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For on-line recognition of the words in an arbitrary linear context-free language, 
there are known tight bounds on the time required by a deterministic multitape 
Turing machine. In terms of word length n, the time need never be worse than some 
constant times n 2, even if only one worktape is available; and there is a linear con- 
text-free language that requires at least time proportional to n2/log n, no matter 
how many worktapes are available. Using Kolmogorov's notion of descriptional 
complexity as a tool, we present a simple proof of the latter result. © 1986 Academic 
Press, Inc. 

F o r  on-l ine recogni t ion  of the words  in an a rb i t r a ry  l inear  context-free 

language  (Har r i son ,  1978), there are  k n o w n  tight bounds  on the t ime 
required by a determinis t ic  mul t i t ape  Tur ing  machine.  In  terms of word  
length n, the t ime need never be worse than  some cons tan t  t imes n 2, even if 

only one w o r k t a p e  is avai lable  (Kasami ,  1967); and  there is a l inear  con- 
text-free language  tha t  requires at  least  t ime p r o p o r t i o n a l  to n2/log n, no 

mat te r  how m a n y  work tapes  are avai lable  (Gal la i re ,  1969). Using  
K o l m o g o r o v ' s  no t ion  of descr ip t iona l  complexi ty  as a tool,  we present  a 
p roo f  of the la t ter  result  that  is much  s impler  than  the count ing  a rgument  

given by Gal la i re  (1969). 
The l inear  context-free language  L in our  p roo f  is essential ly the same 

one Gal la i re  uses: 

L =  { y S x l ¢ "  ( x k  l k >~O; Xl ..... xk,  y e  {0, 1 }*; and  

y = u x f v f o r s o m e i < k a n d u ,  v e  {0, 1}*}, 

where w R denotes  the reverse of word  w. To recognize a language  on-line, a 
Turing machine  mus t  indicate  before each successive inpu t  symbol  is 
received whether  the input  word  so far belongs to the language.  F o r  the 
par t i cu la r  l anguage  L, the indica t ions  will be "mono ton ic , "  changing  at  
most  once, from "no"  to "yes." 

* This work was supported in part by the National Science Foundation, under grant num- 
ber MCS-8110430. 
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For each 1-dimensional multitape Turing machine M that recognizes L 
on-line, our new proof specifies a word (in fact, exponentially many words) 
of each length n that forces M to run for at least some fixed positive frac- 
tion times n2/log n steps. (Since the choice of the fixed fraction can compen- 
sate for any finite number of special cases, we need actually consider only 
"large" lengths n.) For this purpose, we replace Gallaire's complicated 
counting argument with the approach suggested by Paul (1979) and by 
Paul, Seiferas, and Simon (1981), considering individual words in which y 
is "algorithmically incompressible." 

Following Kolmogorov, we define algorithmic incompressibility in terms 
of descriptional complexity. Any computable partial function 
F: {0, 1 } ' 4  {0, 1}* can be viewed as a description scheme, in terms of 
which we can define a descriptional complexity KF: {0, 1 }* 
{0,1,2,...,oo} by 

KF(X) = min{ Idl [ F(d) = x}. 

(Note that we do not require our descriptions to be self-delimiting or prefix 
free: F(d) and F(de) might both be defined, but yet be different.) Because 
there is a "universal" computable partial function, there is some F0 for 
which 

V F 3 C F V XKFo(X ) <~ KF(X) + CF. 

Except for an additive constant, therefore, Fo is as succinct a description 
scheme as any; so we define the descriptional complexity K(x) of x to be 
KFo(X). A word x is (algorithmically) incompressible if K(x)>>. [xf. Since 
there are 2 n binary words of length n but only 2 n -  1 possible shorter 
descriptions d, there is sure to be at least one incompressible word of each 
length. In fact, if we relax our standards of incompressibility by even 1 
(K(x) >1 [x [ -  1), which is still quite sufficient for our purposes, then most 
words of each length must qualify as incompressible. 

