
Combining Recursive and Dynamic Types?Hans Lei�internet: leiss@cis.uni-muenchen.deCIS, Universit�at M�unchenLeopoldstra�e 139D-8000 M�unchen 40GermanyAbstract. A denotational semantics of simply typed lambda calculus witha basic type Dynamic, modelling values whose type is to be inspected at run-time, has been given by Abadi e.a.[1]. We extend this interpretation to cover(formally contractive) recursive types as well. Soundness of typing rules andfreeness of run-time type errors for well-typed programs hold.The interpretation works also for implicitly polymorphic languages like MLwith Dynamic and recursive types, and for explicitly polymorphic languagesunder the types-as-ideals interpretation.1 IntroductionStatic typing of programming languages has well known advantages like error de-tection at compile time and e�cient object code free of type-checking at run-time.However, for programs that interact with storage media, other programs, or humans,it is often impossible to determine all relevant type information at compile time.For example, consider a program operating on data that are modi�ed after ithas been compiled, are provided by a user interactively, or are fetched from externalstorage media. One would like the running program to inspect the type of the data,continue computation if this type is compatible with the type expected by the pro-gram, and terminate computaion or raise an exception, otherwise. Clearly, the useof such dynamic type checking should not compromise the soundness of the typingsystem.In the last few years, several attempts have been made to make restricted use ofdynamic typing in statically typed programming languages. A. Mycroft[13], buildingon ideas of M. Gordon to model dynamic typing by pairs hv; � i of values v with theirtypes � , introduced a type Dynamic, henceforth called dyn, as an in�nite disjoint sumof types, each summand containing values tagged with their type. Inspection of these\dynamic values" is accomplished by a case-statement that branches according to�nitely many type patterns, which exhaust the in�nitely many types a dynamicvalue could have.Mycroft proposed an extension of ML[6] by dynamic values. Actually, a versionof dyn has been built into CAML[5]. The background of this implementation and al-ternative designs for adding dynamics to ML are treated by Leroy/Mauny[8]. Other? This work has been supported by the Esprit Working Group BRA 7232, GENTZEN.

languages like L. Cardelli's[3] AMBER also have dynamic values. In fact, the im-plementation of AMBER took advantage of treating compiled modules as dynamicvalues.M. Abadi, L. Cardelli, B. Pierce and G. Plotkin[1] investigated dynamic typingin a systematic way. They gave operational and denotational semantics of the simplytyped lambda calculus with a basic type dyn. Additionally, they presented some ideason polymorphically typed languages with dyn, focussing on di�culties in matchingpolymorphic types against patterns. This last aspect has been further investigatedvery recently by M. Abadi, L. Cardelli, B. Pierce and D. Remy[2], with extensionsto languages with subtyping and abstract data types. A rather di�erent study ofdynamic type checking has been given by F. Henglein[7].To give a denotational semantics for dyn, one has to establishhv; � i 2 [[dyn]] if and only if v 2 [[�]];for arbitrary values v and (closed) types � , including � = dyn. In the case of simplytyped �-calculus, Abadi e.a.[1] work in the ideal model of D. MacQueen, G. Plotkinand R. Sethi[9], and de�ne [[dyn]] recusively by mimicking the construction of typesover the set of pairs hv; � i. However, for the combinations of dyn with polymorphiclanguages, suggested in [1, 2] and [8], no denotational semantics was known so far.Our main concern is to extend the model of Abadi e.a.[1] to cover recursive types��:� as well, such as the trees and lists of real programming languages. When recur-sive types are present, the method of de�ning [[dyn]] by mimicking the constructionof types seems impossible: v 2 [[��:�]] cannot be characterized by conditions of theform u 2 [[�]] for types � simpler than � .A more general approach is needed in order to de�ne the meaning of typeswhen dyn and recursive types are combined. The main contribution of this paperis that while -in this situation- the recursive equations for type interpretations donot constitute a well-founded recursion on types, we can solve them simultaneouslyfor all types, using Banach's �xed point theorem on an in�nite product space of themetric space of ideals.An advantage of our method is that it allows to give a denotational semanticsfor dynamic (and recursive) types in polymorphic languages as well. On the otherhand, in this case we have neglected somewhat the semantics of terms in that onlyclosed type-tags and �rst-order pattern-variables in typecase-expressions have beentreated.In Section 2.1 we present the syntax of simply typed �-calculus with dynamicand recursive types, and in Section 2.2 review the construction of the ideal modeland some preliminaries for our extension. In Section 2.3 we will construct the idealinterpretation for simply typed �-calculus with dyn and recursive types. Section 3extends this to an interpretation of dynamic and recursive types combined withexplicit and implicit polymorphism.2 Dynamic and recursive types in a simply typed languageFollowing ideas of M. Gordon, we view dynamic types as sets of pairs hv; � i containinga value v of type � together with its type. Programs are allowed to access the type-tag and make their actions depend on it. Compared with sum types (�1+ �2), whose

