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Abstract

When combining languages for symbolic constraints, one is typi-
cally faced with the problem of how to treat “mixed” constraints.
The two main problems are (1) how to define a combined solution
structure over which these constraints are to be solved, and (2) how
to combine the constraint solving methods for pure constraints into
one for mixed constraints. The paper introduces the notion of a “free
amalgamated product” as a possible solution to the first problem.
Subsequently, we define so-called simply-combinable structures (SC-
structures). For SC-structures over disjoint signatures, a canonical
amalgamation construction exists, which for the subclass of strong
SC-structures yields the free amalgamated product. The combination
technique of [BS92, BaS94a] can be used to combine constraint sol-
vers for (strong) SC-structures over disjoint signatures into a solver for
their (free) amalgamated product. In addition to term algebras mo-
dulo equational theories, the class of SC-structures contains many so-
lution structures that have been used in constraint logic programiming,
such as the algebra of rational trees, feature structures, and domains
consisting of hereditarily finite (wellfounded or non-wellfounded) ne-
sted sets and lists.

*This work was supported by a DFG grant (SSP “Deduktion”) and by the EC Working
Group CCL, EP6028.
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1 Introduction

Many CLP dialects, and some of the related formalisms used in computa-
tional linguistics, provide for a combination of several “primitive” constraint
languages. For example, in Prolog III [Col90], mixed constraints can be used
to express lists of rational trees where some nodes can again be lists etc.;
Mukai [Muk91] combines rational trees and record structures, and a domain
that integrates rational trees and feature structures has been used in [SmT94];
Rounds [Rou88| introduces set-valued feature structures that interweave or-
dinary feature structures and non-wellfounded sets, and many other sugge-
stions for integrating sets into logic programming exist [DOP91, DoR93].

In this paper, we study techniques for combining symbolic constraints
from a more general point of view. On the practical side, these considerations
may facilitate the design and implementation of new combined constraint
languages and solvers. On the theoretical side, we hope to obtain a better
understanding of the principles underlying existing combination methods.
This should show their essential similarities and differences, and clarify their
limitations.

When combining different constraint systems, at least three problems
must be solved. The first problem, namely how to define the set of “mixed”
constraints, is usually relatively trivial. The two remaining problems—which
will be addressed in this paper—are

(1) how to define the combined solution structure over which the mixed
constraints are to be solved, and

(2) once this combined structure is fixed, how to combine constraint solvers
for the single languages in order to obtain a constraint solver for the
mixed language.

The first part of this paper is concerned with the first aspect. So far, the pro-
blem of combining solution domains has not been discussed in a general and
systematic way. The reason is that most of the general combination results
obtained until now were concerned with cases where the solution structures
are defined by logical theories. In this case, the combined structures are defi-
ned by the union of the theories. For example, in unification modulo equatio-
nal theories, the single solution structures are term algebras 7(3;, X)/=,,
and T (X2, X)/=p, modulo equational theories Ey and E,. Thus, the obvi-
ous candidate for the combined structure is 7(X; U s, X)/=p,up, > the term
algebra modulo the union E; U E, of the theories. It is, however, easy to see
that feature structures and the “non-wellfounded” solution domains (such as



rational trees) mentioned above cannot be described as such quotient term
algebras. For this reason, it is not a priori clear whether there is a canonical
way of combining such structures. The same problem also arises for other
solution domains of symbolic constraints.

As a possible solution to this problem, we introduce the abstract notion
of a “free amalgamated product” of two arbitrary structures in Section 3.
Whenever the free amalgamated product of two given structures A and B
exists, it is unique up to isomorphism, and it is the most general element
among all structures that can be considered as a reasonable combination
of A and B. TFor the case of quotient term algebras 7 (%, X)/=, and
T (X2, X)/=p, . the free amalgamated product yields the combined term al-
gebra T(X; UY,, X)/=p,up,- This shows that it makes sense to propose the
free amalgamated product of two solution structures as an adequate combi-
ned solution structure.

With respect to the second problem—the problem of combining constraint
solvers—rather general results have been obtained for unification in the union
of equational theories over disjoint signatures [SS89, Bou90, BS92]. These
results have been generalized to the case of signatures sharing constants
[Rin92, KiR94], and to disunification [BaS93]. Prima facie, such an exten-
sion of results seems to be mainly an algorithmic problem. The difficulty,
one might think, is to find the correct combination method. A closer look
at the results reveals, however, that most of the recent combination algo-
rithms use, modulo details, the same transformation steps.! In each case,
the real problem is to show correctness of the “old” algorithm in the new
situation. In [BaS94a] we have tried to isolate the essential algebraic and lo-
gical principles that guarantee that the—seemingly universal-—combination
scheme works. We found a simple and abstract algebraic condition—called
combinability—that guarantees correctness of the combination scheme, and
allows for a rather simple proof of this fact. In addition, it was shown that
this condition characterizes the class of quotient term algebras (i.e., free al-
gebras), or more generally (if additional predicates are present), the class
of free structures. In the above mentioned proof, an explicit construction
was given that can be used to amalgamate two quotient term algebras over
disjoint signatures, and which yields the combined quotient term algebra as
result.

In the second part of this paper it is shown that the concept of a combina-
ble structure and the amalgamation construction can considerably be gene-

!Sometimes, additional steps are introduced just to adapt the general scheme to special
situations (e.g., [KiR94, BaS93]). For optimization purposes, steps may be applied in
different orders, and delay mechanisms are employed (e.g., [Bou90]).



ralized. This yields combination results that apply to most of the structures
mentioned above, and which go far beyond the level of quotient term alge-
bras. To this purpose, a weakened notion of “combinability” is introduced
(Section 4). Structures that satisfy this weak form of combinability will be
called simply-combinable structures (SC-structures).? The algebra of rational
trees [Col84, Mah88], feature structures [APS94, SmT94], but also domains
over hereditarily finite (wellfounded or non-wellfounded) nested sets and lists
turn out to be SC-structures. The main difference between free structures
(treated in [BaS94a]) and SC-structures is that free structures are generated
by a (countably infinite) set of (free) generators, whereas this need not be the
case for SC-structures (e.g., an infinite rational tree is not generated—in the
algebraic sense—by its leaf nodes). This difference makes it necessary to give
rather involved proofs for facts that are trivial for the case of free structures.
Nevertheless, a variant of the amalgamation construction of [BaS94a] can be
used to combine arbitrary SC-structures A4 and B over disjoint signatures
Y and A (Section 6). As a Y-structure (resp. A-structure), the amalgam
A ® B is isomorphic to A (resp. B). Consequently, pure Y-constraints (resp.
A-constraints) are solvable in A (resp. B) iff they are solvable in A® B. If A
and B belong to the subclass of strong SC-structures, then it can be shown
that A @ B is in fact the free amalgamated product of A and B as defined
in Section 3. In this case, the amalgamation construction can be applied
iteratedly since 4 @ B is again a strong SC-structure.

The combination scheme, in the form given in [BS92, BaS94a], can be used
to combine constraint solvers for two arbitrary SC-structures A and B over
disjoint signatures into a solver for A® B (Section 7). In this general setting,
we consider existential positive sentences as constraints, and the constraint
solvers are decision procedures for validity of such formulae in the given
solution structure. Thus, decidability of the existential positive theory of
A® B can be reduced to decidability of the positive theories of A and B. For
the case of strong SC-structures A and B, the combination method can also
treat general positive sentences (Section 8). Thus, in this case, decidability
of the full positive theory of A ® B can be reduced to decidability of the
positive theories of A and B. As one concrete application we show that
validity of positive sentences is decidable in domains that interweave rational
feature trees, (finite or rational) trees, hereditarily finite (wellfounded or non-
wellfounded) sets, and hereditarily finite (wellfounded or non-wellfounded)
lists.

2Tt has turned out that the notion of an SC-structure is closely related to the concept
of a “unification algebra” [SS88], and to the notion of an “instantiation system” [Wil91].
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2 Formal Preliminaries

A signature ¥ consists of a finite set ¥ of function symbols and a finite set
Y p of predicate symbols, each of fixed arity. We assume that equality “=" is
a logical constant that does not occur in ¥ p, and which is always interpreted
as the identity relation. An atomic X-formula is an equation s = t between
Y p-terms s,t, or a relational formula p[si,...,s,] where p is a predicate
symbol in X p of arity m and sq,...,s,, are Xp-terms. A positive Y-matrix
is any X-formula obtained from atomic Y-formulae using conjunction and
disjunction only. A positive X-formula is obtained from a positive Y-matrix
by adding an arbitrary quantifier prefix; and an existential positive X-formula
is a positive formula where the prefix consists of existential quantifiers only.
Sentences are formulae without free variables. The notation t(vy,...,v,)
(resp. ¢(vy,...,v,)) indicates that the set of all (free) variables of the term

t (of the formula ) forms a subset of {vy,...,v,}. Letters u,v,... denote

variables, and expressions @, U, ... denote finite (possibly empty) sequences
of variables.

A S-structure A has a non-empty carrier set A, and it interprets each
f € Xp of arity n as an n-ary (total) function f4 on A, and each p €
Yp of arity m as an m-ary relation p4 on A. Whenever we use a roman
letter like A and an expression A~ in the same context, the former symbol
denotes the carrier set of the Y-structure denoted by the latter expression.
For a formula (v, ..., v,) with free variables in {v(,...,v,}, we write A% =
o(ay, ..., a,) to express that the formula i is valid in A* under the evaluation
that maps v; to a; € A (1 <7 < n). Sometimes we will consider several
signatures simultaneously. If A is a subset of the signature X, then any
Y-structure A* can be considered as a A-structure (called the A-reduct of
A¥) by just forgetting about the interpretation of the additional symbols. In
this situation, A® denotes the A-reduct of A¥. Expressions @ denote finite
(possibly empty) sequences (ay, ..., a;) of elements of A. In order to simplify
notation we will sometimes use @ also to denote the set {ay,...,ax}.

. V. . > .
If A* is a Y-structure, each assignment v : Var — A has a unique ex-

tension to an evaluation 7 that maps each X-term t = t(vl,...,l,rn) to an
element v(t) € A. An element a € A is generated by the subset 4, of A
if there exists a Y-term ¢t = t(vy,...,v,) and an assignment v : Var — A

such that o(t) = a and v(v;) € Ap for i = 1,...,n. The subset A; of A is
generated by Ay C A if every element a € A; is generated by Aj.

. . . byl v
A Y-homomorphism is a mapping h between two structures A~ and B~



such that

Wfalar,....an)) = folh(ar),..., "hia,)),
palar,...,a,] = pslhla)),... h(a,)]

forall f € ¥p, p € ¥p, and ay,...,a, € A. Letters h, g, ..., possibly with
subscript, denote homomorphisms. Whenever the signature ¥ is not clear
from the context, expressions h™, ¢g*, ... will be used. A Y-isomorphism is a
bijective X-homomorphism h : A* — B* such that

palar, ..., a,] <= pplhlar), ... h(a,)].

forall pe ¥p, and all ay,...,a, € A. Equivalently, one can require that the
inverse mapping h~! is also homomorphic.

As a matter of fact, validity of arbitrary formulae is preserved under
isomorphisms. There is a less trivial connection between surjective homo-
morphisms and positive formulae, which will become important in the proof
of correctness of our method for combining constraint solvers (see [Mal73],
pp- 143, 144 for a proof).

Lemma 2.1 Let h : A¥ — B* be a surjective homomorphism between
the S-structures A® and B, o(vi,...,v,) be a positive S-formula, and
Q... ay be elements of A. Then A* | ¢(ai,...,a,) implies B =
o(hlar), ..., h{ay)).

Since validity of existential formulae is preserved in a superstructure (see,
e.g., [Mal71] pp.) the following variant of Lemma 2.1 for arbitrary homomor-
phisms follows.

Lemma 2.2 Let h: A* — B* be a homomorphism between the X -structures
A¥ and B>, p(vy, ..., vy) be an existential positive S -formula, and ay, . . . . a,
be elements of A. Then A* = p(ay, ..., ay) implies BX = p(h(ay), ... hiay,)).

A Y-endomorphism of A* is a homomorphism h* : A*¥ — A*. With
End\j1 we denote the monoid of all endomorphisms of the S-structure A*,
with composition as operation. The notation M < Endﬁ expresses that M
is a submonoid of End’y.

If g: A— B and h: B — C are mappings, then go h : A — C denotes
their composition. Note that g o h means that ¢ is applied first, and then h.
Let g1 : A — C and ¢ : B — D be two mappings. We say that ¢; and g,

|



coincide on E C AN B if gi(e) = ga(e) for all e € E. For a set A, we denote
the identity mapping on A by Id4. If A is the carrier of a Y-structure A,
then Id, is the unit of the monoid Endi.

Given a signature ¥, “constraints” are usually introduced as X-formulae
(of a particular syntactic type) ¢(vy,...,v,) with free variables. The cons-
traint ¢(vy, ..., v,) is solvable in the structure A* iff there are ay,...,a, € A
such that A¥ | ¢(ay,...,a,). Thus solvability of ¢ in A* and validity of
the sentence Jvy ... 3v, p(vy,...,v,) in A® are equivalent. In this paper we
shall always use the second point of view. As constraints we consider exi-
stential positive and positive sentences. We are mainly interested in solving
“mixed” constraints. This means that we consider two different signatures
Y and A, with fixed solution structures BY and B5'. A mixed constraint is a
positive (or existential positive) (SUA)-sentence. Thus, one needs a (YUA)-
structure as solution structure. Obviously, if we want to reduce solvability
of mixed constraints to solvability of pure ¥;-constraints in the ¥;-structures
B; (i =1,2), this “combined” solution structure should be in an appropriate
relationship with the single structures BY and B5'.

3 Combination of Structures

Suppose that BY and B3 are two structures. In the first part of this section
we shall discuss the following question: What conditions should a (¥ U A)-
CYA satisfy to be called a “combination” of BY' and B5? This will
lead to the definition of the free amalgamated product. In the second part
of the section, we shall show that, under certain restrictions, the product
construction is associative.

structure

3.1 The free amalgamated product

The central definition of this section will be obtained after three steps, each
introducing a restriction that is motivated by the example of the combination
of term algebras modulo equational theories. The structures By and B35 will
be called the components in the sequel.

“Restriction 1:” Homomorphisms that “embed” the components into
the combined structure must exist. If the components share a common sub-
structure, then the homomorphisms must agree on this substructure.

In fact, a minimal requirement seems to be that both structures must
in some sense be embedded in their combination. It would, however, be too



restrictive to demand that the components are substructures of the combined
structure. For the case of consistent equational theories E., F' over disjoint si-
gnatures ¥, A, there exist 1 1-embeddings of T(X,V)/=, and T(A,V)/=,
into T(XUA,V)/=,, .. For non-disjoint signatures, however, these “em-
beddings” need no longer be 1 1. Note that even for disjoint signatures ¥
and A there is a common part, namely the trivial structure represented by
the set V' of variables. A reasonable requirement is that elements of the com-
mon part are mapped to the same element of the combined structure by the
homomorphic embeddings. To be as general as possible, we do not assume
that the “common part” is really a substructure of By and Bg. Instead,
we assume that it is just homomorphically embedded in both structures.
Restriction 1 motivates the following definition.

Definition 3.1 Let ¥ and A be signatures, and let ' C X N A. A triple
(ALY, B, B2) with given homomorphic embeddings

Wy g o AU = BE and hY_p AU — B3

. . 3 / .

is called an amalgamation base. The structure D> closes the amalgamation
N Y / . .

base (AY, BY, B3 iff there are homomorphisms

hEBl_D :BY — D¥  and h%Q_D By = D

such that by g ohy p =hY g ohgy . We call (D2 hy, p.hg, p) an
amalgamated product of (A", By, B3).

If the “embedding” homomorphisms are irrelevant or clear from the con-
text, we shall also call the structure D¥Y® an amalgamated product of B}
and B5 over AY. It should be clear that it is not reasonable to accept an
arbitrary amalgamated product as the combined structure of BY and B5.

“Restriction 2:” The combined structure should share “relevant” struc-
tural properties with the components.

This principle accounts for the fact that there must be some kind of
(logical, algebraic, algorithmic) relationship between the components and
the combined structure. In the case of quotient term algebras T(X,V)/—,
and T(A,V)/_,. the combined algebra 7(X U A,V)/_, . satisties EU F.
In general, we cannot use this as a condition on the structures that close
the amalgamation base since we need not have theories defining B and
B2. However, for the case of quotient term algebras there is an equivalent
algebraic reformulation:



Proposition 3.2 For a (X U A)-algebra C*Y> and a countably infinite set
(of variables) V', the following conditions are equivalent:

The structure C¥V> satisfies all azioms of E U F.

For every mapping gy =V — C there exist unique homomorphisms /'),,12,1_(—, :
T(E, V)2, = C¥and by, _ - T(A, V) /=, — C& extending gv_c.

Proof. First, we show “1 — 2.” Since the (¥ U A)-algebra CEYA gatisfies
E U F, its Y-reduct C¥ satisfies E and its A-reduct C* satisfies F. Thus,
existence and uniqueness of the desired homomorphisms follows from the
fact that T(X,V)/=, is free over V for the class of all models of E, and
T(A,V)/=, is free over V for the class of all models of F.

e ” pEY f ol . :
In order to show “2 — 1,” assume that C*"2 satisfies the algebraic cha-

racterization (2). Let s(vq,...,v,) = t(v1,...,v,) be an equation in EU F,
where the variables vy, ..., v, occurring in s = t are (without loss of gene-
rality) assumed to be in V. Now, assume that C*Y2 does not satisfy s = ¢.
Thus, there exist elements ¢, ..., ¢, of C' such that

Without loss of generality, we assume that s = ¢ is an equation in E. Let
gV — C be a mapping such that g(v;) = ¢; (for 1 <i < n). By (2), there
exists a homomorphism h* : T(Z,V)/_-, — C* that extends g. However,
s =t € E implies s =p t, and thus s and ¢ belong to the same =p-class in
T(Z,V)/-,. This shows that h(s) = h(t), which contradicts our assumption
that C¥Y2 B~ s(cr, ... ¢n) = t(cry .\ ). O

In Section 6 we shall restrict the admissible structures for closing an
amalgamation base (AU, BT, BS) to structures satisfying the second condi-
tion of the proposition. In the remainder of this section it is sufficient to
assume that some class Adm(BY, BS) of admissible structures for closing the
amalgamation base has been fixed.

Definition 3.3 Let (A", By, BS) be an amalgamation base, let Adm(BY, BS)
be a class of (XU A)-structures, to be called admissible structures. An amal-
gamated product (D2 hy, 5. h3, p) of (AU, By, B5) is called admissible
with respect to Adm(B;, B5) (or simply admissible, if the class of admissible
structures is clear from the context) iff D2 € Adm(BY, BS).

