
Chapter 8: Web Crawling

Outline
• Motivation and taxonomy of crawlers
• Basic crawlers and implementation issues
• Universal crawlers
• Preferential (focused and topical) crawlers
• Evaluation of preferential crawlers
• Crawler ethics and conflicts
• New developments: social, collaborative, federated

crawlers

Many names

• Crawler
• Spider
• Robot (or bot)
• Web agent
• Wanderer, worm, …
• And famous instances: googlebot, scooter,

slurp, msnbot, …

Motivation for crawlers
• Support universal search engines (Google, Yahoo,

MSN/Windows Live, Ask, etc.)
• Vertical (specialized) search engines, e.g. news,

shopping, papers, recipes, reviews, etc.
• Business intelligence: keep track of potential

competitors, partners
• Monitor Web sites of interest
• Evil: harvest emails for spamming, phishing…
• … Can you think of some others?…

One taxonomy of crawlers

Universal crawlers

Focused crawlers

Evolutionary crawlers Reinforcement learning crawlers

etc...

Adaptive topical crawlers

Best-first PageRank

etc...

Static crawlers

Topical crawlers

Preferential crawlers

Crawlers

• Many other criteria could be used:
– Incremental, Interactive, Concurrent, Etc.

Outline
• Motivation and taxonomy of crawlers
• Basic crawlers and implementation issues
• Universal crawlers
• Preferential (focused and topical) crawlers
• Evaluation of preferential crawlers
• Crawler ethics and conflicts
• New developments: social, collaborative, federated

crawlers

Basic crawlers
• This is a sequential crawler
• Seeds can be any list of

starting URLs
• Order of page visits is

determined by frontier data
structure

• Stop criterion can be anything

Graph traversal
(BFS or DFS?)

• Breadth First Search
– Implemented with QUEUE (FIFO)
– Finds pages along shortest paths
– If we start with “good” pages, this keeps

us close; maybe other good stuff…
• Depth First Search

– Implemented with STACK (LIFO)
– Wander away (“lost in cyberspace”)

A basic crawler in Perl
• Queue: a FIFO list (shift and push)

my @frontier = read_seeds($file);
while (@frontier && $tot < $max) {

my $next_link = shift @frontier;
my $page = fetch($next_link);
add_to_index($page);
my @links = extract_links($page,

$next_link);
push @frontier, process(@links);

}

Implementation issues
• Don’t want to fetch same page twice!

– Keep lookup table (hash) of visited pages
– What if not visited but in frontier already?

• The frontier grows very fast!
– May need to prioritize for large crawls

• Fetcher must be robust!
– Don’t crash if download fails
– Timeout mechanism

• Determine file type to skip unwanted files
– Can try using extensions, but not reliable
– Can issue ‘HEAD’ HTTP commands to get Content-Type (MIME)

headers, but overhead of extra Internet requests

More implementation issues

• Fetching
– Get only the first 10-100 KB per page
– Take care to detect and break redirection

loops
– Soft fail for timeout, server not

responding, file not found, and other
errors

More implementation issues: Parsing
• HTML has the structure of a DOM

(Document Object Model) tree
• Unfortunately actual HTML is often

incorrect in a strict syntactic sense
• Crawlers, like browsers, must be

robust/forgiving
• Fortunately there are tools that can help

– E.g. tidy.sourceforge.net
• Must pay attention to HTML entities and

unicode in text
• What to do with a growing number of

other formats?
– Flash, SVG, RSS, AJAX…

http://tidy.sourceforge.net/

More implementation issues
• Stop words

– Noise words that do not carry meaning should be eliminated (“stopped”)
before they are indexed

– E.g. in English: AND, THE, A, AT, OR, ON, FOR, etc…
– Typically syntactic markers
– Typically the most common terms
– Typically kept in a negative dictionary

• 10–1,000 elements
• E.g. http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words

– Parser can detect these right away and disregard them

http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words

More implementation issues
Conflation and thesauri
• Idea: improve recall by merging words with same

meaning
3. We want to ignore superficial morphological features,

thus merge semantically similar tokens
– {student, study, studying, studious} => studi

