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1. Introduction

The context-free grammar (CFG) formalism, introduced by Chomsky [1956], has
enjoyed wide use in a variety of fields. CFGs have been used to model the structure
of programming languages, human languages, and even biological data such as the
sequences of nucleotides making up DNA and RNA [Aho et al. 1986; Jurafsky and
Martin 2000; Durbin et al. 1998].
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CFGs are generative systems, where strings are derived via successive applica-
tions of rewriting rules. In practice, however, the goal generally is not to generate
valid strings from a grammar. Rather, one typically already has some string of
interest, such as a C program or an English sentence, in hand, and the goal is to
analyze—parse—the string with respect to the grammar.

Canonical methods for general CFG parsing are the CKY algorithm [Kasami
1965; Younger 1967] and Earley’s algorithm [Earley 1970]. Both have a worst-case
running time ofO(gn3) for a CFG of sizeg and string of lengthn [Graham et al.
1980], although CKY requires the input grammar to be in Chomsky normal form
in order to achieve this time bound. Unfortunately, cubic dependence on the string
length is prohibitively expensive in applications such as speech recognition, where
responses must be made in real time, or in situations where the input sequences are
very long, as in computational biology.

Asymptotically faster parsing algorithms do exist. Graham et al. [1980] give a
variant of Earley’s algorithm that is based on the so-called “four Russians” algo-
rithm [Arlazarov et al. 1970] for Boolean matrix multiplication (BMM); it runs
in time O(gn3/logn). Rytter [1985] further modifies this parser by a compres-
sion technique, improving the dependence on the string length toO(n3/log2n).
But Valiant’s [1975] parsing method, which reorganizes the computations of CKY,
is the asymptotically fastest known. It also uses BMM; its worst-case running time
for a grammar in Chomsky normal form is proportional toM(n), whereM(m) is
the time it takes to multiply twom×m Boolean matrices together.

Since these subcubic parsing algorithms all depend on Boolean matrix mul-
tiplication, it is natural to ask how fast BMM can be performed in practice. The
asymptotically fastest way known to perform BMM is to rely on algorithms for mul-
tiplying arbitrary matrices. There exist matrix multiplication algorithms with time
complexityO(m3−δ), thus improving over the standard algorithm’sO(m3) running
time; for instance, Strassen’s [1969] has a worst-case running time ofO(m2.81), and
the fastest currently known, due to Coppersmith and Winograd [1987; 1990], has
time complexityO(m2.376). (See Strassen [1990] for a historical account, plotted
graphically in Figure 1.) Unfortunately, the constants involved in the subcubic algo-
rithms improving on Strassen’s result are so large that thesefastalgorithms cannot
be used in practice. As for Strassen’s method itself, its practicality is ambiguous:
empirical studies show that the “cross-over” point—the matrix size at which it be-
comes better to use Strassen’s method—is above 100 [Bailey 1988; Thottethodi
et al. 1998]. In summary, despite decades of research effort, there has been little
success at finding a clearly practical, simple, fast matrix multiplication algorithm.

One might therefore hope to find a way to speed up CFG parsing without relying
on matrix multiplication. However, the main theorem of this article is that fast
CFG parsingrequiresfast Boolean matrix multiplication, in the following precise
sense: any parser running in timeO(gn3−ε ) that represents parse data in a retrieval-
efficient way can be converted with little computational overhead into anO(m3−ε/3)
BMM algorithm.

The restriction of our result to parsers with a linear dependence on the grammar
size is crucial for relating subcubic parsing to subcubic BMM. However, as dis-
cussed in Section 2.3, this restriction is a reasonable one since canonical parsing
algorithms such as CKY and Earley’s algorithm have this property, and further-
more, in domains like natural language processing, the grammar size is often the
dominating factor.
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FIG. 1. Lowest known upper bound on the exponentω for the complexity of matrix multiplication.
For instance, before 1969, the fastest known algorithm for matrix multiplication took proportional to
m3 steps (ω = 3).

Our theorem, together with the fact that it has been quite difficult to find
practical fast matrix multiplication algorithms, explains why there has been lit-
tle success to date in developing practical CFG parsers running in substantially
subcubic time.