In the case of term algebras, the combined algebra 7(X U A, V)/_, . is
not just any algebra satisfving £ U F—it is the free algebra.

10



“Restriction 3:” Whenever possible, we want to obtain a most general
clerment among all admissible amalgamated products of the components.

This motivates the definition of the free amalgamated product by a uni-
versal property that is similar to the one of free algebras.

Definition 3.4 Let (A", BT, B2) be an amalgamation base, and assume that
Adm(B}, BS) is the class of admissible (X U A)-structures. The admissible
(AXUA Y A 2o A I
amalgamated product (C~=.hg _o.h,_o) of Bi (m\(g By over A" s called
a free amalgamated product with respect to Adm(B;, Bs') iff for every ad-
.y BUA % A 2 A Ll
missible amalgamated product (D", hy _p.hy, _p) of By and B3 over A

. . . N/ MU/ MU/
there exists a unique homomorphism hz"3, : C¥9% — D¥Y2 such that

T _ % SUA A _ A SUA
hg, _p=hp, _cohe"p and hy p=hg ~ohs p.

Free amalgamated products need not exist, but if they exist they are
unique up to isomorphism.

Theorem 3.5 Let (A", BT, B5) be an amalgamation base with fived homo-
morphic embeddings hYy_p + AV — BY and hYy_, : AT — BY. The free
amalgamated product of BY and By over AU with respect to a given class
Adm(BY, BY) is unique up to (X U A)-isomorphism.

SUL YUY %

Proof. Let C*Y and D*Y2 be free amalgamated products of BY and
B2 over A" with respect to Adm(By, Bs'). It follows that both structures
belong to the class of admissible structures Adm(By, BS). Since CZV2
amalgamated product, there exist homomorphisms hﬁl_(—, : BY — C¥ and
h’ﬁ-)—c : BZA — C2 such that hE_Bl 0 hEI_C = I’LE_B‘) o hﬁz_c. Similarly there
exist homomorphisms hy _, : By — D> and hg _p @ BS — D" such that

r by —pb A )

hap, ol p="hap,ohE,_p

1s an

Since C¥V2 is a free amalgamated product, there exists a unique homo-
morphism f3Y3 : C¥Y2 — D¥Y2 such that

by _ 13 SUA A _ 1A SUA
h‘B]fD = h,B1 _cofiop and h‘Bng = h,BrC o f&=p.

11



.. . . . / N/ S/
Similarly, there exists a unique homomorphism f5Y8 : D¥VA — C¥UA

that

such

x ¥ SUA A _ A SUA

g —c =hp_pofpc and hy, _o=hy,_pofr e

Thic implies hE BUA SUA o FRUA cilarlv

This implies hy _po £D ° _AhBl _c o fa2h o fpoe, and similarly
: »u $U

we obtain hi, . = th oo falh o fnle.

Since C*Y2 is a free amalgamated product, and since C¥"» € Adm(B}, By),

there exists a unique (¥ U A)-endomorphism h*"2 of C*Y2 such that

S _ ¥ 1 MUA
hBl_C = II,BI_C oh

A _ 1A TUA
hyg, ¢ = hy,_coh™".

We have just seen that fFY5 o0 f5U2 satisfies these properties, and obviously,

Id¢ satisfies them as well. Thlb shows that fZY3 o 592 = Idc. Symmetri-

b
cally, one can also show fj5Y8 o fEY4 = Idp.

To sum up, we have shown that f7-7 and f;;2¢ are isomorphisms that
are inverse to each other. O

The theorem justifies to speak about the free amalgamated product of
two structures (provided that the embedding homomorphisms and the class
of admissible structures are fixed). In this situation, we shall often write
B, ® B, for the free amalgamated product of B; and Bs.

In Section 6 we shall give an explicit construction of the free amalgamated
product for the class of “strong SC-structures.” For our standard example,
term algebras modulo equational theories, the free amalgamated product
yields the combined quotient term algebra, which shows that the definition
of the free amalgamated product makes sense.

Proposition 3.6 Let BY = T(3,V)/=, and BS = T(A,V)/—, for consi-
stent equational theories E and F. Let Adm(By, B5) be the class of algebras
satisfying (one of ) the conditions of Proposition 3.2. For the amalgamation
base (T(X N A, V), BE, B3, the free amalgamated product with respect to
Adm(BT, BY) is isomorphic to the combined algebra T (X U A, V)/—,., -

Proof. Since C¥V2 := T(S U A, V) /., satisfies all axioms of E U F,
it is clearly an admissible algebra in Adm(B7, B5'). The Y-reduct C* of
C*Y2 satisfies E, and the A-reduct C* satisfies F. Since B} is free over
V' for the class of all models of E, there exists a unique ¥-homomorphism
/LB1 . B — C* that extends Idy. Similarly, there exists a unique A-
hOIHOIHOIphlbIIl hg, ¢ : B8 — C* extending Idy .

12



In addition, since A" := T(X N A, V) is the (absolutely) free [-algebra,
there exist unique homomorphisms /'),FA_B1 : A" — Bl and I’LE_B2 A" — B)
extending Idy . It follows that

r by _ T A
hAfB1 0 h’B1 o= h’/lfBg o h‘Bgfc-,

since both homomorphisms represent the unique extension of Idy, to a I'-
homomorphism A" — C'. Thus, we have shown that C¥Y» is in fact an
admissible amalgamated product of BY and B2 over A' with respect to
Adm(B}, B).

In order to show that it is free, assume that DY is an admissible algebra,

in Adm(B}, B5), and that homomorphisms h’%ﬁ—D : BY — D¥Y2 and hﬁz—D :
B2 — D¥Y2 satisfying

r b _ 30 A
ha g, ohp, p=hap,ohg p

R ot it r ¥ _ 30 A

are given. Let 'f“ : V' — D be the restriction of hy p ohy p="hy gohg, p
to V. Since D2 is an admissible structure, it satisfies all axioms of EU F,
and since C¥V2 is free over V for the class of all models of E U F. the
mapping fo : V' — D has a unique extension to a homomorphism f7-75

CZUA N DSUA ]

. . . . - N |/

Since hp, ¢ and hy_p, coincides with Idy on V', hﬁl_(—, ) jggf) and hEI_D

. » .. - . D

are two Y-homomorphisms By — D* that coincide on V. Thus hi e o
N |/ 3 . N N o . .
oeD = B, _p, since By is free over V' for the class of all models of F,
and the S-reduct D* of D¥Y2 satisfies E. Similarly, one can prove that
A NUA _ pA
hg,—c o fi"p =B, p-

. SUA - . . . .
It remains to be shown that f3Y5 is unique with this property. Since

. . . r . W /
hp,_c coincides with Idy on V, any (¥ U A)-homomorphism f : CZV4 —
SUA caticfving hE _ 13 L ; s SNt SUA
D satisfying h o f = hg, _p coincides with h p on V. Since C
is free, there can be only one such homomorphism. a

Notions of “amalgamated product,” similar to the one given above, can
be found in universal algebra, model theory, and in category theory (see, e.g.,
[Mal73, Che76, DG93]). There are, however, certain differences between our
situation and the typical situations in which amalgamation occurs in other
areas. In algebra or model theory, amalgamation has been introduced for
particular classes of algebraic structures such as groups, fields, skew fields
etc. Amalgamation is studied for such a fixed class of structures over the
same signature, and it is assumed that these structures all satisfy the same
set of axioms (e.g., those for groups, fields, skew fields, etc.). In our case,
algebras over different signatures are amalgamated, and these algebras satisfy
different types of axioms (or are not defined by axioms at all).
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3.2 Associativity of free amalgamation

The product construction is obviously commutative if the definition of the
class of admissible structures satisfies Adm(By,B2) = Adm(B5,BY). In
order to obtain associativity as well, we need some additional conditions on
the class of admissible structures.

Before formulating these restrictions, we extend the definition of an amal-
gamation base and of the free amalgamated product to the case of three
structures. Let I' C ¥y N ¥y N Y3, A quadruple (.AI‘VB??BQEZ,B?‘S) with
given homomorphic embeddings

I ) I ¥, s ‘
hy p A = B (i=1,2,3)
. . . , Y UD, US.
is called a simultaneous amalgamation base. The structure D=1Y>2Y>s closes
the simultaneous amalgamation base (A", By", By*, By?) iff, for i = 1,2,3,
there are homomorphisms

DO . RY X

PR | . r P _ 1, P _ N 1 Yig Yot peercips
such that hyy_p ohy p = hy g ohyl p = hy_p ohy: p. In this case,
YUY UXs 3 o X3 Q. S YT . -

(D g pohE p hE_p) is a simultaneous amalgamated product of

Bl, 827 Bg over .AF.

Now, assume that a class of admissible structures Adm(By, Bs, Bs) is fixed.
w . NN errrr o T eyer vy s F o T SiUNaUEs 7,21 DI 33 e
The simultaneous amalgamated product (C I e hg o b o) s
called admissible iff C*19*29%s € Adm(By, Bs, B3). The admissible simultane-

ool erer vy et o . R YiUSLUY; 7,81 DI , 23 1231 o s
ous amalgamated product (C ,,hBl_C,/),BZ_C’II,BS_C) of By, By?, B;

over Al is called a free simultaneous amalgamated product with respect to
Adm(By, By, B3) iff for every admissible simultaneous amalgamated product

/ y MU Y Y Y . . .
(D152 bt higi_p. higd_p) there exists a unique homomorphism

fE]USzUS;; . Cglugzugfg - D21U22UE3

such that for all « = 1,2, 3,

fSl UXsUXs ]

op F
dp,—p = I”Bi—C' °Jo-p

As for the binary free amalgamated product, one can show that the free
simultaneous amalgamated product is unique up to isomorphism, provided
that it exists. For this reason, associativity of the free amalgamated product
(under certain restrictions) is an easy consequence of the next lemma and its
dual.
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Yo X

Lemma 3.7 Let I C ©, N Yy NSy, and let AY, B, B3>, B3® be structures
g e y . v har o 5 e L0 . I 3 N R I Yo

with fived homomorphic embeddings hy_p + A" — Byt hy_y, + A — By?,

b

and hly_p, + AU — B3*. Assume that the free amalgamated product By © Bs
of By and Bs, and the free amalgamated product By ® (By ® Bs) of By and
By ® Bs exist, and that the classes of admissible structures satisfy

B] ® (BZ ® 83) € 44d111<B] s 82, Bg) g AAdIH(BQ, B;g) N AAdIH(B] s BQ ® Bg).

Then By ® (B ® B3) is the free simultancous amalgamated product of By, B,
and By over A'.

Proof. Let Byg := By ® B3 denote the free amalgamated product of B,
and Bs, and let hp, _p,, (i = 2,3) be the corresponding embeddings. Thus,
we have

h’A—Bz o] }132_323 = }14_33 o] /1,33_323. (38)

Now, we consider (A, By, Byz) with the embeddings hy p, : A — By and
ha_-p, o hp, p,, : A — By as amalgamation base. Let Bjog := By ® Bog
be the corresponding free amalgamated product with embeddings hp, p,,,
and hp,,—p,,,. By definition of the amalgamated product, these embeddings
satisfy

h’A*B1 0 h’B1 —Bias T (h/’l*Bz °© th*st) °© h’Bz:s*Bw:s' (39>

We show that Bja3 closes the simultaneous amalgamation base (A, By, Bz, Bs).
To this purpose, we define

h’Bi*Bws = h’Bi*st °© h’Bzxmes (I = 2, 3) (310>
It is easy to see that, with this definition, (3.8) and (3.9) imply

hA*Bl 0 hBl —Biaz = h’A*Bz o ]’LBQ*B123 = hA*B.s o ]’LBB*B1237

i.e., Biog indeed closes the simultaneous amalgamation base. Because of the
assumption that By ® (By ® Bs) € Adm(By, By, B3), we know that Bijsg €
Adm(By, By, Bs). Thus, it remains to be shown that the admissible simulta-
neous amalgamated product Biag is in fact free.

Assume that D € Adm(By, By, Bs) is an admissible simultaneous amal-
gamated product with embeddings g, p : Bi = D (i = 1,2,3), which thus
satisfy

ha_p, ©gB,—p="ha_B, ©gp,—p = ha_p, © gp,—p. (3.11)



Equation (3.11), together with our assumption that the classes of admissible
structures satisfy Adm(By, By, B3) € Adm(Bs, Bs), implies that D is also
an admissible amalgamated product of By and Bs. Since Bag is the free
amalgamated product of By and Bjs, there exists a unique homomorphism
fBys—p @ Bag — D such that

gBifD = I'I,Bi,B‘_,3 o} fB%,D (l = 23) (312)

Because of our assumption Adm(By, By, B3) C Adm(By, By ® Bs), we know
that D € Adm(B;, By ® Bs). In addition, we have ha_p, 0 gg,_p = ha_p, ©
IB,—p = ha_p, 0 hp,_p,, © fu,,_p (the first identity holds because of (3.11)
and the second because of (3.12)). This shows that D with the embeddings
gp,—p and fp,,_p is an admissible amalgamated product of B; and Bag. Since
Biog is the free amalgamated product of By and Bsz, there exists a unique
homomorphism fp,,,_p : Biag = D such that

9B,-» = h’Bl—BlzsofBlz:s—Dv (313)

fBz:;—U = h’Bz:s—BlzzsofBlz:s—D' (314)

We must show that gp._p = hp,_p,, © fBs—p for e =1,2,3. For ¢« = 1, this
is just identity (3.13). For i = 2,3, we have hp,_p,,; © [Bos—n = hp,—p,; ©
NBys—Biys © [Bras—D = NB.— By © fBys—» = gu,—p (the first identity holds by
(3.10), the second by (3.14), and the third by (3.12)).

It remains to be shown that fg,,,—p is unique with this property. Thus,
assume that ep,._p : Biog = D is a homomorphism satisfying

G- = hp,_p,, 9€p,,—n (i =1,2,3). (3.15)
The identity (3.15) together with (3.10) yields
9B—D = ", B,y 0 hiyy 1y 0 €y p (1= 2,3).
Since fp,,—p is the unique morphism satisfying (3.12), this implies
IBys D = NBys Bios © €B1as D- (3.16)

Now, consider (3.15) for i = 1 and (3.16): Since fg,,,_p is the unique homo-
morphism satisfying (3.13) and (3.14), these two identities imply fp,,, p =
CB123—D- L

Obviously, a dual lemma holds for (B; ® By) ® Bs. Since the free simul-
taneous amalgamated product is unique, this implies the next theorem.
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Theorem 3.17 (Associativity of free amalgamation)

Let T C 1NNy, and let AU By, B3?, By be structures with fived

homomorphic embeddings hly_, = A" — B, Wy_y, + AT — B5?, and
>

ha_p, + AU — B3*. Assume that the free amalgamated products By ® B,

By ® (By @ Bs), By ® By, and (B) ® By) ® By exist, and that the classes of

admissible structures satisfy

{Bl ® (Bg O) B;)‘ (Bl O) Bz) ® Bg} g Adm(Bl, Bg, Bg), and
Adm(By, By, B3) C  Adm(By,Bs) N Adm(B; © B, B3) N
Adm(Bs, Bs) N Adm(By, By © By).

Then we have (By © By) ® By ~ By @ (By ® Bs), and this structure is the free

simultancous amalgamated product of By, By, and Bs over A

4 Simply Combinable Structures

In this section we shall introduce the concept of a simply combinable (SC-)
structure. This purely algebraic notion yields a large class of structures for
which an amalgamated product can be obtained by an explicit construction,
provided that the component structures have disjoint signatures. Quotient
term algebras, but also other typical domains for constraint based reasoning
such as the algebra of rational trees and (certain types of) feature structures
belong to this class. Quotient term algebras will serve as motivating example
for the abstract definitions. The need for using more general notions will be
illustrated with the help of the algebra of rational trees [Col84, Mah88] and
feature structures [APS94, SmT94].

4.1 Stable hulls and atom sets

Let E be an equational theory and V' be a countably infinite set (of variables).
The quotient algebra T := T(Zp,V)/=, is the free algebra over V' for
the class of all models of E. In particular, this means that this algebra
is generated by V. and that every mapping from V' into its carrier can be
extended to an endomorphism of 7(Xx,V)/=,. For every element [t] of this
algebra, there exists a finite subset U C V such that [t] is “generated by U,”
ie., [t] is in the subalgebra T(X,,U)/=5 of T(X4.V)/=5. Obviously, if [¢]
is generated by U, then two homomorphisms that coincide on U also coincide
on [t].
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When defining SC-structures we shall keep most of these properties. In
particular, every SC-structure will have a distinguished subset of “atoms”,
and these atoms almost behave like variables of a quotient term algebra.
However, we shall not demand that the underlying algebra of an SC-structure
is generated by its atom set. Consider, as an example, the algebra of rational
trees where leaves are labeled by constants or variables. This algebra is not
generated by the set of variables (since “generated by” talks about a finite
process whereas rational trees may be infinite). Still, two endomorphisms of
this algebra that coincide on a set U of variables coincide on all trees that
are built over U. This motivates the definition of stable hulls and atom sets
given below.

Definition 4.1 Let Ay, A, be subsets of the S-structure A~, and let M <
Enda, Then Ay stabilizes A, with respect to M iff all elements hy and hs
of M that coincide on Ay also coincide on Ay, If M = Enda, then we say
that Ay strictly stabilizes A;.

The reason for considering submonoids of Endf4 is that in some cases
(such as for feature structures) not all endomorphisms will be of interest in
our context. In the sequel, we consider a fixed Y-structure A*: M always
denotes a submonoid of End?.

Definition 4.2 For Ay C A the stable hull of Ay with respect to M is the
set

SHY,(Ay) = {a € A; Ay stabilizes {a} with respect to M},

The following two lemmas show that the stable hull of a set Ay has pro-
perties that are similar to those of the subalgebra generated by Ay. Note,
however, that the stable hull can be larger than the generated subalgebra
(see Example 4.9).

Lemma 4.3 Let Ay be a subset of the carrier A of A™ such that SHjél(Ao) %
B. Then SHY,(Ao) is a S-substructure of A%, and Ay C SH(Ay).

Proof. Obviously, Ay C SHf\‘/i (Ag). Let f € ¥ be an n-ary function
symbol. and let a1,...,a, be elements of ,S'Hj&(440). We must show that
falay,... . a,) € ,S'Hj&(440). Let h; and hy be two endomorphisms in M
that coincide on Ay. By assumption, hy; and hy coincide on ay,...,a,.
Thus hy(falay, ..., a,)) = falhi(ar), ..., hi(a,)) = falha(ar),. .. ho(a,)) =
ho(falay, ... a,)). O
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Lemma 4.4 Let Ay, A, be subsets of the S-structure A”, and let h € M. If
h(Ag) C SHY(Ay), then h(SHY,(Ap)) C SHY,(A)).

