
NORTH- HOLLAND

P R I N C I P L E S A N D I M P L E M E N T A T I O N O F

D E D U C T I V E P A R S I N G

STUART M. SHIEBER, YVES SCHABES,* AND
F E R N A N D O C. N. PEREIRA t

[:> We present a system for generating parsers based directly on the metaphor
of parsing as deduction. Parsing algorithms can be represented directly as
deduction systems, a n d a single deduction engine can interpret such de-
duction systems so as to implement the corresponding parser. The method
generalizes easily to parsers for augmented phrase structure formalisms,
such as definite-clause grammars and other logic g rammar formalisms, and
has been used for rapid prototyping of parsing algorithms for a variety of
formalisms including variants of tree-adjoining grammars, categorial gram-
mars, and lexicalized context-free grammars. <~

1. I N T R O D U C T I O N

Parsing can be viewed as a deductive process that seeks to prove claims about
the grammatical status of a string from assumptions describing the grammatical
properties of the string's elements and the linear order between them. Lambek 's
syntactic calculi [15] comprise an early formalization of this idea, which more re-
cently was explored in relation to g rammar formalisms based on definite clauses
[7, 23, 24] and on feature logics [35, 27, 6].

The view of parsing as deduction adds two main new sources of insights and
techniques to the s tudy of g rammar formalisms and parsing:

Address correspondence to Stuart M. Shieber, Division of Applied Sciences, Harvard Univer-
sity, Cambridge, MA 02138.

*Mitsubishi Electric Research Laboratories, Cambridge, MA 02139.
?AT&T Bell Laboratories, Murray Hill, NJ 07974.
Received September 1993.

THE J O U R N A L OF LOGIC P R O G R A M M I N G

(~) Elsevier Science Inc., 1995 0743-1066/95/$9.50
655 Avenue of the Americas, New York, NY 10010 SSDI 0743-1066(95)00035-I

4 S.M. SHIEBER ET AL.

1. Existing logics can be used as a basis for new grammar formalisms with
desirable representational or computational properties.

2. The modular separation of parsing into a logic of grammaticality claims and
a proof search procedure allows the investigation of a wide range of parsing
algorithms for existing grammar formalisms by selecting specific classes of
grammaticality claims and specific search procedures.

While most of the work on deductive parsing has been concerned with (1), we will in
this paper investigate (2), more specifically, how to synthesize parsing algorithms
by combining specific logics of grammaticality claims with a fixed search proce-
dure. In this way, deduction can provide a metaphor for parsing that encompasses
a wide range of parsing algorithms for an assortment of grammatical formalisms.
We flesh out this metaphor by presenting a series of parsing algorithms literally
as inference rules, and by providing a uniform deduction engine, parameterized by
such rules, that can be used to parse according to any of the associated algorithms.
The inference rules for each logic will be represented as unit clauses, and the fixed
deduction procedure, which we provide a Prolog implementation of, will be a ver-
sion of the usual bottom-up consequence closure operator for definite clauses. As
we will show, this method directly yields dynamic-programming versions of stan-
dard top-down, bottom-up, and mixed-direction (Earley) parsing procedures. In
this, our method has similarities with the use of pure bottom-up deduction to
encode dynamic-programming versions of definite-clause proof procedures in de-
ductive databases [3, 19].

The program that we develop is especially useful for rapid prototyping of and
experimentation with new parsing algorithms, and was in fact developed for that
purpose. We have used it, for instance, in the development of algorithms for parsing
with tree-adjoining grammars, categorial grammars, and lexicalized context-free
grammars.

Many of the ideas that we present are not new. Some have been presented
before; others form part of the folk wisdom of the logic programming commu-
nity. However, the present work is to our knowledge the first to make the ideas
available explicitly in a single notation and with a clean implementation. In ad-
dition, certain observations regarding efficient implementation may be novel to
this work.

The paper is organized as follows. After reviewing some basic logical and gram-
matical notions and applying them to a simple example (Section 2), we describe
how the structure of a variety of parsing algorithms for context-free grammars can
be expressed as inference rules in specialized logics (Section 3). Then, we extend the
method for stating and implementing parsing algorithms for formalisms other than
context-free grammars (Section 4). Finally, we discuss how deduction should pro-
ceed for such logics, developing an agenda-based deduction procedure implemented
in Prolog that manifests the presented ideas (Section 5).

2. B A S I C N O T I O N S

As introduced in Section 1, we see parsing as a deductive process in which rules
of inference are used to derive statements about the grammatical status of strings
from other such statements. Statements are represented by formulas in a suitable

DEDUCTIVE PARSING 5

formal language. The general form of a rule of inference is

A1 "" Ak
(side conditions on A 1 , . . . , Ak, B/.

B

The antecedents A 1 , . . . , Ak and the consequent B of the inference rule are formula
schemata, tha t is, they may contain syntactic metavariables to be instantiated by
appropr ia te terms when the rule is used. A grammatical deduction system is defined
by a set of rules of inference and a set of axioms given by appropriate formula
schemata.

Given a grammatical deduction system, a derivation of a formula B from as-
sumptions A s , . . . , A , ~ is, as usual, a sequence of formulas $ 1 , . . . , S~ such tha t
B = S~, and for each St, either si is one of the Aj, or Si is an instance of an axiom,
or there is a rule of inference R and formulas S~1,. . . , SiR with i l , . • • ,ik < i such
tha t for appropriate substitutions of terms for the metavariables in R, S i l , . . . , S~k
match the antecedents of the rule, S~ matches the consequent, and the rule's side
conditions are satisfied. We write As, . • •, Am ~- B and say tha t B is a consequence
of A1, • • •, Am if such a derivation exists. If B is a consequence of the empty set of
assumptions, it is said to be derivable, in symbols ~- B.

In our applications of this model, rules and axiom schemata may refer in their
side conditions to the rules of a particular grammar , and formulas may refer to
string positions in the fixed string to be parsed w = w l . . . w n . With respect to
the given string, goal formulas state that the string is grammatical according to
the given grammar. Then parsing the string corresponds to finding a derivation
witnessing a goal formula.

We will use standard notation for metavariables ranging over the objects under
discussion: n for the length of the object language string to be parsed; A, B, C . . .
for arbi t rary formulas or symbols such as g rammar nonterminals; a , b , c , . . , for
arbi t rary terminal symbols; i, j, k , . . . for indices into various strings, especially the
string w; a,/3, 7 for strings or terminal and nonterminal symbols. We will often
use such notations leaving the type of the object implicit in the notation chosen
for it. Substrings will be notated elliptically as, e.g., w ~ . . . w j for the i th through
j t h elements of w, inclusive. As is usual, we take w i . . . wj to be the empty string
i f i > j .

2.1. A First Example: C Y K Parsing

As a simple example, the basic mechanism of the Cocke-Younger-Kasami (CYK)
context-free parsing algorithm [12, 38] for a context-free g rammar in Chomsky
normal form can be easily represented as a grammatical deduction system.

We assume tha t we are given a string w = wl • • • w~ to be parsed and a context-
free g rammar G -- (N, E, P, S), where N is the set of nonterminals including the
s tar t symbol S, E is the set of terminal symbols, (V = Nt3Z is the vocabulary of the
grammar,) and P is the set of productions, each of the form A --* ~ for A E N and

c~ E V*. We will use the symbol ~ for immediate derivation and =~ for its reflexive,
transit ive closure, the derivation relation. In the case of a Chomsky-normal-form
grammar , all productions are of the form A --* B C or A --* a.

The items of the logic (as we will call parsing logic formulas from now on) are of
the form [A, i, j], and state tha t the nonterminal A derives the substring between

indices i and j in the string, tha t is, A ~ W~+l. . .wj . Sound axioms, then, are

6 S .M. SHIEBER ET AL.

I t e m form: [A, i, j]

Ax ioms : [A, i, i + 1] A ~ wi+l
F I G U R E 1. The CYK deductive

Goals: [S, 0, a] parsing system.

I n f e r e n c e rules : [B,i , j] [C, j ,k] A --+ B C
[A,i , k]

grounded in the lexical items that occur in the string. For each word w~+l in the
string and each rule A ~ W~+l, it is clear that the item [A,i, i + 1] makes a true
claim, so that such items can be taken as axiomatic. Then, whenever we know that
B ~ wi+1. ' , wj and C ~ w j + a . . . w k - - a s asserted by items of the form [B, i,jJ and
[C, j , k]--where A ~ B C is a production in the grammar, it is sound to conclude

that A ~ w ~ + l ' " w k , and therefore, the item [A,i, k] should be inferable. This
argument can be codified in a rule of inference:

[B, i, j] [C, j, k] A --, B C
[A, i, k]

Using this rule of inference with the axioms, we can conclude that the string is
admitted by the grammar if an item of the form IS, 0, n] is deducible, since such an

item asserts that S ~ wl . . . Wn = w. We think of this item as the 9oal item to be
proved.

In summary, the CYK deduction system (and all the deductive parsing systems
we will define) can be specified with four components: a class of items; a set of
axioms; a set of inference rules; and a subclass of items, the goal items. These are
given in summary form in Figure 1.

This deduction system can be encoded straightforwardly by the following logic
program:

nt(A, I1 , I) "-

word(I , W),

(A ---> [w]),

Ii is I - I.

at(A, I, K) "-

nt(B, I, J),

a t (C , J , K),

(A---> [B, C]).

where A ---> [XI Xm] is the encoding of a production A --* XI .. • X m in the
grammar and word(i,wO holds for each input word wi in the string to be parsed.
A suitable bottom-up execution of this program, for example, using the semi-naive
bottom-up procedure [19], will behave similarly to the CYK algorithm on the given
grammar.

2.2. Proofs of Correctness

Rather than implement each deductive system like the CYK one as a separate
logic program, we wilt describe in Section 5 a meta-interpreter for logic programs

DEDUCTIVE PARSING 7

obtained from grammatical deduction systems. The meta-interpreter is just a vari-
ant of the semi-naive procedure specialized to programs implementing grammatical
deduction systems. We will show in Section 5 that our procedure generates only
items derivable from the axioms (soundness) and will enumerate all the derivable
items (completeness). Therefore, to show that a particular parsing algorithm is
correctly simulated by our meta-interpreter, we basically need to show that the
corresponding grammatical deduction system is also sound and complete with re-
spect to the intended interpretation of grammaticality items. By sound here, we
mean that every derivable item represents a true grammatical statement under the
intended interpretation, and by complete, we mean that the item encoding every
true grammatical statement is derivable. (We also need to show that the grammat-
ical deduction system is faithfully represented by the corresponding logic program,
but in general this will be obvious by inspection.)

3. D E D U C T I V E P A R S I N G OF C O N T E X T - F R E E G R A M M A R S

We begin the presentation of parsing methods stated as deduction systems with
several standard methods for parsing context-free grammars. In what follows, we
assume that we are given a string w = wl • .- wn to be parsed along with a context-
free grammar G = IN, E, P, S).

