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Abstract.  It is proved that for any k, the class of classical categorial grammars that assign at most k 
types to each symbol in the alphabet is learnable, in the Gold (1967) sense of identification in the limit 
from positive data. The proof crucially relies on the fact that the concept known as finite elasticity 
in the inductive inference literature is preserved under the inverse image of a finite-valued relation. 
The learning algorithm presented here incorporates Buszkowski and Penn's (1990) algorithm for 
determining categorial grammars from input consisting of functor-argument structures. 
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1. Introduction 

One of the major goals of modem linguistic theory is to give an account of how 
language learning is possible (see, for example, Chomsky 1986). A child growing 
up in a linguistic community comes to possess a rule system, a grammar, for the 
language spoken by the community, on the basis of samples of speech presented 
to her without any explicit instruction. A remarkable fact is that a normal child is 
capable of learning any natural language, given adequate input: a child brought up 
in an English speaking environment comes to speak English, but the same child 
would come to speak Japanese if she were brought up in a Japanese speaking 
environment. Thus, whatever mechanism underlies first language acquisition must 
be able to deal with every possible natural language. This fact puts a substantial 
constraint on linguistic theory. The class of possible natural languages determined 
by an adequate linguistic theory must have the property of being learnable in 
the sense that there exists a single mechanism that has the capacity to learn any 
language in the class. 

Learnability theory is an attempt to illuminate the concept of leamability using 
a mathematical model of learning. The approach adopted in this paper originates 
in the work of Gold (1967), for which first language acquisition was one of the 
primary motivations.* 

* Computational learning theory (see, e.g., Kearns and Vazirani 1994), a branch of theoretical 
computer science that has developed since early 1980's, embraces various other approaches to 
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8 0 ,  8 1 ,  8 2 ,  �9 �9 �9 ~ 8 i ,  . �9 �9 

G O ,  e l ,  G2 . . . .  , G i  . . . .  

F igure  1. Language learning. Gi is the grammar produced by the learner on the basis of the 
sentences so, Sl,  s2, . . . , s i .  

In Gold's model, language learning is an infinite process in which the learner is 
presented with an infinite stream of sentences of the target language, one sentence 
at a time. Every time the learner encounters a new sentence, she makes a guess as 
to the identity of  the target language, on the basis of the (finitely many) sentences 
she has encountered so far. Each guess is made in the form of a grammar. As the 
learner receives more and more data, she makes successive guesses, each possibly 
different from the previous ones. Thus, corresponding to the infinite sequence of  
sentences presented to the learner, she produces an infinite sequence of grammars 
(Figure 1). Two assumptions are made about the infinite sequence of sentences giv- 
en to the learner. Firstly, it is assumed that only grammatical sentences of the target 
language appear in the sequence. This assumption corresponds to the observation 
that no systematic negative evidence (information about ungrammatical sentences) 
is available to the child learning a first language.* The second assumption is that 
every sentence of  the target language eventually appears in the infinite sequence. 
This is to ensure that the learner is provided with enough information to distinguish 
different languages. Now, in this model, learning is considered to be successful 
if there is a point beyond which the learner's guess always stays the same, and 
that guess is a correct grammar for the target language. Note that under this crite- 
rion, one can never tell at any finite stage whether successful learning has taken 
place, since the learner's guess might change at the next moment. Gold called this 
criterion of successful learning i d e n t i f i c a t i o n  i n  t h e  l i m i t .  

A class of  languages is said to be learnable in this model if there exists a 
learner that successfully learns a correct grammar from any infinite sequence of 
sentences corresponding to a language in the class. It is important to emphasize that 
learnability is a property of  a class of languages, not of an individual language. Since 
any mechanistic procedure for converting finite sequences of sentences to grammars 
counts as a learner, any single language would be trivially leamable--a  correct 
grammar for the language could be simply wired into the learning mechanism. 
The fact that the learner must react differently to samples from different languages 
makes learning a class of languages a non-trivial task. 

In the model sketched above, the information available to the learner about 
the target language at any point consists only of p o s i t i v e  d a t a  about the language 

learning, which are less relevant to the concerns about first language acquisition. For linguistically 
motivated work within the Gold paradigm, see Wexler and Culicover 1980. 

* Also, the effects of ungrammatical intrusions are considered negligible. See Wexler and Culi- 
cover 1980 for some discussions of both issues. 
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(i.e., grammatical sentences of the language), mirroring the empirical fact about 
the environment in which first language acquisition takes place. Gold (1967) also 
considered learning from complete data, which includes both positive and negative 
data (sentences ungrammatical in the target language) marked as such. Naturally, 
complete data makes learning much easier (see Gold 1967). As complete data 
seems to have little relevance to first language acquisition and linguistic theory, 
this paper concerns only with learning from positive data. 

Identification in the limit from positive data is interesting precisely because it 
makes the resulting notion of learnability quite restrictive. In his original 1967 
paper studying leamability of  formal languages, Gold revealed that none of  the 
four levels of  the Chomsky Hierarchy is learnable under this criterion. This result 
of  Gold's had been widely taken to mean that learning from positive data alone is 
too difficult a task to be of  much interest, until around 1980, when Angluin (1980a, 
1980b, 1982) presented non-trivial learnable classes that cross-cut the Chomsky 
Hierarchy. An impressive result was subsequently obtained by Shinohara (1990a, 
1990b) which says that placing any finite bound on the number of rules used in 
context-sensitive grammars results in a learnable class. Thus the initial pessimism 
about identification in the limit from positive data seems to have been misplaced. 

In this paper, we prove a result similar to Shinohara's with respect to categorial 
grammars:* the class of  categorial grammars that assign at most k types to each 
symbol in the alphabet is learnable, for any k. Our result builds on the work of 
Buszkowski and Penn (Buszkowski 1987a, 1987b, Buszkowski and Penn 1990), 
who describe natural algorithms for finding categorial grammars from data con- 
sisting of  functor-argument structures, and makes essential use of  the concept 
known as finite elasticity in the inductive inference literature, which is a property 
of language classes. Given Shinohara's theorem, our learnability result is not sur- 
prising; indeed, a straightforward reduction of our result to Shinohara's is possible 
(Appendix 7). Nevertheless, our method of proof may be of  independent interest, 
as it suggests an extension not covered by Shinohara's theorem**; moreover, we 
provide a concrete learning algorithm based on Buszkowski's algorithm. 

2. Preliminaries 

2.1. IDENTIFICATION IN THE LIMIT 

In this section, we introduce some basic concepts in leamability theory. As we 
explained in Section 1, we are only interested in Gold's notion of identification in 
the limit from positive data, which we will simply call learning in what fol lows)  

* Categorial grammar originated in the work of Ajdukiewicz (1935) and was refined by the work 
of Bar-Hillel (1953) and Lambek (1958, 1961). 

** See Section 9.2 of Kanazawa 1994a for an extension to a formalism like Montague grammar 
(Montague 1973). 

* For introductions to different aspects of the field, see Angluin and Smith 1983, Osherson et 
al. 1986, Ohserson et al. 1994, Chapter 2 of Kanazawa 1994a, and de Jongh and Kanazawa 1995. 
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2.1.1. Basic Definitions 

In order to formulate the question of learnability, we first need to specify three 
things: 

- a set f~ ('hypothesis space'), 
- a set | ( 'sample space'), 
- a function L that maps elements of f~ to subsets of 6 ,  i.e., L: f~ ~ pow(6) .  

~2 can be any class of finitary objects on which mechanical computation can be 
carried out. For instance, ~2 could be the set of natural numbers, or it could consist 
of  programs for a certain kind of  abstract machine (e.g., Turing machine programs), 
or formal grammars of some kind (e.g., context-free grammars). Formally, we can 
identify f~ with a certain recursive set of strings over some finite alphabet. Elements 
of  ~2 are called grammars. 

The set 6 is a certain recursive subset of E* for some fixed finite alphabet E. 
In many cases, one simply takes 6 = E*. Elements of 6 are called sentences, and 
subsets of  6 are called languages. 

If G is a grammar in f~, then L(G) is called the language generated by G. 
We can think of G as a name for L(G),  so we call L the naming function. The 
question whether s E L(G) holds between s E 6 and G E f~ is called the universal 
membership problem. The naming function is assumed to be such that the universal 
membership problem is at least semi-decidable (r.e.). 

A triple (f~, 6 ,  L) satisfying the above conditions is called a grammar system. 

EXAMPLE 1. Let E be any finite alphabet, and let F be a countably infinite set 
of  symbols disjoint from E. Let CFG be the set of all context-free grammars over 
E whose non-terminal symbols are in 1-'. For every G E CFG, let L(G) be the 
language generated by G under the usual interpretation. Then (CFG, E* ,L)  is 
a grammar system. (In this grammar system, the universal membership problem 
'w E L(G)? '  is decidable in time bounded by a polynomial in the combined size 
of  w and G.) 

Let (~2, 6 ,  L) be a grammar system. A learning function is a partial function qo 
that maps non-empty finite sequences of sentences to grammars, i.e., 

g~: U 6k ~ ~2. 
k > l  

Usually, we are only interested in learning functions that are effectively computable. 
The term learning algorithm means an algorithm that computes a learning function, 
and will sometimes be used interchangeably with 'computable learning function'. 

Let 

(s~)i~N = (so, Sl, s2 , . . . )  

be an infinite sequence of sentences from 6.  Given (si)ieN, a learning function 
determines a grammar 

G i  = 
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for each i E N such that q9 is defined on ( s o , . . . ,  si).* We say that ~ converges to 
G on (si)i~N if Gi = (p((s0,.. �9 si)) is defined and is equal to G for all but finitely 
many i E Pg--or, equivalently, if there exists an n E N such that for all i > n, Gi 
is defined and is equal to G. 

Let 9 be a class of grammars in ft. 9 determines the corresponding class of 
languages, L(~)  = { L(G) I G E ~ }. 

DEFINITION 2. Let a grammar system (f~, ~ ,  L) be given, and let 9 C_ f2. A 
learning function ~o is said to learn ~ if the following condition holds:** 

for every language L in L(G), 
for every infinite sequence (si)i~N that enumerates the elements of L (i.e., 
{s i  I i E N } = L ) ,  
there exists some G in G such that L(G) = L and 
qo converges to G on (si)ieN. 

A word about the above definition is in order. Let L E L(G). If there is more 
than one grammar G in G such that L(G) = L, a learning function ~ that learns 

is not required to converge to the same grammar on different infinite sequences 
that enumerate the elements of  L; the grammar G that ~ converges to can depend 
on the order in which the elements of L are enumerated. 

A class G of grammars is said to be learnable if there is a computable learning 
function that learns 9. 

