Chapter 3: Supervised Learning

Road Map

- Basic concepts
- Decision tree induction
- Evaluation of classifiers
- Rule induction
- Classification using association rules
- Naïve Bayesian classification
- Naïve Bayes for text classification
- Support vector machines
- K-nearest neighbor
- Ensemble methods: Bagging and Boosting
- Summary

An example application

- An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients.
- A decision is needed: whether to put a new patient in an intensive-care unit.
- Due to the high cost of ICU, those patients who may survive less than a month are given higher priority.
- Problem: to predict high-risk patients and discriminate them from low-risk patients.

Another application

- A credit card company receives thousands of applications for new cards. Each application contains information about an applicant,
 - age
 - Marital status
 - annual salary
 - outstanding debts
 - credit rating
 - □ etc.
- Problem: to decide whether an application should approved, or to classify applications into two categories, approved and not approved.

Machine learning and our focus

- Like human learning from past experiences.
- A computer does not have "experiences".
- A computer system learns from data, which represent some "past experiences" of an application domain.
- Our focus: learn a target function that can be used to predict the values of a discrete class attribute, e.g., approve or not-approved, and high-risk or low risk.
- The task is commonly called: Supervised learning, classification, or inductive learning.

The data and the goal

• Data: A set of data records (also called examples, instances or cases) described by

 \square *k* attributes: $A_1, A_2, \dots A_k$.

- a class: Each example is labelled with a predefined class.
- Goal: To learn a classification model from the data that can be used to predict the classes of new (future, or test) cases/instances.

An example: data (loan application)

Approved or not

D	Age	Has_Job	Own_House	Credit_Rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

An example: the learning task

- Learn a classification model from the data
- Use the model to classify future loan applications into
 - Yes (approved) and
 - No (not approved)
- What is the class for following case/instance?

Age	Has_Job	Own_house	Credit-Rating	Class
young	false	false	good	?

Supervised vs. unsupervised Learning

- Supervised learning: classification is seen as supervised learning from examples.
 - Supervision: The data (observations, measurements, etc.) are labeled with pre-defined classes. It is like that a "teacher" gives the classes (supervision).
 - Test data are classified into these classes too.
- Unsupervised learning (clustering)
 - Class labels of the data are unknown
 - Given a set of data, the task is to establish the existence of classes or clusters in the data

Supervised learning process: two steps Learning (training): Learn a model using the

- Learning (training): Learn a model using the training data
- Testing: Test the model using unseen test data to assess the model accuracy

What do we mean by learning?

- Given
 - a data set D,
 - a task T, and
 - a performance measure *M*,

a computer system is said to **learn** from *D* to perform the task *T* if after learning the system's performance on *T* improves as measured by *M*.

• In other words, the learned model helps the system to perform *T* better as compared to no learning.

An example

- Data: Loan application data
- Task: Predict whether a loan should be approved or not.
- Performance measure: accuracy.

No learning: classify all future applications (test data) to the majority class (i.e., Yes): Accuracy = 9/15 = 60%.

• We can do better than 60% with learning.

Fundamental assumption of learning Assumption: The distribution of training examples

Assumption: The distribution of training examples is identical to the distribution of test examples (including future unseen examples).

- In practice, this assumption is often violated to certain degree.
- Strong violations will clearly result in poor classification accuracy.
- To achieve good accuracy on the test data, training examples must be sufficiently representative of the test data.

Road Map

- Basic concepts
- Decision tree induction
- Evaluation of classifiers
- Rule induction
- Classification using association rules
- Naïve Bayesian classification
- Naïve Bayes for text classification
- Support vector machines
- K-nearest neighbor
- Ensemble methods: Bagging and Boosting
- Summary

Introduction

- Decision tree learning is one of the most widely used techniques for classification.
 - Its classification accuracy is competitive with other methods, and
 - it is very efficient.
- The classification model is a tree, called decision tree.
- C4.5 by Ross Quinlan is perhaps the best known system. It can be downloaded from the Web.

The loan data (reproduced)

Approved or not

D	Age	Has_Job	Own_House	Credit_Rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

A decision tree from the loan data

Decision nodes and leaf nodes (classes)

Use the decision tree

Is the decision tree unique?

- No. Here is a simpler tree.
- We want smaller tree and accurate tree.
 - Easy to understand and perform better.