3.1. Pure Top-Down Parsing (Recursive Descent)
The first full parsing algorithm for arbitrary context-free grammars that we present
from this logical perspective is recursive-descent parsing. Given a context-free gram-
mar G = (N, E, P, S/, and a string w = wl . . . wn to be parsed, we will consider a
logic with items of the form [./3, j] where 0 < j < n. Such an item asserts tha t
the substring of the string w up to and including the j t h element, when followed
by the string of symbols 3, forms a sentential form of the language, that is, that
S ~ wl • • • w 9 . Note that the dot in the item is positioned just at the break point
in the sentential form between the portion that has been recognized (up through
index j) and the part that has not (3).

Taking the set of such items to be the formulas of the logic, and taking the
informal statement concluding the previous paragraph to provide a denotation for
the sentences, 1 we can explore a proof theory for the logic. We start with an axiom

[.s,0],

which is sound because S ~ S trivially.
Note that two items of the form [• wj+l/3, j] and [• ~, j + 1] make the same claim,

namely, tha t S ~ w l "" wjwj+13. Thus, it is clearly sound to conclude the latter

1A more formal s t a t emen t of the semant ics could be given, e.g., as

I truth if S ~, wl . . .w j /~
~[•/3, j]] = falsity otherwise.

8 s. M. SHIEBER ET AL.

Item form: [•/3, j]

Axioms: [* S, O]

Goals: [e , n]
F I G U R E 2. The top-down recursive-descent

Inference rules: deductive parsing system.
Scanning [• Wj+l~, j]

[. ~ , j + 1]

P r e d i c t i o n [• Bfl, j] [e 7~,j] B--t7

from the former, yielding the inference rule

[e Wj+ l/5, j]
[e ~ , j + l] '

which we will call the scanning rule.
A similar argument shows the soundness of the prediction rule:

[.B/3,j] B ---* 7.

Finally, the item [e ,n] makes the claim that S ~ Wl . . .wn , that is, that the
string w is admitted by the grammar. Thus, if this goal item can be proved from
the axiom by the inference rules, then the string must be in the grammar. Such
a proof process would constitute a sound recognition algorithm. As it turns out,
the recognition algorithm that this logic of items specifies is a pure top-down left-
to-right regime, a recursive-descent algorithm. The four components of the deduc-
tion system for top-down parsing---class of items, axioms, inference rules, and goal
i tems--are summarized in Figure 2.

To illustrate the operation of these inference rules for context-free parsing, we
will use the toy grammar of Figure 3. Given that grammar and the string

WlW2W3 = a lindy swings (1)

we can construct the following derivation using the rules just given:

1 [• S, 0] AXIOM
2 [• N P VP, 0] PREDICT from 1
3 [• D e t N OptRel VP, O] PREDICT from 2
4 [e a N OptRel VP, 0] PREDICT from 3
5 [e N OptRel VP, 1] SCAN from 4
6 [el indy OptRel VP, 1] PREDICT from 5
7 [• OptRel VP, 2] SCAN from 6
8 [• VP, 2] PREDICT from 7
9 [• IV, 2] PREDICT from 8

10 [• swings, 2] PREDICT from 9
11 [e,3] SCAN from 10

The last item is a goal item, showing that the given sentence is accepted by the
grammar of Figure 3.

DEDUCTIVE PARSING 9

S ~ NP VP Det ~ a

NP ~ Det N OptRel N ~ lindy

NP --~ PN P N ---+ Trip F I G U R E 3. An example con-
v P ---. T V N P I V ---. swings text-free grammar.
VP ---+ I V T V ---. dances

OptRel ---* RelPro VP RelPro ~ that
OptRel --,

The above derivation, as all the others we will show, contains just those items
tha t are strictly necessary to derive a goal i tem from the axiom. In general, a
complete search procedure, such as the one we describe in Section 5, generates items
tha t are either dead-ends or redundant for a proof of grammaticality. Furthermore,
with an ambiguous grammar, there will be several essentially different proofs of
grammaticali ty, each corresponding to a different analysis of the input string.

3 . 1 . 1 . P r o o f o f C o m p l e t e n e s s . We have shown informally above that the infer-
ence rules for top-down parsing are sound, but for any such system, we also need
the guarantee of c o m p l e t e n e s s : if a string is admit ted by the grammar, then for
tha t string, there is a derivation of a goal i tem from the initial item.

In order to prove completeness, we prove the following lemma: If S ~ 'wl .- - wj7
is a leftmost derivation (where 3, E V*), then the item [*3,,J] is generated. We
must prove all possible instances of this lemma. Any specific instance can be
characterized by specifying the string 3, and the integer j since S and wa - • - wj are
fixed. We shall denote such an instance by (3,,J). The proof will turn on ranking
the various instances and proving the result by induction on the rank. The rank of
the instance (3', J) is computed as the sum of j and the length of a shortest leftmost

derivation of S ~ w l . . • w j 3 , .

If the rank is zero, then j = 0 and 3, = S. Then, we need to show that [• S, 0] is
generated, which is the case since it is an axiom of the top-down deduction system.

For the inductive step, let (3', J) be an instance of the lemma of some rank r > 0,
and assume tha t the lemma is true for all instances of smaller rank. Two cases
arise.

C a s e 1. S =2;> W l " " w j 3 , in one step. Therefore, S ---+ W l " . w j 3 , is a rule of the
grammar. However, since [• S, 0] is an axiom, by one application of the
prediction rule (predicting the rule S -~ Wl---wj3,) and j applications of
the scanning rule, the i tem [e 3', J] will be generated.

C a s e 2. S ~ W l . . . w j 3 , in more than one step. Let us assume, therefore, tha t

S ~ wa • •. w j - k B 3 , ! ~ W l • •. wjj33" ~ where 3, = t33' r and B ~ w j - k + l • • " wj13.

The instance (B3/, j - k) has a strictly smaller rank than (3', J). Therefore,
by the induction hypothesis, the i tem [• B3, ~, j - k] will be generated. But
then, by prediction, the item [• w j - k + l " . . w j ~ , j - k] will be generated, and
by k applications of the scanning rule, the i tem [• B, j] will be generated.

This concludes the proof of the lemma. Completeness of the parser follows as a
corollary of the lemma since, if S ~ wa . . . wn , then by the lemma, the i tem [• , n]
will be generated.

Completeness proofs for the remaining parsing logics discussed in this paper
could be provided in a similar way by relating an appropriate notion of normal-form
derivation for the g rammar formalism under consideration to the item invariants.

10 S. M. SHIEBER ET AL.

I t e m form: [a o, j]

Axioms: [*, O]

Goals: [S *, n]
F I G U R E 4. The bottom-up shift-reduce de-

Inference Rules: ductive parsing system.
Shift [a . , j]

[awj+l * , j + 1]

[~ . , j]
R e d u c e [aB *, j] B --* 7

3. 2. Pure Bottom- Up Parsing (Shift-Reduce)

A pure bottom-up algorithm can be specified by such a deduction system as well.
Here, the items will have the form [a o, j]. Such an item asserts the dual of the

assertion made by the top-down items, that awj+l.. .w,~ ~ Wl . . .wn (or, equiv-

alently but less transparently dual, that a ~ Wl . . .w j) . The algorithm is then
characterized by the deduction system shown in Figure 4. The algorithm mim-
ics the operation of a nondeterministic shift-reduce parsing mechanism, where the
string of symbols preceding the dot corresponds to the current parse stack, and the
substring starting at the index j corresponds to the as yet unread input.

The soundness of the inference rules in Figure 4 is easy to see. The antecedent
of the shift rule claims that O l W j + 1 • "" W n ~ W 1 • "" Wn, but that is also what the

consequent claims. For the reduce rule, if aTwj+l "'" wn ~ wl • .. wn and B --* 7,

then by definition of ~ we also have aBWj+l .. • wn ~ wl "" • wn. As for complete-
ness, it can be proved by induction on the steps of a reversed rightmost context-free
derivation in a way very similar to the completeness proof of the last section.

The following derivation shows the operation of the bottom-up rules on example
sentence (1):

1 [o,O] AXIOM

2 [ao, 1] SHIFT from 1
3 [Det o , 1] REDUCE from 2

4 [Det l indy*, 2] SHIFT from 3
5 [Det N o , 2] REDUCE from 4
6 [Det N OptRelo,2] REDUCE from 5
7 [NPo,2] REDUCE from 6

8 [NP swings *,3] SHIFT from 7
9 [NP I V o, 3] REDUCE f r o m 8

10 [NP Y P o , 3] REDUCE from 9

11 [So,3] REDUCE f r o m 10

The last item is a goal item, which shows that the sentence is parsable according
to the grammar.

3.3. Earley's Algorithm

Stating the algorithms in this way points up the duality of recursive-descent and
shift-reduce parsing in a way that traditional presentations do not. The summary
presentation in Figure 5 may further illuminate the various interrelationships. As

DEDUCTIVE PARSING 11

Algorithm B o t t o m - U p T o p - D o w n E a r l e y ' s

Item form [~ • , J] [• 3, J] [i, A --* ~ •/3, j]

Invariant S :~ w l . . . wj /3 S :~ w l . " w i A 7

c~wj + l . . . w,~ ~ w l ." . w,~ c~w.i + l . . . w,~ ~ w i + l " . w ~

A x i o m s [• , 0] [• S, 01 [0, S' -~ • S, 0]

G o a l s I S . , n] [. , n] [0, S' -~ S . , ~]

[c~ •, j] [• W~+l/3, j] [i, A --+ c~ • w~+1/3, j]
Scanning [c~Wj+l •, j + 1] [•/3, j + 1] [i, A --* awj+l •/3, j + 1]

[i, A ---* a * B f l , j] Prediction [• B/5, j] B --~ 7 B --~
[• 7/?,J] [3", B--* •7, J]

[a7 *, J] B --* [i, A --* a • Bp, k] [k, B -- 7 ", J]
Completion [~B. , j] 7 [i, A --* ~B */3, j]

F I G U R E 5. S u m m a r y of parsing algori thms presented as deductive parsing sys-
tems. (In the axioms and goal items of Ear ley 's algorithm, S t serves as a new
nonterminal not in N.)

we will see, Ear ley ' s a lgori thm [8] can then be seen as the natural combinat ion of
those two algorithms.

In recursive-descent parsing, we keep a partial sentential form for the material
yet to be parsed, using the dot at the beginning of the string of symbols to remind
us tha t these symbols come after the point t ha t we have reached in the recognit ion
process. In shift-reduce parsing, we keep a partial sentential form for the mater ia l
t h a t has already been parsed, placing a dot at the end of the str ing to remind us
tha t these symbols come before the point t ha t we have reached in the recognition
process. In Ear ley ' s algorithm, we keep bo th of these partial sentential forms,
with the dot marking the point somewhere in the middle where recognition has
reached. The dot thus changes from a mnemonic to a necessary role. In addition,
Ear ley ' s a lgor i thm localizes the piece of sentential form tha t is being tracked to
t h a t in t roduced by a single product ion. (Because the first two parsers do not limit
the informat ion stored in an i tem to only local information, they are not practical
a lgori thms as stated. Rather , some scheme for sharing information among items
would be necessary to make them t rac table [16, 4].)