4. We can also conflate synonyms into a single form using a
thesaurus

– 30-50% smaller index
– Doing this in both pages and queries allows to retrieve pages

about ‘automobile’ when user asks for ‘car’
– Thesaurus can be implemented as a hash table

More implementation issues
• Stemming

– Morphological conflation based on rewrite rules
– Language dependent!
– Porter stemmer very popular for English

• http://www.tartarus.org/~martin/PorterStemmer/
• Context-sensitive grammar rules, eg:

– “IES” except (“EIES” or “AIES”) --> “Y”
• Versions in Perl, C, Java, Python, C#, Ruby, PHP, etc.

– Porter has also developed Snowball, a language to create stemming
algorithms in any language

• http://snowball.tartarus.org/
• Ex. Perl modules: Lingua::Stem and Lingua::Stem::Snowball

http://www.tartarus.org/~martin/PorterStemmer/
http://snowball.tartarus.org/

More implementation issues
• Static vs. dynamic pages

– Is it worth trying to eliminate dynamic pages and only index static
pages?

– Examples:
• http://www.census.gov/cgi-bin/gazetteer
• http://informatics.indiana.edu/research/colloquia.asp
• http://www.amazon.com/exec/obidos/subst/home/home.html/002-8332429-6490452

• http://www.imdb.com/Name?Menczer,+Erico
• http://www.imdb.com/name/nm0578801/

– Why or why not? How can we tell if a page is dynamic? What about
‘spider traps’?

– What do Google and other search engines do?

http://www.census.gov/cgi-bin/gazetteer
http://informatics.indiana.edu/research/colloquia.asp
http://www.amazon.com/exec/obidos/subst/home/home.html/002-8332429-6490452
http://www.amazon.com/exec/obidos/subst/home/home.html/002-8332429-6490452
http://www.amazon.com/exec/obidos/subst/home/home.html/002-8332429-6490452
http://www.amazon.com/exec/obidos/subst/home/home.html/002-8332429-6490452
http://www.amazon.com/exec/obidos/subst/home/home.html/002-8332429-6490452
http://www.imdb.com/Name?Menczer,+Erico
http://www.imdb.com/name/nm0578801/

More implementation issues
• Relative vs. Absolute URLs

– Crawler must translate relative URLs into absolute URLs
– Need to obtain Base URL from HTTP header, or HTML

Meta tag, or else current page path by default
– Examples

• Base: http://www.cnn.com/linkto/
• Relative URL: intl.html
• Absolute URL: http://www.cnn.com/linkto/intl.html
• Relative URL: /US/
• Absolute URL: http://www.cnn.com/US/

http://www.cnn.com/
http://www.cnn.com/
http://www.cnn.com/
http://www.cnn.com/linkto/intl.html
http://www.cnn.com/linkto/intl.html
http://www.cnn.com/US/

More implementation issues
• URL canonicalization

– All of these:
• http://www.cnn.com/TECH
• http://WWW.CNN.COM/TECH/
• http://www.cnn.com:80/TECH/
• http://www.cnn.com/bogus/../TECH/

– Are really equivalent to this canonical form:
• http://www.cnn.com/TECH/

– In order to avoid duplication, the crawler must transform
all URLs into canonical form

– Definition of “canonical” is arbitrary, e.g.:
• Could always include port
• Or only include port when not default :80

http://WWW.CNN.COM/TECH/
http://www.cnn.co:80/TECH/
http://www.cnn.com/bogus/../TECH/
http://www.cnn.com/TECH/