elements hv; ii contain a tag i indicating that v is of type �i, dynamic types aremore exible in that their tags range over an in�nite set. They can be modelled asin�nite sums, with the restriction that the in�nite set of tags has some algebraicstructure that allows programs to use branching according to �nitely many tag-patterns, instead of an in�nite distinction on tags. A. Mycroft[12] �rst considereddynamic types as in�nite sums of this kind.Instead of working with di�erent dynamic types, it is su�cient to consider onetype dyn containing all these hvalue,tagi-pairs, with the type as the algebra of tags.2.1 Simply typed �-calculus with dyn and recursive typesIn this section we give the syntax of a simply typed �-calculus with recursive typesand a basic type dyn. It is similar to that of [1], to which we also refer for exam-ple programs. The types we consider are basic types including dyn, disjoint sums,product, function space, and recursive types.De�nition1. Types � and terms t are de�ned by the following grammar:� = � j bool j nat j dyn j (� + �) j (� � �) j (� ! �) j ��:�t = x j wrongj tt j ff j (case t of tt then t, ff then t)j 0 j S(t) j (case t of 0 then t, S(x) then t)j (dynamic t : �) j (typecase t of f�1; : : : ; �ng x : � then t else t)j in1;�+� (t) j in2;�+� (t) j (case t of hx; 1i then t, hx; 2i then t)j (t; t) j �1t j �2tj �x : �:t j (t � t)The intended meaning of an expression (dynamic t : �) is to create a dynamicvalue hv; � i, which may then be stored to external media or otherwise brought outof the control of the running program.Conversely, the meaning of (typecase d of f�1; : : : ; �ng x : � then r else s) isto match the type � of hv; �i, the value of d, against the pattern � , and if the matchsucceeds, then continue with r {using v for x and the types found by the match for thepattern-variables �i{, else with s. If the value of d is not a dynamic, an error occurs.(C.f. Section 2.4 and 2.5 for details.) The variables x and �i are bound variableswith scope x : � and r.2 To handle embedded patterns, the distinction between freeand bound pattern-variables is made explicit by binding guards f�1; : : : ; �ng, as in�x : dyn:�f : dyn: (typecase x of f�g y : �� �then (typecase f of f�g g : �� �! �then (dynamic gy : �)else (dynamic �1y : �))else (dynamic \not a nice pair" : string))2 A more exible syntax, (typecase d of fx1; : : : ; xm; �1; : : : ; �ng p : � then r else s)with a term-pattern p, would allow to inspect the value component as well. Essentially,the case (typecase d of fx1; : : : ; xmg p : � then r else s) is available in CAML.

To simplify notation, from now on we will only use typecase-expressions binding asingle pattern-variable.The meaning of the remaining expressions is fairly standard and omitted. (Seealso [1] for operational and denotational semantics of terms.) It may be su�cient tomention that the variable x in the case-statements is a pattern-variable bound inthe corresponding then-branch.From the terms generated by the above grammar, a subclass of well-typed termsis de�ned using a type inference system. We only give those rules of the system inAbadi e.a.[1] that deal with dynamics3, those of [9] that deal with recursive types,and those for function types.A type basis is a �nite sequence � of typing statements x : � , assigning types �to object variables x. If � contains several assumptions x : � for the same objectvariable x, then � (x), {the type assigned to x by �{ is the type � of the rightmostof these. When writing � . t : � , we always assume that � a typing assumption foreach free variable of t.De�nition2 (Typing Rules).(Var) � . x : � (x)(Dyn I)e � . t : �� . (dynamic t : �) : dyn ; if � is closed(Dyn E)� � . d : dyn; �; x : � [�=�] . r[�=�] : � for all closed �; � . s : �� . (typecase d of f�g x : � then r else s) : �(� I) � . t : ��:�� . t : � [��:�=�] (� E) � . t : � [��:�=�]� . t : ��:�(! I)e �; x : � . t : �� . �x : �:t : (� ! �) (! E) � . t : � ! � ; � . s : �� . (t � s) : �Note that rule (Dyn E)� has an in�nite number of premisses; these capture whatis needed in the soundness Theorem 18. For practical purposes, it is more naturalto use the following more restrictive rule:(Dyn E) � . d : dyn; �; x : � . r : �; � . s : �� . (typecase d of f�g x : � then r else s) : � ; � not free in �; �:This demands that there is a uniform proof of �; x : � [�=�] . r[�=�] : � for all �.Example 1. Assuming a further base type Unit with single element (), one can de�nethe type of lists of naturals as the recusive type nat-list := ��:(Unit+ (nat� �)):From assumptions�nat = () : Unit; in1 : Unit! (Unit+ (nat� nat-list));in2 : nat� nat-list! (Unit+ (nat� nat-list))3 The added restriction on closed types in (Dyn I)e is needed to de�ne the semantics fortypes as in Theorem 13.