- Finding the best tree is NP-hard.
- All current tree building algorithms are heuristic algorithms

From a decision tree to a set of rules

- A decision tree can be converted to a set of rules
- Each path from the root to a leaf is a rule.

Own_house = true \rightarrow Class =Yes [sup=6/15, conf=6/6] Own_house = false, Has_job = true \rightarrow Class = Yes [sup=5/15, conf=5/5] Own_house = false, Has_job = false \rightarrow Class = No [sup=4/15, conf=4/4]

Algorithm for decision tree learning

- Basic algorithm (a greedy divide-and-conquer algorithm)
 - Assume attributes are categorical now (continuous attributes can be handled too)
 - Tree is constructed in a top-down recursive manner
 - At start, all the training examples are at the root
 - Examples are partitioned recursively based on selected attributes
 - Attributes are selected on the basis of an impurity function (e.g., information gain)
- Conditions for stopping partitioning
 - All examples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority class is the leaf
 - There are no examples left

Decision tree learning algorithm

```
. Algorithm decisionTree(D, A, T)
      if D contains only training examples of the same class c_i \in C then
1
2
          make T a leaf node labeled with class c_{f_{i}}
3
      elseif A = \emptyset then
          make T a leaf node labeled with c_i, which is the most frequent class in D
4
5
      else // D contains examples belonging to a mixture of classes. We select a single
6
            // attribute to partition D into subsets so that each subset is purer
7
           p_0 = \text{impurityEval-1}(D);
8
           for each attribute A_i \in \{A_1, A_2, \dots, A_k\} do
9
               p_i = \text{impurityEval-2}(A_i, D)
10
           end
11
           Select A_g \in \{A_1, A_2, ..., A_k\} that gives the biggest impurity reduction,
               computed using p_0 - p_i;
           if p_{\theta} - p_{g} \le threshold then // A_{g} does not significantly reduce impurity p_{\theta}
12
              make T a leaf node labeled with c_i, the most frequent class in D.
13
14
           else
                                             // A_{q} is able to reduce impurity p_{\theta}
15
               Make T a decision node on A_{a};
16
               Let the possible values of A_g be v_1, v_2, \ldots, v_m. Partition D into m
                   disjoint subsets D_1, D_2, \ldots, D_m based on the m values of A_g.
17
               for each D_i in \{D_1, D_2, \dots, D_m\} do
18
                   if D_i \neq \emptyset then
19
                      create a branch (edge) node T_i for v_i as a child node of T_i
20
                      decisionTree(D_h A - \{A_g\}, T_i) / A_g is removed
21
                   end
22
               end
23
           end
24
      end
```

Choose an attribute to partition data

- The *key* to building a decision tree which attribute to choose in order to branch.
- The objective is to reduce impurity or uncertainty in data as much as possible.
 - A subset of data is pure if all instances belong to the same class.
- The *heuristic* in C4.5 is to choose the attribute with the maximum Information Gain or Gain Ratio based on information theory.

The loan data (reproduced)

Approved or not

D	Age	Has_Job	Own_House	Credit_Rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

Two possible roots, which is better?

Fig. (B) seems to be better.

Information theory

- Information theory provides a mathematical basis for measuring the information content.
- To understand the notion of information, think about it as providing the answer to a question, for example, whether a coin will come up heads.
 - If one already has a good guess about the answer, then the actual answer is less informative.
 - If one already knows that the coin is rigged so that it will come with heads with probability 0.99, then a message (advanced information) about the actual outcome of a flip is worth less than it would be for a honest coin (50-50).

Information theory (cont ...)

- For a fair (honest) coin, you have no information, and you are willing to pay more (say in terms of \$) for advanced information - less you know, the more valuable the information.
- Information theory uses this same intuition, but instead of measuring the value for information in dollars, it measures information contents in **bits**.
- One bit of information is enough to answer a yes/no question about which one has no idea, such as the flip of a fair coin

Information theory: Entropy measure

• The entropy formula,

$$entropy(D) = -\sum_{j=1}^{|C|} \Pr(c_j) \log_2 \Pr(c_j)$$
$$\sum_{j=1}^{|C|} \Pr(c_j) = 1,$$

- $Pr(c_i)^{j}$ is the probability of class c_i in data set D
- We use entropy as a measure of impurity or disorder of data set *D*. (Or, a measure of information in a tree)

Entropy measure: let us get a

 The data set D has 50% positive examples (Pr(positive) = 0.5) and 50% negative examples (Pr(negative) = 0.5).

