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Abstract

We consider the problem of combining procedures that decide solvability of
(dis)unification problems over disjoint equational theories. Partial answers to the
following questions are given:

e Which properties of the component theories imply intractability in the sense

that there cannot be a polynomial combination algorithm, assuming P # NP?

¢ Which general properties of the component theories guarantee tractability of
the combination problem in the sense that there exists a deterministic and
polynomial combination algorithm?

A criterion is given that characterizes a large class K of equational theories E/ where
general F-unification is always NP-hard. We show that all regular equational theo-
ries E that contain a commutative or an associative function symbol belong to K.
Other examples of equational theories in I concern non-regular cases as well.
The combination algorithm described in [BS92] can be used to reduce solvability of
general F-unification algorithms to solvability of E- and free (Robinson) unification
problems with linear constant restrictions. We show that for E/ € K there exists
no polynomial optimization of this combination algorithm for deciding solvability
of general E-unification problems, unless P = NP. This supports the conjecture
that for £ € K there is no polynomial algorithmn for combining E-unification with
constants with free unification.

In the second part of the paper we characterize a class of equational theories where
disunification algorithms can be combined deterministically and in polynomial
time. All unitary, regular and collapse-free equational theories with polynomial
unification algorithms belong to this class.



1 Introduction

A general problem that arises in different areas of computer science is the following
combination problem: given two structures or theories, and two algorithms for ans-
wering certain questions about these domains resp. theories, how can we systema-
tically combine these algorithms in order to solve more general “mixed” input pro-
blems over a suitable combined domain, or in the union of the theories? Many specific
instances of this problem have been exhaustively studied in the areas of automated
theorem proving and constraint programiming, such as combination of decision pro-
cedures [NO79, Ri96, TH96], combination of algorithms to solve the word problem
[DKR94, BT96], combination of unification and matching algorithms [Ki85, He86,
Ti86, Ye87, Ni89, Sc89, Bo93, BS92, DKR94], combination of disunification algorithms
[BS95a], and combination of constraints over non-free solution domains such as rational
trees, feature-structures, non-wellfounded sets and lists [Col90, BS95b, KS96].

In the meantime, general combination methods have been developed that solve
most of these problems from a theoretical point of view! (e.g., [NO79, Sc89, BS92]).
Still, these general combination methods are faced with a serious efficiency problem:
in these approaches, a mixed input problem is decomposed and transformed into two
pure output problems that can be solved independently over the component theories.
Typically, this reduction is based on a polynomial number of non-deterministic steps.
Hence the combination algorithm introduces its own NP-complexity, disregardless of
the complexity of the algorithms that are available for the components. Without further
optimizations, most methods are not really useful in practical applications. The present
research was started in a project where we tried to optimize the method for combining
unification algorithms for equational theories introduced in [BS92]. We investigated
how structural properties of the component theories can be used to eliminate parts of
the non-determinism of the general combination scheme. It was then natural to ask
the following two questions, which give the background for this paper:

o Which general properties of the component theories guarantee tractability of the
combination problem in the sense that there exists a deterministic and polynomial
combination algorithm?

o Which properties of the component theories 1mply intractability «n the sense that
there cannot be a polynomial combination algorithm, assuming P # NP¥

Both questions are relevant for many combination problems, for this reason we shall
not restrict the discussion to the combination of unification algorithms. On the other
hand it seems impossible to obtain general answers for all the combination problems
mentioned above since a common theoretical background for these problems is still

!Strictly speaking, general methods only exist in the case where signatures of both components are
disjoint. In this paper, we shall not consider the non-disjoint case.



missing. As a compromise between generality and specificity we consider a variety
of combination problems that can be solved—ignoring technical differences—with the
same reduction technique. We discuss combination of unification and disunification
algorithms for disjoint equational theories, and we comment on combination of cons-
traint solvers for simply combinable structures as described in [BS95b, KS96] in the
conclusion. In each case, we shall only consider procedures that decide solvability of a
given problem.

In the area of unification theory, some results are known that show that both que-
stions do not have trivial answers. Clearly, combination of theories does not necessarily
lead to intractability: when we combine two empty (trivial) equational theories, we can
still use a linear unification algorithm for the union of the two theories. In less trivial ca-
ses, however, combination destroys tractability: solvability of associative-commutative-
idempotent (ACI-) unification problems with free constants is decidable in polynomial
time, but the problem of deciding solvability of ACI-unification problems with addi-
tional free function symbols (called general ACI-unification) is NP-hard (see [KN91]).
The same phenomenon holds for the theory ACUN of an associative-commutative and
nilpotent function with unit, and for the theory ACUNhA which contains in addition a
homomorphic unary function symbol (see [GN96] for formal definitions). These examp-
les show that there cannot be a general polynomial algorithm for combining procedures
that decide solvability of unification problems, unless P equals NP. A corresponding
result for the case of algorithms that compute minimal complete sets of unifiers modulo
finitary equational theories was recently obtained by by M. Hermann and P.G. Kolaitis
[HK96], by proving intractability of the counting problem for general unification in the
theory of abelian groups ( AG-unification).

Even with the negative results that are mentioned in these papers it remains unclear
which formal properties of the theories under consideration lead to the observed blow-
up of complexity when free function symbols are added. In the first part of this paper
we shall isolate such a property. A criterion is given that characterizes a class I of
equational theories where general F-unification is always NP-hard. Using the criterion
for K we shall prove that general E-unification is NP-hard for every regular equational
theory ¥ which contains an associative or a commutative function symbol. The theories
A, C, AC and ACI represent instances of such theories. The criterion is not restricted
to the regular case, and it can also be used to give simple proofs for the fact that general

E unification is NP-hard for the theories ACUN, ACUNh, and AG mentioned above.

Of course the general complexity result do not depend on any assumption on the
complexity of E-unification with constants. For this reason we conjecture that for equa-
tional theories £ € K there is no polynomial procedure for combining algorithms that
decide solvability of E-unification problems (with constants) with similar decision pro-
cedures for free (syntactic) unification. It seems difficult to prove this general conjecture
as long as we do not make any concrete assumption on the form of the combination al-
gorithm and its output problems. For this reason we consider one natural form of such
a combination procedure, and we show—assuming P # NP—that there cannot be a



“polynomial optimization” of the algorithm given in [BS92] for combining E-unification
with free unification in the case where E € K.

When we look for properties that guarantee tractability of combination problems,
a useful idea has been introduced already in 1980 in a related context. Oppen [Op80]
considered combinations of decidable theories where each component theory is given
by means of a quantifier-free axiomatization?. He introduced the notion of a “convex”
theory and showed—under some additional technical assumptions—that polynomial
satisfiability checkers for formulae in disjunctive normal form for convex theories over
disjoint signatures can be lifted to a polynomial satisfiability checker for mixed formulae
in disjunctive normal form in the union of the theories.?

In the second part of this paper we show that the abstract idea of convexity can
be applied to the context of combined (dis)unification algorithms. Due to the complex
nature of this combination problem, the appropriate notion of convexity turns out to
be more complicated than in Oppen’s situation. We introduce the new concept of an L-
convex equational theory. This notion refers to a constraint language £ that is used to
describe sets of admissible “linear constant restrictions” for (dis)unification problems.
For L-convex equational theories over disjoint signatures, a deterministic treatment of
combined (dis)unification problems is always possible. We show that unitary regular
and collapse-free equational theories are L£-convex. If polynomial unification algorithms
are available for both component theories, this leads to a polynomial algorithm for
deciding solvability of disunification problems in the union of the two theories. In the
conclusion we indicate how the new notion of L-convexity can be lifted to the class
of simply combinable (SC-) structures introduced in [BS95b]. Polynomial combination
techniques for solving positive constraints over feature structure domains and rational
trees could be obtained on this basis.

