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[:> We present a system for generating parsers based directly on the metaphor  
of parsing as deduction. Parsing algorithms can be represented directly as 
deduction systems, a n d  a single deduction engine can interpret such de- 
duction systems so as to implement the corresponding parser. The method 
generalizes easily to parsers for augmented phrase structure formalisms, 
such as definite-clause grammars  and other logic g rammar  formalisms, and 
has been used for rapid prototyping of parsing algorithms for a variety of 
formalisms including variants of tree-adjoining grammars,  categorial gram- 
mars, and lexicalized context-free grammars.  <~ 

1. I N T R O D U C T I O N  

Parsing can be viewed as a deductive process that  seeks to prove claims about  
the grammatical  status of a string from assumptions describing the grammatical  
properties of the string's elements and the linear order between them. Lambek 's  
syntactic calculi [15] comprise an early formalization of this idea, which more re- 
cently was explored in relation to g rammar  formalisms based on definite clauses 
[7, 23, 24] and on feature logics [35, 27, 6]. 

The view of parsing as deduction adds two main new sources of insights and 
techniques to the s tudy of g rammar  formalisms and parsing: 
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1. Existing logics can be used as a basis for new grammar formalisms with 
desirable representational or computational properties. 

2. The modular separation of parsing into a logic of grammaticality claims and 
a proof search procedure allows the investigation of a wide range of parsing 
algorithms for existing grammar formalisms by selecting specific classes of 
grammaticality claims and specific search procedures. 

While most of the work on deductive parsing has been concerned with (1), we will in 
this paper investigate (2), more specifically, how to synthesize parsing algorithms 
by combining specific logics of grammaticality claims with a fixed search proce- 
dure. In this way, deduction can provide a metaphor for parsing that  encompasses 
a wide range of parsing algorithms for an assortment of grammatical formalisms. 
We flesh out this metaphor by presenting a series of parsing algorithms literally 
as inference rules, and by providing a uniform deduction engine, parameterized by 
such rules, that  can be used to parse according to any of the associated algorithms. 
The inference rules for each logic will be represented as unit clauses, and the fixed 
deduction procedure, which we provide a Prolog implementation of, will be a ver- 
sion of the usual bottom-up consequence closure operator for definite clauses. As 
we will show, this method directly yields dynamic-programming versions of stan- 
dard top-down, bottom-up, and mixed-direction (Earley) parsing procedures. In 
this, our method has similarities with the use of pure bottom-up deduction to 
encode dynamic-programming versions of definite-clause proof procedures in de- 
ductive databases [3, 19]. 

The program that  we develop is especially useful for rapid prototyping of and 
experimentation with new parsing algorithms, and was in fact developed for that  
purpose. We have used it, for instance, in the development of algorithms for parsing 
with tree-adjoining grammars, categorial grammars, and lexicalized context-free 
grammars. 

Many of the ideas that we present are not new. Some have been presented 
before; others form part of the folk wisdom of the logic programming commu- 
nity. However, the present work is to our knowledge the first to make the ideas 
available explicitly in a single notation and with a clean implementation. In ad- 
dition, certain observations regarding efficient implementation may be novel to 
this work. 

The paper is organized as follows. After reviewing some basic logical and gram- 
matical notions and applying them to a simple example (Section 2), we describe 
how the structure of a variety of parsing algorithms for context-free grammars can 
be expressed as inference rules in specialized logics (Section 3). Then, we extend the 
method for stating and implementing parsing algorithms for formalisms other than 
context-free grammars (Section 4). Finally, we discuss how deduction should pro- 
ceed for such logics, developing an agenda-based deduction procedure implemented 
in Prolog that  manifests the presented ideas (Section 5). 

2. B A S I C  N O T I O N S  

As introduced in Section 1, we see parsing as a deductive process in which rules 
of inference are used to derive statements about the grammatical status of strings 
from other such statements. Statements are represented by formulas in a suitable 
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formal language. The general form of a rule of inference is 

A1 ""  Ak 
(side conditions on A 1 , . . . ,  Ak, B/.  

B 

The  antecedents A 1 , . . . ,  Ak and the consequent B of the inference rule are formula 
schemata,  tha t  is, they may contain syntactic metavariables to be instantiated by 
appropr ia te  terms when the rule is used. A grammatical deduction system is defined 
by a set of rules of inference and a set of axioms given by appropriate  formula 
schemata.  

Given a grammatical  deduction system, a derivation of a formula B from as- 
sumptions A s , . . . , A , ~  is, as usual, a sequence of formulas $ 1 , . . . ,  S~ such tha t  
B = S~, and for each St, either si is one of the Aj,  or Si is an instance of an axiom, 
or there is a rule of inference R and formulas S~1,. . . ,  SiR with i l , .  • • ,ik < i such 
tha t  for appropriate  substitutions of terms for the metavariables in R, S i l , . . . ,  S~k 
match the antecedents of the rule, S~ matches the consequent, and the rule's side 
conditions are satisfied. We write As, .  • •, Am ~- B and say tha t  B is a consequence 
of A1, • • •, Am if such a derivation exists. If  B is a consequence of the empty  set of 
assumptions,  it is said to be derivable, in symbols ~- B. 

In our applications of this model, rules and axiom schemata may refer in their 
side conditions to the rules of a particular grammar ,  and formulas may refer to 
string positions in the fixed string to be parsed w = w l . . . w n .  With respect to 
the given string, goal formulas state that  the string is grammatical  according to 
the given grammar.  Then parsing the string corresponds to finding a derivation 
witnessing a goal formula. 

We will use standard notation for metavariables ranging over the objects under 
discussion: n for the length of the object language string to be parsed; A, B, C . . .  
for arbi t rary  formulas or symbols such as g rammar  nonterminals; a , b , c , . . ,  for 
arbi t rary  terminal symbols; i, j,  k , . . .  for indices into various strings, especially the 
string w; a,/3, 7 . . . .  for strings or terminal and nonterminal symbols. We will often 
use such notations leaving the type of the object implicit in the notation chosen 
for it. Substrings will be notated elliptically as, e.g., w ~ . . . w j  for the i th through 
j t h  elements of w, inclusive. As is usual, we take w i . . .  wj to be the empty  string 
i f i  > j .  

2.1. A First Example: C Y K  Parsing 

As a simple example, the basic mechanism of the Cocke-Younger-Kasami (CYK) 
context-free parsing algorithm [12, 38] for a context-free g rammar  in Chomsky 
normal form can be easily represented as a grammatical  deduction system. 

We assume tha t  we are given a string w = wl • • • w~ to be parsed and a context- 
free g rammar  G -- (N, E, P, S), where N is the set of nonterminals including the 
s tar t  symbol S, E is the set of terminal symbols, (V = Nt3Z is the vocabulary of the 
grammar, )  and P is the set of productions, each of the form A --* ~ for A E N and 

c~ E V*. We will use the symbol ~ for immediate derivation and =~ for its reflexive, 
transit ive closure, the derivation relation. In the case of a Chomsky-normal-form 
grammar ,  all productions are of the form A --* B C  or A --* a. 

The items of the logic (as we will call parsing logic formulas from now on) are of 
the form [A, i, j], and state tha t  the nonterminal A derives the substring between 

indices i and j in the string, tha t  is, A ~ W~+l. . .wj .  Sound axioms, then, are 
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I t e m  form:  [A, i, j] 

Ax ioms :  [A, i, i + 1] A ~ wi+l 
F I G U R E  1. The CYK deductive 

Goals: [S, 0, a] parsing system. 

I n f e r e n c e  rules :  [B,i , j ]  [C, j ,k]  A --+ B C 
[A,i ,  k] 

grounded in the lexical items that occur in the string. For each word w~+l in the 
string and each rule A ~ W~+l, it is clear that  the item [A,i, i  + 1] makes a true 
claim, so that  such items can be taken as axiomatic. Then, whenever we know that  
B ~ wi+1. ' ,  wj and C ~ w j + a . . . w k - - a s  asserted by items of the form [B, i,jJ and 
[C, j ,  k]--where A ~ B C  is a production in the grammar, it is sound to conclude 

that  A ~ w ~ + l ' " w k ,  and therefore, the item [A,i, k] should be inferable. This 
argument can be codified in a rule of inference: 

[B, i, j] [C, j, k] A --, B C  
[A, i, k] 

Using this rule of inference with the axioms, we can conclude that  the string is 
admitted by the grammar if an item of the form IS, 0, n] is deducible, since such an 

item asserts that  S ~ wl . . .  Wn = w. We think of this item as the 9oal item to be 
proved. 

In summary, the CYK deduction system (and all the deductive parsing systems 
we will define) can be specified with four components: a class of items; a set of 
axioms; a set of inference rules; and a subclass of items, the goal items. These are 
given in summary form in Figure 1. 

This deduction system can be encoded straightforwardly by the following logic 
program: 

nt(A,  I1 ,  I)  "- 

word( I ,  W), 

(A ---> [w]), 

Ii is I - I. 

at(A, I, K) "- 

nt(B, I, J), 

a t (C ,  J ,  K), 

(A---> [B, C]). 

where A ---> [XI ..... Xm] is the encoding of a production A --* XI .. • X m in the 
grammar and word(i,wO holds for each input word wi in the string to be parsed. 
A suitable bottom-up execution of this program, for example, using the semi-naive 
bottom-up procedure [19], will behave similarly to the CYK algorithm on the given 
grammar. 

2.2. Proofs of Correctness 

Rather than implement each deductive system like the CYK one as a separate 
logic program, we wilt describe in Section 5 a meta-interpreter for logic programs 
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obtained from grammatical deduction systems. The meta-interpreter is just a vari- 
ant of the semi-naive procedure specialized to programs implementing grammatical 
deduction systems. We will show in Section 5 that  our procedure generates only 
items derivable from the axioms (soundness) and will enumerate all the derivable 
items (completeness). Therefore, to show that  a particular parsing algorithm is 
correctly simulated by our meta-interpreter, we basically need to show that  the 
corresponding grammatical deduction system is also sound and complete with re- 
spect to the intended interpretation of grammaticality items. By sound here, we 
mean that  every derivable item represents a true grammatical statement under the 
intended interpretation, and by complete, we mean that  the item encoding every 
true grammatical statement is derivable. (We also need to show that  the grammat- 
ical deduction system is faithfully represented by the corresponding logic program, 
but in general this will be obvious by inspection.) 

3. D E D U C T I V E  P A R S I N G  OF C O N T E X T - F R E E  G R A M M A R S  

We begin the presentation of parsing methods stated as deduction systems with 
several standard methods for parsing context-free grammars. In what follows, we 
assume that  we are given a string w = wl • .- wn to be parsed along with a context- 
free grammar G = IN, E, P, S). 

