
Bounded Fixed-Point De�nability andTabular Recognition of LanguagesHans Lei�Centrum f�ur Informations-und SprachverarbeitungUniversit�at M�unchenWagm�ullerstr. 23D-80538 M�unchenleiss@cis.uni-muenchen.deAbstract. By relating positive inductive de�nitions to space-boundedcomputations of alternating Turing machines, Rounds, Comp. Linguis-tics 14, 1988, has given uniform grammatical characterizations of theEXPTIME and PTIME languages. But his proof gives fairly poor boundsfor language recognition with context-free resp. head grammars.We improve Rounds' analysis in two respects: �rst, we introduce a mod-i�ed class of language de�nitions that allow restricted forms of negativeinductions, and second, we show how to build table-driven recognizersfrom such de�nitions. For a wide and natural class of language de�ni-tions we thereby obtain fairly e�cient recognizers; we can recognize theboolean closure of context-free resp. head languages in the well-knownO(n3) resp. O(n6) steps on a RAM . Our `bounded' �xed-point formulasapparently can not de�ne an arbitrary PTIME language.Our method is based on the existence of �xed-points for a class of oper-ators that need neither be monotone nor increasing, but assume a normor at least a well-founded quasi-ordering on the underlying set.1 IntroductionVardi[14] and Immerman[7] have shown that languages L 2 PTIME are thosethat can be de�ned by a formula ' in a �rst-order relational language (withordering) extended by a least-�xed-point operator:L = L(') := fw 2 �� j Aw j= '(0; jwj) g; (1)where a word w = a1 � � �ajwj over a �nite alphabet � is seen as the �nite rela-tional structure Aw := (jwj+ 1;+; �; <;Ra)a2� ; (2)an initial segment of the natural numbers N = (IN ;+; �; <) (modulo jwj + 1),expanded by relations Ra between positions connected by a in w. Rounds[12] hasgiven a characterization of theEXPTIME languages in the same spirit, implicitlyusing `initial segments' of the monoid L = (��; �; a)a2�, i.e. �nite modelsL�jwj = (��jwj; �; a)a2�;

where ��n is the set of words over � whose length is at most n. Moreover,Rounds shows that both the PTIME and his EXPTIME characterization havea uniform proof: a least �xed-point formula ' corresponds to a space-boundedalternating Turing machine M' (modi�ed to cover �xed-points). For ' in thearithmetical language, a binary representation of numbers (for positions in w)leads to a log(n)-space-bounded machineM', henceL(') = L(M') 2 ASPACE(logn) = PTIME ;while for ' in the language of concatenation, one gets an n-space-bounded ma-chine M', and henceL(') = L(M') 2 ASPACE (n) = EXPTIME :In both cases, the positive inductive de�nition ' leads to a complexity boundfor recognition of L(') with deterministic Turing machines: in the PTIME case,the number of con�gurations of the corresponding ATM M' is O(jwjp+3) wherep := jfree(')j+jbound (')j, and hence, by a result of Chandra e.a.[1], a simulationof M' by a DTM can be done in O(jwj2(p+3)) steps.Rounds counts p = 3 for context-free grammars and hence obtains a DTM -recognition algorithm of time complexity O(jwj12) for context-free languages.This is far worse than the well-known algorithms by Cocke, Younger, Kasami,and Earley that do it in O(jwj3) steps on a RAM or even a Turing machine (seeHarrison[4], p.437 �). A similar defect of O(n18) versus a known bound of O(n6)(cf. Joshi and Vijay-Shanker[15]) resulted in the case of head grammars, a classof grammars studied in theoretical linguistics (c.f. Section 5.1). 1Our aim was to understand why the method yields very poor bounds inthese cases and what improvement on an abstract level could be made in readingo� the recognition complexity from an inductive language de�nition. Since thebest known recognition algorithms use a well-formed substring table to storeintermediate results, our second aim was to �nd a logical characterization of`languages that admit a tabular parser'.First, we observe that the monotonicity of the induction behind least-�xed-point de�nitions of context-free languages is not essential { neither for the exis-tence of �xed points nor for the e�ciency of language recognition. Instead, weuse a �xed-point construction for generally non-monotone, `bounded' operatorson sets with a re
exive transitive relation � where < is well-founded.Second, we give a syntactic characterization of �rst-order formulas '(x; S)that de�ne such operators and are invariant under going from structures A to`local' substructures A�a consisting of all elements b � a in A, in the sense thatA j= '(a;B) () A�a j= '(a; f b 2 B j b < a g):Interpreting these `bounded' formulas over L and exploiting more closely thesyntactic form of context-free grammars, the construction of recognition tables1 Rounds' p = 3 is the quanti�er depth of ' for a context-free grammar G in Chomskynormal form, but the number p of bound individual quanti�ers of ' is 3n, if G hasn nonterminals A with a branching rule A ! B C. Thus, one only obtains a boundof O(jwj2(3n+3)) for context-free and O(jwj2(6n+3)) for head-languages.