2 Preliminaries

A signature consists of a finite set of function symbols, each of fixed arity. Let X be a
signature, and let Var denote a disjoint countably infinite set of variables. The set of
Y-terms with variables in Var is defined as usual. With 7 (X, Var) we denote the free
term algebra for the signature 3. A X-substitution is an endomorphism o of T (X, Var)
such that the set {x € Var | o(x) # =z} is finite. Symbols o, 7, 1, A, possibly with
subscripts, always denote substitutions. If ¢ and 7 are substitutions, then o o7 denotes
their composition, where o is applied first. If ¢ is a term, then Var(t) denotes the set
of variables occurring in ¢. The size of a term is defined as usual.

An equational theory with signature ¥ is a set E of equations between X-terms.
With =p we denote the least congruence relation on 7 (X, Var) that is closed under

2 . . P
“The signatures of the theories are assumed to be disjoint.
#See the conclusion (Section 5) for a brief comparison of both problems and methods.



substitution and contains E, and T (X, Var)/ =g denotes the quotient term algebra
modulo =g. An equational theory E is called consistent if © # g y for distinct variables
x,y € Var. FE is called collapse-free if E does not contain an equation of the form
t = x where t is a non-variable term and « € Var. E is regular if Var(s) = Var(t)
for all equations s = t of E. For a detailled explanation of these notions and for an
introduction to equational unification we refer to [BS94].

Remark 2.1 The following facts can easily be proved for collapse-free (1.) respectively
regular (2.) consistent equational theories:

1. Vo € Var,t e T(X, Var) : x =g t ift t = x.

2. Vx € Var,s,t € T'(X, Var) : © € Var(s) and s =g ¢ implies = € Var(t).

Let E be an equational theory with signature . An elementary E-unification
problem is a finite set 7y of equations between X-terms. Sometimes we shall write y
as a conjunction of equations. An E-unification problem with constants is a finite set
of equations between (X U T')-terms, where T' is a set of “free” constants, i.e., a set
of constants not occurring in X. A general E-unification problem is a finite set of
equations between (XU ®)-terms, where @ is a set of free function symbols of arbitrary
arity. Note that each general E-unification problem can be considered as an elementary
unification problem in the combined theory E U F' where F' denotes the free (empty)
theory over the set of functions symbols ®.

Let v be an elementary E-unification problem of the form {s; = #1,...,s, = 1,}.
A solution (or a wunifier) of v is a X-substitution o such that o(s;) =g o(t;), for
1 =1,...,n. It should be clear that solutions of EF-unification problems with constants,

or solutions of general E-unification problems, may use the additional free symbols
occurring in the problem itself.

An elementary FE-disunification problem is a finite set v of equations and negated
equations (written in the form s # t) between X-terms. A solution of an elementary E-
disunification problem v is a X-substitution o such that o(s) =g o(t) (resp. o(s) #g
o(t)) for all (dis-)equations s = ¢ (resp. s # t) in 7. As in the case of unification
problems, this notion can be lifted to E-disunification problems with constants and
to general E-disunification problems in the obvious way. It should be mentioned that
we consider here only one possible semantics for disunification problems. Often these
problems are also solved over the ground term algebra modulo E, the initial algebra
for E. For a more thourough description of disunification we refer to [Biir88, Com91].

An equational theory E is unitary if every elementary E-unification problem ~ has
a most general unifier, i.e., a unifier p such that for every unifier 7 of y there exists a
substitution A such that 7(z) =g A(p(x)) for all x € Var(y).

Let v be an elementary E-(dis)unification problem over the signature 2, let Var(y) C

ot



Y be a finite set of variables, and let A be another signature. A linear constant re-
striction for Y is a pair L = (Lab,<p) where <y is a strict linear ordering on Y
and where Lab : Y — {3, A} is a “labelling function” that assigns to each variable
y € Y a signature Lab(y) € {¥,A}. The pair (v, L) is called an E-(dis)unification
problem with linear constant restriction. A X-substitution o solves (v, L) if o solves
the E-(dis)unification problem v and if the following conditions are satisfied:

1. o(y) =y for all y € Y such that Lab(y) = A,

2. for all z,y € Y: if Lab(y) = A, Lab(z) = ¥ and if y occurs in o(x), then y <p =.

Note that, by condition 1, the variables with alien label A are treated as constants in

(v, L).

3 Intractability Results

In this section we shall give a criterion that can be used to show that for a given equatio-
nal theory E the problem of deciding solvability of general E-(dis)unification problems
is NP-hard. The power of the criterion will be illustrated in the third subsection. Since
intractability results for combined unification problems immediately generalize to the
disunification case, we shall only consider combination of unification algorithms in this
section. For technical reasons we start with a description of the combination proce-
dure for unification algorithms for equational theories given in [BS92]: the proof of the
central proposition of the section depends on the correctness of this combination algo-
rithm. At the end of this section we shall show that the criterion gives also a serious
limitation for attempts to optimize the combination algorithm in the context of general
E-unification.

3.1 The combination algorithm for unification

Let E and F be two consistent equational theories over disjoint signatures ¥ and A
respectively. An elementary (E U F)-unification problem v is in decomposed form if
v has the form vy Uy, where the “pure” subproblems vy and v, are built over the
signatures X and A respectively.

Suppose that we want to decide solvability of an elementary (F U F')-unification
problem 7. The following Algorithm 1, described in more detail in [BS92], reduces
non-deterministically to a finite number of output pairs. Each component of an output
pair represents an (E resp. F-) unification problem with linear constant restriction.

Algorithm 1. In the first step, the input problem 7yq is transformed into an ele-
mentary (E'UF)-unification problem vy =1 g A 71,F in decomposed form such that g



is solvable iff 7 is solvable. In the second step, a partition 1l of Var(yi p Ay ) is cho-
sen, and for each equivalence class of Il a representant is chosen. Now all occurrences
of variables are replaced by the representant of the equivalence class that contains the
variable. We obtain the new formula y9 g A2 p. Let Y denote the set of representants.
In the third and fourth step, a labelling function Lab : Y — {3, A} and a strict linear
ordering <;, on Y are chosen. The output pair determined by the choices in steps 2 —4,
then, is ((y2,r, L), (v2,r, L)), where L = (Lab, <r). In the first (second) component.
the variables with label A (resp. X) are treated as constants.

The first, deterministic step is based on the technique of “variable abstraction”,
and needs only a polynomial* number of steps (see [BS92]). Steps 2-4, then, are non-
deterministic. Following common terminology, the second step will be called “variable
identification” in this paper. The main technical result of [BS92] is the following

Proposition 3.1 The input problem, g, has a solution iff there exists an output pair of
Algorithm 1, ((v2,r, L), (v2,r, L)), such that both the E-unification problem with linear
constant restriction (y2.p, L) has a solution and the F-unification problem with linear
constant restriction (y2.p, L) has a solution.

In the sequel, two details of the correctness proof for Proposition 3.1 given in [BS92]
will be used.

Remark 3.2 It was shown (p. 58) how given solutions oz and oy of an output pair of
Algorithm 1 can be combined to a solution ¢ of the input problem, 9. This combined
solution o has the following property: if y is a representant of type A, and if the term
or(y) does not contain any X-variable, then o(y) = op(y).

Remark 3.3 It was described (p. 60) how a given solution o of an elementary (EUF)-
problem can be used to define choices in the non-deterministic steps of Algorithm 1
that lead to an output pair ((y2,, L), (y2,r, L)) where both components are solvable.?
In the second step of this construction, two variables v; and vy of the decomposed
problem are identified iff o(vy) =pup o(v2).

3.2 A criterion for intractability

One notion will be needed before we can state the main technical result of this section.

Definition 3.4 Let v be an FE-unification problem. Let {zg,...,z,} C Var(y) for
some m > 0, let Z denote the sequence (xg,...,x,). A solution o of v is Z-atomic if

*Polynomial in the size of 4o. This is not a sharp estimate.
®The solution that is considered in [BS92] is assumed to be normalized in a particular way. But this
point is not relevant for the present discussion.



o(xz;) is a variable or a free constant (i.e., a constant not occurring in the signature of
E), fori=0,..., m.