EXAMPLE 3. Take the grammar system (CFG, E*, L) of  context-free grammars 
over alphabet E. Let G be the subclass of  CFG consisting of grammars whose rules 
are all of the form 

S --+ w~ 

where w E E*. Observe that L(G) is exactly the class of finite languages over E. 
We show that G is learnable. Define a computable learning function qo as follows: 

~ ( ( s o , . . . ,  si)) = (E, {S}, S, P) ,  

where 

P = {S  --* s o , . . . ,  S --* si}. 
Let L be a finite language over E. If (si)icN enumerates L, then there exists an 
n E N such that for all i > n, { s o , . . . ,  si} = L. This means that for all i >_ n, 
~p((s0 , . . . , s i ) )  = G, where G = (E, {S}, S, { S ~ w I w E L}) .  Clearly, 
L(G) = L. Thus qo learns 9. In fact, in any grammar system (f~, 6 , L ) ,  any class 
9 of  grammars such that L(9)  consists of exactly the finite languages is learnable, 
if there exists a computable function r that maps each finite language D _C | to a 
grammar r  E G such that L ( r  = D. 

�9 ( s o , . . . ,  sl) denotes a non-empty finite sequence. I f / =  0, this is (so). 
�9 * This definition is somewhat unorthodox in that what is learned is a class of grammars, rather 

than a class of  languages in the sense of sets of sentences. 
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A class 9 of grammars is said to be non-effectively learnable if there is a learning 
function (not necessarily computable) that learns 9. Clearly, learnability implies 
non-effective leamability. We are primarily interested in (effective) learnability, 
but non-effective learnability is also a useful companion notion.* 

2.1.2. Finite Elasticity 

In Example 3, we noted that in a reasonable grammar system, a class ~ of grammars 
such that L(~) consists of exactly the finite languages is learnable. In a certain 
sense, this situation cannot be improved. In the original article that introduced 
identification in the limit, Gold (1967) proved the following important theorem: 

THEOREM 4 (Gold). In any grammar system, a class ~ of  grammars is not (non- 
effectively) learnable if L(G) contains all finite languages and at least one infinite 
language. 

Let ~ be a class of grammars and let/2 be the corresponding class of languages, 
i.e.,/2 = L(~). As Gold's theorem illustrates, sometimes the fact that/2 has a certain 
property is enough to conclude that G is not (even non-effectively) learnable. (In 
fact, non-effective learnability is completely determined by/2.) 

On the other hand, under certain conditions, a property of the class/~ of lan- 
guages generated may imply learnability of the given grammar class ~. One such 
property is what Wright (1989) dubbed finite elasticity. Finite elasticity is defined 
as the negation of infinite elasticity, defined below.** 

DEFINITION 5 (Infinite elasticity). A class 12 of languages is said to have infinite 
elasticity if there exist an infinite sequence (s,~),~N of sentences and an infinite 
sequence (Ln)~N of languages in/2 such that for all n E N, 

s~ ~ Ln, 

and 

(80 , . . .  , an} C Ln+l. 

DEFINITION 6 (Finite elasticity). A class E of languages is said to have finite 
elasticity if it does not have infinite elasticity. 

Building on Angluin's (1980b) work, Wright (1989) proves that for a class of 
grammars to be learnable, it is sufficient that the class of languages generated has 
finite elasticity, under certain provisions. 

* See Osherson, Stob, and Weinstein 1986, p. 53 for this point. 
** Wright's (1989) odginial definition of infinite and finite elasticity was in error, and was later 

corrected by Motoki, Shinohara, and Wright (1991). 
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THEOREM 7 (Wright). Let (f~, 6 ,  L) be a grammar system for which the universal 
membership problem is decidable, and let ~ be an r.e. subset of f~. If L(G) has 
finite elasticity, then ~ is learnable. 

Note that finite elasticity is far from a necessary condition for learnability (under the 
provisions in Theorem 7): Example 3 gave a learnable recursive class of grammars 
such that L(G)) has infinite elasticity. Nevertheless, finite elasticity is in practice a 
very useful condition, as it is often relatively easy to prove that a language class 
has finite elasticity. For example, Shinohara's theorem, mentioned in Section 1, 
was proved by showing that the class of languages generated by context-sensitive 
grammars with at most k rules has finite elasticity.* 

2.2. CLASSICAL CATEGORIAL GRAMMARS 

In this section, we introduce the grammar system of classical categodal grammars, 
and state the main result of the paper. 

2.2.1. Basic Definitions 

In classical categorial grammar, each symbol in the alphabet is associated with a 
finite number of types. Types are constructed from primitive types by two type- 
forming operators, / and \.  ff  we let Pr and Tp denote the set of primitive types 
and the set of types, respectively, Tp is defined to be the smallest set satisfying the 
following conditions: 

- PrO_ Tp, 
- if A E Tp and B E Tp, then A \ B  E Tp. 
- if A E Tp and B E Tp, then B/A  E Tp. 

The letters A, B, C, possibly with subscripts, range over types. Type A is said to 
be a subtype of type B if A occurs in B. More precisely, A is a subtype of B if and 
only if either (i) A = B or (ii) B = BI\B2 or B = BE~B1 and A is a subtype of 
B1 or B2. 

We assume that the set Pr is countably infinite** and no element of Pr is of the 
form A \ B  or B/A.  One member t of Pr is singled out as the distinguished type. 
The members of Pr other than t are called variables, for reasons that will become 
clear later. The set of variables is denoted Var. Thus, Pr = {t} U Var. The letters z, 
y, z, possibly with subscripts, range over variables. 

* To be accurate, Shinohara's (1990a) result was stated in terms of the related formalism of 
length-bounded elementary formal systems. 

** Each grammar uses only finitely many primitive types. However, there is no bound on the 
number of primitive types a grammar can use, so it is necessary and sufficient to have a countably 
infinite supply of primitive types. 
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In categorial grammar, the combinatorial properties of  types are completely 
determined by their shape. There are two modes of  type combination, Backward 
Application:* 

A , A \ B ~ B  

and Forward Application: 

B / A ,  A ~ B. 

A non-empty sequence of  types A 1 , . . . , A n  is said to derive a type B,  or, in 
symbols,  

A1, . . . ,  A n ~ B ,  

if  repeated applications of  the rules of  Backward and Forward Application to the 
sequence A1 ,. �9 �9 An results in B.  A formal definition follows: 

DEFINITION 8. The relation ~ C_ Tp + • Tp is defined to be the smallest relation 
satisfying the following clauses: 

- For all A E Tp, A =~ A. 
- For all F, A E Tp + and for all A, B E Tp, 

�9 if  P ~ A and A ~ A \ B ,  then F, A ~ B,  and 
�9 if  F ~ B I A  and A ==~ A, then F, A =~ B. 

Let  Z be a fixed alphabet. A classical categorial grammar over E is any finite 
relation G between ~ and Tp (G C ~ • Tp and G is finite). For a symbol c E 
and a type A E Tp, if  (c, A) E G, we say that G assigns A to c, and often write 
G: c ~-+ A. (Henceforth, we will simply say 'grammar '  to mean classical categorial 
grammar, as long as no confusion is likely to arise.) 

Let  G be a grammar over ~. G generates a string ci �9 .. Cn E ~ +  if  and only if  
t h e r e a r e t y p e s A 1 , . . .  , An such that G : cl ~-+ A~(1 < i < n ) and A1, . . . ,  An ~ t. 
The set of  strings generated by G is called the language of G and is denoted L(G) .  

E X A M P L E  9. Let  E = {a, b}. The following is a classical categorial grammar 
that generates a context-free language { anb n I n > 1 }: 

a2: t/x, (t/x)/t, 
b ~--+ x 

(We use notation like this to display all type assignments of  a grammar. The above 
means a 2  = { ( a , t / x ) ,  (a, ( t /x ) / t ) ,  (b ,x)}.)  

* Some people (e.g., Dowty (1988) and Steedman (1985, 1987, 1988)) write B\A for what we 
write A\B. Our notation is that established by Lambek (1958) and followed by Bar-Hillel (1960). 
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We let CatG denote the class of all classical categorial grammars over ~. 
Then (CatG, ~+,  L) constitutes a grammar system. It is known that the class 
{ L(G) I G E CatG } of languages generated by a classical categorial grammar 
coincides with the class of e-free context-free languages (Bar-Hillel, Gaifman, and 
Shamir 1960). As in the case of context-free grammars, the universal membership 
problem 'w E L(G)? '  for the grammar system of classical categorial grammars is 
decidable in time bounded by a polynomial in the combined size of w and G. 

2.2.2. Rigid and k-Valued Grammars 

If a grammar G C_ ~ x Tp is a partial function from ~ to Tp, G is called a rigid 
grammar.* A rigid grammar assigns either zero or one type to each symbol in the 
alphabet. If a grammar G assigns at most k types to each symbol in the alphabet, 
that is, if l{ A I G: c ~ A }l < k for all c E P~, we call G a k-valued grammar. (A 
rigid grammar is a one-valued grammar.) 

EXAMPLE 10. The following grammar GI generates the regular language a ' b :  

GI: a ~ t / t ,  

b r i t .  

G1 is a rigid grammar. (Afortiori, G1 is a k-valued grammar for any k > 1.) The 
grammar G2 in Example 9 is a 2-valued grammar, but not a rigid grammar. 

Let Gk-valued denote the class of k-valued grammars, and let/:k-valued = { L(G) I 
G E Gk-v~ued }. The classes s form a strict hierarchy in the following 
sense:** 

THEOREM 11 (Hierarchy Theorem). For each k E N, /2k-valuea C /2k+l-valued. 

We refer the reader to Kanazawa 1994a for proof. 
The main result of this paper is the following theorem: 

THEOREM 12 (Main Theorem). For each k C N, Gk-valued is learnable. 

This is not a trivial result, because/2k-vaJued is always infinite if k > 2, and so is 
/:l-vahed if [El > 2.~ The main theorem follows from the following lemma, but we 
will also present a concrete learning algorithm that learns 9k-v~ued. 

LEMMA 13. For each k E N, /:k-valued hasfinite elasticity. 

We prove this lemma using a general theorem on finite elasticity. It is also possible 
to reduce it to Shinohara's result (Appendix 7), but our method of proof will be of 
independent interest. 

* T h e  t e rm is due  to Buszkowsk i .  
** In  this  paper,  we  a lways  use  C to m e a n  proper subset. 

* It is  easy  to see  that  any  c lass  o f  g r a m m a r s  that  generate  only  finitely m a n y  l anguages  is learnable.  
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3. Buszkowski's Algorithm 

The question of  learnability has not been addressed with respect to categorial 
grammars. There is very important work by Buszkowski (1987a, 1987b), however, 
in which he presents a simple intuitive algorithm that computes a classical cate- 
gorial grammar from linguistic data. The input to the algorithm is a finite set of  
functor-argument structures, and the output is a rigid classical categorial grammar 
which is compatible with the input data (if there is one). The algorithm, which 
is similar to the one for the typing problem in lambda and combinatory calculi 
(see Barendregt 1992), is an interesting application of unification, and it enjoys 
some nice formal properties, as proved by Buszkowski and Penn (1990). Although 
Buszkowski does not consider the question of learnability, his algorithm can in fact 
be used in an algorithm that learns ~l-valued. 