The items of Ear ley ' s a lgori thm are thus of the form [i, A --* a •/5, j] where a and
3 are strings in V* and A --~ a/5 is a product ion of the grammar . As was the case
for the previous two algorithms, the j " index provides the posit ion in the string t h a t
recognit ion has reached, and the dot position marks tha t point in the part ial sen-
tent ial form. In these items, however, an ext ra index i marks the s tar t ing posit ion

12 S .M. SHIEBER ET AL.

of the partial sentential form, as we have localized attention to a single production.
In summary, an item of the form [i, A --* a • 13, j] makes the top-down claim that

S ~ w l • " • w ~ A T , and the bottom-up claim that (~Wj+l •. • w n ~ w i + l • • • w~ . The
two claims are connected by the fact that A -~ c~/3 is a production in the grammar.

The algorithm itself is captured by the specification found in Figure 5. Proofs
of soundness and completeness are somewhat more complex than those for the
pure top-down and bottom-upcases shown above, and are directly related to the
corresponding proofs for Earley's original algorithm [8].

The following derivation, again for sentence (1), illustrates the operation of the
Earley inference rules:

1 [0, S t --+ • S , 0] AXIOM

2 [0, S -~ • N P V P , 0] PREDICT from 1

3 [0, N P -~ • D e t N O p t R e l , 0] PREDICT from 2
4 [0, D e t --~ • a, 0] PREDICT from 3

5 [0, Det ~ a . , 1] SCAN from 4

6 [0, N P ~ D e t • N O p t R e l , 1] COMPLETE from 3 and 5
7 [1, N ~ .. lindy, 1] PREDICT from 6
8 [1, N ~ l i n d y . , 2] SCAN from 7
9 [0, N P --+ D e t N • O p t R e l , 2] C O M P L E T E from 6 and 8

10 [2, OptRel ~ .., 2] PREDICT from 9

11 [0, N P -~ D e t N O p t R e l . , 2] COMPLETE from 9 and 10
12 [0, S --~ N P • V P , 2] COMPLETE from 2 and 11
13 [2, V P -~ • I V , 2] PREDICT from 12

14 [2, I V -~ • swings, 2] P R E D I C T from 13
15 [2, I V --+ swings . , 3] SCAN from 14

16 [2, V P --~ I V o , 3] COMPLETE from 13 and 15

17 [0, S -~ N P V P . , 3] COMPLETE from 12 and 16
18 [0, S ~ --+ So ,3] COMPLETE from 1 and 17

The last item is again a goal item, so we have an Earley derivation of the gram-
maticality of the given sentence.

4. D E D U C T I V E P A R S I N G F O R O T H E R F O R M A L I S M S

The methods (and implementation) that we developed have also been used for rapid
prototyping and experimentation with parsing algorithms for grammatical frame-
works other than context-free grammars. They can be naturally extended to handle
augmented phrase-structure formalisms such as logic grammar and constraint-based
formalisms. They have been used in the development and testing of algorithms for
parsing categorial grammars, tree-adjoining grammars, and lexicalized context-free
grammars. In this section, we discuss these and other extensions.

4.1. A u g m e n t e d P h r a s e - S t r u c t u r e F o r m a l i s m s

It is straightforward to see that the three deduction systems just presented can be
extended to constraint-based grammar formalisms with a context-free backbone.

DEDUCTIVE PARSING 13

The basis for this extension goes back to metamorphosis grammars [7] and definite-
clause grammars (DCG) [23]. In those formalisms, grammar symbols are first-order
terms, which can be understood as abbreviations for the sets of all their ground
instances. Then, an inference rule can also be seen as an abbreviation for all of
its ground instances, with the metagrammatical variables in the rule consistently
instantiated to ground terms. Computationally, however, such instances are gen-
erated lazily by accumulating the consistency requirements for the instantiation
of inference rules as a conjunction of equality constraints and maintaining that
conjunction in normal form--sets of variable subst i tut ions--by unification. (This
is directly related to the use of unification to avoid "guessing" instances in the
rules of existential introduction and universal elimination in a natural-deduction
presentation of first-order logic.)

We can move beyond first-order terms to general constraint-based grammar for-
malisms [35, 6] by taking the above constraint interpretation of inference rules as
basic. More explicitly, a rule such as Earley completion

[i , A - * a . Bfl, k] [k , B - * y . , j]
[i, A ~ aB • ~, j]

is interpreted as shorthand for the constrained rule

[i , A - - * a * B ~ , k] [k , B ' - ~ * , j] A - A ' a n d B - B ' a n d B - B "
[i, A' --* aB" • ~, j]

where " - " is the term equality predicate for the constraint-based grammar formal-
ism being interpreted [35].

When such a rule is applied, the three constraints on which it depends are
conjoined with the constraints for the current derivation. In the particular case of
first-order terms and antecedent-to-consequent rule application, completion can be
given more explicitly as

[i , A ~ a . B ~ , k] [k , B ' ~ . , j] a = m g u (B , B ')
[i, a(A --~ c~B • ~), j]

where mgu(B, B') is the most general unifier of the terms B and B'. This is
the interpretation implemented by the deduction procedure described in the next
section.

The move to constraint-based formalisms raises termination problems in proof
construction that did not arise in the context-free case. In the general case, this is
inevitable because a formalism like DCG [23] or PATR-II [33] has Turing-machine
power. However, even if constraints are imposed on the context-free backbone of
the grammar productions to guarantee decidability, such as offline parsability [5,
24, 35], the prediction rules for the top-down and Earley systems are problematic.
The difficulty is that prediction can feed on its own results to build unboundedly
large items. For example, consider the DCG

s ~ r(0, N)

r(X, N) --~ r(s(X) , N)b

r(N, N) ~ a.

14 S. M. SHIEBER ET AL.

It is clear that this grammar accepts strings of the form ab n, with the variable N
being instantiated to the unary (successor) representation of n. It is also clear tha t
the bottom-up inference rules will have no difficulty in deriving the analysis of any
input string. However, Earley prediction from the item [0, s --* • r(0, N), 0] will
generate an infinite succession of items:

[0, s ~ • r(O, g) , O]

[0, r(O, N) --* • r(s(O), N) b, 0]

[0, r(s(O), N) -~ * r(s(s(O)), N) b, O]

[0, r(s(s(O)), N) --* • r(s(s(s(O))), N) b, 0]

This problem can be solved in the case of the Earley inference rules by observing
that prediction is just used to narrow the number of items to be considered by
scanning and completion, by maintaining the top-down invariant S ~ Wl • " • wiA~/.
But this invariant is not required for soundness or completeness, since the bottom-
up invariant is sufficient to guarantee that items represent well-formed substrings of
the input. The only purpose of the top-down invariant is to minimize the number
of completions that are actually attempted. Thus, the only indispensable role of
prediction is to make available appropriate instances of the grammar productions.
Therefore, any relaxation of prediction that makes available items of which all the
items predicted by the original prediction rule are instances will not affect soundness
or completeness of the rules. More precisely, it must be the case that any item
[i, B --+ * % i] that the original prediction rule would create is an instance of some
item [i, B ~ ~ * ~/, i] created by the relaxed prediction rule. A relaxed prediction
rule will create no more items than the original predictor, and in fact, may create
far fewer. In particular, repeated prediction may terminate in cases like the one
described above• For example, if the prediction rule applied to [i, A --+ a * B'/3, j]
yields [i, ¢(B --+ * 7), i] where a = mgu(B, B') , a relaxed prediction rule might yield
[i, a ' (B -+ * ~,), i], where ~r' is a less specific substitution than a chosen so that only
a finite number of instances of [i, B --+ * % i] are ever generated• A similar notion for
general constraint grammars is called restriction [34, 35], and a related technique
has been used in partial evaluation of logic programs [28].

The problem with the DCG above can be seen as following from the computation
of derivation-specific information in the arguments to the nonterminals. However,
applications frequently require construction of the derivation for a string (or similar
information), perhaps for the purpose of further processing. It is simple enough
to augment the inference rules to include with each item a derivation. For the
Earley deduction system, the items would include a fourth component representing
a sequence of derivation trees, one for each element of the right-hand side of the
item before the dot. Each derivation tree has nodes labeled by productions of
the grammar. The inference rules would be modified as shown in Figure 6. In
the completion rule, we use the following notations: tree(l, D) denotes the tree
whose root is labeled by the node label (grammar production) l and whose children
are the trees in the sequence D in order; and S • s denotes the appending of the
element s at the end of the sequence S.

Of course, use of such rules makes the caching of lemmas essentially useless,
as lemmas derived in different ways are never identical. Appropriate methods of
implementation that circumvent this problem are discussed in Section 5.4.

DEDUCTIVE PARSING 15

I t e m fo rm: [i, Am * fl, j, D]

A x i o m s : [0, ,5" ~ * S, O, O]

Goals : [0, S" ~ S • , n, D]

I n f e r e n c e ru les :
[i, A --* oL • wj+lf l , j , D]

S c a n n i n g [i , A - - - * a w j + l * f l , j + l ,D]

[i ,A ---+ a * Bfl , j ,D]
P r e d i c t i o n [j, B -~ * 7, J, O] B -~ 7

C o m p l e t i o n [i, A --~ a * Bfl , k, n l] [k, B ---+ 7 * , J, D2]
[i, A --* a B • fl, j , D1 . t ree(B --* 7, D~)]

F I G U R E 6. The Earley deductive parsing system modified to generate derivation
trees.

4.2. Combinatory Categorial Grammars
A combinatory categorial grammar [1] consists of two parts: (1) a lexicon that
maps words to sets of categories; and (2) rules for combining categories into other
categories.

Categories are built from atomic categories and two binary operators: forward
~lash (/) and backward slash (\). Informally speaking, words having categories of
the form X/Y,X\Y, (W/X)/Y, etc. are to be thought of as functions over Ys.
Thus, the category S\NP of intransitive verbs should be interpreted as a function
from noun phrases (NP) to sentences (S). In addition, the direction of the slash
(forward as in X/Y or backward as in X\Y) specifies where the argument must be
found, immediately to the right for / or immediately to the left for \.

For example, a CCG lexicon may assign the category S\NP to an intransitive
verb (as the word sleeps). S\NP identifies the word (sleeps) as combining with a
(subject) noun phrase (NP) to yield a sentence (S). The back slash (\) indicates
tha t the subject must be found immediately to the left of the verb. The forward
slash / would have indicated that the argument must be found immediately to the
right of the verb.

More formally, categories are defined inductively as follows2: Given a set of basic
categories,

• Basic categories are categories.
• If cl and c2 are categories, then (C1/C2) and (c1\e2) are categories.

The lexicon is defined as a mapping f from words to finite sets of categories.
Figure 7 is an example of a CCG lexicon. In this lexicon, likes is encoded as a
transitive verb (SkNP)/NP, yielding a sentence (S) when a noun phrase (NP)
object is found to its right and when a noun phrase subject (NP) is then found to
its left.

Categories can be combined by a finite set of rules that fall into two classes:
application and composition.

2The nota t ion for backward slash used in this paper is consistent with one defined by Ades
and S teedman [1]: X \ Y is in terpreted as a function from Ys to Xs. Al though this nota t ion has
been adop ted by the major i ty of combinatory categorial grammarians , o ther frameworks [15] have
adop ted the opposi te in terpreta t ion for X k Y : a function from X s to Ys.