we can derive typings like �nat . [0; 1; 3] : nat-list, using [] := in1(); [n; x] :=in2(n; x), 1 := S(0) etc. Indirectly, we can also de�ne a type of inhomogeneous listsas dyn-list := ��:(Unit+ (dyn� �)): With corresponding typing basis, one canderive type dyn-list for the list[(dynamic tt : bool); (dynamic �x : nat:S(S(x)) : nat! nat)]:2.2 Preliminaries for the ideal modelA domain is a complete partial order (D;�;?) with least element ? such that (i)every bounded subset X � D has a least upper bound, FX 2 D, (ii) D has onlycountably many �nite elements, and (iii) for any d 2 D, fe j e �nite; e � dg isdirected and d is its least upper bound. An element d 2 D is �nite, if for all directedX � D with d � FX there is some x 2 X such that d � x.In the following we will work in a domain V satisfying the recursion equationV �= Dbool+Dnat+(V +V)+(V �V)+(V ! V)+(V � clType)+ferrorg?; (1)where Dbool and Dnat are the at domains of the booleans and natural numbers,ferrorg? the at domain of an element errormodelling run-time errors of programs,+ denotes the disjoint sum, � the cartesian product and ! the space of continuousfunctions of two domains. Finally, � constructs from a domain D and a set A thedomain with universe fhv; ai j v 2 D � f?g; a 2 Ag [f?gand the natural partial ordering inherited from D. If D is one of the summands ofV , we write dV for the injection of d 2 D into V , and usevdD = �d; if v = dV and d 2 D?D; elseDe�nition3. Let V = (V;�;?) be a complete partial order. I � V is an ideal ofV , i� (i) ?V 2 I, (ii) the supremum of every directed subset of I belongs to I, and(iii) I is downward closed, i.e. a � b 2 I implies a 2 I. Let I be the set of all idealsof V.De�nition4. Let I and J be ideals of V, and � a single and A a set of closed types.De�ne the following subsets of V :(I + J) := fhi; 1iV j i 2 I � f?V gg [fhj; 2iV j j 2 J � f?V gg [f?V g(I � J) := fhi; jiV j i 2 I; j 2 Jg [f?V g(I ! J) := ffV j f 2 (V ! V); f(I) � Jg [f?V gI �A := fhi; � iV j i 2 I; � 2 Ag [f?V gThese subsets are partially ordered as follows. Take ?V as least element, com-pare pairs hv; � iV of I � A with the same type component according to their valuecomponent, compare fV 's of (I ! J) according to the ordering on V ! V , andon (I � J) let hi; jiV � hk; liV be true i� i � k and j � l on I and J . On I + J ,elements with the same tag are compared as their value components are on I or J .

Proposition5. ([1]) (I + J), (I � J), (I ! J) and I �A are ideals.De�nition6. From now on we assume that the domain solution V of equation (1)we are working in is the limit of domainsV0 = f?V gVn+1 = Dbool +Dnat + (Vn + Vn) + (Vn � Vn)+ (Vn ! Vn) + (Vn � clType) + ferrorg?:The rank rk(v) of v 2 V is the least n 2 ! such that v 2 Vn. The distance d(I; J) ofideals I; J 2 I is d(I; J) = (0; if I = J2�minfrk(v) j v2I1Jg; if ; 6= I 1 Jwhere I 1 J := fv j v a �nite element of I � J or J � Ig:Lemma7. ([1]) (I; d) is a complete metric space. In fact, d is an ultrametric, i.e.satis�es d(I; J) � maxfd(I;K); d(K; J)g rather than just the triangle inequality ofa metric.A function f : (X; dX) ! (Y; dY) between metric spaces is c-contractive (resp.non-expansive), if dY (f(x1); f(x2)) � c � dX(x1; x2) for all x1; x2 2 X, where 0 �c < 1 (resp. 0 � c � 1). Recall that by Banach's theorem, every c-contractivemapping f : (X; dX) ! (X; dX) on a complete metric space has a unique �xedpoint, �xx: f(x). Moreover, we will need the following facts:Lemma8. Let (Xj ; dj)j2J be a family of complete ultra-metric spaces, such thatdj(x; y) � 1 for all j 2 J and x; y 2 Xj . Let (X; d) := (�j2JXj ; supj2J dj) be theircartesian product, equipped with d(< xj >j2J ; < yj >j2J) := supfdj(xj; yj) j j 2Jg � 11. (X; d) is a complete ultra-metric space.2. If ffj : Xj ! X j j 2 Jg a family of c-contractive mappings (for �xed c), thenf : X ! X, de�ned by f(< xj >j2J) :=< fj(xj) >j2J ; is c-contractive.3. If, for some c < 1, f is c-contractive in xk when keeping the others componentsxj �xed, then �x 2 X: �x xk: < fj(xj) >j2J is c-contractive.4. h � g) is contractive if g is contractive and h is non-expanding, or vice versa.Proposition9. ([1]) On (I; d), +; �; ! and �f�g are 1=2-contractive functions.The intersection of an arbitrary nonempty set J of ideals is an ideal. Since itsunion in general is not, one has to consider FJ := TfI 2 I j SJ � Ig.Proposition10. Let fIk j k 2 Kg and fJk j k 2 Kg be nonempty families of ideals.Then (i) d(Tk2K Ik;Tk2K Jk) � supk2Kd(Ik; Jk) and (ii) d(Fk2K Ik;Fk2K Jk) �supk2Kd(Ik; Jk).Proof. (i) Since Y := TfIk j k 2 Kg 1 TfJk j k 2 Kg � Sk2K(Ik 1 Jk), we have2min rk(Y) � 2mink2Kmin rk(Ik1Jk) = mink2K2min rk(Ik1Jk), which implies the claim.(ii) Similarly, we use that X := FfIk j k 2 Kg 1 FfJk j k 2 Kg � Sk2K(Ik 1 Jk).For this, note that a �nite element of FfIk j k 2 Kg already belongs to some Ik.