Proof. Suppose that h(Ag) C SHjil/[(Al). Let g1 and ¢go be two endomor-
phisms in M that coincide on A;. Then ¢, and ¢, coincide on SH“f/l(Al)

Thus ho g, and ho gy coincide on Ag. It follows that hog; and ho gy coincide
on SHf\l/[ (Ap), and g1 and g2 coincide on h(SHj‘A(AO)). O

Definition 4.5 The set X C A is an M-atom set for A™ if every mapping
X = A can be extended to an endomorphism in M. If M = Elldi, then X
is simply called an atom set for A™.

For T, the set of variables V' is an atom set. Two subalgebras generated
by subsets Vi, Vi of V' of the same cardinality are isomorphic. The same
holds for atom sets and their stable hulls.

b
Lemma 4.6 Let Xy, Xy be two non-empty M-atom sets of A~ of the same
cardinality. Then every byjection hy @ Xg — Xy can be extended to an iso-
morphism between SHy,(Xo) and SHY,(X)).

Proof. Let hg : Xy — X be bijective, and let hy : X1 — X denote the
inverse mapping. Since X, and X; are M-atom sets, both mappings can
be extended to endomorphisms hy and hy in M. Now (hg o hy) € M is an

endomorphism that coincides with Idy € M on X;. Therefore, it coincides
with Id, on SHY,(Xy).

Let g; denote the restriction of h; to SH@(XJ (¢ = 0,1). The previous
lemma shows that
g0t SH(Xo) —  SHu(X1),
g SH(X1) = SH(Xo).
We have gy o g1 = IdSHf\\AwO)7 which implies that ¢y is injective and ¢ is
surjective. Symmetrically, we can show that g, is surjective and ¢ is injective.

Thus, gy and ¢, are bijective homomorphisms, and g; is the inverse of g;_;
(e=0,1). O

Another important property of generators in free algebras that can be
generalized to atom sets is given by the next lemma:
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Lemma 4.7 Let X be an infinite M-atom set of the countably infinite -

» - ~ . . )
structure A~, and let Xq C X be finite. Then cvery mapping hy : Xg — A
can be extended to a surjective endomorphism in M.

Proof. Obviously, hy can be extended to a surjective mapping hy : X —
A. Since X is an M-atom set, h; can be extended to an endomorphism
hy € M of A*. By construction, hy is surjective. O

4.2 SC-structures—examples and basic properties

We are now ready to introduce the main concept of this paper.

Definition 4.8 A countably infinite S-structure A~ is an SC-structure iff
there exists a monotd M < Elldi such that A~ has an infinite M-atom
set X where every a € A 1s stabilized by a finite subset of X with respect
to M. We denote this SC-structure by (A, M, X). If M = Eﬂdi, then
(A%, Endy, X) is called a strong SC-structure.

Examples 4.9 The following list of examples shows that in fact many solu-
tion domains for symbolic constraints are SC-structures.

Let ¥, be a finite set of function symbols. The free algebra T(X,,V) /=L
modulo the equational theory F with countably infinite generator set V' is a
strong SC-structure with atom set V. The same holds for free structures, as
considered in [BaS94al.

Let K be a field, let S = {4+} U{sy; k € K}. The K-vector space spanned
by a countably infinite basis X is a strong SC-structure over the atom set
X. Here “47 is interpreted as addition of vectors, and s, denotes scalar
multiplication with k € K.

Let Y5 be a finite set of function symbols, and let R** be the algebra of
rational trees ([Col84, Mah88|) where leaves are labelled with constants from
Y or with variables from the countably infinite set (of variables) V. It
is easy to see that every mapping V' — R can be extended to a unique
endomorphism of R*#, and that (R>*, End%F, V) is a strong SC-structure.
Note, however, that R*F is not generated by V: it is only—and exactly—the
subset of finite trees which is generated by V.
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(4)

Let Vi (Y) be the set of all nested, hereditarily finite (standard, i.e., well-
founded) sets over the countably infinite set of “urelements” Y. Thus,
each M € Vi.(Y) is finite, and the elements of M are either in Y or in
Vie(Y), the same holds for elements of elements etc. There are no infi-
nite descending membership sequences. Since union is not defined for the
urelements y € Y, the urelements will not be treated as sets here. Let
X = {{y} | y € Y}. Let h : X — Vi.(Y) be an arbitrary mapping.
We want to show that there exists a unique extension of h to a mapping
h Vie(Y) = Vi (Y) that is homomorphic with respect a signature that
contains a binary symbol for union “U”, a unary symbol for set construc-
tion {-}, and a constant € that denotes the empty set. We have to define
h(®) := 0. Each non-empty M € V,.(Y) can uniquely be represented in the
form M = U.. .Uz U{M;}U...U{M;} where x; € X, for 1 <¢ <k, and
where the M; are the elements of M that belong to Vi, (Y). By induction (on
nesting depth), we may assume that lAa,(A/[,;) is already defined (1 < i <1).
Obviously (M) := h{x)U...Uh(x,) U {/A)(J[l)} Uu...u {i)(\[l)} is one and
the only way of extending hin a homomorphic way to the set M of deeper
nesting. For M = @ € X we obtain iz(;;:) = h(x), thus h is an extension of h.
Moreover, each mapping h is in fact homomorphic with respect to the given
signature. Thus V. (Y), under the given signature, is a strong SC-structure
with atom set X.

Similarly it can be seen that the domain Vi,..(Y") of heriditarily finite non-
wellfounded sets® over a countably infinite set of urelements Y, under the
same signature, is a strong SC-structure over the atom set X = {{y} | y €

Y},

The two domains V,4(Y") and Vi, (Y) of nested, hereditarily finite (1) well-
founded or (2) non-wellfounded lists over the countably infinite set of urele-
ments Y, under a signature with a binary symbol for concatenation “o”, a
(unary) symbol for list construction (-) : [ — (I), and a constant nil for the
empty list, are strong SC-structures over the atom set X = {(y);y € Y} of
all lists with one element y € Y. Formally, these domains can be described
as the set of all (1) finite or (2) rational trees where the topmost node has
label “()” (representing a list constructor of varying finite arity), nodes with
successors have label “( )7, and leaves have labels y € Y or “()”.

Let Lab, Fea, and X be mutually disjoint infinite sets of labels, features,
and atoms respectively. Following [APS94], we define a feature tree to be a

3Non-wellfounded sets, sometimes called hypersets, became prominent through [Ac¢z88].
They can have infinite descending membership sequences. The heriditarily finite non-
wellfounded sets are those having a “finite picture,” see [Acz88] for details.
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partial function ¢ : Fea™ — Lab U X whose domain is prefix closed (i.e., if
pq € dom(t) then p € dom(t) for all words p,q € Fea”), and in which atoms
do not label interior nodes (i.e., if p(t) = x € X then there is no f € Fea
with pf € dom(t)). As usual, rational feature trees are required to have only
finitely many subtrees. In addition, they must be finitely branching.

We use the set R of all rational feature trees as carrier set of a structure R™
whose signature contains a unary predicate L for every label L € Lab, and
a binary predicate f for every f € Fea. The interpretation Li of L in R is
the set of all rational feature trees having root label L. The interpretation
fr of f consists of all pairs (t1,13) € R X R such that t,(f) is defined and ¢,
is the subtree of ¢; at f. The structure R* defined this way can be seen as
a non-ground version of the solution domain used in [APS94].

Each mapping h : X — R has a unique extension to an endomorphism of
R*> that acts like a substitution, replacing each leaf with label + € X by
the feature tree h(x). With composition, the set of these substitution-like
endomorphisms yield a monoid M. Thus (R¥, M, X) is an SC-structure.
We shall call it the non-ground structure of rational feature trees. In this
case, we do not have a strong SC-structure since R* has endomorphisms
that modify non-leaf nodes (e.g., by introducing new feature-edges for such
internal nodes).

Now suppose that we introduce, following [SmT94], additional arity predi-
cates F' for every finite set F' C Fea. The interpretation Fz of F' consists of
all feature trees ¢ where the root of ¢ has a label L € Lab and where F is
(exactly) the set of all features departing from the root of t. Let A be the
extended signature. Then (R®, M, X) is a strong SC-structure. We shall
call it the non-ground structure of rational feature trees with arity.

As we may see from the previous examples, there is often a ground variant
of a given SC-structure. The following definition formalizes this relationship.

Definition 4.10 Let (A%, M, X) be an SC-structure such that SHy, (D) is
non-empty. Then Ax := SHjél(@) is called the ground substructure of (A%, M, X).

Before we can turn to the combination of SC-structures, we must establish
some useful properties of these structures.

Lemma 4.11 Let (A%, M, X) be an SC-structure.

AT = SH“tl (X) and every mapping X — A has a unique extension to an
endomorphism of A in M.



2. Let Xo C X. Then we have SHjAM (Xo) N X = Xo.

3. For all finite sets {ay,...,a,} C A there exists a unique minimal finite subset
b P ) 7 A
Y of X such that {ay, ... a,} C SHy,(Y).

Proof. (1) Since every element of A is stabilized by a finite subset of
X, the M-atom set X stabilizes the whole structure A with respect to M,
which means that A* = SH’{l,l (X). Existence of the extension in M follows
from the fact that X is an M-atom set, and uniqueness is an immediate
consequence of A~ = SHy, (X).

(2) The inclusion Xy C SHy,(Xy) follows from Lemma 4.3. For the
other direction, assume that an M-atom + € X is in SHy,(Xy) \ Xo. Let
hi.hy : X — A be mappings that coincide on X, but differ on x. Because
X is an M-atom set, there are endomorphisms hy ) hy € M extending hq, hs.
Since hy and hy coincide on X, they coincide on = € SH+,(Xy). This is a
contradiction to our assumption that hy and hy differ on x.

(3) Since (A, M, X) is an SC-structure, every finite set {ay,...,a,} C A
is stabilized by a finite subset of X with respect to M. Let Xy, X; be two
finite subsets of X such that {ay,...,a,} C SHjAM (X;) for i =0,1. We claim
that {ay,...,a,} C SH’,“:(/, (Xo N Xy). In fact, let hg,hy € M be two endo-
morphisms that coincide on Xy N X7, We may choose an endomorphism
ho1 € M that coincides with hy on Xy and with #; on X;. Such an endo-
morphism exists in M since (A¥, M, X) is an SC-structure. Now hy and
hy 1 coincide on {ay,...,a,}, and hy and hy; coincide on {ay,...,a,}. This
shows that hy and h; coincide on {ay,...,a,}, and thus we have proved
{ar,...,a,} C SHjl/l (Xo N X;). Obviously, this implies that there exists a
unique minimal finite subset Y of X such that {a,...,a,} C SHY,(Y). O

The third statement of the lemma shows that the notion “is stabilized
by” behaves better than the notion “is generated by.” In fact, minimal sets
of generators need not be unique, as demonstrated by the next example.

Example 4.12 We consider the quotient term algebra 7(Xp, V') /=, where
Y consists of one unary function symbol f, V' is countably infinite, and
E = {f(x) = f(y)}. Obviously, the carrier of T(Xp,V)/=, consists of the
=p-classes {z;} for x; € V and one additional class [f(-)] := {f(t) | t €
T(Zp,V)}.

It is easy to see that for all z; € V, the element [f(-)] of T(Xp,V)/=,
is generated by {x;}. However, [f(-)] is not generated by (). Thus, there are
infinitely many minimal sets of generators of [f(-)].
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Definition 4.13 Let (A%, M, X) be an SC-structure, and let {ay, ... a,} C
A. The stabilizer Stabay(ay, ..., a,) of {(11, ... ,l} is the (unique) minimal
finite subsetY of X such that {ay,..., a,} C SHM (Y).

Using this notion of stabilizers, the validity of positive formulae in SC-
structure can be characterized in an algebraic way. This characterization
is essential for proving correctness of our method of combining constraint
solvers for SC-structures.

4 b
Lemma 4.14 Let (A=, M, X) be an SC-structure, and let
v = Vi 3 . V@A (i, U, T, U)

be a positive X-sentence. Then the following conditions are equivalent:

AE

= Vz?ﬁlzﬂ .. VJkHFA 9’)(171 ’ﬁh ey l_l’\k1 Fk)

there exist ¥y € X € € zI LT € X:, &. € A such that

Ty, €1),

3
—
o
S0
Jﬂ

all M-atoms in the sequences ¥, ..., 7 are distinct,

forall j,1 < j <k, the components of ¥; are not contained in Stabp,(€)) U
.U Stab \4(5’ 1)
Proof. “1 = 27. First, select an arbitrary sequence 7y of distinct M-
atoms from X such that this tuple has the same length as #;. Since A”

—

satisfies 7, there exists a sequence €] € A such that
) I . S 5 S o S
(%) A* | Vv, .. Vi30, o(T, e, Uy, Vo, ..., Uk, ).

Now, we may choose a finite sequence 7s of distinct M-atoms from X such
that this sequence has the same length as w5, and none of its components oc-
curs in Stab(€)) or 7. This is possible because X is infinite by assumption,
and Staba(€) is finite.

Because of (%), there exist a sequence & € A such that

AE |: Vl?gﬂ(_')g \V/IIAEII; ) (11 (l, I) (,2, 113, (’3, Ce ,Jkﬁk)

.

Obviously, this argument can be iterated until Condition 2 of the lemma is

proved.

“2=1". Let &) € X €] € 4 ..... T € X €, € A as in Condition 2 be
given. We claim that this 1mphes, for all 7,0 < ¢ < k, the following condition

Cii
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C;: Forall d; € A there exists 51 € X, .., forall @; € A there exists Ei € I

and there exist ¢y, ..., 9 € X, bir1,..., b € A such that
5 3 (= _' - 7 = T = T
(2’) A* = o, by, @i bis Gipr, bigrs - ks D),

(b’) all atoms occurring in the tuples i1, ..., 7 are distinct,

(¢ forall j,i < j <k, no component of §j; occurs in U{;# StabM(l_))l,)U
U,.=1 Stabu(@,).

Obviously, the condition C} is just Condition 1 of the lemma. We show
that condition C; holds for all :,0 < ¢ < k, by induction on . For ¢ = 0,
validity of Cj follows from Condition 2.

Now, assume that C; holds for some 7,0 <17 < k. To show C;;,, assume
that an arbitrary sequence @;.1 € Ais given. For j = ¢+ 1,.... k, we define a
mapping h; from a finite set of atoms X; to A by induction on j.

For 7 =141, the set X, consists of Stab (l-)),,;ﬂ) U Uf,:1(SMbM((7u) U
Stab (g,,)) and the components of 7; ;. The mapping h;, leaves all elements
of U'_, (Stab(@,)UStab(b,)) invariant. It maps (each component of) 74
to (the corresponding component of) @;;1. The elements of Staba, (l_);H) that
have not yet obtained an image this way are mapped in an arbitrary way.
Note that this definition of h;1; is consistent because of (b’) and (¢’) of C;.

Now assume that X, h; are already defined (for some i+1 < j < k). The
set X 41 1s obtained as the union of X; with Stab (EjH) and the components
of ;41. The mapping h;; is obtained as follows:

1. Its restriction to X; coincides with 7.

2. Let 7 be a tuple of distinct atoms such that no component of Z; occurs
in Stabp(h;(X;)). (Such a tuple exists since the set of atoms was
assumed to be infinite, and Staba((h;(X;)) is finite.) The mapping
h;+1 maps (each component of) #;4+ to (the corresponding component
of) Zjp1.

3. The elements of Staby(b;y1) that have not yet obtained an image this
way are mapped in an arbitrary way.

Note that Condition 1 does not conflict with Condition 2 since (b’) and (¢’)
of C; imply that none of the components of #;;; occurs in Xj.



Since X is an infinite M-atom set of the countably infinite Y-structure
A¥, and X} is a finite subset of X, Lemma 4.7 implies that there exists a
surjective endomorphism H € M that extends hi. By definition of hj, we
have H(@) = @, H(b)) = by, ..., H(@) = @, H(b;) = bi, H(fis1) = @i,
and for e + 1 < j <k, H(g;) = Z;. Thus, Lemma 2.1 11nphes

AZ = (@1, by, b @iy, HDist), Zvoy H(Biva)s - - 2o H(DR)).

This yields (a’) of Ciyq. It is easy to see that the mapping hy, was constructed
such that (b’) and (¢’) hold as well. O

5 SC-Substructures and SC-Superstructures

In Section 6, where we describe how to construct amalgamated products of
SC-structures, it will be helpful to embed a given SC-structure in a larger
(isomorphic) SC-structure. For the case of term algebras modulo an equa-
tional theory this is trivial. In fact, if V is any countable superset of the
countably infinite set V' then 7(Xp,V)/=, is isomorphic to T(Zp, Vi)/=,.
For SC-structures, a similar property holds, which is, however, harder to
prove. For this reason, we treat this problem in a separate, rather techni-
cal section. The reader who is eager to see how amalgamated products can
be constructed may skip this section, and—for the moment—just believe its
results.

Let (A%, M, X) be an SC-structure, let Xy be an infinite subset of X, and
let A5 1= SHy,(X,). Our first goal is to show that Af is an SC-structure
with atom set X, and that there are close connections between this SC-
structure and the SC-structure (A%, M, X). This will justify to call AJ an
isomorphic SC-substructure of A*.

. . . b ‘e
Lemma 5.1 There cwists an isomorphism ha_y, @ A — Ay that maps X
bijectively to X.

Proof. By Lemma 4.11, A¥ = SHf\l/[ (X), and thus Lemma 4.6 implies
that every bijection between X and X, can be extended to an isomorphism
from A* to AF. O

1 . . . )
Let ha,—a = hAlfAO be the inverse isomorphism. For m € Endj, the
mapping my := ha,—a0moha_a, is obviously an endomorphism of AF. We

define My := {m | m € M}.
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Lemma 5.2 M, is a submonoid of Endao.

The mapping Hy : m — my is an isomorphism between the monoids Endi
and End\:‘o.

My = End/z40 if, and only if, M = End%.

Proof. (1) Since

! !
mpom; = hag—a0moha_a, 0hag_a0m oha_a,
= ha,_aomom' ohy_u,

= (mom'),,
My is a submonoid of Endj , and H| is a homomorphism between the mo-
- DI 5
noids Endj and Endy, .
(2) There is a dual homomorphism

™M 3
Hy: Endj, — Endj :m = my = ha_a, 0moha,_4,

and it is easy to see that H| o Hy is the identity on Endﬁ7 and Hyo H| is
the identity on Endjo. Thus, both are isomorphisms that are inverse to each
other.

(3) Since H| is bijective, the images M of M under H| is equal to Endio
iff M = End;. m
Lemma 5.8 (A3, My, Xo) is an SC-structure.
(A5, Mo, Xy) is strong iff (A%, M, X) is strong.

Every mapping gv., 4 Xg — A can be extended to a homomorphism ga._ A :
9Xo—A 0 JAg—A
b 3 - . . . . .
Ay = A¥ If (AY, Mo, Xo) is strong, then this extension is unique.