16 S. M. SHIEBER ET AL.

Word Category
Trip NP
merengue NP F I G U R E 7. An example CCG lexicon.
likes (S\NP)/NP
certainly (S\NP)/(S\NP)

Application allows the simple combination of a function with an argument to
its right (forward application) or to its left (backward application). For example,
the sequence (S\NP)/NP NP can be reduced to S\NP by applying the forward
application rule. Similarly, the sequence NP S\NP can be reduced to S by
applying the backward application rule.

Composition allows to combine two categories in a similar fashion as functional
composition. For example, forward composition combines two categories of the form
X / Y Y/Z to another category X/Z. The rule gives the appearance of "canceling"
Y, as if the two categories were numerical fractions undergoing multiplication. This
rule corresponds to the fundamental operation of "composing" the two functions,
the function X / Y from Y to X, and the function Y/Z from Z to Y.

The rules of composition can be specified formally as productions, but unlike the
productions of a CFG, these productions are universal over all CCGs. In order to
reduce the number of cases, we will use a vertical bar I as an instance of a forward
or backward slash, / or \. Instances of I on the left- and right-hand sides of a single
production should be interpreted as representing slashes of the same direction. The
symbols X, Y, and Z are to be read as variables which match any category.

Forward application: X ~ X / Y Y

Backward application: X --~ Y X \ Y
Forward composition: X[Z ~ X / Y YIZ
Backward composition: X]Z--~ YIZ X \ Y

A string of words is accepted by a CCG, if a specified category (usually S) derives
a string of categories that is an image of the string of words under the mapping f .

A bottom-up a lgor i thm~ssent ia l ly the CYK algorithm instantiated for these
productions--can be easily specified for CCGs. Given a CCG and a string w =
wl . . . wn to be parsed, we will consider a logic with items of the form IX, i, j] where
X is a category and i and j are integers ranging from 0 to n. Such an item asserts
that the substring of the string w from the i + l th element up to the j t h element
can be reduced to the category X. The required proof rules for this logic are given
in Figure 8.

With the lexicon in Figure 7, the string

Trip certainly likes merengue (2)

can be recognized as follows:

1 [NP, O, 1] AXIOM
2 [(S\NP)/(S\NP),I,2] AXIOM
3 [(S\NP)/NP, 2,3] AXIOM
4 [(S\NP)/NP, 1, 3] FORWARD COMPOSITION from 2 and 3
5 [NP, 3,4] AXIOM
6 [(S\NP), 1, 4] FORWARD APPLICATION from 4 and 5
7 [S, 0, 4] BACKWARD APPLICATION from 1 a n d 6

DEDUCTIVE PARSING 17

I t e m fo rm: [X, i, j]

Ax ioms : [X,i , i+ 1] where X E f(Iri+l)

Goals : [S, O, n]

I n f e r e n c e rules :
[X/Y,i,j] [Y,j,k]

F o r w a r d A p p l i c a t i o n [X, i, k]

B a c k w a r d A p p l i c a t i o n [Y, i, j!x,[X\Y,[j, k]
i, k]

[X/Y,i,j] [Y/Z,j,k]
F o r w a r d C o m p o s i t i o n 1 IX~Z, i, k]

[X/Y,i,j] [YkZ, j,k]
F o r w a r d C o m p o s i t i o n 2 Ix\z, i, k]

[Y/Z, i, j] [X\Y, j, k]
B a c k w a r d C o m p o s i t i o n 1 IX~Z, i, k]

[YkZ, i,j] [XkY, j,k]
B a c k w a r d C o m p o s i t i o n 2 Ix\z, i, k]

F I G U R E 8. The CCG deductive parsing system.

Other extensions of CCG (such as generalized composition and coordination)
can be easily implemented using such deduction parsing methods.

4.3. Tree-Adjoining Grammars and Related Formalisms

The formalism of tree-adjoining grammars (TAG) [11, 10] is a tree-generating sys-
tem in which trees are combined by an operation of adjunction rather than the
substitution operation of context-free grammars. 3 The increased expressive power
of adjunction allows important natural-language phenomena such as long-distance
dependencies to be expressed locally in the grammar, that is, within the relevant
lexical entries, rather than by many specialized context-free rules [14].

A tree-adjoining grammar consists of a set of elementary trees of two types:
initial trees and auxiliary trees. An initial tree is complete in the sense that its
frontier includes only terminal symbols. An example is given in Figure 9(a). An
auxiliary tree is incomplete; it has a single node on the frontier, the foot node,
labeled by the same nonterminal as the root. Figure 9(b) provides an example.
(By convention, foot nodes are redundantly marked by a diacritic asterisk (,) as in
the figure.)

Although auxiliary trees do not themselves constitute complete grammatical
structures, they participate in the construction of complete trees through the ad-
junction operation. Adjunction of an auxiliary tree into an initial tree is depicted
in Figure 10. The operation inserts a copy of an auxiliary tree into another tree

3Most practical variants of TAG include both adjunct ion and subst i tu t ion, bu t for purposes of
exposi t ion, we restr ict our a t ten t ion to adjunct ion alone, since subs t i tu t ion is formally dispensable
and its implementa t ion in parsing systems such as we describe is very much like the context-free
operat ion. Similarly, we do not address o ther issues such as adjoining const ra ints and ex tended
derivations. Discussion of those can be found elsewhere [29, 30].

18 S . M . S H I E B E R E T AL.

s vP s F I G U R E 9. An example
~ ~ tree-adjoining grammar consisting

NP VP VP* Adv NP VP of one initial tree (a) and one aux-
[A iliary tree (b). These trees can be

I / \ used to form the derived tree (c)
Trip V nimbly Trip VP Adv for the sentence "Trip rumbas nim-

bly." (In an actual English gram-
mar, the tree depicted in (a) would

rumbas v nimbty not be an elementary tree, but it-

self derived from two for trees, one
each lexical item, by a substitution rumbas
operation.)

(a) (b) (c)

initial tree auxiliary tree derived tree

X

X *

x t / X t
i l

tt
j k

F I G U R E 10. The operation of adjunction. The auxiliary tree is spliced into the
initial tree to yield the derived tree at right.

in place of an interior node that has the same label as the root and foot nodes of
the auxiliary tree. The subtree that was previously connected to the interior node
is reconnected to the foot node of the copy of the auxiliary tree. For example, the
auxiliary tree in Figure 9(b) can be adjoined at the V P node of the initial tree in
Figure 9(a) to form the derived tree in Figure 9(c). Adjunction in effect supports
a form of string wrapping, and is therefore more powerful than the substitution
operation of context-free grammars.

A tree-adjoining grammar can be specified as a quintuple G = (N, E , I , A, S),
where N is the set of nonterminals including the start symbol S, E is the disjoint
set of terminal symbols, I is the set of initial trees, and A is the set of auxiliary
trees.

To describe adjunction and TAG derivations, we need notation to refer to tree
nodes, their labels, and the subtrees they define. Every node in a tree a can be
specified by its address, a sequence of positive integers defined inductively as follows:
the empty sequence e is the address of the root node, and p. k is the address of the

DEDUCTIVE PARSING 19

k - th child of the node at address p. Foot(a) is defined as t he address of the foot

node of t he t ree a if t he re is one; o therwise Foot(a) is undefined.
We deno te by a@p the node of a a t address p, and by a / p the sub t ree of a

roo ted a t a@p. The g r a m m a r symbol t h a t labels node u is deno ted by Label(u).
Given an e l e m e n t a r y t ree node u, Adj(u) is defined as the set of aux i l i a ry t rees t h a t
can be ad jo ined at node u. 4

F ina l ly , we deno te by a[~x H p l , . . . , / ~ k ~-~ Pk] the resul t of ad jo in ing the t rees
/31 , . . . , /3k a t d i s t inc t addresses P l , . . . , Pk in the t ree a .

T h e set of t rees D(G) der ived by a T A G G can be defined induct ively. D(G) is
t he smal les t set of t rees such t h a t

1. I U A c_ D(G), t h a t is, all e l emen ta ry t rees are derivable, and
2. Define D (a , G) to be the set of all t rees der ivable as a [~ l ~-~ p i , . . . , ~k ~-* pk]

w h e r e / 3 1 , . . . , / 3 k E D(G) and P l , . . - , Pk are d i s t inc t addresses in a . Then , for
all e l e m e n t a r y t rees a c I U A, D(a, G) c D(G). Obviously, if a is an ini t ia l
t ree , t he t ree thus der ived will have no foot node, and if a is an aux i l i a ry t ree,
t he der ived t ree will have a foot node.

T h e val id de r iva t ions in a T A G are the t rees in D (a s , G) where a s is an in i t ia l t ree
whose roo t is labe led wi th t he s t a r t symbol S.

Parse r s for T A G can be descr ibed jus t as those for C F G , as deduc t ion sys tems.
T h e pa r se r we present here is a va r ian t of the C Y K a lgor i thm ex t ended for TAGs,
s imi lar , a l t hough not ident ical , to t h a t of V i j ay -Shanker [36]. We chose it for ex-
p o s i t o r y reasons: i t is by far the s imples t T A G pars ing a lgor i thm, in pa r t because
i t is r e s t r i c t ed to T A G s in which e l emen ta ry t rees are at most b i n a r y branching ,
b u t p r i m a r i l y because it is pure ly a b o t t o m - u p sys tem; no p red ic t ion is per formed.
Desp i t e i ts s implic i ty , t he a lgo r i thm mus t handle the increased genera t ive c a p a c i t y
of T A G s over t h a t of context - f ree g rammars . Consequent ly , the worst case com-
p lex i ty for t he parser we presen t is worse t h a n for CFGs--O(n 6) t ime for a sentence
of l eng th n.

T h e p resen t a lgo r i thm uses a dotted tree to t r ack the progress of pars ing. A
d o t t e d t ree is an e l e m e n t a r y t ree of the g r a m m a r wi th a do t ad jacen t to one of
t he nodes in t he tree. The do t i tself m a y be in one of two pos i t ions re la t ive to the
specif ied node: above or below. A d o t t e d t ree is thus specified as an e l e me n ta ry
t ree a , an address p in t h a t t ree, and a marker to specify the pos i t ion of the do t
re la t ive to the node. We will use the no t a t i on u ° and Uo for d o t t e d t rees wi th the
do t above and below node u, respect ively. 5

In o rde r to t r a c k the po r t i on of the s t r ing covered by the p roduc t ion up to the do t
pos i t ion , the C Y K a lgo r i t hm makes use of two indices. In a d o t t e d t ree, however,
t he re is a fur ther compl ica t ion in t h a t the e l emen ta ry t ree m a y conta in a foot node

4For TAGs with no constraints on adjunction (for instance, as defined here), Adj(u) is just the
set of elementary auxiliary trees whose root node is labeled by Label(u). When other adjoining
constraints are allowed, as is standard, they can be incorporated through a revised definition of
Adj.

