
Journal of Logic, Language, and Information 5: 115-155, 1996. 115
�9 1996 KluwerAcademic Publishers. Printed in the Netherlands.

Identification in the Limit of Categorial Grammars

MAKOTO KANAZAWA
Department of Cognitive and Information Sciences, Faculty of Letters, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba-shi, 263, Japan
kanazawa@cogsci, i. chiba-u, ac. jp

(Received 4 August 1993; in final form 22 January 1996)

Abstract. It is proved that for any k, the class of classical categorial grammars that assign at most k
types to each symbol in the alphabet is learnable, in the Gold (1967) sense of identification in the limit
from positive data. The proof crucially relies on the fact that the concept known as finite elasticity
in the inductive inference literature is preserved under the inverse image of a finite-valued relation.
The learning algorithm presented here incorporates Buszkowski and Penn's (1990) algorithm for
determining categorial grammars from input consisting of functor-argument structures.

Key words: categorial grammar, finite elasticity, functor-argument struture, identification in the limit,
inductive inference, learnability.

1. Introduction

One of the major goals of modem linguistic theory is to give an account of how
language learning is possible (see, for example, Chomsky 1986). A child growing
up in a linguistic community comes to possess a rule system, a grammar, for the
language spoken by the community, on the basis of samples of speech presented
to her without any explicit instruction. A remarkable fact is that a normal child is
capable of learning any natural language, given adequate input: a child brought up
in an English speaking environment comes to speak English, but the same child
would come to speak Japanese if she were brought up in a Japanese speaking
environment. Thus, whatever mechanism underlies first language acquisition must
be able to deal with every possible natural language. This fact puts a substantial
constraint on linguistic theory. The class of possible natural languages determined
by an adequate linguistic theory must have the property of being learnable in
the sense that there exists a single mechanism that has the capacity to learn any
language in the class.

Learnability theory is an attempt to illuminate the concept of leamability using
a mathematical model of learning. The approach adopted in this paper originates
in the work of Gold (1967), for which first language acquisition was one of the
primary motivations.*

* Computational learning theory (see, e.g., Kearns and Vazirani 1994), a branch of theoretical
computer science that has developed since early 1980's, embraces various other approaches to

116 M A K O T O K A N A Z A W A

8 0 , 8 1 , 8 2 , �9 �9 �9 ~ 8 i , . �9 �9

G O , e l , G2 , G i

F igure 1. Language learning. Gi is the grammar produced by the learner on the basis of the
sentences so, Sl, s2, . . . , s i .

In Gold's model, language learning is an infinite process in which the learner is
presented with an infinite stream of sentences of the target language, one sentence
at a time. Every time the learner encounters a new sentence, she makes a guess as
to the identity of the target language, on the basis of the (finitely many) sentences
she has encountered so far. Each guess is made in the form of a grammar. As the
learner receives more and more data, she makes successive guesses, each possibly
different from the previous ones. Thus, corresponding to the infinite sequence of
sentences presented to the learner, she produces an infinite sequence of grammars
(Figure 1). Two assumptions are made about the infinite sequence of sentences giv-
en to the learner. Firstly, it is assumed that only grammatical sentences of the target
language appear in the sequence. This assumption corresponds to the observation
that no systematic negative evidence (information about ungrammatical sentences)
is available to the child learning a first language.* The second assumption is that
every sentence of the target language eventually appears in the infinite sequence.
This is to ensure that the learner is provided with enough information to distinguish
different languages. Now, in this model, learning is considered to be successful
if there is a point beyond which the learner's guess always stays the same, and
that guess is a correct grammar for the target language. Note that under this crite-
rion, one can never tell at any finite stage whether successful learning has taken
place, since the learner's guess might change at the next moment. Gold called this
criterion of successful learning i d e n t i f i c a t i o n i n t h e l i m i t .

A class of languages is said to be learnable in this model if there exists a
learner that successfully learns a correct grammar from any infinite sequence of
sentences corresponding to a language in the class. It is important to emphasize that
learnability is a property of a class of languages, not of an individual language. Since
any mechanistic procedure for converting finite sequences of sentences to grammars
counts as a learner, any single language would be trivially leamable--a correct
grammar for the language could be simply wired into the learning mechanism.
The fact that the learner must react differently to samples from different languages
makes learning a class of languages a non-trivial task.

In the model sketched above, the information available to the learner about
the target language at any point consists only of p o s i t i v e d a t a about the language

learning, which are less relevant to the concerns about first language acquisition. For linguistically
motivated work within the Gold paradigm, see Wexler and Culicover 1980.

* Also, the effects of ungrammatical intrusions are considered negligible. See Wexler and Culi-
cover 1980 for some discussions of both issues.

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS 117

(i.e., grammatical sentences of the language), mirroring the empirical fact about
the environment in which first language acquisition takes place. Gold (1967) also
considered learning from complete data, which includes both positive and negative
data (sentences ungrammatical in the target language) marked as such. Naturally,
complete data makes learning much easier (see Gold 1967). As complete data
seems to have little relevance to first language acquisition and linguistic theory,
this paper concerns only with learning from positive data.

Identification in the limit from positive data is interesting precisely because it
makes the resulting notion of learnability quite restrictive. In his original 1967
paper studying leamability of formal languages, Gold revealed that none of the
four levels of the Chomsky Hierarchy is learnable under this criterion. This result
of Gold's had been widely taken to mean that learning from positive data alone is
too difficult a task to be of much interest, until around 1980, when Angluin (1980a,
1980b, 1982) presented non-trivial learnable classes that cross-cut the Chomsky
Hierarchy. An impressive result was subsequently obtained by Shinohara (1990a,
1990b) which says that placing any finite bound on the number of rules used in
context-sensitive grammars results in a learnable class. Thus the initial pessimism
about identification in the limit from positive data seems to have been misplaced.

In this paper, we prove a result similar to Shinohara's with respect to categorial
grammars:* the class of categorial grammars that assign at most k types to each
symbol in the alphabet is learnable, for any k. Our result builds on the work of
Buszkowski and Penn (Buszkowski 1987a, 1987b, Buszkowski and Penn 1990),
who describe natural algorithms for finding categorial grammars from data con-
sisting of functor-argument structures, and makes essential use of the concept
known as finite elasticity in the inductive inference literature, which is a property
of language classes. Given Shinohara's theorem, our learnability result is not sur-
prising; indeed, a straightforward reduction of our result to Shinohara's is possible
(Appendix 7). Nevertheless, our method of proof may be of independent interest,
as it suggests an extension not covered by Shinohara's theorem**; moreover, we
provide a concrete learning algorithm based on Buszkowski's algorithm.

2. Preliminaries

2.1. IDENTIFICATION IN THE LIMIT

In this section, we introduce some basic concepts in leamability theory. As we
explained in Section 1, we are only interested in Gold's notion of identification in
the limit from positive data, which we will simply call learning in what fol lows)

* Categorial grammar originated in the work of Ajdukiewicz (1935) and was refined by the work
of Bar-Hillel (1953) and Lambek (1958, 1961).

** See Section 9.2 of Kanazawa 1994a for an extension to a formalism like Montague grammar
(Montague 1973).

* For introductions to different aspects of the field, see Angluin and Smith 1983, Osherson et
al. 1986, Ohserson et al. 1994, Chapter 2 of Kanazawa 1994a, and de Jongh and Kanazawa 1995.

118 MAKOTOKANAZAWA

2.1.1. Basic Definitions

In order to formulate the question of learnability, we first need to specify three
things:

- a set f~ ('hypothesis space'),
- a set | ('sample space'),
- a function L that maps elements of f~ to subsets of 6 , i.e., L: f~ ~ pow(6) .

~2 can be any class of finitary objects on which mechanical computation can be
carried out. For instance, ~2 could be the set of natural numbers, or it could consist
of programs for a certain kind of abstract machine (e.g., Turing machine programs),
or formal grammars of some kind (e.g., context-free grammars). Formally, we can
identify f~ with a certain recursive set of strings over some finite alphabet. Elements
of ~2 are called grammars.

The set 6 is a certain recursive subset of E* for some fixed finite alphabet E.
In many cases, one simply takes 6 = E*. Elements of 6 are called sentences, and
subsets of 6 are called languages.

If G is a grammar in f~, then L(G) is called the language generated by G.
We can think of G as a name for L(G), so we call L the naming function. The
question whether s E L(G) holds between s E 6 and G E f~ is called the universal
membership problem. The naming function is assumed to be such that the universal
membership problem is at least semi-decidable (r.e.).

A triple (f~, 6 , L) satisfying the above conditions is called a grammar system.

EXAMPLE 1. Let E be any finite alphabet, and let F be a countably infinite set
of symbols disjoint from E. Let CFG be the set of all context-free grammars over
E whose non-terminal symbols are in 1-'. For every G E CFG, let L(G) be the
language generated by G under the usual interpretation. Then (CFG, E* ,L) is
a grammar system. (In this grammar system, the universal membership problem
'w E L(G)? ' is decidable in time bounded by a polynomial in the combined size
of w and G.)

Let (~2, 6 , L) be a grammar system. A learning function is a partial function qo
that maps non-empty finite sequences of sentences to grammars, i.e.,

g~: U 6k ~ ~2.
k > l

Usually, we are only interested in learning functions that are effectively computable.
The term learning algorithm means an algorithm that computes a learning function,
and will sometimes be used interchangeably with 'computable learning function'.

Let

(s~)i~N = (so, Sl, s2 , . . .)

be an infinite sequence of sentences from 6. Given (si)ieN, a learning function
determines a grammar

G i =

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS l 19

for each i E N such that q9 is defined on (s o , . . . , si).* We say that ~ converges to
G on (si)i~N if Gi = (p((s0,.. �9 si)) is defined and is equal to G for all but finitely
many i E Pg--or, equivalently, if there exists an n E N such that for all i > n, Gi
is defined and is equal to G.

Let 9 be a class of grammars in ft. 9 determines the corresponding class of
languages, L(~) = { L(G) I G E ~ }.

DEFINITION 2. Let a grammar system (f~, ~ , L) be given, and let 9 C_ f2. A
learning function ~o is said to learn ~ if the following condition holds:**

for every language L in L(G),
for every infinite sequence (si)i~N that enumerates the elements of L (i.e.,
{s i I i E N } = L) ,
there exists some G in G such that L(G) = L and
qo converges to G on (si)ieN.

A word about the above definition is in order. Let L E L(G). If there is more
than one grammar G in G such that L(G) = L, a learning function ~ that learns

is not required to converge to the same grammar on different infinite sequences
that enumerate the elements of L; the grammar G that ~ converges to can depend
on the order in which the elements of L are enumerated.

A class G of grammars is said to be learnable if there is a computable learning
function that learns 9.

EXAMPLE 3. Take the grammar system (CFG, E*, L) of context-free grammars
over alphabet E. Let G be the subclass of CFG consisting of grammars whose rules
are all of the form

S --+ w~

where w E E*. Observe that L(G) is exactly the class of finite languages over E.
We show that G is learnable. Define a computable learning function qo as follows:

~ ((s o , . . . , si)) = (E, {S}, S, P) ,

where

P = {S --* s o , . . . , S --* si}.
Let L be a finite language over E. If (si)icN enumerates L, then there exists an
n E N such that for all i > n, { s o , . . . , si} = L. This means that for all i >_ n,
~p((s0 , . . . , s i)) = G, where G = (E, {S}, S, { S ~ w I w E L}) . Clearly,
L(G) = L. Thus qo learns 9. In fact, in any grammar system (f~, 6 , L) , any class
9 of grammars such that L(9) consists of exactly the finite languages is learnable,
if there exists a computable function r that maps each finite language D _C | to a
grammar r E G such that L (r = D.