2.3 Semantics of types as idealsFollowingMacQueen e.a.[9], we use Banach's �xed point theorem to de�ne the mean-ing [[��:�]]� of a recursive type ��:� as the �xed-point of �J 2 I:[[�]]�[J=�]. Sinceonly contractive mappings are guaranteed to have (unique) �xed points, we have torestrict ourselves to a subclass of all types.De�nition11. ([9]) Well-formed types are the following subclass of types:� = � j bool j nat j dyn j (� + �) j (� � �) j (� ! �) jj ��:� ; provided � is formally contractive in �:A type � is formally contractive in �, if either (i) � is atomic and � is not free in � ,or (ii) � is of the form (�1 + �2), (�1 � �2) or (�1 ! �2), or (iii) � is of the form ��:�and � is contractive in �, or � � �.From now on, \type" means \well-formed type". We write clType for the set of closedtypes, containing no free variables, and Type for the set of all types.Well-formed types are those not containing a subtype of the form ��1 : : :��n:�i,1 � i � n. They form a rich class of type expressions which de�ne contractivemappings on (I; d).According to the informal discussion of dynamic values in Section 1, the typedyn should be interpreted by the collection of all pairs hv; � iV where v 2 [[�]] and� 2 clType. Abadi e.a.[1] give such an interpretation by mimicking the ordinarytype constructors +, � and ! by new \dynamic" constructors _+, _�; and _! on theuniverse V � clType of dynamic values. These constructors combine dynamic typesI; J � (V � clType)V as follows (but also work for arbitrary ideals):(I _+J) := fhhi; 1iV ; � + � iV j hi; �iV 2 I; � 2 clTypeg[fhhj; 2iV ; �+ � iV j � 2 clType; hj; � iV 2 Jg [f?V g:(I _�J) := fhhi; jiV ; � � � iV j hi; �iV 2 I; hj; � iV 2 Jg [f?V g:(I _!J) := fhfV ; � ! � iV j f 2 (V ! V);hf(i); � iV 2 J for all i 2 V with hi; �iV 2 Ig [f?V g;Since these fucntions are contractive on I, [[dyn]] can recursively be de�ned by[[dyn]] = [[bool]] � fboolg [[[nat]] � fnatg [[[dyn]] � fdyng[([[dyn]] _+ [[dyn]]) [([[dyn]] _� [[dyn]]) [([[dyn]] _! [[dyn]]):In the presence of recursive types, however, this method seems no longer be applica-ble, as it relies on the fact that for non-basic � , hv; � iV 2 [[dyn]] is characterized byelements hu; �iV 2 [[dyn]] with simpler types �. This is not the case when choosing_�(I) := fhv; ��:� iV j hv; � [��:�=�]iV 2 Ig [f?V g:Also, d(_�([[bool]] � fboolg); _�([[nat]] � fnatg)) = d([[bool]] � fboolg; [[nat]] � fnatg)shows that we would not get a contractive mapping.So we take a more general approach to de�ne [[dyn]] that is fairly independent ofthe choice of type constructors, and formalizes the intuitive meaning directly.

De�nition12. Let Env be the set of all assignments � : TypeVar! I. A meaningof types as ideals in V is a function [[�]]�, such that the following conditions hold forall types � and assignments � 2 Env:[[�]]� = �(�) [[(�1 + �2)]]� = ([[�1]]� + [[�2]]�)[[bool]]� = Dbool [f?V g [[(�1 � �2)]]� = ([[�1]]� � [[�2]]�)[[nat]]� = Dnat [f?V g [[(�1 ! �2)]]� = ([[�1]]� ! [[�2]]�)[[dyn]]� = S�2clType [[�]]� � f�g [[��:�]]� = [[�]]�[[[��:�]]�=�]Without the clause for dyn, it is easily seen by induction on � that [[�]]� existsfor all �, once it is clear that the �xed point of �J 2 I:[[�]]�[I=�] is an ideal of V.However, with the clause for dyn we can no longer apply induction on � to ensure theexistence of [[�]]�: the above equations specify [[dyn]]� using the values of arbitrarilycomplicated types - possibly containing the type dyn.The main point of this paper is to show that, in spite of the apparently non-well-founded recursion in the clauses of De�nition 12, [[�]]� makes perfect sense.4 Anin�nite simultaneous recursion and the uniqueness of �xed-points in complete metricspaces is used to ensure that [[�]]� exists.Theorem13. There is a mapping [[�]]� : Type � Env ! I satisfying the conditionsof De�nition 12, i.e. [[�]]� is well-de�ned for all � and �.Proof. Let �I = ��2Type I� , with I� = I, be the product space of the space ofideals of V, indexed by all types. De�ne F =< F� i�2Type : �I�Env! I as follows,where I 2 �I is written as a function I(�):F�(I; �) = �(�) F(�1+�2)(I; �) = F�1(I; �) + F�2 (I; �)Fbool(I; �) = Dbool [f?V g F(�1��2)(I; �) = F�1(I; �) � F�2 (I; �)Fnat(I; �) = Dnat [f?V g F(�1!�2)(I; �) = F�1(I; �)! F�2 (I; �)Fdyn(I; �) = SfI(�) � f�g j � 2 clTypeg F��:� (I; �) = �xJ 2 I: F� (I; �[J=�]):Claim1. For each type � and � 2 Env, d(F� (I; �); F� (I 0; �)) � 1=2 � d(I; I0):Proof by induction on � :� 2 f�; bool; natg: Then d(F� (I; �); F� (I 0; �)) = 0 � 1=2 � d(I; I 0):� = dyn : First note that Fdyn(I; �) 2 I, because if any two ideals of an arbitraryunion of ideals have incomparable non-bottom elements only, then this union is anideal. Next, we haved(Fdyn(I; �); Fdyn(I 0; �)� supfd(I(�) � f�g; I 0(�) � f�g) j � 2 clTypeg (by Proposition 10)� 1=2 � supfd(I(�); I 0(�)) j � 2 clTypeg� 1=2 � d(I; I 0):4 Without recursive types, we might add a clause for variables like[[dyn]]� =[f[[�]]� � f�g j � a type variableg [: : :to the de�nition and still show that [[�]]� exists. But then if � contains dyn, [[�]]� dependson all the [[�]]� and hence the substitution lemma below fails for such � .