3.1. Pure Top-Down Parsing (Recursive Descent) 
The first full parsing algorithm for arbitrary context-free grammars that  we present 
from this logical perspective is recursive-descent parsing. Given a context-free gram- 
mar G = (N, E, P, S/, and a string w = wl . . .  wn to be parsed, we will consider a 
logic with items of the form [./3, j] where 0 < j < n. Such an item asserts tha t  
the substring of the string w up to and including the j t h  element, when followed 
by the string of symbols 3, forms a sentential form of the language, that  is, that  
S ~ wl • • • w 9 .  Note that  the dot in the item is positioned just at the break point 
in the sentential form between the portion that  has been recognized (up through 
index j )  and the part  that  has not (3). 

Taking the set of such items to be the formulas of the logic, and taking the 
informal statement concluding the previous paragraph to provide a denotation for 
the sentences, 1 we can explore a proof theory for the logic. We start  with an axiom 

[.s,0], 

which is sound because S ~ S trivially. 
Note that  two items of the form [ • wj+l/3, j] and [ • ~, j + 1] make the same claim, 

namely, tha t  S ~ w l ""  wjwj+13. Thus, it is clearly sound to conclude the latter 

1A more formal s t a t emen t  of the  semant ics  could be given, e.g., as 

I truth if S ~,  wl  . . .w j /~  
~[ •/3, j]] = falsity otherwise.  
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Item form: [ •/3, j] 

Axioms: [ * S, O] 

Goals: [ e ,  n] 
F I G U R E  2. The top-down recursive-descent 

Inference rules: deductive parsing system. 
Scanning [ • Wj+l~, j] 

[ . ~ , j +  1] 

P r e d i c t i o n  [ • Bfl, j] [e 7~,j ] B--t7 

from the former, yielding the inference rule 

[e Wj+ l/5, j] 
[ e ~ , j + l ]  ' 

which we will call the scanning rule. 
A similar argument shows the soundness of the prediction rule: 

[.B/3,j]  B ---* 7. 

Finally, the item [e ,n]  makes the claim that  S ~ Wl . . .wn ,  that  is, that  the 
string w is admitted by the grammar. Thus, if this goal item can be proved from 
the axiom by the inference rules, then the string must be in the grammar. Such 
a proof process would constitute a sound recognition algorithm. As it turns out, 
the recognition algorithm that  this logic of items specifies is a pure top-down left- 
to-right regime, a recursive-descent algorithm. The four components of the deduc- 
tion system for top-down parsing---class of items, axioms, inference rules, and goal 
i tems--are  summarized in Figure 2. 

To illustrate the operation of these inference rules for context-free parsing, we 
will use the toy grammar of Figure 3. Given that  grammar and the string 

WlW2W3 = a lindy swings (1) 

we can construct the following derivation using the rules just given: 

1 [ • S, 0] AXIOM 
2 [ • N P  VP, 0] PREDICT from 1 
3 [ • D e t  N OptRel VP, O] PREDICT from 2 
4 [e a N OptRel VP, 0] PREDICT from 3 
5 [ e N  OptRel VP, 1] SCAN from 4 
6 [el indy OptRel VP, 1] PREDICT from 5 
7 [ • OptRel VP, 2] SCAN from 6 
8 [ • VP, 2] PREDICT from 7 
9 [ • IV, 2] PREDICT from 8 

10 [ • swings, 2] PREDICT from 9 
11 [e,3] SCAN from 10 

The last item is a goal item, showing that  the given sentence is accepted by the 
grammar of Figure 3. 
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S ~ NP VP Det ~ a 

NP ~ Det N OptRel N ~ lindy 

NP --~ PN P N  ---+ Trip F I G U R E  3. An example con- 
v P  ---. T V  N P  I V  ---. swings text-free grammar.  
VP ---+ I V  T V  ---. dances 

OptRel ---* RelPro VP RelPro ~ that 
OptRel --, 

The above derivation, as all the others we will show, contains just those items 
tha t  are strictly necessary to derive a goal i tem from the axiom. In general, a 
complete search procedure, such as the one we describe in Section 5, generates items 
tha t  are either dead-ends or redundant for a proof of grammaticality.  Furthermore,  
with an ambiguous grammar,  there will be several essentially different proofs of 
grammaticali ty,  each corresponding to a different analysis of the input string. 

3 . 1 . 1 .  P r o o f  o f  C o m p l e t e n e s s .  We have shown informally above that  the infer- 
ence rules for top-down parsing are sound, but for any such system, we also need 
the guarantee of c o m p l e t e n e s s :  if a string is admit ted by the grammar,  then for 
tha t  string, there is a derivation of a goal i tem from the initial item. 

In order to prove completeness, we prove the following lemma: If S ~ 'wl .- - wj7 
is a leftmost derivation (where 3, E V*), then the item [*3,,J] is generated. We 
must prove all possible instances of this lemma. Any specific instance can be 
characterized by specifying the string 3, and the integer j since S and wa - • - wj are 
fixed. We shall denote such an instance by (3,,J). The proof will turn  on ranking 
the various instances and proving the result by induction on the rank. The rank of 
the instance (3', J) is computed as the sum of j and the length of a shortest leftmost 

derivation of S ~ w l  . .  • w j 3 , .  

If the rank is zero, then j = 0 and 3, = S. Then, we need to show that  [ • S, 0] is 
generated, which is the case since it is an axiom of the top-down deduction system. 

For the inductive step, let (3', J) be an instance of the lemma of some rank r > 0, 
and assume tha t  the lemma is true for all instances of smaller rank. Two cases 
arise. 

C a s e  1. S =2;> W l  " " w j 3 ,  in one step. Therefore, S ---+ W l " . w j 3 ,  is a rule of the 
grammar.  However, since [• S, 0] is an axiom, by one application of the 
prediction rule (predicting the rule S -~ Wl---wj3,) and j applications of 
the scanning rule, the i tem [e 3', J] will be generated. 

C a s e  2. S ~  W l . . . w j 3 ,  in more than one step. Let us assume, therefore, tha t  

S ~ wa • •. w j - k B 3 ,  ! ~ W l  • •. wjj33" ~ where 3, = t33' r and B ~ w j - k + l  • • " wj13.  

The instance (B3/, j - k) has a strictly smaller rank than (3', J). Therefore, 
by the induction hypothesis, the i tem [• B3, ~, j - k] will be generated. But  
then, by prediction, the item [ • w j - k + l  " . .  w j ~ ,  j - k ]  will be generated, and 
by k applications of the scanning rule, the i tem [ • B, j] will be generated. 

This concludes the proof of the lemma. Completeness of the parser follows as a 
corollary of the lemma since, if S ~ wa . . . wn ,  then by the lemma, the i tem [ • ,  n] 
will be generated. 

Completeness proofs for the remaining parsing logics discussed in this paper  
could be provided in a similar way by relating an appropriate notion of normal-form 
derivation for the g rammar  formalism under consideration to the item invariants. 
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I t e m  form: [a o, j] 

Axioms:  [ *, O] 

Goals:  [S *, n] 
F I G U R E  4. The bottom-up shift-reduce de- 

Inference Rules: ductive parsing system. 
Shift  [ a . ,  j] 

[awj+l * , j  + 1] 

[ ~ . , j ]  
R e d u c e  [aB *,  j] B --* 7 

3. 2. Pure Bottom- Up Parsing (Shift-Reduce) 

A pure bottom-up algorithm can be specified by such a deduction system as well. 
Here, the items will have the form [a o, j]. Such an item asserts the dual of the 

assertion made by the top-down items, that  awj+l.. .w,~ ~ Wl . . .wn  (or, equiv- 

alently but less transparently dual, that  a ~ Wl . . .w j ) .  The algorithm is then 
characterized by the deduction system shown in Figure 4. The algorithm mim- 
ics the operation of a nondeterministic shift-reduce parsing mechanism, where the 
string of symbols preceding the dot corresponds to the current parse stack, and the 
substring starting at the index j corresponds to the as yet unread input. 

The soundness of the inference rules in Figure 4 is easy to see. The antecedent 
of the shift rule claims that  O l W j +  1 • "" W n ~ W 1 • "" Wn, but that  is also what the 

consequent claims. For the reduce rule, if aTwj+l  "'" wn ~ wl • .. wn and B --* 7, 

then by definition of ~ we also have aBWj+l .. • wn ~ wl "" • wn. As for complete- 
ness, it can be proved by induction on the steps of a reversed rightmost context-free 
derivation in a way very similar to the completeness proof of the last section. 

The following derivation shows the operation of the bottom-up rules on example 
sentence (1): 

1 [o,O] AXIOM 

2 [ao, 1] SHIFT from 1 
3 [Det o ,  1] REDUCE from 2 

4 [Det l indy*,  2] SHIFT from 3 
5 [Det N o ,  2] REDUCE from 4 
6 [Det N OptRelo,2] REDUCE from 5 
7 [NPo,2] REDUCE from 6 

8 [NP swings *,3] SHIFT from 7 
9 [NP I V  o,  3] REDUCE f r o m  8 

10 [NP Y P  o ,  3] REDUCE from 9 

11 [So,3] REDUCE f r o m  10 

The last item is a goal item, which shows that  the sentence is parsable according 
to the grammar. 

3.3. Earley's Algorithm 

Stating the algorithms in this way points up the duality of recursive-descent and 
shift-reduce parsing in a way that  traditional presentations do not. The summary 
presentation in Figure 5 may further illuminate the various interrelationships. As 
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Algorithm B o t t o m -  U p  T o p - D o w n  E a r l e y  ' s 

Item form [~ • ,  J] [ • 3, J] [i, A --* ~ •/3, j] 

Invariant S :~ w l . . .  wj /3 S :~ w l . "  w i A 7  

c~wj  + l . . . w,~ ~ w l  ." . w,~ c~w.i + l . . . w,~ ~ w i  + l " . w ~  

A x i o m s  [ • ,  0] [ • S, 01 [0, S' -~ • S, 0] 

G o a l s  I S . ,  n] [ . ,  n] [0, S' -~ S . ,  ~] 

[c~ •,  j] [ • W~+l/3, j] [i, A --+ c~ • w~+1/3, j] 
Scanning [c~Wj+l •,  j + 1] [ •/3, j + 1] [i, A --* awj+l •/3, j + 1] 

[i,  A ---* a * B f l ,  j ]  Prediction [ • B/5, j] B --~ 7 B --~ 
[ • 7/?,J] [3", B--* •7, J] 

[a7 *, J] B --* [i, A --* a • Bp, k] [k, B -- 7 ", J] 
Completion [~B. ,  j] 7 [i, A --* ~B */3, j] 

F I G U R E  5. S u m m a r y  of parsing algori thms presented as deductive parsing sys- 
tems. (In the axioms and goal items of Ear ley 's  algorithm, S t serves as a new 
nonterminal  not  in N.)  

we will see, Ear ley ' s  a lgori thm [8] can then be seen as the  natural  combinat ion  of 
those two algorithms. 