Proposition 3.5 (Main Proposition) Let E be a consistent equational theory with
signature 3. Suppose there exists an E-unification problem with constants, v, contat-
ning three distinct free constants a,b, and ¢ and variables {xy, ..., x,} such that for

T={x0,...,Tm)

1. 7 has Z-atomic solutions oq, 0y and o, that map xy to a,b, and ¢ respectively, and

2. every F-atomic solution of v maps x( to one of the constants a,b or c.
Then solvability of general E-unification problems is NP-hard.

Proof. We shall show that so-called 1-in-3 problems over positive literals can be
encoded as general E-unification problems. Solvability of 1-in-3 problems is well-known
to be NP-complete, see [GJ79]. The size of an encoded 1-in-3 problem will be linear in
the size of the 1-in-3 problem, which will give the desired result.

1. In the first step we show how to encode a single clause ¢l = (py,p2,p3) with
three positive literals. Let a,b,c, and 7 as above. For simplicity we shall assume
that v contains just four free constants a,b,c and d. We consider the free signature
A :={0,1, f} where 0 and 1 are distinct constants and f is a ternary function symbol.
Let F' denote the free (empty) theory for signature A. Clearly, E U F' is a consistent
equational theory and 1 #pyp 0. Let z1, 29,23 be three distinct variables that do
not occur in y. The variables zj, 29, 2z3 will be used to represent pi,ps,p3. For each
1€ {1,....m}, let yi1,vi2,9:3 be a collection of three new variables (not occurring in

~ and distinct from 27, 29, 23). Let yp denote the elementary F-unification problem

zo = f(z1,22,23) Aa= f(1,0,0) A b= f(0,1,0) Ac= f(0,0,1)Ad = f(1,1,1)

m
ANz = iy vi3)-
=1

In this problem, a.b, ¢, and d are treated as variables. With v we denote the variant
of the system v where a, b, ¢, d are treated as variables. Now consider the elementary
(E U F')-unification problem in decomposed form

Y= A e
We shall verify the following two claims:

Claim 1 For each triple (i,7,k) € {(1,0,0),(0,1,0),(0,0,1)} there exists a solution
o of v* such that (z1, 22, z3) is mapped to (1,7, k) under o.

Claim 2 Modulo E, each solution of v* maps (21, 22, 23) either to (1,0,0), or to
(0,1,0), or to (0,0,1).



Note that these claims can be interpreted in the sense that solutions of v* may be
used to “select” (via identification with 1) exactly one of the elements 21, zo and z3,
and that each solution in fact provides for such a unique selection.

Proof of Claim 1: we show that there exists a solution ¢ of v* such that (z1, 22, z3)
is mapped to (1,0,0) under o, the other cases can be treated analoguosly. By as-
sumption, v has an Z-atomic solution ¢, that maps x¢ to a. Consider the parti-

tion IT of Var(y*) where two elements u,v of {a,b,c,d, xg,..., 2z} belong to the same
class of II iff o,(u) = o4(v), and where the equivalence classes of the variables in
Var(y*) \ {a,b,c,d, xq, ..., x,} have just one element. Note that a,b, ¢, and d belong

to distinct equivalence classes of II since o, leaves these elements fixed. On the other
hand, z¢ and a belong to the same class.

We select a set of representants Y for I as follows. Let a, b, ¢, and d be the represen-
tants of their equivalence classes. Choose any representant for the variables in & that
belong to other classes of II. All the remaining equivalence classes of Il have just one
element which is the representant of the class. Let Lab be the labelling function on Y
where the representants occurring in yp receive label A and all the other representants
receive label 3. Let < be any linear ordering on Y such that all representants with
label A are smaller than all the representants with label Y. We consider the linear
constant restriction L := (Lab,<) on Y. Let 72 p and ¥2 p be the formulae that are
obtained from g and 7 by replacing each occurrence of a variable by its representant.
Now

((v2,5, L), (y2,r, L))

is a possible output pair of the Decomposition Algorithm.

We claim that both components are solvable problems. First we consider (y2,r, L).
The choice of the linear ordering < guarantees that (y2 g, L) can be considered as a
usual F-unification problem with constants. In fact, since A-variables are smaller than
Y.-variables with respect to <, the linear constant restriction L does not impose any
real restriction on the X-variables of v» p. The constants occurring in the problem are
a, b, c,d and the representants of the variables in 7.

Let 7 be the function that maps each atom o4(x;) to the representant of z; (0 <
¢ < m). The choice of representants guarantees that 7 leaves a, b, ¢, and d fixed, hence
7 can be regarded as a X-substitution. Let op := 0, 0 7. We want to show that op is
a solution of (y2 g, L).

We have to verify that o treats A-variables as constants. This is clear for a, b, c,
and d. Let x; be the representant of z; for some 0 < k,I < m. Then og(zp) =
T(0a(xg)) = T(04(x7)) is the representant of x;, namely xy.

It remains to show that o solves the equations of y2 p. Let s1 = s2 be an equation
of v2 i, and let t; = ¢2 be the corresponding equation of . Recall that ¢; is obtained
from s; be replacing all occurrences of variables in Z by their representants, for + = 1, 2.
By assumption o,(t1) =g o4(t2). The choice of the partition IT shows that o,(s1) =g



oa(s2). Hence 7(04(s1)) =g 7(04(s2)) and og(s1) = op(s2).

The second system, (y2,r, L), does not contain any variable with label ¥, which
means that the linear constant restriction L does not impose a real condition. We may
treat the system as an elementary F-unification problem. Recall also that a,b,c,d are
four distinct variables of (y2 p,L). Obviously, there exists a solution op of (vy2,r, L)
mapping (z1, 22, z3) to (1,0,0).

It follows now from Remark 3.2 that 4 has a solution ¢ such that

(o(21), 0(29), 0(23)) = (1,0,0).
This completes the proof of Claim 1.

Proof of Claim 2: Let ¢ be a solution of ¥*. By Proposition 3.1 there exists a
solvable output pair ((y2,x, L), (y2,r, L)) of the Decomposition Algorithm. An analysis
of v* gives some information on the variable identification step and on L. First note
that the representants of the variables a, b, ¢, d and zg, ..., z, necessarily must receive
label A in L since otherwise (y2 7, L) would be unsolvable. For the same reason, the
four variables a, b, ¢, d must belong to different equivalence classes of the partition that
has been selected. Without loss of generality we may assume that a,b,c, and d are
used as representants of their equivalence classes. Let op be a solution of (y2 g, L).
We assume that op leaves all variables fixed that do not occur in v p. We may now
consistently extend op, mapping each variable of yp to the image of its representant
under op. In this way, we obtain a solution oy of vg. Note that og, similarly as
op, treats a,b, c,d and the representants of the variables in # as constants since these
elements are A-variables of 45 p. Therefore o is an Z-atomic solution of .

By the assumption of the proposition, og maps zg to one of the constants a, b, c.
Let us assume that og(xzg) = a. But this implies, by the choice of og, that a is the
representant of xg. Let 2], z5, and 25 denote the representants of the equivalence classes
of z1, 29 and z3 respectively. We have seen that the problem which is reached after the
variable identification step contains the equations a = f(z], 25, 25) and a = f(1,0,0).

By Remark 3.3 we may assume without loss of generality that in the variable iden-
tification step two variables u and v of v* are identified iff o(u) =g o(v). This means
that o solves the equations a = f(z], 25, 24) and a = f(1,0,0) modulo E. Hence

f(1,0,0) = o(f(1,0,0)) =g a(f(21, 25, 23)) = f(0(2]),0(25),0(23))
=p flo(z1).0(22),0(23)).

It is well-known that the A-reducts of the joint term algebra 7 (X UA, Var)/ =g and of
the pure term algebra 7 (A, Var) are A-isomorphic. This shows that o maps (21, 22, z3)
to (1,0,0) modulo E.