2. The Parsing Problem: A Formalization

In this section, we motivate and set forth a formalization of the parsing problem.

2.1. MOTIVATION FOR OUR DEFINITION. In formal language theory, emphasis
has been placed on therecognitionor membership problem: deciding whether or
not a given string can be derived by a grammar. However, we concentrate here on
theparsingproblem: finding the parse structure, or analysis, assigned to a string
by a grammar. (In the case ofambiguousstrings, multiple parses exist; we address
this point below.)

From a theoretical standpoint, the two problems are almost equivalent. Recog-
nition obviously reduces to parsing, and indeed to our knowledge there are no
CFG recognition algorithms that do not implicitly compute parse information.
Conversely, Ruzzo [1979] demonstrated that any CFG recognition algorithm that
is not already an implicit parser can be converted into an algorithm that returns
a (single) parse of the input stringw, at a cost of only a factor ofO(log |w|)
slowdown.

In practice, however, the parsing problem is much more compelling than the
membership problem. Understanding the structure of the input string is crucial to
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FIG. 2. Two different parse trees for the sentence “List all flights on Tuesday.” The labels on the
interior nodes denote linguistic categories.

programming language compilation, natural language understanding, RNA shape
determination, and so on. In fact, in speech recognition systems, a useful assumption
is that any input utterance is somehow “valid,” even if it is ungrammatical, thus
making the recognition problem trivial. However, different parses of the input
sentence may lead to radically different interpretations. For example, the classic
sentence “List all flights on Tuesday” has two different parses (see Figure 2): one
indicates that all flights taking off on Tuesday should be listed right now, whereas
the other asks to wait until Tuesday, and then list all flights regardless of their
departure date. Another well-known ambiguous sentence is “I saw the man with
the telescope”; observe that here the two possible interpretations seem to be about
equally likely.

The fact that some input strings are ambiguous raises the question of what we
should require the output of a parsing algorithm to be: anysingleparse of the input
string (Ruzzo’s reduction of parsing to recognition uses this model), orall possible
parses? In practice, since multiple analyses may be valid (as in the natural language
examples above), it is clear that any practical parser should return all parses.

It remains to determine what the format of the output parses should be. One
problem is that there exist grammars for which the number of parse trees for strings
of lengthn grows exponentially inn; for example, consider the Chomsky normal
form CFG with productionsS→SS|a.1 Hence, a compressed representation of the
parse structures must be used; otherwise, every parser could take exponential time
just to print its output. However, we must be careful to impose restrictions on the
compression rate: after all, we could perversely consider the input string itself to
be a (rather inconvenient) representation of all its parse trees [Ruzzo 1979]. We thus
require practical parsers to output all the parses of an input string in a representation
that is both compact and yet allows efficient retrieval of parse information. In the
next subsection, we make this notion precise.

2.2. C-PARSING OF CONTEXT-FREE GRAMMARS. We use the usual definition
of a context-free grammar (CFG) as a 4-tupleG = (6,V, R, S), where6 is the
set of terminals,V is the set of nonterminals,R is the set of rewrite rules or
productions, andS∈ V is the start symbol. Given a stringw = w1w2 · · ·wn in6∗,

1If we do not impose any restrictions on the form of the grammar, then aninfinite number of parse
trees can be produced for a single string; for example, consider the production setS→ S|a.
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where eachwi is an element of6, we use the notationw j
i to denote the substring

wi wi+1 · · ·w j−1w j . Thesizeof G, denoted by|G|, is the sum of the lengths of all
productions inR.

Our notion of necessary parse information is based on the concept of CFG
c-derivations, which are substring derivations that are consistent with some parse
of the entire input string.

Definition 1. LetG = (6,V, R, S) be aCFG, and letw = w1w2 · · ·wn, wi ∈
6. A nonterminalA ∈ V c-derives(consistently derives)w j

i if and only if the
following conditions hold:r A⇒∗ w j

i , andr S⇒∗ wi−1
1 Awn

j+1.

(These conditions together imply thatS⇒∗ w.)

