�cation problemsWe now introduce a constraint language that will be used to formulate partial descrip-tions of the linear constant restrictions that may be chosen in the steps of Algorithm 2.Throughout this subsection, 1 denotes a disuni�cation problem in decomposed form,reached after the �rst step of Algorithm 2. With X we denote the set Var(1). �denotes a partition of X, and Y is a set of representants for �, as chosen in the secondstep of Algorithm 2.De�nition 4.2 The atomic formulae of the constraint language L(X) have the formu = v (equality constraints), u : � or u : � (labelling constraints), or u � v (or-dering constraints), where u; v 2 X. In addition, L(X) contains the following Booleancombinations of atomic formulae:� disequations :u = v, written in the form u 6= v,� strict ordering constraints u � v ^ u 6= v, written in the form u < v,� implications of the form u : �) u < v.A constraint set (for X) is a subset C of L(X).Given a linear constant restriction L = (Lab; <L) on Y and a constraint c 2 L(X), wesay that c holds in L (symbolically L j= c) in the following cases:� L j= u = v i� rep(u) = rep(v),� L j= u : � (resp. L j= u : �) i� Lab(rep(u)) = � (resp. Lab(rep(u)) = �).� L j= u � v i� rep(u) �L rep(v).Here rep(u) 2 Y denotes the representant of x 2 X with respect to �. The notionL j= c is extended in the canonical way to general constraints c 2 L(X), lifting Booleanconnectives to the meta-level.De�nition 4.3 A constraint set C is compatible with the linear constant restriction Lon Y (we write L j= C), and L is compatible with C, if L j= c for all c 2 C.17



De�nition 4.4 A constraint set C is closed i�C = fc 2 L(X) j L j= c for all linear constant restrictions L on Y s.th. L j= Cg:With CL(X) we denote the set of all closed constraint sets. Two constraint sets C1 andC2 for X are called equivalent if they are compatible with the same linear constantrestrictions on Y . It follows from De�nition 4.4 that� for each constraint set C there exists exactly one closed constraint set ClL(X)(C)such that C and ClL(X)(C) are equivalent. The constraint set ClL(X)(C) is calledthe closure of C,� there exists exactly one closed constraint set, denoted C?, that is equivalent tothe empty constraint set, ;,� there exists exactly one closed constraint set that is not compatible with anylinear constant restriction on Y , namely C> = L(X).� for each linear constant restriction L on Y there exists a unique closed constraintset CL 6= C> that is compatible with L, but not with any other linear constantrestriction on Y . The constraint sets of the form CL will be called generalizedlinear constant restrictions.It is easy to verify that ClL(X) is a closure operator, which means that C � ClL(X)(C),ClL(X)(C) = ClL(X)(ClL(X)(C)) and C1 � C2 implies ClL(X)(C1) � ClL(X)(C2), for allconstraint sets C;C1; C2.Lemma 4.5 Let C1 and C2 be two elements of CL(X). Then C1 � C2 (resp. C1 � C2)i� the set of linear constant restrictions on Y that are compatible with C2 is a propersubset (resp. subset) of the set of generalized linear constant restrictions on Y that arecompatible with C1.If C1 and C2 are elements of CL(X) we often write C1 � C2 instead of C1 � C2. Thisemphasizes that we consider a relation on CL(X). The following lemma represents oneparticular instance of a well-known result on closure operators.Lemma 4.6 (CL(X);�) is a lattice with 0 = C?; 1 = C>. The meet operation on CL(X)is given by (set-theoretical) intersection. The join of C1; C2 2 CL(X) is ClL(X)(C1[C2).In the deterministic combination algorithm that we want to describe below we shallconsider subproblems where the pure output problems 2;E ^ 2;6= and 2;F ^ 2;6= ofAlgorithm 2 are constrained by means of arbitrary elements of CL(X). We shall nowgive a formal de�nition of these problems.18



De�nition 4.7 An CL(X)-constrained E-uni�cation problem is a pair (E ; C) whereE is an elementary E-uni�cation problem, Var(E) � X, and C 2 CL(X). The size of(E ; C) is the size of E plus jXj6.It is now convenient to give a reformulation of Algorithm 2 where the output problemsare CL(X)-constrained E-(dis)uni�cation problem with generalized linear constant re-strictions. Before we can give a new version of Proposition 4.1 along these lines wehave to say what it means to solve such a problem. We shall see that it su�ces to givethe de�nition in the case of uni�cation problems.De�nition 4.8 Let E be an elementary E-uni�cation problem with Var(E) � X.A solution of the E-uni�cation problem with generalized linear constant restriction(E ; CL) is an E-uni�er � of  such