3.1. DEFINITIONS OF BASIC NOTIONS 

Before presenting Buszkowski's algorithm, we have to introduce some more basic 
definitions about categorial grammar. 

3.1.1. Derivations 

A derivation of  a type B from a sequence of  types A1, . . . ,  An is a certain kind 
of binary branching tree that encodes a proof of  A1, . . . ,  An =~ B. Each node of 
a derivation is labeled by a type, and each internal node has an additional label, 
which is either BA o r  FA. If 79 is a derivation of B from A1, �9 . . ,  An, the root node 
of  79 is labeled by B,  and its leaf nodes are labeled by A1, �9 �9 �9 An in this order from 
left to right. The labels BA and FA stand for Backward Application and Forward 
Application, respectively, and indicate which of the two rules is used in each step 
of  a derivation. The set of derivations is defined inductively as follows: 

DEFINITION 14. 
- If  A E Tp, then A (the tree consisting of a single node labeled by A) is a 
derivation of  A from A. 

- Backward Application. If 

A 

F 

is a derivation of A from F and 
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AXB 

/Q 
A 

is a derivation of AXB from A, then 

B 

A AXB 

p A 

is a derivation of B from P, A. 

-- F o r w a r d  A p p l i c a t i o n .  If 

B/A 

P 

is a derivation of B/A from F and 

A 

A 

is a derivation of A from A, then 

B 

B/A A 

r A 

is a derivation of B from P, A. 

In an instance of Backward or Forward Application 
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B B 

A A \ B  B / A  A 

the node labeled by A \ B  or B / A  is called thefunctor, and the node labeled by A 
is called the argument. The ultimate functor of a derivation is the leaf node that 
you arrive at by tracing the functor daughters starting from the root node. 

EXAMPLE 15. The following is a derivation o f t  from x, (x \ t ) / y ,  y: 

t 

x x \ t  

/4a. 
v 

In the only instance of Backward Application in this derivation, the node labeled 
by x \ t  is the functor and the node labeled by x is the argument. In the only instance 
of Forward Application, the node labeled by ( x \ t ) / y  is the functor, and the node 
labeled by y is the argument. The ultimate functor of  this derivation is the node 
labeled by (x \ t ) / y .  

Clearly, we have F =~ A if and only if there is a derivation of A from F. 

3.1.2. ParseTrees 

Just as a derivation encodes a proof of A1, . . . ,  An =~ B, aparse tree of G encodes 
a proof of cl . . .  Cn E L(G). A parse tree of G is obtained from a derivation of t by 
attaching symbols to the leaf nodes in accordance with G's type assignments. 

DEFINITION 16. 
(i) If79 is a derivation of B from A1, . . . ,  An, and Cl , . . . ,  an are symbols such 
that G: ci ~ Ai (1 < i < n), the result of  attaching O , . .  �9 an, from left to 
right in this order, to the leaf nodes of 7P is a partial parse tree of G. 

B 

A1 An 
. o o  

Cl an 
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(ii) A parse tree of G is a partial parse tree of G whose root node is labeled by 
t. 

If Cl �9 �9 �9 c,~ is the string of symbols attached to the leaf nodes of a partial parse 
tree 7 9, Cl .. �9 c,~ is said to be the yield of 79. Clearly, for every string Cl �9 .. cn E ~+,  
cl . . .  c~ E L(G) if and only if there is a parse tree of G that yields Cl . . .  cn. If a 
parse tree 79 of G yields Cl . . .  c,~, then 79 is called a parse of Cl . . .  c,~ (in G). 

EXAMPLE 17. Let {got,  J o h n ,  m a d }  C ~, and let 

{(got ,  (x \ t ) / y ) ,  ( J o h n ,  x), ( m a d ,  y)} C G. 

Then the following is a parse tree of G: 

t 

x z \ t  
J o h n  

( \t)ly y 
g o t  m a d  

The yield of this parse tree is J o h n  go t  m a d .  Thus, J o h n  go t  m a d  E L(G). 

3.1.3. Functor-Argument Structures and Structure Languages 

A functor-argument structure over alphabet ~ is a binary-branching tree whose 
leaf nodes are labeled by symbols in ~ and whose internal nodes are labeled by 
either B A  o r  FA. As a special case, symbols in ~ are regarded as functor-argument 
structures of height 0. The set of functor-argument structures over ~ is denoted EF. 
The letters T, U, possibly with subscripts, range over functor-argument structures. 
Often, we will simply say 'structure' to mean functor-argument structure. A set of 
functor-argument structures over E is called a structure language over ~. 

EXAMPLE 18. Let {got,  J o h n ,  m a d }  C_ ~. Then the following are examples of 
functor-argument structures over E: 
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John mad / / ~  

John John 

mad got 

John John 

hn 

mad John 

got mad 

The notions of functor, argument, and ultimate functor are defined for parse 
trees and functor-argument structures in the same way as for derivation trees. Take 
for example the second to last functor-argument structure in Example 1 8. In the 
only instance of  Forward Application, the node labeled by BA is the functor, and 
the other node (labeled by J o h n )  is the argument. The ultimate functor of  this 
structure is the first leaf node labeled by J o h n .  

Let G be a grammar, and let P be a partial parse tree of G. The result of  
stripping P of its type labels is a functor-argument structure, and we call this the 
(functor-argument) structure of 79. If T is the structure of a parse tree 79, we say 
that 7:' is a parse of T. We say that a grammar G generates a structure T if and 
only if for some parse tree 7 9 of G, T is the structure of 79. The set of structures 
generated by G is called the structure language of G and is denoted FL(G).* In 
order to distinguish L(G),  the language of G, from FL(G),  its structure language, 
we often call the former the string language of G. 

EXAMPLE 19. Let G be as in Example 17, and let T be the last structure in 
Example 18. Then the parse tree in Example 17 is a parse o fT .  Thus, T C FL(G).  

The yield of a functor-argument structure T is the string of symbols e 1 . . .  C n 
labeling the leaf nodes of T, from left to right in this order. The yield of T is 
denoted yield(T). It is easy to see that L(G) = { yield(T) [ T E FL(G) }. 

Since functor-argument structures over ~ are labeled trees, we can represent 
them as terms, by regarding BA and FA as function symbols, and symbols in ~ as 
constants. Thus, the structures in Example 18 can be represented as follows: 

* The 'F' in FL(G) stands for 'functor-argument structures'. The notation is from Buszkows- 
ki 1988. 
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John, mad, BA(John, John), FA(John, John), 
BA(rnad, got), FA(BA(mad, John), John), BA(John, FA(got, mad). 

Since parentheses and commas are not strictly necessary, functor-argument struc- 
tures over E can be encoded as strings over E t3 {BA, FA}. Viewed this way, EF, 
the set of  functor-argument structures over E, is a context-free language over 
E U {BA, FA}. Note that the triple (CatG, E F, FL) constitutes another grammar 
system.* 

We let .~"~k-valued denote { FL(G)  I G E ~k-valued }. The elements of  .T/2k-valued 
are called k-valued structure languages, and the elements of  -T/21-valued are called 
rigid structure languages. By contrast, we call the elements of  { L(G)  I G E 
~k-valued } k-valued string languages and the elements of  { L(G)  I G E ~l-valued } 
rigid string languages. 

3.1.4. Substitutions 

Recall  that Pr = {t} U Var. I f  we regard t as a constant, types can be regarded as 
terms in a first-order language where \ and / act as function symbols. Then, the 
standard notion of  substitution of  a term for a variable applies straightforwardly to 
types. 

A substitution is a function a: Var ~ Tp that maps variables to types. A 
substitution is extended to a function from types to types as follows: 

DEFINITION 20. Let cr be a substitution. Then we set 

o ( t )  = t ,  

o-(A\B) = o(A) \a (B) ,  

a ( B / A )  = o-(B)/a(A), 

for all A, B E Tp.** 

We use the notation {Xl ~ A 1 , . . .  ,xn  ~ Ar~} to denote the substitution a 
such that o(Xl)  = A 1 , . . . ,  ~r(xn) = An and ~r(y) = y for all other variables y. 

E X A M P L E  21. Leto- = { x  ~ x \ y ,  y H  t,  z F-, t l ( t l x ) } .  Thena((t/x)\y) = 

( t / ( x \ y ) ) \ t  a n d ~ ( ( ( t / x ) \ y ) / ( x / z ) )  = ( ( t / ( x \ y ) ) \ t ) / ( ( x \ y ) / ( t / ( t / x ) ) ) .  

Next we extend the action of  substitutions to grammars: 

* An important fact about the structure languages of classical categorial grammars is that the 
inclusion problem 'FL(G1) C_ FL(G2) ?' is decidable. See Buszkowski 1987a. 

** We use the prefix notation cr(A) instead of the more common postfix notation Aa for 
substitutions. 
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DEFINITION 22. Let ~r be a substitution. Then or[G] denotes the grammar obtained 
by applying c~ in the type assignments of G, that is: 

a[G] = { (c,a(A)) [ (c,A) e a }. 

a[G] is called a substitution instance of G. 

EXAMPLE 23. Let ( f a s t ,  J o h n ,  wa lks}  C_ P,, and let 

a l :  f a s t  H y \ (x \ t ) ,  
J o h n  ~-* x, 

w a l k s  ~-+ x\ t ,  y. 

and 

a2: fast (x\t)\(x\t), 
J o h n  H x, 

w a l k s  ~-~ x\ t .  

Then a2 = ~ [a l l ,  where o- = {y ~ x\ t} .  Note that FL(G1) = {To, T1 } C { Tn I 
n E N } = FL(G2), where T~ is the following functor-argument structure: 

f a s t  

w a l k s  f a s t e n  t imes  

If G1 and G2 are grammars, G1 __. G2 expresses the fact that G2 contains all 
type assignments of Gb  and possibly more. The following is a straightforward but 
important fact about substitution instances. 

PROPOSITION 24 (Buszkowski and Penn). If  ~[G1] c_ G2, then FL(G1) C_ 

Proof. Suppose cr [G1] C G2. Let T E FL(G1) and let 79 be a parse of T in G1. 
Let cr [7 9] be tile result of replacing each type label A of  79 by or(A). Then it is easy 
to see that cr[79] is a parse o f t  in G2. Therefore, T E FL(G2). 

Proposition 24 implies that if or[G1] C_ G2, then L(G1) C_ L(G2). 
A substitution that is a one-to-one function from Var to Var is called a variable 

renaming. If cr is a variable renaming, then G and ~r[G] are called alphabetic 
variants. Clearly, grammars that are alphabetic variants have exactly the same 
shape and are identical for all intents and purposes. Therefore, it is convenient to 
adopt the following convention: 
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C o n v e n t i o n  Grammars that are alphabetic variants are treated as identical. 

In other words,  different finite relations between E and Tp that are alphabetic 
variants are considered different 'representations'  of  one and the same grammar. 

Note  that range(G) is the set o f  types assigned to some symbol  by  G. Let  
Tp(G)  = { A ] A is a subtypoe of  some B E range(G) }, and let Var(G) = 
Tp(G)  M Var. Var(G) is the set of  variables used in G. 