In  recursive-descent parsing, we keep a partial  sentential form for the  material  
yet  to be parsed, using the dot  at  the  beginning of the string of symbols  to  remind 
us tha t  these symbols  come after the point  t ha t  we have reached in the recognit ion 
process. In  shift-reduce parsing, we keep a partial  sentential form for the  mater ia l  
t h a t  has already been parsed, placing a dot  at  the end of the str ing to  remind us 
tha t  these symbols  come before the  point  t ha t  we have reached in the recognition 
process. In  Ear ley ' s  algorithm, we keep bo th  of these partial  sentential  forms, 
with the  dot  marking  the  point  somewhere in the  middle where recognition has 
reached. The  dot  thus  changes from a mnemonic  to a necessary role. In addition, 
Ear ley ' s  a lgor i thm localizes the piece of sentential form tha t  is being tracked to  
t h a t  in t roduced by a single product ion.  (Because the first two parsers do not  limit 
the  informat ion stored in an i tem to only local information,  they  are not  practical  
a lgori thms as stated. Rather ,  some scheme for sharing information among  items 
would be necessary to  make them t rac table  [16, 4].) 

The  items of  Ear ley ' s  a lgori thm are thus of the form [i, A --* a •/5, j] where a and 
3 are strings in V* and A --~ a/5 is a product ion  of the  grammar .  As was the  case 
for the previous two algorithms, the j "  index provides the posit ion in the string t h a t  
recognit ion has reached, and the  dot  position marks tha t  point  in the part ial  sen- 
tent ial  form. In  these items, however, an ext ra  index i marks  the s tar t ing posit ion 
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of the partial sentential form, as we have localized attention to a single production. 
In summary, an item of the form [i, A --* a • 13, j] makes the top-down claim that  

S ~ w l  • " • w ~ A T ,  and the bottom-up claim that  (~Wj+l •. • w n  ~ w i + l  • • • w~ .  The 
two claims are connected by the fact that  A -~ c~/3 is a production in the grammar. 

The algorithm itself is captured by the specification found in Figure 5. Proofs 
of soundness and completeness are somewhat more complex than those for the 
pure top-down and bottom-upcases shown above, and are directly related to the 
corresponding proofs for Earley's original algorithm [8]. 

The following derivation, again for sentence (1), illustrates the operation of the 
Earley inference rules: 

1 [0, S t --+ • S ,  0] AXIOM 

2 [0, S -~ • N P  V P ,  0] PREDICT from 1 

3 [0, N P  -~ • D e t  N O p t R e l ,  0] PREDICT from 2 
4 [0, D e t  --~ • a, 0] PREDICT from 3 

5 [0, Det ~ a . ,  1] SCAN from 4 

6 [0, N P  ~ D e t  • N O p t R e l ,  1] COMPLETE from 3 and 5 
7 [1, N ~ .. lindy, 1] PREDICT from 6 
8 [1, N ~ l i n d y . ,  2] SCAN from 7 
9 [0, N P  --+ D e t  N • O p t R e l ,  2] C O M P L E T E  from 6 and 8 

10 [2, OptRel ~ .., 2] PREDICT from 9 

11 [0, N P  -~ D e t  N O p t R e l . ,  2] COMPLETE from 9 and 10 
12 [0, S --~ N P  • V P ,  2] COMPLETE from 2 and 11 
13 [2, V P  -~ • I V ,  2] PREDICT from 12 

14 [2, I V  -~  • swings, 2] P R E D I C T  from 13 
15 [2, I V  --+ swings . ,  3] SCAN from 14 

16 [2, V P  --~ I V  o ,  3] COMPLETE from 13 and 15 

17 [0, S -~ N P  V P . ,  3] COMPLETE from 12 and 16 
18 [0, S ~ --+ So ,3 ]  COMPLETE from 1 and 17 

The last item is again a goal item, so we have an Earley derivation of the gram- 
maticality of the given sentence. 

4. D E D U C T I V E  P A R S I N G  F O R  O T H E R  F O R M A L I S M S  

The methods (and implementation) that  we developed have also been used for rapid 
prototyping and experimentation with parsing algorithms for grammatical frame- 
works other than context-free grammars. They can be naturally extended to handle 
augmented phrase-structure formalisms such as logic grammar and constraint-based 
formalisms. They have been used in the development and testing of algorithms for 
parsing categorial grammars, tree-adjoining grammars, and lexicalized context-free 
grammars. In this section, we discuss these and other extensions. 

4.1.  A u g m e n t e d  P h r a s e - S t r u c t u r e  F o r m a l i s m s  

It is straightforward to see that  the three deduction systems just presented can be 
extended to constraint-based grammar formalisms with a context-free backbone. 
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The basis for this extension goes back to metamorphosis grammars [7] and definite- 
clause grammars (DCG) [23]. In those formalisms, grammar symbols are first-order 
terms, which can be understood as abbreviations for the sets of all their ground 
instances. Then, an inference rule can also be seen as an abbreviation for all of 
its ground instances, with the metagrammatical variables in the rule consistently 
instantiated to ground terms. Computationally, however, such instances are gen- 
erated lazily by accumulating the consistency requirements for the instantiation 
of inference rules as a conjunction of equality constraints and maintaining that  
conjunction in normal form--sets of variable subst i tut ions--by unification. (This 
is directly related to the use of unification to avoid "guessing" instances in the 
rules of existential introduction and universal elimination in a natural-deduction 
presentation of first-order logic.) 

We can move beyond first-order terms to general constraint-based grammar for- 
malisms [35, 6] by taking the above constraint interpretation of inference rules as 
basic. More explicitly, a rule such as Earley completion 

[ i , A - * a .  Bfl, k] [ k , B - * y . , j ]  
[i, A ~ aB  • ~, j] 

is interpreted as shorthand for the constrained rule 

[ i , A - - * a * B ~ , k ]  [ k , B ' - ~ * , j ]  A - A ' a n d B - B ' a n d B - B "  
[i, A' --* aB"  • ~, j] 

where " - "  is the term equality predicate for the constraint-based grammar formal- 
ism being interpreted [35]. 

When such a rule is applied, the three constraints on which it depends are 
conjoined with the constraints for the current derivation. In the particular case of 
first-order terms and antecedent-to-consequent rule application, completion can be 
given more explicitly as 

[ i , A ~ a . B ~ , k ]  [ k , B ' ~ . , j ]  a = m g u ( B , B ' )  
[i, a(A --~ c~B • ~), j ]  

where mgu(B, B')  is the most general unifier of the terms B and B'.  This is 
the interpretation implemented by the deduction procedure described in the next 
section. 

The move to constraint-based formalisms raises termination problems in proof 
construction that  did not arise in the context-free case. In the general case, this is 
inevitable because a formalism like DCG [23] or PATR-II [33] has Turing-machine 
power. However, even if constraints are imposed on the context-free backbone of 
the grammar productions to guarantee decidability, such as offline parsability [5, 
24, 35], the prediction rules for the top-down and Earley systems are problematic. 
The difficulty is that  prediction can feed on its own results to build unboundedly 
large items. For example, consider the DCG 

s ~ r(0, N) 

r(X,  N) --~ r(s(X) ,  N)b 

r(N, N)  ~ a. 
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It is clear that  this grammar accepts strings of the form ab n, with the variable N 
being instantiated to the unary (successor) representation of n. It is also clear tha t  
the bottom-up inference rules will have no difficulty in deriving the analysis of any 
input string. However, Earley prediction from the item [0, s --* • r(0, N),  0] will 
generate an infinite succession of items: 

[0, s ~ • r(O, g ) ,  O] 

[0, r(O, N)  --* • r(s( O), N )  b, 0] 

[0, r( s(O), N)  -~ * r( s( s(O) ), N )  b, O] 

[0, r(s(s(O)), N )  --* • r(s(s(s(O))),  N)  b, 0] 

This problem can be solved in the case of the Earley inference rules by observing 
that  prediction is just used to narrow the number of items to be considered by 
scanning and completion, by maintaining the top-down invariant S ~ Wl • " • wiA~/. 
But this invariant is not required for soundness or completeness, since the bottom- 
up invariant is sufficient to guarantee that  items represent well-formed substrings of 
the input. The only purpose of the top-down invariant is to minimize the number 
of completions that  are actually attempted. Thus, the only indispensable role of 
prediction is to make available appropriate instances of the grammar productions. 
Therefore, any relaxation of prediction that  makes available items of which all the 
items predicted by the original prediction rule are instances will not affect soundness 
or completeness of the rules. More precisely, it must be the case that  any item 
[i, B --+ * % i] that  the original prediction rule would create is an instance of some 
item [i, B ~ ~ * ~/, i] created by the relaxed prediction rule. A relaxed prediction 
rule will create no more items than the original predictor, and in fact, may create 
far fewer. In particular, repeated prediction may terminate in cases like the one 
described above• For example, if the prediction rule applied to [i, A --+ a * B'/3, j] 
yields [i, ¢(B --+ * 7), i] where a = mgu(B, B') ,  a relaxed prediction rule might yield 
[i, a ' (B  -+ * ~,), i], where ~r' is a less specific substitution than a chosen so that  only 
a finite number of instances of [i, B --+ * % i] are ever generated• A similar notion for 
general constraint grammars is called restriction [34, 35], and a related technique 
has been used in partial evaluation of logic programs [28]. 

The problem with the DCG above can be seen as following from the computation 
of derivation-specific information in the arguments to the nonterminals. However, 
applications frequently require construction of the derivation for a string (or similar 
information), perhaps for the purpose of further processing. It is simple enough 
to augment the inference rules to include with each item a derivation. For the 
Earley deduction system, the items would include a fourth component representing 
a sequence of derivation trees, one for each element of the right-hand side of the 
item before the dot. Each derivation tree has nodes labeled by productions of 
the grammar. The inference rules would be modified as shown in Figure 6. In 
the completion rule, we use the following notations: tree(l, D) denotes the tree 
whose root is labeled by the node label (grammar production) l and whose children 
are the trees in the sequence D in order; and S • s denotes the appending of the 
element s at the end of the sequence S. 