�9 (s o , . . . , sl) denotes a non-empty finite sequence. I f / = 0, this is (so).
�9 * This definition is somewhat unorthodox in that what is learned is a class of grammars, rather

than a class of languages in the sense of sets of sentences.

120 MAKOTO KANAZAWA

A class 9 of grammars is said to be non-effectively learnable if there is a learning
function (not necessarily computable) that learns 9. Clearly, learnability implies
non-effective leamability. We are primarily interested in (effective) learnability,
but non-effective learnability is also a useful companion notion.*

2.1.2. Finite Elasticity

In Example 3, we noted that in a reasonable grammar system, a class ~ of grammars
such that L(~) consists of exactly the finite languages is learnable. In a certain
sense, this situation cannot be improved. In the original article that introduced
identification in the limit, Gold (1967) proved the following important theorem:

THEOREM 4 (Gold). In any grammar system, a class ~ of grammars is not (non-
effectively) learnable if L(G) contains all finite languages and at least one infinite
language.

Let ~ be a class of grammars and let/2 be the corresponding class of languages,
i.e.,/2 = L(~). As Gold's theorem illustrates, sometimes the fact that/2 has a certain
property is enough to conclude that G is not (even non-effectively) learnable. (In
fact, non-effective learnability is completely determined by/2.)

On the other hand, under certain conditions, a property of the class/~ of lan-
guages generated may imply learnability of the given grammar class ~. One such
property is what Wright (1989) dubbed finite elasticity. Finite elasticity is defined
as the negation of infinite elasticity, defined below.**

DEFINITION 5 (Infinite elasticity). A class 12 of languages is said to have infinite
elasticity if there exist an infinite sequence (s,~),~N of sentences and an infinite
sequence (Ln)~N of languages in/2 such that for all n E N,

s~ ~ Ln,

and

(80 , . . . , an} C Ln+l.

DEFINITION 6 (Finite elasticity). A class E of languages is said to have finite
elasticity if it does not have infinite elasticity.

Building on Angluin's (1980b) work, Wright (1989) proves that for a class of
grammars to be learnable, it is sufficient that the class of languages generated has
finite elasticity, under certain provisions.

* See Osherson, Stob, and Weinstein 1986, p. 53 for this point.
** Wright's (1989) odginial definition of infinite and finite elasticity was in error, and was later

corrected by Motoki, Shinohara, and Wright (1991).

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS 1 21

THEOREM 7 (Wright). Let (f~, 6 , L) be a grammar system for which the universal
membership problem is decidable, and let ~ be an r.e. subset of f~. If L(G) has
finite elasticity, then ~ is learnable.

Note that finite elasticity is far from a necessary condition for learnability (under the
provisions in Theorem 7): Example 3 gave a learnable recursive class of grammars
such that L(G)) has infinite elasticity. Nevertheless, finite elasticity is in practice a
very useful condition, as it is often relatively easy to prove that a language class
has finite elasticity. For example, Shinohara's theorem, mentioned in Section 1,
was proved by showing that the class of languages generated by context-sensitive
grammars with at most k rules has finite elasticity.*

2.2. CLASSICAL CATEGORIAL GRAMMARS

In this section, we introduce the grammar system of classical categodal grammars,
and state the main result of the paper.

2.2.1. Basic Definitions

In classical categorial grammar, each symbol in the alphabet is associated with a
finite number of types. Types are constructed from primitive types by two type-
forming operators, / and \. ff we let Pr and Tp denote the set of primitive types
and the set of types, respectively, Tp is defined to be the smallest set satisfying the
following conditions:

- PrO_ Tp,
- if A E Tp and B E Tp, then A \ B E Tp.
- if A E Tp and B E Tp, then B/A E Tp.

The letters A, B, C, possibly with subscripts, range over types. Type A is said to
be a subtype of type B if A occurs in B. More precisely, A is a subtype of B if and
only if either (i) A = B or (ii) B = BI\B2 or B = BE~B1 and A is a subtype of
B1 or B2.

We assume that the set Pr is countably infinite** and no element of Pr is of the
form A \ B or B/A. One member t of Pr is singled out as the distinguished type.
The members of Pr other than t are called variables, for reasons that will become
clear later. The set of variables is denoted Var. Thus, Pr = {t} U Var. The letters z,
y, z, possibly with subscripts, range over variables.

* To be accurate, Shinohara's (1990a) result was stated in terms of the related formalism of
length-bounded elementary formal systems.

** Each grammar uses only finitely many primitive types. However, there is no bound on the
number of primitive types a grammar can use, so it is necessary and sufficient to have a countably
infinite supply of primitive types.

122 MAKOTOKANAZAWA

In categorial grammar, the combinatorial properties of types are completely
determined by their shape. There are two modes of type combination, Backward
Application:*

A , A \ B ~ B

and Forward Application:

B / A , A ~ B.

A non-empty sequence of types A 1 , . . . , A n is said to derive a type B, or, in
symbols,

A1, . . . , A n ~ B ,

if repeated applications of the rules of Backward and Forward Application to the
sequence A1 ,. �9 �9 An results in B. A formal definition follows:

DEFINITION 8. The relation ~ C_ Tp + • Tp is defined to be the smallest relation
satisfying the following clauses:

- For all A E Tp, A =~ A.
- For all F, A E Tp + and for all A, B E Tp,

�9 if P ~ A and A ~ A \ B , then F, A ~ B, and
�9 if F ~ B I A and A ==~ A, then F, A =~ B.

Let Z be a fixed alphabet. A classical categorial grammar over E is any finite
relation G between ~ and Tp (G C ~ • Tp and G is finite). For a symbol c E
and a type A E Tp, if (c, A) E G, we say that G assigns A to c, and often write
G: c ~-+ A. (Henceforth, we will simply say 'grammar ' to mean classical categorial
grammar, as long as no confusion is likely to arise.)

Let G be a grammar over ~. G generates a string ci �9 .. Cn E ~ + if and only if
t h e r e a r e t y p e s A 1 , . . . , An such that G : cl ~-+ A~(1 < i < n) and A1, . . . , An ~ t.
The set of strings generated by G is called the language of G and is denoted L(G) .

E X A M P L E 9. Let E = {a, b}. The following is a classical categorial grammar
that generates a context-free language { anb n I n > 1 }:

a2: t/x, (t/x)/t,
b ~--+ x

(We use notation like this to display all type assignments of a grammar. The above
means a 2 = { (a , t / x) , (a, (t /x) / t) , (b ,x)}.)

* Some people (e.g., Dowty (1988) and Steedman (1985, 1987, 1988)) write B\A for what we
write A\B. Our notation is that established by Lambek (1958) and followed by Bar-Hillel (1960).

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS 123

We let CatG denote the class of all classical categorial grammars over ~.
Then (CatG, ~+, L) constitutes a grammar system. It is known that the class
{ L(G) I G E CatG } of languages generated by a classical categorial grammar
coincides with the class of e-free context-free languages (Bar-Hillel, Gaifman, and
Shamir 1960). As in the case of context-free grammars, the universal membership
problem 'w E L(G)? ' for the grammar system of classical categorial grammars is
decidable in time bounded by a polynomial in the combined size of w and G.

2.2.2. Rigid and k-Valued Grammars

If a grammar G C_ ~ x Tp is a partial function from ~ to Tp, G is called a rigid
grammar.* A rigid grammar assigns either zero or one type to each symbol in the
alphabet. If a grammar G assigns at most k types to each symbol in the alphabet,
that is, if l{ A I G: c ~ A }l < k for all c E P~, we call G a k-valued grammar. (A
rigid grammar is a one-valued grammar.)

EXAMPLE 10. The following grammar GI generates the regular language a ' b :

GI: a ~ t / t ,

b r i t .

G1 is a rigid grammar. (Afortiori, G1 is a k-valued grammar for any k > 1.) The
grammar G2 in Example 9 is a 2-valued grammar, but not a rigid grammar.

Let Gk-valued denote the class of k-valued grammars, and let/:k-valued = { L(G) I
G E Gk-v~ued }. The classes s form a strict hierarchy in the following
sense:**

THEOREM 11 (Hierarchy Theorem). For each k E N, /2k-valuea C /2k+l-valued.

We refer the reader to Kanazawa 1994a for proof.
The main result of this paper is the following theorem:

THEOREM 12 (Main Theorem). For each k C N, Gk-valued is learnable.

This is not a trivial result, because/2k-vaJued is always infinite if k > 2, and so is
/:l-vahed if [El > 2.~ The main theorem follows from the following lemma, but we
will also present a concrete learning algorithm that learns 9k-v~ued.

LEMMA 13. For each k E N, /:k-valued hasfinite elasticity.

We prove this lemma using a general theorem on finite elasticity. It is also possible
to reduce it to Shinohara's result (Appendix 7), but our method of proof will be of
independent interest.

* T h e t e rm is due to Buszkowsk i .
** In this paper, we a lways use C to m e a n proper subset.

* It is easy to see that any c lass o f g r a m m a r s that generate only finitely m a n y l anguages is learnable.

124 MAKOTO KANAZAWA

3. Buszkowski's Algorithm

The question of learnability has not been addressed with respect to categorial
grammars. There is very important work by Buszkowski (1987a, 1987b), however,
in which he presents a simple intuitive algorithm that computes a classical cate-
gorial grammar from linguistic data. The input to the algorithm is a finite set of
functor-argument structures, and the output is a rigid classical categorial grammar
which is compatible with the input data (if there is one). The algorithm, which
is similar to the one for the typing problem in lambda and combinatory calculi
(see Barendregt 1992), is an interesting application of unification, and it enjoys
some nice formal properties, as proved by Buszkowski and Penn (1990). Although
Buszkowski does not consider the question of learnability, his algorithm can in fact
be used in an algorithm that learns ~l-valued.

3.1. DEFINITIONS OF BASIC NOTIONS

Before presenting Buszkowski's algorithm, we have to introduce some more basic
definitions about categorial grammar.

3.1.1. Derivations

A derivation of a type B from a sequence of types A1, . . . , An is a certain kind
of binary branching tree that encodes a proof of A1, . . . , An =~ B. Each node of
a derivation is labeled by a type, and each internal node has an additional label,
which is either BA o r FA. If 79 is a derivation of B from A1, �9 . . , An, the root node
of 79 is labeled by B, and its leaf nodes are labeled by A1, �9 �9 �9 An in this order from
left to right. The labels BA and FA stand for Backward Application and Forward
Application, respectively, and indicate which of the two rules is used in each step
of a derivation. The set of derivations is defined inductively as follows:

DEFINITION 14.
- If A E Tp, then A (the tree consisting of a single node labeled by A) is a
derivation of A from A.

- Backward Application. If

A

F

is a derivation of A from F and

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS 125

AXB

/Q
A

is a derivation of AXB from A, then

B

A AXB

p A

is a derivation of B from P, A.

-- F o r w a r d A p p l i c a t i o n . If

B/A

P

is a derivation of B/A from F and

A

A

is a derivation of A from A, then

B

B/A A

r A

is a derivation of B from P, A.