P R O P O S I T I O N  25. Suppose 0-1[Gx] = G2 and 0-2[G2] = G1. Then G1 and G2 
are alphabetic variants and are thus equal. 

Proo f  First, note that for each symbol  c E E, 0-1 and 0-2 provide a one-one 
correspondence be tween { A I GI: c ~-* A } and { A ] GE: c ~-+ A }. For, if 
{0-1(A) [ G I : e  ~ A }  C { A  I Gz:e  ~ A},0-z[0-1[G1]] cannot be equal to 
GI,  and l ikewise for 0-2. Then, it is easy to see that 0-1 I Var(G1) is a one-to-one 
function from Var(G1) onto Var(G2), and 0-2 I Var(G2) = (0-1 r Var(G1)) -1.  One 
can extend 01 I Var(G1) to a variable renaming 0-. Then a[G1] = 0-1 [G1] = G2. 

3.1.5. Most General Unifiers 

Let  0- and 7- be substitutions. The composition of  0- with 7-, denoted T o 0-, is defined 
in the usual way: for all variables x, 7- o 0-(x) = 7-(~r(x)). The composit ion of  two 
substitutions acts as it should on all types: for all types A, T o 0-(A) = T(0-(A)). The 
action of  the composi t ion of  two substitutions on grammars is also as is expected: 
for all grammars G, 7- o 0-[G] = 7-[0-[G]]. 

Let  0-1 and 0-2 be substitutions. 0-1 is said to be more general than 0-2 if there is 
a substitution 7- such that 0-2 --- 7- o 0-1. 

E X A M P L E  26. Let  a l  = {x ~ x \ y ,  y~- .  t, z ~-+ t / ( t / x ) }  and let 0-2 = {x 
t \ y ,  y ~-. t, z ~-+ t / ( t / t ) } .  Then 0- 2 = T o 0-1, where 7- = {x ~-+ t}. Thus 0-1 is 
more general than 0-2. 

A substitution 0- is said to unify a set A of  types if for all A1, A2 E A,  
0-(A1) = 0-(A2). We say that 0- unifies a family of  sets of  types, if 0- unifies each 
set in the family. A substitution a is a most general unifier of  a family .4 of  sets 
o f  types if  and only if 0- is a unifier of  .4 and for every unifier 0-1 of  .4, 0- is more 
general than a I. 

E X A M P L E  27. Let  ,4 consist  o f  the following sets: 

A1 = {Xl /X2 ,  X3/X4}, 

A2 = { x s \ ( x 3 \ t ) } ,  

A 3  ----- { X l \ • , X 5 } .  

Then a most  general unifier of  .4 is: 
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cr = { z 3  ~ Xl ,  x4  ~-* x2 ,  x5 ~-+ X l \ t } .  

A most general unifier is unique up to 'renaming of variables' in some suitable 
sense.* 

DEFINITION 28. Let us fix a computable partial function mgu that maps a finite 
family ,,4 of finite sets of types to a most general unifier mgu(Jt) of ,,4, if there is 
one. 

Since most general unifiers are unique up to renaming of variables, and we identify 
grammars that are alphabetic variants, it does not matter for our purposes which 
most general unifier mgu picks. 

3.2. ALGORITHM RG 

Buszkowski's (1987a, 1987b) algorithm, which we here call RG (for 'rigid gram- 
mars'), takes a finite set of functor-argument structures as input and returns a rigid 
grammar compatible with it as output, if there is one. This algorithm essentially 
relies on unification of a family of sets of types. 

ALGORITHM RG. 
- input: a finite set D of functor-argument structures. 
- output: a rigid grammar G such that D C_ FL(G) (if there is one). 

We illustrate the algorithm using the following example: 

D =  { ~ m s '  

a m a n  a f i s h  s w i m s  f a s t  

Step 1. Assign a type to each node of the structures in D as follows: 
(a) Assign t to each root node. 
(b) Assign distinct variables to the argument nodes. 

t 

X l  s w i m s  

a z 2  

m a n  

t 

/ / ~  x5  f a s t  

a x4  s w i m s  

f i s h  

* See Lassez, Maher, and Marriott (1988) for discussions of the subtlety involved in the notion of 
most general unifier. 
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(c) Compute types for the functor nodes. 

t 

xl x l \ t  x3 x3\t 

a m a n  a f i s h  s w i m s  f a s t  

The general rules here are the following: 

B B B 

A A A \ B  A 

B 

B / A  A 

Step 2. Collect the types assigned m the leaf nodes into a grammar. 

GF(D): a e.-+ Xl/X2, x3/x4, 
fas t  H xs\(x3\t), 
f ish ~ x4, 

m a n  ~-~ x2, 
s w i m s  ~-+ xl\t ,  xs. 

This is the general form determined by D. In general, GF(D): c ~-. A if and only 
if the previous step assigns A m a leaf node labeled by c. 

Step 3. Unify the types assignedto the same symbol. Let A = { { A [ GF(D): c ~-. 
A } [ c E dom(GF(D))  }, and compute a = mgu(,A). 

= ( X 3 ~ - - - + X l ,  X4J-- -+X2,  X5e----rXl\t }. 

The algorithm fails if unification fails. 

Step 4. Let RG(D) = ,r[GF(D)]. 

RG(D):  a ~ Xl/X2, 
fas t  ~-+ (Xl\t)\(xi\t),  
f ish ~-+ x2, 

m a n  H x2, 
s w i m s  H xl\t .  

(Note the change in the types assigned to fas t  and fish.) This is the output of  the 
algorithm. 
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3.3. PROPERTIES OF R G  AND SOME CONSEQUENCES 

Buszkowski and Penn (1990) noted some of the most important properties of  the 
algorithm RG. In this section, we draw some consequences from Buszkowski and 
Penn's results. In later sections, we will use them to show that U/~l-valued has finite 
elasticity, and eventually, to show that ~l-valued is learnable. 

LEMMA 29 (Buszkowski and Penn). FL(GF(D))  = D. 
Proof Let D = ( T 1 , . . . ,  Tn }. The labeling of the nodes of the structures in D 

that precedes the construction of GF(D) in fact forms a parse tree 79i of GF(D)  for 
each structure Ti in D. This shows D __. FL(GF(D)) .  

To show FL(GF(D))  _C D, we prove that each partial parse tree 79 of GF(D) 
appears as a subtree in some 79i. This is done by induction on the height h of 79. 

INDUCTION BASIS. h = 0. 79 consists of just one node, labeled by symbol c and 
type A such that GF(D):  c ~ A. Then, by the definition of GF(D),  79 appears as 
a subtree in some 79~. 

INDUCTION STEP. Let 79 be a partial parse tree of GF(D)  of  height h > 0. Then 
79 must look like one of  the following: 

B B 

A A \ B  B / A  A 

where Q and ~ are partial parse trees of GF(D) of height < h - 1. By induction 
hypothesis, Q appears as a subtree in some 79j, and T~ appears as a subtree in 
some 79k. By the construction, A must be a variable, and there is just one node 
in {791~ .- .  , 79n} labeled by A. Then there must be just one node in {791,.. . ,  79n} 
labeled by A \ B  or B / A  as well. These nodes, which are the root nodes of  Q and 
7~, must be the functor node and the argument node, respectively, in some instance 
of  Backward or Forward Application in {791,.. . ,  79n}. Therefore, 79 occurs as a 
subtree in some 79i. 

LEMMA 30 (Buszkowski and Penn). Let D be a finite set of functor-argument 
structures. Then, for any grammar G, the foUowing are equivalent: 
(i) D C_ FL(G). 

(ii) There is a substitution a such that a[GF(D)] C G. 
Proof. (ii) =~ (i) follows from Lemma 29. 
(i) =~ ( i i ) .Le tD = {T1, . . .  ,T~}andlet79ibeGF(D)'sparseofTi(1 < i < n). 

Assume D C_C_ FL(G). Then G has a parse Q~ of each T~. Define a substitution cr 
as follows. For each variable x E Var(GF(D)), find a (unique) 79i that contains a 
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(unique) node labeled by x, and let (r(x) be the type labeling the corresponding 
node of  Qi. By induction on A E Tp(GF(D)) ,  we show that 

if A labels a node of  some Pi, then a(A) labels the corresponding node of  Qi. 

INDUCTION BASIS. If A E Var, this holds by definition. If A = t, then any node 
labeled by A in {Pl ,  �9 �9 �9 3on} is the root node of  some Pi. Since Qi is a parse tree 
of G, the root node of  Qi must be labeled by t. 

INDUCTION STEP. Let A = B \ C  labels a node of 79i. Then the relevant part of 
79i must look like the following: 

t 

By induction hypothesis, the corresponding part of Qi looks like: 

t 

Then A' = ~(B) \a (C)  = a ( B \ C )  = G(A). The case A = C / B  is entirely 
similar, completing the induction. 

It follows tha t i fGF(D) :  c ~ A, then G: c ~ a(A). Therefore, cr[GF(D)] _C G. 

PROPOSITION 31 (Buszkowski and Penn). Let D be a finite set of  functor- 
argument structures. Then, for any rigid grammar G, the following are equivalent: 
(i) D C_ FL(G).  

(ii) RG(D)  exists and there is a substitution r such that T[RG(D)] C G. 
Proof (ii) =~ (i) follows from Lemma 30 and the fact that RG(D)  is a substi- 

tution instance of GF(D).  
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(i) ~ (ii). Assume that G is a rigid grammar such that D _c FL(G). By 
Lemma 30, there is a substitution a such that ~r[GF(D)] C_ G. Since G is a 
rigid grammar, o-[GF(D)] is also a rigid grammar. Then ~ unifies the family 
Jt = { { A I GF(D): c F-+ A } I c E dom(GF(D)) }. This means that RG(D) 
exists and RG(D) = cr0 [GF(D)], where a0 = mgu(.A). Then there is a substitution 
T such thattr = Toao. Therefore, T[RG(D)] = T[cr0[GF(D)]] = (~-ocr0)[GF(D)] = 
cr[GF(D)]. By assumption, a[GF(D)] C_ G, so ~-[RG(D)] C_ G. 

COROLLARY 32. For every finite set D of functor-argument structures, { L E 
?Z:l-valued I D C_ L }, if non-empty, has a least element with respect to the ordering 
C. 

Proof. This is an easy consequence of Propositions 24 and 31. The least element 
of { L E FZ:l-valued I D C_ L } is given by FL(RG(D)).  

When G1 and G2 are rigid grammars, we write G1 E G2 to mean there is 
a substitution o- such that cr[G1] C_ G2. Since we identify grammars that are 
alphabetic variants, it follows from Proposition 25 that E is a partial order. We 
write G1 E G2 to mean G1 E G2 and G2 ~ GI. It is easy to see that for any rigid 
grammar G, { G ~ E 91-vatued I GI E G } is finite. 