More on Canonical URLs
• Some transformation are trivial, for example:

 http://informatics.indiana.edu
 http://informatics.indiana.edu/
 http://informatics.indiana.edu/index.html#fragment
 http://informatics.indiana.edu/index.html
 http://informatics.indiana.edu/dir1/./../dir2/
 http://informatics.indiana.edu/dir2/
 http://informatics.indiana.edu/%7Efil/
 http://informatics.indiana.edu/~fil/
 http://INFORMATICS.INDIANA.EDU/fil/
 http://informatics.indiana.edu/fil/

file:///C:/Dokumente und Einstellungen/Yeong Su Lee/Eigene Dateien/ss08/http://informatics.indiana.eduhttp://informatics.indiana.edu/
file:///C:/Dokumente und Einstellungen/Yeong Su Lee/Eigene Dateien/ss08/http://informatics.indiana.eduhttp://informatics.indiana.edu/
http://informatics.indiana.edu/index.html
http://informatics.indiana.edu/index.html
http://informatics.indiana.edu/dir1/./../dir2/
http://informatics.indiana.edu/dir2/
http://informatics.indiana.edu/~fil/
http://informatics.indiana.edu/~fil/
http://informatics.indiana.edu/~fil/
http://informatics.indiana.edu/~fil/
http://informatics.indiana.edu/~fil/
http://INFORMATICS.INDIANA.EDU/
http://informatics.indiana.edu/

More on Canonical URLs
Other transformations require heuristic assumption about the

intentions of the author or configuration of the Web server:
• Removing default file name

 http://informatics.indiana.edu/fil/index.html
 http://informatics.indiana.edu/fil/
– This is reasonable in general but would be wrong in this case

because the default happens to be ‘default.asp’ instead of
‘index.html’

• Trailing directory
 http://informatics.indiana.edu/fil
 http://informatics.indiana.edu/fil/
– This is correct in this case but how can we be sure in general that

there isn’t a file named ‘fil’ in the root dir?

http://informatics.indiana.edu/fil/index.htmlhttp://informatics.indiana.edu/
http://informatics.indiana.edu/fil/index.htmlhttp://informatics.indiana.edu/
http://informatics.indiana.edu/filhttp://informatics.indiana.edu/fil/
http://informatics.indiana.edu/filhttp://informatics.indiana.edu/fil/

More implementation issues
• Spider traps

– Misleading sites: indefinite number of pages
dynamically generated by CGI scripts

– Paths of arbitrary depth created using soft directory
links and path rewriting features in HTTP server

– Only heuristic defensive measures:
• Check URL length; assume spider trap above some threshold,

for example 128 characters
• Watch for sites with very large number of URLs
• Eliminate URLs with non-textual data types
• May disable crawling of dynamic pages, if can detect

More implementation issues
• Page repository

– Naïve: store each page as a separate file
• Can map URL to unique filename using a hashing function, e.g. MD5
• This generates a huge number of files, which is inefficient from the

storage perspective
– Better: combine many pages into a single large file, using some

XML markup to separate and identify them
• Must map URL to {filename, page_id}

– Database options
• Any RDBMS -- large overhead
• Light-weight, embedded databases such as Berkeley DB

Concurrency

• A crawler incurs several delays:
– Resolving the host name in the URL to

an IP address using DNS
– Connecting a socket to the server and

sending the request
– Receiving the requested page in response

• Solution: Overlap the above delays by
fetching many pages concurrently

Architecture of a
concurrent

crawler

Concurrent crawlers
• Can use multi-processing or multi-threading
• Each process or thread works like a sequential

crawler, except they share data structures: frontier
and repository

• Shared data structures must be synchronized
(locked for concurrent writes)

• Speedup of factor of 5-10 are easy this way

Outline
• Motivation and taxonomy of crawlers
• Basic crawlers and implementation issues
• Universal crawlers
• Preferential (focused and topical) crawlers
• Evaluation of preferential crawlers
• Crawler ethics and conflicts
• New developments: social, collaborative, federated

crawlers

Universal crawlers

• Support universal search engines
• Large-scale
• Huge cost (network bandwidth) of crawl is

amortized over many queries from users
• Incremental updates to existing index and

other data repositories

Large-scale universal crawlers

• Two major issues:
• Performance

• Need to scale up to billions of pages
• Policy

• Need to trade-off coverage, freshness,
and bias (e.g. toward “important”
pages)