Of course, use of such rules makes the caching of lemmas essentially useless, 
as lemmas derived in different ways are never identical. Appropriate methods of 
implementation that circumvent this problem are discussed in Section 5.4. 
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I t e m  fo rm:  [i, Am * fl, j, D] 

A x i o m s :  [0, ,5" ~ * S, O, O] 

Goals :  [0, S" ~ S • , n, D] 

I n f e r e n c e  ru les :  
[i, A --* oL • wj+lf l ,  j ,  D] 

S c a n n i n g  [ i , A - - - * a w j + l * f l ,  j +  l ,D ]  

[ i ,A ---+ a *  Bfl ,  j ,D ]  
P r e d i c t i o n  [j, B -~ * 7, J, O] B -~ 7 

C o m p l e t i o n  [i, A --~ a * Bfl ,  k, n l ]  [k, B ---+ 7 * ,  J, D2] 
[i, A --* a B  • fl, j ,  D1 . t ree(  B --* 7, D~)] 

F I G U R E  6. The Earley deductive parsing system modified to generate derivation 
trees. 

4.2. Combinatory Categorial Grammars 
A combinatory categorial grammar [1] consists of two parts: (1) a lexicon that  
maps words to sets of categories; and (2) rules for combining categories into other 
categories. 

Categories are built from atomic categories and two binary operators: forward 
~lash (/)  and backward slash (\). Informally speaking, words having categories of 
the form X/Y,X\Y, (W/X)/Y, etc. are to be thought of as functions over Ys. 
Thus, the category S\NP of intransitive verbs should be interpreted as a function 
from noun phrases (NP) to sentences (S). In addition, the direction of the slash 
(forward as in X/Y or backward as in X\Y) specifies where the argument must be 
found, immediately to the right for / or immediately to the left for \. 

For example, a CCG lexicon may assign the category S\NP to an intransitive 
verb (as the word sleeps). S\NP identifies the word (sleeps) as combining with a 
(subject) noun phrase (NP) to yield a sentence (S). The back slash (\) indicates 
tha t  the subject must be found immediately to the left of the verb. The forward 
slash / would have indicated that  the argument must be found immediately to the 
right of the verb. 

More formally, categories are defined inductively as follows2: Given a set of basic 
categories, 

• Basic categories are categories. 
• If cl and c2 are categories, then (C1/C2) and (c1\e2) are categories. 

The lexicon is defined as a mapping f from words to finite sets of categories. 
Figure 7 is an example of a CCG lexicon. In this lexicon, likes is encoded as a 
transitive verb (SkNP)/NP, yielding a sentence (S) when a noun phrase (NP) 
object is found to its right and when a noun phrase subject (NP) is then found to 
its left. 

Categories can be combined by a finite set of rules that  fall into two classes: 
application and composition. 

2The nota t ion  for backward slash used in this paper  is consistent  with one defined by Ades 
and S teedman  [1]: X \ Y  is in terpreted as a function from Ys to Xs.  Al though this  nota t ion has 
been adop ted  by the  major i ty  of combinatory  categorial grammarians ,  o ther  frameworks [15] have 
adop ted  the  opposi te  in terpreta t ion for X k Y :  a function from X s  to Ys. 
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Word  Category 
Trip NP 
merengue NP F I G U R E  7. An example CCG lexicon. 
likes (S\NP)/NP 
certainly (S\NP)/(S\NP) 

Application allows the simple combination of a function with an argument to 
its right (forward application) or to its left (backward application). For example, 
the sequence (S\NP)/NP NP can be reduced to S\NP by applying the forward 
application rule. Similarly, the sequence NP S\NP can be reduced to S by 
applying the backward application rule. 

Composition allows to combine two categories in a similar fashion as functional 
composition. For example, forward composition combines two categories of the form 
X / Y  Y/Z to another category X/Z. The rule gives the appearance of "canceling" 
Y, as if the two categories were numerical fractions undergoing multiplication. This 
rule corresponds to the fundamental operation of "composing" the two functions, 
the function X / Y  from Y to X, and the function Y/Z from Z to Y. 

The rules of composition can be specified formally as productions, but unlike the 
productions of a CFG, these productions are universal over all CCGs. In order to 
reduce the number of cases, we will use a vertical bar I as an instance of a forward 
or backward slash, / or \. Instances of I on the left- and right-hand sides of a single 
production should be interpreted as representing slashes of the same direction. The 
symbols X, Y, and Z are to be read as variables which match any category. 

Forward application: X ~ X / Y  Y 

Backward application: X --~ Y X \ Y  
Forward composition: X[Z ~ X / Y  YIZ 
Backward composition: X]Z--~ YIZ X \ Y  

A string of words is accepted by a CCG, if a specified category (usually S) derives 
a string of categories that is an image of the string of words under the mapping f .  

A bottom-up a lgor i thm~ssent ia l ly  the CYK algorithm instantiated for these 
productions--can be easily specified for CCGs. Given a CCG and a string w = 
wl . . .  wn to be parsed, we will consider a logic with items of the form IX, i, j] where 
X is a category and i and j are integers ranging from 0 to n. Such an item asserts 
that  the substring of the string w from the i + l th  element up to the j t h  element 
can be reduced to the category X. The required proof rules for this logic are given 
in Figure 8. 

With the lexicon in Figure 7, the string 

Trip certainly likes merengue (2) 

can be recognized as follows: 

1 [NP, O, 1] AXIOM 
2 [(S\NP)/(S\NP),I,2] AXIOM 
3 [(S\NP)/NP, 2,3] AXIOM 
4 [(S\NP)/NP, 1, 3] FORWARD COMPOSITION from 2 and 3 
5 [NP, 3,4] AXIOM 
6 [(S\NP), 1, 4] FORWARD APPLICATION from 4 and 5 
7 [S, 0, 4] BACKWARD APPLICATION from 1 a n d  6 
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I t e m  fo rm:  [X, i, j] 

Ax ioms :  [X,i , i+ 1] where X E f(Iri+l) 

Goals :  [S, O, n] 

I n f e r e n c e  rules :  
[X/Y,i,j] [Y,j,k] 

F o r w a r d  A p p l i c a t i o n  [X, i, k] 

B a c k w a r d  A p p l i c a t i o n  [Y, i, j!x,[X\Y,[ j, k] 
i, k] 

[X/Y,i,j] [Y/Z,j,k] 
F o r w a r d  C o m p o s i t i o n  1 IX~Z, i, k] 

[X/Y,i,j] [YkZ, j,k] 
F o r w a r d  C o m p o s i t i o n  2 Ix\z,  i, k] 

[Y/Z, i, j] [X\Y, j, k] 
B a c k w a r d  C o m p o s i t i o n  1 IX~Z, i, k] 

[YkZ, i,j] [XkY, j,k] 
B a c k w a r d  C o m p o s i t i o n  2 Ix\z,  i, k] 

F I G U R E  8. The CCG deductive parsing system. 

Other extensions of CCG (such as generalized composition and coordination) 
can be easily implemented using such deduction parsing methods. 

4.3. Tree-Adjoining Grammars and Related Formalisms 

The formalism of tree-adjoining grammars (TAG) [11, 10] is a tree-generating sys- 
tem in which trees are combined by an operation of adjunction rather than the 
substitution operation of context-free grammars. 3 The increased expressive power 
of adjunction allows important natural-language phenomena such as long-distance 
dependencies to be expressed locally in the grammar, that  is, within the relevant 
lexical entries, rather than by many specialized context-free rules [14]. 

A tree-adjoining grammar consists of a set of elementary trees of two types: 
initial trees and auxiliary trees. An initial tree is complete in the sense that  its 
frontier includes only terminal symbols. An example is given in Figure 9(a). An 
auxiliary tree is incomplete; it has a single node on the frontier, the foot node, 
labeled by the same nonterminal as the root. Figure 9(b) provides an example. 
(By convention, foot nodes are redundantly marked by a diacritic asterisk (,) as in 
the figure.) 

Although auxiliary trees do not themselves constitute complete grammatical 
structures, they participate in the construction of complete trees through the ad- 
junction operation. Adjunction of an auxiliary tree into an initial tree is depicted 
in Figure 10. The operation inserts a copy of an auxiliary tree into another tree 

3Most  practical  variants  of TAG include both  adjunct ion and subst i tu t ion,  bu t  for purposes  of 
exposi t ion,  we restr ict  our a t ten t ion  to adjunct ion alone, since subs t i tu t ion  is formally dispensable  
and its implementa t ion  in parsing systems such as we describe is very much like the  context-free 
operat ion.  Similarly, we do not  address o ther  issues such as adjoining const ra ints  and ex tended  
derivations.  Discussion of those  can be found elsewhere [29, 30]. 
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s vP s F I G U R E  9. An example 
~ ~ tree-adjoining grammar consisting 

NP VP VP* Adv NP VP of one initial tree (a) and one aux- 
[ A iliary tree (b). These trees can be 

I / \  used to form the derived tree (c) 
Trip V nimbly Trip VP Adv for the sentence "Trip rumbas nim- 

bly." (In an actual English gram- 
mar, the tree depicted in (a) would 

rumbas v nimbty not be an elementary tree, but it- 

self derived from two for trees, one 
each lexical item, by a substitution rumbas 
operation.) 

(a) (b) (c) 

initial tree auxiliary tree derived tree 

X 

X *  

x t / X t  
i l 

tt 
j k 

F I G U R E  10. The operation of adjunction. The auxiliary tree is spliced into the 
initial tree to yield the derived tree at right. 

in place of an interior node that  has the same label as the root and foot nodes of 
the auxiliary tree. The subtree that  was previously connected to the interior node 
is reconnected to the foot node of the copy of the auxiliary tree. For example, the 
auxiliary tree in Figure 9(b) can be adjoined at the V P  node of the initial tree in 
Figure 9(a) to form the derived tree in Figure 9(c). Adjunction in effect supports 
a form of string wrapping, and is therefore more powerful than the substitution 
operation of context-free grammars. 

A tree-adjoining grammar can be specified as a quintuple G = (N, E , I ,  A, S), 
where N is the set of nonterminals including the start  symbol S, E is the disjoint 
set of terminal symbols, I is the set of initial trees, and A is the set of auxiliary 
trees. 