2. In the second part of the proof we show how to encode a 1-in-3 problem with clau-
ses cly, ..., cl, containing the positive literals p1, ..., pg. Let z1, ..., 25 be a fixed set of
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distinct variables. The clause cl; will be encoded by the elementary (E U F)-unification
problem v that is obtained from the formula v* defined above in the following way.
If cf; has the form (py, pr,ps), then we use the variables zg, z,, z5 instead of z;. 22, z3.
Clearly, zy, 2., zs encode py,p,.,ps just as zy, 29,23 encoded py,ps.p3 before. For all
other variables occurring in 4* (in particular for a,b,c,d and the variables in #) we
use a fresh copy for each of the subproblems v; (to be denoted a',b’,z),...). In this
way, the general E-unification problems 7{,...,v" share only variables in {z1,..., 2z }.

Modulo the values of these variables they can be solved independently. Now ~{,..., v
is used for encoding cly, ..., cl,.

Assume that the 1-in-3 problem cly, ..., cl, has a solution. Then there exists a
mapping S : {z1,..., 2.} — {0,1} such that in each problem 7}, with equation z}, =
f(2q, 2, 25)., say, exactly one of the variables z,, 2,, 2, is mapped to 1 under S, while
the remaining two variables are mapped to 0. It follows from Claim 1 that ] has a
solution o; such that (zy, 2., z5) is mapped to (S(zq), S(2,), S(z)) under ;. Since the
distinct subproblems 7, ..., v, share only variables in {z1,..., 2} it follows that the
general E-unification problem 7] A... A has a solution.

Conversely, if y7 A ... A7} has a solution, then Claim 2 shows that there exists
a mapping S : {z1,...,zt} — {0,1} respectively S : {p1,...,pr} — {0,1} which
represents a solution of the 1-in-3 problem cly, ..., cl,. O

Before we look at some applications of the Main Proposition we consider in more
detail the situation where 47 A ... A 7, is used as the input of the Decomposition
Algorithm. We want to show that from every partition II of Var(yj A... A~) in the
variable identification step that leads to a solvable output pair we can read of a solution
of cli,...,cl,. In the sequel, E and ~ are as in the Main Proposition and expressions
(:],‘,7;*,:1:6,(& b, ¢t ete. refer to the same entities as in the previous proof. If II is a
partition of X := Var(y] A ... A~;), then [z];; denotes the equivalence class of © € X
with respect to II.

Definition 3.6 A partition Il of Var(y{A...Av}) is locally correct if, foralli = 1,....n,
the equivalence classes [a']11, [b']11 and [c‘];; are pairwise distinct and z, € [a'] U[b']n U
['Tn.

Proposition 3.7 Assume that we reach, for input y7 A ... AN, . a solvable output pair
of the Decomposition Algorithm, selecting the partition II of Var(y] A ... A~.) in the
variable vdentification step. Then II is locally correct.

Proof. This follows as in the proof of Claim 2 above. O

Given a locally correct partition II on Var(yf A ... A7), we define, for each clause
cli = (pg,pr.ps) in cly, ..., cly. alocal truth value assignment Sf; : {pg, pr.ps} — {0,1}
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in the following way. Assume that v contains the equations
wh = f(2g 20 25),a" = £(1,0,0),b" = £(0,1,0),¢" = £(0,0,1).

Then S}, has the following form, depending on whether (1) z)) € [a']n, (2) z{ € [b']m,
or (3) zf € [¢'|i:

. pqg = 1 , pg 0 ' pg 0
(HSy=|p = 0, 2)S,=|p — 1|,38,:=|p — 0
ps = 0 ps — 0 |

Let Sy := UjL; S|, denote the union of these local truth value assignments.

Proposition 3.8 Assume that we reach, for inputy{A... Ay, the output pairr ((yr, L), (yr, L))
of the Decomposition Algorithm, selecting the locally correct partition I of Var(yjA...A

vi) in the variable identification step. Let p, € {p1,....pr}. If. for some 1 < i < n,

Shpy) =1 (resp. Si(py) =0), then the representant 2y of [zgln s mapped to 1 (resp.

0) under every solution of vyp.

Proof. We may assume that cl; has the form (p,. p,, ps). Assume first that Sk (pg) =
1. Then z; € [a']n1, by definition of Sjj. Let y, z;, 2, 2 denote the representants of
a',zq, % and 2z, in yp respectively. Then yp contains the equations y = f(z;z:z:)
and y = f(1.0,0) and the result follows. In the other case, where Si;(py) = 0, we know
that z(, € [b']11 or z{, € [¢']11. The rest is as in the first case. O

Proposition 3.9 Assume that we reach, for input y7 A ... AN, a solvable outpul pair
((ve, L), (yr, L)) of the Decomposition Algorithm, selecting the locally correct partition
IT of Var(y] A ... A7) in the variable identification step. Then Sy solves cly, ..., cl,.

Proof. Since (yp, L) is solvable it follows from the previous proposition that two
local assignments Sj; and S{; agree on the common literals in their domain, for 1 <
i,7 < n. Hence Sy is a truth value assignment on {py,...,pr}. The form of the Sﬁ
shows that St solves cly, ..., cl,. O

3.3 Applications

In this subsection we shall use the criterion given in the Main Proposition to prove that
general F-unification is NP-hard for all the theories mentioned in the introduction. Be-
fore we consider these theories, we give two much more general results. In the following
two theorems we consider theories that have an associative or a commutative function
symbol. It should be clear that these function symbols may have other properties as
well.
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Theorem 3.10 Let E be an equational theory that contains an associative function
symbol “o”. If E 1is reqular, then the problem of deciding solvability of general E-

unification problems is NP-hard.

Proof. Consider the F-unfication problem with constants v of the form
yoxoz=aoaobococ.

Let @ := (z). Since o is associative, it is obvious that v has Z-atomic solutions that
map x to a,b, and ¢ respectively. Now let ¢ be any Z-atomic solution of y. We have
o(y)oo(x)oo(z) =g aocaobococ. Since F is regular, the atom o(x) of the left-hand
side must occur on the right-hand side (Remark 2.1). It follows that o(x) is a, b, or c.
By Proposition 3.5, general E-unification is NP-hard. O

Theorem 3.11 Let E be an equational theory that contains a commutative function
symbol “f7. If E 1s reqular, then the problem of deciding solvability of general E-
unification problems 1s NP-hard.

Proof. Consider the E-unfication problem with constants v of the form

FUf @ y), fu,v) = f(f(a,b), f(b,c)).

Let # := (x). Since f is commutative, it is obvious that v has #-atomic solutions that
map z to a,b, and ¢ respectively. Now let o be any Z-atomic solution of 7. We have
f(flo(z),0(y)), flo(u),o(v))) = f(f(a,b), f(b,c)). Since E is regular, the atom o(x)
of the left-hand side must occur on the right-hand side. It follows that o(x) is a, b, or
¢. By Proposition 3.5, general E-unification is NP-hard. O

The theorems show, for example, that general E-unification is NP-hard for the
following equational theories E: the theory A of an associative function symbol, the
theory C of a commutative function symbol, the theory AC of an associative and
commutative function symbol, and the theory ACT of an associative, commutative and
idempotent function symbol.

The Main Propositon can be strengthened if we know that the algorithms for the
component theories are NP-algorithins.

Theorem 3.12 Let E be an equational theory that satisfies the criterion of the Mawn
Proposition. Assume that there exists an NP-algorithm for deciding solvability of E-
unification problems with linear constant restrictions. Then the problem of deciding
solvability of general E-unification problems is NP-complete.

Proof. This follows immediately from Proposition 3.5 with Consequence 5 (pg. 216)
of Theorem 2.1 in [BS96]. O
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Corollary 3.13 Let E be a reqular equational theory that contains an associative or
commutative function symbol. Of there exist an NP algorithm for deciding solvability
of E-unification problems with linear constant restrictions, then the problem of deciding
solvability of general E-umification problems 1s NP-complete.

Let us now look at the non-regular theories mentioned in the introduction.

Corollary 3.14 Solvability of general E-unification problems is NP-hard for the theo-
ries E = ACUN, ACUNh, and AG (to be defined below).

Proof. In ecach case, we shall give a particular E-unification problem with constants,
v, and we shall show that this problem has the properties mentioned in the Main
Proposition.