Large-scale crawlers: scalability
• Need to minimize overhead of DNS lookups
• Need to optimize utilization of network bandwidth and

disk throughput (I/O is bottleneck)
• Use asynchronous sockets

– Multi-processing or multi-threading do not scale up to billions of
pages

– Non-blocking: hundreds of network connections open
simultaneously

– Polling socket to monitor completion of network transfers

High-level
architecture of a

scalable universal
crawler

Several parallel
queues to spread load
across servers (keep

connections alive)

DNS server using UDP
(less overhead than

TCP), large persistent
in-memory cache, and

prefetching

Optimize use of
network bandwidth

Optimize disk I/O throughputHuge farm of crawl machines

Universal crawlers: Policy
• Coverage

– New pages get added all the time
– Can the crawler find every page?

• Freshness
– Pages change over time, get removed, etc.
– How frequently can a crawler revisit ?

• Trade-off!
– Focus on most “important” pages (crawler bias)?
– “Importance” is subjective

Maintaining a “fresh” collection
• Universal crawlers are never “done”
• High variance in rate and amount of page changes
• HTTP headers are notoriously unreliable

– Last-modified
– Expires

• Solution
– Estimate the probability that a previously visited page has

changed in the meanwhile
– Prioritize by this probability estimate

Estimating page change rates

• Algorithms for maintaining a crawl in which most
pages are fresher than a specified epoch
– Brewington & Cybenko; Cho, Garcia-Molina & Page

• Assumption: recent past predicts the future
(Ntoulas, Cho & Olston 2004)
– Frequency of change not a good predictor
– Degree of change is a better predictor

Do we need to crawl the entire Web?
• If we cover too much, it will get stale
• There is an abundance of pages in the Web
• For PageRank, pages with very low prestige are largely

useless
• What is the goal?

– General search engines: pages with high prestige
– News portals: pages that change often
– Vertical portals: pages on some topic

• What are appropriate priority measures in these cases?
Approximations?

Outline
• Motivation and taxonomy of crawlers
• Basic crawlers and implementation issues
• Universal crawlers
• Preferential (focused and topical) crawlers
• Evaluation of preferential crawlers
• Crawler ethics and conflicts
• New developments: social, collaborative, federated

crawlers

Preferential crawlers
• Assume we can estimate for each page an importance

measure, I(p)
• Want to visit pages in order of decreasing I(p)
• Maintain the frontier as a priority queue sorted by I(p)
• Possible figures of merit:

– Precision ~
| p: crawled(p) & I(p) > threshold | / | p: crawled(p) |

– Recall ~
| p: crawled(p) & I(p) > threshold | / | p: I(p) > threshold |

Preferential crawlers
• Selective bias toward some pages, eg. most “relevant”/topical,

closest to seeds, most popular/largest PageRank, unknown servers,
highest rate/amount of change, etc…

• Focused crawlers
– Supervised learning: classifier based on labeled examples

• Topical crawlers
– Best-first search based on similarity(topic, parent)
– Adaptive crawlers

• Reinforcement learning
• Evolutionary algorithms/artificial life

Preferential crawling algorithms:
Examples

• Breadth-First
– Exhaustively visit all links in order encountered

• Best-N-First
– Priority queue sorted by similarity, explore top N at a time
– Variants: DOM context, hub scores

• PageRank
– Priority queue sorted by keywords, PageRank

• SharkSearch
– Priority queue sorted by combination of similarity, anchor text, similarity of parent, etc.