that1. for all u; v 2 X: �(u) =E �(v) i� u = v 2 CL,2. for all u : � 2 CL: �(u) 2 Var,3. whenever u : �; v : � 2 CL and �(u) 2 Var(�(v)) we have u < v 2 CL.Proposition 4.9 Let 1 be an elementary (E [ F )-disuni�cation problem, given indecomposed form 1;E ^1;F ^1;6=. Let X = Var(1). Then 1 is solvable if and only ifthere exists a generalized linear constant restriction CL on X, where 1;6= � CL, suchthat the E-uni�cation problem with generalized linear constant restriction (1;E ; CL)has a solution and the F -uni�cation problem with generalized linear constant restriction(1;F ; CL) has a solution.Proof. Assume that 1 has a solution. By Proposition 4.1 there exists an output pair((2;E ^ 2;6=; L); (2;F ^ 2;6=; L)) of Algorithm 2 such that both the E-disuni�cationproblem with linear constant restriction (2;E ^ 2;6=; L) has a solution and the F -disuni�cation problem with linear constant restriction (2;F ^ 2;6=; L) has a solution.It follows from the description of the second step of Algorithm 2 that the generalizedlinear constant restriction CL corresponding to L contains all disequations of 2;6=. Thegiven solutions �E and �F of (2;E ^ 2;6=; L) and (2;F ^ 2;6=; L) can be extended tosolutions of (1;E; CL) and (1;F ; CL) just by mapping each variable in X to the valueof its representant under �E and �F respectively.Conversely assume that there exists a generalized linear constant restriction CLon X, where 1;6= � CL, such that (1;E; CL) has a solution �E and (1;F ; CL) hasa solution �F . The �rst condition of De�nition 4.8 shows that �E and �F solve alldisequations of 2;6=. Let L denote the linear constant restriction that corresponds toCL. It is unique modulo the set Y of representants for the partition � which is induced6jM j denotes the cardinality of the set M . 19



by the equality constraints of CL. Let �E be the function that maps each variable ofthe form �E(u) to the representant of u with respect to �, for all variables u 2 X suchthat u : � 2 CL. It follows from the �rst two conditions of De�nition 4.8 that �E iswell-de�ned. It may be regarded as a renaming substitution. The composition �E � �Etreats representants y 2 Y with label � as constants, and it is easy to see that it yieldsa solution of (2;E ^ 2;6=; L). In the same way we obtain a solution for (2;F ^ 2;6=; L).By Proposition 4.1, 1 has a solution.4.3 L-convex theories and deterministic and polynomial combinationDe�nition 4.10 A generalized linear constant restriction CL 2 CL(X) is called a fai-thful extension of C 2 CL(X) if C � CL and if C and CL have the same set of equalityconstraints.Lemma 4.11 Let C 6= C> be a constraint set in CL(X). Then C has a faithful extensionto a generalized linear constant restriction CL 2 CL(X).Proof. Since C 6= C> there exists a generalized linear constant restriction CL 2CL(X) that extends C. The equality constraint of C and CL impose partitions � and�1 of Y , and � is a re�nement of �1. If some equivalence class of �1 contains n � 2equivalence classes of �, then we may split this class in its n subclasses according to� and de�ne a new ordering where these n classes are consecutive (not changing theorder with respect to other classes). Repeating this step, we obtain a new generalizedlinear constant restriction C 0L 2 CL(X) which faithfully extends C.The following may be considered as the central de�nition of this section.De�nition 4.12 The constraint set C2 2 CL(X) is a cover point for the CL(X)-constrainedE-uni�cation problem (E ; C1) if C1 � C2 and for each generalized linear constant re-striction CL 2 CL(X) that faithfully extends C2 there exists a solution of (E; CL).The cover point C2 of (E ; C1) is called a universal cover point for (E; C1) if C2 � CLfor all generalized linear constant restrictions CL 2 CL(X) where C1 � CL and theCL(X)-constrained E-uni�cation problem (E; CL) is solvable.To understand De�nition 4.12 it might help to imagine an advocate P for E whonegotiates about a suitable generalized linear constant restriction CL 2 CL(X) thatextends C1. P wants to agree on some extension CL such that (E ; CL) is solvable. Inthis situation P may suggest to continue the negotiation from a universal cover pointC2 for (;C1). With such a suggestion, it is still possible to reach any generalized linearconstant restriction CL which is interesting for E. Moreover, the suggestion is \safe" inthe sense that each pair (E; CL) is always solvable as long as CL is a faithful extensionof C2. 20