� = (�1 � �2), where � is one of +, �, or !: We can use Proposition 9.� = ��:� : By induction, we have d(F�(I; �); F�(I 0; �)) � 1=2 �d(I; I 0); for each �,in particular for each � = �[J=�], where J 2 I. It is su�cient to show the followingclaim, whose proof by induction on � is standard.Claim2. Suppose � is formally contractive in �1; : : : ; �n. The map (I; J1; : : : ; Jn) 7!F�(I; �[J1=�1; : : : ; Jn=�n]) is 1=2-contractive.Using Claim 2 and Lemma 8, we get that I 7! �xJ: F�(I; �[J=�]) is 1=2-contractive,and henced(F��:�(I; �); F��:�(I 0; �)) = d(�xJ: F�(I; �[J=�]); �xJ: F�(I 0; �[J=�]))� 1=2 � d(I; I 0);which �nishes the proof of Claim 1.From Claim 1 we conclude that on the product space �I, d(F (I; �); F (I 0; �)) �1=2 � d(I; I 0); and so F is contractive, for �xed �. By Banach's theorem, for each �there is a (unique) element I� 2 �I such that F (I�; �) = I�. We now de�ne[[�]]� := I�(�) = F� (I� ; �):Note that induction on types cannot be used to show that [[�]]� satis�es the conditionsof De�nition 12.Claim3. F� (I; �) only depends on �(�), with � free in � , and on I(�) for closed �.This is easily seen by induction on � , since the case for � = dyn is obvious. Next weuse the uniqueness of �xed points to show:Claim4. If I� = F (I�; �) and I� = F (I�; �), then I�(�) = I�(�) for all closed �.Proof: By Claim 3, I�(�) = F�(I�; �) depends only on all the I�(�0) for closed �0.Note that this dependency is contractive, sod(I�(�); I�(�)) � 1=2 � supfd(I�(�0); I�(�0)) j �0 2 clTypeg:Since this holds for all closed types, the right hand side must be 0.Claim5. [[�]]� satis�es the conditions of De�nition 12.Proof: This is obvious for all types except the recursive ones. For these, use[[��:�]]� = F��:� (I�; �)= �xJ 2 I: F� (I�; �[J=�])= �xJ 2 I: F� (I�[J=�]; �[J=�]) (by Claims 3 and 4)= �xJ 2 I: [[�]]�[J=�]= [[�]]�[[[��:�]]�=�]:Corollary14. (i) [[�]]� does not depend on �(�) for � not free in � . (ii) If � iscontractive in �, then �J 2 I: [[�]]�[J=�] is 1=2-contractive.Corollary15. (Substitution Lemma) [[�]]�[[[�]]�=�] = [[�[�=�]]]�:

Proof. By induction on �. The claim is obvious if � is a type variable, and immediateby Proposition 9 if � is (�1 + �2), (�1 � �2), or (�1 ! �2). Let � be �[[[�]]�=�].� 2 fbool; nat; dyng: [[�]]� = I�(�) = I�(�) = [[�]]� = [[�[�=�]]]�, using Claim 4.� = ��:�: We may assume � 6� � and free(�) \ bound(�) = ;, and hence[[�]]� = [[��:�]]� = �xJ 2 I: [[�]]�[J=�]= �xJ 2 I: [[�]]�[J=�][[[�]]�=�] (by disjointness of variables)= �xJ 2 I: [[�[�=�]]]�[J=�] (by induction and Cor. 14 (i))= [[��:�[�=�]]]�= [[(��:�)[�=�]]]� = [[�[�=�]]]� (by disjointness of variables):Immediate consequences are theorems 18 and 19 of the following sections, extendingthose of Abadi e.a.[1] for the corresponding type system without recursive types.2.4 Soundness of typing rulesThe meaning of terms is de�ned along Milner's[11] original description of the idealmodel. We only give the clauses for wrong and dynamics:De�nition16. Let matchf�1;:::;�ng(�; �) = S say that S : f�1; : : : ; �ng ! Type isa substitution such that � � �S.[[wrong]]� := errorV[[(dynamic t : �)]]� := (errorV ; if [[t]]� = errorVh[[t]]�; � iV ; otherwise[[(typecase d of f�g x : � then r else s)]]� :=8>>><>>>: [[r[�=�]]]�[v=x]; if hv; �i = [[d]]�d(V �clType) and matchf�g(�; �) = [�=�] 6= fail[[s]]�; if hv; �i = [[d]]�d(V �clType) and matchf�g(�; �) = fail ;or [[d]]� = ?VerrorV ; elseThe typing rules (including the familiar ones not given) can be shown to be soundwith respect to the denotational meanings of types and terms. We have to restricttype assignments to have values in the set of semantic types of V,T := fI 2 I j errorV 62 Ig:The typing rules are chosen such that wrong is untypable. It is easily seen that notype contains errorV :Lemma17. If � : TypeVar! T , then [[�]]� 2 T for each type � .Note that we cannot use induction on types to prove Lemma 17. Instead, observethat in the metric space (I; d), a Cauchy sequence contained in T never convergesto an ideal I 62 T .The following theorem, which can be shown by induction on the proof of � . s : �,implies that no typable term denotes errorV .Theorem18. (c.f. [1]) Suppose �(x) 2 � (x) 2 T whenever � (x) is de�ned. If� . t : � is provable, then [[t]]� 2 [[�]]�.