In an instance of Backward or Forward Application

126 MAKOTO KANAZAWA

B B

A A \ B B / A A

the node labeled by A \ B or B / A is called thefunctor, and the node labeled by A
is called the argument. The ultimate functor of a derivation is the leaf node that
you arrive at by tracing the functor daughters starting from the root node.

EXAMPLE 15. The following is a derivation o f t from x, (x \ t) / y , y:

t

x x \ t

/4a.
v

In the only instance of Backward Application in this derivation, the node labeled
by x \ t is the functor and the node labeled by x is the argument. In the only instance
of Forward Application, the node labeled by (x \ t) / y is the functor, and the node
labeled by y is the argument. The ultimate functor of this derivation is the node
labeled by (x \ t) / y .

Clearly, we have F =~ A if and only if there is a derivation of A from F.

3.1.2. ParseTrees

Just as a derivation encodes a proof of A1, . . . , An =~ B, aparse tree of G encodes
a proof of cl . . . Cn E L(G). A parse tree of G is obtained from a derivation of t by
attaching symbols to the leaf nodes in accordance with G's type assignments.

DEFINITION 16.
(i) If79 is a derivation of B from A1, . . . , An, and Cl , . . . , an are symbols such
that G: ci ~ Ai (1 < i < n), the result of attaching O , . . �9 an, from left to
right in this order, to the leaf nodes of 7P is a partial parse tree of G.

B

A1 An
. o o

Cl an

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS 1 27

(ii) A parse tree of G is a partial parse tree of G whose root node is labeled by
t.

If Cl �9 �9 �9 c,~ is the string of symbols attached to the leaf nodes of a partial parse
tree 7 9, Cl .. �9 c,~ is said to be the yield of 79. Clearly, for every string Cl �9 .. cn E ~+,
cl . . . c~ E L(G) if and only if there is a parse tree of G that yields Cl . . . cn. If a
parse tree 79 of G yields Cl . . . c,~, then 79 is called a parse of Cl . . . c,~ (in G).

EXAMPLE 17. Let {got, J o h n , m a d } C ~, and let

{(got , (x \ t) / y) , (J o h n , x), (m a d , y)} C G.

Then the following is a parse tree of G:

t

x z \ t
J o h n

(\t)ly y
g o t m a d

The yield of this parse tree is J o h n go t m a d . Thus, J o h n go t m a d E L(G).

3.1.3. Functor-Argument Structures and Structure Languages

A functor-argument structure over alphabet ~ is a binary-branching tree whose
leaf nodes are labeled by symbols in ~ and whose internal nodes are labeled by
either B A o r FA. As a special case, symbols in ~ are regarded as functor-argument
structures of height 0. The set of functor-argument structures over ~ is denoted EF.
The letters T, U, possibly with subscripts, range over functor-argument structures.
Often, we will simply say 'structure' to mean functor-argument structure. A set of
functor-argument structures over E is called a structure language over ~.

EXAMPLE 18. Let {got, J o h n , m a d } C_ ~. Then the following are examples of
functor-argument structures over E:

128 MAKOTO KANAZAWA

John mad / / ~

John John

mad got

John John

hn

mad John

got mad

The notions of functor, argument, and ultimate functor are defined for parse
trees and functor-argument structures in the same way as for derivation trees. Take
for example the second to last functor-argument structure in Example 1 8. In the
only instance of Forward Application, the node labeled by BA is the functor, and
the other node (labeled by J o h n) is the argument. The ultimate functor of this
structure is the first leaf node labeled by J o h n .

Let G be a grammar, and let P be a partial parse tree of G. The result of
stripping P of its type labels is a functor-argument structure, and we call this the
(functor-argument) structure of 79. If T is the structure of a parse tree 79, we say
that 7:' is a parse of T. We say that a grammar G generates a structure T if and
only if for some parse tree 7 9 of G, T is the structure of 79. The set of structures
generated by G is called the structure language of G and is denoted FL(G).* In
order to distinguish L(G), the language of G, from FL(G), its structure language,
we often call the former the string language of G.

EXAMPLE 19. Let G be as in Example 17, and let T be the last structure in
Example 18. Then the parse tree in Example 17 is a parse o fT . Thus, T C FL(G).

The yield of a functor-argument structure T is the string of symbols e 1 . . . C n
labeling the leaf nodes of T, from left to right in this order. The yield of T is
denoted yield(T). It is easy to see that L(G) = { yield(T) [T E FL(G) }.

Since functor-argument structures over ~ are labeled trees, we can represent
them as terms, by regarding BA and FA as function symbols, and symbols in ~ as
constants. Thus, the structures in Example 18 can be represented as follows:

* The 'F' in FL(G) stands for 'functor-argument structures'. The notation is from Buszkows-
ki 1988.

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS 129

John, mad, BA(John, John), FA(John, John),
BA(rnad, got), FA(BA(mad, John), John), BA(John, FA(got, mad).

Since parentheses and commas are not strictly necessary, functor-argument struc-
tures over E can be encoded as strings over E t3 {BA, FA}. Viewed this way, EF,
the set of functor-argument structures over E, is a context-free language over
E U {BA, FA}. Note that the triple (CatG, E F, FL) constitutes another grammar
system.*

We let .~"~k-valued denote { FL(G) I G E ~k-valued }. The elements of .T/2k-valued
are called k-valued structure languages, and the elements of -T/21-valued are called
rigid structure languages. By contrast, we call the elements of { L(G) I G E
~k-valued } k-valued string languages and the elements of { L(G) I G E ~l-valued }
rigid string languages.

3.1.4. Substitutions

Recall that Pr = {t} U Var. I f we regard t as a constant, types can be regarded as
terms in a first-order language where \ and / act as function symbols. Then, the
standard notion of substitution of a term for a variable applies straightforwardly to
types.

A substitution is a function a: Var ~ Tp that maps variables to types. A
substitution is extended to a function from types to types as follows:

DEFINITION 20. Let cr be a substitution. Then we set

o (t) = t ,

o-(A\B) = o(A) \a (B) ,

a (B / A) = o-(B)/a(A),

for all A, B E Tp.**

We use the notation {Xl ~ A 1 , . . . ,xn ~ Ar~} to denote the substitution a
such that o(Xl) = A 1 , . . . , ~r(xn) = An and ~r(y) = y for all other variables y.

E X A M P L E 21. Leto- = { x ~ x \ y , y H t, z F-, t l (t l x) } . Thena((t/x)\y) =

(t / (x \ y)) \ t a n d ~ (((t / x) \ y) / (x / z)) = ((t / (x \ y)) \ t) / ((x \ y) / (t / (t / x))) .

Next we extend the action of substitutions to grammars:

* An important fact about the structure languages of classical categorial grammars is that the
inclusion problem 'FL(G1) C_ FL(G2) ?' is decidable. See Buszkowski 1987a.

** We use the prefix notation cr(A) instead of the more common postfix notation Aa for
substitutions.

130 MAKOTO KANAZAWA

DEFINITION 22. Let ~r be a substitution. Then or[G] denotes the grammar obtained
by applying c~ in the type assignments of G, that is:

a[G] = { (c,a(A)) [(c,A) e a }.

a[G] is called a substitution instance of G.

EXAMPLE 23. Let (f a s t , J o h n , wa lks} C_ P,, and let

a l : f a s t H y \ (x \ t) ,
J o h n ~-* x,

w a l k s ~-+ x\ t , y.

and

a2: fast (x\t)\(x\t),
J o h n H x,

w a l k s ~-~ x\ t .

Then a2 = ~ [a l l , where o- = {y ~ x\ t} . Note that FL(G1) = {To, T1 } C { Tn I
n E N } = FL(G2), where T~ is the following functor-argument structure:

f a s t

w a l k s f a s t e n t imes

If G1 and G2 are grammars, G1 __. G2 expresses the fact that G2 contains all
type assignments of Gb and possibly more. The following is a straightforward but
important fact about substitution instances.

PROPOSITION 24 (Buszkowski and Penn). If ~[G1] c_ G2, then FL(G1) C_

Proof. Suppose cr [G1] C G2. Let T E FL(G1) and let 79 be a parse of T in G1.
Let cr [7 9] be tile result of replacing each type label A of 79 by or(A). Then it is easy
to see that cr[79] is a parse o f t in G2. Therefore, T E FL(G2).

Proposition 24 implies that if or[G1] C_ G2, then L(G1) C_ L(G2).
A substitution that is a one-to-one function from Var to Var is called a variable

renaming. If cr is a variable renaming, then G and ~r[G] are called alphabetic
variants. Clearly, grammars that are alphabetic variants have exactly the same
shape and are identical for all intents and purposes. Therefore, it is convenient to
adopt the following convention:

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS 131

C o n v e n t i o n Grammars that are alphabetic variants are treated as identical.

In other words, different finite relations between E and Tp that are alphabetic
variants are considered different 'representations' of one and the same grammar.

Note that range(G) is the set o f types assigned to some symbol by G. Let
Tp(G) = { A] A is a subtypoe of some B E range(G) }, and let Var(G) =
Tp(G) M Var. Var(G) is the set of variables used in G.

P R O P O S I T I O N 25. Suppose 0-1[Gx] = G2 and 0-2[G2] = G1. Then G1 and G2
are alphabetic variants and are thus equal.

Proo f First, note that for each symbol c E E, 0-1 and 0-2 provide a one-one
correspondence be tween { A I GI: c ~-* A } and { A] GE: c ~-+ A }. For, if
{0-1(A) [G I : e ~ A } C { A I Gz:e ~ A},0-z[0-1[G1]] cannot be equal to
GI, and l ikewise for 0-2. Then, it is easy to see that 0-1 I Var(G1) is a one-to-one
function from Var(G1) onto Var(G2), and 0-2 I Var(G2) = (0-1 r Var(G1)) -1. One
can extend 01 I Var(G1) to a variable renaming 0-. Then a[G1] = 0-1 [G1] = G2.

3.1.5. Most General Unifiers

Let 0- and 7- be substitutions. The composition of 0- with 7-, denoted T o 0-, is defined
in the usual way: for all variables x, 7- o 0-(x) = 7-(~r(x)). The composit ion of two
substitutions acts as it should on all types: for all types A, T o 0-(A) = T(0-(A)). The
action of the composi t ion of two substitutions on grammars is also as is expected:
for all grammars G, 7- o 0-[G] = 7-[0-[G]].

Let 0-1 and 0-2 be substitutions. 0-1 is said to be more general than 0-2 if there is
a substitution 7- such that 0-2 --- 7- o 0-1.

E X A M P L E 26. Let a l = {x ~ x \ y , y~- . t, z ~-+ t / (t / x) } and let 0-2 = {x
t \ y , y ~-. t, z ~-+ t / (t / t) } . Then 0- 2 = T o 0-1, where 7- = {x ~-+ t}. Thus 0-1 is
more general than 0-2.

A substitution 0- is said to unify a set A of types if for all A1, A2 E A,
0-(A1) = 0-(A2). We say that 0- unifies a family of sets of types, if 0- unifies each
set in the family. A substitution a is a most general unifier of a family .4 of sets
o f types if and only if 0- is a unifier of .4 and for every unifier 0-1 of .4, 0- is more
general than a I.

E X A M P L E 27. Let ,4 consist o f the following sets:

A1 = {Xl /X2 , X3/X4},

A2 = { x s \ (x 3 \ t) } ,

A 3 ----- { X l \ • , X 5 } .