De�nition 4.13 The equational theory E is L-convex i� for every CL(X)-constrainedE-uni�cation problem (E ; C1) there exists a universal cover point with respect to E.De�nition 4.14 The equational theory E is e�ectively L-convex if there exists an al-gorithm that computes a universal cover point for each CL(X)-constrained E-uni�cationproblem (E ; C1). E is polynomial L-convex if there exists an algorithm that is poly-nomial in the size of (E ; C1).Let E and F denote two e�ectively L-convex equational theories over disjoint signatures� and � respectively. We shall now give a deterministic combination algorithm thatmay be used to decide solvability of elementary (E [ F )-disuni�cation problems. Ifboth theories are polynomial L-convex, then this decision procedure is polynomial.Deterministic Combination AlgorithmThe input of the algorithm is an elementary (E [ F )-disuni�cation problem . The re-marks on Step 1 of Algorithm 2 show that we may assume that  is given in decomposedform E ^ F ^  6=. Let X := Var() and n := jXj. The algorithm is organized in aseries of rounds. Each round has an CL(X)-constrained (E- respectively F -) uni�cationproblem (I ; C) as input, where I 2 fE;Fg and C 6= C>. The input for the �rst roundis (E; C1), where C1 := C?.Round 1: We compute a universal cover point C2 2 CL(X) for (E ; C?) with respectto E. If C2 = C>, then we stop with failure. In the other case, (F ; C2) is the inputfor round 2.Round k � 2: Assume that the input for this round is (I ; Ck), where I 2 fE;Fg.We compute a universal cover point Ck+1 2 CL(X) for (I ; Ck) with respect to the givenequational theory I. The algorithm stops in two cases:(i) If Ck+1 = C>, then we stop with failure.(ii) In the other case, if Ck+1 and Ck have the same set of equality constraints, thenwe stop with success.In the remaining case, the CL(X)-constrained J-uni�cation problem (J ; Ck+1), wherefI; Jg = fE;Fg, is the input for round k + 1.Proposition 4.15 The Deterministic Combination Algorithm terminates after at mostn+ 1 rounds.Proof. Beginning with round 2, each non-�nal round leads to a new identi�cation ofvariables by means of new equality constraints (Condition (ii)). The maximal number21



of such identi�cation steps is n�1. Together with the initial round and the �nal roundwe obtain a maximum of n+ 1 rounds.Proposition 4.16 The Deterministic Combination Algorithm stops with success if andonly if the input conjunction  has a solution with respect to E [ F .Proof. First assume that the (E [ F )-disuni�cation problem  has a solution withrespect to E[F . By Proposition 4.9 there exists a generalized linear constant restrictionCL 2 CL(X) where  6= � CL such that the CL(X)-constrained I-uni�cation problem(I ; CL) has a solution with respect to the theory I, for I = E;F . Let C1; : : : ; Ck(k � 1) denote the sequence of universal cover points that are computed in the roundsof the Deterministic Combination Algorithm. Obviously C1 = C? � CL. Assume thati < k and Ci � CL. Let (I ; Ci) be the input for round i, where I 2 fE;Fg. The factthat Ci+1 is a universal cover point for (I ; Ci) implies that Ci+1 � CL. It follows thatCk � CL and the algorithm does not stop with failure. Hence it stops with success.Now assume that the algorithm stops with success, say in round l � 2. Supposethat the input of round l is the CL(X)-constrained I-uni�cation problem (I ; Cl), whereI 2 fE;Fg. Choose an arbitrary faithful extension of Cl to a generalized linear constantrestriction CL. Lemma 4.11 shows that such a faithful extension exists. Condition (ii)for round l ensures that CL is also a faithful extension of Cl�1. Since Cl and Cl�1are cover points we know that both (I ; CL) and (J ; CL) (where fI; Jg = fE;Fg) aresolvable uni�cation problems with generalized linear constant restrictions. It followsfrom Proposition 4.9 that the (E [ F )-disuni�cation problem  is solvable.Theorem 4.17 Let E and F be two polynomial L-convex equational theories over dis-joint signatures � and �. Then solvability of elementary (E [ F )-disuni�cation pro-blems is decidable in polynomial time.Proof. Let 0 be an elementary (E [ F )-disuni�cation problem. As we mentionedafter the description of Algorithm 2, there exists a polynomial algorithm that transforms0 in an elementary (E[F )-disuni�cation problem 1 in decomposed form E ^F ^ 6=such that 0 is solvable i� 1 is solvable, where the cardinality ofX := Var1) is linear inthe size of 0. The problem 1 may be used as input for the Deterministic CombinationAlgorithm. Under the given assumption on E and F it follows that the computations ofeach round of the Deterministic Combination Algorithm need polynomial time (in thesize of the original input problem 0). Now the theorem follows from Propositions 4.15and 4.16. 22