Associativity, Commutativity, Nilpotency with Unit (ACUN). This theory, discus-
sed in [GN96], is formulated over the binary nilpotent AC-symbol + and the constant
0. The axioms for nilpotency and unity are © + 2 = 0 and = + 0 = . We consider
the problem v of the form = 4+ y + z = a + b+ ¢ and choose & = (z,y, z). It is obvious
that v has Z-atomic solutions that map z to a,b, and ¢ respectively. Conversely, let
o be an Z-atomic solution of 4. If the atoms o(z),0(y), and o(z) are distinct, then
{o(x),0(y),0(2)} = {a,b,c} and we are done. But it is easy to see that an Z-atomic
solution of v cannot identify two (or three) of the atoms o(z),o(y), and o(z).

Associativity, Commutativity, Nilpotency with Unit and Homomorphism (ACUNh).
This theory, also discussed in [GN96], is similar to ACUN. There is one additional
function symbol h, the additional axioms are h(z+y) = h(z)+ h(y) and h(0) = 0. We
may use the same unification problem as in the case of ACUN.

Theory of Abelian Groups ( AG ). The signature of the theory AG, which is treated
in [HK96], has a binary associative and commutative function symbol +, a unary symbol
—, and a constant e. The axioms are z +¢ = z,2 + (—z) = e,z +y = y + =, and
(r+y)+2z=2z+ (y+ 2). We consider the problem v of the form 2 +y+z=a+b+¢
and choose ¥ = (x,y,z). Again it is trivial to see that this AG-unification problem
satisfies the requirements mentioned in the Main Propositon. O

It is interesting to note that all the problems that we used to verify the criterion of
the Main Proposition are matching problems since the right-hand side is always ground.
We assume that the complexity results of this section can be generalized to procedures
that decide solvability of general E-matching problems.
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3.4 Impossibility of polynomial combination and limitations for opti-
mizing the combination algorithm

In view of the complexity results of the previous subsections it is natural to ask if if
the following conjecture is true: Assume that P # NP. Let E be an equational theory
that satisfies the criterion of the Main Proposition. Then there cannot be any polyno-
maal combination algorithm that reduces solvability of general E-unification problems to
solvability of E-unification problems with constants plus solvability of free (syntactic)
unification problems. When we look carefully at the conjecture, we see that it is difficult
to interpret it in a precise and non-vague way. In fact, when we are talking here about
F-unification with constants, we do of course not want to exclude “closely related”
output problems such as, e.g., E-unification with linear constant restriction. Actually,
we do not see any general and convincing definition of the type of output problem that
one would still be willing to accept. Because of this vagueness there seems to be no
way to prove or refute the conjecture. We shall now introduce one possible formaliza-
tion of the conjecture that arises naturally if one tries to optimize the Decomposition
Algorithm in the context of general E-unification. Here the conjecture can be verified.

Definition 3.15 A polynomual optimization of the Decomposition Algorithm for ge-
neral F-unification is an algorithm that accepts as input an arbitrary general E-
unification problem 7y and computes in polynomial time a finite set M of output pairs
((ye, L), (yp, L)) of E- resp. free unification problems with linear constant restriction
such that vy is solvable iff, for some output pair in M, both components are solvable.
More specifically we demand that each output pair in M is also a possible output pair
of the original Decomposition Algorithm.

Theorem 3.16 Let E € K. Then there exists no polynomial optimization of the De-
composition Algorithm for general E-unification, unless P = NP.

Proof. Assume that there exists a polynomial optimization. We shall then show
how solvability of 1-in-3 problems over positive literals can be decided in polynomial
time, which yields the desired contradiction. We refer to the notations introduced at the
end of Subsection 3.2. Given a 1-in-3 problem cly, ..., cl,, we encode it into a general
E-unification problem 77 A ..., Ay, as in the proof of the Main Proposition. We use
Yi A ..., A, as the input of the polynomial optimization. The output set M contains
only a polynomial number of output pairs. From M, we eliminate all pairs that are
based on a partition II of Var(y] A ..., A7) which is not locally correct. Let My be
the new set. We claim that cly, ..., cl, has a solution iff Sy yields a solution, for some
partition IT of Var(y]A..., Ay, ) that was used for an output pair in My. In fact, assume
that cli,...,cl, is solvable. Then v A ..., Av; is solvable (as we saw in the proof of
the Main Proposition) and M contains a solvable output pair. By Proposition 3.7, My
contains a solvable output pair. Hence the claim follows from Proposition 3.9. Clearly,



the computation of all relations Sy for partitions I used in Mg needs only polynomial
time in the size of cly, ..., cl, under the given assumptions. O

4 Tractable combined disunification problems

In this section we shall isolate a class of equational theories where there exists a general
deterministic and polynomial method for combining disunification algorithms. Our
starting point is the decomposition algorithm for solving disunification problems in the
union of disjoint equational theories given in [BS95al.

4.1 The combination algorithm for disunification

Let E and F be two equational theories over disjoint signatures ¥ and A respectively.
An elementary (E U F')-disunification problem is in decomposed form if it has the form
YE Avr A vz where v (yp) is a finite set of pure X-equations (resp. A-equations) and
where v is a finite set of disequations between variables.

Suppose that we want to decide solvability of an elementary (E U F')-disunification
problem g. The following Algorithm 2, described in more detail in [BS95a], reduces
non-deterministically to a finite number of output pairs. Each component of an output
pair represents an (E resp. F-) disunification problem with linear constant restriction.

Algorithm 2. In the first step, the input problem 7yq is transformed into an ele-
mentary (E U F)-disunification problem «; in the decomposed form vy, p Ay p A y1 £
such that v is solvable iff v, is solvable. In the second step, a partition II of Var(y;) is
chosen. This partition must satisfy the following requirement: if « # v is a disequation
of 1, +, then v and v must not belong to the same equivalence class w.r.t. II. For each
equivalence class of Il a representant is chosen. Now all occurrences of variables are
replaced by the representant of the equivalence class that contains the variable. We
obtain the new formula v g A y2, 7 A y2, 2. Let Y denote the set of representants. In
the third and fourth step, a labelling function Lab : Y — {¥, A} and a strict linear
ordering <;, on Y are chosen. The output pair determined by the choices in steps 2 —4,
then, is ((y2,2 A 72,4, L), (v2,r A ¥2,2, L)), where L = (Lab, <r). In the first (second)
component, the variables with label A (resp. X) are treated as constants.

Similarly as for Algorithm 1, the first step is deterministic and needs only a poly-
nomial number of steps. The number of variables of 1 is linear in the size of yy. The
following proposition was proved in [BS95a] (see Prop. 3.3, p. 237).

Proposition 4.1 The input problem, vy, has a solution in T(X U A, Var)/ =gur iff
there exists an output pair of the Algorithm 2, ((y2,Av2,2, L), (y2,rAv2,2, L)) . such that
both the E-disunification problem with linear constant restriction (y2, g A y2,2,L) has a
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solution and the F-disunification problem with linear constant restriction (y2,p Ay, 2, L)
has a solution.

4.2 Constrained disunification problems

We now introduce a constraint language that will be used to formulate partial descrip-
tions of the linear constant restrictions that may be chosen in the steps of Algorithm 2.
Throughout this subsection, y; denotes a disunification problem in decomposed form,
reached after the first step of Algorithm 2. With X we denote the set Var(y;). II
denotes a partition of X, and Y is a set of representants for II, as chosen in the second
step of Algorithm 2.

Definition 4.2 The atomic formulae of the constraint language £(X) have the form
u = v (equality constraints), v : X or u : A (labelling constraints), or v < v (or-
dering constraints), where u,v € X. In addition, £(X) contains the following Boolean
combinations of atomic formulae:

e disequations —u = v, written in the form u # v,

e strict ordering constraints v < v A u # v, written in the form v < v,

e implications of the form v : A = v < wv.

A constraint set (for X)) is a subset C' of L(X).