5Although both this algorithm and Earley's use a dot in items to distinguish the progress of a
parse, they are used in quite distinct ways. The dot of Earley's algorithm tracks the left-to-right
progress of the parse among siblings. The dot of the CYK TAG parser tracks the pre-/post-
adjunction status of a single node. For this reason, when generalizing Earley's algorithm to
TAG parsing [29], four dot positions are used to simultaneously track pre~/post-adjunction and
before/after node left-to-right progress.

20 S. M. S H I E B E R E T AL.

so that the string covered by the elementary tree proper has a gap where the foot
node occurs. Thus, in general, four indices must be maintained: two (i and l in
Figure 10) to specify the left edge of the auxiliary tree and the right edge of the
parsed portion (up to the dot position) of the auxiliary tree, and two more (j and
k) to specify the substring dominated by the foot node.

The parser therefore consists of inference rules over items of the following forms:
[v', i, j, k, l] and Iv., i, j, k, l], where

• p is a node in an elementary tree,
• i , j , k , l are indices of positions in the input string Wl-- .w~ ranging over

{0 , . . . , n} U {_}, where _ indicates that the corresponding index is not used
in that particular item.

An item of the form [c~@p*, i, _, _, l] specifies that there is a tree T E D((~/p, G),
with no foot node, such that the fringe of T is the string W~+l • .. wt. An item of
the form [c~@p*, i, j, k, 1] specifies that there is a tree T C D (a / p , G), with a foot
node, such that the fringe of T is the string Wi+l " " wj Labe l (Foo t (T)) Wk+l .-. wt.
The invariants for [a@p., i, _, _, l] and [a@p., i, j, k, l] are similar, except that the
derivation of T must not involve adjunction at node a@p.

The algorithm preserves this invariant while traversing the derived tree from
bottom to top, starting with items corresponding to the string symbols themselves,
which follow from the axioms

[v*, i, _, _, i + 1] Label(v) = Wi+l

combining completed subtrees into larger ones, and combining subtrees before ad-
junction (with dot below) and derived auxiliary trees to form subtrees after ad-
junction (with dot above). Figure 11 depicts the movement of the dot from bot tom
to top as parsing proceeds. In Figure 11(a), the basic rules of dot movement not
involving adjunction are shown, including the axiom for terminal symbols, the com-
bination of two subchildren of a binary tree or one child of a unary subtree, and
the movement corresponding to the absence of an adjunction at a node. These are
exactly the rules that would be used in parsing within a single elementary tree.
Figure 11(b) displays the rules involved in parsing an adjunction of one tree into
another.

These dot movement rules are exactly the inference rules of the TAG CYK
deductive parsing system, presented in full in Figure 12. In order to reduce the
number of cases, we define the notation i U j for two indices i and j as follows:

i j = _

i U j = J i = _
i i = j

u n d e f i n e d o therwise .

Although this parser works in time O(n6)- - the Adjoin rule with its six indepen-
dent indices is the step that accounts for this complexity--and its average behavior
may be better, it is in practice too inefficient for practical use for two reasons. First,
an at tempt is made to parse all auxiliary trees starting bottom-up from the foot
node, regardless of whether the substring between the foot indices actually can be
parsed in an appropriate manner. This problem can be alleviated, as suggested
by Vijay-Shanker and Weir [37], by replacing the Foot Axiom with a Complete

DEDUCTIVE PARSING 21

D

,4 • !ii!i. Adjoin

A •

B ! No Adj°in

~ lete Binary

l
• • i • l C• a Terminal Foot

[i= / ~ Axiom ii] Axiom

\ j
/ , \
p (D) q

j k

(a) (b)

F I G U R E 11. Examples of dot movement in the CYK tree traversal implicit in
the TAG parsing algorithm.

Foot rule tha t generates the item [~@Foot(fi)o,p,p,q,q] only if there is an item
[u.,p, j, k, q] where/3 E Adj(u), i.e.,

C o m p l e t e Foo t [u.,p,j,k,q] /3 E Adj(u).
p, p, q, q]

This complicates the invariant considerably, but makes auxiliary tree parsing much
more goM-directed. Second, because of the lack of top-down prediction, at tempts
are made to parse elementary trees that are not consistent with the left context.
Predictive parsers for TAG can be, and have been, described as deductive systems.
For instance, Schabes [29] provides a detailed explanation for a predictive left-to-
right parser for TAG inspired by the techniques of Earley's algorithm. Its worst-
case complexity is O(n 6) as well, but its average complexity on English grammar
is well superior to its worst case, and also to the CYK TAG parser. A parsing
system based on this algorithm is currently being used in the development of a
large English tree-adjoining grammar at the University of Pennsylvania [21].

Many other formalisms related to tree-adjoining grammars have been proposed,
and the deductive parsing approach is applicable to these as well. For instance,
as part of an investigation of the precise definition of TAG derivation, Schabes
and Shieber describe a compilation of tree-adjoining grammars to linear indexed
grammars, together with an efficient algorithm, stated as a deduction system, for

22 s . M . SHIEBER ET AL.

I t e m form: [v', i, j, k, l]
[v. , i , j ,k , l]

Axioms :
T e r m i n a l A x i o m [v °, i, _, _, i + 1] Label(v) = wi+l

E m p t y S t r i ng A x i o m [v °, i i] Label(v) = e

Foot A x i o m [13@Fool(13)°, p, p, q, q] 13 E A

Goals: [aQe °, 0 , n] a E I and Label(a@e) = S

I n f e r e n c e Rules :

C o m p l e t e U n a r y [c~@(p • 1)', i, j, k, 11 [a@p°, i, j, k, 1] a@(p. 2) undefined

C o m p l e t e B ina ry [a@(p. 1)°,i , j ,k, l] [a@(p. 2)° , l , j ' ,U, rn]
[o~@p°, i, j U j ' , k U k', m]

No A d j o i n [v°, i, j, k, l]
[v ' , i , j ,k , l]

A d j o i n [13@e',i,p,q,l] [v. ,p, j ,k,q]
[v ' , i , j ,k , I] 13 E Adj(v)

F I G U R E 12. The CYK deductive parsing system for tree-adjoining grammars.

recognition and parsing according to the compiled grammar [30]. A prototype of
this parser has been implemented using the deduction engine described here. (In
fact, it was as an aid to testing this algorithm, with its eight inference rules, each
with as many as three antecedent items, that the deductive parsing meta-interpreter
was first built.)

Schabes and Waters [31, 32] suggest the use of a restricted form of TAG in
which the foot node of an auxiliary tree can occur only at the left or right edge of
the tree. Since the portion of string dominated by an auxiliary tree is contiguous
under this constraint, only two indices are required to track the parsing of an
auxiliary tree adjunction. Consequently, the formalism can generate only context-
free languages and can be parsed in cubic time. The resulting system, called tree
insertion grammar (TIG), is a compromise between the parsing efficiency of context-
free grammar and the elegance and lexical sensitivity of tree-adjoining grammar.
TIG has also been used to parse CFGs more quickly by using a construction that
converts a context-free grammar into a lexicalized tree insertion grammar (LTIG)
that preserves the trees produced. The deductive parsing meta-interpreter has also
been used for rapid prototyping of an Earley-style parser for TIG [32].

4.4. Inadequacy for Sequent Calculi

All the parsing logics discussed here have been presented in a natural-deduction
format that can be implemented directly by bottom-up execution. However, im-
portant parsing logics, in particular the Lambek calculus [15, 18], are better pre-
sented in a sequent-calculus format. The main reason for this is that those systems
use nonatomic formulas that represent concurrent or hypothetical analyses. For
instance, if for arbitrary u with category B we conclude that vu has category A,
then in the Lambek calculus we can conclude that v has category A/B.

DEDUCTIVE PARSING 23

The main difficulty with applying our techniques to sequent systems is that
computationally such systems are designed to be used in a top-down direction. For
instance, the rule used for the hypothetical analysis above has the form

FBF-A
F I- A/B" (3)

It is reasonable to use this rule in a goal-directed fashion (consequent to antecedent)
to show F F- A/B, but using it in a forward direction is impractical because B must
be arbitrarily assumed before knowing whether the rule is applicable.

More generally, in sequent formulations of syntactic calculi, the goal sequent for
showing the grammaticality of a string wi has the form

W1. . , Wn I- S

where Wi gives the grammatical category of wi and S is the category of a sentence.
Proof search proceeds by matching current sequents to the consequents of rules
and trying to prove the corresponding antecedents, or by recognizing a sequent
as an axiom instance A F- A. The corresponding natural deduction proof would
start from the assumptions W1, . . . , Wn and t ry to prove S, which is just the proof
format that we have used here. However, sequent rules like (3) above correspond
to the introduction of an additional assumption (not one of the W~) at some point
in the proof and its later discharge, as in the natural-deduction detachment rule
for propositional logic. But such undirected introduction of assumptions just in
case they may yield consequences that will be needed later is computationally very
costly. 6 Systems that make full use of the sequent formulation therefore seem to
require top-down proof search. It is, of course, possible to encode top-down search
in a bottom-up system by using more complex encodings of search state, as is done
in Earley's algorithm or in the magic sets/magic templates compilation method for
deductive databases [3, 25]. Pentus [22], for instance, presents a compilation of
Lambek calculus to a CFG, which can then be processed by any of the standard
methods. However, it is not clear yet that such techniques can be applied effectively
to grammatical sequent calculi so that they can be implemented by the method
described here.

5. C O N T R O L A N D I M P L E M E N T A T I O N

The specification of inference rules, as carried out in the previous two sections,
only partially characterizes a parsing algorithm, in that it provides for what items
are to be computed, but not in what order. This further control information is
provided by choosing a deduction procedure to operate over the inference rules. If
the deduction procedure is complete, it actually makes little difference in what
order the items are enumerated, with one crucial exception: we do not want
to enumerate an item more than once. To prevent this possibility, it is stan-
dard to maintain a cache of lemmas, adding to the cache only those items that

6There is more than a passing similarity between this problem and the problem of pure bo t tom-
up parsing wi th g rammars wi th gaps. In fact, a natural logical formulation of gaps is as assump-
t ions discharged by the wh-phrase they s t and for [20, 9].

24 S. M. SHIEBER ET AL.

have not been seen so far. The cache plays the same role as the chart in chart-
parsing algorithms [13], the well-formed substring table in CYK parsing [12, 38],
and the state sets in Earley's algorithm [8]. In this section, we develop a forward-
chaining deduction procedure that achieves this elimination of redundancy by keep-
ing a chart.

I tems should be added to the chart as they are proved. However, each new
item may itself generate new consequences. The issue as to when to compute
the consequences of a new item is subtle. A standard solution is to keep a sep-
arate agenda of items tha t have been proved, but whose consequences have not
been computed. When an item is removed from the agenda and added to the
chart, its consequences are computed and themselves added to the agenda for later
consideration.

Thus, the general form of an agenda-driven, chart-based deduction procedure is
as follows:

1. Initialize the chart to the empty set of items and the agenda to the axioms
of the deduction system.

2. Repeat the following steps until the agenda is exhausted:

(a) Select an item from the agenda, called the trigger item, and remove it.
(b) Add the trigger item to the chart, if necessary.
(c) If the trigger item was added to the chart, generate all items tha t are new

immediate consequences of the trigger item together with all items in the
chart, and add these generated items to the agenda.