The following is immediate from Proposition 31: 

COROLLARY 33. Let D1 and D2 be two finite sets of  functor-argument struc- 
tures such that D1 C_ D2. If  RG(D2) exists, RG(D1) also exists and RG(D1) E 
RG(D2). 

DEFINITION 34. A rigid grammar G is said to be in reduced form if there is no 
grammar G ~ such that G I r- G and FL(G ~) = FL(G). 

EXAMPLE 35. The following rigid grammar G is not in reduced form: 

G: m a r y  ~-+ t /x ,  
s w i m s  ~ ( t /x) \ t .  

An equivalent grammar in reduced form is 

G~: m a r y  H y, 
s w i m s  H y\t. 

We have FL( G') = FL( G) and G / E  G. 

It should be clear that for any rigid grammar, there is one in reduced form that 
generates the same structure language. 

COROLLARY 36. RG(D), if it exists, is in reduced form. 
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Proof Immediate from Proposition 31 and the definition of reduced form. 

We also have the converse of Corollary 36:* 

PROPOSITION 37. For every rigid grammar G in reduced form, there is a finite 
set DG of functor-argument structures such that G = RG(DG). 

Proof DG can be found by the following algorithm. Initially, set D := 0. 
While FL(G) - FL(RG(D))  ~ 0, pick a functor-argument structure T E FL(G) - 
FL(RG(D))  and set D := D tJ {T}. The value of D when the algorithm terminates 
is the desired DG. 

The correctness of this algorithm can be seen as follows. Firstly, D is always 
a subset of  FL(G),  so by Proposition 31, RG(D)  always exists and RG(D)  __. G 
always holds. If we let Gi be the grammar RG(D)  constructed at the ith stage of  
the algorithm, by Corollary 33, we have 

Go E G1 r- G2 r- . . .  E_ G. 

Since { G I E gl-valued I GI -- G } is finite and a u-chain cannot contain a cycle, 
the algorithm must terminate at some nth stage. Then we have Gn ___ G and 
FL(G) - FL(G~) = 0. Since Gn D_ G implies FL(Gn) C FL(G), we get FL(G) = 
FL(Gn).  By the assumption that G is in reduced form, Gn ~- G. Therefore, 
G,~ = G. 

Proposition 37 can be used to show that if we take (CatG, ~F, FL) to be the 
grammar system instead of  the standard (CatG, ~+ ,  L), Buszkowski's algorithm 
essentially learns the class Gl-vaJaed.** More results of this kind about 'learning 
from structures', as opposed to 'learning from strings', which is our concern here, 
may be found in Kanazawa 1994a. 

PROPOSITION 38. Let G1 be a rigid grammar in reduced form, and let G2 be 
any rigid grammar. Then G1 E G2 if and only if FL(G1) C FL(G2). 

Proof The 'only if' direction is given by Proposition 24. To prove the 'if' 
direction, let De1 be the finite subset of  FL(G1) such that RG(DvI  ) = G1, as 
given by Proposition 37. If FL(G1) C FL(G2), then Dc1 C FL(G2), so by 
Proposition 31, RG(DG~) ___ G2. 

4. Finite Elasticity of the k-Valued Languages 

In this section, we prove our main theorem 

* The acute reader will find that the next few results, although they are used to prove the main 
theorem of this paper, are not strictly necessary for that purpose. They may be of independent interest, 
however. 

** I say 'essentially', since RG takes finite sets of functor-argument structures as input instead of 
finite sequences as required of learning algorithms. 
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THEOREM 12 (Main Theorem). For each k E N, Gk-va~ued is learnable. 

by showing that/~tc-valued, the class of k-valued string languages, has finite elasticity. 
In the next section, we present a concrete learning algorithm that learns the class 
of k-valued grammars. 

4.1. FINITE ELASTICITY OF THE RIGID STRUCTURE LANGUAGES 

To prove that Ek-valued has finite elasticity, we first prove that -T/~i-valued has finite 
elasticity. The finite elasticity of/~k-valued then follows from it by a general theorem 
on finite elasticity to be proved in the next subsection. 

We call a sequence L0, L1, L2, . .  �9 of languages an ascending chain if L0 C 
L1 C L2 C ' ' - .  TO begin with, we note that to prove the finite elasticity of 
-T/~l-valued, it is enough to show that .T/~l-valued does not contain an infinite ascending 
chain. 

LEMMA 3 9 . / f  .TEl-valued has infinite elasticity, then there is an infinite sequence 
(Ln)nEN of languages in .)eEl_valued such that for all n E N, Ln C Ln+l. 

Proof Suppose that 9tEl_valued has infinite elasticity, i.e., that there is an infi- 
nite sequence (Tn)~eN of functor-argument structures and an infinite sequence 

I (Ln)n,~N of languages in )r/:l_valuea such that for all n E N, 

T,  9~L~ 

and 

t (To,.. .  ,Tn} g Ln+ 1. 

By Corollay 32, let Ln be the least element of { L E -T'/:l-valued ] ( T o , . . . ,  Tn-1 } C 
L }. Then for all n E N, L,~ C Ln+l. Moreover, L,~ # Ln+I, since Tn ~ Ln but 
T~ E Ln+l. So for all n E N, Ln C L,~+I. 

Note that the above proof shows that for any class of languages with the property 
in Corollay 32, infinite elasticity is equivalent to existence of an infinite ascending 
chain.* 

We will prove that there is no infinite g-chain of rigid grammars in reduced 
form (based on the same alphabet). Since for every rigid grammar there is a rigid 
grammar in reduced form that generates the same structure language, from this it 
follows by Proposition 38 that there is no infinite ascending chain of rigid structure 
languages. 

We need some definitions. 

DEFINITION 40. A type A E Tp(G) is said to be useless in G if there is no parse 
tree of G that has a node labeled by A. 

* Actually, a condition weaker than the one in Corollary 32 suffices, but this need not concern us 
here. 
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This definition is analogous to the definition of useless symbols in context-free 
grammars. 

PROPOSITION 41. If  a rigid grammar G is in reduced form, then G has no useless 
type. 

Proof. We prove the contrapositive. Suppose that G is a rigid grammar with a 
useless type. Then there is a type A E Tp(G) such that no parse tree of  G has a 
node labeled by A. 

CASE 1. A E range(G). Let G I = G - {(c, A)}, where c is a symbol such that 
G: c H A. G ~ C G, and it is clear that FL(G I) = FL(G),  so G is not in reduced 
form. 

CASE 2. A ~ range(G). Then there is a type A1 E Tp(G) such that A is an 
immediate subtype of  A1 (i.e., Aa = A\A2 or A2\A or A2/A or A/A2). Since 
there is no parse tree of  G that has a node labeled by A, there is no parse tree of  
G that has an instance of  Backward or Forward Application in which the functor 
node is labeled by A1. 

Pick a variable x t /Vat (G)  and let o-(x) = A1. For each B E Tp(G), let 9(B) be 
the result of  replacing all occurrences of A1 in B by x. This makes (r(9(B)) = B 
for all types B E Tp(G). Take the grammar G I = { (c, 9(B)) I (c, B) E G }. 
G = cr[G~], so G I E G. Since ~r maps x to a non-variable, G I # G. Thus, G' [- G. 
By Proposition 24, FL(G')  C_ FL(G),  so it remains to show FL(G) C_ FL(G') .  
Suppose T E FL(G).  Let 7 9 be a parse of T in G. Let 79~ be the result of  replacing 
each type label B of 79 by 9 (B). We show that 791 is a parse of T in G ~, to conclude 
T E FL(G~). That the root node of 791 is labeled by t is obvious. If a leaf node of 
79~ has type label B I and symbol label c, then by the construction of 79~, B ~ = 9(B) 
for some B such that G: c ~ B,  which implies that GI: c ~-~ B ~. Now let 

C 

/ %  
B B\C 

be an instance of  Backward Application in ~ .  Then 791 has 

g(C) 

g(B) g(BiC) 

in the same position. The only way that this fails to be an instance of  Backward 
Application is to have g(B\C)  5~ g(B)\g(C).  This can be so only if B \ C  = 
A1, which is impossible. By symmetry, the same holds for Forward Application. 
Therefore, 791 must be a parse of T in G ~. 
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This proposition will be useful in showing that there is no infinite ascending chain 
of grammars without useless types.* 

DEFINITION 42. Note that any type A can be written uniquely in the following 
form: 

(... (plAx)I...)IA~ 

where B I C  stands for either B / C  or C \ B ,  and p E Pr. For 0 < i < n, we call the 
subtype ( . . .  (plA1)l...)IA~ of A (when i = 0, we take this to be p) a head subtype 
of A. p is the head of A and is denoted head(A). Ai's are called argument subtypes 
of A. 

LEMMA 43. I f  a type A E Tp(G) is not useless in G, then A occurs as a head 
subtype o f  some type in range(G). 

Proof  Assume that A is not useless in G. Then there is a partial parse tree 79 
whose root node is labeled by A. Then, by induction on the depth of the ultimate 
functor of 79, one can prove that A is a head subtype of the type labeling the 
ultimate functor of 79. 

LEMMA 44. I f  a variable x E Var(G) is not useless in G, then 

(i) there is a type B E range(G) such that z = head(B), and 
(ii) there is a type C E range(G) such that x occurs as an argument subtype in C. 

Proof  Part (i) is just a special case of Lemma 43. To prove part (ii), let P be 
a parse tree of G that has a node labeled by z. Since x # t, x occurs in 79 as the 
label of the argument node of an instance of Backward or Forward Application. 
Then the accompanying functor node is labeled by a type B of the form x \ A  or 
A / x .  Since B is not useless, by Lemma 43, there is a type C E range(G) where B 
occurs as a head subtype. Then x occurs as an argument subtype in G. 

DEFINITION 45. Let G be a grammar and let A, B E Tp(G). We say that A 
depends on B (in G) if every partial parse tree P whose root node is labeled by A 
has a non-root node labeled by B. 

A 

/2, 
The cortverse of Proposition 41 also holds: if a rigid gramrnar has no useless type, it is in reduced 

form (Kan~zawa 1994a). 
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LEMMA 46. Let A, B E Tp(G) and suppose that in every type C E Tp(G) that 
has A as a head subtype, B occurs as an argument subtype outside A. 

c =  AI...IBI... 

Then A depends on B in G. 
Proof. Let 79 be a partial parse tree of G whose root node is labeled by A. 

Then the ultimate functor of 7 ) is some type C of the form ( . . .  (AIB1)I...)IB.~. 
By assumption, some Bi = B. Then somewhere on the path from the root to 
the ultimate functor of 79, there must be an instance of Backward or Forward 
Application where the argument node is labeled by B. 

DEFINITION 47. For any grammar G, let Head(G) denote the set { head(A) I 
A E range(G) }. 

DEFINITION 48. Define the degree d(G) of a rigid grammar G as follows: 

d(G) = Idom(G)l- IVar(a)l. 

We are now ready to prove one of the most crucial lemmas in this paper. 

LEMMA 49 (Key Lemma). Let G1 and G2 be rigid grammars that have no useless 
type. I f  G1 r- G2, then d(G1) < d(G2). 