We argue, as do Ruzzo [1979] and, for a different formalism, Satta [1994], that
a practical parser must create output from which c-derivation information can be
retrieved efficiently. This information is what allows us to ascertain that there exists
an analysis of the input sequence for which a certain substring forms aconstituent,
or coherent unit. In contrast, derivation information records potential subderivations
that may not be consistent with any analysis of the full input string. For example,
in the sentence “Only the lonely can play,” “the lonely can” could conceivably, in
isolation, form a noun phrase, but clearly, in any reasonable grammar of English, no
nonterminal c-derives that substring. While some parsers retain information about
derivations that are not c-derivations, we formulate our definition of parsing to
include algorithms that do not.

Definition 2. A c-parseris an algorithm that takes aCFG G = (6,V, R, S)
and stringw ∈ 6∗ as input and produces outputFG,w that acts as an oracle about
parse information as follows: for anyA ∈ V,r If A c-derivesw j

i , thenFG,w(A, i, j ) = “yes.”r If A 6⇒∗ w j
i (which implies thatA does notc-derivew j

i ), thenFG,w(A, i, j ) =
“no.”r FG,w answers queries in constant time.

The asymmetry of derivation and c-derivation in our definition of c-parsing is de-
liberate. We allowFG,w ’s answer to be arbitrary ifA⇒∗ w j

i but A does not c-derive
w j

i ; we leave it to the algorithm designer to decide which answer is appropriate.
Thus, our definition makes the class of c-parsers as broad as possible: if we had
changed the first condition to “IfA derivesw j

i · · ·”, then Earley parsers would be
excluded, since they do not keep track of all substring derivations; whereas if we had
written the second condition as “IfA does not c-derivew j

i , . . .”, then CKY would
not be a c-parser, since it tracks all substring derivations, not just c-derivations.
In fact, the class of c-parsers contains alltabular parsers, including generalized
LR parsing, CKY, and Earley’s algorithm [Nederhof and Satta 1996]. In contrast,
Ruzzo [1979] deals with the difference between derivations and c-derivations by
defining two different problems (theweak all-parses problemand theall-parses
problem).
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Our choice of an oracle rather than a specific data structure as the output of
a c-parser is also for the purpose of keeping our definition as broad as possible.
In tabular algorithms like CKY, the oracle is given in the form of a matrix or
chart; indeed, Ruzzo’s [1979] definition of the all-parses and weak all-parses prob-
lems requires the output to be a matrix. However (as Ruzzo points out), this is
not the only possibility, and furthermore has a liability from a technical point of
view: if the output must be a matrix, then all parsing algorithms must take time at
leastÄ(n2) even to print their output. Since it may be possible for c-derivations
to be represented more compactly, we prefer to allow for this possibility in
our definition.

Finally, with regards to the third condition, we observe that Satta [1994] imposes
the same constant-time constraint for a different grammar formalism (tree-adjoining
grammars). On the other hand, we could loosen this to allow query processing to
take time polylogarithmic in the string and grammar size without much effect on
our results (see Section 3.5).

2.3. ANALYZING PARSERRUNTIMES. It is common in the formal language the-
ory literature to see the running time of parsing algorithms described as a function
of the length of the input string only (e.g.,O(n3) for a string of lengthn). That is, the
size of the context-free grammar is often treated as a constant. This stems in part
from two characteristics of the programming languages and compilers domains:
first, the size of a computer program’s source code is typically much greater than
the size of the grammar describing the programming language’s syntax, so that the
grammar term is negligible; and second, compilers are constructed to analyze many
different programs with respect to a single built-in grammar.

However, in other domains, these conditions do not hold. For example, in natural
language, sentences are relatively short (not often longer than one hundred words)
compared with the size of the grammar: Johnson [1998] describes a (probabilistic)
CFG for a subset of English that has 22,773 rules. Indeed, Joshi[1997] notes that
“the real limiting factor in practice is the size of the grammar.” Therefore, it is
reasonable to include in the analysis of parsing time the dependence on the grammar
size, and we will do so here. As a point of information, we note that both CKY
and Earley’s algorithm can be implemented to run in timeO(|G|n3) [Graham et al.
1980], although CKY requires the input grammar to be in Chomsky normal form,
conversion to which may cause a quadratic increase in the number of productions
in the grammar [Hopcroft and Ullman 1979].