and the staging of a bounded induction on certain �nite substructures L�w ofL turn out to be essentially the same.The e�ciency of the tabular recognizers of Cocke e.a. depends on two pa-rameters: the size of the table and the e�ort to compute a new table entry fromgiven ones, which re
ects a sharing of subcomputations by using stored results.Restricting a positive induction over L to L�jwj would in general de�ne a lan-guage in EXPTIME . To obtain small recognition tables, we interprete boundedinductive de�nitions in the smaller �nite structuresL�w = (��w; �; a)a2�;where ��w is the set of subwords of w: for intuitively context-free languagede�nitions '(x), we expect the global reading of ' in the in�nite structure L tocoincide with its local readings in the �nite structures L�w, i.e.fw 2 �� j L j= '(w) g = fw 2 �� j L�w j= '(w) g: (3)This re
ects, we think, the proper logical notion2 of context-independence: gram-matical properties of a string depend only on the grammatical properties of itssubstrings. All our bounded �xed-point formulas satisfy (3) and de�ne opera-tors � which reach their �xed point in O(jwj2) many stages of constant size,corresponding to a small recognition table with O(jwj2) �elds.The e�ciency of computing a table entry is related to a peculiarity of in-dividual quanti�cation in the language de�nition that has been overlooked inRounds' analysis. Not only do context-free or head grammars just quantify oversubstrings of the input; more restrictively, they decompose it into segments ofnon-overlapping consecutive substrings. Restricting individual quanti�ers ac-cordingly, we introduce a class of `decomposition grammars' that contain theboolean closure of context free ones. For these the tabular recognizers yieldO(n3) recognition algorithms on a RAM , since computing a �eld can be donein O(jwj) steps.Head grammars, which de�ne languages of splitted strings { i.e. binary rela-tions between strings {, are similar to context-free grammars, except that con-catenation is replaced by a number of `head wrapping' operations. We generalizethese to a class of operations on m-tuples of strings. Decomposition grammarsusing these operations de�ne languages of strings with m segments, and thetable-recognizers we obtain yield O(n3m) recognition algorithms; a subclass hasrecently been introduced by Hotz and Pitsch[6]. In particular, a language in theboolean closure of the head languages is recognized in O(n6) steps.2 Non-Monotone Operators with Fixed PointsFor easier comparison we recall the Tarski/Knaster-�xed-point construction formonotone operators. An operator � : 2A ! 2A is monotone, if � (S) � � (T)2 The technical notion of context-freeness can be expressed in second-order logic, cf.Lautemann and Schwentick[8], or by regular �xed-point expressions, cf. Lei�[9]. Weremark that structures Aw and binary second order quanti�eres are used in [8], butwith structures L�w one can use �xed-point formulas of monadic second order logic.

whenever S � T � A, and � is increasing (or in
ationary , see Gurevich andShelah[3]), if S � � (S) for each S � A.Theorem1 (Tarski/Knaster). If � : 2A ! 2A is monotone or increasing, then� has a distinguished �xed point �1 � A, de�ned in stages �<� � A by�1 :=[f� (�<�) j � an ordinalg; �<� :=[f� (�<�) j � < � g: (4)Recall that �1 is the least �xed point if � is monotone, but not in general.A norm on a set S is a function j � j : S ! � onto an ordinal �. Each monotoneoperator � on A gives rise to a norm on its �xed point �1 by associating toeach a 2 �1 the least ordinal � such that a 2 � (�<�). Conversely, in situationswhere a norm or just a well-founded transitive relation < on the universe isgiven, there are additional (de�nable) operators that do have �xed points.De�nition2. Let (A;�) be a quasi-ordering, i.e. a set A with a re
exive andtransitive relation �. For a; b 2 A, de�ne a < b : () a � b ^ b 6� a anda � b :() a � b ^ b � a, and for S � A useS�a := f b 2 S j b � a g; S<a := f b 2 S j b < a g; Sa := f b 2 S j b � a g: (5)We call � a well-founded quasi-ordering on A, if � is a quasi-ordering and < iswell-founded. An operator � := (�1; : : : ; �n) with �i : 2A � � � � � 2A ! 2A iscalled <-bounded , if for each �i, each a 2 A and all sets S1; : : : ; Sn � A,a 2 �i(S1; : : : ; Sn) () a 2 �i(S<a1 ; : : : ; S<an):� is norm-bounded , if (A;�) is given by a norm j � j : A ! �, with a � b i�jaj �On jbj.Example 1. If A = fa; b; cg with a < b 6� c and a < c 6� b, the operator � (S) :=if a 2 S then fbg else fcg is <-bounded, but neither monotone nor increasing.The relations � and < are invariant under the equivalence �, and S<a, S�aand Sa depend on the equivalence class [a] of a only. We write S<jaj etc. when� on A comes from a norm. Well-foundedness of < holds trivially in all �nitestructures. In the unary case, � is <-bounded i� � (S)a = � (S<a)a for all a 2 Aand S � A, whence � (S) = Sf� (S<a)a j a 2 A g for all S � A.Theorem3. Each <-bounded operator � := (�1; : : : ; �n) : (2A)n ! (2A)n on awell-founded quasi-ordering (A;�) has a unique �xed-point �1 = (�11 ; : : : ; �1n),where the �1i are simultaneously de�ned by�1i := S f�i(�<a1 ; : : : ; �<an)a j a 2 A g and�<ai := S f�i(�<b1 ; : : : ; �<bn)b j b < a g:In fact, �i(�<a1 ; : : : ; �<an)a = f b � a j b 2 �i(�<b1 ; : : : ; �<bn) g;�1i = f b 2 A j b 2 �i(�<b1 ; : : : ; �<bn) g:

The di�erence between the subset S<a of S � A and the �<a = (�<a1 ; : : : ; �<an)obtained from an operator � should be clear from the context.Proof. Consider the unary case. Since < is well-founded, �<a is well-de�ned.Note that a � b implies �<a = �<b and so � (�<a)a = � (�<b)b. We get� (�<a)a = f b � a j b 2 � (�<a) g = f b � a j b 2 � (�<b) g;from which the characterization for �1 follows. For each a 2 A we have(�1)a = �1 \ [a] = [f� (�<b) \ [b]\ [a] j b 2 A g=[f� (�<b)b j b � a g = � (�<a)a; and so(�1)<a =[f (�1)b j b < a g =[f� (�<b)b j b < a g = �<a:Putting these together, we obtain that �1 is a �xed point of � :�1 =[f� (�<a)a j a 2 A g = [f� ((�1)<a)a j a 2 A g=[f� (�1)a j a 2 A g = � (�1);using the <-boundedness of � in the third step. If S = � (S) is another �xedpoint, then Sb = � (S)b = � (S<b)b for each b, and by well-foundedness of < onegets �<a = S<a for each a 2 A. This gives �1 = S f� (S<a)a j a 2 A g = S.We still have �<a � �<b for a � b. The stages are similar to the stages�<� = Sf� (�<�) j � < �g of Tarski's construction for monotone operators.The basic di�erence is that from � (�<b) we only select the c � b, while forelements c 6� b, membership in �1 is �xed at other stages. As with monotoneoperators, nested recursions can be transformed into simultaneous ones:Lemma4. Let �;� : 2A � 2A ! 2A be <-bounded on the well-founded quasi-ordering (A;�). Then �S(T) := �(S; T) and �(S) := � (S;�1S) are <-boundedoperators on 2A, and �1 is the �rst component �1 of the �xed-point of thesimultaneous <-bounded operator (�;�).The class of <-bounded operators can be extended somewhat, without loosingthe existence of �xed points. Call � : 2A ! 2A �-bounded , if for each a 2 A andS � A, a 2 � (S) i� a 2 � (S�a). Fixed points can no longer be constructed via��a :=[f� (��b)b j b � a g;as this would not be well-de�ned. We have to insist that � (S)a monotonicallydepends on Sa. We call � locally monotone, if � (S�a)a � � (T�a)a for eacha 2 A and S; T � A such that S<a = T<a and Sa � T a.Theorem5. If � is �-bounded and locally monotone on a well-founded quasi-ordering (A;�), then � has a �xed point �1, which is de�ned using�1 := S f� (��a)a j a 2 A g; �<a := Sf� (��b)b j b < a g;��a := S f�<�a j � 2 On g; �<�a := �<a [S f� (�<
a)a j
 < � g;for elements a 2 A and ordinals �. In fact, �1 = f a 2 A j a 2 � (��a) g.

3 De�nable Bounded Fixed-Point OperatorsTo apply the �xed-point constructions of the previous section on �rst-order struc-tures A with a norm j � j : A ! �, or a well-founded quasi-ordering � on A, wewill consider formulas '(x; S) with a free set variable S such thatA j= 8S 8x ('(x; S)$ '(x; S<jxj)); resp. A j= 8S 8x ('(x; S)$ '(x; S<x)):Each such formula de�nes a norm- resp. <-bounded operator�'(S) := f a 2 A j A j= '(a; S) gon A whose �xed-point �1' is taken as the meaning of a new predicate �S�x'.Our intended application is the structure A = L of strings over a �nite alphabet�, with j � j being the length of strings and � the substring relation.De�nition6. Concatenation bounded �xed-point formulas over �, or CBFP-formulas, are given by' :� x = a j x1 = x2 j x1 = x2 � x3 j S(x) (a 2 �)j :'1 j ('1 _ '2) j 9x1 < x2 ' (x1 6� x2)j �(S1; : : : ; Sn)(�x1 '1; : : : ; �xn'n)(x);where in the last clause, the set variables Si and individual variables xi are pair-wise distinct, freeIndV ('i) � fxi g, and no 'i contains an atomic subformulaS(xi) with a set variable S (not necessarily among S1; : : : ; Sn).Remark. O�cially, we consider x = a and x = y � z as syntactic sugar for atomicformulas a(x) and Cat(x; y; z) in a relational language. We use x = � for theformula saying that x is neither a letter nor composed of strict substrings.Our `bounded �xed point' formulas are di�erent from those of `bounded �xedpoint logic' as described in Ebbinghaus and Flum[2], Section 7.7.De�nition7. Let L = (��; �; fag)a2� be the set of all �nite strings over thealphabet �, equipped with the concatenation relation � and predicates for theletters a. Let < be the relation of strict subword (resp. stricly shorter word).Satisfaction in L of a bounded formula '(y1; : : : ; yn; S1; : : : ; Sk) under an envi-ronment [v;R] = [v1; : : : ; vn; R1; : : : ; Rk] is de�ned viaL j= 9yn+1 < yi ' [v;R] < () there is vn+1 < vi with L j= '[v; vn+1;R]L j= (�(Sk+1; : : : ; Sk+m):(�x1:'1; : : : ; �xm:'m))(yi) [v;R] () vi 2 �11 ;where � = (�1; : : : ; �n) with �i(U) := f v j L j= 'i[v;R;U] g:An m-ary relation L between words is de�nable by a bounded �xed-point for-mula '(y1; : : : ; ym), if L = f (u1; : : : ; um) j L j= '(u1; : : : ; um) g. Depending onwhich relation < on �� we use, we talk of length-bounded and subword-boundedformulas.