Then a most general unifier of .4 is:

132 MAKOTO KANAZAWA

cr = { z 3 ~ Xl , x4 ~-* x2 , x5 ~-+ X l \ t } .

A most general unifier is unique up to 'renaming of variables' in some suitable
sense.*

DEFINITION 28. Let us fix a computable partial function mgu that maps a finite
family ,,4 of finite sets of types to a most general unifier mgu(Jt) of ,,4, if there is
one.

Since most general unifiers are unique up to renaming of variables, and we identify
grammars that are alphabetic variants, it does not matter for our purposes which
most general unifier mgu picks.

3.2. ALGORITHM RG

Buszkowski's (1987a, 1987b) algorithm, which we here call RG (for 'rigid gram-
mars'), takes a finite set of functor-argument structures as input and returns a rigid
grammar compatible with it as output, if there is one. This algorithm essentially
relies on unification of a family of sets of types.

ALGORITHM RG.
- input: a finite set D of functor-argument structures.
- output: a rigid grammar G such that D C_ FL(G) (if there is one).

We illustrate the algorithm using the following example:

D = { ~ m s '

a m a n a f i s h s w i m s f a s t

Step 1. Assign a type to each node of the structures in D as follows:
(a) Assign t to each root node.
(b) Assign distinct variables to the argument nodes.

t

X l s w i m s

a z 2

m a n

t

/ / ~ x5 f a s t

a x4 s w i m s

f i s h

* See Lassez, Maher, and Marriott (1988) for discussions of the subtlety involved in the notion of
most general unifier.

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS 133

(c) Compute types for the functor nodes.

t

xl x l \ t x3 x3\t

a m a n a f i s h s w i m s f a s t

The general rules here are the following:

B B B

A A A \ B A

B

B / A A

Step 2. Collect the types assigned m the leaf nodes into a grammar.

GF(D): a e.-+ Xl/X2, x3/x4,
fas t H xs\(x3\t),
f ish ~ x4,

m a n ~-~ x2,
s w i m s ~-+ xl\t , xs.

This is the general form determined by D. In general, GF(D): c ~-. A if and only
if the previous step assigns A m a leaf node labeled by c.

Step 3. Unify the types assignedto the same symbol. Let A = { { A [GF(D): c ~-.
A } [c E dom(GF(D)) }, and compute a = mgu(,A).

= (X 3 ~ - - - + X l , X4J-- -+X2, X5e----rXl\t }.

The algorithm fails if unification fails.

Step 4. Let RG(D) = ,r[GF(D)].

RG(D): a ~ Xl/X2,
fas t ~-+ (Xl\t)\(xi\t),
f ish ~-+ x2,

m a n H x2,
s w i m s H xl\t .

(Note the change in the types assigned to fas t and fish.) This is the output of the
algorithm.

134 MAKOTOKANAZAWA

3.3. PROPERTIES OF R G AND SOME CONSEQUENCES

Buszkowski and Penn (1990) noted some of the most important properties of the
algorithm RG. In this section, we draw some consequences from Buszkowski and
Penn's results. In later sections, we will use them to show that U/~l-valued has finite
elasticity, and eventually, to show that ~l-valued is learnable.

LEMMA 29 (Buszkowski and Penn). FL(GF(D)) = D.
Proof Let D = (T 1 , . . . , Tn }. The labeling of the nodes of the structures in D

that precedes the construction of GF(D) in fact forms a parse tree 79i of GF(D) for
each structure Ti in D. This shows D __. FL(GF(D)) .

To show FL(GF(D)) _C D, we prove that each partial parse tree 79 of GF(D)
appears as a subtree in some 79i. This is done by induction on the height h of 79.

INDUCTION BASIS. h = 0. 79 consists of just one node, labeled by symbol c and
type A such that GF(D): c ~ A. Then, by the definition of GF(D), 79 appears as
a subtree in some 79~.

INDUCTION STEP. Let 79 be a partial parse tree of GF(D) of height h > 0. Then
79 must look like one of the following:

B B

A A \ B B / A A

where Q and ~ are partial parse trees of GF(D) of height < h - 1. By induction
hypothesis, Q appears as a subtree in some 79j, and T~ appears as a subtree in
some 79k. By the construction, A must be a variable, and there is just one node
in {791~ .- . , 79n} labeled by A. Then there must be just one node in {791,.. . , 79n}
labeled by A \ B or B / A as well. These nodes, which are the root nodes of Q and
7~, must be the functor node and the argument node, respectively, in some instance
of Backward or Forward Application in {791,.. . , 79n}. Therefore, 79 occurs as a
subtree in some 79i.

LEMMA 30 (Buszkowski and Penn). Let D be a finite set of functor-argument
structures. Then, for any grammar G, the foUowing are equivalent:
(i) D C_ FL(G).

(ii) There is a substitution a such that a[GF(D)] C G.
Proof. (ii) =~ (i) follows from Lemma 29.
(i) =~ (i i) .Le tD = {T1, . . . ,T~}andlet79ibeGF(D)'sparseofTi(1 < i < n).

Assume D C_C_ FL(G). Then G has a parse Q~ of each T~. Define a substitution cr
as follows. For each variable x E Var(GF(D)), find a (unique) 79i that contains a

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS 135

(unique) node labeled by x, and let (r(x) be the type labeling the corresponding
node of Qi. By induction on A E Tp(GF(D)) , we show that

if A labels a node of some Pi, then a(A) labels the corresponding node of Qi.

INDUCTION BASIS. If A E Var, this holds by definition. If A = t, then any node
labeled by A in {Pl , �9 �9 �9 3on} is the root node of some Pi. Since Qi is a parse tree
of G, the root node of Qi must be labeled by t.

INDUCTION STEP. Let A = B \ C labels a node of 79i. Then the relevant part of
79i must look like the following:

t

By induction hypothesis, the corresponding part of Qi looks like:

t

Then A' = ~(B) \a (C) = a (B \ C) = G(A). The case A = C / B is entirely
similar, completing the induction.

It follows tha t i fGF(D) : c ~ A, then G: c ~ a(A). Therefore, cr[GF(D)] _C G.

PROPOSITION 31 (Buszkowski and Penn). Let D be a finite set of functor-
argument structures. Then, for any rigid grammar G, the following are equivalent:
(i) D C_ FL(G).

(ii) RG(D) exists and there is a substitution r such that T[RG(D)] C G.
Proof (ii) =~ (i) follows from Lemma 30 and the fact that RG(D) is a substi-

tution instance of GF(D).

136 MAKOTO KANAZAWA

(i) ~ (ii). Assume that G is a rigid grammar such that D _c FL(G). By
Lemma 30, there is a substitution a such that ~r[GF(D)] C_ G. Since G is a
rigid grammar, o-[GF(D)] is also a rigid grammar. Then ~ unifies the family
Jt = { { A I GF(D): c F-+ A } I c E dom(GF(D)) }. This means that RG(D)
exists and RG(D) = cr0 [GF(D)], where a0 = mgu(.A). Then there is a substitution
T such thattr = Toao. Therefore, T[RG(D)] = T[cr0[GF(D)]] = (~-ocr0)[GF(D)] =
cr[GF(D)]. By assumption, a[GF(D)] C_ G, so ~-[RG(D)] C_ G.

COROLLARY 32. For every finite set D of functor-argument structures, { L E
?Z:l-valued I D C_ L }, if non-empty, has a least element with respect to the ordering
C.

Proof. This is an easy consequence of Propositions 24 and 31. The least element
of { L E FZ:l-valued I D C_ L } is given by FL(RG(D)).

When G1 and G2 are rigid grammars, we write G1 E G2 to mean there is
a substitution o- such that cr[G1] C_ G2. Since we identify grammars that are
alphabetic variants, it follows from Proposition 25 that E is a partial order. We
write G1 E G2 to mean G1 E G2 and G2 ~ GI. It is easy to see that for any rigid
grammar G, { G ~ E 91-vatued I GI E G } is finite.

The following is immediate from Proposition 31:

COROLLARY 33. Let D1 and D2 be two finite sets of functor-argument struc-
tures such that D1 C_ D2. If RG(D2) exists, RG(D1) also exists and RG(D1) E
RG(D2).

DEFINITION 34. A rigid grammar G is said to be in reduced form if there is no
grammar G ~ such that G I r- G and FL(G ~) = FL(G).

EXAMPLE 35. The following rigid grammar G is not in reduced form:

G: m a r y ~-+ t /x ,
s w i m s ~ (t /x) \ t .

An equivalent grammar in reduced form is

G~: m a r y H y,
s w i m s H y\t.

We have FL(G') = FL(G) and G / E G.

It should be clear that for any rigid grammar, there is one in reduced form that
generates the same structure language.

COROLLARY 36. RG(D), if it exists, is in reduced form.

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS 137

Proof Immediate from Proposition 31 and the definition of reduced form.

We also have the converse of Corollary 36:*

PROPOSITION 37. For every rigid grammar G in reduced form, there is a finite
set DG of functor-argument structures such that G = RG(DG).

Proof DG can be found by the following algorithm. Initially, set D := 0.
While FL(G) - FL(RG(D)) ~ 0, pick a functor-argument structure T E FL(G) -
FL(RG(D)) and set D := D tJ {T}. The value of D when the algorithm terminates
is the desired DG.

The correctness of this algorithm can be seen as follows. Firstly, D is always
a subset of FL(G), so by Proposition 31, RG(D) always exists and RG(D) __. G
always holds. If we let Gi be the grammar RG(D) constructed at the ith stage of
the algorithm, by Corollary 33, we have

Go E G1 r- G2 r- . . . E_ G.

Since { G I E gl-valued I GI -- G } is finite and a u-chain cannot contain a cycle,
the algorithm must terminate at some nth stage. Then we have Gn ___ G and
FL(G) - FL(G~) = 0. Since Gn D_ G implies FL(Gn) C FL(G), we get FL(G) =
FL(Gn). By the assumption that G is in reduced form, Gn ~- G. Therefore,
G,~ = G.

Proposition 37 can be used to show that if we take (CatG, ~F, FL) to be the
grammar system instead of the standard (CatG, ~+ , L), Buszkowski's algorithm
essentially learns the class Gl-vaJaed.** More results of this kind about 'learning
from structures', as opposed to 'learning from strings', which is our concern here,
may be found in Kanazawa 1994a.

PROPOSITION 38. Let G1 be a rigid grammar in reduced form, and let G2 be
any rigid grammar. Then G1 E G2 if and only if FL(G1) C FL(G2).

Proof The 'only if' direction is given by Proposition 24. To prove the 'if'
direction, let De1 be the finite subset of FL(G1) such that RG(DvI) = G1, as
given by Proposition 37. If FL(G1) C FL(G2), then Dc1 C FL(G2), so by
Proposition 31, RG(DG~) ___ G2.

4. Finite Elasticity of the k-Valued Languages

In this section, we prove our main theorem

* The acute reader will find that the next few results, although they are used to prove the main
theorem of this paper, are not strictly necessary for that purpose. They may be of independent interest,
however.

** I say 'essentially', since RG takes finite sets of functor-argument structures as input instead of
finite sequences as required of learning algorithms.

13 8 MAKOTO KANAZAWA

THEOREM 12 (Main Theorem). For each k E N, Gk-va~ued is learnable.

by showing that/~tc-valued, the class of k-valued string languages, has finite elasticity.
In the next section, we present a concrete learning algorithm that learns the class
of k-valued grammars.