3. The Reduction

In this section, we provide two efficient reductions of Boolean matrix multiplication
to c-parsing, thus proving that any c-parsing algorithm can be used as a Boolean ma-
trix multiplication algorithm with little computational overhead. The first reduction
produces a string and a context-free grammar; the second is a modification of the
first in which the grammar produced is in Chomsky normal form. The techniques
we use are an adaptation of Satta’s [1994] elegant reduction of Boolean matrix
multiplication totree-adjoining grammar(TAG) parsing. However, Satta’s results
rely explicitly on properties of TAGs that allow them to generate non-context-free
languages, and so cannot be directly applied to CFGs.
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FIG. 3. Converting a c-parser into a BMM algorithm.

3.1. BOOLEAN MATRIX MULTIPLICATION. A Boolean matrix is a matrix with
entries from the set{0, 1}. A Boolean matrix multiplication (BMM) algorithm takes
as input twom×m Boolean matricesA andB and returns theirBoolean product
A× B, which is them×m Boolean matrixC whose entries are defined by

ci j =
m∨

k=1

(aik ∧ bkj ).

That is,ci j = 1 if and only if there exists a numberk, 1 ≤ k ≤ m, such that
aik = bkj = 1.

As noted above, the Boolean productC can be computed via standard ma-
trix multiplication, sinceci j =

∑m
k=1 aik · bkj . This means that we can use the

Coppersmith and Winograd [1990] general matrix multiplication algorithm to cal-
culate the Boolean matrix product of twom×mBoolean matrices in timeO(m2.376).
To our knowledge, the asympotically fastest algorithms for BMM all rely on gen-
eral matrix multiplication; the fastest algorithms that do not do so are the so-called
“four Russians” algorithm [Arlazarov et al. 1970], with worst-case running time
O(m3/log(m)), and Rytter’s [1985] variant, which uses compression to reduce the
time to O(m3/log2(m)).

3.2. THE REDUCTION: FIRST VERSION. Our goal in this section is to show that
Boolean matrix multiplication can be efficiently reduced to c-parsing of CFGs.
That is, we describe a simple procedure that takes as input an instance of the BMM
problem and converts it into an instance of the CFG parsing problem with the
following property: any c-parsing algorithm run on the new parsing problem yields
output from which it is easy to determine the answer to the original BMM problem.
We therefore demonstrate that any c-parser can be used to solve Boolean matrix
multiplication via the three-step process shown schematically in Figure 3.

Thus, given two Boolean matricesA and B, we need show how to produce a
grammarG and a stringw such that c-parsingw with respect toG yields output
FG,w from which information about the Boolean productC = A× B can be easily
retrieved. Our approach will be to encode almost all the information aboutA and
B in the grammar.

We can sketch the desired behavior of the grammarG as follows: Suppose entries
aik in Aandbkj in B are both 1. Assume we have some way to break up array indices
into two parts so thati can be reconstructed fromi1 andi2, j can be reconstructed
from j1 and j2, andk can be reconstructed fromk1 andk2 (we will describe a way
to do this later; the motivation is to keep the grammar size relatively small). Then,
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our grammar will permit the following derivation sequence:

Ci1, j1 ⇒ Ai1,k1 Bk1, j1

⇒∗ wi2 · · ·wk2+δ︸ ︷︷ ︸
derived byAi1,k1

wk2+δ+1 · · ·w j2+2δ︸ ︷︷ ︸
derived byBk1, j1

,

whereδ will be defined later. The key thing to observe is thatCi1, j1 generates
two nonterminals whose “inner” indices match, and that these two nonterminals
generate substrings that lie exactly next to each other. The “inner” indices constitute
a check onk1, and substring adjacency constitutes a check onk2; together, these
two checks serve as a proof thataik = bkj = 1, and hence thatci j is also 1.