. Let X, be such that Xy C X C X. Every bijection gy : Xy — X|, can

be extended to an isomorphism between Ay = SHY,(Xo) and SHY(X}). If
(AS, My, Xy) is strong, then this extension is unique.

Proof. (1.1) First, we show that Xj is an Mj-atom set of AJ. Let
JxXo—A, - X0 — Ap be a mapping. There is a corresponding mapping

Ix—a: X = Arx = hag_algxg—ao(ha—a, (L))J‘

1Recall that ha_a, maps X to Xp.
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Since (A*, M, X)) is an SC-structure, there exists an extension g4 4 of gy 4
to an endomorphism in M. Its image (ga_4); is an endomorphism in M,
and it is easy to see that this endomorphism extends gx,—,-

(1.2) Second, we show that every element a of A is stabilized by the set
ha—a,(Stabpy(ha,—ala))). Let my and m/ be two endomorphisms in M, that
coincide on hy_a,(Stabpy(ha,—al(a))). For x € Staba(ha, a(a)) we have

m(x) = hag_a(mp(ha_a,(2)))
= haya(m)(haa,(x))) = m'(x),

which shows that m and m’ coincide on Staby(ha,—a(a)). Thus m and m/
coincide on hy,—4(a). We obtain

my(a) = ha_a,(m(ha,—ala)))
= ha_a,(m'(ha,_a(a)))
= m’l((z).

(1.3) Since Stabpag(ha,—a(a)) is a finite subset of X, we know that the
set ha_a,(Stabyg(ha,—a(a))) is a finite subset of X,. Thus, every element
of Ay is stabilized by a finite subset of X, which completes the proof that
(A5, Mg, Xy) is an SC-structure.

(2) Obviously, the third statement in Lemma 5.2 implies that the SC-
structure (Ay, Mo, Xo) is strong iff (A%, M, X) is strong.

(3) Let gx,-4 : Xo = A be amapping. We choose an arbitrary extension
gx-4:X = Aof gy, 4. Since X is an M-atom set, gx_4 can be extended
to an endomorphism g4_4 : A¥ — A* in M. The restriction g4, 4 of g4_4
to Ay = SH_fK‘/l (Xy) is a homomorphism between AJ and A* that extends

IXo—A-

If (A5, Mo, Xo) is strong, then (A, M, X) is also strong. Let hy_x, :
X — Xy be a bijection, and let h4_4, be an extension of hy_x, to an
isomorphism from A¥ = SHY,(X) to A = SH{(X;) (see Lemma 4.6).
For all homomorphisms ¢ : Ay — A* that extend gy,_4, the composition
ha_a, 0 ¢ is an endomorphism of A* that extends the mapping hx_x, ©
gxo—a @ X — A. Since (A¥, M, X) is strong, all these endomorphisms
ha_a, o¢ coincide.” Because ha—a, 1s an isomorphism, this implies that
all homomorphisms ¢ extending ¢x,_a coincide, which yields the desired
uniqueness result.

>The assumption “(A¥, M, X) strong” is necessary, since otherwise uniqueness only
holds for elements of M, and we could not be sure that all g4_ 4, o ¢’ belong to M.
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(a0)
(a1)
(a2)
(a3)

(a4)

(4) Let go : Xo — X{, be a bijection, where Xo C X C X. By Lemma 4.6,
¢o can be extended to an isomorphism between A = SH:4M (Xo) and Aj" =
SH (X))

Suppose that (A7, Mg, Xy) is strong. Then (A* M, X) is also strong.
Let hy_x, and hs_ 4, be defined as in part (3) of the proof. For all homo-
morphisms ¢” : A7 — Aj* that extend gq, the composition hy 4, 0 ¢” is an
endomorphism of A* that extends the mapping hx_x,0gy. Since (A*, M, X)
is strong, all these endomorphisms h4_4, 0 ¢’ coincide, Because h4_4, is an
isomorphism, this implies that all homomorphisms ¢” extending gy coincide.
O

Until now, we have seen that any countably infinite subset X of the
atom set X of an SC-structure (A, M, X) is an atom set for an appropriate
isomorphic SC-substructure (A5, Mg, Xo) of (A*, M, X). In the remainder
of this section, we use this result to go in the other direction, i.e., we show
that a given SC-structure (A%, M, X) can be embedded into an isomorphic
SC-superstructure.

Theorem 5.4 Let (A% M, X) be an SC-structure. There exists an SC-
structure (A%, M, Xo) such that:

A¥ and A% are isomorphic.
A = SHj‘/ﬁo (X), X C X, and X \ X is infinite.
(AL, Moo, Xoo) is strong iff (A*, M, X) is strong.

Every mapping X — Ay can be extended to a homomorphisms h‘\j;_Ax ;
A¥ = AZ . If (A¥, M, X) is a strong SC-structure, then this extension is
unique.

For every X' such that X C X' C X, every bijection g : X — X' can be ex-
tended to an isomorphism between SH (X) and SHyy (X'). If (A, M, X)
s a strong SC-structure, then this extension is unique.

Proof. (1) In the first part of the proof, we define the structure A%
and show that is isomorphic to A~. Let X, be an infinite subset of X such
that X\ Xy is infinite, and let (A5, My, Xy) = SH7(Xo) be the isomorphic
SC-substructure satisfying the properties stated in Lemma 5.3. Let hy,_4 :
AF — A* be an isomorphism that extends a bijection between the atom sets
Xy and X.
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As carrier of the SC-superstructure to be constructed, we take an arbi-
trary countably infinite superset A, of A such that A, \ A is infinite. Let
X be a subset of A, such that

1. X C X, and X, \ X is infinite,
2. XooNA=X,

3. the sets A\ (49U X) and A \ (AU X) have the same cardinality.

We extend hy,—4 to a bijection hy_s @ A = Ay such that hy_ 4 (X) =
Xoo- This is possible because of our choice of hy, 4 and of X. In fact,
by Lemma 4.11, A = Ay (X \ Xo) & (A \ (A9 U X)) is a partitioning of A,
and our assumptions ensure that A, = AW (XN \ X)W (A \ (AU X)) is
a partitioning of A.. In addition, both X \ X, and X \ X are countably
infinite, and A\ (4 U X) and A, \ (AU X, ) have the same cardinality by
assumption.

The bijection ha_4__ and its inverse ha__4 = hifo can be used to
define a Y-structure AZ on the carrier A, as follows: Let f € ¥ be an n-ary
function symbol, and aq,...,a, € A.. We define the interpretation of f in

AZ by

falar, ... an) :=ha_a (falha—a(ar),...,ha__a(ay))).

Let p € ¥ be an m-ary predicate symbol, and ay,...,a,, € A,. We define
the interpretation of p in AZ by

palar, - an] = palha, alar),... ha, ala,)].

Note that this definition is compatible with the given ¥-structure on A C A
since hy, 4, 1.e., the restriction of hy 4 to Ag, is a X-isomorphism. With
this definition, the mapping h4_ 4 becomes an isomorphism between the
Y-structures Ai and A”, and ha. —a is the inverse isomorphism.

(2) In the second part of the proof, we define the monoid M, show that
(AZ, M, X) is an SC-structure, and that (a2) holds. The submonoid M
of Endi induces a corresponding submonoid M, of Endfloo as follows: For

each m € Endi we may define a corresponding endomorphism my, : a +—
Moo(@) == ha s (m(ha, ala))) of Ax. Let M, be theset {m,, | m € M}.
Since

Mo omi(a) = haa (m'(ha,_alha_a (m(ha,_4(a))))))
= ha_a_(mom'(ha__a(a)))

(mom')(a),
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M is in fact a submonoid of Endi As in the proof of Lemma 5.3, we can
show that the mapping m +— m,, is an isomorphism between the monoids
Endi and Endix. In particular, this implies that M, = Endix if, and
only if, M = Endﬁ. Again, this will imply (a2) as soon as we have proved
that (A2, M., X ) is an SC-structure.

J : b . Y-:
To this purpose, we show that X, is an M -atom set of A . Let
UX— A Xoo = Ax be a mapping. There is a corresponding mapping

gx-a: X = A= ha_—a(gx.—a (haca(x))).

Since (AE7 M, X)) is an SC-structure, there exists an extension g4_4 of gx_4
to an endomorphism in M. Its image (g4_4)xo 18 an endomorphisms in M,
and it is easy to see that this endomorphism extends gy____ . Thus, X is
in fact an M. -atom set of of A% .

For a given a € A, is also straightforward to verify that the finite set
ha—a(Staba(ha,, —ala)) C X, stabilizes a with respect to M. Thus we
have shown that (AL, My, X ) is an SC-structure. As mentioned before,
(a2) holds.

(3) In order to prove (al), it remains to be shown that A> = SH“&O;(X)
We know that A = SH“& (Xo)-

First, assume that a € A. Since h4_ 4. maps Ay bijectively onto A, there
exists ag € Ag such that @ = hy 4 (ap). Now assume that m, and m’_
coincide on X. It follows that m,m’ coincide on X,. In fact, let x4 € Xj.
Then ha_a_(z9) € X, and thus

m(xg) = ha, - a(ma(ha—a.(20)))
= ha—a(ml (ha—a_(z0)))
= m'(xy).

Thus, we know that m,m’ coincide on Aj = SH“&A (Xo). It follows that

Moo(a) = ha a, (m(ha, ala)))
= ha_a,(m(ap))
= ha_a(m'(ap))
= IIA Ane (’”/(h Ao—ala)))

and thus we have proved a € SHjAMi‘O (X).

Second, assume that a € SH“Z‘;; (X). We show that this implies that its
image ha__a(a) € SH“‘\‘/1 (Xo) = A5. Since the restriction of hs_4_ to Ay

31



maps Ag onto A, it follows that @ = ha_4__(ha__a(a)) € A. Thus, assume
that m,m’ € M coincide on X. It is easy to see that this implies that
Moo, ML, coincide on X, and thus they coincide on a € SH’éjjc (X). It follows
that

m(ha,ala)) = ha, alms(a))
ha. a(m!_(a))

= m'(ha__ala)),

which proves ha__a(a) € SHjl/l (Xo).

(4) In order to prove (a3), assume that gy_a_ : X — A, is an arbitrary

mapping. There is a corresponding mapping
Ixo—n 1 Xop = Aiax = ha__a (!]X—AOC(hA—AOO(l’)))-

. [ . : b)) . b))
B}; Lemma 5.3, gx,-4 can be extended to a homomorphism g3 4 : Ay —
A=. Now

9121—/10@ C AT > Ai cav haa (gag—alha,—a(a)))

is a homomorphism that extends gy 4. It is easy to see that there is
a 1 1 correspondence between the extensions of gx_4_ to homomorphisms
AY — .A:jo and the extensions of gy, 4 to homomorphisms Ag — A*. Thus,
in the case of strong SC-structures, uniqueness of the extension g4,—4 of
gx,—4 implies uniqueness of the extension ga_a__ of gx_a_.

(5) In order to prove (ad), assume that X’ is a set with X C X' C X,
Let X[, := ha__a(X'). It is easy to check that a € A, is stabilized by X'
with respect to M, if, and only if, ha__a(a) € A is stabilized by X} with
respect to M. Thus ha_a_(SHY(X()) = SHAZ (X'). Let g : X — X' be
a bijection, and define gy : Xo — X} by go(w0) := ha—alg(ha_a(20))).
It is easy to see that there is a 1-1 correspondence between the extensions
of ¢ to isomorphisms SH“&“‘;(X) — SH“L&; (X') and the extensions of g
to isomorphisms SHy,(Xy) — SHf\lA(X{)). Thus, (a4) follows from (4) of
Lemma 5.3. O

6 Amalgamation of Simply Combinable Struc-
tures

Our motivation for introducing the class of SC-structures was, on the one
hand, that it comprises many solution structures for interesting constraint
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languages. On the other hand, SC-structures over disjoint signatures allow
for an explicit construction that closes any amalgamation base, as we shall
see below. For two strong SC-structures over disjoint signatures, this con-
struction yields the free amalgamated product of these structures. In the
general case, the resulting structure also seems to play a unique role, but
a precise characterization of this intuition has not yet been obtained. The
following construction is almost identical to the amalgamation construction
given in [BaS94a] for the case of free structures. There is just one essential
difference. In [BaS94a], substructures that are generated by increasing sets
of free generators are used in each step of the construction. Here, in the case
of SC-structures, stable hulls (as defined in Definition 4.2) of increasing sets
of atoms must be used instead.

6.1 The amalgamation construction

Let (A¥, M, X) and (B2, N.X) be two SC-structures over disjoint signa-
tures ¥ and A. We consider the amalgamation base (X, A%, B?), where
the common part is just the set of atoms X. Thus, the embedding “homo-
morphisms” hy_4 : X — A% and hy_p : X — B* are given by Idy. In
order to close this amalgamation base, we shall first embed A% and B into
isomorphic superstructures. Let (A2, M, X ) be an SC-superstructure of
(A¥, M, X) satisfying (a0)—(ad) of Theorem 5.4. Analogously, there exists an
SC-superstructure (B, Nao, Yao) of (B2, N, X) such that the corresponding
properties (b0) (b4) hold.

Starting from A3 := A* and Bj* := B, we shall make a zig-zag con-
struction that defines an ascending tower of Y-structures A>, and similarly
an ascending tower of A-structures B%. These structures are connected by
bijective mappings h, and ¢,. The amalgamated product is obtained as the li-
mit structure, which obtains its functional and relational structure from both

towers by means of the limits of the mappings h,, and ¢,,. Let Xy := Y, := X.

n = 0: Consider A7 = A% = SHﬁ*;O(XO)E. We interpret the “new”
elements in Ay\ X, as atoms in BS . For this purpose, select a subset Y, C Ya
such that Y1 NY, = 0, [Y1] = |A4¢ \ Xo|, and the remaining complement
Yo \ (Yo UY)) is countably infinite. Choose any bijection hy : Yo UY] — Ay
where hyly, = Idy,.

Consider By = B® = SH%; (Yo)®. As for Aj, we interpret the “new”
clements in By \ Yy as atoms in A,,. Select a subset X7 C X such that
XiNnXy=0,|X1| =|By\Yo| and the remaining complement X, \ (XoU X)
is countably infinite. Choose any bijection go : Xo U X| — By where go|x, =
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IdX[).

n — n 4+ 1: Suppose that the structures A> = SHy> * (UiZ o Xi)* and
BY = SHB < (U, Y)* and the atom sets X, 41 C (X \UZ 0Xi) and Y,y C
(Yoo \ Y;) are already defined. We assume that the complements X \
U"H X; and } \U"H Y; are infinite. In addition, we assume that bijections

hn : anl U Y;1 U y;l+l — 4471
gn - 4477,—] U -Xn, U -X77,+1 — Bn

are defined such that

(%) gn(ha( = bforbe B,_1UY,

b)
a)

)
ho(gu(a)) = afora€ A, 1UX,
(’k*) n( 1) = 4 \( n— lUAle)
9n (-XH—H) - Bn \ ( n—1 U }77)

Note that (%) implies that h, (B, 1UY,) = 471 1UX, and g, (A, 1UX,) =
B, _1UY,. We define A, | := SHAW (U X3)¥ and B2 = SHyz (Ui Yi)2
and select subsets Y10 C Y and /Xn+2 C X such that Y”+) ﬂ U"“Y

) = X,2N U?’jol X;. In addition, the cardinalities must satisfy |Y,4o| =
|41\ (A4, U X, )] and | X, 42| = |Bps1 \ (B, UY,11)], and the remaining
complements Y., \ U*2Y; and X, \ U2 X; must be countably infinite. Let

Un41 - )n+2 — 471+l \ 471 U An«H)
gn—l—] :)&71—&-2 — B'n,—l—] \ B'n, U 171,—|—])

be arbitrary bijections. We define h, 4 = v, U g LU h, and Il 1=
Eupt URZEU g, In more detail:

z'n+l(l)) forb e Y, o
hni1(b) = ( ) forbe B, 1UY,UY,
g,k (b) forbe B, \ (B, UY,)

and
Enp1(a) fora € X,io
gnr1(a) =< gala) forae A, U X U X, 11
ht(a) forae A,\ (A1 UX,).

Without loss of generality we may assume (for notational convenience) that
the construction eventuallv covers all atoms in X, and Y,.; in other words,
we assume that [J72 = X, and U2, Y: = Y, and thus U2, A = Ax
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and ;2 B; = Bs. We define the limit mappings

hee = U hi : B = Ax.,
i=0
i=0

It is easy to see that h., and g, are bijections that are inverse to each other:
in fact, given b € B, there is a minimal n such that b € B, ;. By (%) it
follows that g, (h, (b)) = b and thus g.(ha (b)) = b. Accordingly, we obtain
hoo(goo(a)) = a for all a € A..

The bijections h,, and g, may be used to carry the A-structure of B
to AZ and to carry the S-structure of AZ to BL: let f (f') be an n-ary

function symbol of A (¥) and ay,...,a, € Ay (b1,...,b, € By). We define
faclay, .. ian) = heo(fp(goclar). ... gx(an))),
fﬁ;x(bu v 1b71) = gOO(f;lm (h’oc(b])’ T ’hoo(b'"’)))'

Let p (¢) be an n-ary predicate symbol of A (X) and ay,...,a, € Ax

(by,...,b, € By). We define

PA [U/lv SR 7”’71‘] = PBs [f]oo(”’l)w - Yo <(1”IL>]w
B [b1, by = qa[hec(D1), .. heo (bn)].

With this definition, the mappings he, and ¢, are inverse isomorphisms bet-
ween the (YU A)-structures AZVA and BEY2. For this reason, it is irrelevant
whether we take AZY2 or BEY2 as the combined structure defined by the
construction. In the following, we shall use AZY2 as combined structure,
and denote it by A @ B2,

Lemma 6.1 A¥® B2 closes the amalgamation base (X, A*, B?), i.e., A¥®
B? is an amalgamated product of A* and B>.

Proof. Obviously, Id, gives the embedding homomorphism from A* to
AZYUA - The restriction of hy, to B2 yields an embedding homomorphism
from B* to AXY2. Note that the embedding homomorphisms are even 1-
1 in this case. These homomorphisms agree on the shared substructure X
since o (2) = x for all # € X by construction. Thus, (A2 Idy, hy|p) is
an amalgamated product of A* and B*. O



6.2 Free amalgamation of strong SC-structures

In order to obtain a better characterization of what the above construction
generates, we restrict our attention to strong SC-structures. First, we must
define a class of admissible structures. To this purpose we use the algebraic
condition of Proposition 3.2:

Definition 6.2 For strong SC-structures (A*, M, X) and (B>, N, X), the
class of admissible structures, Adm(A*, B®), consists of all structures C=2
such that for every mapping gx ¢ : X — C there exist unique homomor-
phisms g5 o : A® = C¥ and g5 . : B> — C® extending gx_c.