4.1. FINITE ELASTICITY OF THE RIGID STRUCTURE LANGUAGES

To prove that Ek-valued has finite elasticity, we first prove that -T/~i-valued has finite
elasticity. The finite elasticity of/~k-valued then follows from it by a general theorem
on finite elasticity to be proved in the next subsection.

We call a sequence L0, L1, L2, . . �9 of languages an ascending chain if L0 C
L1 C L2 C ' ' - . TO begin with, we note that to prove the finite elasticity of
-T/~l-valued, it is enough to show that .T/~l-valued does not contain an infinite ascending
chain.

LEMMA 3 9 . / f .TEl-valued has infinite elasticity, then there is an infinite sequence
(Ln)nEN of languages in .)eEl_valued such that for all n E N, Ln C Ln+l.

Proof Suppose that 9tEl_valued has infinite elasticity, i.e., that there is an infi-
nite sequence (Tn)~eN of functor-argument structures and an infinite sequence

I (Ln)n,~N of languages in)r/:l_valuea such that for all n E N,

T, 9~L~

and

t (To,.. . ,Tn} g Ln+ 1.

By Corollay 32, let Ln be the least element of { L E -T'/:l-valued] (T o , . . . , Tn-1 } C
L }. Then for all n E N, L,~ C Ln+l. Moreover, L,~ # Ln+I, since Tn ~ Ln but
T~ E Ln+l. So for all n E N, Ln C L,~+I.

Note that the above proof shows that for any class of languages with the property
in Corollay 32, infinite elasticity is equivalent to existence of an infinite ascending
chain.*

We will prove that there is no infinite g-chain of rigid grammars in reduced
form (based on the same alphabet). Since for every rigid grammar there is a rigid
grammar in reduced form that generates the same structure language, from this it
follows by Proposition 38 that there is no infinite ascending chain of rigid structure
languages.

We need some definitions.

DEFINITION 40. A type A E Tp(G) is said to be useless in G if there is no parse
tree of G that has a node labeled by A.

* Actually, a condition weaker than the one in Corollary 32 suffices, but this need not concern us
here.

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS 139

This definition is analogous to the definition of useless symbols in context-free
grammars.

PROPOSITION 41. If a rigid grammar G is in reduced form, then G has no useless
type.

Proof. We prove the contrapositive. Suppose that G is a rigid grammar with a
useless type. Then there is a type A E Tp(G) such that no parse tree of G has a
node labeled by A.

CASE 1. A E range(G). Let G I = G - {(c, A)}, where c is a symbol such that
G: c H A. G ~ C G, and it is clear that FL(G I) = FL(G), so G is not in reduced
form.

CASE 2. A ~ range(G). Then there is a type A1 E Tp(G) such that A is an
immediate subtype of A1 (i.e., Aa = A\A2 or A2\A or A2/A or A/A2). Since
there is no parse tree of G that has a node labeled by A, there is no parse tree of
G that has an instance of Backward or Forward Application in which the functor
node is labeled by A1.

Pick a variable x t /Vat (G) and let o-(x) = A1. For each B E Tp(G), let 9(B) be
the result of replacing all occurrences of A1 in B by x. This makes (r(9(B)) = B
for all types B E Tp(G). Take the grammar G I = { (c, 9(B)) I (c, B) E G }.
G = cr[G~], so G I E G. Since ~r maps x to a non-variable, G I # G. Thus, G' [- G.
By Proposition 24, FL(G') C_ FL(G), so it remains to show FL(G) C_ FL(G') .
Suppose T E FL(G). Let 7 9 be a parse of T in G. Let 79~ be the result of replacing
each type label B of 79 by 9 (B). We show that 791 is a parse of T in G ~, to conclude
T E FL(G~). That the root node of 791 is labeled by t is obvious. If a leaf node of
79~ has type label B I and symbol label c, then by the construction of 79~, B ~ = 9(B)
for some B such that G: c ~ B, which implies that GI: c ~-~ B ~. Now let

C

/ %
B B\C

be an instance of Backward Application in ~ . Then 791 has

g(C)

g(B) g(BiC)

in the same position. The only way that this fails to be an instance of Backward
Application is to have g(B\C) 5~ g(B)\g(C). This can be so only if B \ C =
A1, which is impossible. By symmetry, the same holds for Forward Application.
Therefore, 791 must be a parse of T in G ~.

140 MAKOTO KANAZAWA

This proposition will be useful in showing that there is no infinite ascending chain
of grammars without useless types.*

DEFINITION 42. Note that any type A can be written uniquely in the following
form:

(... (plAx)I...)IA~

where B I C stands for either B / C or C \ B , and p E Pr. For 0 < i < n, we call the
subtype (. . . (plA1)l...)IA~ of A (when i = 0, we take this to be p) a head subtype
of A. p is the head of A and is denoted head(A). Ai's are called argument subtypes
of A.

LEMMA 43. I f a type A E Tp(G) is not useless in G, then A occurs as a head
subtype o f some type in range(G).

Proof Assume that A is not useless in G. Then there is a partial parse tree 79
whose root node is labeled by A. Then, by induction on the depth of the ultimate
functor of 79, one can prove that A is a head subtype of the type labeling the
ultimate functor of 79.

LEMMA 44. I f a variable x E Var(G) is not useless in G, then

(i) there is a type B E range(G) such that z = head(B), and
(ii) there is a type C E range(G) such that x occurs as an argument subtype in C.

Proof Part (i) is just a special case of Lemma 43. To prove part (ii), let P be
a parse tree of G that has a node labeled by z. Since x # t, x occurs in 79 as the
label of the argument node of an instance of Backward or Forward Application.
Then the accompanying functor node is labeled by a type B of the form x \ A or
A / x . Since B is not useless, by Lemma 43, there is a type C E range(G) where B
occurs as a head subtype. Then x occurs as an argument subtype in G.

DEFINITION 45. Let G be a grammar and let A, B E Tp(G). We say that A
depends on B (in G) if every partial parse tree P whose root node is labeled by A
has a non-root node labeled by B.

A

/2,
The cortverse of Proposition 41 also holds: if a rigid gramrnar has no useless type, it is in reduced

form (Kan~zawa 1994a).

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS 141

LEMMA 46. Let A, B E Tp(G) and suppose that in every type C E Tp(G) that
has A as a head subtype, B occurs as an argument subtype outside A.

c = AI...IBI...

Then A depends on B in G.
Proof. Let 79 be a partial parse tree of G whose root node is labeled by A.

Then the ultimate functor of 7) is some type C of the form (. . . (AIB1)I...)IB.~.
By assumption, some Bi = B. Then somewhere on the path from the root to
the ultimate functor of 79, there must be an instance of Backward or Forward
Application where the argument node is labeled by B.

DEFINITION 47. For any grammar G, let Head(G) denote the set { head(A) I
A E range(G) }.

DEFINITION 48. Define the degree d(G) of a rigid grammar G as follows:

d(G) = Idom(G)l- IVar(a)l.

We are now ready to prove one of the most crucial lemmas in this paper.

LEMMA 49 (Key Lemma). Let G1 and G2 be rigid grammars that have no useless
type. I f G1 r- G2, then d(G1) < d(G2).

Proof. Suppose that G1 and G2 are rigid grammars without useless types such
that or[G1] C_ G2. By Lemma 44, Var(Gi) = Head(Gi) - {t} for i = 1,2. Then
we have

IVar(G2)l = IHead(G2) - { t} l

= I(Head(~r[Gl]) - { t }) U (Head(G2 - o-[G1]) - - { t }) I

< IHead(a[G1]) - { t} l + IHead(G2 - a [a l]) - { t } l (1)
< IHead(~[G1]) - { t } I + I n e a d (a 2 - cr[G1])l (2)

< IHead(cr[G1]) - { t } I + [dom(G2) - dom(G1) l (3)

< IHead(G1) - { t } l + Idom(Ga) - dom(G1)[(4)
= IWar(G1)l + Idom(a2) - d o m (a l) l ,

where equality holds for
(1) just in case (Head(cr[G1]) - {t}) fl (Head(G2 - o[G1]) - {t}) = 0;
(2) just in case t ~ Head(G2 - ~r[G1]);
(3) just in case for all b, c E dom(G2) - dom(G1), b 7~ c implies head(B)

head(C), where B and C are the types such that G2: b ~-~ B and G2: c ~ C;
(4) just in case for all x E Head(G1) - {t}, head(a(x)) 7~ t and for all x, y E

Head(G1) - {t}, x 7~ y implies head((r(x)) 7~ head(a(y)).

142 MAKOTO KANAZAWA

s o I V a r (a 2) I <- [Var(G~) I + I d o m (G 2) - d o m (G ~) 1, which is e q u i v a l e n t to d(G1) _<
d(a2).

Assume that d(Gt) = d(G2). Then the conditions (1)-(4) above must hold. Let

{ X l , . . . ,Xm} = Head(G1) - {t},

{YI, . . - , Yl} = Head(G2 - o-[G1]),

head(cr(xi)) = zi.

{ Z l , . . . , zm, Y l , . . . , Y~} = Head(G2) - (t} and Z l , . . . , Zm, Y l , . . . , Yl are all dis-
tinct. We will show

{ y ~ , . . . , y ~ } = O,

o'(xi) = zi for 1 < i < m.

(5)

(6)

(5) and (6) mean that a r Var(G1) is a one-to-one function from Var(G1) to
Var(Gz), so if we can show (5) and (6), we can establish that G1 and G2 are
alphabetic variants and are thus equal. Note that Yi ~ {or(x1), . . . , a (x m) } , and if
cr(xi) ~ zi, then zi f[{~r(xl) , . . . , a(xm)}. Thus, if either (5) or (6) fails to hold,

there is s o m e w E { z l , . . . , z m , y l , . . . , y t }

such that w r { a (x l) , . . . , c r (x~)} . (7)

Therefore, we assume (7), to derive a contradiction. Since G2 has no useless type,
by Lemma 44, w must occur as an argument subtype of some type A in range(G2).
There are two cases.

CASE 1. A E range(G2 - or[G1]). Then A must look like

. . . ((. . . (y j lA1)l . . .) lw)l �9 �9 �9

Since yj does not occur as the head of any B ~ A in range(G2), this implies that
yj depends on w.

CASE 2. A E range(o-[G1]). A looks like

�9 . . ((. . . (p l A 1) I . . .) l w) l �9 �9 �9

A = o-(B) for some B E range(G1), and the assumption o'(xi) r w for all xi
implies that w ~ a (C) for any C E Tp(G1). This means that w occurs as an
argument subtype of cr(xj), where x j = head(B). Then zj = head(cr(xj))
o-(xj), z j must depend on w, since every D E range(G2) with head(D) = zj has
a (x j) as a head subtype.

Thus we have found a w ~ E { z l , . . . , Z m , Y l , . . . , Y l } such that w t
{c r (x l) , . . . , cr(xm)} and w' depends on w. Repeating this argument, we find a
cycle of dependency wo, w l , . . . , Wn (n > 1) such that w0 = w~ and wi depends
on wi-1 for 1 < i < n. This is a contradiction, for no grammar without useless
types can afford to have such a cycle of dependency.

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS 143

So we have proved (5) and (6). This concludes the proof.