We now set up some notation. LetA andB be two Boolean matrices, each of size
m× m, and letC be their Boolean matrix product. In the rest of this section, we
considerA, B, C, andm to be fixed. Setd = dm1/3e, and setδ = d + 2. (The effect
of these choices on the efficiency of our reduction is discussed in Section 3.5.) We
will be constructing a string of length 3δ; we chooseδ slightly larger thand in order
to avoid having epsilon-productions in our grammar.

Our index encoding function is as follows: Leti be a matrix index, 1≤ i ≤ m≤
d3. Then, we define the functionf (i ) = ( f1(i ), f2(i )) by

f1(i ) = bi/dc (so that 0≤ f1(i ) ≤ d2), and
f2(i ) = (i modd)+ 2 (so that 2≤ f2(i ) ≤ d + 1).

Since f1(i ) and f2(i ) are essentially the quotient and remainder of integer division
of i byd, we can reconstructi from ( f1(i ), f2(i )). It may be helpful to think of these
two quantities as “high-order” and “low-order” bits, respectively. For convenience,
we will employ the notational shorthand of using subscripts instead of the functions
f1 and f2; that is, we writei1 andi2 for f1(i ) and f2(i ).

It is now our job to create a CFGG = (6,V, R, S) and a stringw ∈ 6∗ that
encode information aboutA andB and express constraints about their productC.

We choose the set of terminals to be6 = {w` : 1≤ ` ≤ 3d + 6}. The string
we choose is extremely simple, and in fact doesn’t depend onA or B at all: we set
w = w1w2 · · ·w3d+6. We considerw to be made up of three parts,x, y, andz, each
of sizeδ:

w = w1w2 · · ·wd+2︸ ︷︷ ︸
x

wd+3 · · ·w2d+4︸ ︷︷ ︸
y

w2d+5 · · ·w3d+6︸ ︷︷ ︸
z

.

Observe that for any array indexi between 1 andm, it is the case thatwi2 appears
in x, wi2+δ appears iny, andwi2+2δ appears inz, since

i2 ∈ [2, d + 1],
i2+ δ ∈ [d + 4, 2d + 3], and

i2+ 2δ ∈ [2d + 6, 3d + 5].

We now turn our attention to constructing the grammarG. Our plan is to include
a set of nonterminals{Cp,q : 1≤ p,q ≤ d2} in V such thatci j = 1 if and only if
Ci1, j1 c-derivesw j2+2δ

i2
.

3.3. THE GRAMMAR. To createG = (6,V, R, S), we build up the set of non-
terminals and productions, starting withV = {S} andR= ∅. We add nonterminal



Grammar Parsing Requires Fast Boolean Matrix Multiplication 9

FIG. 4. Schematic of the derivation process whenaik = bkj = 1. The substrings derived byAi1,k1

andBk1, j1 lie right next to each other.

W to V for generating arbitrary nonempty substrings and therefore add productions

W→ w`W|w`, 1≤ ` ≤ 3d + 6. (W-rules)

Next, we encode the entries of the input matricesAandB in our grammar. We add
the nonterminals from the sets{Ap,q : 1≤ p,q ≤ d2} and{Bp,q : 1≤ p,q ≤ d2}.
Then, for everynonzeroentryai j in A, we add the production

Ai1, ji → wi2Wwj2+δ. (A-rules)

For everynonzeroentrybi j in B, we add the production

Bi1, ji → wi2+1+δWwj2+2δ. (B-rules)

To represent the entries ofC, we add the nonterminals from the set{Cp,q :
1≤ p,q ≤ d2} and include productions

Cp,q → Ap,r Br,q, 1≤ p,q, r ≤ d2. (C-rules)

Finally, we complete the construction with productions for the start symbolS:

S→ WCp,qW, 1≤ p,q ≤ d2. (S-rules)

We now prove the following result about the grammar and string we have
just described.

THEOREM 1. For 1≤ i, j ≤ m, the entry ci j in C is nonzero if and only if Ci1, j1
c-derives wj2+2δ

i2
.

PROOF. Fix i and j .
Let us prove the “only if” direction first. Thus, supposeci j = 1. Then there exists

ak such thataik = bkj = 1. Figure 4 sketches howCi1, j1 c-derivesw j2+2δ
i2

.
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CLAIM 1. Ci1, j1 ⇒∗ w j2+2δ
i2

.