3.1 Bounded Fixed-Point Formulas De�ne Bounded OperatorsThe last clause in the de�nition of satisfaction makes sense only if we can showthat the operator � is j � j- or <-bounded. We use bounded �xed-point formulasover any primitive relations and constants instead of the CBFP-formulas above.Theorem8. Let A be a �rst-order relational structure with a well-founded quasi-ordering � on A. Let '(x;y;S) := '(x; y1; : : : ; ym; S1; : : : ; Sn) be a bounded�xed-point formula such that for no set variable T , T (x) is a subformula of '.Then for all a 2 A, b1 < a; : : : ; bm < a and sets R1 : : :Rm � A,A j= '(a; b1; : : : ; bm; R1; : : : ; Rn)$ '(a; b1; : : : ; bm; R<a1 ; : : : ; R<an): (6)Proof. We only consider the case ' � �(T1; : : : ; Tk)(�x1 '1; : : : ; �xk'k)(x): Byde�nition, for each i we have freeIndV ('i) � fxi g and there is no subformulaY (xi) in 'i(xi;S;T) with Y among S;T. By induction, for each a 2 A and eachsequence U = U1; : : : ; Uk of subsets of A we haveA j= 'i(a;R;U)$ 'i(a;R<a;U<a): (7)By taking R<a instead of R and, respectively, U<a instead of U, this givesA j= 'i(a;R<a;U)$ 'i(a;R<a;U<a);A j= 'i(a;R;U<a)$ 'i(a;R;U): (8)De�ne k-ary operators �' = (�'1 ; : : : ; �'k) and ~�' = (~�'1 ; : : : ; ~�'k) using�'i(U) := f a 2 A j A j= 'i(a;R;U) g;~�'i(U) := f a 2 A j A j= 'i(a;R<a;U) g:By (8), �' and �~' are <-bounded operators and by Theorem 3 have �xed points�1' = (�1'1 ; : : : ; �1'k) and ~�1' = (~�1'1 ; : : : ; ~�1'k). Thus the formula '(x;S) has ameaning with respect to both environments [a;R] and [a;R<a], given byA j= '(a;R) () a 2 �1'1 and A j= '(a;R<a) () a 2 ~�1'1 : (9)To show A j= '(a;R) () A j= '(a;R<a); we �rst show that�<b' = ~�<b' for all b � a: (10)Suppose this is false. Since < is well-founded, there is b � a such that for allc < b, �<c' = ~�<c' , but �<b'i 6= ~�<b'i for some i. But then, using (7),c 2 �'i(�<c') () c 2 �'i(~�<c') () A j= 'i(c;R; ~�<c')() A j= 'i(c;R<c; ~�<c') () c 2 ~�'i(~�<c'):This implies �'i(�<c')c = ~�'i(~�<c)c for all c < b, which means �<b'i = ~�<b'i , acontradiction. Using a for c in the above calculation, the claim follows byA j= '(a;R) () a 2 �1'1 () a 2 �'1(�<a')() a 2 ~�'1(~�<a') () a 2 ~�1'1 () A j= '(a;R<a):

Corollary 9. On each structure A where � is a well-founded quasi-ordering,every bounded �xed-point-formula '(x) := �(S1; : : : ; Sn)(�x1 '1; : : : ; �xn'n)(x)de�nes a simultaneous <-bounded operator �' := (�'1 ; : : : ; �'n) by�'i(S1; : : : ; Sn) := f a 2 A j A j= 'i(a; S1; : : : ; Sn) g:In particular, the meaning of ' is well de�ned:A j= �(S1; : : : ; Sn)(�x1 '1; : : : ; �xn'n)(a) () a 2 �1'1 :Fixed points �1' need not exist if we allow a subformula S(x) in '.3 Positiveinductive de�nitions ban all negative occurrences of recursively bound relationvariables. Our class of formulas shows that this is unnecessarily restrictive in casethere is a well-founded< available.While we have to exclude �(S)(�x::S(x))(x),we can allow formulas like �(S)(�x:8y < x::S(y))(x).Example 2. Let A be the structure L of words over � and � be the subword-relation or the comparison by word-length.1. Every context-free language over� is de�nable in L by a bounded �xed-pointformula. The converse is false, since we have negation.2. The non-context-free language L0 := fwww j w 2 �� g is explicitly de�n-able using �(S)(�x (x = � _ 9y < x:x = yyy))(x).The non-context-free L1 = f anbncn j n < ! g is de�nable by simultaneouslyde�ning L1 = L2L3\L4L5, with L2 = f anbn j n < ! g, L3 = f cn j n < ! g,L4 = f an j n < ! g, and L5 = f bncn j n < ! g. This can be done as apositive induction �(S1; : : : ; S5)(�x'1; : : : ; �x'5)(x) with, for example,'1(x;S) � x = � _ [9y < x 9z < x (x = yz ^ S2(y) ^ S3(z))^9y < x 9z < x (x = yz ^ S4(y) ^ S5(z))]:3. Universal quanti�cation and boolean operations could be mixed as in theformula �(S) (�x')(x) with'(x; S) := x = a _ 8y < x 8z < x (x = y � z ! (S(y) $:S(z)):Using Theorem 8 and Lemma 4, nested applications of bounded �xed-pointoperators can be combined to a single application of a simultaneous bounded�xed point operator:Lemma10. (`Beki�c-Scott principle' for bounded recursion) Let '(x; S; T) and~'(x; S; T) be bounded �xed-point formulas, without subformulas U (x) for set vari-ables U . ThenL j= �(S; T)(�x:'; �x: ~')(x) $ (�S�x:'[(�T�x: ~')=T])(x):3 Positive occurrences of S(xi) in 'i could be allowed when working with locallymonotone bounded operators (cf. Theorem 5).