Note that, by the definition of d(G), if G is a rigid grammar in reduced form,
then 0 _< d(G) <_ dom(G).

LEMMA 50. Let Go, Gl, �9 �9 �9 Gn be rigid grammars over ~ in reduced form such
that Go r- G1 r-- . . . r- Gn. Then n < ~.

Proof By Proposition 41 and Lemma 49, d(Go) < d(G1) < . . . < d(Gn).
Since 0 < d(Go) and d(G~) < Ir l, it must be that n < Ir l .

PROPOSITION 51. Let Lo, L 1 , . . . , Ln be rigid structure languages over alphabet
such that Lo C L1 C . . . C Ln. Then n < Ir l .
Proof For 0 < i < n, let Gi be the rigid grammar in reduced form such that

FL(Gi) = Li. Then, by Proposition 38, Go U G1 E . . . r- Gn. By Lemma 50,
n _ I r , I .

Note that even though ffT/21_valued does not contain an infinite ascending chain, it
is not hard to see that for every L E 5r/21_valued, the set { L ~ E 5r/21-valQed I L C L ~ }
is infinite unless it is empty.

THEOREM 52. ~'/21-valued hasfinite elasticity.
Proof By Lemma 39 and Proposition 51.

4.2. A THEOREM ON FINITE ELASTICITY

The theorem proved in this subsection generalizes the essence of a theorem obtained
by Wright (1989). We will use it to show that Yr/2k_valuea and/2k-valued have finite
elasticity. The method of the proof below is essentially the same as the one used
independently by Moriyama and Sato (1993), but these authors do not state their
result in full generality. For various applications of the theorem not mentioned in
the present paper, see Kanazawa 1994a or 1994b.

Let ~ and T be two (not necessarily distinct) alphabets. A relation R C_ ~* • T*
is said to be finite-valued iff for every s E ~*, there are at most finitely many
u E T* such that Rsu. If M is a language over T, define a language R -1 [M] over

by R - I [M] = { s [3u(Rsu A u E M) }.

THEOREM 53. Let All be a class of languages over T that has fn i te elasticity,
and let R C ~* • T* be a finite-valued relation. Then s = { R -1 [M] I M E .A4 }
also has finite elasticity.

Proof Suppose that /2 = { R- I [M] I M E AA } has infinite elasticity.
Then there is an infinite sequence of strings so, Sl, s2 , . . , over ~ and an infinite
sequence of languages L0, L1, L2 , . . . from/2 such that for each n, sn ~ L,, and
{ s o , . . . , s~} C_ L,~+I. Fo reachn E N, take an Mn E .M suchthat L~ = R-I[M~].
For each k E N, let

144 MAKOTO KANAZAWA

Uk = { (uo , . . . ,Uk) I Rsouo A . . . A nSkUk A 3n({UO,. . . ,uk} C Ms) }.

Note that each Uk is non-empty, and Ui and Uj are disjoint if i ~ j . Let

v=Uvk.
kCN

By the preceding remarks, U is infinite. U has the form of a tree: the mother of
(u0, �9 �9 �9 uk, uk+x) C U is (uo , . . . , uk), which is also in U. Since R is finite-valued,
U is finitely branching. Since U is an infinite tree, by K6nig's Lemma, U has an
infinite branch. Let uo, u l , u 2 , . . , be an infinite sequence of strings over T that
corresponds to an infinite branch of U; i.e., (u0), (u0, Ul), (U0, Ul, U2), �9 �9 �9 are the
nodes on this branch. Note that ss (t Ln implies

u,~ • Ms. (8)

For each n, let f (n) be such that {u0 , . . . , u,~} C_ Mf(,~) and for all j < f (n) ,
{u0 , . . . , Us} ~ My. By (8), n < f (n) for all n. For each n, let g(n) = fs(o) =
f (. . . (f (0)) . . .) . Note that 9 is monotone increasing. We claim that

n times

U9(0), Ug(1) , ' ' ' , U9(n),...

and

%(0), Mg(1) , . . . , Mg(s), . �9 �9

witness the infinite elasticity of .M. We have (8), so it is enough to observe that by
the definition of g,

(Ug(o),..., Ug(s)} C_ Mg(n+l)

for all n E N.

We can use Theorems 52 and 53 to show that .TEk-valued has finite elasticity.
Let ~ be a fixed alphabet, and let k be a fixed natural number _> 2. We can
associate with each k-valued grammar over E a rigid grammar over T, where T is
an alphabet that contains k copies of each symbol in E, i.e.,

T = U { (c , , . . . , c k } I c e z),
where all cj 's are assumed to be distinct. In order to determine the desired associ-
ation uniquely, let us fix a total ordering -< on Tp.

DEFINITION 54. For each k-valued grammar G over E, we define the rigid coun-
terpart rc(G) of G to be the fonowing rigid grammar over T:

rc(G) = { (c~, Ai)] c E ~ and Ai is the i-th element of { A I (c, A) E G } }.

Here, 'i-th' refers to the ordering -~.

IDENTIFICATION IN THE LIMIT OF CATEGOR1AL GRAMMARS 145

DEFINITION 55. Let amb: "r F --~ ~F be the homomorphism that maps each copy
ci o f c to c. That is:

amb(c/) = c

amb(BA(U1, U2)) = BA(amb(U1) , amb(U2))
amb(FA(U1, V2)) ---- FA(amb(U1), arab(U2))

for all c E ~,

for all U1, U2 E T F,

for all U1, U2 E T F.

(Here we are using the term representation of functor-argument structures.) If
M C_ T F, we let amb[M] denote { amb(U) [U E M }.

The following should be clear from definition.

LEMMA56. Let G be a k-valued grammar
amb[FL(rc(G))].

over ~. Then FL(G) =

THEOREM 57..)L-'/~k_valued has finite elasticity.
Proof By Theorem 52, the class { FL(H) I H is a rigid grammar over T } has

finite elasticity. Then { FL(rc(G)) I G is a k-valued grammar over E } also has
finite elasticity, since the latter is a subset of the former. The relation

T = amb[U]

between T E EF and U E T F is clearly finite-valued. Then, by Theorem 53, the
class { amb[FL(rc(G))] I G is a k-valued grammar over E } has finite elasticity.
But this class equals { FL(G) I G is a k-valued grammar over E } by Lemma 56.

Another application of Theorem 53 proves the following:

THEOREM 58. ~k-valued hasfinite elasticity.
Proof Recall that

L(G) = { yield(T) [7" E FL(G) }.

If L C_ EF, we write yield[L] for { yield(T)] T E L }. Then

/:k-valued = { yield[L] I L E .F/:k.value d }.

Note that the relation R C_ E+ • ~F defined by

R s T r s = yield(T)

is finite-valued; for, if R s T , then the number of nodes of T is exactly 2 t s l - 1,

and there are only finitely many functor-argument structures with a given number
of nodes. Since -T'/:k-valued has finite elasticity (Theorem 57), an application of
Theorem 53 shows that s also has finite elasticity.

By Theorem 7, Proposition 58 implies the main theorem (Theorem 12).

146 MAKOTO KANAZAWA

5. Learning Algorithms for k-Valued Grammars

There is a 'universal' learning algorithm that works for an arbitrary r.e. class 9 of
grammars for which universal membership is decidable and whose corresponding
language class has finite elasticity (see Wright 1989 and Kapur 1991). This algo-
rithm of course can be used to learn 9k-valued, but its simple 'enumerative' behavior
does not bring any new insight. In this subsection, we present a concrete learning
algorithm that learns 9k-valued, for each k. We do this in stages. First, we treat the
case k = 1, to illustrate the core idea of the algorithm. Next, we treat the general
case using the notion of the rigid counterpart of a k-valued gramar defined in the
previous section.

5.1. THE CASE k = 1

Our learning function for 91-valued is defined in terms of two computable functions,
~l-valued and/,(2). ~l-valued is a function that maps a finite set of strings to a finite
set of rigid grammars, and/z (2) is a function that takes two arguments, a finite set
of grammars and a positive integer, and returns a member of the first argument.

DEFINITION 59.

Xltl-valued({80,... ,8i}) = {RG({T0, . . . ,Ti}) [sj = yield(Tj) (0 < j < i) }.

Each grammar in the value of ~l-valued is the result of randomly guessing the
functor-argument structure of each string in the set given as the argument to �9 1-valued
and then applying Buszkowski's algorithm to the resulting set of functor-argument
structures.

EXAMPLE 60. Let

so = m a r y s w i m s ,

sl = m a r y s w i m s fas t .

There are two functor-argument structures that yield so, and eight that yield Sl, so
there are 16 possible analyses of {80, 81 }. Buszkowski's algorithm RG succeeds on
six of them, and we have t~tl_valued({80, 81}) ~--- {G1, G2, G3, G4, GS, G6}, where

fast (x\t)\(x\t),
m a r y H x,

s w i m s ~-+ x \ t ,

G2: f a s t F-+ t\t,
m a r y ~-* x,

s w i m s ~-+ x\t,
G3: fast ~ ((t/x)\t)\x,

m a r y ~-+ t/x,

I D E N T I F I C A T I O N I N T H E L I M I T O F C A T E G O R I A L G R A M M A R S 147

s w i m s H (t / x) \ t ,

G4: f a s t H x\((t/x)\t),
m a r y ~ t / x ,

s w i m s ~-+ x,

Gs: f a s t H t \ t ,
m a r y ~-+ t / x ,

s w i m s ~ x,

G6: f a s t F-+ x \ x ,
m a r y H t / x ,

s w i m s ~-~ x.

Note that L(G1) = L(G2) = L(as) = L(G6) = { m a r y s w i m s f a s t n I n E N }
and L(Gs) = L(Ga) = { m a r y s w i m s , m a r y s w i m s fas t} .

By Proposition 31, it is easy to see the following:

LEMMA 61. I f G E 61-valued and { s o , . . . , si} C L(G), then there is some G' E
x I / 1 - v a l u e d ({ S O , �9 �9 . , 8i}) such that G' E G.

The above lemma implies the next two lemmas:

LEMMA 62. I f G E x] ~ t l _ v a l u e d ({ S 0 , . . . , Si}), then { s o , . . . , si} C L(G).

LEMMA 63. { L (a) I G e x~T/l_valued({80,... ,8i}) } includes allminimal elements
o f { L E El-valued] {So, . . . ,s/} C L}.

The following simple fact will be important in proving the correctness of our
learning algorithms:

LEMMA 64 (Kapur). Let E be a language class with finite elasticity. Then for each
language L E E, there is a finite set DL C L such that L is the unique smallest
element o f { L' E E IDL C_ L' }.

Proof We prove the contrapositive. Let E be any language class, and suppose
that for some L E E, for every finite set D C_ L, there is an L I E L: such that
D C_ L t and L ~ U . Let (si)i~N be an infinite sequence enumerating L. By
assumption, for every / E N, there is an Li E E such that { s o , . . . , si} C_ Li and
L q~ Li. Let f be a function such that for all i, ss(0 E L - Li. Note f (i) > i. Let
g(n) = fn(O) = f (. . . (f (0)) . . .) . Then

n t i m e s

sg(1), %(2), �9 �9 �9 sg(n+l), �9 �9 �9

and

Lg(o), Lg(O, . . . , Lg(,~), . . .

148 MAKOTO KANAZAWA

witness the infinite elasticity of/2.