3. If a goal item is in the chart, the goal is proved (and the string recognized);
otherwise it is not.

There are several issues that must be determined in making this general proce-
dure concrete, which we describe under the general topics of eliminating redundancy
and providing efficient access. At this point, however, we will show that , under rea-
sonable assumptions, the general procedure is sound and complete.

In the arguments that follow, we will assume tha t items are always ground, and
thus derivations are as defined in Section 2. A proof for the more general case, in
which items denote sets of possible grammatical i ty judgments, would require more
intricate definitions for items and inference rules, without changing the essence of
the argument.

SOUNDNESS. W e need to show that if the above procedure places i tem I in the
chart when the agenda has been initialized in step (1) with items A 1 , . . . , Ak, then
A 1 , . . . , A k ~- I . Since any item in the chart must have been in the agenda, and
been placed in the chart by step (2b), it is sufficient to show tha t A 1 , . . . , Ak F- I
for any I in the agenda. We show this by induction on the stage ~(I) of I , the
number of the iteration of step (2) at which I has been added to the agenda, or 0 if
I has been placed in the agenda at step (1). Note tha t since several items may be
added to the agenda in any given iteration, many items may have the same stage
number.

If ~(I) = 0, I must be an axiom, and thus the trivial derivation consisting of I
alone is a derivation of I from A 1 , . . . , Ak.

Assume that A I , . . . , Ak F- J for ~(J) < n and that [I(I) = n. Then I must have
been added to the agenda by step (2c), and thus there are items J 1 , . . . , Jm in the

D E D U C T I V E P A R S I N G 2 5

chart and a rule instance such that

J1 "'" Jm
(side conditions on J 1 , . . . , Jm, I)

I

where the side conditions are satisfied. Since J1,... ,Jm are in the chart, they
must have been added to the agenda at the latest at the beginning of iteration n
of step (2), that is, ~(J~) < n. By the induction hypothesis, each J~ must have
a derivation Ai from A1, . . . ,Ak. But then, by definition of derivation, the con-
catenation of the derivations A 1 , . . . , Am followed by I is a derivation of I from
A1 , . . . , Ak.

COMPLETENESS. We want to show that if A I , . . . , A k ~- I, then I is in the
chart at step (3). Actually, we can prove something stronger, namely, that I
is eventually added to the chart, if we assume some form of fairness for the
agenda. Then we will have covered cases in which the full iteration of step (2)
does not terminate, but step (3) can be interleaved with step (2) to recognize the
goal as soon as it is generated. The form of fairness we will assume is that if
~(I) < ~(J), then item I is removed from the agenda by step (2a) before item
J. The agenda mechanism described in Section 5.3 below satisfies this fairness
assumption.

We show completeness by induction on the length of any derivation D1, . . •, Dn
of I from A 1 , . . . , Ak. (Thus, we show implicitly that the procedure generates every
derivation, although in general, it may share steps among derivations.)

For n = 1, I = D1 = Ai for some i. It will thus be placed in the agenda
at step (1), that is, ~(I) = 0. Thus, by the fairness assumption, I will be re-
moved from the agenda in at most k iterations of step (2). When it is, it is
either added to the chart as required, or the chart already contains the same
item. (See discussion of the "if necessary" proviso of step (2b) in Section 5.1
below.)

Assume now that the result holds for derivations of length less than n. Consider
a derivation D 1 , . . . , Dn = I. Either i is an axiom, in which case we have just shown
it will have been placed in the chart by iteration k, or, by definition of derivation,
there are i l , . . . , i m < n such that there is a rule instance

Dil "'" D~m (side conditions on D~I, . . . ,D~ , I) (4)
I m

with side conditions satisfied. By definition of derivation, each prefix D 1 , . . . , Dij
of D 1 , . . . , Dn is a derivation of Dij from A1 , . . . , Ak. Then each D~j is in the chart,
by the induction hypothesis. Therefore, for each Dij, there must have been an
identical item Ij in the agenda that was added to the chart at step (2b). Let Ip be
the item in question that was the last to be added to the chart. Immediately after
that addition, all of the Ij (that is, all of the D~j) are in the chart, and Ip = Di,~
is the trigger item for rule application (4). Thus, I is placed in the agenda. Since
step (2c) can only add a finite number of times to the agenda, by the fairness
assumption, item I will eventually be considered at steps (2a) and (2b), and added
to the chart if not already there.

5.1. Eliminating Redundancy
REDUNDANCY IN THE CHART. The deduction procedure requires the ability to

generate new consequences of the trigger item and the items in the chart. The key

26 S. M. SHIEBER ET AL.

word in this requirement is "new." Indeed, the entire point of a chart-based system
is to allow caching of proved lemmas so that previously proved (old) lemmas are
not further pursued. I t is therefore crucial that no item be added to the chart tha t
already exists in the chart, and it is for this reason that step (2b) above specifies
addition to the chart only "if necessary."

DEFINITION OF "REDUNDANT ITEM." The point of the chart is to serve as a
cache of previously proved items, so that an item already proved is not pursued.
Wha t does it mean for an item to be redundant, tha t is, occurring already in the
agenda or chart? In the case of ground items, the appropriate notion of occurrence
in the chart is the existence of an identical chart item. If items can be nonground
(for instance, when parsing relative to definite-clause grammars rather than context-
free grammars) , a more subtle notion of occurrence in the chart is necessary. As
mentioned above, a nonground item stands for all of its ground instances, so tha t
a nonground item occurs in the chart if all its ground instances are covered by
chart items, that is, if it is a specialization of some chart item. (This test suffices
because of the strong compactness of sets of terms defined by equations: if the
instances of a term A are a subset of the union of the instances of B and C,
then the instances of A must be a subset of the instances of either B or C [17].)
Thus, the appropriate test is whether an item in the chart subsumes the item to
be added. 7

REDUNDANCY IN THE AGENDA. W e pointed out that redundancy checking in
the chart is necessary. The issue of redundancy in the agenda is, however, a distinct
one. Should an item be added to the agenda that already exists there?

Finding the rule that matches a trigger item, triggering the generation of new
immediate consequences, and checking that consequences are new are expensive
operations to perform. The existence of duplicate items in the agenda therefore
generates a spurious overhead of computation, especially in pathological cases where
exponentially many duplicate items can be created in the agenda, each one creating
an avalanche of spurious overhead.

For these reasons, it is also important to check for redundancy in the agenda,
that is, the notion of "new immediate consequences" in step (2c) should be inter-
preted as consequent items that do not already occur in the chart or agenda. If
redundancy checking occurs at the point items are about to be added to the agenda,
it is not required when they are about to be added to the chart; the "if necessary"
condition in step (2b) will in this case by vacuous, since always true.

TRIGGERING THE GENERATION OF NEW IMMEDIATE CONSEQUENCES. With
regard to step (2c), in which we generate "all items that are new immediate con-
sequences of the trigger i tem together with all other items in the chart," we would
like, if at all possible, to refrain from generating redundant items, rather than gen-
erating, checking for, and disposing of the redundant ones. Clearly, any i tem tha t is
an immediate consequence of the other chart items only (that is, without the trigger
item) is not a new consequence of the full chart. (It would have been generated
when the last of the antecedents was itself added to the chart.) Thus, the infer-
ence rules generating new consequences must have at least one of their antecedent
items being the trigger item, and the search for new immediate consequences can

7This subsumption check can be implemented in several ways in Prolog. The code made
available with this paper presents two of the options.

DEDUCTIVE PARSING 27

be limited to just those in which at least one of the antecedents in the trigger item.
The search can therefore be carried out by looking at all antecedent items of all
inference rules tha t match the trigger item, and for each, checking that the other
antecedent items are in the chart. If so, the consequent of that rule is generated
as a potential new immediate consequence of the trigger items plus other chart
items. (Of course, it must be checked for prior existence in the agenda and chart
as outlined above.)

5.2. Providing Efficient Access

Items should be stored in the agenda and chart in such a way that they can be
efficiently accessed. Stored items are accessed at two points: when checking a new
item for redundancy, and when checking a (nontrigger) antecedent item for existence
in the chart. For efficient access, it is desirable to be able to directly index into the
stored items appropriately, but appropriate indexing may be different for the two
access paths. We discuss the two types of indexing separately, and then turn to the
issue of variable renaming.

INDEXING FOR REDUNDANCY CHECKING. Consider, for instance, the Earley
deduction system. All items that potentially subsume an item [i, A ~ a • ~, j]
have a whole set of attributes in common with the item, for instance, the indices
i and j , the production from which the item was constructed, and the position of
the dot (i.e., the length of a). Any or all of these might be appropriate for indexing
into the set of stored items.

INDEXING FOR ANTECEDENT LOOKUP. The information available for indexing
when looking items up as potential matches for antecedents can be quite different.
In looking up items that match the second antecedent of the completion rule [k, B
~/ . , j], as triggered by an item of the form [i, A -~ a • Bfl, k], the index k will be
known, but j will not be. Similarly, information about B will be available from
the trigger item, but no information about 7. Thus, an appropriate index for the
second antecedent of the completion rule might include its first index k and the main
functor of the left-hand-side B. For the first antecedent item, a similar argument
calls for indexing by its second index k and the main functor of the nonterminal
B following the dot. The two cases can be distinguished by the sequence after the
dot: empty in the former case, nonempty in the latter.

VARIABLE RENAMING. A final consideration in access is the renaming of vari-
ables. As nonground items stored in the chart or agenda are matched against
inference rules, they become further instantiated. This instantiation should not
affect the items as they are stored and used in proving other consequences, so that
care must be taken to ensure that variables in agenda and chart items are renamed
consistently before they are used. Prolog provides various techniques for achieving
this renaming implicitly.

5.3. Prolog Implementation of Deductive Parsing
In light of the considerations presented above, we turn now to our method of im-
plementing an agenda-based deduction engine in Prolog. We take advantage of
certain features tha t have become standard in Prolog implementations, such as
clause indexing. The code described below is consistent with Quintus Prolog.

28 S.M. SHIEBER ET AL.

5.3.1. Implementation of Agenda and Chart. Since redundancy checking is to
be done in both agenda and chart, we need the entire set of items in both agenda
and chart to be stored together• For efficient access, we store them in the Pro-
log database under the predicate s t o r e d / 2 . The agenda and chart are therefore
comprised of a series of unit clauses, e.g.,

s t o r e d (i , i t e m (. . .)) , beginning of chart
s t o r e d (2 , i t e m (. • .)) .

s t o r e d (3 , i t e m (. . .)) .

s t o r e d (i - I , i t e m (• . .)) , end of chart
s t o r e d (i , i tem(.• .)) . head of agenda
s t o r e d (i + l , i t e m (. . .)) .

s t o r e d (k - I , i t e m (• . .)) .

s t o r e d (k , i t e m (. . .)) . *---- tail of agenda

The first argument of s t o r e d / 2 is a unique identifying index that corresponds to
the position of the item in the storage sequence of chart and agenda items. (This
information is redundantly provided by the clause ordering as well, for reasons that
will become clear shortly,) The index therefore allows (through Quintus's indexing
of the clauses for a predicate by their first head argument) direct access to any
stored item.