(powerful cousin of FishSearch)
• InfoSpiders

– Adaptive distributed algorithm using an evolving population of learning agents

Preferential crawlers: Examples

Recall

Crawl size

• For I(p) = PageRank
(estimated based on
pages crawled so far), we
can find high-PR pages
faster than a breadth-first
crawler (Cho, Garcia-
Molina & Page 1998)

Focused crawlers: Basic idea
• Naïve-Bayes classifier based on

example pages in desired topic,
c*

• Score(p) = Pr(c*|p)
– Soft focus: frontier is priority queue

using page score
– Hard focus:

• Find best leaf ĉ for p
• If an ancestor c’ of ĉ is in c* then

add links from p to frontier, else
discard

– Soft and hard focus work equally
well empirically

Example: Open Directory

Focused crawlers
• Can have multiple topics with as many classifiers, with

scores appropriately combined (Chakrabarti et al. 1999)
• Can use a distiller to find topical hubs periodically, and add

these to the frontier
• Can accelerate with the use of a critic (Chakrabarti et al.

2002)
• Can use alternative classifier algorithms to naïve-Bayes, e.g.

SVM and neural nets have reportedly performed better (Pant
& Srinivasan 2005)

Context-focused crawlers
• Same idea, but multiple classes (and

classifiers) based on link distance from
relevant targets
– ℓ=0 is topic of interest
– ℓ=1 link to topic of interest
– Etc.

• Initially needs a back-crawl from seeds (or
known targets) to train classifiers to
estimate distance

• Links in frontier prioritized based on
estimated distance from targets

• Outperforms standard focused crawler
empirically

Context graph

Topical crawlers
• All we have is a topic (query, description,

keywords) and a set of seed pages (not necessarily
relevant)

• No labeled examples
• Must predict relevance of unvisited links to

prioritize
• Original idea: Menczer 1997, Menczer & Belew

1998

Topical locality
• Topical locality is a necessary condition for a topical crawler to

work, and for surfing to be a worthwhile activity for humans
• Links must encode semantic information, i.e. say something about

neighbor pages, not be random
• It is also a sufficient condition if we start from “good” seed pages
• Indeed we know that Web topical locality is strong :

– Indirectly (crawlers work and people surf the Web)
– From direct measurements (Davison 2000; Menczer 2004, 2005)

Quantifying topical locality
• Different ways to pose the

question:
– How quickly does semantic locality

decay?
– How fast is topic drift?
– How quickly does content change

as we surf away from a starting
page?

• To answer these questions, let us
consider exhaustive breadth-first
crawls from 100 topic pages

G = 5/15
C = 2
R = 3/6
 = 2/4

The “link-cluster” conjecture
• Connection between semantic topology (relevance) and link

topology (hypertext)
– G = Pr[rel(p)] ~ fraction of relevant/topical pages (topic generality)
– R = Pr[rel(p) | rel(q) AND link(q,p)] ~ cond. prob. Given neighbor on topic

• Related nodes are clustered if R > G
– Necessary and

sufficient
condition for a
random crawler
to find pages related
to start points

– Example:
2 topical clusters
with stronger
modularity within
each cluster than outside

• Correlation of
lexical (content)
and linkage
topology

• L(δ): average link
distance

• S(δ): average
content similarity to
start (topic) page
from pages up to
distance δ

• Correlation ρ(L,S)
= –0.76

The “link-content”
conjecture

€

S(q,d) º

sim(q, p)
{ p: path(q,p) £d }

å

{p : path(q, p) £ d}

Topical locality-inspired tricks for
topical crawlers

• Co-citation (a.k.a. sibling
locality): A and C are good
hubs, thus A and D should be
given high priority

• Co-reference (a.k.a.
blbliographic coupling):
E and G are good authorities,
thus E and H should be given
high priority

Correlations between different
similarity measures

• Semantic similarity measured from
ODP, correlated with:
– Content similarity: TF or TF-IDF

vector cosine
– Link similarity: Jaccard coefficient of

(in+out) link neighborhoods
• Correlation overall is significant but

weak
• Much stronger topical locality in some

topics, e.g.:
– Links very informative in news sources
– Text very informative in recipes

Naïve Best-First
BestFirst(topic, seed_urls) {
 foreach link (seed_urls) {
 enqueue(frontier, link);
 }
 while (#frontier > 0 and visited < MAX_PAGES) {
 link := dequeue_link_with_max_score(frontier);
 doc := fetch_new_document(link);
 score := sim(topic, doc);
 foreach outlink (extract_links(doc)) {
 if (#frontier >= MAX_BUFFER) {
 dequeue_link_with_min_score(frontier);
 }
 enqueue(frontier, outlink, score);
 }
 }
}