2.5 Soundness of evaluationThere is an operational notion of evaluation, as de�ned in Abadi e.a.[1], which iscorrect with respect to the denotational one. Only closed expressions are evaluated,and the result is a term in canonical form.Terms in canonical form, or (operational)values v, are given by the grammarv = wrong j u (values)u = tt j ff j n (proper values)j (u; u)j in1;�+� u j in2;�+� uj �x : �:t; if � is closed and free(t) � fxgj (dynamic u : �); if � is closedn = 0 j S(n) (natural values):Inductively, it is de�ned when closed term t reduces to canonical form v, writtenas t) v. Again, we only give the rules for expressions dealing with wrong anddynamics (with u and v as above):()wrong) wrong) wrong()dyn;1) t) u(dynamic t : �)) (dynamic u : �)()dyn;2) t) wrong(dynamic t : �)) wrong()tc;1) d) (dynamic u : �); r[�=�][u=x]) v(typecase d of f�g x : � then r else s)) v ; matchf�g(�; �) = [�=�]()tc;2) d) (dynamic u : �); s) v(typecase d of f�g x : � then r else s)) v ; matchf�g(�; �) = fail()tc;3) d) v v 6= (dynamic u : �)(typecase d of f�g x : � then r else s)) wrong ;Next one can show that operational evaluation preserves types and denotationalvalue. Together with the results of the previous section, this ensures that well-typedexpressions t \do not cause run-time errors", i.e. t) wrong is impossible.Theorem19. (c.f. [1]) Let t be closed with respect to object- and typevariables. Ift) v, then (a) [[t]] = [[v]] and (b) if . t : � is provable, so is . v : �.3 Dynamic and recursive types in polymorphic languagesWe can extend the combination of recursive and dynamic types from simply topolymorphically typed �-calculus.

3.1 Explicit polymorphismThe set of types for explicit polymorphism is given by the grammar� = � j bool j nat j dyn j (� + �) j (� � �) j (� ! �) j ��:� j 8�:� j 9�:�:The intended meaning of type quanti�ers in the ideal model is given by[[8�:�]]� = \J2T [[�]]�[J=�] and [[9�:�]]� = GJ2T [[�]]�[J=�]; (2)where T is the set of ideals of V that do not contain errorV . De�ne 8�:� and 9�:�to be formally contractive in � just as for ��:� in Section 2.3, and let 8�:� and 9�:�be well-formed if � is. Restricting to well-formed types, we obtain:Theorem20. There is a meaning function [[�]]� for the ideal interpretation of poly-morphic types satisfying the conditions of De�nition 12 and the equations (2).Proof. We modify the function F from the proof of Theorem 13 by adding componentfunctions F8�:� and F9�:� de�ned byF8�:�(I; �) := \J2T F� (J; �[J=�]); and F9�:�(I; �) := GJ2T F� (J; �[J=�]):The proof of Theorem 13 carries over, once we have shown:Claim6. F8�:� and F9�:� are 1/2-contractive in their �rst arguments.For F9�:� , the proof is similar to the one for F8�:� :d(F8�:�(I; �); F8�:�(I 0; �))= d(TJ2T F� (I; �[J=�]);TJ2T F� (I 0; �[J=�]))� supJ2T d(F� (I; �[J=�]); F�(I 0; �[J=�])) (by Proposition 10)� supJ2T 1=2 � d(I; I 0) = 1=2 � d(I; I 0) (by induction).The following is shown exactly as for the case ��:� in Proposition 15.Proposition21. (Substitution Lemma)[[8�:�]]�[[[�]]�=�] = [[(8�:�)[�=�]]]� and [[9�:�]]�[[[�]]�=�] = [[(9�:�)[�=�]]]�:3.2 Implicit polymorphismWe now present an interpretation of dynamic and recursive types in a language withimplicit polymorphism in the style of ML. This gives a denotational interpretationof A. Mycroft's[12] proposal to extend the functional language ML. He pointed outthat functions one would like to have for ML, likeprint : dyn! string or eval : expression� environment! dyn;could be de�ned when ML had a type dyn.