The productionCi1, j1 → Ai1,k1 Bk1, j1 is one of theC-rules in our grammar.
Sinceaik = 1, Ai1,k1 → wi2Wwk2+δ is one of ourA-rules, and sincebkj = 1,
Bk1, j1 → wk2+1+δWwj2+2δ is one of ourB-rules. Finally, sincei2+1< (k2+δ)−1
and (k2+1+ δ)+1≤ ( j2+2δ)−1, we haveW⇒∗ wk2+δ−1

i2+1 andW⇒∗ w j2+2δ−1
k2+2+δ ,

since both substrings are of length at least one. Therefore,

Ci1, j1 ⇒ Ai1,k1 Bk1, j1

⇒∗ wi2Wwk2+δ︸ ︷︷ ︸
derived byAi1,k1

wk2+1+δWwj2+2δ︸ ︷︷ ︸
derived byBk1, j1

⇒∗ w j2+2δ
i2

.

CLAIM 2. S⇒∗ wi2−1
1 Ci1, j1w

3d+6
j2+2δ+1.

This claim is essentially trivial, since by the definition of theS-rules, we know that
S⇒∗ WCi1, j1W. We need only show that neitherwi2−1

1 nor w3d+6
j2+2δ+1 is the empty

string (and hence can be derived byW); since 1≤ i2−1 and j2+2δ+1≤ 3d+6,
the claim holds.

Claims 1 and 2 together prove thatCi1, j1 c-derivesw j2+2δ
i2

, as required.2

Next we prove the “if” direction. SupposeCi1, j1 c-derivesw j2+2δ
i2

, which by
definition meansCi1, j1 ⇒∗ w j2+2δ

i2
. This can only arise through the application of a

C-rule:

Ci1, j1 ⇒ Ai1,k′Bk′, j1 ⇒∗ w j2+2δ
i2

for somek′. It must be the case that, for some`, Ai1,k′ ⇒∗ w`
i2

andBk′, j1 ⇒∗ w j2+2δ
`+1 .

But then we must have the productionsAi1,k′ → wi2Ww` and Bk′, j1 →
w`+1Wwj2+2δ with ` = k′′ + δ for somek′′. But we can only have such pro-
ductions if there exists a numberk such thatk1 = k′, k2 = k′′, aik = 1, andbkj = 1;
and this implies thatci j = 1.

Examination of the proof reveals that we also have the following two corollaries.

COROLLARY 1. For 1 ≤ i, j ≤ m, ci j = 1 if and only if Ci1, j1 ⇒∗ w j2+2δ
i2

.
Hence, c-derivation and derivation are equivalent for the Cp,q nonterminals.

COROLLARY 2. S⇒∗ w if and only if C is not the all-zeroes matrix.

Let us now calculate the size ofG. V consists of roughly 3((d2)2) ≈ m4/3 nonter-
minals.R contains about 6d W-rules and (d2)2 ≈ m4/3 S-rules. There are at most
m2 A-rules, since we haveA-rules only for each nonzero entry inA; similarly,
there are at mostm2 B-rules. And lastly, there are (d2)3 ≈ m2 C-rules. There-
fore, our grammar is of sizeO(m2) with a very small constant factor; considering

2This proof would have been simpler if we had allowedW to derive the empty string. However, we
avoid epsilon-productions in order to facilitate the conversion to Chomsky normal form discussed in
the next section.
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FIG. 5. A Chomsky normal form version of the productions of the grammar from the previous section.

that G encodesm × m matrices A and B, it is not possible to shrink this
much further.

3.4. CHOMSKY NORMAL FORM. We would like our results to cover as large a
class of parsers as possible. Some parsers, such as CKY, require the input grammar
to be in Chomsky normal form (CNF), that is, where the right-hand side of every
production consists of either exactly two nonterminals or exactly a single terminal.
We therefore wish to construct a CNF versionG′ of G. However, not only do we
want Theorem 1 to hold forG′ as well asG, but, in order to preserve time bounds,
we also desire that|G′| = O(|G|).