Given a linear constant restriction L = (Lab, <;) on Y and a constraint ¢ € £(X), we
say that ¢ holds in L (symbolically L |= ¢) in the following cases:

o L |=u=uwiff rep(u) = rep(v),

e LEw:X (resp. L Ew: A)iff Lab(rep(u)) = ¥ (resp. Lab(rep(u)) = A).

o L Eu<wiff rep(u) < rep(v).

Here rep(u) € Y denotes the representant of © € X with respect to II. The notion
L |= ¢ is extended in the canonical way to general constraints ¢ € £(X), lifting Boolean
connectives to the meta-level.

Definition 4.3 A constraint set C' is compatible with the linear constant restriction L
onY (we write L = C), and L is compatible with C, if L |= ¢ for all ¢ € C.
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Definition 4.4 A constraint set C' is closed iff

C ={ce L(X)| L [ c for all linear constant restrictions L on Y s.th. L = C}.

With Cr(x) we denote the set of all closed constraint sets. Two constraint sets C; and
C for X are called equivalent if they are compatible with the same linear constant
restrictions on Y. It follows from Definition 4.4 that

e for each constraint set C there exists exactly one closed constraint set Clg(x)(C)
such that C' and Clg(y)(C) are equivalent. The constraint set Clz(x(C') is called
the closure of C',

e there exists exactly one closed constraint set, denoted C'|, that is equivalent to
the empty constraint set, (,

e there exists exactly one closed constraint set that is not compatible with any
linear constant restriction on Y, namely Ct = £(X).

e for each linear constant restriction L on Y there exists a unique closed constraint
set C, # C7 that is compatible with L, but not with any other linear constant
restriction on Y. The constraint sets of the form Cp will be called generalized
linear constant restrictions.

It is easy to verify that Cl;(x) is a closure operator, which means that C' C Cl.x)(C),
Clz(x)(C) = Clpx)(Clg(x)(€)) and Cy C Cy implies Clz(x)(C1) C Clz(x)(C2), for all
constraint sets C, C, Cbs.

Lemma 4.5 Let C and Cs be two elements of CC(X). Then C1 C Cy (resp. Cy C Cy)
iff the set of linear constant restrictions on 'Y that are compatible with Cy is a proper
subset (resp. subset) of the set of generalized linear constant restrictions on'Y that are
compatible with C1.

If Cy and C3 are elements of Cg(x) we often write C) < Cy instead of Cy C C. This
emphasizes that we consider a relation on Cz(x). The following lemma represents one
particular instance of a well-known result on closure operators.

Lemma 4.6 (C.(x), <) is a lattice with0 = C',1 = Ct. The meet operation on Cr(x)
is given by (set-theoretical) intersection. The join of C1,Cy € Cp(x) is Cly(x)(C1UC2).

In the deterministic combination algorithm that we want to describe below we shall
consider subproblems where the pure output problems vo g A 72+ and y2 p A 2.+ of
Algorithm 2 are constrained by means of arbitrary elements of Cr(x). We shall now
give a formal definition of these problems.
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Definition 4.7 An Cg(x)-constrained E-unification problem is a pair (yg,C) where
vE is an elementary E-unification problem, Var(yg) C X, and C € Cg(x). The size of
(yp,C) is the size of yp plus | X|°.

It is now convenient to give a reformulation of Algorithm 2 where the output problems
are Cp(y)-constrained E-(dis)unification problem with generalized linear constant re-
strictions. Before we can give a new version of Proposition 4.1 along these lines we
have to say what it means to solve such a problem. We shall see that it suffices to give
the definition in the case of unification problems.

Definition 4.8 Let vy be an elementary E-unification problem with Var(vp) C X.
A solution of the E-unification problem with generalized linear constant restriction
(ve,Cr) is an E-unifier o of v such that

1. for all u,v € X: o(u) =g o(v) iff u=v € Cp,
2. forallu: A e Cp: o(u) € Var,

3. whenever u: A,v: ¥ € Cp and o(u) € Var(o(v)) we have u < v € Cf.

Proposition 4.9 Let v, be an elementary (E U F)-disunification problem, given in
decomposed form v g Ay1,rp Ay1,#. Let X = Var(yr). Then v is solvable if and only if
there erists a generalized linear constant restriction Cp on X, where v+ C Cp, such
that the E-unification problem with generalized linear constant restriction (v p,Cr)
has a solution and the F-unification problem with generalized linear constant restriction
(71,#,CL) has a solution.

Proof. Assume that v has a solution. By Proposition 4.1 there exists an output pair
((v2,2 A2, L), (72,7 A y2,, L)) of Algorithm 2 such that both the E-disunification
problem with linear constant restriction (y2, g A 72,2.L) has a solution and the F-
disunification problem with linear constant restriction (v, 4 A 72,4, L) has a solution.
It follows from the description of the second step of Algorithm 2 that the generalized
linear constant restriction C, corresponding to L contains all disequations of 5 «. The
given solutions op and op of (y2. 5 A ¥2,#, L) and (y2,F A v2,2, L) can be extended to
solutions of (y1,g,Cr) and (y1,r.Cr) just by mapping each variable in X to the value
of its representant under op and op respectively.

Conversely assume that there exists a generalized linear constant restriction C7,
on X, where v, C Cf, such that (y; p.Cr) has a solution or and (y1,r,Cr) has
a solution op. The first condition of Definition 4.8 shows that op and op solve all
disequations of 5 ». Let L denote the linear constant restriction that corresponds to
C'p. It is unique modulo the set Y of representants for the partition Il which is induced

®|M| denotes the cardinality of the set M.
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by the equality constraints of C'f. Let 7g be the function that maps each variable of
the form og(u) to the representant of v with respect to II, for all variables v € X such
that u : A € Cp. It follows from the first two conditions of Definition 4.8 that 7p is
well-defined. It may be regarded as a renaming substitution. The composition op o 7g
treats representants y € Y with label A as constants, and it is easy to see that it yields
a solution of (2,7 Ay2,«,L). In the same way we obtain a solution for (yo, A2 2, L).
By Proposition 4.1, v; has a solution. O

4.3 L-convex theories and deterministic and polynomial combination

Definition 4.10 A generalized linear constant restriction C', € Cg(x) is called a fai-
thful extension of C' € Cp(x) 1f €' = Cf and it ' and C'p have the same set of equality
constraints.

Lemma 4.11 Let C' # C7 be a constraint set in Cp(xy. Then C has a faithful extension
to a generalized linear constant restriction Cp, € Cp(x.

Proof. Since C' # Ct there exists a generalized linear constant restriction Cp, €
Cr(x) that extends C. The equality constraint of C' and C, impose partitions II and
I} of Y, and II is a refinement of II;. If some equivalence class of II] contains n > 2
equivalence classes of II, then we may split this class in its n subclasses according to
IT and define a new ordering where these n classes are consecutive (not changing the
order with respect to other classes). Repeating this step, we obtain a new generalized
linear constant restriction Cj € Cr(x) which faithfully extends C. O

The following may be considered as the central definition of this section.

Definition 4.12 The constraint set Cy € Cy(x) is a cover point for the Cp(x)-constrained
E-unification problem (vyg,C1) if C7 =< C2 and for each generalized linear constant re-
striction Cf, € CL(’X) that faithfully extends Cs there exists a solution of (yg,Cr).

The cover point Cs of (yg, C}) is called a universal cover point for (yg,C) if Co < Cp
for all generalized linear constant restrictions Cy € C[,(‘\') where C7 < () and the
Cr(x)-constrained E-unification problem (g, (') is solvable.

To understand Definition 4.12 it might help to imagine an advocate P for E who
negotiates about a suitable generalized linear constant restriction C, € Cg(x) that
extends C'1. P wants to agree on some extension Cf, such that (yg,Cp) is solvable. In
this situation PP may suggest to continue the negotiation from a universal cover point
Cs for (v, C1). With such a suggestion, it is still possible to reach any generalized linear
constant restriction Cy, which is interesting for £. Moreover, the suggestion is “safe” in
the sense that each pair (v, Cp) is always solvable as long as Cp is a faithful extension

of Cs.



Definition 4.13 The equational theory E is L-convez iff for every Cp(x)-constrained
E-unification problem (yp,Cy) there exists a universal cover point with respect to E.