Let #l-valued be a function that maps a non-empty finite set G of rigid grammars
to an element Go of ~ such that L(G0) is minimal in { L(G) I G E G }. Then,
by Lemmas 62 and 63, L(#l-valued(~l-valued({S0, �9 �9 �9 Si}))) is always a minimal
element of { L E Z21-valued] { s o , . . . , Si} C L }. By Theorem 58 and L e m m a 64,
then, for every L E /21-valued, there is a finite set DL of strings such that if DL C_
{ 8 0 , . . . , 8i} C_ L, L(/~l_valued(~l_valued({80,..., 8i}))) = L. Define a learning
function p as follows:

(~((80)) = ~tl.valued(ff~Jl.valued({80))), { 80)
if si+l E L(p((s0 , . �9 si))),

p ((8 0 , . . . , 8i+1)) = /Zl_valued(ffffl_valued({80, " , 8i+1}))
otherwise.

It is now easy to see that p learns ~l-valued.* However, we do not know if there
is a definition of #l-v,aued that makes it computable, ~ so the learning function p
defined thus may not be computable.

Although there may be no computable function like/Zl_valued, there is one that is
'computable in the limit' in the following sense. Let -~ be a computable well-order
of all grammars, and let E_<n be the set of strings over E of length _< n.

DEFINITION 65. Let #(2) be a function that takes two arguments, a non-empty
finite set ~ of grammars and a positive integer n, and returns the first member
Go of ~ (under the ordering 4) such that L(G0) f-1 p~_<n is a minimal element of
{ L (G) M ~ < n I G E G }.

Since the universal membership problem is decidable for categorial grammars, #(2)
is computable. It is easy to see the following:

L E M M A 66. For every finite set G of grammars, there is an m such that for
all n > m, #(2)(~, m) = #(2)(G, n) and L(#(2)(~, m)) is a minimal element o f
{ L (G) I G C ~ }.

One can define a computable learning function ~)l-valued in terms of kI/1.valued
and #(2). For this, we first define a 'conservative' version of kO1.valued:

* Moreover, p has the desirable property of beging conservative (Angluin 1980b). See Kanaza-
wa 1994a for a discussion of the question of whether Gk-vatued is conservatively learnable.

** One can show that there is no computable function # that takes a finite set ~ of arbitrary
categorial grammars and returns an element Go of ~ such that L(Go) is minimal in { L(G)] G E ~ }
(Kanazawa 1994a). It is an open question whether there is any k such that a computable function
/~k-v~u~a exists that maps a finite set G of k-valued grammars to an element Go of ~ such that L(G0)
is minimal in { L(G) [G E ~ }.

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS 149

DEFINITION 67.

x~TJl.valued((S0)) = ~ l _ v a l u e d ({ S 0)) ,

~ l _ v a l u e d ((8 0 , . . . , 8 i + 1)) ----

~Vvaluea((So,. �9 �9 si)) if si+l ~ L(G) for every

~l-valuea({so,..., si+l}) otherwise.

It is easy to see the following:

LEMMA 68. For every G E fft1_valued((s0,..., si)), {so , . . . , si} C_C_ L(G).

LEMMA 69. { L(G) I G e ~l_valued((80,..., 8i))} includes all minimal elements
of { L E s { s o , . . . , s i } C L }.

DEFINITION 70.

(2) #
e l - v a l u e d ((8 0 , . . . , S i)) = ~ (~ I J l _ v a l u e d ((S 0 , . . . , S i)) , i + 1)

(i + 1 is the length of the sequence (so , . . . , si).)

EXAMPLE 71. Let so, sl and G 1 , . . . , G6 be as in Example 60. Suppose that the
well-ordering -~ on all grammars is such that G2 ~ G5 -~ G6 -~ G1 -~ G4 -~ G3.
Then

ffffl.valued((80, 81)) = {G1, G2, G3, G4, G5, G6},

r s l)) = G2.

At this point, r is picking a grammar that generates the bigger of the two
languages involved. r Sl, sl)) = r Sl)), but we have

k~l_valued((S0, Sl, Sl, Sl)) = {G1, G2, G3, G4, GS, G6},

~bl-valued((S0, Sl, Sl, Sl)) = G4,

since m a r y s w i m s fas t fas t is in L(G1), L(G2), L(Gs), and L(G6), but not in
L(G3) and L(G4).

THEOREM 72. r learns Gl-valuea.
Proof. Let L E /~l-valued and let (Si)iCN be an infinite sequence enumerat-

ing L. By Lemma 64, let DL be a finite subset of L such that L is the unique
smallest element of { L ~ E s I DL C L ~ }. Let 1 be the least such that
DL C_C_ {so , . . . , sz}. Then, by Lemmas 68 and 69, if i > l, L is the unique min-

imal element of { L(G) I G E ql.valued((S0,. �9 si)) }. Also, by the definition of

�9 , ~{/1.valued ((8 0 , �9 , 8 l)) . _ ~I/i.valued ((8 0 , . . 8i))~----- . . fill_valued, this means that if i > l, #
Let ~ # = kVl_vmueo((So,..., sl)). By Lemma 66, we can find an m such that for

150 MAKOTO KANAZAWA

every n > m, #(2)(~,m) = # (2) (~ ,n)and L(#(x)(G,m)) = L. Therefore, if
i > max(l, m - 1), ~bl-~alued((so,..., si)) = r Smax(t,m-1))) and
L(r Si))) = L.

5.2. THE GENERAL CASE

In the learning algorithm for Gl-valued presented in the previous subsection, a
finite set of strings is 'analyzed' into a finite set of functor-argument stmctuers
that yield the strings and Buszkowski's algorithm RG is applied to the result.
In the learning algorithm for Gk-valued to be presented below, the input strings
are first analyzed into functor-argument structures as before, but the structures
thus produced are further 'disambiguated' into functor-argument structures over
the extended alphabet T, which contains k copies of each symbol in the original
alphabet E. Buszkowski's algorithm is then applied to those disambiguated functor-
argument structures, and the rigid grammar over T that is output by the algorithm
is 'ambiguated' back into a k-valued grammar over E.

Recall the definition of T, rc, and amb from Section 4.2. If H is a rigid gram-
mar over T, r c - i (H) is the k-valued grammar over E of which H is the rigid
counterpart.
DEFINITION 73.
~k_valued({SO,...,Si}) = { r c - l (H) I for some Uo , . . . ,U i such that
yield(amb(Uj)) = sj (0 < j < i), H = RG({Uo, . . . , Ui}) }.

LEMMA 74. I f G C ~k-valuea and {so , . . . , si} C_ L(G), then there is some G ~ E
~k-valuea({S0, �9 �9 �9 Si}) such that rc(G') _E re(G).

Proof Since, by L e m m a 56, L(G) -- yield(amb(FL(rc(G)))), if
{ s o , . . . , si} C L(G), then there must be some Uo , . . . , Ui such that for 0 < j < i,
sj = yield(amb(Uj)) and {Uo, . . . , Ui} C_ FL(rc(G)). Then, by Lemma 31,

E_ re(a).

LEMMA 75. I f a E ~k-valueO({S0,..., si}), then {s0 , . . . , si} C_ L(G).

LEMMA 76. { L(G) I a e *k_valued({S0,..., si}) } includes all minimal ele-
ments of { L E L;k-valued 1 {SO,.. . , Si} C L }.

Proof Clear from Lemma 74, noting that r c (a ~) E rc (a) implies that L(G ~) C
L(G).

DEFINITION 77.
=

~Ilk_valued((80,. . . , 8 i)) =

~k_v~ued((So,. �9 �9 si)) if Si+l E L(G) for every

a e si)),
glk-valued({SO, . ,Si+l}) otherwise.

IDENTIFICATION IN TIlE LIMIT OF CATEGORIAL GRAMMARS 151

DEFINITION 78.

(2) #
~bk-valued((SO,..., Si}) = # (~k_valued((SO,..., Si)),i + 1).

The proof of the correctness of ~bk-valued is exactly the same as in the case of

if31-valued �9

6. Discussion: Learning with Additional Information

So far, we have assumed that a fixed finite alphabet is given. In fact, our algorithms
~bl-valued and ~bk-valucd can work on an infinite alphabet, as long as each grammar
(language) is based on a finite subalphabet of it. Let ~ be a fixed finite alphabet,
and let Too = [.J{ { ci I i E N } [c E P, }. Assume that T ~ is coded in some finite

oo alphabet, by, for example, regarding ci as c followed by i strokes. Let Gl-valued
be the class of all rigid grammars over some finite subalphabet of T ~176 Although
{ L(G) I a ~ ~-valued } now has infinite elasticity, it is clear that essentially the
same algorithm as if)l-valued learns ~l-%alued"

This fact has an interesting consequence. Consider the class CatG of all clas-
sical categorial grammars over P,. Then ~l-~alued includes all rigid counterparts of
grammars in CatG.* That ~l--valued is learnable means that an arbitrary classical cat-
egorial grammar can be learned from data consisting of disambiguated strings, that
is, strings in the language generated by the rigid counterpart of the target grammar.
Disambiguated strings can be regarded as positive data about the target language
augmented with certain 'intensional' information about the target grammar. With
this additional information, the entire class of classical categorial grammars, which
generate all e-free context-free languages, becomes learnable.

To be more precise, (CatG, (Too) +, L(rc(-))} constitutes a grammar system. In
this grammar system, CatG is learnable.

This can be compared with Sakakibara's (1992) result about reversible context-
free grammars. A context-free grammar is said to be reversible if no two distinct
rules of G differ with respect to just one non-terminal; that is, if both A --+ a and
B --+ a are rules of G, then A = B, and if both A --+ a B / 3 and A --+ a C / 3
are rules of G, then B ---- C. The class of reversible context-free grammars is a
normal form for the class of all context-free grammars in the sense that for every
context-free language L, there is a reversible context-free grammar G such that
L = L(G). This means that the class of reversible context-free grammars is not
learnable in the standard grammar system of context-free grammars. Sakakibara's
(1992) result is that the class of reversible context-free grammars is learnable in
the grammar system where the sentences skeletal phrase structures (Levy and
Joshi 1978), rather than strings. A skeletal phrase structure over alphabet E is a
tree whose leaf nodes are labeled by symbols in P, but whose internal nodes have
no labels. A context-free grammar G generates a skeletal phrase structure if it is the

* Note that the rigid counterpart re(G) of a k-valued grammar G is uniquely determined irrespec-
tive of the choice of k, as long as G E ~k-valued.

152 MAKOTO KANAZAWA

result of stripping non-terminal symbols of a parse tree of G. Based on Angluin's
(1982) work, Sakakibara describes a polynomial-time learning algorithm that learns
the class of reversible context-free grammars from skeletal phrase structures. In
his words (1992, p. 59), 'the assumption of examples in the form of structural
descriptions strongly compensates for the lack of explicit negative information in
positive samples and is helpful for efficient learning of context-free grammars.'*

While Sakakibara's result is interesting, the assumption that the learner is pre-
sented with the skeletal phrase structure of each string that she encounters is
probably not very attractive as a model of first language acquisition. In contrast,
the grammar system (CatG, T ~176 L(rc(.))) correspondes to a model of language
acquisition where the learner is presented with strings with additional informa-
tion that signal syntactically different uses of a lexical ambiguous symbol, which
might be more realistic.** Moreover, structures assigned by a reversible context-
free grammar are sometimes rather unnatural, and they are rich enough that they
can in effect encode informaiton about lexical ambiguity. To keep the balance, we
do not have the kind of efficient algorithm for learning rigid classical categorial
grammars from strings that Sakakibara has for learning reversible context-free
grammars from skeletal phrase structures.