Unfortunately, the standard algorithm for converting CFGs to CNF can yield
a quadratic blow-up in the number of productions in the grammar [Hopcroft and
Ullman 1979] and thus is clearly unsatisfactory for our purposes. However, since
G contains no epsilon-productions or unit productions, it is easy to convertG
by adding a small number of record-keeping nonterminals and productions, with
the resultant grammarG′ having very similar parse trees—in particular, the set
of substrings that are c-derived by theCp,q nonterminals are the same in each
grammar. Figure 5 gives the productions ofG′. Note thatG′ has onlyO(d) more
productions and nonterminals, and so|G′| = O(m2) as well.

3.5. TIME BOUNDS. We are now in a position to show the relation between
time bounds for Boolean matrix multiplication and time bounds for CFG parsing.

THEOREM 2. Any c-parser P with running time O(T(g)t(n)) on grammars of
size g and strings of length n can be converted into a BMM algorithm MP that
runs in time O(max(m2,T(m2)t(m1/3))). In particular, if P takes time O(gn3−ε ),
then MP runs in time O(m3−ε/3).

PROOF. MP acts as sketched in Figure 3. More precisely, given two Boolean
m×m matricesA andB, it constructsG (or G′, as required) andw as described
above. It feedsG andw to P, which outputs oracleFG,w. To compute the product
matrix C, MP requests from the oracle the value ofFG,w(Ci1, j1, i2, j2 + 2δ)
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(i.,e., whether or notCi1, j1 derives or c-derives3 w j2+2δ
i2

) for each i and j ,
1≤ i, j ≤ m, settingci j to one if and only if the answer is “yes.”

The running time ofMP is computed as follows: It takesO(m2) time to read the
two input matrices. SinceG is of sizeO(m2) and|w| = O(m1/3), it takesO(m2) time
to build the input toP, which then computesFG,w in timeO(T(m2)t(m1/3)). Retriev-
ingC takesO(m2) since, by definition of c-parser, each query to the oracle takes con-
stant time. So the total time spent byMP is O(max(m2, T(m2)t(m1/3))), as claimed.

Note that if we redefine c-parsing so that oracle queries takef (g, n) time instead
of constant time, whereg is the size of the grammar andn is the length of the string,
then the bound changes toO(max(m2 f (g, n), T(m2)t(m1/3))); as long asf is poly-
logarithmic, the second argument of the maximum in the bound surely dominates.

In the case whereT(g) = g and t(n) = n3−ε , MP has a running time of
O(m2(m1/3)3−ε ) = O(m3−ε/3).

The case in whichP takes time linear in the grammar size is of the most
interest, since, as mentioned above, in natural language processing applications
the grammar tends to be far larger than the strings to be parsed. In this case, our
result directly converts any improvement in the exponent for CFG parsing to a
reduction in the exponent for BMM.

3.5.1. Parameter Choices.Since Valiant [1975] proved that anO(m3−ε ) BMM
algorithm can be transformed into a parser with time complexityO(n3−ε ) in the
string length, it is natural to ask whether our technique could yield the stronger
result (if it is in fact true) that a CFG parser running in timeO(gn3−ε ) can be
converted into anO(m3−ε ) BMM algorithm. We now explain why such a result
cannot be obtained by a straightforward modification of the reduction method we
described above.

Our run-time results are based on a particular choice of where to divide matrix
indices into “high-order bits” and “low-order bits”; in particular, we setd, which
parametrizes the number of low-order bits, tod = dm1/3e. We determined this
value by considering the effect ofd on the size of the resulting grammar and
string: roughly speaking, a larger value shrinks the former but expands the latter.
For convenience, let us setd = m`, and consider how to pick̀.

Since combining the higher-order bits and the lower-order bits yields a matrix
index of magnitude at mostm, it follows that the string has sizeO(m`) and the
grammar will have sizeO(m2+ (m1−`)3) (the first term comes from the inclusion
of the A- and B-rules, and the second term comes from the fact that theC-rules
have to include the higher-order bits for three matrix indices). Hence, a parser
with run-time complexityO(gn3−ε ) yields a BMM algorithm with run-time
complexityO(m2+(3−ε)`+m3−ε`). Inspection reveals that, when` > 1/3, the first
term dominates; wheǹ< 1/3, the second term dominates; and the lowest upper
bound occurs at the “crossing point” where` = 1/3.