3.2 An Invariance Property of Bounded Fixed-Point FormulasNotions of grammaticality should have both a global and a local reading. Glob-ally, a grammatical property '(x) is used to select a languageL(') = fw 2 �� j L j= '(w) gfrom an in�nite interpretation L. Locally, ' should express a property of w thatdepends only on a �nite substructure L(w) � L and is e�ectively testable.For example, note that the construction of the �xed point corresponding toa context free grammar and the construction of a recognition table for input ware related: the recognition table is a kind of `goal oriented' selection from thestages of the inductive generation of all strings in the language.More generally, in `intuitively context-free' languages, grammaticality of astring w should be an `internal' property of the string, i.e. only depend on prop-erties of its substrings. Here the local reading of ' is its interpretation in thesubstructure of L whose universe are the subwords of w. Length-bounded �xed-point formulas '(x), however, can express properties of w by referring to anystring v with jvj < jwj, and so cover some `contextual' notions of grammaticality.The bounded formulas all have a local reading in the sense that they aresatis�ed by an element w in A i� they are satis�ed in a submodel A�w de�nedvia the quasi-ordering � on A.De�nition11. For a �rst-order relational structure A with a binary relation�, let A�a be the substructure of A with universe A�a (containing the con-stants). A formula '(x; y1; : : : ; ym; S1; : : : ; Sn) is �-local in x, if for all A, a 2 A,b1; : : : ; bm < a and S1; : : : ; Sn � AA j= '(a; b1; : : : ; bm; S1; : : : ; Sn) () A�a j= '(a; b1; : : : ; bm; S�a1 ; : : : ; S�am):If A is L, we write L�w for the substructure of L whose universe consists ofall subwords of w and L�jwj for the substructure whose universe consists of allwords of �� of length at most jwj.Theorem12 (Local Substructure Invariance). Let '(x) be the bounded �xed-point formula = �(S1; : : : ; Sn)(�x1'1; : : : ; �xn'n)(x). Then for any structureA with a well-founded quasi-ordering � and any a 2 A,A j= '(a) () A�a j= '(a):For '(x) as above, by induction on the well-founded relation < the stages�<a'i of the induction in A�a are the intersection of those in A with A�a. Notethat least �xed-point formulas do not satisfy the `local substructure invariance',because of their unbounded individual quanti�ers.As one expects, context-free grammars { as �xed-point formulas { are `in-variant under local substructures' in the sense of Theorem 12, with � as thesubword relation. Theorem 17 below shows that the converse does not hold:there are more `intuitively context-free' than context-free languages.

3.3 Syntactic Characterization of Invariance and <-BoundednessAs is well known, a �rst-order formula'(x; S) de�nes a monotone operator �' i�it is logically equivalent to one where the variable S does not occur negatively.Wegive a similar characterization of �rst-order formulas'(x; S) that both (a) de�ne<-bounded operators �' and (b) express `intuitively context-free' properties.Identifying these with properties `invariant under going to the substructure ofall subwords', i.e. the `local' properties in L, (a) and (b) mean8w 2 �� 8S � �� [L j= '(w; S) () L�w j= '(w; S<w)]:In order to replace 9y � x' equivalently by '[x=y] _ 9y < x', our charac-terization needs � to be antisymmetric, and hence does not cover the case ofnorm-bounded operators.De�nition13. Let a �rst-order relational language with a binary relation �be given. A formula '(x; y1; : : : ; ym; S1; : : : ; Sn) is <-bounded in x, if for eachstructure A, all w 2 A, v1; : : : ; vm < w and S1; : : : ; Sn � AA j= '(w; v1; : : : ; vm; S1; : : : ; Sn) () A j= '(w; v1; : : : ; vm; S<w1 ; : : : ; S<wn);and '(x; y1; : : : ; ym; S1; : : : ; Sn) is (syntactically) < x-bounded , if all individualquanti�ers are of the form 9y < x or 8y < x and each Si occurs only in the formSi(yj) or Si(y) for a bound variable y.Theorem14 (Preservation Theorem). For a �rst-order formula '(x; S), the fol-lowing conditions are equivalent:(i) On structures with a partial order �, '(x; S) is �-local and <-bounded in x.(ii) There is a <x-bounded formula �(x; S) such that: \� is a partial order"j= '(x; S)$ �(x; S).Our semantic proof of (i)) (ii) is too long to be included here. It derives� as an interpolant of \� is a partial order" ^ '�(x; S<x) j= '(x; S). Theassumption 9T ('�(x; T) ^ T = S<) is equivalent on countable structures to a�rst-order theory � describing a consistency property for constructing T , and �is obtained from � by compactness.4 Tabular Recognizers for Bounded Fixed-Point De�nitionsTo evaluate monotone inductive de�nitions, Rounds uses an ATM modi�ed byadding (i) oracle states to handle free relation variables, and (ii) recursion statesthat allow arbitrarily many iterations of a recursively de�ned predicate.To handle bounded inductions, besides the oracle states our ATM 's havetwo new kinds of states, one for bounded individual quanti�cation and one forbounded �xed-points.{ M9y<x:' has an initial 9-state in which it can write to its work tape y anarbitrary string u such that u < v, where v is the content of the input tapex (used as a length bound resp. source for copying); control is then givento the submachine M' with u on its input tape y. M9y<x:' returns themaximum of the acceptance values of these calls to M'.