Lemma 6.3 Let (A%, M, X) and (B>, N, X) be strong SC-structures. Then
A® ® B is in the chosen class Adm(A*, B®) of admissible structures.

Proof. Let gx 4. : X — A, be a mapping. By property (a3), there
exists a unique® homomorphism g4 4 : A¥ — A2 that extends gx_4_. By
property (b3), the mapping gx _p._ = gx_A. © Joo : X — By has a unique
extension to a A-homomorphism gp p_ : BY — Bfo Thus, gp_a.. =
gB_p.. 0 hee : B® — A2 is a A-homomorphism. Restricted to X, gp_4_
is equal to to gx 4 00 © how = gx_4a., l.€., it 1s in fact an extension of
gx— A, - It remains to be shown that this extension is unique. It is easy to see
that for any g, extending gx_4_ . the composition g_p =g 4 00
is a homomorphism extending gx_p., = gx—a. © goo. By property (b3), this
implies g4 0 Goc = g—B.. and thus g, = gp_p._ 0he =gp—a.. O

The lemma shows that, for strong SC-structures, our construction yields
an admissible amalgamated product with respect to Adm(A¥, B®). Before
we can prove that this product is in fact the free amalgamated product, we
need one more technical lemma.

Lemma 6.4 Assume that our construction is applied to strong SC-structures
Pr g

ey \ N/ y ;A / . .

(A*, M, X) and (B*,N,X). Let D™V € Adm(A*,B>) be an admissible

structure.

1. For every mapping f, : Uiy X; — D there exists a unique homomorphism
i _p: AS — D¥ that extends f,.

2. Moreover, if foi1 1 UM) Xi — D eatends f,, then finD extends f3 _p.

. . v - . .
6The assumption “(A*, M, X) strong” is necessary to have uniqueness.
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3. For every mapping g, = Ui_yY: = D there exists a unique homomorphism
A N A A o¥s 4l o¥f >
I3, _p By — D> that extends g, .

4. Moreover, if g, : U;’jol Y; = D extends g,, then ,q%nJrl_D extends ,q%n_,),

Proof. (1) For n = 0, the existence of a unique homomorphisms f3
extending the given mappings fy : X = Xy — D follows from the definition
of Adm(A*, B?).

Forn > 0, let 7 : X = X, = U/, be an arbitrary bijection. By
) . . , . . byl
property (a4), m has a unique extension ¢, to an isomorphism from A~ =
N - v =13 .. y /
SHA (X) to AY = SHA (X,). Because of the definition of Adm(A®, B*),
he mapping © 1as a unique extension to a homomorphism fy_, :
tl of,! t toal 1 iop AT =
S Thype £ RS RS R Comornhicm from AS DI
D~. Thusz‘ Ji _p = ¢ o fi_p is a homomorphism from A to D> that

n "

extends

- Nl .

In order to show uniqueness, assume that fy _, : A> — D*¥ is another
extension of f,. It follows that ¢, o fy _, extends 7o f,, and thus fy , =
y ™ - o v L Faa A1 > _ ™
¢r o [, _p- Obviously, this implies ¢ o fy_p = f1 _p.

(2) Suppose that f,4q : U;lz'"ol X; = D extends f, : Ui_, X; = D. The
st S Yoo . s b b . \ \ .
restriction of f3 . _ ) to A~ is a homomorphism A> — D that extends f,.

. . . . . . M .
Since there is a unique homomorphism with this property, namely f¥ _, it
coincides with this homomorphism.

(3) and (4) follow by symmetry of our construction. O

Theorem 6.5 If (A%, M, X) and (B2, N, X) are strong SC-structures over
disjoint signatures, then AZYS s the free amalgamated product of A* and
B2 over X with respect to the class Adin(A¥, B®) of admissible structures
defined above.

Proof. We have already shown that AZY2 is an admissible amalgamated
product of A¥ and B®. Recall that Id, is the embedding homomorphism
haa, @ A¥ — A,\;UA? and hs is the embedding homomorphism hp 4
BA — AZVA,

In order to show that this admissible amalgamated product is free, assume
that D*2 € Adm(A¥, B*) is another admissible amalgamated product, i.e.,
there are homomorphic embeddings ¢5 , : A¥ — D¥ and g3 , : B> — D
such that hy_4 o gﬁf p =hx_po gﬁf p. The embeddings hx_4 and hx_p
of the amalgamation base (X, A%, B*) are the identity on X, which implies

that ga_p and gg_p coincide on X. Let gx_p denote the restriction of both
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fDZUA

ga_p and gg_p to X. Because was assumed to be admissible, we know

that

. - . by . . .
(%) every extension of gx_p to a homomorphism A> — D¥ coincides with
X
Ga—pD>

(%) every extension of gy_p to a homomorphism B> — D coincides with
A
9B-D-

We must show that there exists a unique homomorphism

) SUA L BUA SUA
hy ~p: AL =D

such that on .
, (#) Idao hgi—n = Ya_p-
(##) h’oo |B O}l’:iA—D g%_n_

This situation is illustrated in the figure. In the first part of the proof we

BA dB-D

show that such a homomorphism h,__p exists. In the second part, we show
uniqueness.

(1) Tt is sufficient to show that the mapping gy _p can be extended to a
homomorphism h\ggf_p t AZYA 5 DYUA i fact, it is easy to see that in this
case Idqoh,__p is a homomorphism from A* to D* that extends gyx_p, and
hoo |B 0ha., —p is a homomorphism from B2 to DA that extends gy_p. Thus
(#) and (##) are immediate consequences of () and (sx), respectively.

. g hicm ASUA . ASUA
vIn order to construct an appropriate homomorphism h3-= p : AZS —
D¥YA we define mappings

hin_D:An — D
hg _p:B, — D

that satisfy the following properties:
1. h% _p is a S-homomorphism and h3 _, is a A-homomorphism.
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o

If n > 0 then, for all v € Ui, X,
h’i—i)(”’) = hﬁn,l—p (g0 (),
and, for all y € U, Vi,

A N E
th_L)(y) = h'}lnil_i)(hoo(y))-
3. If n > 0 then the restriction of 2% _, to A,_y yields 2% _ , and the
restriction of hﬁn—D to B, 1 yields hgn,]fp-

4. Forallw e X, % _p(x) = gv_pla) = kg _pla).

n = 0: Recall that Xy = X = Y. By Lemma 6.4, there exist unique
extensions of gy p to homomorphisms

hiio—[) : .A() — 'D7
A .
h’B()*D . BO _> D.

Obviously, Conditions 1-4 are satisfied.

n — n+1: Assume that mappings hEFD and h%WD satisfying Conditions
1-4 are given. We define mappings f~,, : Uy X; = D and f2, : U} Y; —
D by

S () = hg, _plgsc(®)) ifwe X,
ntli () else,
3y .-
A () = Wi, —plhs(y)) iy € Yip
1\ - A ’ \ge
nt hg _ply) else.
By Lemma 6.4, there exists a unique extension of fnx+1 to a X-homomorphism
h%anD : App1 = D, and a unique extension of f2; to a A-homomorphism
hﬁnH_D : B,+1 — D. In addition, these homomorphisms extend % _,, and
h%n_n,’ respectively. Thus Conditions 1, 3 and 4 are again satisfied. Without
loss of generality, we prove Condition 2 only for h’inH—D' For x € X, 41, the
condition is satisfied by definition of f (x). For z € U’ ,X; we have
h,EAnH_D(.’I;) = fra(x) = h,EAn_D(J:). By assumption, we know hgn_n(:{') =
h3. ., plgso(x)). Looking back at the definition of AZ2, we see that ge ()
is an element of B,_;. By assumption, we know that h% _, and hi
agree on B, 1.

This completes the construction of the mappings b _, and hy _p (n >
0). Because of Condition 3, we know that (7% ),>0 and (kg )0 are
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ascending chains of mappings. Thus there exist limit mappings ha‘x_n ;

Ao — D and hﬁoc_L) : B — D. Obviously, the restriction of h’ioo—i) to A,

coincides with hin_p (resp. the restriction of hﬁoo_p to B, coincides with
N ,

hg.—p)-

It is easy to see that hy__p is a X-homomorphism and hp__p is a A-
homomorphism. For instance, assume that f is an n-ary function symbol in
Y. and that a;,...,a, € A = U;ZgA;. Thus, there exists & > 0 such that
ay,...,a, € A,. By Lemma 4.3, we know that A, = SH,E\/lx(U?:o X;) is a

substructure of A, and thus f4_(ay,...,a,) € Aj. Since hi _p coincides
. Ayl . oe
with h3, p on Ag, we obtain

ha, p(falar,....a,)) = hAk—D(fAk(“lv S )
= f’D(h‘Ak—D(a])’ cee 1h‘—\k—f)(a77’))

= f/D(hAOC—D((Ll)v e JIAOC—D((M))-

It remains to be shown that hs__p and hp, p are even (¥ U A)-homo-
morphisms. In order to show this we prove the following claim:

, % A . N gy
() hwohi _p=hg_ _p and gohy _p="hi__).

From the second identity of (1) we can easily deduce that b3, isa (SUA)-
homomorphism. In fact, we already know that it is a ¥-homomorphism. In
addition, h’%x—n is a A-homomorphism and ¢, is a (¥ U A)-homomorphism.
Thus the composition g, o h’%x—n is a A-homomorphism. Accordingly, the
first identity of (f) implies that hg__; is a (¥ U A)-homomorphism.

To complete Part 1 of the proof, we show the first identity of (). (The
second follows by symmetry.) Let b be an element of By. Thus there is an
n > 0 such that b € B, \ B, 1. First, assume that b € Y,,. By construction
of AZVA this implies hs(b) € A,,_1, and thus we have

Wy _plheo(®) =hy _ _plhao(b)) = hy _p(b) = hy__p(b).

The second identity holds by Condition 2 in the construction of the mappings
hg _pand b ), and the third follows from the definition of k5 .

Second, assume that b € B, \ (B,_1 UY,,). In this case we have h(b) =
g2 (b) € X,41, and thus

hime(hoo(b)) = h‘iﬂfp(g;ol(b))
= hﬁn_b(gw(g;l(b))) = hﬁn—p(b)

= h3__p(b).
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To sum up, we have shown the existence of a (¥ UA)-homomorphism h%x—r)
that extends ¢gx_p, which completes the first part of the proof.

(2) In order to show uniqueness, assume that there exists a (¥ U A)-
homomorphism h'4___p such that

]/VUA AEUA N DEUA

D"
such that SUA
/ R — X
(#) Idyoh'y sl T Ja-p»
1 /SU — A
(##) hee[pohs"p = 951
A SUA SUA SUA
Let Iy = hoo oMy ~p It follovvs that A’ —» = =g O W5 " . By
UA ,
1ndu('f1()n ()11 n we shall show that A’ A._p and h4 =, coincide on An, and
BUA

that hB ~p and hp 2 5 coincide on B This implies that h’igﬁD and

h3“2 |, coincide on —1 > oA
0. The conditions (#') and (#'#') imply that the restriction of
h’EUAD to A = Ay coincides with gs_p, and the restriction of h"UAD to

B = By coincides with gg_p. Thus, both coincide with gy_p on X. Since,
by Lemma 6.4, there exist unique extensions of gy_, to homomorphisms
Ay — D and By — D, we are done.

n —n+1. Suppose that h’zuA

, and h%Y2 ) coincide on A, and that
h' B D and IIB > coincide on Bn For « G X,41 we have g (x) € B,
A TUA ,
and thus h'i ™ “plx) =10y 5 ~p(9ee () = h\UA—U(Joc( )) = th_u( ). Thus

h’EUAD and h“UAD also Commde on UM X;. It follows from Lemma 6.4

that both homomorphisms coincide on A, ;. Similarly, it can be shown that
h’EUAD and iFUA p coincide on B, 4. O

For strong SC-structures, the amalgamation construction can be applied
iteratedly because the obtained structure is again a strong SC-structure:

Theorem 6.6 The free amalgamated product of two strong SC-structures
with common atom set X s a strong SC-structure with atom set X.

Proof. We must show that (AZ2 EndZUA,X) is an SC-structure. If we
choose D¥A = AXYUA the first part of the previous proof shows that every
mapping hy 4 : X — A, can be extended to an endomorphism of A4UA
Thus X is an atom set for AZY2 . Tt remains to be shown that every element
a € A, is stabilized—with respect to EndqUA —by a finite subset of X. By
induction on n (n > 0) we shall show that every a € A, and every b € B,
is stabilized—with respect to EndAUA and End“UA respectively—Dby a finite
subset of X.




n =20. Let a € Ay = SHfj“; (X). Thus a is stabilized by X = X
with respect to Endiw. In addition, since (A2, Endama){w) is a strong SC-
structure, a is stabilized by a finite subset of X... Both facts together imply
that the stabilizer of a with respect to Endiw is a finite subset, say Z, of
X = X,. Since every (X U A)-endomorphism is a S-endomorphism, Z also
stabilizes a with respect to Endagf. A symmetric argument shows that every
be By = SHK;j (X)) is stabilized by a finite subset of X =Y} with respect to
EndlE;iA.

n — n 4+ 1. Suppose that every o' € A, and every O € B, is stabilized
by a finite subset of X.
For a € A, 11, let Z denote the stabilizer of a with respect to Eﬂdim. Thus,
Z 1is finite, and as in the case “n = 0”7 one can deduce Z C U?:})] X;. It is
easy to see that Z' := g, (Z) stabilizes b := g (a) with respect to Eﬂdgm,

. YU/ / .
with respect to Endj:f and Endgff respectively

and thus also with respect to Endg‘iA. By definition of the mapping ¢.,, we
know that Z' C B,, and thus we can apply the induction hypothesis. This
yields a finite set R C X that stabilizes all elements of Z' with respect to
End\éff. Consequently, R stabilizes b with respect to EndgiA It follows
that hoo(R) = R C X stabilizes a = h(b) with respect to Endiﬁf. Thus,
we have shown that every element of A, is stabilized by a finite subset of
X with respect to Endiﬁf. Symmetrically, one can prove that every element

of B, is stabilized by a finite subset of X with respect to Elldl%iA. O

Obviously, the set of admissible structures, as introduced in Definition 6.2
above, satisfies Adm(A*, B®) = Adm(B*, A¥). Thus, the amalgamation
construction is commutative. In order to show associativity, we must prove
that the assumptions of Theorem 3.17 are satisfied.

First, we extend the definition of the class of admissible structures to
the case of the simultaneous amalgamation of three structures: For strong
SC-structures (B;%, M;,X) (i = 1,2,3), the class of admissible structures,
Adm(By, By, Bs), consists of all structures C*'"*2"** guch that for every map-
ping gx_¢ : X — C there exist unique homomorphisms ,ql\“g‘;f(j ; B,L — C™i
(i = 1,2,3) extending gx_c. As an obvious consequence of this definition we
obtain:

Lemma 6.7 Adm(B;, By, B3) C Adm(By, By) N Adm(Bs, Bs).

Thus, we have proved that the assumptions of Theorem 3.17 are satisfied,
as soon as we have shown the next two lemmas.

Lemma 6.8 Adm(B,,Bs, B3) C Adm(By, By @ Bs) N Adm(B, ® Bs, Bs).

42



Proof. We show Adm(By, By, B3) C Adm(By,Bs @ B3). (The other in-
clusion follows by symmetry.) Thus, assume that C € Adm(By, Bs, Bs3), and
that ¢ : X — (' is given. By definition of Adm(By, By, B3). the mapping g
can uniquely be extended to homomorphisms gp, ¢ : B; = C (fori = 1,2, 3).

Now, we apply the amalgamation construction to B, and Bs, which yields
the free amalgamated product By := By @ B3. Since the common part X
of By and B3 is embedded via Idy, the embedding homomorphisms hpg, _p,, :
B; — By of this product satisty hp,_p,,|x = hp,—Bys|x, 1.e., their restriction
to X coincide. By construction, this restriction to X coincides with Idy,
which means that we have

Py —pas|x = Idx = hp,_py]x- (6.9)

By Lemma 6.7, C is also an element of Adm(Bs,B3). In addition, the
embedding homomorphisms g, : Bo = C and gp,— : By — C satisty
Idx o gp,—c = gp,—c|x = g9 = gn;—c|x = Idyx o gp,—c, which shows that C
is an admissible amalgamated product of By and Bs. Since Bsg is the free
amalgamated product, there exists a unique homomorphism hg,, ¢ : Bog —
C such that

gB,-c = }1,57._323 o] }1/523_0 (l = 2,3) (610)
We show that the restriction of hy,, ¢ to X coincides with ¢g. In fact,

X =4.

hiy—clx = (h,—pys © hiy—c)|x = gp,—c

The first identity holds because of (6.9), the second because of (6.10), and
the third because ¢gp,_¢ extends g. This shows that there exists an extension
of ¢ to a homomorphism from Bys to C.

In order to prove C € Adm(By,Bs ® Bs), it remains to be shown that
this extension is unique. Thus, assume that fg,,_¢ : Bys — C is another
homomorphism that extends ¢g. Because of (6.9), we can deduce that the
composition hp, p,, © fB,,—¢ 1s a homomorphism of By into C that extends
g. Since gp, ¢ is unique with this property, we obtain

9g,—¢ = hp,—py © [y (6.11)
Similarly, it can be shown that

9gs—c = hp,—py 0 [y (6.12)
Because hpy,, ¢ is the unique homomorphism satisfying (6.10), the identities

(6.11) and (6.12) imply fp,, ¢ = hp,, - O
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Lemma 6.13 {5, ® (By @ B3), (B) ® B2) @ B3} C Adm(By, Bz, Bs).

Proof. We show By @ (By ® B3) € Adm(By, By, Bs). (The other inclusion
follows by symmetry.) As before, we denote By @ (By & Bs) by Bjas and
By @ By by Bys.

Let g : X — Djo3 be a mapping. We know that By = B @ (B, ®
B3) is an element of Adm(B;, By ® Bs), and thus there exists a unique ;-
homomorphism gg, —p,,, : Bi = Biag that extends g¢.

As a (9 U X3)-structure, Bz is isomorphic to Byaz (by property (b0) in
the construction). Let h%;?_zgm be the corresponding isomorphism, and let
k%‘f;%‘% be its inverse. We consider the mapping ¢’ = g o kg,,—p,, + X —
Bys. Since Byy = By @ By is in Adm(Bs, Bs), there exist unique extensions
of ¢’ to ¥;-homomorphisms gp, _p,, : B; = Bog (for i = 2,3). Obviously,
UB,—Bys © NBys— Brys 18 a S;-homomorphism from B; to Byaz that extends g (for
i=2.3).