Simplest
topical crawler:
Frontier is
priority queue
based on text
similarity
between topic
and parent
page

Best-first variations
• Many in literature, mostly stemming from different

ways to score unvisited URLs. E.g.:
– Giving more importance to certain HTML markup in parent

page
– Extending text representation of parent page with anchor text

from “grandparent” pages (SharkSearch)
– Limiting link context to less than entire page
– Exploiting topical locality (co-citation)
– Exploration vs exploitation: relax priorities

• Any of these can be (and many have been) combined

Link context based on text neighborhood

• Often consider a fixed-
size window, e.g. 50
words around anchor

• Can weigh links based on
their distance from topic
keywords within the
document (InfoSpiders,
Clever)

• Anchor text deserves extra
importance

Link context based on DOM tree
• Consider DOM subtree rooted

at parent node of link’s <a> tag
• Or can go further up in the tree

(Naïve Best-First is special
case of entire document body)

• Trade-off between noise due to
too small or too large context
tree (Pant 2003)

DOM context
Link score = linear
combination between
page-based and context-
based similarity score

Co-citation: hub scores
Link scorehub = linear
combination between
link and hub score

Number of seeds linked from page

Exploration vs Exploitation
• Best-N-First (or BFSN)
• Rather than re-sorting the

frontier every time you add
links, be lazy and sort only
every N pages visited

• Empirically, being less
greedy helps crawler
performance significantly:
escape “local topical traps”
by exploring more

Pant et al. 2002

Outline
• Motivation and taxonomy of crawlers
• Basic crawlers and implementation issues
• Universal crawlers
• Preferential (focused and topical) crawlers
• Evaluation of preferential crawlers
• Crawler ethics and conflicts
• New developments: social, collaborative, federated

crawlers

Evaluation of topical crawlers

• Goal: build “better” crawlers to support applications
(Srinivasan & al. 2005)

• Build an unbiased evaluation framework
– Define common tasks of measurable difficulty
– Identify topics, relevant targets
– Identify appropriate performance measures

• Effectiveness: quality of crawler pages, order, etc.
• Efficiency: separate CPU & memory of crawler algorithms from

bandwidth & common utilities

file:///C:/Dokumente und Einstellungen/Yeong Su Lee/Eigene Dateien/ss08/#Folie 56

Evaluation
corpus =

ODP + Web

• Automate
evaluation
using edited
directories

• Different
sources of
relevance
assessments

Topics and Targets

topic level ~ specificity
depth ~ generality

Tasks
Start from seeds, find targets

and/or pages similar to target descriptions

d=2

d=3

Back-crawl from targets to get seeds

Target based performance measures

A: Independence!…Q: What assumption are we making?

Performance matrix

target
depth

“recall” “precision”

target
pages

target
descriptions

d=0
d=1

d=2€

Sc
t Ç Td

Td

€

σ c (p,Dd)
p Î Sc

t

å
€

Sc
t Ç Td

Sc
t

€

σ c (p,Dd)
p Î Sc

t

å

Sc
t

Outline
• Motivation and taxonomy of crawlers
• Basic crawlers and implementation issues
• Universal crawlers
• Preferential (focused and topical) crawlers
• Evaluation of preferential crawlers
• Crawler ethics and conflicts
• New developments: social, collaborative, federated

crawlers

Crawler ethics and conflicts
• Crawlers can cause trouble, even unwillingly, if

not properly designed to be “polite” and “ethical”
• For example, sending too many requests in rapid

succession to a single server can amount to a
Denial of Service (DoS) attack!
– Server administrator and users will be upset
– Crawler developer/admin IP address may be blacklisted

Crawler etiquette (important!)
• Identify yourself

– Use ‘User-Agent’ HTTP header to identify crawler, website with description of
crawler and contact information for crawler developer