 $entropy(D) = -0.5 \times \log_2 0.5 - 0.5 \times \log_2 0.5 = 1$

The data set D has 20% positive examples (Pr(positive) = 0.2) and 80% negative examples (Pr(negative) = 0.8).

 $entropy(D) = -0.2 \times \log_2 0.2 - 0.8 \times \log_2 0.8 = 0.722$

 The data set D has 100% positive examples (Pr(positive) = 1) and no negative examples, (Pr(negative) = 0).

 $entropy(D) = -1 \times \log_2 1 - 0 \times \log_2 0 = 0$

As the data become purer and purer, the entropy value becomes smaller and smaller. This is useful to us!

Information gain

• Given a set of examples *D*, we first compute its entropy:

• If we n
• If we n

$$D_{j=1}^{|C|} Pr(c_j) \log_2 Pr(c_j)$$
 the current tree, this will partition *D* into v subsets $D_1, D_2 \dots, D_v$. The expected entropy if A_i is used as the current root:

$$entropy_{A_{i}}(D) = \sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times entropy(D_{j})$$

Information gain (cont ...)

 Information gained by selecting attribute A_i to branch or to partition the data is

$$gain(D, A_i) = entropy(D) - entropy_{A_i}(D)$$

• We choose the attribute with the highest gain to branch/split the current tree.

An example
entropy
$$(D) = -\frac{6}{15} \times \log_2 \frac{6}{15} - \frac{9}{15} \times \log_2 \frac{9}{15} = 0.971$$

$$\int_{0}^{1} \frac{Age}{Has_Job} \frac{Has_Job}{Own_House} \frac{Credit_Rating}{false} \frac{Class}{fair} \frac{N_0}{N_0}$$

$$\int_{0}^{2} \frac{1}{15} \times \log_2 \frac{6}{15} - \frac{9}{15} \times \log_2 \frac{9}{15} = 0.971$$

$$\int_{0}^{1} \frac{1}{15} \frac{V}{V} \frac{V}{V}$$

$$entropy_{Age}(D) = -\frac{5}{15} \times entropy(D_1) - \frac{5}{15} \times entropy(D_2) - \frac{5}{15} \times entropy(D_3)$$
$$= \frac{5}{15} \times 0.971 + \frac{5}{15} \times 0.971 + \frac{5}{15} \times 0.722$$
$$= 0.888$$

Own_house is the best choice for the root.

gain(D, Age) = 0.971 - 0.888 = 0.083 $gain(D, Own_house) = 0.971 - 0.551 = 0.420$ $gain(D, Has_Job) = 0.971 - 0.647 = 0.324$ $gain(D, Credit_Rating) = 0.971 - 0.608 = 0.363$

2

3

4

young

old

middle

0,97

0,97

0.72

3

2

1

We build the final tree

 We can use information gain ratio to evaluate the impurity as well (see the handout)

Handling continuous attributes

- Handle continuous attribute by splitting into two intervals (can be more) at each node.
- How to find the best threshold to divide?
 - Use information gain or gain ratio again
 - Sort all the values of an continuous attribute in increasing order $\{v_1, v_2, ..., v_r\}$,
 - One possible threshold between two adjacent values v_i and v_{i+1} . Try all possible thresholds and find the one that maximizes the gain (or gain ratio).

An example in a continuous space

Avoid overfitting in classification

- Overfitting: A tree may overfit the training data
 - Good accuracy on training data but poor on test data
 - Symptoms: tree too deep and too many branches, some may reflect anomalies due to noise or outliers
- Two approaches to avoid overfitting

Pre-pruning: Halt tree construction early

- Difficult to decide because we do not know what may happen subsequently if we keep growing the tree.
- Post-pruning: Remove branches or sub-trees from a "fully grown" tree.
 - This method is commonly used. C4.5 uses a statistical method to estimates the errors at each node for pruning.
 - A validation set may be used for pruning as well.

An example Likely to overfit the data

(A) A partition of the data space

(B). The decision tree

Other issues in decision tree learning

- From tree to rules, and rule pruning
- Handling of miss values
- Handing skewed distributions
- Handling attributes and classes with different costs.
- Attribute construction
- Etc.