Definition 4.14 The equational theory E is effectively L-convez if there exists an al-
gorithm that computes a universal cover point for each Cp(x)-constrained E-unification
problem (yg,C1). E is polynomial L-convez if there exists an algorithm that is poly-
nomial in the size of (yg, C1).

Let £ and F denote two effectively L-convex equational theories over disjoint signatures
3 and A respectively. We shall now give a deterministic combination algorithm that
may be used to decide solvability of elementary (E U F')-disunification problems. If
both theories are polynomial £L-convex, then this decision procedure is polynomial.

Deterministic Combination Algorithm

The input of the algorithm is an elementary (E U F)-disunification problem 7. The re-
marks on Step 1 of Algorithm 2 show that we may assume that v is given in decomposed
form yg A yp Ayz. Let X := Var(y) and n := |X|. The algorithm is organized in a
series of rounds. Each round has an Cp(y)-constrained (E- respectively F-) unification
problem (vy7,C) as input, where I € {E, F'} and C' # Cv. The input for the first round
is (yg,C1), where Cy :=C.

Round 1:  We compute a universal cover point Cy € Cp(x) for (yg,CL) with respect
to E. If Cy = Ct, then we stop with failure. In the other case, (yp,C2) is the input
for round 2.

Round k > 2:  Assume that the input for this round is (yr,Cy), where I € {E, F}.
We compute a universal cover point Ciyy € Cp(xy for (v1, Cy) with respect to the given
equational theory I. The algorithm stops in two cases:

(i) If Cyy11 = Ct, then we stop with failure.

(ii) In the other case, if Cyy1 and Cj have the same set of equality constraints, then
we stop with success.

In the remaining case, the Cp(x)-constrained J-unification problem (7, Clt1), where

{I,J} ={E,F}, is the input for round k + 1.

Proposition 4.15 The Deterministic Combination Algorithm terminates after at most
n+ 1 rounds.

Proof. Beginning with round 2, each non-final round leads to a new identification of
variables by means of new equality constraints (Condition (i¢)). The maximal number
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of such identification steps is n— 1. Together with the initial round and the final round
we obtain a maximum of n + 1 rounds. O

Proposition 4.16 The Deterministic Combination Algorithm stops with success if and
only if the input conjunction v has a solution with respect to KU F'.

Proof. First assume that the (F U F)-disunification problem v has a solution with
respect to FUF. By Proposition 4.9 there exists a generalized linear constant restriction
Cr € Crx) where v C (7, such that the Cp(x)-constrained [-unification problem
(v7,Cr) has a solution with respect to the theory I, for I = E,F. Let Cy,...,C}
(E > 1) denote the sequence of universal cover points that are computed in the rounds
of the Deterministic Combination Algorithm. Obviously C| = C'} < Cr. Assume that
1 < k and C; 2 Cp. Let (v, C;) be the input for round 4, where I € {E, F'}. The fact
that Ciy1 is a uniwersal cover point for (v, C;) implies that C;11 < Cp. It follows that

C = O, and the algorithm does not stop with failure. Hence it stops with success.

Now assume that the algorithm stops with success, say in round [ > 2. Suppose
that the input of round [ is the Cp(y)-constrained I-unification problem (7, Cp), where
I € {E, F}. Choose an arbitrary faithful extension of C; to a generalized linear constant
restriction Cj,. Lemma 4.11 shows that such a faithful extension exists. Condition (ii)
for round [ ensures that C7, is also a faithful extension of Cj_;. Since C; and C;_;
are cover points we know that both (y7,Cp) and (v;,Cr) (where {I,J} = {E, F}) are
solvable unification problems with generalized linear constant restrictions. It follows
from Proposition 4.9 that the (E U F')-disunification problem 7 is solvable. O

Theorem 4.17 Let E and F' be two polynomial L-convex equational theories over dis-
joint signatures ¥ and A. Then solvability of elementary (E U F )-disunification pro-
blems s decidable in polynomial time.

Proof. Let vy be an elementary (E U F')-disunification problem. As we mentioned
after the description of Algorithm 2, there exists a polynomial algorithm that transforms
Y0 in an elementary (£U F)-disunification problem v in decomposed form yg Ayp Ay
such that g is solvable iff 1 is solvable, where the cardinality of X := Vary;) is linear in
the size of vy. The problem v, may be used as input for the Deterministic Combination
Algorithm. Under the given assumption on E and F' it follows that the computations of
each round of the Deterministic Combination Algorithm need polynomial time (in the
size of the original input problem vp). Now the theorem follows from Propositions 4.15
and 4.16. O
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4.4 Applications

In view of the strong intractability results of Section 3 it should not be surprising that it
turns out to be difficult to find natural classes of equational theories that are £-convex.
The following theorem gives one such class.

Theorem 4.18 Let E be a unitary reqular collapse-free equational theory. Then E s
L-conve.

Proof. Let E be a unitary regular collapse-free equational theory and let (v, CY)
be an Cg(x)-constrained E-unification problem. We have to show that there exists a
universal cover point for (v, C1) with respect to E.

In the first, trivial case, there does not exist a generalized linear constant restriction
g, € C[,(X) such that Cy < C, and (v, C7p) is solvable. In this case, Cr is a universal
cover point for (v, C1).

Now assume that there exists a generalized linear constant restriction Cp € Cz(yy such
that C7 < Cy, and (v, ) has a solution o. The first condition of Definition 4.8 shows
that o solves y1 := vy A A\,_,cc, v = v. Let o be a most general E-unifier of 71, let

Co = {u=v|uve X, ulu) = p)}
Cy = {u:X|ueX, pulu) g Var}
Co = {u:A=u<v|uve X pulu) € Var(u(v)), u(v) € Var}

and let C' denote the closure of C; UC_ U Cy U C-. It is easy to see that (*) all
equations of C' are in C_.

We claim that C' is a cover point for 7. Let C} be a generalized linear constant
restriction on X that faithfully extends C. We show that p is a solution of (y,C} ):
Clearly p solves . Moreover, since Ci faithfully extends C' it follows from (*) that (1)
pw(u) =g p(v) iff w=v € C}. It remains to prove that the remaining two conditions
of Definition 4.8 are satisfied. Let w,v € X. If u: A € C}, then u : ¥ ¢ Cy C C
and p(u) € Var. Now assume that v : A v : 2 € € and p(u) € Var(pu(v)). Then p(v)
caunot be a variable, otherwise we would have p(u) = p(v) and u = v € C which is
impossible since both variables have distinct labels. The definition of C- implies that
u:A=u<veCCC). Hence u < v € O} since C} is closed.

It remains to prove that C' is a universal cover point for (v,C7). Let Cr, o, vy and
@ as above. Since o is an F-unifier of v, there exists a substitution A such that
o(v) =g AMp(v)) for all v € X. In order to show that C' < C, it suffices to prove that
(C=UCyUCs) C O since O is closed and C C (.

1. Let w =v € C=. Then pu(u) =g p(v) and o(u) =p AMp(uw)) =g AMu(v)) =g o(v).
The first condition of Definition 4.8 shows that v =v € Cf.
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2. For u : ¥ € Cy, we have u(u) € Var. Since o(u) =g A(p(u)) and since E is collapse-
free it follows from Remark 2.1 that o(u) € X. Condition 2 of Definition 4.8 shows that
u: A g Cp, therefore u : X € Cp, since (' is a generalized linear constant restriction.

3. Consider a constraint v : A = u < v € C-. In order to show that u: A = u <wv €
C'1 we may assume that

u: A\ €eCy

and show that v < v € C. From the definition of C-, it follows that p(u) € Var(u(v))
and p(v) € Var. Now A(p(v)) € Var and the first observation of Remark 2.1 implies
that Mp(v)) =p o(v) & Var. It follows that v : A € Cp and thus

v:XeC.