To describe adjunction and TAG derivations, we need notation to refer to tree 
nodes, their labels, and the subtrees they define. Every node in a tree a can be 
specified by its address, a sequence of positive integers defined inductively as follows: 
the empty sequence e is the address of the root node, and p.  k is the address of the 
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k - th  child of  the  node  at  address  p. Foot(a) is defined as t he  address  of the  foot 

node  of t he  t ree  a if t he re  is one; o therwise  Foot(a) is undefined.  
We deno te  by  a@p the  node  of a a t  address  p, and  by  a / p  the  sub t ree  of a 

roo ted  a t  a@p. The  g r a m m a r  symbol  t h a t  labels  node  u is deno ted  by  Label(u). 
Given  an  e l e m e n t a r y  t ree  node  u, Adj(u) is defined as the  set of  aux i l i a ry  t rees  t h a t  
can  be  ad jo ined  at  node  u. 4 

F ina l ly ,  we deno te  by  a[~x H p l , . . . , / ~ k  ~-~ Pk] the  resul t  of ad jo in ing  the  t rees  
/31 , . . . , /3k  a t  d i s t inc t  addresses  P l , . . . ,  Pk in the  t ree  a .  

T h e  set  of t rees  D(G) der ived  by  a T A G  G can be defined induct ively.  D(G) is 
t he  smal les t  set  of t rees  such t h a t  

1. I U A c_ D(G), t h a t  is, all e l emen ta ry  t rees  are derivable,  and  
2. Define D ( a ,  G) to  be  the  set of all t rees  der ivable  as a [~ l  ~-~ p i , . . . ,  ~k ~-* pk] 

w h e r e / 3 1 , . . . , / 3 k  E D(G) and P l , . . - ,  Pk are  d i s t inc t  addresses  in a .  Then ,  for 
all e l e m e n t a r y  t rees  a c I U A, D(a, G) c D(G). Obviously,  if a is an ini t ia l  
t ree ,  t he  t ree  thus  der ived will have no foot node,  and  if a is an  aux i l i a ry  t ree,  
t he  der ived  t ree  will have a foot  node. 

T h e  val id  de r iva t ions  in a T A G  are  the  t rees  in D ( a s ,  G) where  a s  is an in i t ia l  t ree  
whose  roo t  is labe led  wi th  t he  s t a r t  symbol  S.  

Parse r s  for T A G  can be descr ibed  jus t  as those  for C F G ,  as deduc t ion  sys tems.  
T h e  pa r se r  we present  here is a va r ian t  of the  C Y K  a lgor i thm ex t ended  for TAGs,  
s imi lar ,  a l t hough  not  ident ical ,  to  t h a t  of V i j ay -Shanker  [36]. We chose it for ex- 
p o s i t o r y  reasons:  i t  is by far the  s imples t  T A G  pars ing  a lgor i thm,  in pa r t  because  
i t  is r e s t r i c t ed  to  T A G s  in which e l emen ta ry  t rees  are  at  most  b i n a r y  branching ,  
b u t  p r i m a r i l y  because  it is pure ly  a b o t t o m - u p  sys tem;  no p red ic t ion  is per formed.  
Desp i t e  i ts  s implic i ty ,  t he  a lgo r i thm mus t  handle  the  increased genera t ive  c a p a c i t y  
of  T A G s  over t h a t  of context - f ree  g rammars .  Consequent ly ,  the  worst  case com- 
p lex i ty  for t he  parser  we presen t  is worse t h a n  for CFGs--O(n 6) t ime  for a sentence 
of  l eng th  n. 

T h e  p resen t  a lgo r i thm uses a dotted tree to  t r ack  the  progress  of pars ing.  A 
d o t t e d  t ree  is an e l e m e n t a r y  t ree  of  the  g r a m m a r  wi th  a do t  ad jacen t  to  one of 
t he  nodes  in t he  tree.  The  do t  i tself  m a y  be  in one of two pos i t ions  re la t ive  to  the  
specif ied node:  above  or below. A d o t t e d  t ree  is thus  specified as an e l e me n ta ry  
t ree  a ,  an  address  p in t h a t  t ree,  and a marker  to  specify the  pos i t ion  of the  do t  
re la t ive  to  the  node.  We will use the  no t a t i on  u ° and  Uo for d o t t e d  t rees  wi th  the  
do t  above  and  below node  u, respect ively.  5 

In o rde r  to  t r a c k  the  po r t i on  of the  s t r ing  covered by  the  p roduc t ion  up  to  the  do t  
pos i t ion ,  the  C Y K  a lgo r i t hm makes  use of two indices. In  a d o t t e d  t ree,  however,  
t he re  is a fur ther  compl ica t ion  in t h a t  the  e l emen ta ry  t ree  m a y  conta in  a foot  node  

4For TAGs with no constraints on adjunction (for instance, as defined here), Adj(u) is just the 
set of elementary auxiliary trees whose root node is labeled by Label(u). When other adjoining 
constraints are allowed, as is standard, they can be incorporated through a revised definition of 
Adj. 

5Although both this algorithm and Earley's use a dot in items to distinguish the progress of a 
parse, they are used in quite distinct ways. The dot of Earley's algorithm tracks the left-to-right 
progress of the parse among siblings. The dot of the CYK TAG parser tracks the pre-/post- 
adjunction status of a single node. For this reason, when generalizing Earley's algorithm to 
TAG parsing [29], four dot positions are used to simultaneously track pre~/post-adjunction and 
before/after node left-to-right progress. 
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so that  the string covered by the elementary tree proper has a gap where the foot 
node occurs. Thus, in general, four indices must be maintained: two (i and l in 
Figure 10) to specify the left edge of the auxiliary tree and the right edge of the 
parsed portion (up to the dot position) of the auxiliary tree, and two more (j and 
k) to specify the substring dominated by the foot node. 

The parser therefore consists of inference rules over items of the following forms: 
[v', i, j, k, l] and Iv., i, j, k, l], where 

• p is a node in an elementary tree, 
• i , j , k , l  are indices of positions in the input string Wl-- .w~ ranging over 

{0 , . . . ,  n} U {_}, where _ indicates that the corresponding index is not used 
in that  particular item. 

An item of the form [c~@p*, i, _, _, l] specifies that  there is a tree T E D((~/p, G), 
with no foot node, such that  the fringe of T is the string W~+l • .. wt. An item of 
the form [c~@p*, i, j, k, 1] specifies that  there is a tree T C D ( a / p ,  G), with a foot 
node, such that  the fringe of T is the string Wi+l " "  wj Labe l (Foo t (T) )  Wk+l .-. wt. 
The invariants for [a@p., i, _, _, l] and [a@p., i, j, k, l] are similar, except that  the 
derivation of T must not involve adjunction at node a@p. 

The algorithm preserves this invariant while traversing the derived tree from 
bottom to top, starting with items corresponding to the string symbols themselves, 
which follow from the axioms 

[v*, i, _, _, i + 1] Label(v)  = Wi+l 

combining completed subtrees into larger ones, and combining subtrees before ad- 
junction (with dot below) and derived auxiliary trees to form subtrees after ad- 
junction (with dot above). Figure 11 depicts the movement of the dot from bot tom 
to top as parsing proceeds. In Figure 11(a), the basic rules of dot movement not 
involving adjunction are shown, including the axiom for terminal symbols, the com- 
bination of two subchildren of a binary tree or one child of a unary subtree, and 
the movement corresponding to the absence of an adjunction at a node. These are 
exactly the rules that would be used in parsing within a single elementary tree. 
Figure 11(b) displays the rules involved in parsing an adjunction of one tree into 
another. 

These dot movement rules are exactly the inference rules of the TAG CYK 
deductive parsing system, presented in full in Figure 12. In order to reduce the 
number of cases, we define the notation i U j for two indices i and j as follows: 

i j = _  

i U j  = J i = _ 
i i = j  

u n d e f i n e d  o therwise .  

Although this parser works in time O(n6)- - the  Adjoin rule with its six indepen- 
dent indices is the step that  accounts for this complexity--and its average behavior 
may be better, it is in practice too inefficient for practical use for two reasons. First, 
an at tempt  is made to parse all auxiliary trees starting bottom-up from the foot 
node, regardless of whether the substring between the foot indices actually can be 
parsed in an appropriate manner. This problem can be alleviated, as suggested 
by Vijay-Shanker and Weir [37], by replacing the Foot Axiom with a Complete 
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F I G U R E  11. Examples of dot movement in the CYK tree traversal implicit in 
the TAG parsing algorithm. 

Foot rule tha t  generates the item [~@Foot(fi)o,p,p,q,q] only if there is an item 
[u.,p, j, k, q] where/3 E Adj(u), i.e., 

C o m p l e t e  Foo t  [u.,p,j,k,q] /3 E Adj(u). 
p, p, q, q] 

This complicates the invariant considerably, but makes auxiliary tree parsing much 
more goM-directed. Second, because of the lack of top-down prediction, at tempts 
are made to parse elementary trees that  are not consistent with the left context. 
Predictive parsers for TAG can be, and have been, described as deductive systems. 
For instance, Schabes [29] provides a detailed explanation for a predictive left-to- 
right parser for TAG inspired by the techniques of Earley's algorithm. Its worst- 
case complexity is O(n 6) as well, but its average complexity on English grammar 
is well superior to its worst case, and also to the CYK TAG parser. A parsing 
system based on this algorithm is currently being used in the development of a 
large English tree-adjoining grammar at the University of Pennsylvania [21]. 

Many other formalisms related to tree-adjoining grammars have been proposed, 
and the deductive parsing approach is applicable to these as well. For instance, 
as part  of an investigation of the precise definition of TAG derivation, Schabes 
and Shieber describe a compilation of tree-adjoining grammars to linear indexed 
grammars, together with an efficient algorithm, stated as a deduction system, for 
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I t e m  form:  [v', i, j, k, l] 
[v. , i , j ,k , l]  

Axioms :  
T e r m i n a l  A x i o m  [v °, i, _, _, i + 1] Label(v) = wi+l 

E m p t y  S t r i ng  A x i o m  [v °, i  . . . . .  i] Label(v) = e 

Foot  A x i o m  [13@Fool(13)°, p, p, q, q] 13 E A 

Goals:  [aQe °, 0 . . . .  , n] a E I and Label(a@e) = S 

I n f e r e n c e  Rules :  

C o m p l e t e  U n a r y  [c~@(p • 1)', i, j, k, 11 [a@p°, i, j, k, 1] a@(p. 2) undefined 

C o m p l e t e  B ina ry  [a@(p. 1)°,i , j ,k, l]  [a@(p. 2)° , l , j ' ,U,  rn] 
[o~@p°, i, j U j ' ,  k U k', m] 

No A d j o i n  [v°, i, j, k, l] 
[v ' , i , j ,k , l]  

A d j o i n  [13@e',i,p,q,l] [v. ,p, j ,k,q] 
[v ' , i , j ,k , I]  13 E Adj(v) 

F I G U R E  12. The CYK deductive parsing system for tree-adjoining grammars. 

recognition and parsing according to the compiled grammar [30]. A prototype of 
this parser has been implemented using the deduction engine described here. (In 
fact, it was as an aid to testing this algorithm, with its eight inference rules, each 
with as many as three antecedent items, that  the deductive parsing meta-interpreter 
was first built.) 