It remains to be shown that these extensions are unique. Assume that
B B = Bi = Biaz are ¥;-homomorphisms extending ¢ (¢ = 2,3). Then
B Biss © KBias—Bys : Bi — Bag is a ¥;-homomorphism extending ¢ = g o
kB,ys— B, and thus uniqueness of gp, _p,, with this property implies fp._p,,, 0
EByys—Bys = B,—B,s- 1t follows that

9B;—By3 © h’Bzzs—Bus = foi—B123 °© kBlZS_BZS °© h‘st—Blzs = fBi—81237
which yields the desired uniqueness result. O

To sum up, we have shown that Theorem 3.17 can be applied, which
yields:

Theorem 6.14 Free amalgamation of strong SC-structures with disjoint si-
gnatures over the same atom set is associative.

7 Combining Constraint Solvers for arbitrary
SC-Structures: The Existential Positive
Case

Let (A¥, M, X) and (B2, N, X) be two SC-structures over disjoint signa-
tures ¥ and A; let A¥ @ B® = AZY2 denote their amalgamated product,
as constructed in the previous section. In this section we shall prove the
following result.
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Theorem 7.1 The caistential positive theory of AY @ B2 is decidable, pro-
vided that the positive theories of A” and of B> are decidable.

Note that this theorem holds for arbitrary SC-structures, i.e., it is not
required that A* and B* are strong. In this general setting, however, it is
not yet clear in which sense the amalgamated product A% ® B> obtained
by our construction plays a unique role among all possible closures of the
amalgamation base (X, A% B%). For strong SC-structures we know that
A* ® B2 is the free amalgamated product.

7.1 The decomposition algorithm

The decomposition algorithm described below decomposes a positive existen-
tial (¥ U A)-sentence g into a finite set of pairs («, 3), where « is a positive
Y-sentence and [ is a positive A-sentence. This algorithm coincides with the
one described in [BaS94a], where it has been used in the restricted context
of combination problems for free structures.

Before we can describe the algorithm, we must introduce some notation.
In the following, V' denotes an infinite set of variables used by the first order
languages under consideration. Let ¢ be a (¥ U A)-term. This term is called
pure iff it is either a X-term or a A-term. An equation is pure iff it is an
equation between pure terms of the same signature. A relational formula
plSt, -y 8m] 18 pure iff s1,..., s, are pure terms of the signature of p. Now
assume that ¢t is a non-pure term whose topmost function symbol is in 2.
A subterm s of t is called alien subterm of t iff its topmost function symbol
belongs to A and every proper superterm of s in ¢ has its top symbol in X.
Alien subterms of terms with top symbol in A are defined analogously. For
a relational formula p[sq, ..., s,,], alien subterms are defined as follows: if s;
has a top symbol whose signature is different from the signature of p then
s; itself is an alien subterm; otherwise, any alien subterm of s; is an alien
subterm of p[si,..., sy

Algorithm 1

Let ¢y be a positive existential (¥ U A)-sentence. Without loss of generality,
we may assume that ¢y has the form 3, vy, where 7y is a conjunction of ato-
mic formulae. Indeed, since existential quantifiers distribute over disjunction,
a sentence 3y (1 V y2) is valid iff 3@y v, or Iy 7> is valid.



Step 1: Transform non-pure atomic formulae.
(1) Equations s =t of 7y where s and ¢ have topmost function symbols
belonging to different signatures are replaced by (the conjunction of)

two new equations u = s,u = t, where u is a new variable. The
quantifier prefix is extended by adding an existential quantification for
u.

(2) As a result, we may assign a unique label ¥ or A to each atomic
formula that is not an equation between variables. The label of an
equation s = t is the signature of the topmost function symbols of s
and/or t. The label of a relational formula p[s, ..., s,] is the signature

of p.
(3) Now alien subterms occurring in atomic formulae are successively
replaced by new variables. For example, assume that s = ¢ is an

equation in the current formula, and that s contains the alien subterm
s1. Let u be a variable not occurring in the current formula, and let s’
be the term obtained from s by replacing s; by w. Then the original
equation is replaced by (the conjunction of) the two equations s = ¢
and u = s1. The quantifier prefix is extended by adding an existential
quantification for u. The equation s’ =t keeps the label of s = ¢, and
the label of u = 57 is the signature of the top symbol of s;. Relational
atomic formulae with alien subterms are treated analogously. This
process is iterated until all atomic formulae occurring in the conjunctive
matrix are pure. It is easy to see that this is achieved after finitely many
iterations.

Step 2: Remove atomic formulae without label.
Equations between variables occurring in the conjunctive matrix are
removed as follows: If © = v is such an equation then one removes Ju
from the quantifier prefix and v = v from the matrix. In addition, every
occurrence of u in the remaining matrix is replaced by v. This step is
iterated until the matrix contains no equations between variables.

Let 1 be the new sentence obtained this way. The matrix of o, can
be written as a conjunction vy A 1A, Where 71y is a conjunction of all
atomic formulae from ¢; with label 3, and 7, A is a conjunction of all atomic
formulae from ¢ with label A. There are three different types of variables
occurring in py: shared variables occur both in v v and in 9y A3 X-variables
occur only in vy v; and A-variables occur only in v, . Let @ 5 be the tuple

of all X-variables, @) A be the tuple of all A-variables, and @, be the tuple of
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all shared variables.” Obviously, ¢ is equivalent to the sentence

Jiy (i1 y v A JrA Y1,0) -

The next two steps of the algorithm are nondeterministic, i.e., a given
sentence is transformed into finitely many new sentences. Here the idea is
that the original sentence is valid iff at least one of the new sentences is valid.

Step 3: Variable identification.
Consider all possible partitions of the set of all shared variables. Each
of these partitions vields one of the new sentences as follows. The va-
riables in each class of the partition are “identified” with each other by
choosing an element of the class as representative, and replacing in the
sentence all occurrences of variables of the class by this representative.
Quantifiers for replaced variables are removed.

Let Jiiy (Fid) 5 vo.5 A i A Y2.4) denote one of the sentences obtained by
Step 3.

Step 4: Choose signature labels and ordering.
We choose a label ¥ or A for every (shared) variable in iy, and a linear
ordering < on these variables.

For each of the choices made in Step 3 and 4, the algorithm yields a pair
(e, ) of sentences as output.

Step 5: Generate output sentences.
The sentence 3iy(3idy v Yo.u A Jily A Y2,4) s split into two sentences

Q= VZ-')]HLZ"] . .kaalﬁkaﬁ]j Y25
and
,8 = H’UlV’lﬁl A EIF;‘\V/II_:AHITLA Y2.A-

Here ¥ ... U)W 1s the unique re-ordering of @y along <. The varia-
bles @; (;) are the variables with label A (label ¥).

Thus, the overall output of the algorithm is a finite set of pairs of sent-
ences. Note that the sentences o and 3 are positive formulae, but they need
no longer be existential positive formulae.

Obviously, Theorem 7.1 follows immediately as soon as we have shown
that the decomposition algorithm is sound and complete.

‘The order in these tuples can be chosen arbitrarily.
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7.2 Correctness of the Decomposition Algorithm

This proof is very similar to the one given in [BaS94a] for the combination
of constraint solvers in free structures. First, we show soundness of the
algorithm, i.e., if one of the output pairs is valid then the original sentence
was valid.

Lemma 7.2 AZV2 = oy if A E o and B> | 3 for some output pair
(e, 3).

. ™ 3 . . .
Proof.  Since A” and A2 are isomorphic S-structures (see the points

. . . 3
(a0) and (b0) in the amalgamation construction), we know that AL = .
. / p , . ey MU/
Accordingly. we also have B2 & 3. Moreover, since A=Y and BEY2 are
o o0 / ) (o @) o0

isomorphic, we know that A3 E 3, i.e., the A-reduct of the (SUA)-structure
AZUA gatisfies 3. This means

(*) ./420 |: VFlHlFl .. ‘v’z‘"kElu"’kElz—[lg Yo% (l_"l1 zﬁl, e 'ﬁk, Qﬁk7 Z_[l,E)a

(ﬂp*) .AOAO IZ HFLVU_H [ HFszFkEIleA 7”27A(_;1./ ’lﬁh . 72_"]{ le ’l_l"\l’A).

Because of the existential quantification over #] in (%), there exist elements
(1 € Ay such that

<>I< * *k) AOAO |: le . ElL_')kVLFkHL_l’LA 7”2,A<(_[1: 'Lﬁl, e l_;k ’lﬁk, Jl,A)
Because of the universal quantification over @ in (*) we have
3 — — — — - — — — —
AL | W . VGIETT o (@, D Uy T, U ys)-

Because of the existential quantification over ; in this formula there exist
elements ¢; € Ay such that

AEC |: V@Hzﬁg e Vf‘;ﬂ(ﬁﬁﬁlL Y2 (61, (?1, ’L_;Q, 'lz;g, ey 171” 'lZ:k, 'L_l»l’g).
Because of the universal quantification over i in (* % *) we have

AOAC |: HFZVIBZ A HEA,VID‘A«HJ],A ‘)”27A<CT] s a, 527 ’IBQ, ey f], s lﬁk, Z_IT]VA).
[terating this argument, we thus obtain

3 — — - — - —
A;O IZ HU]‘E ’7"25(66],0],...,(l]f./C]“’U/]’E)7
Aoo |: HUI,A /’/2,A(alvclv" 'va’kvclf: u‘l,A)'
It follows that

- -
~

SUA — - - o o — ) -
"400 |: HU]’S ")rQ@(Cb] ,Cly e ooy Ay Cpe U]’E) A HU],A W’ZHA(G] yCly vy

)
o
Z
b
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Obviously, this implies that
SUA = (37 T~
AL | iy (Fidyy yox A i A 124)

i.e., one of the sentences obtained after Step 3 of the algorithm holds in
AZUA Tt is easy to see that this implies that A2V = o). O

Next, we show completeness of the decomposition algorithm, i.e., if the
input sentence was valid then there exists a valid output pair.

Lemma 7.3 If AZV2 = ¢y then A¥ = o and B2 |= 3 for some output pair
(e, 3).

Proof. Assume that ASV2 ~ BZYA = Jiiyy,. Obviously, this implies
that BEOUA = 31_[1 (31_[12 ’)/’1.2(1_[17 ﬁl,E) A Hﬂrl’A ’)/’LA(‘I_[L ’l_l"\l’A)% i.e.7 BEOUA Sa-
tisfies the sentence that is obtained after Step 2 of the decomposition algo-
rithm. Thus there exists an assignment v : V' — By, such that B2 =

Jidyy yie(v(iy), @ x) A Jidpa y1,a@(dL), @A)

In Step 3 of the decomposition algorithm, we identify two shared variables
u and o' of @ if, and only if, v(u) = v(v'). With this choice, BI'2 =
Ji1 5 Yox(V(ia), @ x) A Jidy A Y24 (v(iz), @A), and all components of (i)
are distinct.

In Step 4, a shared variable u in @, is labeled with A if v(u) € By \
(U, Y7), and with ¥ otherwise. In order to choose the linear ordering on
the shared variables, we partition the range B, of v as follows:

Now, let v, ,..., ¥, W, be a re-ordering of the tuple iy such that the
following holds:

1. The tuple ¢} contains exactly the shared variables whose v-images are
in B(].

2. For all 7,1 <1 <k, the tuple w; contains exactly the shared variables
whose v-images are in Y;.

3. For all 7.1 < 7 < k, the tuple #; contains exactly the shared variables
whose v-images are in B; 1 \ (B; 2 UY; 1).

Obviously, this implies that the variables in the tuples @; have label X,
whereas the variables in the tuples ; have label A. Note that some of these
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tuples may be of dimension 0. The re-ordering determines the linear ordering
we choose in Step 4. Let

o = VE}EILD} . VZTAHLF;‘HLTLL Y2,%
,8 = ElFqu_"l . HFA\V/(I_:AH(TlA Y2 A

be the output pair that is obtained by these choices. Let ¥ = v(d;) € Y
and b; := v(T;) € By. We claim that the sequence by, #,. .., by, ¥ satisfies
Condition 2 of Lemma 4.14 for ¢ = Ji; A 72,4 and Bé.g

Part (a) of this condition is satisfied since BE'® |= iy A Yo,a (V(@2), U1.4),

and thus _ _
B E ity a voualbi, §is - by, i W1 A).

Part (b) of the condition is satisfied since the v-images of all shared variables
in iy are distinct according to our choice in the variable identification step.
Finally, part (c) is satisfied because of our choice of the linear ordering.
In fact, any component b of l;j belongs to B;_;, and is thus an element
of SHl;j(U{;é Y;)®. For this reason, StabNx(l;j) C U{;} Y;, whereas the
components of §; are in Y;. Thus, the components of ; are not contained in
Staby._ (b)) U ... U Staby_(bj_1) C Uiz, Yi.

This shows that we can apply Lemma 4.14, which yields B* ~ B2 | 3.
In order to show A* | a, we use the fact that hy : B¥Y2 — A2 is a

(¥ U A)-isomorphism. Thus, B2 | Jiyx yax(v(is), #1y) implies that
AZ Ty s yos(heo(V(id2)), 1 5).

Let &; := hoo(gi) = hao (V(T;)) and @ 1= hoo(Ti) = hoo(v(0;)) (for ¢ =
1,...,k). We claim that the sequence Z|,dy, ..., T, d; satisfies Condition 2

of Lemma 4.14 for ¢ = 34, v 725 and A%

Obviously, A% | i1 v y2.5(heo (¥(i2)), @ ) implies that part (a) of the
condition is satisfied. To see that part (b) is satisfied, recall that, by our
choice in the variable identification step, the v-images of different shared
variables in , are distinct. Since h., is a bijection, this holds for their
(heo 0 v)-images as well.

Part (c) is an easy consequence of the following properties, which in turn

are consequences of the definition of the bijection h., and and its inverse g..:

1. Since the components of by are in By, we know that the components of
7y are in Xo U Xj.

8Note that, in contrast to the formulation of the lemma, our sequence starts with a
tuple of structure elements instead of atoms. The lemma applies nevertheless since in its
formulation we did not assume that all tuples have a non-zero dimension.
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2. For 1 < i <k, the components of b; are in B; | \ (B;_2UY; ). Thus,
the components of 7; are in Xj.

3. For 1 < <k, the components of ¢; are in Y;. Thus, the components
of d; arein A; 1\ (4; 2UY; ).

: L .
Thus, we can apply Lemma 4.14, and obtain A* ~ A2 = «. O

8 Combining Constraint Solvers for Strong
SC-Structures: The General Positive Case

For strong SC-structures (A*, M, X) and (B2, N, X), the structure A*¥ @B~
is the free amalgamated product of A* and B over X with respect to
Adm(A*,B2). In this case, our combination method is not restricted to
existential positive sentences. The main idea is to transform positive sent-
ences (with arbitrary quantifier prefix) into existential positive sentences by
Skolemizing the universally quantified variables. In principle, the decompo-
sition algorithm for positive sentences is now applied twice to decompose
the input sentence into three positive sentences «, 3, p, whose validity must
respectively be decided in A*, B, and the absolutely free term algebra over
the Skolem functions (see Algorithm 2 below). The restriction to strong
SC-structures is necessary since Theorem 6.14 (associativity of free amalga-
mation) is used in the proof of correctness, and this theorem was proved only
for the case of strong SC-structures.

Algorithm 2
The input is a positive sentence ¢ in the mixed signature X UA. We assume

that ¢ is in prenex normalform, and that the matrix of ¢; is in disjunctive
normalform. The algorithm proceeds in two phases.

Phase 1

Via Skolemization of universally quantified variables,” ¢, is transformed into
an existential sentence ¢ over the signature ¥ U A UT'y. Here I'y is the

9We are Skolemizing universally quantified variables since we are interested in validity
of the sentence and not in satisfiability.
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signature consisting of all the new Skolem function symbols that have been
introduced.

Suppose that ¢} is of the form 3i7; (V 71,;), where the 7y ; are conjunctions
of atomic formulae. Obviously, ¢} is equivalent to (3, v, ), and thus it is
sufficient to decide validity of the sentences 3y v, ;. Each of these sentences
is used as input for the decomposition algorithm.

The atomic formulae in 7 ; may contain symbols from the two (disjoint)
signatures ¥ and A U T'y. In Phase 1 we treat the sentences 3,7y, by
means of Steps 1-4 of the decomposition algorithm, finally splitting them
into positive E-sentences « and positive (A U I'y)-sentences ¢9. Thus, the
output of Phase 1 is a finite set of pairs (a, p2).

Phase 2

In the second phase, p, is treated exactly as p; was treated before, app-
lying Skolemization to universally quantified variables and Steps 1-4 of the
decomposition algorithm a second time. Now we consider the two (disjoint)
signatures A and I' = 1'y U I's, where I's contains the Skolem functions that
are introduced by the Skolemization step of Phase 2. We obtain output pairs
of the form (3, p), where § is a positive sentence over the signature A and p
is a positive sentence over the signature I'. Together with the corresponding
sentence a (over the signature ¥) we thus obtain triples («, 3, p) as output.

For each of these triple, the sentence « is now tested for validity in A*,
/3 is tested for validity in B>, and p is tested for validity in the absolutely
free term algebra 7 (', X') with countably many generators X, i.e., the free
algebra over X for the class of all T-algebras.! We have seen that this
structure is a strong SC-structure with atom set X' (Examples 4.9 (3)).

Correctness of Algorithm 2

We want to show that the original sentence ; is valid iff for one of the
output triples, all three components are valid in the respective structures.
The proof depends on the following lemma, which exhibits an interesting
connection between Skolemization and free amalgamation with an absolutely
free algebra.

0Note that I' contains no predicate symbols.



Lemma 8.1 Let A¥ be a strong SC-structure with atom set X, and let v
be a positive Y-sentence. Suppose that the existential positive sentence ~' is
obtained from ~ wvia Skolemization of the universally quantified variables in
v, introducing the set of Skolem function symbolsT. Let B' := T(T', X), and
let AZVY be the free amalgamated product of A* and BY' as constructed in
Section 6. Then A* |= v if, and only if, AZ9" = +'.

Proof. In order to avoid notational overhead, we assume without loss of
generality that existential and universal quantifiers alternate in ! ie.. v =
Yui3vuy .. Vupdo, @(ug, vy, ... ug, vg). Skolemization yields the existential
formula v = vy ... v, p(fr, o1, fo(vr),v9, .oy frvr, ooy ve—1), v). Thus, T
consists of k distinct new Skolem functions fi, fo,..., fr having the arities

0,1,...,k — 1, respectively.

First, assume that A* = 7. The structures A~ and AZ are isomorphic,
and thus
(*) AL = VYu 3oy .. Vudo, o(ug,vn, . g, vg).