Proof. Suppose that G1 and G2 are rigid grammars without useless types such 
that or[G1] C_ G2. By Lemma 44, Var(Gi) = Head(Gi) - {t} for i = 1,2. Then 
we have 

IVar(G2)l = IHead(G2) - { t} l  

= I(Head(~r[Gl]) - { t } )  U (Head(G2 - o-[G1]) - -  { t } )  I 

< IHead(a[G1])  - { t} l  + IHead(G2 - a [ a l ] )  - { t } l  (1) 
< IHead(~[G1])  - { t }  I + I n e a d ( a 2  - cr[G1])l (2) 

< IHead(cr[G1]) - { t }  I + [dom(G2) - dom(G1) l  (3) 

< IHead(G1) - { t } l  + Idom(Ga) - dom(G1)[  (4) 
= IWar(G1)l + Idom(a2)  - d o m ( a l ) l ,  

where equality holds for 
(1) just in case (Head(cr[G1]) - {t}) fl (Head(G2 - o[G1]) - {t}) = 0; 
(2) just in case t ~ Head(G2 - ~r[G1]); 
(3) just in case for all b, c E dom(G2) - dom(G1), b 7~ c implies head(B) 

head(C), where B and C are the types such that G2: b ~-~ B and G2: c ~ C; 
(4) just in case for all x E Head(G1) - {t}, head(a(x))  7~ t and for all x, y E 

Head(G1) - {t}, x 7~ y implies head((r(x)) 7~ head(a(y)).  
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s o  I V a r ( a 2 )  I <- [Var(G~ ) I + I d o m ( G 2 )  - d o m ( G ~ )  1, which is e q u i v a l e n t  to d(G1) _< 
d(a2). 

Assume that d(Gt)  = d(G2). Then the conditions (1)-(4) above must hold. Let 

{ X l , . . .  ,Xm} = Head(G1) - {t},  

{YI, . . - ,  Yl} = Head(G2 - o-[G1]), 

head(cr(xi)) = zi. 

{ Z l , . . . ,  zm, Y l , . . . ,  Y~} = Head(G2) - (t} and Z l , . . . ,  Zm, Y l , . . . ,  Yl are all dis- 
tinct. We will show 

{ y ~ , . . . , y ~ }  = O, 

o'(xi) = zi for 1 < i < m. 

(5) 

(6) 

(5) and (6) mean that a r Var(G1) is a one-to-one function from Var(G1) to 
Var(Gz), so if we can show (5) and (6), we can establish that G1 and G2 are 
alphabetic variants and are thus equal. Note that Yi ~ {or(x1), . . . ,  a ( x m ) } ,  and if 
cr(xi) ~ zi, then zi f[ {~r(xl ) , . . . ,  a(xm)}.  Thus, if either (5) or (6) fails to hold, 

there is s o m e w  E { z l , . . . , z m , y l , . . . , y t }  

such that w r { a ( x l ) , . . . ,  c r (x~)} .  (7) 

Therefore, we assume (7), to derive a contradiction. Since G2 has no useless type, 
by Lemma 44, w must occur as an argument subtype of  some type A in range(G2). 
There are two cases. 

CASE 1. A E range(G2 - or[G1]). Then A must look like 

. . .  ( ( . . .  (y j lA1)l  . . . ) lw)l  �9 �9 �9 

Since yj does not occur as the head of  any B ~ A in range(G2), this implies that 
yj depends on w. 

CASE 2. A E range(o-[G1]). A looks like 

�9 . .  ( ( . . .  ( p l A 1 ) I . . . ) l w ) l  �9 �9 �9 

A = o-(B) for some B E range(G1), and the assumption o'(xi) r w for all xi 
implies that w ~ a ( C )  for any C E Tp(G1). This means that w occurs as an 
argument subtype of  cr(xj), where x j  = head(B). Then zj = head(cr(xj)) 
o-(xj),  z j  must depend on w, since every D E range(G2) with head(D) = zj has 
a ( x j )  as a head subtype. 

Thus we have found a w ~ E { z l , . . . , Z m , Y l , . . . , Y l }  such that w t 
{c r (x l ) , . . . ,  cr(xm)} and w' depends on w. Repeating this argument, we find a 
cycle of dependency wo, w l , . . . ,  Wn (n  > 1) such that w0 = w~ and wi depends 
on wi-1 for 1 < i < n. This is a contradiction, for no grammar without useless 
types can afford to have such a cycle of dependency. 
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So we have proved (5) and (6). This concludes the proof. 

Note that, by the definition of d(G), if G is a rigid grammar in reduced form, 
then 0 _< d(G) <_ dom(G). 

LEMMA 50. Let Go, Gl,  �9 �9 �9 Gn be rigid grammars over ~ in reduced form such 
that Go r- G1 r-- . . .  r- Gn. Then n < ~. 

Proof By Proposition 41 and Lemma 49, d(Go) < d(G1) < . . .  < d(Gn). 
Since 0 < d(Go) and d(G~) < Ir l, it must be that n < Ir l . 

PROPOSITION 51. Let Lo, L 1 , . . . ,  Ln be rigid structure languages over alphabet 
such that Lo C L1 C . . .  C Ln. Then n < Ir l . 
Proof For 0 < i < n, let Gi be the rigid grammar in reduced form such that 

FL(Gi) = Li. Then, by Proposition 38, Go U G1 E . . .  r- Gn. By Lemma 50, 
n _ I r ,  I . 

Note that even though ffT/21_valued does not contain an infinite ascending chain, it 
is not hard to see that for every L E 5r/21_valued, the set { L ~ E 5r/21-valQed I L C L ~ } 
is infinite unless it is empty. 

THEOREM 52. ~'/21-valued hasfinite elasticity. 
Proof By Lemma 39 and Proposition 51. 

4.2. A THEOREM ON FINITE ELASTICITY 

The theorem proved in this subsection generalizes the essence of a theorem obtained 
by Wright (1989). We will use it to show that Yr/2k_valuea and/2k-valued have finite 
elasticity. The method of the proof below is essentially the same as the one used 
independently by Moriyama and Sato (1993), but these authors do not state their 
result in full generality. For various applications of the theorem not mentioned in 
the present paper, see Kanazawa 1994a or 1994b. 

Let ~ and T be two (not necessarily distinct) alphabets. A relation R C_ ~* • T* 
is said to be finite-valued iff for every s E ~*,  there are at most finitely many 
u E T* such that Rsu.  If M is a language over T, define a language R -1 [M] over 

by R - I [M]  = { s [ 3u(Rsu  A u E M)  }. 

THEOREM 53. Let All be a class of  languages over T that has fn i te  elasticity, 
and let R C ~* • T* be a finite-valued relation. Then s = { R -1 [M] I M E .A4 } 
also has finite elasticity. 

Proof Suppose that /2 = { R- I [M]  I M E AA } has infinite elasticity. 
Then there is an infinite sequence of strings so, Sl, s2 , . . ,  over ~ and an infinite 
sequence of languages L0, L1, L2 , . . .  from/2 such that for each n, sn ~ L,, and 
{ s o , . . . ,  s~} C_ L,~+I. Fo reachn  E N, take an Mn E .M suchthat L~ = R-I[M~].  
For each k E N, let 
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Uk = { (uo , . . . ,Uk)  I Rsouo A . . .  A nSkUk A 3n({UO,. . . ,uk} C Ms) }. 

Note that each Uk is non-empty, and Ui and Uj are disjoint if i ~ j .  Let 

v=Uvk. 
kCN 

By the preceding remarks, U is infinite. U has the form of a tree: the mother of 
(u0, �9 �9 �9 uk, uk+x) C U is (uo , . . . ,  uk), which is also in U. Since R is finite-valued, 
U is finitely branching. Since U is an infinite tree, by K6nig's Lemma, U has an 
infinite branch. Let uo, u l , u 2 , . . ,  be an infinite sequence of strings over T that 
corresponds to an infinite branch of U; i.e., (u0), (u0, Ul), (U0, Ul, U2), �9 �9 �9 are the 
nodes on this branch. Note that ss (t Ln implies 

u,~ • Ms. (8) 

For each n, let f (n )  be such that {u0 , . . . ,  u,~} C_ Mf(,~) and for all j < f (n) ,  
{u0 , . . . ,  Us} ~ My. By (8), n < f (n)  for all n. For each n, let g(n) = fs(o)  = 
f ( . . .  ( f ( 0 ) ) . . . ) .  Note that 9 is monotone increasing. We claim that 

n times 

U9(0 ), Ug(1 ) , ' ' ' ,  U9(n),... 

and 

%(0),  Mg(1) , . . . ,  Mg(s), .  �9 �9 

witness the infinite elasticity of .M. We have (8), so it is enough to observe that by 
the definition of g, 

(Ug(o),..., Ug(s)} C_ Mg(n+l ) 

for all n E N. 

We can use Theorems 52 and 53 to show that .TEk-valued has finite elasticity. 
Let ~ be a fixed alphabet, and let k be a fixed natural number _> 2. We can 
associate with each k-valued grammar over E a rigid grammar over T, where T is 
an alphabet that contains k copies of each symbol in E, i.e., 

T = U {  ( c , , . . . , c k }  I c e z ), 
where all cj 's are assumed to be distinct. In order to determine the desired associ- 
ation uniquely, let us fix a total ordering -< on Tp. 

DEFINITION 54. For each k-valued grammar G over E, we define the rigid coun- 
terpart rc(G) of G to be the fonowing rigid grammar over T: 

rc(G) = { (c~, Ai) ] c E ~ and Ai is the i-th element of { A I (c, A) E G } }. 

Here, 'i-th' refers to the ordering -~. 
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DEFINITION 55. Let amb: "r F --~ ~F be the homomorphism that maps each copy 
ci o f c  to c. That is: 

amb(c/) = c 

amb(BA(U1, U2) ) = BA(amb(U1) , amb(U2)) 
amb(FA(U1, V2)) ---- FA(amb(U1), arab(U2)) 

for all c E ~,  

for all U1, U2 E T F, 

for all U1, U2 E T F. 

(Here we are using the term representation of functor-argument structures.) If 
M C_ T F, we let amb[M] denote { amb(U) [ U E M }. 

The following should be clear from definition. 

LEMMA56.  Let G be a k-valued grammar 
amb[FL(rc(G))]. 

over ~. Then FL(G) = 

THEOREM 57..)L-'/~k_valued has finite elasticity. 
Proof By Theorem 52, the class { FL(H)  I H is a rigid grammar over T } has 

finite elasticity. Then { FL(rc(G)) I G is a k-valued grammar over E } also has 
finite elasticity, since the latter is a subset of the former. The relation 

T = amb[U] 

between T E EF and U E T F is clearly finite-valued. Then, by Theorem 53, the 
class { amb[FL(rc(G))] I G is a k-valued grammar over E } has finite elasticity. 
But this class equals { FL(G) I G is a k-valued grammar over E } by Lemma 56. 