4.4 ApplicationsIn view of the strong intractability results of Section 3 it should not be surprising that itturns out to be di�cult to �nd natural classes of equational theories that are L-convex.The following theorem gives one such class.Theorem 4.18 Let E be a unitary regular collapse-free equational theory. Then E isL-convex.Proof. Let E be a unitary regular collapse-free equational theory and let (;C1)be an CL(X)-constrained E-uni�cation problem. We have to show that there exists auniversal cover point for (;C1) with respect to E.In the �rst, trivial case, there does not exist a generalized linear constant restrictionCL 2 CL(X) such that C1 � CL and (;CL) is solvable. In this case, C> is a universalcover point for (;C1).Now assume that there exists a generalized linear constant restriction CL 2 CL(X) suchthat C1 � CL and (;CL) has a solution �. The �rst condition of De�nition 4.8 showsthat � solves 1 :=  ^ Vu=v2C1 u = v. Let � be a most general E-uni�er of 1, letC= := fu = v j u; v 2 X;�(u) =E �(v)gC� := fu : � j u 2 X;�(u) 62 VargC) := fu : �) u < v j u; v 2 X;�(u) 2 Var(�(v)); �(v) 62 Vargand let C denote the closure of C1 [ C= [ C� [ C). It is easy to see that (*) allequations of C are in C=.We claim that C is a cover point for . Let C 0L be a generalized linear constantrestriction on X that faithfully extends C. We show that � is a solution of (;C 0L):Clearly � solves . Moreover, since C 0L faithfully extends C it follows from (*) that (1)�(u) =E �(v) i� u = v 2 C 0L. It remains to prove that the remaining two conditionsof De�nition 4.8 are satis�ed. Let u; v 2 X. If u : � 2 C 0L, then u : � 62 C� � C 0Land �(u) 2 Var. Now assume that u : �; v : � 2 C 0L and �(u) 2 Var(�(v)). Then �(v)cannot be a variable, otherwise we would have �(u) = �(v) and u = v 2 C 0L which isimpossible since both variables have distinct labels. The de�nition of C) implies thatu : �) u < v 2 C � C 0L. Hence u < v 2 C 0L since C 0L is closed.It remains to prove that C is a universal cover point for (;C1). Let CL, �, 1 and� as above. Since � is an E-uni�er of 1 there exists a substitution � such that�(v) =E �(�(v)) for all v 2 X. In order to show that C � CL it su�ces to prove that(C= [ C� [ C)) � CL since CL is closed and C1 � CL.1. Let u = v 2 C=. Then �(u) =E �(v) and �(u) =E �(�(u)) =E �(�(v)) =E �(v).The �rst condition of De�nition 4.8 shows that u = v 2 CL.23



2. For u : � 2 C� we have �(u) 62 Var. Since �(u) =E �(�(u)) and since E is collapse-free it follows from Remark 2.1 that �(u) 62 X. Condition 2 of De�nition 4.8 shows thatu : � 62 CL, therefore u : � 2 CL since CL is a generalized linear constant restriction.3. Consider a constraint u : �) u < v 2 C). In order to show that u : �) u < v 2CL we may assume that u : � 2 CLand show that u < v 2 CL. From the de�nition of C) it follows that �(u) 2 Var(�(v))and �(v) 62 Var. Now �(�(v)) 62 Var and the �rst observation of Remark 2.1 impliesthat �(�(v)) =E �(v) 62 Var. It follows that v : � 62 CL and thusv : � 2 CL:Since u : � 2 CL, Condition 3 of De�nition 4.8 shows that �(u) 2 Var. But �(u) =E�(�(u)). Since E is collapse-free, the �rst observation of Remark 2.1 implies �(u) =�(�(u)) 2 Var. Since �(u) 2 Var(�(v)) we see now that �(u) = �(�(u)) 2 Var(�(�(v))).Since E is regular and �(v) =E �(�(v)), the second observation of Remark 2.1 showsthat �(u) 2 Var(�(v)). Condition 3 of De�nition 4.8 implies that u < v 2 CL.Corollary 4.19 Let E be a unitary, regular and collapse-free equational theory. Sup-pose there exists a uni�cation algorithm that computes a most general uni�er � for eachsolvable E-uni�cation problem with constants, , stopping with failure for unsolvableproblems. Then E is e�ectively L-convex. If this algorithm is polynomial, then E ispolynomial L-convex.Proof. Let (;C1) be a CL(X)-constrainedE-uni�cation problem as considered in theprevious proof. Let � be a most general E-uni�er for 1 :=  ^ Vu=v2C1 u = v. Underthe given assumptions there exists (polynomial) algorithms to compute �, and to decideif �(u) =E �(v), for given variables u; v 2 X. The previous proof shows that we maye�ectively compute a universal cover point C2 for each L(X)-constrained E-uni�cationproblem (;C1). If the E-uni�cation algorithm is polynomial, then obviously the setC1[C=[C�[C) mentioned in the previous proof can be computed in time polynomialin the size of (;C1). It is easy to see that the L(X)-closure of this set, i.e., the universalcover point for (;C1), can be computed in time polynomial in the size of (;C1).Theorem 4.20 Let E and F be a unitary, regular and collapse-free equational theoriesover disjoint signatures � and �. Suppose there exists a polynomial algorithm thatcomputes a most general uni�er � for each solvable elementary E- resp. F -uni�cationproblem with constants, , stopping with failure for unsolvable problems. Then thereexists a polynomial algorithm to decide solvability of elementary (E [F )-disuni�cationproblems. 24