{ M(�(T1;:::;Tn)(�y1:'1;:::))(x1) is built using the machinesM'i(yi;S;T1;:::;Tn). Weassume oracle states for all free relation variables of the formula. Let w be theinput on tape x1 and oracles R for S be given. Let �1' (v) be the bit-vectorof the boolean values of v 2 �1'1 ; : : : ; v 2 �1'n .First, build a `table' �<w' of all �1' (v) for v < w: in a loop through all v < w,respecting <, check whether �1' (v) is already stored; if not, compute its bits�1'i (v) = �'i(�<v') using the submachines M'i with v on its input tape yiand oracles R for S and �<v' for T, and store the results. Second, evaluate'1 on input w, using M'1 with w on its input tape y1 and oracles R for Sand the `table' �<w' for T. Finally, return the acceptance value of M'1 .Thus we �rst expand the �nite structure L�w by �<v' and then can test L j= '(v)quickly as L�w j= '1(v; �<v'). In contrast to the case of least-�xed points, beforecomputing �<v' we know its size; this could be relevant for `bounded' queriesin databases with
at quasi-ordering �. Note also that the values �1'j (v) arecomputed only once. Whether this is an advantage over recursive computation(as used by Rounds), depends of course also on the costs of the read/writeoperations from/to the table.Lemma15. If '(x) := �(S1; : : : ; Sn)(�x1 '1; : : : ; �xn'n)(x) is a bounded �xed-point formula,fw 2 �� j L�jwj j= '(w) g 2 EXPTIME ; fw 2 �� j L�w j= '(w) g 2 PTIME :Concerning the converse, note that a bounded recursive de�nition of the set ofcon�gurations that lead to acceptance could recur to accepting con�gurations ofsmaller size only, but related machine con�gurations have the same length. Soit seems impossible to de�ne all EXPTIME resp. PTIME -languages by length-resp. subword-bounded �xed-point formulas, even if we allow k-ary relation vari-ables rather than just set variables. From a language de�nability point of view,this might even be expected: ordinary grammars would hardly allow multiplescanning and arbitrary rewriting(!) of an input string to test its grammaticality.5 Tabular Recognizers for Decomposition GrammarsWe now further restrict bounded inductive language de�nitions to obtain tabularrecognition algorithms of time complexity O(jwj3) on a RAM . We generalize apeculiarity of individual quanti�cation in the �xed-point formulation of context-free grammars which has been overlooked in Rounds' analysis. It allows to �ll a�eld of the recognition table for input w in O(jwj) steps (cf. Proposition 20 a)).De�nition16. A bounded �xed-point de�nition �(S1; : : : ; Sn)(�x'1; : : : ; �x'n)(x)is a decomposition grammar if each 'i(x;S) is a boolean combination of formulas9x1 < x : : :9xk < x (x = t(x1; : : : ; xk) ^ (x1; : : : ; xk; S1; : : : ; Sn)); (11)where x; x1; : : : ; xk are pairwise distinct individual variables, t(x1; : : : ; xk) is aterm (here: a word made of xi's and constants a) in which each variable occurs at

most once, and (x;S) is a conjunction of formulas Si(xj) and their negations.The grammar is in normal form, if in each subformula (11) either k = 0 andt � a for some a 2 �, or k = 2 and t � x1 � x2.We can test property (11) by `decomposing' its argument string x into strict sub-strings x1; : : : ; xk according to the pattern t and checking which of the predicatesS1; : : : ; Sk hold true of the substrings x1; : : : ; xk.Each language L � �� de�nable by decomposition grammars can also bede�ned by decompostion grammars in normal form. We could allow in (11) tobe a boolean combination of Sj(xi)'s; having disjuncts there amounts to delayingdecisions in the parsing process. We could also allow �-formulas in and havenested recursive de�nitions. This is possible since the class of de�nable languagesis closed under substitution, for which we need Lemma 10.Theorem17. The class of languages de�nable by decomposition grammars con-tains the context-free languages, is closed under the boolean operations [;\;:,the regular operations of �; �, and under substitution.Decomposition grammars seem equally expressive as the hierarchical com-plement intersection grammars of Heilbunner and Schmitz [5], but we have notchecked the details.Before turning to the recognition complexity of decomposition grammars, wegeneralize these to allow a relational interpretation of the syntactic categories.5.1 Head Grammars and Languages of Segmented StringsIn the syntax of natural languages, concatenation is not the only primitive usedto combine expressions. Other operations have been studied (cf. [10, 11]), such asthe insertion of one string into another one, or the wrapping of a splitted stringaround the `head' (for example: stem) of another one. Technically, one uses stringpairs over � and the following wrapping operations �i : ��2 ���2 ! ��2(v1; v2) �1 (w1; w2) := (v1w1; w2v2) (v1; v2) �2 (w1; w2) := (v1; w1w2v2)(v1; v2) �3 (w1; w2) := (v1w1w2; v2) (v1; v2) �4 (w1; w2) := (v1; v2w1w2)(v1; v2) �5 (w1; w2) := (v1v2w1; w2)More generally, we consider segmented strings (w1; : : : ; wm), i.e. strings w =w1 � � �wm segmented into several consecutive substrings w1; : : : ; wm. These areuseful at various places in language description: on the word level to decomposea string w into segments such as verb stem, pre�xes, in�xes and su�xes, or onthe phrasal level to handle `discontinuous constituents', such as a noun phrasewhose noun and relative clause are separated by the verb. For simplicity, we �xthe number m of segments; but we enlarge the class of operations:De�nition18. Let Op be the set of operations � : (��)m � (��)m ! (��)mthat are de�nable by(x1; : : : ; xm) � (y1; : : : ; ym) := (v1; : : : ; vm); (12)