Another application of  Theorem 53 proves the following: 

THEOREM 58. ~k-valued hasfinite elasticity. 
Proof Recall that 

L(G) = { yield(T) [ 7" E FL(G) }. 

If L C_ EF, we write yield[L] for { yield(T) ] T E L }. Then 

/:k-valued = { yield[L] I L E .F/:k.value d }. 

Note that the relation R C_ E+ • ~F defined by 

R s T  r s = yield(T) 

is finite-valued; for, if R s T ,  then the number of nodes of T is exactly 2 t s l  - 1, 

and there are only finitely many functor-argument structures with a given number 
of nodes. Since -T'/:k-valued has finite elasticity (Theorem 57), an application of 
Theorem 53 shows that s also has finite elasticity. 

By Theorem 7, Proposition 58 implies the main theorem (Theorem 12). 
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5. Learning Algorithms for k-Valued Grammars 

There is a 'universal' learning algorithm that works for an arbitrary r.e. class 9 of  
grammars for which universal membership is decidable and whose corresponding 
language class has finite elasticity (see Wright 1989 and Kapur 1991). This algo- 
rithm of course can be used to learn 9k-valued, but its simple 'enumerative' behavior 
does not bring any new insight. In this subsection, we present a concrete learning 
algorithm that learns 9k-valued, for each k. We do this in stages. First, we treat the 
case k = 1, to illustrate the core idea of the algorithm. Next, we treat the general 
case using the notion of  the rigid counterpart of a k-valued gramar defined in the 
previous section. 

5.1. THE CASE k = 1 

Our learning function for 91-valued is defined in terms of two computable functions, 
~l-valued and/,(2). ~l-valued is a function that maps a finite set of strings to a finite 
set of  rigid grammars, and/z (2) is a function that takes two arguments, a finite set 
of  grammars and a positive integer, and returns a member of the first argument. 

DEFINITION 59. 

Xltl-valued({80,... ,8i}) = {RG({T0, . . .  ,Ti}) [ sj = yield(Tj) (0 < j < i) }. 

Each grammar in the value of  ~l-valued is the result of randomly guessing the 
functor-argument structure of each string in the set given as the argument to �9 1-valued 
and then applying Buszkowski's algorithm to the resulting set of functor-argument 
structures. 

EXAMPLE 60. Let 

so = m a r y  s w i m s ,  

sl = m a r y  s w i m s  fas t .  

There are two functor-argument structures that yield so, and eight that yield Sl, so 
there are 16 possible analyses of {80, 81 }. Buszkowski's algorithm RG succeeds on 
six of them, and we have t~tl_valued({80, 81} ) ~--- {G1, G2, G3, G4, GS, G6}, where 

fast  (x\t)\(x\t), 
m a r y  H x, 

s w i m s  ~-+ x \ t ,  

G2: f a s t  F-+ t\t, 
m a r y  ~-* x, 

s w i m s  ~-+ x\t, 
G3: fast ~ ((t/x)\t)\x, 

m a r y  ~-+ t/x, 
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s w i m s  H ( t / x ) \ t ,  

G4: f a s t  H x\((t/x)\t), 
m a r y  ~ t / x ,  

s w i m s  ~-+ x, 

Gs: f a s t  H t \ t ,  
m a r y  ~-+ t / x ,  

s w i m s  ~ x, 

G6: f a s t  F-+ x \ x ,  
m a r y  H t / x ,  

s w i m s  ~-~ x. 

Note that L(G1) = L(G2) = L(as) = L(G6) = { m a r y  s w i m s  f a s t  n I n E N } 
and L(Gs)  = L(Ga) = { m a r y  s w i m s ,  m a r y  s w i m s  fas t} .  

By Proposition 31, it is easy to see the following: 

LEMMA 61. I f  G E 61-valued and { s o , . . . ,  si} C L(G), then there is some G' E 
x I / 1 - v a l u e d ( { S O ,  �9 �9 . , 8i}) such that G' E G. 

The above lemma implies the next two lemmas: 

LEMMA 62. I f  G E x ] ~ t l _ v a l u e d ( { S 0 , . . .  , Si}), then { s o , . . . ,  si} C L(G). 

LEMMA 63. { L ( a )  I G e x~T/l_valued({80,... ,8i}) } includes allminimal elements 
o f { L  E El-valued] {So, . . .  ,s/} C L}.  

The following simple fact will be important in proving the correctness of our 
learning algorithms: 

LEMMA 64 (Kapur). Let E be a language class with finite elasticity. Then for  each 
language L E E, there is a finite set DL C L such that L is the unique smallest 
element o f  { L' E E IDL C_ L' }. 

Proof We prove the contrapositive. Let E be any language class, and suppose 
that for some L E E, for every finite set D C_ L, there is an L I E L: such that 
D C_ L t and L ~ U .  Let (si)i~N be an infinite sequence enumerating L. By 
assumption, for every / E N, there is an Li E E such that { s o , . . . ,  si} C_ Li and 
L q~ Li. Let f be a function such that for all i, ss( 0 E L - Li. Note f ( i )  > i. Let 
g(n) = fn(O) = f ( . . .  ( f ( 0 ) ) . . . ) .  Then 

n t i m e s  

sg(1), %(2), �9 �9 �9 sg(n+l), �9 �9 �9 

and 

Lg(o), Lg(O, . . . , Lg(,~), . . . 
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witness the infinite elasticity of/2.  

Let  #l-valued be a function that maps a non-empty finite set G of  rigid grammars 
to an element Go of  ~ such that L(G0) is minimal in { L(G)  I G E G }. Then, 
by Lemmas  62 and 63, L(#l-valued(~l-valued({S0, �9 �9 �9 Si}))) is always a minimal 
element of  { L E Z21-valued ] { s o , . . . ,  Si} C L }. By Theorem 58 and L e m m a  64, 
then, for every L E /21-valued, there is a finite set DL of strings such that if  DL C_ 
{ 8 0 , . . . ,  8i} C_ L, L(/~l_valued(~l_valued({80,..., 8i})))  = L. Define a learning 
function p as follows: 

(~((80)) = ~tl.valued(ff~Jl.valued({80))), { 80) 
if  si+l E L(p( ( s0 , .  �9  si))),  

p ( ( 8 0 , . . . ,  8i+1)) = /Zl_valued(ffffl_valued({80, " , 8i+1}) ) 
otherwise. 

It is now easy to see that p learns ~l-valued.* However, we do not know if  there 
is a definition of  #l-v,aued that makes it computable, ~ so the learning function p 
defined thus may not be computable. 

Although there may be no computable function like/Zl_valued, there is one that is 
'computable in the limit' in the following sense. Let  -~ be a computable well-order 
of  all grammars, and let E_<n be the set of  strings over E of  length _< n. 

DEFINITION 65. Let #(2) be a function that takes two arguments, a non-empty 
finite set ~ of  grammars and a positive integer n, and returns the first member 
Go of  ~ (under the ordering 4 )  such that L(G0) f-1 p~_<n is a minimal element of  
{ L ( G )  M ~ < n  I G E G }. 

Since the universal membership problem is decidable for categorial grammars, #(2) 
is computable. It is easy to see the following: 

L E M M A  66. For every finite set G of  grammars, there is an m such that for  
all n > m, #(2)(~, m)  = #(2)(G, n)  and L(#(2)(~, m))  is a minimal element o f  
{ L ( G )  I G  C ~ }. 

One can define a computable learning function ~)l-valued in terms of  kI/1.valued 
and #(2). For this, we first define a 'conservative'  version of  kO1.valued: 

* Moreover, p has the desirable property of beging conservative (Angluin 1980b). See Kanaza- 
wa 1994a for a discussion of the question of whether Gk-vatued is conservatively learnable. 

** One can show that there is no computable function # that takes a finite set ~ of arbitrary 
categorial grammars and returns an element Go of ~ such that L(Go) is minimal in { L(G) ] G E ~ } 
(Kanazawa 1994a). It is an open question whether there is any k such that a computable function 
/~k-v~u~a exists that maps a finite set G of k-valued grammars to an element Go of ~ such that L(G0) 
is minimal in { L(G) [ G E ~ }. 
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DEFINITION 67. 

# 
x~TJl.valued((S0) ) = ~ l _ v a l u e d ( { S 0 ) ) ,  

# 
~ l _ v a l u e d ( ( 8 0 , . . . ,  8 i + 1 ) )  ---- 

~Vvaluea((So,. �9 �9 si)) if si+l ~ L(G) for every 
# 

~l-valuea({so,..., si+l}) otherwise. 

It is easy to see the following: 

# LEMMA 68. For every G E fft1_valued((s0,..., si) ), {so , . . . ,  si} C_C_ L(G). 

# 
LEMMA 69. { L(G) I G e ~l_valued((80,..., 8i))} includes all minimal elements 
of  { L E s { s o , . . . , s i }  C L }. 

DEFINITION 70. 

(2) # 
e l - v a l u e d ( ( 8 0 , . . . ,  S i ) )  = ~ ( ~ I J l _ v a l u e d ( ( S 0 , . . . ,  S i ) ) , i  + 1) 

(i + 1 is the length of the sequence ( so , . . . ,  si).) 

EXAMPLE 71. Let so, sl and G 1 , . . . ,  G6 be as in Example 60. Suppose that the 
well-ordering -~ on all grammars is such that G2 ~ G5 -~ G6 -~ G1 -~ G4 -~ G3. 
Then 

# 
ffffl.valued((80, 81)) = {G1, G2, G3, G4, G5, G6}, 

r s l ) )  = G2. 

At this point, r is picking a grammar that generates the bigger of the two 
languages involved. r Sl, sl)) = r Sl)), but we have 

# 
k~l_valued((S0, Sl, Sl, Sl)) = {G1, G2, G3, G4, GS, G6}, 

~bl-valued((S0, Sl, Sl, Sl)) = G4, 

since m a r y  s w i m s  fas t  fas t  is in L(G1), L(G2), L(Gs), and L(G6), but not in 
L(G3) and L(G4). 

THEOREM 72. r learns Gl-valuea. 
Proof. Let L E /~l-valued and let (Si)iCN be an infinite sequence enumerat- 

ing L. By Lemma 64, let DL be a finite subset of L such that L is the unique 
smallest element of { L ~ E s I DL C L ~ }. Let 1 be the least such that 
DL C_C_ {so , . . . ,  sz}. Then, by Lemmas 68 and 69, if i > l, L is the unique min- 

# imal element of { L(G) I G E ql.valued((S0,. �9 si)) }. Also, by the definition of 
# # 

�9 , ~{/1.valued ( ( 8 0 ,  �9 , 8 l ) ) .  _ ~I/i.valued ( ( 8 0 , . .  8i))~----- . .  fill_valued, this means that if i > l, # 
Let ~ # = kVl_vmueo((So,..., sl)). By Lemma 66, we can find an m such that for 
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every n > m, #(2)(~,m) = # (2 ) (~ ,n )and  L(#(x)(G,m)) = L. Therefore, if 
i > max(l, m - 1), ~bl-~alued((so,..., si)) = r Smax(t,m-1))) and 
L(r Si))) = L. 