Suppose that the Skolem symbols fi, fo,.... fir are interpreted by the func-
tions fi'=,..., f;Ax on the carrier A, of AZYF. Because of (*) there exists
ay € Ay such that AZVU = Vuy3uy .. Vu,Juy ’p(ff‘”“,(lq, Uy Vo, vy Uy U ).
[terating this argument, we obtain ay, ..., a, € A, such that

AZON = o (= ay, 5 (an), as. o 2 (an, o aesy), k).
This yields
AZN = oy 3o (frovn, fo(vr), v Fr(Urs oo vket)s Uk,
Le., A2 4/

For the converse direction, assume that

AZ9N = Fop o Foe o(fron, falvn)svg, ooy frelvrs oo vp1), o).

There exist ay,...,a, € A, such that

(**) AECUF |: 5:)( {Lkocvalv,f‘;;Ax(a’l)an: e ':flav*élw((l’lv s va’k—l)ﬁa’k):

where ffl““, .. .,f,f‘““ again denote the functions on A, that interpret the
symbols fi,.... fr.

Our goal is to apply Lemma 4.14. Obviously, (xx) shows that the sequence
= ay, f5'=(ay), as. ..., fi*(ay. . ... ax_1), g satisfies part (a) of Condition 2

'Obviously one can introduce additional quantifiers over variables not occurring in ~
to generate an equivalent formula of this form.
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of Lemma 4.14. Tt remains to be shown that part (b) and (¢) are valid as
well. The proof will depend on the following four properties, which are an
easy consequence of the fact that Bl is an absolutely free T'-algebra. Note
that the carrier of B, consists of the I-terms over the set (of variables) Y.,
i.e., the symbols f; interpret themselves.

(pl) Elements of B, of the form fi(by,...,b; 1) and f;(by,..., 0. ;) are
distinct if 7 # j.

(p2) Elements of B, of the form f;(by,...,b; 1) are elements of By \ Y.
(p3) If b€ Byy1 \ By, then f;(....0,...) € B, UY,, 4.

(p4) Terms f;(by,...,bj_y) are distinct from all their arguments b,,.

Now, (pl) and (p2) can be used to show part (b) of Condition 2 of
Lemma 4.14. By definition of the bijections hy, and g, the ho-image of B\
Y, is in X, and thus fiA“”(a/l, ces 1) = hoo(filgoo(ar), ..o, guo(a;i1))) €
X by (p2). This shows that the elements f{4°° (ai,...,a;1) of the sequence
are in fact atoms, i.e., elements of X . All these atoms are different because
of (pl). Indeed, since h, is a bijection, (pl) implies

fﬁoo(fl/lv “e 765;—1) = /l'oc(.fi(.QOo<a'1)v “e v.(Joo(ai—l)>) #
hoo (fi(gso(ar), .. goclaj—1))) = ff‘x((z,l,, )

for all ¢ # 7.

To prove (c), we must show that (for all i,1 < i < k) f/**~(ay,....a;i_1)
is not an element of Staby_(a;) U ...U Staby_(a;—1). Let by,... b;_1 be
the images of ay,...,q; 1 under the bijection ¢.,, and let m be the mini-
mal number such that {ay,...,a; 1} C A,,. Obviously, this implies that

Staba,, (a1) U ... U Staba (a; 1) C UL, X

First, we consider the case where the sequence aq,...,a;_; contains an
element a; € A, \(A,,_1UX,,). Then b; = go(a;) is an element of Y, 1. Pro-
perty (p3) yvields f;(by,...,b;i_1) &€ By, UY,,41, and thus f1~“4°°(ah i) =
hoc(fl<blv ey bifl)) Q AAm U - m+1- Hence fiAoo((Lh [ 7(11‘71) Q ;'L:U AYj g

AU X1, and we are done.

Otherwise, the sequence ay,...,a;_; contains a non-zero number of ele-
ments of X, (these will be called atoms of type 1), and possibly some ele-
ments of A,,_;. The latter elements are stabilized by atoms in ',']71’:*01 X;
(which will be called atoms of type 2). Recall that g (X,) = B1 \ (Bm—2U
Y,.—1). By (p3), fi(b1,....bi_1) & B,_»UY,,_1, and thus ,)‘;4"”((1,17 ce i) =
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hoo (fi(by, ... bi 1)) € A,,—2U X, 1. This implies that z]",f‘“(al7 coL i) 1s
different from all atoms of type 2. In addition, (p4) says that f;(by,...,b;_1)is
different from all its arguments by, ...,0; 1. Consequently, ff‘“ (a,...,a; 1)
is distinct from all its arguments ay, ..., a; 1, and thus from all atoms of type
1. This completes the proof that Condition 2 of Lemma 4.14 is satisfied.

Applying the lemma, we obtain
A?OUL E Vuy vy . VupToge o(ug, v, g, vg).

Since v = Vuydvy ... Vo, @(ug, vy, ..., ug, vg) is a pure S-formula, and

. by byl . . . b
since A~ and A are isomorphic, this shows A~ = . O

Correctness of Algorithm 2 is an easy consequence of this lemma.

Proposition 8.2 A2 = ¢, if, and only if. there exists an output triple
(o, 3, p) such that A* | o, B2 = 3, and T(T, X) |= p, where T consists of
the Skolem functions introduced in Phase 1 and 2 of the algorithm.

Proof. As before, let “®” denote the free amalgamated product of two
strong SC-structures, as constructed in Section 6.1. Assume that AZY2 ~
A¥ ® BA | 1. By Lemma 8.1 and Theorem 6.14, this implies that (A* @
B2 @ T, X) ~ A @ (B> T(1,X)) E ¢, where ¢} is the formula
obtained from ¢ by Skolemization. Let Ji;y1 be one of the disjuncts in ¢
satisfied by A ® (B2 ® T (I'1, X)). Since the decomposition algorithm is cor-
rect, one of the output pairs («, @) generated by applying the decomposition
algorithm to i, satisfies A* = a and B2 @ T(T'1, X) | ¢o.

We have shown in Proposition 3.6 that 7(I';, X) ® T(I'y, X) ~ T(I'; U
Iy, X). Applying Lemma 8.1 and Theorem 6.14 a second time, we obtain
(B2 T, X))@ T (e, X) ~B2>@T(I' Uy, X) = &, where ) is the
positive existential sentence that is obtained from s via Skolemization. The
decomposition algorithm, applied to ), thus yields an output pair (7, p) at

the end of Phase 2 such that B2 |= 3 and T (I'; UT9, X) | p.

It is easy to see that all arguments used during this proof also apply in
the other direction. O

The proposition shows that decidability of the positive theory of the free
amalgamated product A* ® B can be reduced to decidability of the positive
theories of A%, B, and of an absolutely free term algebra 7 (I', X). It is
well-known that the whole first-order theory of absolutely free term algebras
is decidable [Mal71, Mah88, CL89].



Theorem 8.3 If (A*, M, X) and (B*, N, X) are strong SC-structures over
disjoint signatures, then the (full) positive theory of the free amalgamated
product A¥ @ B> is decidable, provided that the positive theories of A® and
of B® are decidable.

In connection with the Theorems 6.14 and 6.6, this provides the basis
for constraint solving in the combination of any finite number of strong SC-
structures.

Theorem 8.4 If (A7, M, X),..., (A M,,X) are strong SC-structures
over disjoint signatures, then the (full) positive theory of A7' @ --- @ AZn is
decidable, provided that the positive theories of all structures A are decida-
ble (1 <i<mn).

9 Applications

The prerequisite for combining constraint solvers with the help of our decom-
position algorithmsis that validity of arbitrary positive sentences is decidable
in both components (Theorems 7.1 and 8.3). If we leave the realm of free
structures, not many results are known that show that the positive theory of
a particular SC-structure is decidable. Nevertheless, two SC-structures that
we mentioned in our list of examples 4.9 are known to have a decidable full
first order theory:

e The first order theory of the algebra of rational trees—like the theory
is decidable [Mah88]."?

of the algebra of finite trees

e The first order theory of the structure of rational feature trees with arity
(compare Examples 4.9, (7)) is decidable. The decidability result has
been obtained for the ground structure [BaT94] by giving a complete
axiomatization. But it is simple to see that all axioms hold in the non-
ground structure as well. Thus, ground and non-ground variant are
elementary equivalent, which implies that the first order theory of the
non-ground structure is decidable, too.

In general, the problem of deciding validity of existential positive sentences
and the problem of deciding validity of arbitrary positive sentences in a given

2Mabher considers ground tree algebras, but over possibly infinite signatures. Therefore
his result can be lifted to the non-ground case by treating variables as constants.

56



structure can be quite different. For the case of SC-structures, however, the
following variant of Lemma 4.14 shows that the difference is not drastic.

Lemma 9.1 Let (A%, M, X) be an SC-structure such that SH“&(Q]) # 0, let

be a positive S-sentence, and let, for each i, 1 < i <k, Z; be an arbitrary (but
fized) sequence of length |i;| of distinct atoms such that distinct sequences
T; and T; do not have common elements. Let X;; denote the set of all
atoms occurring in the sequences Ty, ..., 7; (i =1,...,k). Then the following
conditions are equivalent:

.AE |: VJ]HZ-')] .. Vﬁ’ﬁl& tp(ﬁ] s f] gees ﬁka ’Ek)/.
there exist €, € SHf\l,t (X14),...,6 € SHf,l (X1 4) such that
A¥ | o(T. e, .. T, E).

Proof. Recall that we do not assume that sequences w; or ¢; are non-
empty. In the present lemma (in contrast to the situation in Lemma 4.14)
there is a subtle difference between the case where the quantifier prefix start
with a non-empty block of universal quantifiers and the case where the quan-
tifier prefix start with an empty block of universal quantifiers. Here we shall
treat the latter case. It is this case where the condition that SH’&(@) # 0 is
needed.

To prove the first direction, assume that
.AE |: HFLVJzzllTQ . VJAHZTA \,D(l_”l, ’L_l/)g7 ’172, e 7’L7k, Fk>
Then there exist elements &€ A such that

A¥ = Vi, 30, .. Vi A0, (G, to, Ta. . . . , g, T).
Since SH“&(@) # () we may apply a surjective endomorphism m; € M such
that all elements in the stabilizer of ¢; are mapped to SHﬁ(@). This implies
that & = m (&) C SHjl/l([/)) and Stabé(é}) = (). Since m; is surjective we
have

A = Vi3, .. ViR 3G ¢(8), . o, ..., iy, Tr),

by Lemma 2.1. Hence there are elements & & A such that

1

.AE |: VJ;E'Fg .. VLT;CHFA (,5(\771(6?1)? ;527 IR 7’[@, ’ﬁk>7

N
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where 75 is the sequence given in the lemma. We apply a second surjec-
tive endomorphism ms € M such that all elements in the stabilizer of &
are mapped to SHf\l/[ (#2). This implies that & = mo(&) C SHj‘/l (79) and
Stab’\j(ég) C 7. Since my is surjective we have

Y — — — — - = — — — — —
A~ Va3 .. V@30, (6, Ty, &, i3, Us, ..., Uk, Uk),

by Lemma 2.1. Proceedings this way, always applying surjective endomor-
phisms m; that leave previously selected atoms 7y,...,7;_; fixed, we ob-
tain the desired sequences é; € SH’;l/l (X11),...,6 € SH_fK‘/l (X1 4) such that
AE |: @(fl 6?17 [ 7fka€k)-

The converse direction is an immediate consequence of Lemma 4.14. O

Looking at the second condition of the lemma, one sees that a positive
sentence can be reduced to an existential positive sentence where the univer-
sally quantified variables are replaced by atoms (i.e., free constants), and ad-
ditional restrictions are imposed on the values of the existentially quantified
variables. For this reason, it is often not hard to extend decision procedures
for the existential positive theory of an SC-structure to a decision procedure
for the full positive theory.

In the next two subsections this way of proceeding will be used to prove
that the positive theories of the two domains of nested, heriditarily finite
wellfounded or non-wellfounded lists (compare Examples 4.9 (6)) are deci-
dable. Similar proofs show that the positive theories of the two domains
of nested, heriditarily finite wellfounded or non-wellfounded sets (compare
Examples 4.9 (4), (5)) are decidable.

Corollary 9.2 Simultaneous free amalgamated products have a decidable po-
sitive theory if the components are non-ground rational feature structures
with arity, finite or rational tree algebras, or nested, heriditarily finite well-
founded or non-wellfounded sets, or nested, heriditarily finite wellfounded or
non-wellfounded lists, and if the signatures of the components are disjoint.

9.1 Nested, hereditarily finite non-wellfounded lists

For the convenience of the reader, let us recall some notation. Let Y denote
a countably infinite set of “urelements”. The domain L, (Y") of nested,
hereditarily finite non-wellfounded lists over Y contains all ordered, rational'?
trees where the topmost node has label “( )" (representing a list constructor

I3 A finite or infinite tree is rational if it has only a finite number of distinct substrees.
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of variable finite arity), each node that has at least one successor has label
“()7, and leaves have label y € Y or “()". Let X = {(y);y € Y} denote the
atom set. As operations we consider concatenation “o” and (singleton-) list
construction (-) : [ — (I). Accordingly, formulas are built over the signature
Y :={o,(-)}. Expressions (-)(t) will be written in the form (t), and letters
u,v,w, ... denote variables of the language.

Lemma 9.3 Validity of positive sentences over L. (Y)E 1s decidable.

Proof. Let pg be a positive X-sentence. We may assume that g starts with
a mixed quantifier prefix, followed by a quantifier free positive matrix v,. In
order to decide if ¢ holds in L (Y)X, we shall first compute an equivalent
sentence 1 where the atomic subformulae have the form v = [; 0 --- o
(s > 1) where v is a variable and the arguments [; are either variables or
they have the form (w), where w is a variable. Obviously, the formula ¢,
may obtained from 7, by adding equations v = [, where u is a new variable,
to the matrix, and adding existential quantifications Ju immediately in front
of the actual quantifier free matrix. Let us assume that ¢, has the form
Vi, 39, .. VA0, (@, 0y, ..., Uk, U), where 7 is the new quantifier free
matrix.

Our next aim is to apply Lemma 9.1. For each 7, 1 <1 < k. let 7; be
, such that

an arbitrary, but fixed sequence of distinct atoms of length |;
7.

distinct sequences 7; and #; do not have common elements. Let X ; denote

the set of all atoms occurring in the sequences #y,...,7; (i =1,.... k). By
Lemma 9.1, we have to ask if ~ (7,7, . .., ¥, Fk)]" has a solution such that

the value of each variable v occurring in #; belongs to the stable hull of
Xy ;. By assumption, vy (¥, %, .. .. Tk, ) is a positive Boolean combination
of equations. Thus the new equations have the form lp =1, 0---0l; (s > 1),
where Iy may be an atom (y) or a variable, and the remaining arguments [;
are either variables, atoms, or lists of the form (w), where w is a variable or
an atom. All atoms are in X ;. Without loss of generality we may assume
that ~; is just a system (i.e., a conjunction) of equations. To simplify the
following arguments we consider an equivalent system v, where each equation
has the form v =1; 0---0l, (s > 1), where the arguments I; are variables, or
atoms of the form (y), or lists of the form (w), where w is a variable. As we
indicated above, such a system can be reached by introducing new equations.
For this purpose, a set ¢ of new variables has to be introduced by need.

MThe informal notation v (%1, 01, ..., Tk, Or) indicates that we fix the evaluation of the
rariables iy, ..., #; by mapping them to Z,...,Z. Alternatively, we might think of the
Zy,...,2) as new constants that are, for simplicity, notationally not distinguished from
the corresponding atoms that represent their interpretation.
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7.

Let us now assign to each variable v of v
D, = Xy;. For the remaining variables v occurring in 0 := 7, we define
D, = X . We shall now give a non-deterministic algorithm, consisting of
two steps.

its “set of licensed stabilizers”

Algorithm 3

The input is a system of equations 0(iy, 7y, ..., T, U, ¥), with given sets
of licensed stabilizers D, for each variable v occurring in the system. Let
W =4, U...U0, Uv be the set of variables occurring in 9.

Step 1: Non-deterministically identify variables as usual (cf. Algorithm 1
in Subsection 7.1). Let Wy denote the set of representants. To each repre-
sentant v € Wy assign the set D! = N{D, | u € [v]} as its new set of
licensed stabilizers. Let oy denote the system that is obtained via variable
identification.

Step 2: We choose a new set of licensed stabilizers E, C D), for each
veWw,.

Step 3: We introduce a new constant w for each w € Wy, and one addi-
tional new constant c. In each equation v =1;0---0l, of 0y, we replace every
argument 1; of the form (w) (for w € Wy) by the new argument l; .= {w).
The arguments l; of the form u € Wy or (y) (with y € Y ) are not modified.
To each variable v € Wy, we assign its licensed alphabet

F, :={y|{y) € E,} U{w|E, C E,} U{c}.

Each resulting system 61, with fixed licensed alphabet F, for each variable
v e Wy, is one output system.

Each output system can be considered as a system ¢; of word equations,
where for each variable v € Wy a finite alphabet F, is specified. In fact,
all symbols occurring as elements of list expressions in ) are constants (of
the form w or y € Y'), and all indecomposable arguments [; are variables.
A solution of such a system is a mapping o that assigns to each variable
v € Wy a word over its licensed alphabet F, and solves all equations of d;.
Solvability of these kind of “constrained” systems of word equations is known
to be decidable ([Sc90]). Thus, in order to prove Lemma 9.3 it suffices to
show that Algorithm 3 is sound and complete. O

Lemma 9.4 (Completeness of Algorithm 3)
If the input system (1, 0y, ..., T, Uy, U) of Algorithm 3, with given sets of li-
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censed stabilizers D, has a solution in Ly (Y )E, then there exists a solvable
output system dy.

Proof. Suppose that o(7y, ¥y, ..., T, U, ), with given sets of licensed stabi-
lizers D, has a solution o. In Step 1 of Algorithm 3 we identify two variables
v,w € W iff o(v) = o(w). Note that this implies that each representant v
is mapped to an element whose stabilizer is a subset of the set D! defined
in Step 1 of the algorithm. Moreover, all elements of W, (the set of repre-
sentants) are mapped to distinct elements under o. Moreover, o solves the
system 0y with the new sets of licensed stabilizers D! .

In Step 2, we assign to each variable v € W, the new set of licensed
stabilizers E, := {x € X;x occurs in v?}. Since o solves 4, respecting
licensed stabilizers, we have £, C D!, for all variables v. Thus our choice is
admissible and defines a unique output system 0;.

The solution o assigns to each variable v € Wy a list v7 = (my, ..., my).
Let us distinguish three types of elements. Elements m; of type 1 have the
form y where (y) € E,. Elements m; of type 2 are the lists which have the
form w?, for some variable w € W,. Note that in this case F, C E, and
w € F,, by definition of F,. Elements of type 3 are lists of another form.