– Use ‘From’ HTTP header to specify crawler developer email
– Do not disguise crawler as a browser by using their ‘User-Agent’ string

• Always check that HTTP requests are successful, and in case of error, use
HTTP error code to determine and immediately address problem

• Pay attention to anything that may lead to too many requests to any one server,
even unwillingly, e.g.:
– redirection loops
– spider traps

Crawler etiquette (important!)
• Spread the load, do not overwhelm a server

– Make sure that no more than some max. number of requests to any single
server per unit time, say < 1/second

• Honor the Robot Exclusion Protocol
– A server can specify which parts of its document tree any crawler is or is

not allowed to crawl by a file named ‘robots.txt’ placed in the HTTP root
directory, e.g. http://www.indiana.edu/robots.txt

– Crawler should always check, parse, and obey this file before sending any
requests to a server

– More info at:
• http://www.google.com/robots.txt
• http://www.robotstxt.org/wc/exclusion.html

http://www.indiana.edu/robots.txt
http://www.google.com/robots.txt
http://www.robotstxt.org/wc/exclusion.html

More on robot exclusion

• Make sure URLs are canonical before
checking against robots.txt

• Avoid fetching robots.txt for each request to
a server by caching its policy as relevant to
this crawler

• Let’s look at some examples to understand
the protocol…

www.apple.com/robots.txt

robots.txt for http://www.apple.com/

User-agent: *
Disallow:

All crawlers…

…can go
anywhere!

http://www.apple.com/

www.microsoft.com/robots.txt
Robots.txt file for http://www.microsoft.com

User-agent: *
Disallow: /canada/Library/mnp/2/aspx/
Disallow: /communities/bin.aspx
Disallow: /communities/eventdetails.mspx
Disallow: /communities/blogs/PortalResults.mspx
Disallow: /communities/rss.aspx
Disallow: /downloads/Browse.aspx
Disallow: /downloads/info.aspx
Disallow: /france/formation/centres/planning.asp
Disallow: /france/mnp_utility.mspx
Disallow: /germany/library/images/mnp/
Disallow: /germany/mnp_utility.mspx
Disallow: /ie/ie40/
Disallow: /info/customerror.htm
Disallow: /info/smart404.asp
Disallow: /intlkb/
Disallow: /isapi/
#etc…

All crawlers…

…are not
allowed in

these
paths…

http://www.microsoft.com/

www.springer.com/robots.txt
Robots.txt for http://www.springer.com (fragment)

User-agent: Googlebot
Disallow: /chl/*
Disallow: /uk/*
Disallow: /italy/*
Disallow: /france/*

User-agent: slurp
Disallow:
Crawl-delay: 2

User-agent: MSNBot
Disallow:
Crawl-delay: 2

User-agent: scooter
Disallow:

all others
User-agent: *
Disallow: /

Google crawler is
allowed everywhere
except these paths

Yahoo and
MSN/Windows Live

are allowed
everywhere but

should slow down

AltaVista has no limits

Everyone else keep off!

http://www.springer.com/

More crawler ethics issues
• Is compliance with robot exclusion a matter of

law?
– No! Compliance is voluntary, but if you do not comply,

you may be blocked
– Someone (unsuccessfully) sued Internet Archive over a

robots.txt related issue
• Some crawlers disguise themselves

– Using false User-Agent
– Randomizing access frequency to look like a

human/browser
– Example: click fraud for ads

More crawler ethics issues
• Servers can disguise themselves, too

– Cloaking: present different content based on User-
Agent

– E.g. stuff keywords on version of page shown to search
engine crawler

– Search engines do not look kindly on this type of
“spamdexing” and remove from their index sites that
perform such abuse

• Case of bmw.de made the news

Gray areas for crawler ethics
• If you write a crawler that unwillingly follows

links to ads, are you just being careless, or are you
violating terms of service, or are you violating the
law by defrauding advertisers?
– Is non-compliance with Google’s robots.txt in this case

equivalent to click fraud?
• If you write a browser extension that performs

some useful service, should you comply with
robot exclusion?

