Strukturalismus: Bloomfield, Harris, Chomsky

Im 19. Jahrhundert untersuchten die Sprachwissenschaftler hauptsächlich den Sprachwandel (diachrone Sprachwissenschaft).

Im 20. Jahrhunderts herrschte die *synchrone* Sprachwissenschaft vor: die Untersuchung einer (in engem Zeitraum) gebräuchlichen Sprache als ein System von Beziehungen zwischen sprachlichen Elementen, der *Strukturalismus*.

Ansatzpunkt der Strukturalisten (de Saussure, Bloomfield, Harris, Chomsky):

- Sprachliche Elemente (Wörter, Phoneme usw.) haben einen Sinn nur innerhalb eines Systems, durch Äquivalenzen und Kontraste untereinander.
 - de Saussure: wie die Figuren im Schach
- Das System wird durch Kombinationen der Elemente und Beschränkungen der Kombinationsmöglichkeiten beherrscht.

Sprachliche Ausdrücke werden i.a. aus kleineren Einheiten zusammengesetzt. Wenn man solche Einheiten identifiziert hat, kann man untersuchen,

- 1. welche ihrer Kombinationen werden als größere Einheiten erkannt/akzeptiert,
- 2. welche Kombinationsoperationen unterliegen welchen Einschränkungen?

Einschränkungen an die Kombination von Sätzen zu größeren Einheiten sind relativ schwach ausgeprägt, deshalb sind diese Fragen eher für Einheiten unterhalb der Satzebene interessant, z.B.

- Wörter innerhalb von Syntagmen
- Syntagmen innerhalb von Sätzen
- Phoneme innerhalb von Wörtern

Harris:

- Mangel an expliziten Methoden in der Syntax führt zu
 - intuitivem Vorgehen,
 - ungewisser Relevanz von Beobachtungen,
 - unklaren Beziehungen zwischen Beobachtungen
- Untersuchung von Distributionsverhältnissen
 - mit expliziten Methoden möglich (Substitution)
 - nicht, um daraus Aussagen über die Bedeutungen zu erhalten,
 - weil sie unabhängig von Bedeutungen untersuchbar sind.

Endliche Folgen kleinster Einheiten

Da sprachliche Äußerungen φ in der Zeit erfolgen und i.a. nicht atomar sind, lassen sie sich in endliche *Folgen w* kleinster Einheiten a zerlegen, die nacheinander geäußert werden.

Die kleinsten Einheiten sollten wenige sein, und von einander unterscheidbar. Nehmen wir an, eine endliche Menge $\Sigma = \{a, b, \ldots\}$ solcher kleinsten Einheiten sei bestimmt, z.B. die Phoneme.

Sei Σ^* die Menge aller endlichen Folgen von Elementen aus Σ . Den sprachlichen Äußerungen entspricht eine Teilmenge $L\subseteq \Sigma^*$.

- Es gibt unter den $w \in L$ gewisse Regularitäten, z.B. treten manche $a, b \in \Sigma$ nicht am Ende eines w auf, manche nicht direkt nebeneinander, manche nur gemeinsam, usw.
- ▶ Da *L* sehr groß oder unendlich ist, ist es schwierig, die Regularitäten zu kennen.

Distribution von $w \in \Sigma^*$ in L

Um die Regularitäten aufzufinden, versucht man, Folgen $w \in \Sigma^*$ zu klassifizieren und Regularitäten auf der Ebene der Klassen zu finden.

Definition

Die Distribution $D_L(w)$ von $w \in \Sigma^*$ in L ist die Menge der Kontexte $u_v := (u, v)$, in denen w in L vorkommt:

$$D(w) := \{(u,v) \mid u,v \in \Sigma^*, uwv \in L\}.$$

Zwei Folgen $w_1, w_2 \in \Sigma^*$ sind distributionsäquivalent bzgl. L, kurz: $w_1 \equiv_L w_2$, wenn sie dieselbe Distribution haben, $D(w_1) = D(w_2)$. Zwei Folgen $w_1, w_2 \in \Sigma^*$ sind von komplementärer Distribution, wenn sie keine Kontexte gemeinsam haben: $D(w_1) \cap D(w_2) = \emptyset$.

Seien Σ die Wortformen und L die Sätze des Deutschen.

- Emil und Willi sind äquivalent.
- ▶ mich und dich sind nicht äquivalent: Ich schäme dich. ∉ L
- wir und sprecht sind komplementär.
- ▶ $D(der\ Hund) \subseteq D(er)$. Aber: $er\ iBt \in L$, $der\ Hund\ iBt \in L$?

Beachte: die Begriffe sind nur bedingt operationalisierbar

- ▶ ist L endlich, so kann man $w_1 \equiv w_2$ feststellen, da man nur die endlich vielen u_v berücksichtigen muss, die man aus den $urv \in L$ bekommt. z.B. $\Sigma = \text{Phoneme}$, L = einf.Wortformen
- wenn L unendlich ist, müßte man unendlich viele Kontexte u_v durchlaufen, was man nur im Geiste kann. z.B. $L=\mathsf{S\"{a}tze}$
- ▶ die Definition ist relativ dazu, was ∈ L bedeutet: manchmal ist die Akzeptanz von uwv gemeint, da man L nur indirekt kennt.