where v1; : : : ; vm are words over fx1; : : : ; xm; y1; : : : ; ym g and each xi and yjoccurs exactly once4 in v1 � � �vm. Let the structure of m-fold segmented strings beLm := ((��)m; �; (a; �; : : : ; �); : : : ; (�; : : : ; �; a))a2�;�2Op:De�nition19. A normal form decomposition grammar for m-fold segmentedstrings is a formula '(x) = �(S1; : : : ; Sn)(�x'1; : : : ; �x'n)(x), where each for-mula 'i(x; S1; : : : ; Sn) is a boolean combination of formulas9x1 < x 9x2 < x (x = t(x1; x2) ^ (x1; x2; S1; : : : ; Sn)); (13)in which either t � a for some a 2 �, or t � (x1 � x2) for some � 2 Op, and is a conjunction of formulas Si(xj) and their negations. The language of m-foldsegmented strings de�ned by '(x) isL(') := f (w1; : : : ; wm) j Lm j= '((w1; : : : ; wm)) g:To interprete <, use comparison by the length j(w1; : : : ; wm)j = jw1j+ � � �+ jwmjof segmented strings. A head grammar is a normal form decomposition grammarfor 2-fold segmented strings over the set Op = f �1; : : : ; �5 g, where each 'i is adisjunction of formulas (13) in which has no negations.C. Pollard[10] introduced head grammars, in a more complicated `rewriting'format, as context-free grammars where concatenation is replaced by the (non-associative) wrapping operations �1; : : : ; �5. Formal properties of head languageshave been studied by K. Roach[11].5.2 Complexity of Recognition with Decomposition GrammarsLet �(S1; : : : ; Sn)(�x1'1; : : : ; �xn'n)(x) be a decomposition grammar, and w 2��. In order to decide whether L j= �(S1; : : : ; Sn)(�x1 '1; : : : ; �xn'n)(w), oneproceeds as follows:1. For each subword v of w and each i � n, compute the boolean value �1'i (v),and store the bitvector (�1'1(v); : : : ; �1'n(v)) as �eld M (v) of a table withjsubwords(w)j many �elds.2. To compute �1'i (v), where 'i(x;S) is a boolean combination of subformulas' as in (iii), determine the corresponding values �1' (v) as explained in (iii)and evaluate the boolean combination of the results.3. To compute �1' (v) for '(x;S) = 9x1 < x : : : 9xk < x (x = t(x) ^ (x;S)),where (x;S) is a boolean combination of formulas Si(xj) with 1 � i � nand 1 � j � k,(a) determine all splittings of v into substrings v1; : : : ; vk such that v =t(v1; : : : ; vk), and(b) for each such splitting v, evaluate (v;S) by looking up the values forSi(vj) in M (vj).4 After �nishing this work, I found the same restriction used in the `multiple context-free grammars' of Seki e.a.[13] for a complexity result related to Theorem 21.