Now let us return to the specification of an input word of length n that is 
hard for M. Regardless of M, we choose y to be an incompressible word of 
length Ln/2J, still leaving half the desired length for prospective reverse 
subwords xl. It will suffice, then, to show that we can choose each suc- 
cessive xt(  to be of length proportional to only the logarithm of n and yet 
to require linearly many additional steps by M. Due to monotonicity, this 
will require also that each successive xi not be a reverse subword ofy. 

Assume inductively that x~ ..... x~ x have been chosen as required, so that 
the input prefix y $ x l ( ' " ( x i  ~( does not yet belong to L. As a con- 
sequence of Lemmas 1 and 2 below, for some appropriate constant c, y is 
the only word of its length Ln/2J with precisely its set of subwords of 
length m = 2  log 2 n + c. It follows from this that the (-termination xi (  of 
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some length-m word xi that is not a reverse subword of y must require at 
least t = en many/tddit ional steps by M, where e is a positive fraction that 
does not depend on n. Otherwise, we could devise a short description of the 
length-m subwords of y, and hence of y itself, based primarily on a 
relatively small portion of the instantaneous description of M when it is 
about to read xi; it could be determined separately whether each length-m 
word is a subword of y by continuing the computation by M for t steps 
from the provided partial instantaneous description, with the C-terminated 
reverse of that candidate word as input continuation--by assumption, any 
such continuation for more than t steps could safely be cut short, serving 
already as decisive indication that the candidate is a subword of y. In 
addition to the worktape contents within distance t of the tape heads, we 
would have to include only the following: this whole discussion (suitably 
formalized), specification of M, the length n, the instantaneous control 
state of M, and the instantaneous locations of M's tape heads on the 
provided worktape fragments. If e is small in terms of M, and if n is large, 
then all this does add up to fewer than Ln/2] bits, as it should not. Except 
for Lemmas 1 and 2, this concludes our proof by contradiction that each 
successive xi can be chosen to be sufficiently time-consuming to yield the 
desired lower bound. 

Finally, we turn to Lemmas 1 and 2. A repetition is a subword that 
occurs in two distinct, but possibly overlapping, positions; i.e., x is a 
repetition in w if UlXl) 1 = W = H2Xl) 2 for distinct prefixes ul and u 2. 

LEMMA 1. I f  a word has no repetition of  length m, then it is determined 
by its subwords of  length m + 1; i.e., then it is the unique word with no 
repetition of  length m and with precisely its set of  subwords o f  length m + 1. 

Proof If x is a word and a and b are single characters, then call ax a 
left neighbor of xb, and call xb a right neighbor of ax. If a word has no 
repetition of length m, then every subword of length m + 1 has at most one 
right neighboring subword, so that the next letter (if any) following its uni- 
que occurrence is determined. The word's prefix of length m + 1 is the uni- 
que subword of that length with no left neighboring subword. By induc- 
tion, therefore, the entire word is determined by its subwords of length 
m + l .  | 

LEMMA 2. An incompressible word of  length n has no repetition longer 
than 2 log2 n plus some constant c. 

Proof If a repetition's length is a slightly larger multiple of log2 n, then 
we can easily obtain a too-short description of the entire word by replacing 
one instance with a clear enough reference to the other. Although such a 
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lemma would be strong enough for our purposes, it is interesting to ask 
just how long a repetition is possible and to prove the best result we can. 

Let w = xyz be the entire incompressible word of length n, and suppose y 
is a repetition of length 2[-log2 n]  + c in xy. To describe w, we concatenate 
the following information: this discussion (suitably formalized), the value 
of c, the location (less than Ix] ) of the beginning of the first instance of y in 
xy, the location (Ixl) of the beginning of the last instance of y in xy, and 
the shortened word xz. The first item should be represented by a self- 
delimiting word, say c' bits long. The second item should also be self- 
delimiting, at most 3 log2 c bits long, say. The two locations should be 
binary radix representations, each padded with insignificant high-order 
zeros to length exactly 1 + Flog2 n]. This way, the total length of the three 
items following the two self-delimiting ones will be exactly n - c + 2, so that 
n can be inferred and the entire description correctly parsed. The descrip- 
tion is too short (and the proof by contradiction complete) provided 
c -2>c '+31og2c .  | 