Since items are added to the sequence at the end, all items in the chart pre-
cede all items in the agenda. The agenda items can therefore be characterized by
two indices, corresponding to the first (head) and last (tai 0 items in the agenda•
A data structure packaging these two "pointers" therefore serves as the proxy for
the agenda in the code. An item is moved from the agenda to the chart merely
by incrementing the head pointer. Items are added to the agenda by storing the
corresponding item in the database and incrementing the tail pointer.

To provide efficient access to the stored items, auxiliary indexing tables can be
maintained. Each such indexing table is implemented as a set of unit clauses that
map access keys to the indexes of items that match them. In the present imple-
mentation, a single indexing table (under the predicate key_index/2) is maintained
that is used for accessing items both for redundancy checking and for antecedent
lookup. (This is possible because only the item attributes available in both types of
access are made use of in the keys, leading to less than optimal indexing for redun-
dancy checking, but use of multiple indexing tables leads to much more database
manipulation, which is quite costly•)

In looking up items for redundancy checking, all stored items should be consid-
ered, but for antecedent lookup, only chart items are pertinent• The distinction
between agenda and chart items is, under this implementation, implicit• The chart
items are those whose index is less than the head index of the agenda. This test
must be made whenever chart items are looked up. However, since clauses are
stored sequentially by index, as soon as an item is found that fails the test (that
is, is in the agenda), the search for other chart items can be cut off.

5.3.2. Implementation of the Deduction Engine. Given the design decisions de-
scribed above, the general agenda-driven, chart-based deduction procedure presented

DEDUCTIVE PARSING 29

in Section 5 can be implemented in Prolog as follows:

parse(Value) "-

~o (1) Initialize the chart and agenda

±nit_chart,

±nit_agenda(Agenda),

Yo (2) Remove items from the agenda and process

Yo until the agenda is empty

exhaust (Agenda),

Yo (3) Try to find a goal item in the chart

goal_item_in_chart (Goal).

To exhaust the agenda, trigger items are repeatedly processed until the agenda is
empty:

exhaust(Empty) "-

Yo (2) If the agenda is empty, we're done

is_empt y_agenda (Empty).

exhaust (Agenda0) "-

Yo (2a) Otherwise get the next item index from the agenda

pop_agenda(Agenda0, Index, Agendal) ,

Yo (2b) Add it to the chart

add_it em_t o_chart (Index),

~o (2c) Add its consequences to the agenda

add_consequences_to_agenda(Index, Agendal, Agenda),
Yo (2) Continue processing the agenda until empty

exhaust (Agenda).

For each item, all consequences are generated and added to the agenda:

add_consequences_to_agenda(Index, Agenda0, Agenda) "-

f indall (Consequence,

consequence(Index, Consequence),

Consequence),

add_items_to_agenda(Consequences, Agenda0, Agenda).

The predicate add_items_to_agenda/3 adds the items under appropriate indices
as stored items and updates the head and tail indices in Agenda0 to form the new
agenda Agenda.

A trigger item has a consequefice if it matches an antecedent of some rule,
perhaps with some other antecedent items and side conditions, and the other

30 s. M. SHIEBER ET AL.

antecedent items have been previously proved (thus in the chart) and the side
conditions hold:

consequence(Index, Consequent) "-

index_to_item(Index, Trigger),

matching_rule (Trigger,

RuleName, Others, Consequent, SideConds),

items_in_chart (Others, Index),

hold (S ideConds).

Note that the indices of items, rather than the items themselves, are stored in the
agenda, so that the index of the trigger item must first be mapped to the actual
item (with index_to_item/2) before matching it against a rule antecedent. The
items_in_chart/2 predicate needs to know both the items to look for (Others)
and the index of the current item (Index) as the latter distinguishes the items in
the chart (before this index) from those in the agenda (after this index).

We assume that the inference rules are stored as unit clauses under the predi-
cate inference(RuleName, Antecedents, Consequent, SideConds) where Rul-
eName is some mnemonic name for the rule (such as predict or scan), Antecedents
is a list of the antecedent items of the rule, Consequent is the single consequent
item, and SideConds is a list of encoded Prolog literals to execute as side condi-
tions. To match a trigger item against an antecedent of an inference rule, then, we
merely select a rule encoded in this manner, and split up the antecedents into one
that matches the trigger and the remaining unmatched antecedents (to be checked
for in the chart).

matching_rule (Trigger,

RuleName, Others, Consequent, SideConds) "-

inference(RuleName, Antecedents, Consequent, SideConds),

split (Trigger, Antecedents, Others).

5.3.3. Implementation of Other Aspects. A full implementation of the deduc-
tion-parsing system--complete with encodings of several deduction systems and
sample grammars--is available from the first author and from the Computation
and Language E-Print Archive (cmp-lg•xxx.lanl.gov) as part of paper cmp-
lg/9404008. The distributed code covers the following aspects of the implemen-
tation that are not elsewhere described.

1. Input and encoding of the string to be parsed.
2. Implementation of the deduction engine driver including generation of conse-

quences.
3. Encoding of the storage of items including the implementation of the chart

and agenda.
4. Encoding of deduction systems.
5. Implementation of subsumption checking.

All Prolog code distributed has been tested under the Quintus Prolog system.

DEDUCTIVE PARSING 31

5.4. Alternative Implementations

This implementation of agenda and chart provides a compromise in terms of effi-
ciency, simplicity, and generality. Other possibilities will occur to the reader that
may have advantages under certain conditions. Some of the alternatives are de-
scribed in this section.

SEPARATE AGENDA AND CHART IN DATABASE. Storage of the agenda and the
chart under separate predicates in the Prolog database allows for marginally more
efficient lookup of chart items; an extraneous arithmetic comparison of indices
is eliminated. However, this method requires an extra retraction and assertion
when moving an index from agenda to chart, and makes redundancy checking more
complex in that two separate searches must be engaged in.

PASSING AGENDA AS ARGUMENT. Rather than storing the agenda in the data-
base, the list of agenda items might be passed as an argument. (The implementation
of queues in Prolog is straightforward, and would be the natural structure to use
for the agenda argument.) This method again has the marginal advantage in an-
tecedent lookup, but it becomes almost impossible to perform efficient redundancy
checking relative to items in the agenda.

EFFICIENT BOTTOM-UP INTERPRETATION. The algorithm just presented can
be thought of as a pure bottom-up evaluator for inference rules given as definite
clauses, where the head of the clause is the consequent of the rule and the body
is the antecedent. However, given appropriate inference rules, the bottom-up pro-
cedure will simulate non-bottom-up parsing strategies, such as the top-down and
Earley strategies described in Section 3. Researchers in deductive databases have
extensively investigated variants of that idea: how to take advantage of the tabula-
tion of results in the pure bottom-up procedure while keeping track of goal-directed
constraints on possible answers. As part of these investigations, efficient bottom-
up evaluators for logic programs have been designed, for instance, CORAL [26].
Clearly, one could use such a system directly as a deduction parser.

CONSTRUCTION OF DERIVATIONS. The direct use of the inference rules for
building derivations, as presented in Section 4.1, is computationally inefficient since
it eliminates structure-sharing in the chart. All ways of deriving the same string
will yield distinct items, so that sharing of computation of subderivations is no
longer possible.

A preferable method is to compute the derivations offline by traversing the chart
after parsing is finished. The deduction engine can be easily modified to do so, us-
ing a technique reminiscent of that used in the Core Language Engine [2]. First, we
make use of two versions of each inference rule, an online version such as the Earley
system given in Figure 5, with no computation of derivations, and an offiine version
like the one in Figure 6 that does generate derivation information. We will presume
that these two versions are stored, respectively, under the predicates i n f e r e n c e / 4
(as before) and i n f e r e n c e _ o f f l i n e / 4 , with the names of the rules specifying the
correspondence between related rules. Similarly, the online i n i t i a l _ i t e m / 1 speci-
fication should have a corresponding i n i t i a l _ i t e m _ o f f l i n e / 1 version.

The deduction engine parses a string using the online version of the rules, but
also stores, along with the chart, information about the ways in which each chart
i tem can be constructed, with unit clauses of the form

stored_history (Consequent, Rule, Antecedents). ,

32 S. M. SHIEBER ET AL.

which specify that the item whose index is given by Consequent can be generated
by the inference rule whose name is Rule from the antecedent items given in the
sequence Antecedents . For each application of Rule that generates Consequent
from the antecedent items Antecedent , a clause of this form is asserted to record
that possible derivation. Note that only in the first such derivation of Consequent
will the consequent itself be added to the agenda, but each redundant deriva-
tion of Consequent must still be recorded to ensure that all possible derivations
are represented. (If an item is generated as an initial item, its history would
mark the fact by a unit clause using the constant i n i t i a l for the Rule argu-
ment.)

When parsing has completed, a separate process is applied to each goal item,
which traverses these stored histories using the second (offiine) version of the infer-
ence rules rather than the first, building derivation information in the process. The
following Prolog code serves the purpose. It defines o f f l i n e _ i t e m (I n d e x , I tem),
a predicate that computes the of Itine item Item (presumably including derivation
information) corresponding to the online item with index given by Index, using
the second version of the inference rules, by following the derivations stored in the
chart history.

offline_item(Index, Item) :-

stored_history(Index, initial, _NoAntecedents),

initial_item_of f line (Item).

off line_item(Index, Item) "-

stored_history(Index, Rule, Antecedents),

of f line_items (Antecedents, AntecedentItems)

inference_of f line(Rule, AntecedentItems, Item, SideConds),

hold (SideConds).

offline_items([], []).

offline_items([Index i Indexes], [Item J Items]) "-

off line_item(Index, Item),

off line_items(Indexes, Items).

The offline version of the inference rules need not merely compute a derivation.
It might perform some other computation dependent on derivation, such as seman-
tic interpretation. Abstractly, this technique allows for staging the parsing into two
phases, the second comprising a more fine-grained version of the first. Any staged
processing of this sort can be implemented using this technique.

FINER CONTROL OF EXECUTION ORDER. For certain applications, it may be
necessary to obtain even finer control over the order in which the antecedent items
and side conditions are checked when an inference rule is triggered. Given that the
predicates i t ems_ in_char t /2 and ho ld s /1 perform a simple left-to-right checking
of the items and side conditions, the implementation of ma tch ing_ru le /5 above
leads to the remaining antecedent items and side conditions being checked in left-
to-right order as they appear in the encoded inference rules, and the side conditions

DEDUCTIVE PARSING 33

being checked after the antecedent items. However, it may be preferable to inter-
leave the checks for antecedents and for side conditions, perhaps in different orders,
depending on which antecedent triggered the rule.

For instance, the side condition A - A' in the second inference rule of Section
4.1 must be handled before checking for the nontrigger antecedent of that rule,
in order to minimize nondeterminism. If the first antecedent is the trigger, we
want to check the side conditions and then look for the second antecedent, and
correspondingly for triggering the second antecedent. The implementation above
disallows this possibility, as side conditions are always handled after the antecedent
items. Merely swapping the order of handling side conditions and antecedent items,
although perhaps sufficient for this example, does not provide a general solution to
this problem.