Since u : A € C, Condition 3 of Definition 4.8 shows that o(u) € Var. But o(u) =g
Ap(u)). Since E is collapse-free, the first observation of Remark 2.1 implies o(u) =
Ap(u)) € Var. Since p(u) € Var(p(v)) we see now that o(u) = A(pu(u)) € Var(A(u(v))).
Since E is regular and o(v) =g A(p(v)), the second observation of Remark 2.1 shows
that o(u) € Var(o(v)). Condition 3 of Definition 4.8 implies that u < v € Cf. O

Corollary 4.19 Let E be a unitary, reqular and collapse-free equational theory. Sup-
pose there exists a unification algorithm that computes a most general unifier u for each
solvable E-unification problem with constants, 7y, stopping with failure for unsolvable
problems. Then E 1is effectively L-convex. If this algorithm is polynomial, then E is
polynomaal L-conver.

Proof. Let (7, C1) be aCp(x)-constrained E-unification problem as considered in the
previous proof. Let p be a most general E-unifier for v, :=y A A,_,cc, v = v. Under
the given assumptions there exists (polynomial) algorithms to compute p, and to decide
if p(u) =g p(v), for given variables u,v € X. The previous proof shows that we may
effectively compute a universal cover point Cy for each £(X)-constrained E-unification
problem (v, C}). If the E-unification algorithm is polynomial, then obviously the set
C1UC_UCyUC- mentioned in the previous proof can be computed in time polynomial
in the size of (7, C). It is easy to see that the £(X )-closure of this set, i.e., the universal
cover point for (v, C1), can be computed in time polynomial in the size of (y,Cy). O

Theorem 4.20 Let E and F be a unitary, reqular and collapse-free equational theories
over disjoint signatures % and A. Suppose there exists a polynomial algorithm that
computes a most general unifier i for each solvable elementary E- resp. F-unification
problem with constants, 7y, stopping with failure for unsolvable problems. Then there
exists a polynomial algorithm to decide solvability of elementary (E' U F )-disunification
problems.
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Proof. This follows from Theorem 4.17 and Corollary 4.19. O

The result of Theorem 4.20 can be lifted to general (E'U F')-disunification problems,
just by combining E U F with the free theory. Let us mention one concrete application
of Theorem 4.20.

Corollary 4.21 Let

Dy = {f(z,g9(y.2) = g(f(z,y), flzx,2))}
Dg {fl9(y,2),2) = g(f(x. 2), f(y,2))}

denote the theories of left and right ditributivity respectively. Then solvability of general
Dy, (resp. D) disunification problems is decidable in polynomial time.

Proof. The theories of left respectively right distributivity are known to be unitary,
regular and collapse-free, and there exists a quadratic unification algorithm for unifica-
tion with constants in both cases (see [BS94], chapter 5.) Obviously the free (empty)
theory for a given set of function symbols satisfies these requirements as well. Hence
the result follows from Theorem 4.20. O

5 Conclusion

In this paper we have tried to get some insights into the borderline between tracta-
ble and intractable instances of combination problems for equational unification and
disunification. We have introduced a criterion that characterizes a large class K of equa-
tional theories F where general E-unification is always NP-hard. The most important
question arising from this result has already been mentioned before: is it possible to
interpret these results in the sense that there cannot be a polynomial method for re-
ducing general E-unification problems to pure E-unification problems and pure free
(syntactic) unification problems, for any given theory E € K7 We strongly believe that
the answer is yes, in principle, though we indicated in Section 3 that the formulation of
the problem is vague. In order to obtain a partial answer we introduced the concept of
a polynomial optimization of the combination algorithm given in [BS92]. We showed
that there cannot be a polynomial optimization for general E-unification, for E € K.

We have shown that general E-unification is NP-hard for all regular equational
theories F that contain an associative or a commutative function symbol. It is intere-
sting to note that the proof for the intractability of the counting problem for general
AG unification given in M. Hermann and P.G. Kolaitis [HK96] heavily depends on the
presence of an associative and commutative function symbol in the theory. One may
ask if their result can also be generalized to arbitrary regular equational theories with
associative or commutative function symbols.



In the second part of the paper we looked at properties of equational theories that
guarantee that a deterministic and polynomial combination for disunification algo-
rithms is possible. We introduced the notion of an L-convex equational theory, refering
to a constraint language £ for describing linear constant restrictions. It was shown
that L-convexity yields the key for results on deterministic and polynomial combina-
tion of (dis)unification algorithms, for equational theories over disjoint signatures. It
should be stressed that the notion of L-convexity is generic in the sense that variants
of this notion can be introduced for similar constraint languages that describe linear
constant restrictions. The particular constraint language that we used in this paper
is tuned to the results on unitary regular and collapse-free theories, and it might be
possible to obtain further results on deterministic and polynomial combination, using
other constraint languages.

The notion of L-convexity can be generalized in a straightforward way to the class
of simply combinable (SC-) structures introduced in [BS95b]. This class of structures
properly extends the class of all free structures and contains many domains that are
relevant for constraint programming. For example, the algebra of rational trees ([Col84,
Mah88]), the structure of rational feature trees ([APS94]), and the structure of rational
feature trees with arity ([ST94]) are (non-free) L-convex SC-structures. This follows
from an analysis of the solved form systems for conjunctions of atomic constraints that
exist for these structures. It is possible to obtain polynomial combination algorithms
for procedures that decide solvability of conjunctions of atomic constraints on this basis,
if we use the free amalgamated product ([BS95b]) of the component structures as the
combined solution domain.

As a matter of fact, the tractability results given in Section 4 are mainly of theore-
tical interest. On the other hand it seems possible to extract from the discussion some
hints on possible optimizations of Algorithm 1 for arbitrary combinations of disjoint
equational theories. Constraint languages similar to the language £ discussed in Sec-
tion 4 are used in [KR96] in an optimized version of Algorithm 1. In these approach,
constraints are used to eliminate at least part of the non-determinism of the combina-
tion scheme. However, conditional constraints of the form v : A = v < v—which have
been crucial for obtaining our tractability results have not been used in this context
so far. It seems worthwile to study the effect of their integration.

As we mentioned in the introduction, the notion of £-convexity was inspired by the
notion of a “convex theory” introduced by in [Op80]. Oppen considered combinations
of first order theories 71, and T5 over disjoint signatures. These theories are axiomatized
by a set of quantifier-free formulae—implicitly, axioms are universally quantified. The
algorithmic problem is to decide validity of mixed’ formulae in the union 77 U 75 of
the two theories. This problem is reduced to the problem of deciding satisfiability of a
conjunction v of mixed (positive or negated) literals in 77 U75.% The non-deterministic

"A formula is mixed if it uses non-logical symbols from both theories.
#Note that any model of 73 U T3 can be used to validate satisfiability of ~. In contrast, solvability
of unification problems refers to a fixed algebra!
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combination method suggested in [Op80] consists essentially of the first two steps of
Algorithm 1 described in Section 2: the mixed conjunction v is decomposed into two
pure subparts y; and 2. In the second step, a set of equations and disequations between
the variables in the problem is guessed, yielding the output formulae 7] and ~4 that
are now evaluated independently with the satisfiability checkers for the single theories.

Given a quantifier-free theory 7, a formula ¢ is called convez in [Op80] if it ne-
ver entails a disjunction of equalities between variables without entailing any of the
equalities alone. Here entailment is with respect to 7. The theory T is called convex

e . . . e . . . qg
if every conjunction of literals in the language of 7 is convex”. Oppen shows that a
deterministic combination algorithm exists for formulae in disjunctive normalform if

both component theories are convex.

Despite of the fact that the component theories considered in [Op80] are more
general than the equational theories considered here, the comparison between the two
decomposition algorithms shows that combination of (dis)unification algorithms is the
more difficult problem. While Oppen uses just one non-deterministic step, there are
three such steps in Algorithm 1. This difference is reflected in the two notions of
convexity. The common idea behind both notions is, roughly, to formulate a condition
that guarantees a backtrack-free search for an output pair of the non-deterministic
combination procedure in the style of a negotiation between the two theories. In the
case of [Op80], just entailed equations and disequations between variables have to be
communicated between the theories. In our case, attention has to be payed also to
labelling and order information.
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