It is interesting to note, on the other hand, that every incompressible 
word of length n does have a repetition of length about log2 n. In fact every 
binary word of large enough length n has a repetition of length 
m = Llog2 n J - 1 ,  since there are only 2 m ~ <  n/2 distinct subwords of that 
length possible. For an incompressible word, we can increase the guaran- 
teed repetition length by at least 1: 

PROPOSITION. Every incompressible word of large enough length n has a 
repetition of length at least Llog2 hi.  

Proof Suppose, to the contrary, that w = xy is an incompressible word 
of length n with no repetition of length m = Llog2 n_J, and suppose y is its 
suffix of length m. Since n -  2m subwords of length m already occur in x, 
there are at most 2 m - -  n + 2m ~< 2m possibilities for y, given x. If n is large 
enough, therefore, the following suffice to describe w too succinctly: this 
discussion (suitably formalized, self-delimiting), the value of m (binary 
radix, self-delimiting), the serial number of y among those words of length 
m that are not subwords of the prefix x (binary radix, self-delimiting), and 
the literal word x. The savings by omitting y is proportional to log n, while 
the nonliteral replacement is proportional to only some constant plus 
loglogn. I 

For y, Gallaire always uses a de Bruijn sequence, a word of some length 
2 m in which each word of length m occurs contiguously (counting "wrap- 
around") exactly once. It follows from the proposition, therefore, that the 
words we use are in fact different from the ones Gallaire uses. Lemma 1 
shows that the de Bruijn criterion is unnecessarily stringent; the crucial 



CFL RECOGNITION 259  

requirement is only that no subword of the appropriate length (any con- 
stant time log n gives the same quantitative result) occurs more than once, 
not that every one does occur. 

For the counting argument he presents (only partly, actually, citing Hen- 
nie, 1966, for elaboration), Gallaire must cite clever arguments that enough 
de Bruijn words exist (de Bruijn, 1946; Golomb, 1967; Hall, 1967). (For a 
more recent survey, see Fredricksen, 1982.) While incompressible words are 
much more obviously abundant, on the other hand, we no longer even 
need that abundance, since the powerful incompressibility assumption 
enables us to focus exclusively on one particular word y. The result is the 
clear and self-contained proof presented above. 

Like Gallaire's, unfortunately, our lower-bound argument does depend 
on both the on-line restriction and the limited architecture of the multitape 
Turing machine. A random-access machine can recognize L in linear time, 
by building the tree of all subwords of the reverse ofy  in time linear in lY[ 
(Weiner, 1973; McCreight, 1976; Chen and Seiferas, 1985) and then 
searching down through it for each successive xi in time linear in Ixil. Off- 
line, a multitape Turing machine can recognize the very similar linear con- 
text-free language 

L ' =  ( ySXlg ' " (X  k I k>~O;Xl , . . . ,x~ ,y~ (0, 1}*; and 

y = u x f v  for i = k - 1 and some u, v e (0, 1 }* } 

in linear time, using the Fischer-Paterson implementation (1974) of the 
Knuth Morris-Pratt string-matching algorithm (1977). Note that the 
lower-bound argument does still apply to L'. (For L', in fact, the argument 
is slightly easier, since each xi in the tail of the hard input word need not 
fail to be a reverse subword of y. On-line, L sounds like it might be harder; 
but, off-line, L' sounds like it might be harder.) 

On Turing machines with multidimensional "tapes," our argument still 
does yield nontrivial lower bounds, but they are not as close to any known 
upper bounds. In the argument, if M has d-dimensional tapes, then we can 
obtain the desired too-short description of y if we assume the time t needed 
for each next xi is bounded by a small enough fraction of n lid. This yields a 
lower bound proportional to n~+l/a/logn and raises the question of 
whether the Kasami upper bound (1967) can be improved using mul- 
tidimensional tapes. 
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