Besseres Verfahren zur Bestimmung der Morpheme einer Sprache:

- Teile jeden Ausdruck in die kleinsten Phonemfolgen mit gleicher Bedeutung in Morphemalternativen: /knaif/ \neq /knaiv/.
- Bilde Morphemeinheiten, d.h. Mengen der Morphemalternativen gleicher Bedeutung und komplementärer Distribution. Berücksichtige eine mehrelementige Einheit E nur, wenn

$$\bigcup \{D(w) \mid w \in E\} = D(e) \text{ für eine Einheit } E' = \{e\},\$$

- z.B. $E = \{am, are\}$ wegen $D(am) \cup D(are) = D(walk)$.
- 3. Unterscheiden sich die Alternativen zweier Einheiten E_1 und E_2 auf dieselbe Weise, so repräsentiere die Einheiten durch eines der Elemente und den Unterschied, z.B. $\{knife, kniv-\}$ und $\{wife, wiv-\}$ durch $(/naif/,/f/+/-z/\mapsto /v/)$

Ermittlung der Unterschiede zwischen den Alternativen:

- 1. Worin unterscheiden sich die Alternativen einer Einheit?
- 2. In welchen Kontexten kommt eine Alternative vor?
- 3. Welche Ahnlichkeit besteht zwischen Alternative und Kontext?
- 4. Welche Einheiten haben diese Unterschiede zwischen den Alternativen?
- Z.B. die Kontexte B C, in denen eine Alternative $a \in A$ vorkommt, sind selber Einheiten, die in ihre Alternativen $b \in B$, $c \in C$ zerfallen, und nur in manchen b c tritt a auf. Klassifizierung der Kontexte nach ähnlicher Bildung von

Alternativen.

Substituionsklassen

Die zu einem $w \in \Sigma^*$ bzgl. L distributionsäquivalenten w' bilden die Distributions- oder Substitutionsklasse von w,

$$S(w) := \{w' \in \Sigma^* \mid w' \equiv_L w\} =: [w]_{\equiv_L}.$$

Die Elemente einer Substitutionsklasse kann man in beliebigen L-Kontexten durch einander ersetzen, ohne aus L herauszukommen:

$$w' \in S(w) \iff w \equiv w' \iff D(w) = D(w').$$

 $\iff \forall u \in \Sigma^* \forall v \in \Sigma^* (uwv \in L \iff uw'v \in L).$

Wortarten als Distributionsklassen?

Man kann nicht erwarten, daß die Wortarten Substitutionsklassen sind: verschiendene Formen desselben Worts können oft gerade nicht in denselben Kontexten vorkommen, z.B. Baum und Bäumen.

Manchmal bilden alle Wörter einer Wortart (bzw.Unterart) in derselben Form eine Substitutionsklasse: z.B.

$$N_{neut}^{gen,sg} = \{Hauses, Kindes, \ldots\}$$

Aber i.a. ist das nicht so: z.B. ist

$$N_{mask}^{nom,sg} = \{Baum, Hase, Hund, \ldots\}$$

keine Substitutionsklasse (bzgl. L = deutsche Sätze), da

Ich sehe den Baum \in L, Ich sehe den Hase \notin L


Die Distribution der konkreten Formen kann allein nicht darüber entscheiden, was ein Satz ist: es kommt u.a. auf die abstrakten Formen an (z.B. auf den an der Wortform *Baum* nicht ablesbaren Kasus).

Erstmal braucht man die abstrakten Formen, die Wörter und die Wortarten. (Vgl. Hausaufgaben)

- ► Erhält man Wörter durch Abstraktion von ihren Formen? Die Distribution liefert etwa D(Baum) = D(Hund), unterscheidet aber nicht zwischen Nominativ- und Akkusativkontexten. Man muß also erstmal die Distributionen überladener Formen nach den abstrakten Formen trennen und ggf. diese geeignet zusammensetzen.
- ► Gibt es für abstrakte Formen, Wörter oder Wortarten charakteristische Kontexte? Z.B. Kontexte, in denen genau die Nomen im Nominativ, oder genau die Verben auftreten?

Satzschemata

Teilt man die Wortarten hinreichend fein in Unterarten (z.B. $V_{[nom,akk]}$: transitive Verben), so lassen sich in einem Satz Wörter derselben Unterart durch andere derselben Form ersetzen:

Aus jedem Satz erhält man ein *Satzschema*, eine Folge der Konkretisierungen abstrakter Formen. Aber:

Solche Schemata beschreiben die Regelmäßigkeiten im Satz zu eng: z.B. erlaubt es nicht. *Die Tasse* durch *der Becher* zu ersetzen.

Literatur

L. Bloomfield.

Language.

Holt, 1933.

Z. Harris.

A Theory of Language and Information.

Clarendon Press, 1991.

Z. S. Harris.

Papers on Syntax.

D. Reidel, 1981.

J. Lyons.

Introduction to Theoretical Linguistics.

Cambride University Press, 1968.

Dt.: Einführung in die moderne Linguistik. C.H.Beck, 1989.