Schabes and Waters [31, 32] suggest the use of a restricted form of TAG in 
which the foot node of an auxiliary tree can occur only at the left or right edge of 
the tree. Since the portion of string dominated by an auxiliary tree is contiguous 
under this constraint, only two indices are required to track the parsing of an 
auxiliary tree adjunction. Consequently, the formalism can generate only context- 
free languages and can be parsed in cubic time. The resulting system, called tree 
insertion grammar (TIG), is a compromise between the parsing efficiency of context- 
free grammar and the elegance and lexical sensitivity of tree-adjoining grammar. 
TIG has also been used to parse CFGs more quickly by using a construction that  
converts a context-free grammar into a lexicalized tree insertion grammar (LTIG) 
that  preserves the trees produced. The deductive parsing meta-interpreter has also 
been used for rapid prototyping of an Earley-style parser for TIG [32]. 

4.4. Inadequacy for Sequent Calculi 

All the parsing logics discussed here have been presented in a natural-deduction 
format that  can be implemented directly by bottom-up execution. However, im- 
portant  parsing logics, in particular the Lambek calculus [15, 18], are better  pre- 
sented in a sequent-calculus format. The main reason for this is that  those systems 
use nonatomic formulas that  represent concurrent or hypothetical analyses. For 
instance, if for arbitrary u with category B we conclude that  vu has category A, 
then in the Lambek calculus we can conclude that  v has category A/B. 
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The main difficulty with applying our techniques to sequent systems is that  
computationally such systems are designed to be used in a top-down direction. For 
instance, the rule used for the hypothetical analysis above has the form 

FBF-A 
F I- A/B" (3) 

It is reasonable to use this rule in a goal-directed fashion (consequent to antecedent) 
to show F F- A/B, but using it in a forward direction is impractical because B must 
be arbitrarily assumed before knowing whether the rule is applicable. 

More generally, in sequent formulations of syntactic calculi, the goal sequent for 
showing the grammaticality of a string wi has the form 

W1. . ,  Wn I- S 

where Wi gives the grammatical category of wi and S is the category of a sentence. 
Proof search proceeds by matching current sequents to the consequents of rules 
and trying to prove the corresponding antecedents, or by recognizing a sequent 
as an axiom instance A F- A. The corresponding natural deduction proof would 
start  from the assumptions W1, . . . ,  Wn and t ry  to prove S, which is just the proof 
format that  we have used here. However, sequent rules like (3) above correspond 
to the introduction of an additional assumption (not one of the W~) at some point 
in the proof and its later discharge, as in the natural-deduction detachment rule 
for propositional logic. But such undirected introduction of assumptions just in 
case they may yield consequences that  will be needed later is computationally very 
costly. 6 Systems that  make full use of the sequent formulation therefore seem to 
require top-down proof search. It is, of course, possible to encode top-down search 
in a bottom-up system by using more complex encodings of search state, as is done 
in Earley's algorithm or in the magic sets/magic templates compilation method for 
deductive databases [3, 25]. Pentus [22], for instance, presents a compilation of 
Lambek calculus to a CFG, which can then be processed by any of the standard 
methods. However, it is not clear yet that  such techniques can be applied effectively 
to grammatical sequent calculi so that  they can be implemented by the method 
described here. 

5. C O N T R O L  A N D  I M P L E M E N T A T I O N  

The specification of inference rules, as carried out in the previous two sections, 
only partially characterizes a parsing algorithm, in that  it provides for what items 
are to be computed, but not in what order. This further control information is 
provided by choosing a deduction procedure to operate over the inference rules. If 
the deduction procedure is complete, it actually makes little difference in what 
order the items are enumerated, with one crucial exception: we do not want 
to enumerate an item more than once. To prevent this possibility, it is stan- 
dard to maintain a cache of lemmas, adding to the cache only those items that  

6There is more  than  a passing similarity between this  problem and the  problem of pure bo t tom-  
up parsing wi th  g rammars  wi th  gaps. In fact, a natural  logical formulation of gaps is as assump- 
t ions discharged by the  wh-phrase  they s t and  for [20, 9]. 
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have not been seen so far. The cache plays the same role as the chart in chart- 
parsing algorithms [13], the well-formed substring table in CYK parsing [12, 38], 
and the state sets in Earley's algorithm [8]. In this section, we develop a forward- 
chaining deduction procedure that  achieves this elimination of redundancy by keep- 
ing a chart. 

I tems should be added to the chart as they are proved. However, each new 
item may itself generate new consequences. The issue as to when to compute 
the consequences of a new item is subtle. A standard solution is to keep a sep- 
arate agenda of items tha t  have been proved, but whose consequences have not 
been computed. When an item is removed from the agenda and added to the 
chart, its consequences are computed and themselves added to the agenda for later 
consideration. 

Thus, the general form of an agenda-driven, chart-based deduction procedure is 
as follows: 

1. Initialize the chart to the empty  set of items and the agenda to the axioms 
of the deduction system. 

2. Repeat  the following steps until the agenda is exhausted: 

(a) Select an item from the agenda, called the trigger item, and remove it. 
(b) Add the trigger item to the chart, if necessary. 
(c) If the trigger item was added to the chart, generate all items tha t  are new 

immediate consequences of the trigger item together with all items in the 
chart, and add these generated items to the agenda. 

3. If a goal item is in the chart, the goal is proved (and the string recognized); 
otherwise it is not. 

There are several issues that  must be determined in making this general proce- 
dure concrete, which we describe under the general topics of eliminating redundancy 
and providing efficient access. At this point, however, we will show that ,  under rea- 
sonable assumptions, the general procedure is sound and complete. 

In the arguments that  follow, we will assume tha t  items are always ground, and 
thus derivations are as defined in Section 2. A proof for the more general case, in 
which items denote sets of possible grammatical i ty  judgments,  would require more 
intricate definitions for items and inference rules, without changing the essence of 
the argument.  

SOUNDNESS. W e  need to show that  if the above procedure places i tem I in the 
chart when the agenda has been initialized in step (1) with items A 1 , . . . ,  Ak, then 
A 1 , . . . , A k  ~- I .  Since any item in the chart must have been in the agenda, and 
been placed in the chart by step (2b), it is sufficient to show tha t  A 1 , . . . ,  Ak F- I 
for any I in the agenda. We show this by induction on the stage ~(I) of I ,  the 
number of the iteration of step (2) at which I has been added to the agenda, or 0 if 
I has been placed in the agenda at step (1). Note tha t  since several items may be 
added to the agenda in any given iteration, many items may have the same stage 
number. 

If ~(I) = 0, I must be an axiom, and thus the trivial derivation consisting of I 
alone is a derivation of I from A 1 , . . . ,  Ak. 

Assume that  A I , . . . ,  Ak F- J for ~(J) < n and that  [I(I) = n. Then I must have 
been added to the agenda by step (2c), and thus there are items J 1 , . . . ,  Jm in the 
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chart and a rule instance such that 

J1 "'" Jm 
(side conditions on J 1 , . . . ,  Jm, I) 

I 

where the side conditions are satisfied. Since J1,... ,Jm are in the chart, they 
must have been added to the agenda at the latest at the beginning of iteration n 
of step (2), that  is, ~(J~) < n. By the induction hypothesis, each J~ must have 
a derivation Ai from A1, . . .  ,Ak. But then, by definition of derivation, the con- 
catenation of the derivations A 1 , . . . ,  Am followed by I is a derivation of I from 
A1 , . . . ,  Ak. 

COMPLETENESS. We want to show that  if A I , . . . , A k  ~- I,  then I is in the 
chart at step (3). Actually, we can prove something stronger, namely, that  I 
is eventually added to the chart, if we assume some form of fairness for the 
agenda. Then we will have covered cases in which the full iteration of step (2) 
does not terminate, but step (3) can be interleaved with step (2) to recognize the 
goal as soon as it is generated. The form of fairness we will assume is that  if 
~(I) < ~(J), then item I is removed from the agenda by step (2a) before item 
J. The agenda mechanism described in Section 5.3 below satisfies this fairness 
assumption. 

We show completeness by induction on the length of any derivation D1, . .  •, Dn 
of I from A 1 , . . . ,  Ak. (Thus, we show implicitly that  the procedure generates every 
derivation, although in general, it may share steps among derivations.) 

For n = 1, I = D1 = Ai for some i. It will thus be placed in the agenda 
at step (1), that  is, ~(I) = 0. Thus, by the fairness assumption, I will be re- 
moved from the agenda in at most k iterations of step (2). When it is, it is 
either added to the chart as required, or the chart already contains the same 
item. (See discussion of the "if necessary" proviso of step (2b) in Section 5.1 
below.) 

Assume now that  the result holds for derivations of length less than n. Consider 
a derivation D 1 , . . . ,  Dn = I. Either i is an axiom, in which case we have just shown 
it will have been placed in the chart by iteration k, or, by definition of derivation, 
there are i l , . . . ,  i m <  n such that  there is a rule instance 

Dil "'" D~m (side conditions on D~I, . . . ,D~ , I )  (4) 
I m 

with side conditions satisfied. By definition of derivation, each prefix D 1 , . . . ,  Dij 
of D 1 , . . . ,  Dn is a derivation of Dij from A1 , . . . ,  Ak. Then each D~j is in the chart, 
by the induction hypothesis. Therefore, for each Dij, there must have been an 
identical item Ij in the agenda that  was added to the chart at step (2b). Let Ip be 
the item in question that  was the last to be added to the chart. Immediately after 
that  addition, all of the Ij (that is, all of the D~j) are in the chart, and Ip = Di,~ 
is the trigger item for rule application (4). Thus, I is placed in the agenda. Since 
step (2c) can only add a finite number of times to the agenda, by the fairness 
assumption, item I will eventually be considered at steps (2a) and (2b), and added 
to the chart if not already there. 