Proof. This follows from Theorem 4.17 and Corollary 4.19.The result of Theorem 4.20 can be lifted to general (E[F )-disuni�cation problems,just by combining E [F with the free theory. Let us mention one concrete applicationof Theorem 4.20.Corollary 4.21 LetDL := ff(x; g(y; z)) = g(f(x; y); f(x; z))gDR := ff(g(y; z); z) = g(f(x; z); f(y; z))gdenote the theories of left and right ditributivity respectively. Then solvability of generalDL (resp. DR) disuni�cation problems is decidable in polynomial time.Proof. The theories of left respectively right distributivity are known to be unitary,regular and collapse-free, and there exists a quadratic uni�cation algorithm for uni�ca-tion with constants in both cases (see [BS94], chapter 5.) Obviously the free (empty)theory for a given set of function symbols satis�es these requirements as well. Hencethe result follows from Theorem 4.20.5 ConclusionIn this paper we have tried to get some insights into the borderline between tracta-ble and intractable instances of combination problems for equational uni�cation anddisuni�cation. We have introduced a criterion that characterizes a large class K of equa-tional theories E where general E-uni�cation is always NP-hard. The most importantquestion arising from this result has already been mentioned before: is it possible tointerpret these results in the sense that there cannot be a polynomial method for re-ducing general E-uni�cation problems to pure E-uni�cation problems and pure free(syntactic) uni�cation problems, for any given theory E 2 K? We strongly believe thatthe answer is yes, in principle, though we indicated in Section 3 that the formulation ofthe problem is vague. In order to obtain a partial answer we introduced the concept ofa polynomial optimization of the combination algorithm given in [BS92]. We showedthat there cannot be a polynomial optimization for general E-uni�cation, for E 2 K.We have shown that general E-uni�cation is NP-hard for all regular equationaltheories E that contain an associative or a commutative function symbol. It is intere-sting to note that the proof for the intractability of the counting problem for generalAG uni�cation given in M. Hermann and P.G. Kolaitis [HK96] heavily depends on thepresence of an associative and commutative function symbol in the theory. One mayask if their result can also be generalized to arbitrary regular equational theories withassociative or commutative function symbols.25



In the second part of the paper we looked at properties of equational theories thatguarantee that a deterministic and polynomial combination for disuni�cation algo-rithms is possible. We introduced the notion of an L-convex equational theory, referingto a constraint language L for describing linear constant restrictions. It was shownthat L-convexity yields the key for results on deterministic and polynomial combina-tion of (dis)uni�cation algorithms, for equational theories over disjoint signatures. Itshould be stressed that the notion of L-convexity is generic in the sense that variantsof this notion can be introduced for similar constraint languages that describe linearconstant restrictions. The particular constraint language that we used in this paperis tuned to the results on unitary regular and collapse-free theories, and it might bepossible to obtain further results on deterministic and polynomial combination, usingother constraint languages.The notion of L-convexity can be generalized in a straightforward way to the classof simply combinable (SC-) structures introduced in [BS95b]. This class of structuresproperly extends the class of all free structures and contains many domains that arerelevant for constraint programming. For example, the algebra of rational trees ([Col84,Mah88]), the structure of rational feature trees ([APS94]), and the structure of rationalfeature trees with arity ([ST94]) are (non-free) L-convex SC-structures. This followsfrom an analysis of the solved form systems for conjunctions of atomic constraints thatexist for these structures. It is possible to obtain polynomial combination algorithmsfor