5.2. THE GENERAL CASE 

In the learning algorithm for Gl-valued presented in the previous subsection, a 
finite set of strings is 'analyzed' into a finite set of functor-argument stmctuers 
that yield the strings and Buszkowski's algorithm RG is applied to the result. 
In the learning algorithm for Gk-valued to be presented below, the input strings 
are first analyzed into functor-argument structures as before, but the structures 
thus produced are further 'disambiguated' into functor-argument structures over 
the extended alphabet T, which contains k copies of each symbol in the original 
alphabet E. Buszkowski's algorithm is then applied to those disambiguated functor- 
argument structures, and the rigid grammar over T that is output by the algorithm 
is 'ambiguated' back into a k-valued grammar over E. 

Recall the definition of T, rc, and amb from Section 4.2. If H is a rigid gram- 
mar over T, r c - i ( H )  is the k-valued grammar over E of which H is the rigid 
counterpart. 
DEFINITION 73. 
~k_valued({SO,...,Si}) = { r c - l ( H )  I for some Uo , . . . ,U i  such that 
yield(amb(Uj)) = sj (0 < j < i), H = RG({Uo, . . . ,  Ui}) }. 

LEMMA 74. I f  G C ~k-valuea and {so , . . . ,  si} C_ L(G), then there is some G ~ E 
~k-valuea({S0, �9 �9 �9 Si}) such that rc(G') _E re(G). 

Proof Since, by L e m m a  56, L(G) -- yield(amb(FL(rc(G)))), if 
{ s o , . . . ,  si} C L(G), then there must be some Uo , . . . ,  Ui such that for 0 < j < i, 
sj = yield(amb(Uj)) and {Uo, . . . ,  Ui} C_ FL(rc(G)). Then, by Lemma 31, 

E_ re(a). 

LEMMA 75. I f  a E ~k-valueO({S0,..., si}), then {s0 , . . . ,  si} C_ L(G). 

LEMMA 76. { L(G) I a e *k_valued({S0,..., si}) } includes all minimal ele- 
ments of  { L E L;k-valued 1 {SO,.. . ,  Si} C L }. 

Proof Clear from Lemma 74, noting that r c ( a  ~) E rc (a )  implies that L(G ~) C 
L(G). 

DEFINITION 77. 
# = 

# 
~Ilk_valued((80,. . .  , 8 i ) )  = 

~k_v~ued((So,. �9 �9 si)) if Si+l E L(G) for every 
# 

a e si)), 
glk-valued({SO, . ,Si+l}) otherwise. 



IDENTIFICATION IN TIlE LIMIT OF CATEGORIAL GRAMMARS 151 

DEFINITION 78. 

(2) # 
~bk-valued((SO,..., Si}) = # (~k_valued((SO,..., Si)),i + 1). 

The proof of  the correctness of ~bk-valued is exactly the same as in the case of 

if31-valued �9 

6. Discussion: Learning with Additional Information 

So far, we have assumed that a fixed finite alphabet is given. In fact, our algorithms 
~bl-valued and ~bk-valucd can work on an infinite alphabet, as long as each grammar 
(language) is based on a finite subalphabet of  it. Let ~ be a fixed finite alphabet, 
and let Too = [.J{ { ci I i E N } [ c E P, }. Assume that T ~ is coded in some finite 

oo alphabet, by, for example, regarding ci as c followed by i strokes. Let Gl-valued 
be the class of all rigid grammars over some finite subalphabet of T ~176 Although 
{ L(G) I a ~ ~-valued } now has infinite elasticity, it is clear that essentially the 
same algorithm as if)l-valued learns ~l-%alued" 

This fact has an interesting consequence. Consider the class CatG of all clas- 
sical categorial grammars over P,. Then ~l-~alued includes all rigid counterparts of  
grammars in CatG.* That ~l--valued is learnable means that an arbitrary classical cat- 
egorial grammar can be learned from data consisting of disambiguated strings, that 
is, strings in the language generated by the rigid counterpart of the target grammar. 
Disambiguated strings can be regarded as positive data about the target language 
augmented with certain 'intensional' information about the target grammar. With 
this additional information, the entire class of classical categorial grammars, which 
generate all e-free context-free languages, becomes learnable. 

To be more precise, (CatG, (Too) +, L(rc(-))} constitutes a grammar system. In 
this grammar system, CatG is learnable. 

This can be compared with Sakakibara's (1992) result about reversible context- 
free grammars. A context-free grammar is said to be reversible if no two distinct 
rules of  G differ with respect to just one non-terminal; that is, if both A --+ a and 
B --+ a are rules of G, then A = B,  and if both A --+ a B / 3  and A --+ a C / 3  
are rules of G, then B ---- C. The class of reversible context-free grammars is a 
normal form for the class of all context-free grammars in the sense that for every 
context-free language L, there is a reversible context-free grammar G such that 
L = L(G).  This means that the class of  reversible context-free grammars is not 
learnable in the standard grammar system of context-free grammars. Sakakibara's 
(1992) result is that the class of reversible context-free grammars is learnable in 
the grammar system where the sentences skeletal phrase structures (Levy and 
Joshi 1978), rather than strings. A skeletal phrase structure over alphabet E is a 
tree whose leaf nodes are labeled by symbols in P, but whose internal nodes have 
no labels. A context-free grammar G generates a skeletal phrase structure if it is the 

* Note that the rigid counterpart re(G) of a k-valued grammar G is uniquely determined irrespec- 
tive of the choice of k, as long as G E ~k-valued. 
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result of stripping non-terminal symbols of a parse tree of G. Based on Angluin's 
(1982) work, Sakakibara describes a polynomial-time learning algorithm that learns 
the class of reversible context-free grammars from skeletal phrase structures. In 
his words (1992, p. 59), 'the assumption of examples in the form of structural 
descriptions strongly compensates for the lack of explicit negative information in 
positive samples and is helpful for efficient learning of context-free grammars.'* 

While Sakakibara's result is interesting, the assumption that the learner is pre- 
sented with the skeletal phrase structure of each string that she encounters is 
probably not very attractive as a model of first language acquisition. In contrast, 
the grammar system (CatG, T ~176 L(rc(.))) correspondes to a model of language 
acquisition where the learner is presented with strings with additional informa- 
tion that signal syntactically different uses of a lexical ambiguous symbol, which 
might be more realistic.** Moreover, structures assigned by a reversible context- 
free grammar are sometimes rather unnatural, and they are rich enough that they 
can in effect encode informaiton about lexical ambiguity. To keep the balance, we 
do not have the kind of efficient algorithm for learning rigid classical categorial 
grammars from strings that Sakakibara has for learning reversible context-free 
grammars from skeletal phrase structures. 

Appendix 

7. Reduction to Shinohara's Theorem 

We used the fact that ~s has finite elasticity (Theorem 52) and our Theo- 
rem 53 (twice) to prove Proposition 58. There is an alternative proof that reduces 
it to Shinohara's (1990a, 1990b) result, which says that the class of languages 
generated by context-sensitive grammars with at most k rules has finite elasticity. 
It can be shown that for any k-valued categorial grammar G over ~,  there is an 
e-free context-free grammar G (in general not in Chomsky normal form) with at 
most 2kl~ I - 1 rules such that L(G) = L(G). This shows that/~k-valued is included 
in a class known to have finite elasticity, which implies that s itself has finite 
elasticity. 

PROPOSITION 79. For any classical categorial grammar G, there is an e-free 
context-free grammar G with no more than 2[ G[ - 1 rules such that L(G) = L(G). ~ 

Proof  Without loss of generality, we can assume that G has no useless type. L e t  
cf(G) = (~, Tp(G), t, Pef(G)) be the obvious Chomsky normal form context-free 

* There is some similarity between Sakakibara's (1992) algorithm and Buszkowski's algorithm 
RG. F In Section 3.3, we noted in passing that with respect to the grammar system {CatG, H , FL}, 
Buszkowski's algorithm learns the class of rigid classical categorial grammars. The difference is that 
the rigid classical categorial grammars do not generate all (e-free) context-free languages. 

** Note that the notions of 'structure' and 'lexical ambiguity' are both dependent on the specific 
grammar that generates the given language. In particular, a classical categorial grammar may have 
to assign more than one type to a certain symbol c while an equivalent Chomsky normal form 
context-free grammar may have just one rule of the form A ~ c. 

IGI is the number of type assignments in G. 
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grammar corresponding to G, where 

Pef(c) = { B .--+ A A \ B  I A \ B  E Tp(G) } U { B --+ B / A  A I B / A  E Tp(G) } 

u {  A--+c[ G : c H  A }. 

G has no useless non-terminal. Note that there is no bound on the number of rules 
in Pa(c) .  Let 

A = { A E Tp(G) - {t} I there is only one rule in Pef(a) whose 

left-hand side is A }. 

For A E ~4, let right(A) be such that A --+ right(A) is a rule in Per(a). Let 

P1 = P c f ( G )  - -  { A --+ right(a) I A E A }. 

Now eliminate all occurrences of non-terminals in ~4 from the fight-hand side of  
rules in P1 by repeatedly replacing such occurrences of A 6 ,A by right(A). This 
process must terminate, for, if it does not, one can show using K6nig's Lemma that 
there must be a cycle of non-terminals A0, A1 , . . .  ,An = Ao (n > 1) such that 
each Ai (0 < i < n) is in ,4 and Ai+l occurs in right(Ai) for 0 < i < n - 1, 
which implies that A0, A 1 , . . . ,  An are useless non-terminals in cf(G). Let P2 be 
the result of  applying this process to P1. Let 

= (~,  Tp(G) - A, t, P2). 

It should be clear that L(G) = L(cf(G)) .  
It remains to show that 1t"21 _< 2IG[ - 1. This can be seen as follows. Define a 

binary relation -< on Tp(G) U G as follows: 

-< = { <B,A\B)  I A \ B  6 Tp(G) } U 
{ (B, B /A}  I B / A  E Tp(G) } U 
{ (A,(c,A}} I {c,A} 6 G}.  

There is a one-to-one correspondence between the pairs in -< and the rules in 
Poe(a). The graph of --< consists of m rooted trees, where m = War(G) u {t}l = 
I Var(G)l + 1. The number of  leaf nodes of this tree is I GI, and it is not difficult to 
see that the number of nodes in these trees which have more than one daughter is 
at most IGI - m. Let 

R = { <a, x }  E -.< I A has more than one daughter in the graph of  -< }. 

Note that R corresponds one-to-one to the set consisting of the leaf nodes of the 
graph of -< plus the nodes with more than one daughter that are not highest. Then 

tRI ___ IG I+IGI-m-m 
= 21GI - 2m. 
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N o t e  that  by  the defini t ion of /~  1/921 < IRI + 1, so 

IP21 <_ 21GI - 2 m  + 1 

_< 21GI- 1, 

which concludes the proof.* 

MAKOTOKANAZAWA 
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