4. Related Results

We have shown that the existence of a fast practical CFG parsing algorithm
would yield a fast practical BMM algorithm. Given that fast practical BMM

3By Corollary 1, the two notions are equivalent in this case.
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algorithms are thought not to exist, this establishes a limitation on the efficiency
of practical CFG parsing, and helps explain why there has been very little success
in developing practical subcubic general CFG parsers.

There have been a number of related results regarding the time complexity
of context-free grammar parsing and the relationship between this and other
problems. We survey these results below.

As mentioned above, the asymptotically fastest (although not practical) general
context-free parsing algorithm is due to Valiant [1975], who showed that the
problem can be reduced to Boolean matrix multiplication (this is the “opposite
direction” of the reduction we present). His algorithm shows that the worst-case
dependence of the speed of CFG parsing on the input string length isO(M(n)),
whereM(m) is the time it takes to multiply twom×m Boolean matrices together.
(Rytter [1995] provides an alternate version of this algorithm with the same
asymptotic complexity.)

Methods for reducing Boolean matrix multiplication to context-free grammar
parsing were previously considered by Ruzzo [1979]. He proved that the problem
of producing all possible parses of a string of lengthn with respect to a context-free
grammar is at least as hard as multiplying two

√
n × √n Boolean matrices

together. His technique encodes most of the information about the matrices in
strings (as opposed to in the grammar, as in our method). Ruzzo’s result does
not serve to explain why practical subcubic CFG parsing algorithms have been so
difficult to produce, since using his reduction translates even a parser running in
time proportional ton1.5 to a cubic-time BMM algorithm.

Harrison and Havel [Harrison and Havel 1974; Harrison 1978] note that there
is a reduction ofm × m BMM checkingto context-freerecognition (a BMM
checker takes as input three Boolean matricesA, B, andC and reveals whether
or not C is the Boolean product ofA and B). These two decision problems are
clearly related to the algorithmic problems we consider in this article. However,
this reduction, like Ruzzo’s, also converts a parser running in time proportional
to n1.5 to a cubic-time BMM checking algorithm, which, again, is not as strong a
result as ours.

The problem ofon-line CFL recognition is to proceed through each prefixwi
1

of the input stringw, determining whether or notwi
1 is generated by the input

context-free grammar before reading the next ((i + 1)th) input symbol. The study
of the complexity of this problem has a long history; in fact, the landmark paper
of Hartmanis and Stearns [1965] that introduced the notions of time and space
complexity contains an example of a CFL for which on-line recognition of strings
of lengthn takes more thann steps. Currently, the best known lower bound for this
problem isÄ(n2/logn) [Seiferas 1986; Gallaire 1969]. However, on-line recogni-
tion is a more difficult task than the standard CFL recognition problem (indeed, it
is the extra constraints imposed by the on-line requirement that make it easier to
prove lower bounds), and so these results do not translate to the usual recognition
paradigm. To date, there are no nontrivial lower bounds known for general
CFL recognition.

Relationships between parsing other grammatical formalisms and multiplying
Boolean matrices have also been explored. In particular, several researchers have
looked atTree Adjoining Grammar(TAG) [Joshi et al. 1975], an elegant formal-
ism based on modifying tree structures. TAGs have strictly greater generative
capacity than context-free grammars, but at the price of being (apparently) harder
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to parse: standard algorithms run in time proportional ton6, although Rajasekaran
and Yooseph [1998] adapt Valiant’s [1975] technique to get an asymptotically
faster parser using BMM. Satta [1994] gives a reduction of Boolean matrix mul-
tiplication to tree-adjoining grammar parsing, demonstrating that any substantial
improvement overO(gn6) for TAG parsing would result in a subcubic BMM
algorithm. Our reduction was inspired by Satta’s and resembles his in the way that
matrix information is encoded in a grammar. However, Satta’s reduction explicitly
relies on TAG properties that allow non-context-free languages to be generated,
and so cannot be directly applied to CFG parsing.
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