Various alternatives are possible to implement a finer level of control. We present
an especially brutish solution here, although more elegant solutions are possible.
Rather then encoding an inference rule as a single unit clause, we encode it with
one clause per trigger element under the predicate.

inference(RuleName, Antecedents, Consequent)

where Rulename and Consequent are as before, but Antecedents is now a list of all
the antecedent items and side conditions of the rule, with the trigger item first. (To
distinguish antecedent items from side conditions, a disambiguating prefix operator
can be used, e.g., @item(...) versus ?side_condition(...).) Matching an item
against a rule then proceeds by looking for the item as the first element of this
antecedent list.

matching_rule(Trigger, RuleName, Others, Consequent) "-

inference(RuleName, [Trigger I Others] , Consequent),

The consequence/2 predicate is modified to use this new matching_rule/4 pred-
icate, and to check that all of the antecedent items and side conditions hold.

consequence(Index, Consequent) :-

index_to_item(Index, Trigger),

matching_rule(Trigger, RuleName, Others, Consequent) ,

hold(Others, Index).

The antecedent items and side conditions are then checked in the order in which
they occur in the encoding of the inference rule.

hold([] , _Index).

hold([Antecedent I Antecedents], Index) :-

holds(Antecedent, Index),

hold(Antecedents, Index).

holds(@Item, Index) :- item_in_chart(Item, Index).

holds(?SideCond, _Index) :- call(SideCond).

34 s. M. SHIEBER ET AL.

6. C O N C L U S I O N

The view of parsing as deduction presented in this paper, which generalizes that of
previous work in the area, makes possible a simple method of describing a variety
of parsing algorithms--top-down, bottom-up, and mixed--in a way that highlights
the relationships among them and abstracts away from incidental differences of
control. The method generalizes easily to parsers for augmented phrase structure
formalisms, such as definite-clause grammars and other logic grammar formalisms.
Although the deduction systems do not specify detailed control structure, the con-
trol information needed to turn them into full-fledged parsers is uniform, and can
therefore be given by a single deduction engine that performs sound and complete
bottom-up interpretation of the rules of inference. The implemented deduction
engine that we described has proved useful for rapid prototyping of parsing algo-
rithms for a variety of formalisms, including variants of tree-adjoining grammars,
categorial grammars, and lexicalized context-free grammars.

This material is based in part upon work supported by the National Science Foundation under
Grant No. IRI-9350192 to SMS and by an associated Xerox Corporation grant. The authors
would like to thank the anonymous reviewers for their helpful comments on an earlier draft.

R E F E R E N C E S

1. Ades, A. E. and Steedman, M. J., On the Order of Words, Linguistics and Philosophy
4(4):517-558 (1982).

2. Alshawi, H. (ed.), The Core Language Engine, ACL-MIT Press Series in Natural
Language Processing, MIT Press, Cambridge, MA, 1992.

3. Bancilhon, F. and Ramakrishnan, R., An Amateur's Introduction to Recursive Query
Processing Strategies, in: M. Stonebraker (ed.), Readings in Database Systems, Mor-
gan Kaufmann, San Mateo, CA, 1988, Sect. 8.2, pp. 507-555.

4. Billot, S. and Lang, B., The Structure of Shared Forests in Ambiguous Parsing,
in: Proc. 27th Annual Meeting of the Association for Computational Linguistics,
Vancouver, British Columbia, June 1989, pp. 143-151.

5. Bresnan, J. and Kaplan, R., Lexical-Functional Grammar: A Formal System for
Grammatical Representation, in: J. Bresnan (ed.), The Mental Representation of
Grammatical Relations, MIT Press, Cambridge, MA, 1982, pp. 173-281.

6. Carpenter, B., The Logic of Typed Feature Structures, Number 32 in Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, Cambridge, England,
1992.

t 7. Colmerauer, A., Metamorphosis Grammars, in: L. Bolc (ed.), Natural Language Com-
munication with Computers, Springer-Verlag, 1978, pp. 133-187. First appeared as
"Les Grammaires de Metamorphose," Groupe d'Intelligence Artificielle, Universit~ de
Marseille II, Nov. 1975.

8. Earley, J. C., An Efficient Context-Free Parsing Algorithm, Commun. ACM 13(2):94-
102 (1970).

9. ttodas, J. S., Specifying Filler-Gap Dependency Parsers in a Linear-Logic Program-
ming Language, in: K. Apt (ed.), Proc. Joint International Conference and Sympo-
sium on Logic Programming, Washington, DC, 1992, pp. 622-636.

10. Joshi, A. K., How Much Context-Sensitivity is Necessary for Characterizing Struc-
tural Descriptions--Tree Adjoining Grammars, in: D. Dowty, L. Karttunen, and

DEDUCTIVE PARSING 35

A. Zwicky (eds.), Natural Language Processing--Theoretical, Computational and Psy-
chological Perspectives, Cambridge University Press, New York, 1985.

11. Joshi, A. K., Levy, L. S., and Takahashi, M., Tree Adjunct Grammars, J. Comput.
and Syst. Sci. 10(1):136-163 (1975).

12. Kasami, T., An Efficient Recognition and Syntax Algorithm for Context-Free Lan-
guages, Technical Report AF-CRL-65-758, Air Force Cambridge Research Labora-
tory, Bedford, MA, 1965.

13. Kay, M., Algorithm Schemata and Data Structures in Syntactic Processing, in: B.
J. Grosz, K. Sparck Jones, and B. L. Webber (eds.), Readings in Natural Language
Processing, Morgan Kaufmann, Los Altos, CA, 1986, ch. 1.4, pp. 35-70. Originally
published as a Xerox PARC Technical Report, 1980.

14. Kroch, A. and Joshi, A. K., Linguistic Relevance of Tree Adjoining Grammars, Tech-
nical Report MS-CIS-85-18, Department of Computer and Information Science, Uni-
versity of Pennsylvania, Philadelphia, Apr. 1985.

15. Lambek, J., The Mathematics of Sentence Structure, Amer. Math. Monthly 65:154-
170 (1958).

16. Lang, B., Deterministic Techniques for Efficient Non-Deterministic Parsers, in: J.
Loeckx (ed.), Proc. 2nd Colloquium on Automata, Languages and Programming,
Saarbriicken, Germany, 1974, pp. 255-269. Springer-Verlag.

17. Lassez, J.-L., Maher, M. J., and Marriot, K. G., Unification Revisited, in: J. Minker
(ed.), Foundations of Deductive Databases and Logic Programming, Morgan Kauf-
mann, San Mateo, CA, 1988, pp. 587-625.

18. Moortgat, M., Categorial Investigations: Logical and Linguistic Aspects of the Lambek
Calculus, Ph.D. thesis, University of Amsterdam, Amsterdam, The.Netherlands , Oct.
1988.

19. Naughton, J. F. and Ramakrishnan, R., Bottom-Up Evaluation of Logic Programs,
in: J.-L. Lassez and G. Plotkin (eds.), Computational Logic: Essays in Honor of
Alan Robinson, MIT Press, Cambridge, MA, 1991, ch. 20, pp. 641-700.

20. Pareschi, R. and Miller, D. A., Extending Definite Clause Grammars with Scop-
ing Constructs, in: D. H. D. Warren and P. Szeredi (eds.), Seventh International
Conference on Logic Programming, Jerusalem, Israel, 1990, MIT Press.

21. Paroubek, P., Schabes, Y., and Joshi, A. K., XTAG--A Graphical Workbench for
Developing Tree-Adjoining Grammars, in: Proc. 3rd Conference on Applied Natural
Language Processing, Trento, Italy, 1992, pp. 216-223.

22. Pentus, M., Lambek Grammars are Context Free, in: Proc. 8th Annual IEEE Sym-
posium on Logic in Computer Science, Montreal, Canada, June 1993, pp. 429-433,
IEEE Computer Society Press.

23. Pereira, F. C. N. and Warren, D. H. D., Definite Clause Grammars for Language
Analysis--A Survey of the Formalism and a Comparison with Augmented Transition
Networks, Artificial Intelligence 13:231-278 (1980).

24. Pereira, F. C. N. and Warren, D. H. D., Parsing as Deduction, in: Proc. 21st Annual
Meeting of the Association for Computational Linguistics, Cambridge, MA, June
1983, pp. 137-144.

25. Ramakrishnan, R., Magic Templates: A Spellbinding Approach to Logic Pro-
grams, in: R. A. Kowalski and K. A. Bowen (eds.), Logic Programming: Proc.
5th International Conference and Symposium, Seattle, WA, 1988, pp. 140-159, MIT
Press.

26. Ramakrishnan, R., Srivastava, D., and Sudarshan, S., CORAL: Control, Relations
and Logic, in: Proc. International Conf. on Very Large Databases, 1992.

27. Rounds, W. C. and Manaster-Ramer, A., A Logical Version of Functional Gram-
mar, in Proc. 25th Annual Meeting of the Association for Computational Linguistics,
Stanford, CA, 1987 pp. 89-96, Stanford University.

36 S . M . SHIEBER ET AL.

28. Sato, T. and Tamaki, H., Enumeration of Success Patterns in Logic Programs, The-
oretical Comput. Sci. 34:227-240 (1984).

29. Schabes, Y., Left to Right Parsing of Lexicalized Tree-Adjoining Grammars, Compu-
tational Intelligence (1994).

30. Schabes, Y. and Shieber, S., An Alternative Conception of Tree-Adjoining Derivation,
in: Proc. 20th Annual Meeting of the Association for Computational Linguistics, 1992,
pp. 167-176.

31. Schabes, Y. and Waters, R. C., Lexicalized Context-Free Grammars, in: Proc. 21st
Annual Meeting of the Association for Computational Linguistics, Columbus, OH,
June 1993, pp. 121-129.

32. Schabes, Y. and Waters, R. C., Tree Insertion Grammar: A Cubic-Time Parsable
Formalism that Strongly Lexicalizes Context-Free Grammar, Technical Report 94-
13, Mitsubishi Electric Research Laboratories, Cambridge, MA, 1994.

33. Shieber, S. M., Criteria for Designing Computer Facilities for Linguistic Analysis,
Linguistics 23:189-211 (1985).

34. Shieber, S. M., Using Restriction to Extend Parsing Algorithms for Complex-Feature-
Based Formalisms, in: Proc. 23rd Annual Meeting of the Association for Computa-
tional Linguistics, Chicago, IL, 1985, pp. 145-152, University of Chicago,.

35. Shieber, S. M., Constraint-Based Grammar Formalisms, MIT Press, Cambridge, MA,
1992.

36. Vijay-Shanker, K., A Study of Tree Adjoining Grammars, Ph.D. thesis, Department
of Computer and Information Science, University of Pennsylvania, Philadelphia, 1987.

37. Vijay-Shanker, K. and Weir, D. J., Parsing Some Constrained Grammar Formalisms,
Computational Linguistics 19(4):591-636 (Dec. 1993).

38. Younger, D. H., Recognition and Parsing of Context-Free Languages in Time n 3,
Inform. and Control 10(2):189-208 (1967).