procedures that decide solvability of conjunctions of atomic constraints on this basis,if we use the free amalgamated product ([BS95b]) of the component structures as thecombined solution domain.As a matter of fact, the tractability results given in Section 4 are mainly of theore-tical interest. On the other hand it seems possible to extract from the discussion somehints on possible optimizations of Algorithm 1 for arbitrary combinations of disjointequational theories. Constraint languages similar to the language L discussed in Sec-tion 4 are used in [KR96] in an optimized version of Algorithm 1. In these approach,constraints are used to eliminate at least part of the non-determinism of the combina-tion scheme. However, conditional constraints of the form u : �) u < v|which havebeen crucial for obtaining our tractability results|have not been used in this contextso far. It seems worthwile to study the e�ect of their integration.As we mentioned in the introduction, the notion of L-convexity was inspired by thenotion of a \convex theory" introduced by in [Op80]. Oppen considered combinationsof �rst order theories T1, and T2 over disjoint signatures. These theories are axiomatizedby a set of quanti�er-free formulae|implicitly, axioms are universally quanti�ed. Thealgorithmic problem is to decide validity of mixed7 formulae in the union T1 [ T2 ofthe two theories. This problem is reduced to the problem of deciding satis�ability of aconjunction  of mixed (positive or negated) literals in T1[T2.8 The non-deterministic7A formula is mixed if it uses non-logical symbols from both theories.8Note that any model of T1 [ T2 can be used to validate satis�ability of . In contrast, solvabilityof uni�cation problems refers to a �xed algebra! 26



combination method suggested in [Op80] consists essentially of the �rst two steps ofAlgorithm 1 described in Section 2: the mixed conjunction  is decomposed into twopure subparts 1 and 2. In the second step, a set of equations and disequations betweenthe variables in the problem is guessed, yielding the output formulae 01 and 02 thatare now evaluated independently with the satis�ability checkers for the single theories.Given a quanti�er-free theory T , a formula ' is called convex in [Op80] if it ne-ver entails a disjunction of equalities between variables without entailing any of theequalities alone. Here entailment is with respect to T . The theory T is called convexif every conjunction of literals in the language of T is convex9. Oppen shows that adeterministic combination algorithm exists for formulae in disjunctive normalform ifboth component theories are convex.Despite of the fact that the component theories considered in [Op80] are moregeneral than the equational theories considered here, the comparison between the twodecomposition algorithms shows that combination of (dis)uni�cation algorithms is themore di�cult problem. While Oppen uses just one non-deterministic step, there arethree such steps in Algorithm 1. This di�erence is reected in the two notions ofconvexity. The common idea behind both notions is, roughly, to formulate a conditionthat guarantees a backtrack-free search for an output pair of the non-deterministiccombination procedure in the style of a negotiation between the two theories. In thecase of [Op80], just entailed equations and disequations between variables have to becommunicated between the theories. In our case, attention has to be payed also tolabelling and order information.References[APS94] H. Ait-Kaci, A. Podelski, and G. Smolka, \A feature-based constraint sy-stem for logic programming with entailment," Theoretical Comp. Science122, 1994, pp.263{283.[BS92] F. Baader, K.U. Schulz, \Uni�cation in the union of disjoint equational theo-ries: Combining decision procedures," in: Proc. CADE-11, LNAI 607, 1992,pp. 50-65.[BS95a] F. Baader, K.U. Schulz, \Combination techniques and decision problems fordisuni�cation," Theoretical Computer Science 142 (1995), pp. 229-255.[BS95b] F. Baader, K.U. Schulz, \On the combination of symbolic constraints, solu-tion domains, and constraint solvers," In Principles and Practice of Cons-traint Programming - CP95, U. Montanari, F. Rossi (Eds.). Springer LNCS976, 1995, pp. 380-398.9It is interesting to note that for theories where all atomic formulae are equations the notion ofconvexity just expresses socalled \independence of disequations", a property which is often discussedin the �eld of constraint logic programming. See, e.g., [Col84, ST94].27
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