The previous notion of types is modi�ed by adding universal type quanti�ers inprenex form only, according to the grammar� = � j bool j nat j dynj (� + �) j (� � �) j (� ! �) j ��:� (monotypes)� = � j 8�:�; (polytypes):Let MType and PType be the set of well-formed mono- and polytypes, respec-tively. By clMType and clPType we mean the closed well-formed mono- and poly-types, respectively.Terms are modi�ed in that (dynamic t : �) is replaced by (dynamic t), and�x : �:t by �x:t, and so terms do not contain type information any more, except intype patterns.Semantics of types According to Milner's[11] interpretation for implicit polymor-phism, type quanti�ers are meant to range over closed monotypes only. In the idealmodel, separate a universe MT of monotypes from the universe T of all types byMT := f[[�]] j � 2 clMTypeg � T = fJ 2 I j errorV 62 Jg:The meaning of polytypes is reduced to that of monotypes by induction on thequanti�er-rank, using[[8�: �]]� :=\f[[�[�=�]]]� j � 2 clMTypeg: (3)In order to cover type-tags with quanti�ers, De�nition 12 is changed by[[dyn]]� =[f[[�]]� � f�g j � 2 clPTypeg: (4)Theorem22. There is a meaning function [[�]]� for implicitly polymorphic typessatisfying the conditions of De�nition 12 and equation (3).Proof. Again, we modify the function F from the proof of Theorem 13 by addingcomponent functions F8�:� for polytypes �. The former clType has to be replacedby clPType everywhere. We de�neF8�:�(I; �) :=\fF�[�=�](I; �) j � 2 clMTypeg: (5)Claim7. F8�:� is 1/2-contractive in its �rst argument.The proof of this is analogous to that of Claim 6, using Proposition 10. It followsthat �I 2 �I:F (I; �) is contractive, whence the meaning of types can again bede�ned by [[�]]� := I�(�); using the unique �xed point I� = F (I�; �) of F .The substitution lemma holds in the following form:Proposition23. For each monotype � , [[�]]�[[[�]]�=�] = [[�[�=�]]]�.

Proof. By induction on the quanti�er-rank of �. Let � be �[[[�]]�=�]. In the case of8�:�, we may assume � 6� � and free(�) \ bound(8�:�) = ;, and thus[[8�:�]]�[[[�]]�=�] = F8�:�(I�; �)= TfF�[�=�](I�; �) j � 2 clMType g (by de�nition)= Tf [[�[�=�]]]� j � 2 clMType g (by de�nition)= Tf [[�[�=�][�=�]]]� j � 2 clMType g (by induction)= Tf [[�[�=�][�=�]]]� j � 2 clMType g (since � is closed,= [[8�(�[�=�])]]� � 62 free(�))= [[(8�:�)[�=�]]]�: (by variable disjointness)Corollary 24. [[8�:�]]� = TJ2MT [[�]]�[J=�].Remark. In the absence of recursive types, one can avoid to de�ne the meaningfunction for types by approximations, by using the (�nite) recursive de�nition[[dyn]]� = [[bool]]� � fboolg [[[nat]]� � fnatg [[[dyn]]� � fdyng[([[dyn]]� _+ [[dyn]]�) [([[dyn]]� _� [[dyn]]�) [([[dyn]]� _! [[dyn]]�)[_8([[dyn]]�)For an ideal I over V, we de�ne _8(I) to befhi; 8�:�iV j 8�:� 2 clPType; hi; �[�=�]iV 2 I for all � 2 clMTypeg [f?V g:In contrast to _+, _�, and _!, the operation _8 is not a contractive mapping on thespace (I; d) of ideals of V { it is just non-expanding. To ensure that the recursionequation for [[dyn]] has a solution, we modify the metric d on V as follows:For polytypes �, let qrk(�), the quanti�er-rank of �, be the number of (leading)quanti�ers in �. For v 2 V and I; J 2 I, de�ne a modi�ed rank and distance byerk(v) := (rk(v) + qrk(�) if vd(V �clType)= hi; �irk(v); otherwise;ed(I; J) := 2�minferk(v) j v2I1Jg:The reader may check that the functions +; �; !; _+; _�; _!; �f�g; and _8 arecontractive on (I; ~d).Semantics of terms One might wish to de�ne the meaning of (dynamic e) interms of the principal type of e, but e need not have a principal type: for example,e = �x:(dynamic x) is of type dyn ! dyn and nat ! dyn, but has no principaltype. For type inference, use the rules of ML together with the implicit version(Dyn E) of dyn-elimination and the following implicit version of dyn-introduction:(Dyn I) � . e : �� . (dynamic e) : dyn ; if �� is closed:

Since terms t lack principal types, the meaning [[t]]� can only be given relative to atyping derivation D for t. For each subterm (dynamic e) of t, D uniquely �xes aclosed type �� that can be used for tagging the value of e. To do so, we assign toeach subterm r of t a sequence � of numbers i 2 f1; 2; 3g, coding the branch leadingfrom the root to r in the tree representation of t. Then we can de�ne[[(dynamic e�1)�]]� :=8><>: errorV ; if [[e�1]]� = errorVh[[e�1]]�; �� iV ; if � . e�1 : � is the inference step of Dthat assigns a type to e�1.To de�ne the meaning of typecase-terms, we match polytypes as follows. For � �81 : : : n:�(1; : : : ; n) 2 clType and � (�) � 8�1 : : : �m:� (�; �1; : : : ; �m) 2 PType,de�nematchf�g(�; �) = [�=�] :() � is closed and �[�1=1; : : : ; �n=n] � � [�=�];where [�=�; �1=1; : : : ; �n=n] is the most general uni�er of monotypes � and � whenconsidering the �i in � as constants. Since every instantiation of � [�=�] by closedmonotypes is an instance of � by closed monotypes as well, [[�]] � [[8�1 : : :�m:� [�=�]]].Leaving out the path annotation which relativize the meaning to D, we can nowde�ne the meaning of typecase-expressions just as in Section 2.4:[[(typecase d of f�g x : � then r else s)]]� :=8>>><>>>: [[r[�=�]]]�[v=x]; if hv; �i = [[d]]�d(V �clType) and matchf�g(�; �) = [�=�][[s]]�; if hv; �i = [[d]]�d(V �clType) and matchf�g(�; �) = fail;or [[d]]� = ?VerrorV ; else.Observe that pattern-variables � in patterns range over closed types � only; if � wereallowed to contain free variables (bound by the quanti�ers of the pattern or the type-tag), it would be unclear what �means in the then-branch of the typecase-statement.Compared with the treatment of non-closed patterns in Section 3 of [8], the abovecorresponds to their case of patterns with existential type quanti�er pre�xes.In the presence of recursive types, it seems preferable that in the de�nition ofthe match-function obove we read � not as syntactical identity of type expressions,but rather as identity of the rational trees obtained by in�nite unfolding of the�-operator (c.f. [4]). The fold and unfold-rules for recursive types should then bereplaced by the stronger rule of equality for recursive types, see [4].4 Open problemsBy providing an interpretation in the ideal model, it has been shown that dynamictypes can be combined with recursive types and explicit or implicit polymorphismin a sound way. This gives a partial answer to questions of Abadi e.a.[1], and addssemantical support to implementations integrating dynamic types into polymorphiclanguages like CAML[5].

The main drawbacks of the extension of ML by dynamic typing sketched inSection 3.2 and the similar ones of [2] and [8] are the failure of the principal typesproperty and the restriction to closed type-tags. For languages where types can bepassed as parameters, models for dynamics with open type-tags are needed.An open point is to remove the well-formedness restriction on types. Domainswith a notion of approximation were introduced by Cardone and Coppo[4] in orderto give meanings to arbitrary {not just contractive{ recursive types. We believe thatdyn can be added to the simple and recursive types of [4]. But we do not knowwhether the completeness result of [4] carries over to the system of Section 2.1.For typecase-expressions with higher-order matching as in [2], or just the systemsof Section 3 above, even soundness theorems have not yet been given.Acknowledgement I wish to thank the referees for some very helpful proposalsto improve the results and presentation. Thanks also to Fritz Henglein for sendinga copy of Mycroft's papers and for a hint to [4].References1. M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically-typedlanguage. In 16th POPL, pages 213{227, 1989.2. M. Abadi, L. Cardelli, B. Pierce, and D. Remy. Dynamic typing in polymorphic lan-guages. In ACM SIGPLAN Workshop on ML and its Applications. San Francisco,California, June 20-21, 1992, pages 92{103, 1992.3. L. Cardelli. Amber. In G. Cousineau, P. L. Curien, and B. Robinet, editors, Combi-nators and Functional Programming Languages. Springer LNCS 242, 1986.4. F. Cardone and M. Coppo. Type inference with recursive types: Syntax and semantics.Information and Computation, 92(1):48{80, May 1991.5. G. Cousineau and G. Huet. The CAML Primer. Version 2.6. Project Formel, INRIA-ENS, April 1989.6. R. Harper, R. Milner, and M. Tofte. The de�nition on Standard ML - Version 2. LFCSReport Series ECS-LFCS-88-62, Dept. of Computer Science, Univ. of Edinburgh, 1988.7. F. Henglein. Dynamic typing. In European Symposium on Programming (ESOP).Rennes, France, pages 233{253. Springer LNCS, vol. 582, 1992.8. X. Leroy and M. Mauny. Dynamics in ML. In Conf. on Functional ProgrammingLanguages and Computer Architecture. Cambridge, Massachusetts, August 1991, pages406{426. Springer LNCS 523.9. D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymorphictypes. In Proceedings of the 11th ACM Symposium on Principles of ProgrammingLanguages, 1984.10. D. C. J. Matthews. Static and Dynamic Type-Checking. In: Papers on Poly/ML.Technical Report 161, Computer Laboratory, University of Cambridge, February 1989.11. R. Milner. A theory of type polymorphism in programming. Journal of Computer andSystem Sciences, 17:348{375, 1978.12. A. Mycroft. Dynamic types in statically typed languages (preliminary draft). Unpub-lished typescript, December 1983.13. A. Mycroft. Dynamic types in statically typed languages (2nd draft version). Unpub-lished typescript, August 1984.This article was processed using the LaTEX macro package with LLNCS style