Outline
• Motivation and taxonomy of crawlers
• Basic crawlers and implementation issues
• Universal crawlers
• Preferential (focused and topical) crawlers
• Evaluation of preferential crawlers
• Crawler ethics and conflicts
• New developments

New developments: social, collaborative,
federated crawlers

• Idea: go beyond the “one-fits-all” model of
centralized search engines

• Extend the search task to anyone, and
distribute the crawling task

• Each search engine is a peer agent
• Agents collaborate by routing queries and

results

Need crawling code?
• Reference C implementation of HTTP, HTML parsing, etc

– w3c-libwww package from World-Wide Web Consortium: www.w3c.org/Library/
• LWP (Perl)

– http://www.oreilly.com/catalog/perllwp/
– http://search.cpan.org/~gaas/libwww-perl-5.804/

• Open source crawlers/search engines
– Nutch: http://www.nutch.org/ (Jakarta Lucene: jakarta.apache.org/lucene/)
– Heretrix: http://crawler.archive.org/
– WIRE: http://www.cwr.cl/projects/WIRE/
– Terrier: http://ir.dcs.gla.ac.uk/terrier/

• Open source topical crawlers, Best-First-N (Java)
– http://informatics.indiana.edu/fil/IS/JavaCrawlers/

• Evaluation framework for topical crawlers (Perl)
– http://informatics.indiana.edu/fil/IS/Framework/

http://www.w3c.org/Library/
http://www.oreilly.com/catalog/perllwp/
http://search.cpan.org/~gaas/libwww-perl-5.804/
http://www.nutch.org/
http://www.nutch.org/
http://www.nutch.org/
http://jakarta.apache.org/lucene/
http://crawler.archive.org/
http://crawler.archive.org/
http://www.cwr.cl/projects/WIRE/
http://ir.dcs.gla.ac.uk/terrier/
http://informatics.indiana.edu/fil/IS/JavaCrawlers/
http://informatics.indiana.edu/fil/IS/Framework/

	Ch. 8: Web Crawling
	Outline
	Many names
	Motivation for crawlers
	One taxonomy of crawlers
	Folie 6
	Basic crawlers
	Graph traversal (BFS or DFS?)
	A basic crawler in Perl
	Implementation issues
	More implementation issues
	More implementation issues: Parsing
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	More on Canonical URLs
	Folie 20
	Folie 21
	Folie 22
	Concurrency
	Architecture of a concurrent crawler
	Concurrent crawlers
	Folie 26
	Universal crawlers
	Large-scale universal crawlers
	Large-scale crawlers: scalability
	High-level architecture of a scalable universal crawler
	Universal crawlers: Policy
	Maintaining a “fresh” collection
	Estimating page change rates
	Do we need to crawl the entire Web?
	Folie 35
	Preferential crawlers
	Folie 37
	Preferential crawling algorithms: Examples
	Preferential crawlers: Examples
	Focused crawlers: Basic idea
	Focused crawlers
	Context-focused crawlers
	Topical crawlers
	Topical locality
	Quantifying topical locality
	The “link-cluster” conjecture
	The “link-content” conjecture
	Topical locality-inspired tricks for topical crawlers
	Correlations between different similarity measures
	Naïve Best-First
	Best-first variations
	Link context based on text neighborhood
	Link context based on DOM tree
	DOM context
	Co-citation: hub scores
	Exploration vs Exploitation
	Folie 57
	Evaluation of topical crawlers
	Evaluation corpus = ODP + Web
	Topics and Targets
	Tasks
	Target based performance measures
	Performance matrix
	Folie 64
	Crawler ethics and conflicts
	Crawler etiquette (important!)
	Folie 67
	More on robot exclusion
	www.apple.com/robots.txt
	www.microsoft.com/robots.txt
	www.springer.com/robots.txt
	More crawler ethics issues
	Folie 73
	Gray areas for crawler ethics
	Folie 75
	New developments: social, collaborative, federated crawlers
	Need crawling code?