We now define a projection 7 on lists. The projection acts on the ele-
ments, henceforth it commutes with concatenation. In more detail, 7 lea-
ves each element m; of the form y (type 1) fixed, maps each element m;,
of the form w? (type 2) to the constant m! := w, and maps elements m;
of type 3 to the constant m! := ¢. Note that 7 is well-defined since all
representants have distinct images under o, by the choice of the variable
identification. Let us now assign to each variable v € W, the new value
v = w(v?) = 7((my,..,me)) = (m),...,m}). We have seen that each
letter m) is in the licensed alphabet F, of v.

Consider an equation v = [y 0---ol; of §y. Since v7 =] o--- 0l we have
v = a(v?) = 7(I) o ---omw(l7). Let v =} o--- 0ol be the corresponding
equation of §;. In order to prove that ¢’ solves the equation we show that
7(17) =117 for 1 < i < s. If[; has the form (w), then )7 = 1! = (i) = 7(I7).
If /; has the form (y), for some urelement y, then I/ =1/ = I; = 17 = 7(I9).
In the remaining case, I! = I; = u is a variable and 7(17) = w(u”) = u =/ .
Thus ¢’ is a solution of the constrained output system 6. O

Lemma 9.5 (Soundness of Algorithm 3)
If an output system o, of Algorithm 3, with licensed alphabet F, for each
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variable v € Wy, has a solution, then the input system 6 has a solution in

thnwl (}/> > .

Proof. Suppose that ¢’ is a solution of §; that assigns to each variable v € W)
a word over F, = {y;(y) € E,} U{w; E, C E,} U{c}, its licensed alphabet.
We show how to find a solution of 9, the system reached after Step 1 of the
algorithm. It is then trivial to construct a solution of the input system 9.

Let v = [y o---0ls be an equation of dy, let v = I/ o--- 0l be the

corresponding equation of ;. We have

7

o' _ o 1o’
) _l] O...Ols .

In order to find an admissible solution o of §y, we shall give an assignment
7 that maps each element of {w|w € Wy} U {c} to an element of L. (Y)
and leaves urelements y € Y fixed. The mapping 7 will be identified with its
homomorphic extension on nested (non-wellfounded) lists with urelements in
Y U {i|w € Wy} U {c}. Thus we obtain v°™ =, o --- 0" 7. Hence, in
order to show that o := ¢’ o 7 is a solution of ¢, it suffices to prove (a) that
each atom (y) occurring in the value w” of a variable w is always licensed by
D',. and (b) that (w)7'T (= (w)7) = (w)?, for all w € W,

Let us now start with the definition of 7. Consider the mapping

W w® forw € W,
a: y—=y for y €Y,
e () empty list.

We identify a with its homomorphic extension on the set of nested non-
wellfounded lists with urelements in Y U {w|w € Wy} U {c}. Let n > 1
be a natural number, and suppose that (1) (y) € E,, for all urelements y
occurring in w®", and that (2) £, C E,, for all dotted variables @ occurring
in 1" . We assume that (1) and (2) hold for all w € W;. From the definition
of a and from the choice of the licensed alphabets F,, it follows that (1) and
n—+1
(2) hold for each value w®"" as well.

It is simple to see that the limit of each sequence (1w®" ), > defines a unique
non-wellfounded hereditarily finite nested list over the set of urelements Y,
which we take to be the value of w under 7. Furthermore, we define ¢™ :=
¢ = (). Note that (1) and (2) guarantee that (y) € E,,, for all urelements y
occurring in w’. If w occurs in '1,1‘7'7 then F,, C E, C D/, by definition of F,.
It follows that o := ¢’ o 7 assigns licensed values to each variable v. Thus (a)
is satisfied. Since w” = w’'™ = W = " also (b) is satisfied. O
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9.2 Nested, hereditarily finite wellfounded lists

The domain L,,(Y) of nested, hereditarily finite wellfounded lists over Y
contains all ordered, finite trees where the topmost node has label “( )" (re-
presenting a list constructor of variable finite arity), each node that has at
least one successor has label “()”, and leaves have label y € Y or “( )".
Atom set X, signature X, formulas, and operations (lists construction, con-
catenation) are as before.

‘g Ly Ay . .
Lemma 9.6 Validity of positive sentences over L,,(Y )™ is decidable.

Proof. To prove the lemma, we must show, as before, that it is decidable if
a system of equations §(7F, @, ..., Ty, ) has a solution in £%(Y) such that
the value of each variable v occurring in #; belongs to the stable hull of X ;
(where X ; denotes the set of all atoms occurring in #y,...,7;, for each 1,
1 < i < k). Equations have the form v = [l; o--- 0l (s > 1), where the
arguments /; are variables, or atoms of the form (y), or lists of the form (w),
where w is a variable. We assign to each variable v of @; its “set of licensed
stabilizers” D, = X ;.

Algorithm 4

The input is the constraint system o(&y,Ty,..., T, U) with given sets of
licensed stabilizers D, for each variable v occurring in the system. Let W
denote the set of variables occurring in 9.

Step 1: Non-deterministically identify variables as usual (cf. Algorithm 1
in Subsection 7.1). Let Wy denote the set of representants. To each repre-
sentant v € Wy assign D!, := ({D, | v € [v]} as its new set of licensed
stabilizers. Let 0y denote the system that is obtained via variable identifica-
tion.

Step 2: For each v € Wy, choose a new set of licensed stabilizers E, C DY,
In addition, choose a partial ordering < on Wy such that v < w wmplies
E,CFE,.

Step 3: Let ¢ be a new constant. In each equation v =1y o--- o0l of
8y, replace every element l; of the form (w) by the new element I; := (w),
introducing a new constant w for each variable w € Wy. The elements [; of
the form v € Wy or (y) (with y € Y ) are not modified. The new system
01 15 a system of word equations. To each variable v, we assign its licensed
alphabet F, == {y:(y) € E,} U{w;w <v} U {c}.
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Each system o1, with a fixed licensed alphabet F, for each variable v € W,
is one output system. Again, the proof of Lemma 9.6 is complete when we
show that Algorithm 4 is complete and sound. O

Lemma 9.7 (Completeness of Algorithm 4)
If the input system 6(&, Ty, ..., &, U) of Algorithm 4, with given sets D,,,

has a solution in ,C.IH(Y)E, then there exists a solvable output system 0.
Proof. Suppose that §(Z, ¥, ..., 7%, U), with given sets D,, has a solution
0.

In Step 1 of Algorithm 4 we identify two variables v,w € W iff o(v) =
o(w). Note that this implies that each representant v is mapped to an element
whose stabilizer is a subset of the set D’ defined in Step 1 of the algorithm.
Moreover, all elements of W} (the set of representants) are mapped to distinct
elements under 0. Thirdly, o solves the system &y with the new sets of licensed
stabilizers D! .

In Step 2 of Algorithm 4 we assign to each variable v € W, the new set of
licensed stabilizers E, := {x € X;x occurs in v7}. Since o solves the system
0y we have E, C D!, for all variables v € W,. Furthermore, we define v < w
iff v is a proper subtree of w?. Obviously, “<” is a partial ordering on W,
and v < w implies that F, C E,. Thus our choices are admissible and define
a unique output system d; of Algorithm 4.

The solution o assigns to each variable v a list v7 = (my,...,my). We
shall distinguish three types of elements. Elements m; of type 1 have the form
y where (y) € E,. Elements m; of type 2 are the lists which have the form
w?, for some variable w € W,. Note that in this case £, C F, and w < v,
by definition of <. Hence w € F,, by definition of F,,. Moreover w is unique,
by the variable identification step. Elements of type 3 are lists of another
form. We define a projection 7 on lists that leaves each element m; of type 1
fixed, maps each element m; of the form w? (type 2) to the constant m/ := w
and maps elements m; of type 3 to the constant m} := ¢. Let us assign
to each variable v € Wy the new value v := 7(v7) = 7({my,...,m;)) =
(m!,....,m)). We have seen that each letter m/} is in the licensed alphabet
F, of v.

Consider an equation v = [y o ---0l; of 6p. We have v7 =1[{o---0l7
und thus v = 7(v7) = 7(I{) o0 7(17). Take the corresponding equation
v=110---0l, of 4;. In order to prove that o' solves the latter equation we
show that w(17) = /7, for 1 < i < s. If I; has the form (w) for some w € Wy,

then l;»", =1 = (w) = (7). If [; has the form (y), for some urelement y, then
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! ! .. - -
19 =1 =1; =17 =x(l7). In the remaining case, I} = [; = u is a variable

’ ! . - -
and 7(l7) = w(u?) = u” = [li°. Thus ¢ is a solution of the constrained
output system. O

Lemma 9.8 (Soundness of Algorithm 4)
If an output system oy of Algorithm 4, with licensed alphabet F, for each
variable v in o1, has a solution, then the input system o has a solution in

Lq(Y)™.

Proof. Suppose that ¢’ is a solution of §; that assigns to each variable v € W}
a word over F, = {y;{y) € E,} U {w;w < v} U {c}, the licensed alphabet.
We show that the system ¢, reached after Step 1 has a solution. It follows
immediately that the input system 0 has a solution.

Let v = 1 o--- 0l be an equation of g, let v =1} o -+ 0l. be the
corresponding equation of ;. We have

o _qpd 1o’
v _ll O...Ols .

In order to find an admissible solution o of dy, we shall give an assignment
7 that maps each element of {w|w € Wy} U {c} to an element of L,,(Y")
and leaves urelements y € Y fixed. The mapping 7 will be identified with
its homomorphic extension on nested wellfounded lists with urelements in
Y U {w|w € Wy} U {c}. Thus we obtain v77 = I!" 7o .-. 0 ' 7. Hence, in
order to show that ¢ := ¢’ o 7 is a solution of §; it suffices to prove (a) that
cach stabilizer (y) occurring in the value w” of a variable w € Wy is licensed

by D', and (b) that (@' ™) (= (@) = (w?), for all w € Wy,

Let ¢ := (). The remaining part of the mapping 7 will be defined by
induction, using the partial ordering < on Wj. Let © be a dotted variable,
and suppose that 7 has been defined for all w such that w < v. We assume
(*) that each atom occurring in w™ € Ly(Y) belongs to E,,, for all w < v.
We may now define ©7 := v?' 7. In fact, the definition is well-defined since
w < v for all dotted w occurring in v?', by definition of F,. This also shows
that condition (*) holds again, by induction hypothesis, since w < v implies
E, C FE,, according to Step 2.

If the atom (y) occurs in w” = w7, then either (y) occurs in w®, or (y)
occurs in a value 47 for some u < w. In the former case we have (y) € E,,
since o’ respects the licensed alphabet F,,. In the latter case, condition (*)
shows that (y) € E, C E,,. Thus (y) € D! , which shows that (a) is satisfied.

Similarly (b) holds since (@' 7) = (i) = (w”'T) = (w). a



10 Conclusion

This paper should be seen as a first step to provide an abstract framework for
the combination of constraint languages and constraint solvers. We have in-
troduced the notion “admissible amalgamated product” in order to capture—
in an abstract algebraic setting—our intuition of what a combined solution
structure should satisfy. It was shown that in certain cases there exists a ca-
nonical structure—called the free amalgamated product—that yields a most
general admissible closure of a given amalgamation base.

We have introduced a class of structures—called SC-structures—that are
equipped with structural properties that guarantee (1) that a canonical amal-
gamation construction can be applied to SC-structures over disjoint signatu-
res, and (2) that validity of positive existential formulae in the amalgama-
ted structure obtained by this construction can be reduced to validity of
positive formulae in the component structures. For the subclass of strong
SC-structures we have obtained stronger results. Interestingly, a very simi-
lar class of structures has independently been introduced in [SS88, Wil91]
in order to characterize a maximal class of algebras where equation (and
constraint) solving essentially behaves like unification.'®

It is interesting to compare the concrete combined solution domains that
can be found in the literature with the combined domains obtained by our
amalgamation construction. It turns out that there can be differences if the
elements of the components have a tree-like structure that allows for infinite
paths (as in the examples of non-wellfounded sets and rational trees). In
these cases, frequently a combined solution structure is chosen where an
infinite number of “signature changes” may occur when following an infinite
path in an element of the combined domain. In contrast, our amalgamation
construction yields a combined structure where elements allow for a finite
number of signature changes only. This indicates that the free amalgamated
product, even if it exists, is not necessarily the only interesting combined
domain. It remains to be seen which additional natural ways to combine
structures exist, and how different ways of combining structures are formally
related.

It should be noted that for most of the results presented in the paper
the presence of countably many atoms (‘“variables”) in the structures to be
combined is an essential precondition. On the other hand, many constraint-
based approaches consider ground structures as solution domains. In most

15The notion of an SC-structure can be considered as a sort-free version of the concepts
that have been discussed in [SS88, Wil91].
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cases, however, a corresponding non-ground structure containing the neces-
sary atoms exists. Thus, our combination method can be applied to these
non-ground variants. Of course, the combined structure obtained in this way
is again non-ground. For existential positive formulae, however, validity in
the non-ground combined structure is equivalent to validity in the ground
variant of the combined structure.'® This observation has the following in-
teresting consequence. Even in cases where the (full) positive theory of a
ground component structure is undecidable, our combination methods can
be applied to show decidability of the existential positive theory even for
the ground combined structure, provided that the (full) positive theories of
the non-ground component structures are decidable. Our remark following
Lemma 9.1 shows that decidability of the full positive theory of such a non-
ground structure can sometimes be obtained by an easy modification of the
decision method for the existential positive case. Free semigroups are an ex-
ample for this situation: the positive theory of a free semigroup with a finite
number n > 2 of generators is undecidable, whereas the positive theory of the
countably generated free semigroup (which corresponds to our non-ground

case) is decidable [VaR83].

16We assume here that the ground structure is a substructure of the non-ground struc-
ture and that “substitution” of ground elements for atoms is homomorphic.

67



References

[Acz88]

[APS94]

[BS92]

[BaS93]

[BaS94a]

[BaT94]

[Bou90]

[CheT6]

[Col84]

[Col90]

[CL8Y]

[DOPY1]

P. Aczel, “Non-well-founded Sets,” CSLI Lecture Notes 14, Stan-
ford University, 1988.

H. Ait-Kaci, A. Podelski, and G. Smolka, “A feature-based cons-
traint system for logic programming with entailment,” Theoretical
Comp. Science 122, 1994, pp.263-283.

F. Baader and K.U. Schulz, “Unification in the union of disjoint
equational theories: Combining decision procedures,” in: Proc.
CADE-11, LNAI 607, 1992, pp.50-65.

F. Baader and K.U. Schulz, “Combination techniques and decision
problems for disunification,” in: Proc. RTA-93, LNCS 690, 1993.

F. Baader and K.U. Schulz, “Combination of Constraint Solving
Techniques: An Algebraic Point of View,” Research Report CIS-
Rep-94-75, University Munich, 1994, short version to appear in:
Proceedings RTA’95, Springer LNCS.

R. Backofen and R. Treinen, “How to Win a Game with Featu-
res,” in Constraints in Computational Logics, Proc. CCL’94, J.-
P. Jouannaud (Ed.), Springer LNCS 845, 1994, pp.320-335.

A. Boudet, “Unification in a combination of equational theories:
An efficient algorithm,” in: Proc. CADE-10, LNCS 449, 1990,
pp.292-307.

G. Cherlin, “Model Theoretic Algebra: Selected Topics,” Springer
Lecture Notes in Mathematics 521, 1976.

A. Colmerauer, “Equations and inequations on finite and infinite
trees,” in: Proc. 2nd Int. Conf. on Fifth Generation Computer
Systems, 1984, pp.85—-99.

A. Colmerauer, “An introduction to PROLOG III,” C. ACM 33,
1990, pp.69-90.

H. Comon and P. Lescanne. “Equational problems and disunifica-
tion,” J. Symbolic Computation 7, pp.371-425, 1989.

A. Dovier, E.G. Omodeo, E. Pontellio, G.F. Rossi, “{log}: A Logic
Programming language with finite sets,” in: Logic Programming:
Proc. 8th International Conf., The MIT Press, 1991.

68



[DoR93]

[DGY3]

[KiR94]

[Mah88|

[Mal71]

[Mal73]

[Muk91]

[Rin92]

[VaR83]

[Rou88]

SS88]

A. Dovier, G. Rossi, “Embedding extensional finite sets in CLP.”
in: Proc. International Logic Programming Symposium, 1993, pp.

240-556.

M. Droste, R. Gobel, “Universal domains and the amalgamation
property,” Math. Struct. in Comp. Science 3, pp. 137-159, 1993.

H. Kirchner and Ch. Ringeissen, “Combining symbolic constraint
solvers on algebraic domains,” J. Symbolic Computation, 18(2),

1994, pp. 113-155.

M.J. Maher, “Complete axiomatizations of the algebras of finite,
rational and infinite trees,” in: Proceedings of Third Annual Sym-
posium on Logic in Computer Science, LICS’88, pp.348 357, Edin-
burgh, Scotland, 1988. IEEE Computer Society.

AL Mal’cev, “The Metamathematics of Algebraic Systems,” vo-
lume 66 of Studies in Logic and the Foundation of Mathematics,
North Holland, Amsterdam, London, 1971.

A1 Mal'cev, *Algebraic Systems,” Volume 192 of Die Grund-
lehren der mathematischen Wissenschaften in Einzeldarstellungen,
Springer Verlag, Berlin, 1973.

K. Mukai, “Constraint Logic Programming and the Unification of
Information,” doctoral thesis, Dept. of Comp. Science, Faculty of
Engineering, Tokyo Institute of Technology, 1991.

Ch. Ringeissen, “Unification in a combination of equational theo-
ries with shared constants and its application to primal algebras,”
in: Proc. LPAR’92, LNCS 624, 1992.

Y.M. Vazhenin and B.V. Rozenblat, “Decidability of the positive
theory of a free countably generated semigroup,” Math. USSR
Shornik 44 (1983), pp.109 116.

W.C. Rounds, “Set values for unification based grammar forma-
lisms and logic programming,” Research Report CSLI-88-129, Stan-
ford, 1988.

M. Schmidt-Schaufl, “Unification Algebras: An Axiomatic Ap-
proach to Unification, Equation Solving and Constraint Solving,”
SEKI-Report SR-88-23, University of Kaiserslautern (1988).

69



5589

[Sc90]

[SIT94]

[Wil91]

M. Schmidt-Schauf3, “Unification in a combination of arbitrary dis-
joint equational theories,” J. Symbolic Computation 8, pp.51-99,

1989.

K.U. Schulz, “Makanin’s Algorithm - Two Improvements and a Ge-
neralization,” (Habilitationsschrift), CIS-Report 91-39, University
of Munich, also in Proc. IWWERT ’90, Tibingen 1990, Springer
LNCS 572.

G. Smolka, R. Treinen, “Records for Logic Programming,” .J. of
Logic Programming 18(3) (1994), pp. 229-258-556.

J.G. Williams, “Instantiation Theory: On the Foundation of Au-
tomated Deduction,” Springer LNCS 518, 1991.