5.1. Eliminating Redundancy 
REDUNDANCY IN THE CHART. The deduction procedure requires the ability to 

generate new consequences of the trigger item and the items in the chart. The key 
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word in this requirement is "new." Indeed, the entire point of a chart-based system 
is to allow caching of proved lemmas so that  previously proved (old) lemmas are 
not further pursued. I t  is therefore crucial that  no item be added to the chart tha t  
already exists in the chart, and it is for this reason that  step (2b) above specifies 
addition to the chart only "if necessary." 

DEFINITION OF "REDUNDANT ITEM." The point of the chart is to serve as a 
cache of previously proved items, so that  an item already proved is not pursued. 
Wha t  does it mean for an item to be redundant, tha t  is, occurring already in the 
agenda or chart? In the case of ground items, the appropriate notion of occurrence 
in the chart is the existence of an identical chart item. If items can be nonground 
(for instance, when parsing relative to definite-clause grammars  rather  than context- 
free grammars) ,  a more subtle notion of occurrence in the chart is necessary. As 
mentioned above, a nonground item stands for all of its ground instances, so tha t  
a nonground item occurs in the chart if all its ground instances are covered by 
chart items, that  is, if it is a specialization of some chart item. (This test  suffices 
because of the strong compactness of sets of terms defined by equations: if the 
instances of a term A are a subset of the union of the instances of B and C, 
then the instances of A must be a subset of the instances of either B or C [17].) 
Thus, the appropriate test is whether an item in the chart subsumes the item to 
be added. 7 

REDUNDANCY IN THE AGENDA. W e  pointed out that  redundancy checking in 
the chart is necessary. The issue of redundancy in the agenda is, however, a distinct 
one. Should an item be added to the agenda that  already exists there? 

Finding the rule that  matches a trigger item, triggering the generation of new 
immediate consequences, and checking that  consequences are new are expensive 
operations to perform. The existence of duplicate items in the agenda therefore 
generates a spurious overhead of computation, especially in pathological cases where 
exponentially many duplicate items can be created in the agenda, each one creating 
an avalanche of spurious overhead. 

For these reasons, it is also important  to check for redundancy in the agenda, 
that  is, the notion of "new immediate consequences" in step (2c) should be inter- 
preted as consequent items that  do not already occur in the chart or agenda. If 
redundancy checking occurs at the point items are about  to be added to the agenda, 
it is not required when they are about  to be added to the chart; the "if necessary" 
condition in step (2b) will in this case by vacuous, since always true. 

TRIGGERING THE GENERATION OF NEW IMMEDIATE CONSEQUENCES. With 
regard to step (2c), in which we generate "all items that  are new immediate con- 
sequences of the trigger i tem together with all other items in the chart," we would 
like, if at all possible, to refrain from generating redundant items, rather than gen- 
erating, checking for, and disposing of the redundant ones. Clearly, any i tem tha t  is 
an immediate consequence of the other chart items only ( that  is, without the trigger 
item) is not a new consequence of the full chart. (It would have been generated 
when the last of the antecedents was itself added to the chart.) Thus, the infer- 
ence rules generating new consequences must have at least one of their antecedent 
items being the trigger item, and the search for new immediate consequences can 

7This subsumption check can be implemented in several ways in Prolog. The  code made 
available with this paper presents two of the options. 
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be limited to just those in which at least one of the antecedents in the trigger item. 
The search can therefore be carried out by looking at all antecedent items of all 
inference rules tha t  match the trigger item, and for each, checking that  the other 
antecedent items are in the chart. If so, the consequent of that  rule is generated 
as a potential new immediate consequence of the trigger items plus other chart 
items. (Of course, it must be checked for prior existence in the agenda and chart 
as outlined above.) 

5.2. Providing Efficient Access 

Items should be stored in the agenda and chart in such a way that  they can be 
efficiently accessed. Stored items are accessed at two points: when checking a new 
item for redundancy, and when checking a (nontrigger) antecedent item for existence 
in the chart. For efficient access, it is desirable to be able to directly index into the 
stored items appropriately, but appropriate indexing may be different for the two 
access paths. We discuss the two types of indexing separately, and then turn to the 
issue of variable renaming. 

INDEXING FOR REDUNDANCY CHECKING. Consider, for instance, the Earley 
deduction system. All items that  potentially subsume an item [i, A ~ a • ~, j] 
have a whole set of attributes in common with the item, for instance, the indices 
i and j ,  the production from which the item was constructed, and the position of 
the dot (i.e., the length of a).  Any or all of these might be appropriate for indexing 
into the set of stored items. 

INDEXING FOR ANTECEDENT LOOKUP. The information available for indexing 
when looking items up as potential matches for antecedents can be quite different. 
In looking up items that  match the second antecedent of the completion rule [k, B 
~/ . ,  j], as triggered by an item of the form [i, A -~ a • Bfl, k], the index k will be 
known, but j will not be. Similarly, information about B will be available from 
the trigger item, but no information about 7. Thus, an appropriate index for the 
second antecedent of the completion rule might include its first index k and the main 
functor of the left-hand-side B. For the first antecedent item, a similar argument 
calls for indexing by its second index k and the main functor of the nonterminal 
B following the dot. The two cases can be distinguished by the sequence after the 
dot: empty in the former case, nonempty in the latter. 

VARIABLE RENAMING. A final consideration in access is the renaming of vari- 
ables. As nonground items stored in the chart or agenda are matched against 
inference rules, they become further instantiated. This instantiation should not 
affect the items as they are stored and used in proving other consequences, so that  
care must be taken to ensure that  variables in agenda and chart items are renamed 
consistently before they are used. Prolog provides various techniques for achieving 
this renaming implicitly. 

5.3. Prolog Implementation of Deductive Parsing 
In light of the considerations presented above, we turn now to our method of im- 
plementing an agenda-based deduction engine in Prolog. We take advantage of 
certain features tha t  have become standard in Prolog implementations, such as 
clause indexing. The code described below is consistent with Quintus Prolog. 



28 S.M. SHIEBER ET AL. 

5.3.1. Implementation of Agenda and Chart. Since redundancy checking is to 
be done in both agenda and chart, we need the entire set of items in both agenda 
and chart to be stored together• For efficient access, we store them in the Pro- 
log database under the predicate s t o r e d / 2 .  The agenda and chart are therefore 
comprised of a series of unit clauses, e.g., 

s t o r e d ( i ,  i t e m ( . . . ) ) ,  beginning of chart 
s t o r e d ( 2 ,  i t e m ( . • . ) ) .  

s t o r e d ( 3 ,  i t e m ( . . . ) ) .  

s t o r e d ( i - I ,  i t e m ( • . . ) ) ,  end of chart 
s t o r e d ( i ,  i tem(.•  .)) . head of agenda 
s t o r e d ( i + l ,  i t e m ( . . . ) ) .  

s t o r e d ( k - I ,  i t e m ( • . . ) ) .  

s t o r e d ( k ,  i t e m ( . . . ) ) .  *---- tail of agenda 

The first argument of s t o r e d / 2  is a unique identifying index that  corresponds to 
the position of the item in the storage sequence of chart and agenda items. (This 
information is redundantly provided by the clause ordering as well, for reasons that  
will become clear shortly,) The index therefore allows (through Quintus's indexing 
of the clauses for a predicate by their first head argument) direct access to any 
stored item. 

Since items are added to the sequence at the end, all items in the chart pre- 
cede all items in the agenda. The agenda items can therefore be characterized by 
two indices, corresponding to the first (head) and last (tai 0 items in the agenda• 
A data structure packaging these two "pointers" therefore serves as the proxy for 
the agenda in the code. An item is moved from the agenda to the chart merely 
by incrementing the head pointer. Items are added to the agenda by storing the 
corresponding item in the database and incrementing the tail pointer. 

To provide efficient access to the stored items, auxiliary indexing tables can be 
maintained. Each such indexing table is implemented as a set of unit clauses that  
map access keys to the indexes of items that match them. In the present imple- 
mentation, a single indexing table (under the predicate key_index/2)  is maintained 
that  is used for accessing items both for redundancy checking and for antecedent 
lookup. (This is possible because only the item attributes available in both types of 
access are made use of in the keys, leading to less than optimal indexing for redun- 
dancy checking, but use of multiple indexing tables leads to much more database 
manipulation, which is quite costly•) 

In looking up items for redundancy checking, all stored items should be consid- 
ered, but for antecedent lookup, only chart items are pertinent• The distinction 
between agenda and chart items is, under this implementation, implicit• The chart 
items are those whose index is less than the head index of the agenda. This test 
must be made whenever chart items are looked up. However, since clauses are 
stored sequentially by index, as soon as an item is found that  fails the test (that 
is, is in the agenda), the search for other chart items can be cut off. 

5.3.2. Implementation of the Deduction Engine. Given the design decisions de- 
scribed above, the general agenda-driven, chart-based deduction procedure presented 
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in Section 5 can be implemented in Prolog as follows: 

parse(Value) "- 

~o (1) Initialize the chart and agenda 

±nit_chart, 

±nit_agenda(Agenda), 

Yo (2) Remove items from the agenda and process 

Yo until the agenda is empty 

exhaust (Agenda), 

Yo (3) Try to find a goal item in the chart 

goal_item_in_chart (Goal). 

To exhaust the agenda, trigger items are repeatedly processed until the agenda is 
empty: 

exhaust(Empty) "- 

Yo (2) If  the agenda is empty, we're done 

is_empt y_agenda (Empty). 

exhaust (Agenda0) "- 

Yo (2a) Otherwise get the next item index from the agenda 

pop_agenda(Agenda0, Index,  Agendal) ,  

Yo (2b) Add it to the chart 

add_it em_t o_chart (Index),  

~o (2c) Add its consequences to the agenda 

add_consequences_to_agenda(Index, Agendal, Agenda), 
Yo (2) Continue processing the agenda until empty 

exhaust (Agenda). 

For each item, all consequences are generated and added to the agenda: 

add_consequences_to_agenda(Index, Agenda0, Agenda) "- 

f indall (Consequence, 

consequence(Index, Consequence), 

Consequence), 

add_items_to_agenda(Consequences, Agenda0, Agenda). 

The predicate add_items_to_agenda/3 adds the items under appropriate indices 
as stored items and updates the head and tail indices in Agenda0 to form the new 
agenda Agenda. 

A trigger item has a consequefice if it matches an antecedent of some rule, 
perhaps with some other antecedent items and side conditions, and the other 
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antecedent items have been previously proved (thus in the chart) and the side 
conditions hold: 

consequence(Index, Consequent) "- 

index_to_item(Index, Trigger), 

matching_rule (Trigger, 

RuleName, Others, Consequent, SideConds), 

items_in_chart (Others, Index), 

hold (S ideConds). 