The complexity of computing the table M for an input w is proportional tothe number of substrings v of w times the cost of computing a �eld M (v). Sinceonly splittings into strict substrings are allowed in (iii), the tableM can be �lledby computingM (v) with subwords v of w of increasing length.Remark. If � = �' for a context-free grammar '(x) in Chomsky normal formand < is the strict subword relation, � (�<w) is the familiar recognition tablefor w in the algorithm of Cocke-Younger-Kasami. Di�erent ways of computing� (�<w) correspond to di�erent versions of the recognizer. In an o�-line version,one can compute � (�<v) for all subwords v of increasing length. On-line versionscompute � (�<v) for increasing pre�xes v of w: if w = va ends in a letter a we�rst determine the table � (�<v) of the pre�x v, then that of the next inputsymbol, � (�<a), and �nally compute � (�<ua) for increasing su�xes u of v.We now estimate the number ofRAM -steps needed to construct a recognitiontable M (w1; : : : ; wm) for a decomposition grammar for m-segmented strings.Proposition20. Let � be any such 2m-ary operation as just de�ned.a) There are O(maxi jwijm) many decompositions (u1; : : : ; um)� (v1; : : : ; vm) of(w1; : : : ; wm) 2 (��)m.b) The table M (w1; : : : ; wm) has O(maxi jwij2m) �elds.Proof. a) Each of the vi that de�ne � contains at least one of the variablesx1; : : : ; ym. To consume the remaining m variables one needs m applicationsof concatenations (giving adjacent variables in the v1; : : : ; vm). To �nd sub-strings of w1; : : : ; wm that match the variables, we therefore have to �nd msplitting positions i0; : : : ; im in w1; : : : ; wm. There are O(jwjk) many k-tuplesi1 � i2 : : : � ik � jwj in a string w and so O(jw1jk1 � � � jwmjkm) many splittingswith ki splitting positions in wi. It follows that there are at most O(max jwijm)splittings (u1; : : : ; um) � (v1; : : : ; vm) = (w1; : : : ; wm).b) For a subword (v1; : : : ; vm) � (w1; : : : ; wm) of (w1; : : : ; wm), the vi mustbe empty or occur as non-overlapping subwords of the w1; : : : ; wm. The totalnumber of k nonoverlapping subwords of wi is bounded by the beginning andend positions i1 � j1 � : : : � ik � jk � jwij of the subwords, which makesO(jwij2k) possibilities. There are O(jw1j2k1 � � � jwmj2km) subwords (u1; : : : ; um) �(w1; : : : ; wm) such that ki out of the u1; : : : ; um are nonoverlapping subwords ofwi. Hence the number of all subwords (u1; : : : ; um) � (w1; : : : ; wm) is boundedby the sum of values O(jw1j2k1 � � � jwmj2km) over all k1; : : : ; km where P ki = m,giving O(maxi jwij2m). Multiplying a) and b), we getTheorem21. For any normal form decomposition grammar '(x) for m-seg-mented strings, a recognition table M for input (w1; : : : ; wm) can be constructedin O(maxi jwij3m) many RAM-steps.For m = 1, this gives the familiar O(jwj3) bound for language recognition withrespect to context-free grammars in Chomsky normal form. For m = 2, we getan O(j(w1; w2)j6) bound for head grammars in `Chomsky' normal form.

6 Open ProblemsBounded �xed-point formulas may be applied on other structures, like the �nitetrees with the subtree relation. They might also be useful to develop relationalquery languages with low complexities, since the number and size of the inductivestages depend on the quasi-ordering rather than the size of the domain.An extension of our monadic bounded inductive de�nability to the n-arycase should present no di�culties. We also expect that the (subword-) boundedlyde�nable languages strictly contain the boolean closure of context-free languages.We have indicated why the inclusion of subword- resp. length-bounded in-ductive de�nability in PTIME resp. EXPTIME should be strict. A precise char-acterization of the boundedly de�nable languages in terms of complexity is open.Acknowledgement: This work has partially been supported by ESPRITBRA 7230, GENTZEN.References1. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of theAssociation for Computing Machinery, 28(1):114{133, 1981.2. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, Berlin 1995.3. Y. Gurevich and S. Shelah. Fixed-point extensions of �rst-order logic. In Proceed-ings of the 26th IEEE Symposium on Foundations of Computer Science, 1985.4. M. Harrison. Introduction to Formal Languages. Addison Wesley, Reading 1978.5. S. Heilbrunner and L. Schmitz. An e�cient recognizer for the boolean closure ofcontext-free languages. Theoretical Computer Science, 80:53{75, 1991.6. G. Hotz and G. Pitsch. Fast uniform analysis of coupled-context-free languages. InS. Abiteboul and E. Shamir, editors, 21st International Colloquium on Automata,Languages and Programming, pages 412{423. Lecture Notes in Computer Science820, Springer, Berlin 1994.7. N. Immerman. Relational queries computable in polynomial time. Informationand Control, 68:86{104, 1986.8. C. Lautemann, T. Schwentick, and D. Th�erien. Logics for context-free languages.In Computer Science Logic '94, pages 205{216. Lecture Notes in Computer Science933, Springer, Berlin 1995.9. H. Lei�. Towards Kleene Algebra with Recursion. In E. B�orger e.a., editors, Com-puter Science Logic '91, pages 242{256. Lecture Notes in Computer Science 626,Springer, Berlin 1992.10. C. Pollard. Generalized Phrase Structure Grammars, Head Grammars, and Natu-ral Language. PhD thesis, Department of Linguistics, Stanford University, 1984.11. K. Roach. Formal properties of head grammars. In A. Manaster-Ramer, editor,Mathematics of Language, pages 293{348. John Benjamins, Amsterdam 1987.12. W. Rounds. A logic for linguistic descriptions and an analysis of its complexity.Computational Linguistics, 14(4):1{9, 1988.13. H. Seki, T. Matsumura, M. Fujii and T. Kasami. On multiple context-free gram-mars. Theoretical Computer Science, 88(2):191{229, 1991.14. M. Vardi. Complexity of relational query languages. In 14th ACM Symposium onthe Theory of Computing, pages 137{146, 1982.15. K. Vijay-Shanker and A. Joshi. Some computational properties of tree adjoininggrammars. In Proceedigs of the 23rd Meeting of the Association for ComputationalLinguistics, pages 82{93, Chicago 1988.

This article was processed using the LaTEX macro package with LLNCS style