Appendix

7. Reduction to Shinohara's Theorem

We used the fact that ~s has finite elasticity (Theorem 52) and our Theo-
rem 53 (twice) to prove Proposition 58. There is an alternative proof that reduces
it to Shinohara's (1990a, 1990b) result, which says that the class of languages
generated by context-sensitive grammars with at most k rules has finite elasticity.
It can be shown that for any k-valued categorial grammar G over ~, there is an
e-free context-free grammar G (in general not in Chomsky normal form) with at
most 2kl~ I - 1 rules such that L(G) = L(G). This shows that/~k-valued is included
in a class known to have finite elasticity, which implies that s itself has finite
elasticity.

PROPOSITION 79. For any classical categorial grammar G, there is an e-free
context-free grammar G with no more than 2[G[- 1 rules such that L(G) = L(G). ~

Proof Without loss of generality, we can assume that G has no useless type. L e t
cf(G) = (~, Tp(G), t, Pef(G)) be the obvious Chomsky normal form context-free

* There is some similarity between Sakakibara's (1992) algorithm and Buszkowski's algorithm
RG. F In Section 3.3, we noted in passing that with respect to the grammar system {CatG, H , FL},
Buszkowski's algorithm learns the class of rigid classical categorial grammars. The difference is that
the rigid classical categorial grammars do not generate all (e-free) context-free languages.

** Note that the notions of 'structure' and 'lexical ambiguity' are both dependent on the specific
grammar that generates the given language. In particular, a classical categorial grammar may have
to assign more than one type to a certain symbol c while an equivalent Chomsky normal form
context-free grammar may have just one rule of the form A ~ c.

IGI is the number of type assignments in G.

IDENTIFICATION IN TIlE LIMIT OF CATEGORIAL GRAMMARS 15 3

grammar corresponding to G, where

Pef(c) = { B .--+ A A \ B I A \ B E Tp(G) } U { B --+ B / A A I B / A E Tp(G) }

u { A--+c[G : c H A }.

G has no useless non-terminal. Note that there is no bound on the number of rules
in Pa(c) . Let

A = { A E Tp(G) - {t} I there is only one rule in Pef(a) whose

left-hand side is A }.

For A E ~4, let right(A) be such that A --+ right(A) is a rule in Per(a). Let

P1 = P c f (G) - - { A --+ right(a) I A E A }.

Now eliminate all occurrences of non-terminals in ~4 from the fight-hand side of
rules in P1 by repeatedly replacing such occurrences of A 6 ,A by right(A). This
process must terminate, for, if it does not, one can show using K6nig's Lemma that
there must be a cycle of non-terminals A0, A1 , . . . ,An = Ao (n > 1) such that
each Ai (0 < i < n) is in ,4 and Ai+l occurs in right(Ai) for 0 < i < n - 1,
which implies that A0, A 1 , . . . , An are useless non-terminals in cf(G). Let P2 be
the result of applying this process to P1. Let

= (~, Tp(G) - A, t, P2).

It should be clear that L(G) = L(cf(G)) .
It remains to show that 1t"21 _< 2IG[- 1. This can be seen as follows. Define a

binary relation -< on Tp(G) U G as follows:

-< = { <B,A\B) I A \ B 6 Tp(G) } U
{ (B, B /A} I B / A E Tp(G) } U
{ (A,(c,A}} I {c,A} 6 G}.

There is a one-to-one correspondence between the pairs in -< and the rules in
Poe(a). The graph of --< consists of m rooted trees, where m = War(G) u {t}l =
I Var(G)l + 1. The number of leaf nodes of this tree is I GI, and it is not difficult to
see that the number of nodes in these trees which have more than one daughter is
at most IGI - m. Let

R = { <a, x } E -.< I A has more than one daughter in the graph of -< }.

Note that R corresponds one-to-one to the set consisting of the leaf nodes of the
graph of -< plus the nodes with more than one daughter that are not highest. Then

tRI ___ IG I+IGI-m-m
= 21GI - 2m.

154

N o t e that by the defini t ion of /~ 1/921 < IRI + 1, so

IP21 <_ 21GI - 2 m + 1

_< 21GI- 1,

which concludes the proof.*

MAKOTOKANAZAWA

References

Ajdukiewicz, K., 1935, "Die syntaktische Konnexit~it", Studia Philosophica 1, 1-27.
Angluin, D., 1980a, "Finding patterns common to a set of strings", Journal of Computer and System

Sciences 21, 46-62.
Angluin, D., 1980b, "Inductive inference of formal languages from positive data", Information and

Control 45, 117-135.
Angluin, D., 1982, "Inference of reversible languages", Journal of the Association for Computing

Machinery 29, 741-765.
Angluin, D. and Smith, C. H., 1983, "Inductive inference: theory and methods", Computing Sur-

veys 15, 237-269.
Barendregt, H. P., 1992, "Lambda calculi with types", in Handbook of Logic in Computer Science,

Volume 2, S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, eds., Oxford: Clarendon Press.
Bar-Hillel, Y., 1953, "A quasi-arithmetical notation for syntactic description", Language 29, 47-58.

Reprinted in Bar-Hillel 1964.
Bar-Hillel, Y., 1960, "Some linguistic obstacles to machine translation", reprinted in Bar-Hillel 1964.
Bar-Hillel, Y., 1964, Language and Information, Reading, MA: Addison-Wesley.
Bar-Hillel, Y., Gaifman, H., and Shamir, E., 1960, "On categorial and phrase structure grammars",

The Bulletin of the Research Council of Israel, vol. 9F, 1-16. Reprinted in Bar-Hillel 1964.
Buszkowski, W., 1987a, "Solvable problems for classical categorial grammars", Bulletin of the Polish

Academy of Sciences: Mathematics 35, 373-382.
Buszkowski, W., 1987b, "Discovery procedures for categorial grammars", in Categories, Polymor-

phism and Unification, E. Klein and J. van Benthem, eds., University of Amsterdam.
Buszkowski, W., 1988, "Generative power of categorial grammars", in Categorial Grammars and

Natural Language Structures, R. T. Oehrle, E. Bach, and D. Wheeler, eds., Dordrecht: Reidel.
Buszkowski, W. and Penn, G., 1990, "Categorial grammars determined from linguistic data by

unification", Studia Logica 49, 431--454.
Chomsky, N., 1986, Knowledge of Language: Its Nature, Origin, and Use, New York: Praeger.
Dowty, David. 1988. Type raising, functional composition, and non-constituent conjunction. In

Richard T. Oehrle, Emmon Bach, and Deirdre Wheeler, eds., Categorial Grammars and Natural
Language Structures. Dordrecht: Reidel.

Gold, M. E., 1967, "Language identification in the limit", Information and Control 10, 447-474.
de Jongh, D. and Kanazawa, M., 1995, Learnability Theory, course material presented at the Seventh

Summer School in Logic, Language and Information, University of Barcelona, August 1995.
Kanazawa, M., 1994a, Learnable Classes of Categorial Grammars, Ph.D. dissertation, Stanford

University. Available as ILLC Dissertation Series 1994-8, Institute for Logic, Language, and
Computation, University of Amsterdam (i 1 lc@ f w i . u v a . nl) .

Kanazawa, M., 1994b, "A note on language classes with finite elasticity", Reprot CS-R9471, CWI,
Amsterdam.

Kapur, S., 1991, Computational Learning of Languages, Ph.D. dissertation, Cornell University.
Available as Technical Report 91-1234, Department of Computer Science, Cornell University.

Kearns, M. J. and Vazirani, U. V., 1994, An Introduction to Computational Learning Theory, Cam-
bridge, Mass.: MIT Press.

* Equality holds when [G I = 1. Otherwise it can be shown that [P2[_< 2[G[- 2.

IDENTIFICATION IN THE LIMIT OF CATEGORIAL GRAMMARS 155

Lambek, J., 1958, "The mathematics of sentence structure", American Mathematical Monthly 65,
154-170. Reprinted in Categorial Grammars, W. Buszkowski, W. Marciszewski, and J. van
Benthem, eds., Amsterdam: John Benjamins, 1988.

Lambek, J., 1961, "On the calculus of syntactic types", in Structure of Language and its Mathematical
Aspects, R. Jakobson, ed., Providence, R.I.: American Mathematical Society.

Lassez, J.-L., M. J, Maher, and K. Marriott. 1988. Unification revisited. In J. Minker, ed., Founda-
tions of Deductive Databases and Logic Programming, pp. 587-625. Los Altos, Calif.: Morgan
Kaufmann.

Levy, Leon S. and Aravind K. Joshi. 1978. Skeletal structural descriptions. Information and Control
39, 192-211.

Montague, R., 1973, "The proper treatment of quantification in ordinary English", reprinted in
Formal Philosophy: Selected Papers of Richard Montague, R. H. Thomason, ed., New Haven:
Yale University Press, 1974.

Moriyama, T. and S ato, M, 1993, "Properties of language classes with finite elasticity", in AIgorithmic
Learning Theory, Proceedings, 1993, K. P. Jankte, S. Kobayashi, E. Tomita, and T. Yokomori,
eds., Lecture Notes in Artificial Intelligence 744, Berlin: Springer.

Motoki, T., Shinohara, T., and Wright, K., 1991, "The correct definition of finite elasticity: Corri-
gendum to identification of unions", p. 375 in The Fourth Annual Workshop on Computational
Learning Theory, San Mateo, CA: Morgan Kaufmann.

Osherson, D., Stob, M., and Weinstein, S., 1986, Systems That Learn, Cambridge, MA: MIT Press.
Osherson, D., Weinstein, S., de Jongh, D., and Martin, E., 1994, "Formal learning theory", to appear

in Handbook of Logic and Language, J. van Benthem and A. ter Meulen, eds.
Sakakibara, Y., 1992, "Efficient learning of context-free grammars from positive structural examples",

Information and Computation 97, 23-60.
Shinohara, T., 1990a, "Inductive inference from positive data is powerful", pp. 97-110 in The 1990

Workshop on Computational Learning Theory, San Mateo, CA: Morgan Kanfmann.
Shinohara, T., 1990b, "Inductive inference of monotonic formal systems from positive data", pp. 339-

351 in Algorithmic Learning Theory, S. Arikawa, S. Goto, S. Ohsuga, and T. Yokomori, eds.,
Tokyo: Ohmsha, and New York and Berlin: Springer.

Steedman, Mark J. 1985. Dependency and coordination in the grammar of Dutch and English.
Language 61, 523-568.

Steedman, Mark J. 1987. Combinatory grammars and parasitic gaps. Natural Language and
Linguistic Theory 5, 403--440.

Steedman, Mark J. 1988. Combinators and grammars. In Richard T. Oehde, Emmon Bach,
and Deirdre Wheeler, eds., Categorial Grammars and Natural Language Structures. Dordrecht:
Reidel.

Wexler, K. and Culicover, E, 1980, Formal Principles of Language Acquisition, Cambridge, MA:
MIT Press.

Wright, K., 1989, "Identification of unions of languages drawn from an identifiable class", pp. 328-333
in The 1989 Workshop on Computational Learning Theory, San Mateo, CA: Morgan Kaufmann.