Note that the indices of items, rather than the items themselves, are stored in the 
agenda, so that the index of the trigger item must first be mapped to the actual 
item (with index_to_item/2) before matching it against a rule antecedent. The 
items_in_chart/2 predicate needs to know both the items to look for (Others) 
and the index of the current item (Index) as the latter distinguishes the items in 
the chart (before this index) from those in the agenda (after this index). 

We assume that the inference rules are stored as unit clauses under the predi- 
cate inference(RuleName, Antecedents, Consequent, SideConds) where Rul- 
eName is some mnemonic name for the rule (such as predict or scan), Antecedents 
is a list of the antecedent items of the rule, Consequent is the single consequent 
item, and SideConds is a list of encoded Prolog literals to execute as side condi- 
tions. To match a trigger item against an antecedent of an inference rule, then, we 
merely select a rule encoded in this manner, and split up the antecedents into one 
that matches the trigger and the remaining unmatched antecedents (to be checked 
for in the chart). 

matching_rule (Trigger,  

RuleName, Others, Consequent, SideConds) "- 

inference(RuleName, Antecedents,  Consequent, SideConds), 

split (Trigger, Antecedents, Others). 

5.3.3. Implementation of Other Aspects. A full implementation of the deduc- 
tion-parsing system--complete with encodings of several deduction systems and 
sample grammars--is available from the first author and from the Computation 
and Language E-Print Archive (cmp-lg•xxx.lanl.gov) as part of paper cmp- 
lg/9404008. The distributed code covers the following aspects of the implemen- 
tation that are not elsewhere described. 

1. Input and encoding of the string to be parsed. 
2. Implementation of the deduction engine driver including generation of conse- 

quences. 
3. Encoding of the storage of items including the implementation of the chart 

and agenda. 
4. Encoding of deduction systems. 
5. Implementation of subsumption checking. 

All Prolog code distributed has been tested under the Quintus Prolog system. 
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5.4. Alternative Implementations 

This implementation of agenda and chart provides a compromise in terms of effi- 
ciency, simplicity, and generality. Other possibilities will occur to the reader that  
may have advantages under certain conditions. Some of the alternatives are de- 
scribed in this section. 

SEPARATE AGENDA AND CHART IN DATABASE. Storage of the agenda and the 
chart under separate predicates in the Prolog database allows for marginally more 
efficient lookup of chart items; an extraneous arithmetic comparison of indices 
is eliminated. However, this method requires an extra retraction and assertion 
when moving an index from agenda to chart, and makes redundancy checking more 
complex in that  two separate searches must be engaged in. 

PASSING AGENDA AS ARGUMENT. Rather than storing the agenda in the data- 
base, the list of agenda items might be passed as an argument. (The implementation 
of queues in Prolog is straightforward, and would be the natural structure to use 
for the agenda argument.) This method again has the marginal advantage in an- 
tecedent  lookup, but  it becomes almost impossible to perform efficient redundancy 
checking relative to items in the agenda. 

EFFICIENT BOTTOM-UP INTERPRETATION. The algorithm just presented can 
be thought of as a pure bottom-up evaluator for inference rules given as definite 
clauses, where the head of the clause is the consequent of the rule and the body 
is the antecedent. However, given appropriate inference rules, the bottom-up pro- 
cedure will simulate non-bottom-up parsing strategies, such as the top-down and 
Earley strategies described in Section 3. Researchers in deductive databases have 
extensively investigated variants of that  idea: how to take advantage of the tabula- 
tion of results in the pure bottom-up procedure while keeping track of goal-directed 
constraints on possible answers. As part of these investigations, efficient bottom- 
up evaluators for logic programs have been designed, for instance, CORAL [26]. 
Clearly, one could use such a system directly as a deduction parser. 

CONSTRUCTION OF DERIVATIONS. The direct use of the inference rules for 
building derivations, as presented in Section 4.1, is computationally inefficient since 
it eliminates structure-sharing in the chart. All ways of deriving the same string 
will yield distinct items, so that  sharing of computation of subderivations is no 
longer possible. 

A preferable method is to compute the derivations offline by traversing the chart 
after parsing is finished. The deduction engine can be easily modified to do so, us- 
ing a technique reminiscent of that  used in the Core Language Engine [2]. First, we 
make use of two versions of each inference rule, an online version such as the Earley 
system given in Figure 5, with no computation of derivations, and an offiine version 
like the one in Figure 6 that  does generate derivation information. We will presume 
that  these two versions are stored, respectively, under the predicates i n f e r e n c e / 4  
(as before) and i n f e r e n c e _ o f f  l i n e / 4 ,  with the names of the rules specifying the 
correspondence between related rules. Similarly, the online i n i t i a l _ i t e m / 1  speci- 
fication should have a corresponding i n i t i a l _ i t e m _ o f  f l i n e / 1  version. 

The deduction engine parses a string using the online version of the rules, but 
also stores, along with the chart, information about the ways in which each chart 
i tem can be constructed, with unit clauses of the form 

stored_history (Consequent, Rule, Antecedents). , 
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which specify that  the item whose index is given by Consequent can be generated 
by the inference rule whose name is Rule from the antecedent items given in the 
sequence Antecedents .  For each application of Rule that  generates Consequent 
from the antecedent items Antecedent ,  a clause of this form is asserted to record 
that  possible derivation. Note that  only in the first such derivation of Consequent 
will the consequent itself be added to the agenda, but each redundant deriva- 
tion of Consequent must still be recorded to ensure that  all possible derivations 
are represented. (If an item is generated as an initial item, its history would 
mark the fact by a unit clause using the constant i n i t i a l  for the Rule argu- 
ment.) 

When parsing has completed, a separate process is applied to each goal item, 
which traverses these stored histories using the second (offiine) version of the infer- 
ence rules rather than the first, building derivation information in the process. The 
following Prolog code serves the purpose. It defines o f f  l i n e _ i t e m ( I n d e x ,  I tem),  
a predicate that  computes the of Itine item Item (presumably including derivation 
information) corresponding to the online item with index given by Index, using 
the second version of the inference rules, by following the derivations stored in the 
chart history. 

offline_item(Index, Item) :- 

stored_history(Index, initial, _NoAntecedents), 

initial_item_of f line ( Item). 

off line_item(Index, Item) "- 

stored_history(Index, Rule, Antecedents), 

of f line_items (Antecedents, AntecedentItems) 

inference_of f line(Rule, AntecedentItems, Item, SideConds), 

hold (SideConds). 

offline_items( [], [] ). 

offline_items([Index i Indexes], [Item J Items]) "- 

off line_item(Index, Item), 

off line_items(Indexes, Items). 

The offline version of the inference rules need not merely compute a derivation. 
It might perform some other computation dependent on derivation, such as seman- 
tic interpretation. Abstractly, this technique allows for staging the parsing into two 
phases, the second comprising a more fine-grained version of the first. Any staged 
processing of this sort can be implemented using this technique. 

FINER CONTROL OF EXECUTION ORDER. For certain applications, it may be 
necessary to obtain even finer control over the order in which the antecedent items 
and side conditions are checked when an inference rule is triggered. Given that  the 
predicates i t ems_ in_char t /2  and ho ld s /1  perform a simple left-to-right checking 
of the items and side conditions, the implementation of ma tch ing_ru le /5  above 
leads to the remaining antecedent items and side conditions being checked in left- 
to-right order as they appear in the encoded inference rules, and the side conditions 
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being checked after the antecedent items. However, it may be preferable to inter- 
leave the checks for antecedents and for side conditions, perhaps in different orders, 
depending on which antecedent triggered the rule. 

For instance, the side condition A - A' in the second inference rule of Section 
4.1 must be handled before checking for the nontrigger antecedent of that  rule, 
in order to minimize nondeterminism. If the first antecedent is the trigger, we 
want to check the side conditions and then look for the second antecedent, and 
correspondingly for triggering the second antecedent. The implementation above 
disallows this possibility, as side conditions are always handled after the antecedent 
items. Merely swapping the order of handling side conditions and antecedent items, 
although perhaps sufficient for this example, does not provide a general solution to 
this problem. 

Various alternatives are possible to implement a finer level of control. We present 
an especially brutish solution here, although more elegant solutions are possible. 
Rather then encoding an inference rule as a single unit clause, we encode it with 
one clause per trigger element under the predicate. 

inference(RuleName, Antecedents, Consequent) 

where Rulename and Consequent are as before, but Antecedents is now a list of all 
the antecedent items and side conditions of the rule, with the trigger item first. (To 
distinguish antecedent items from side conditions, a disambiguating prefix operator 
can be used, e.g., @item(...) versus ?side_condition(...).) Matching an item 
against a rule then proceeds by looking for the item as the first element of this 
antecedent list. 

matching_rule(Trigger, RuleName, Others, Consequent) "- 

inference(RuleName, [Trigger I Others] , Consequent), 

The consequence/2 predicate is modified to use this new matching_rule/4 pred- 
icate, and to check that all of the antecedent items and side conditions hold. 

consequence(Index, Consequent) :- 

index_to_item(Index, Trigger), 

matching_rule(Trigger, RuleName, Others, Consequent) , 

hold(Others, Index). 

The antecedent items and side conditions are then checked in the order in which 
they occur in the encoding of the inference rule. 

hold([] , _Index). 

hold([Antecedent I Antecedents], Index) :- 

holds(Antecedent, Index), 

hold(Antecedents, Index). 

holds(@Item, Index) :- item_in_chart(Item, Index). 

holds(?SideCond, _Index) :- call(SideCond). 
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6. C O N C L U S I O N  

The view of parsing as deduction presented in this paper, which generalizes that of 
previous work in the area, makes possible a simple method of describing a variety 
of parsing algorithms--top-down, bottom-up, and mixed--in a way that  highlights 
the relationships among them and abstracts away from incidental differences of 
control. The method generalizes easily to parsers for augmented phrase structure 
formalisms, such as definite-clause grammars and other logic grammar formalisms. 
Although the deduction systems do not specify detailed control structure, the con- 
trol information needed to turn them into full-fledged parsers is uniform, and can 
therefore be given by a single deduction engine that performs sound and complete 
bottom-up interpretation of the rules of inference. The implemented deduction 
engine that we described has proved useful for rapid prototyping of parsing algo- 
rithms for a variety of formalisms, including variants of tree-adjoining grammars, 
categorial grammars, and lexicalized context-free grammars. 

This material is based in part upon work supported by the National Science Foundation under 
Grant No. IRI-9350192 to SMS and by an associated Xerox Corporation grant. The authors 
would like to thank the anonymous reviewers for their helpful comments on an earlier draft. 
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