
INFORMATION AND CONTROL 69, 255-260 (1986)

A Simplified Lower Bound for
Context- Free- Language Recognition*

JOEL [. SEIFERAS

Computer Science Department, University of Rochester, Rochester, New York 14627

For on-line recognition of the words in an arbitrary linear context-free language,
there are known tight bounds on the time required by a deterministic multitape
Turing machine. In terms of word length n, the time need never be worse than some
constant times n 2, even if only one worktape is available; and there is a linear con-
text-free language that requires at least time proportional to n2/log n, no matter
how many worktapes are available. Using Kolmogorov's notion of descriptional
complexity as a tool, we present a simple proof of the latter result. © 1986 Academic
Press, Inc.

F o r on-l ine recogni t ion of the words in an a rb i t r a ry l inear context-free

language (Har r i son , 1978), there are k n o w n tight bounds on the t ime
required by a determinis t ic mul t i t ape Tur ing machine. In terms of word
length n, the t ime need never be worse than some cons tan t t imes n 2, even if

only one w o r k t a p e is avai lable (Kasami , 1967); and there is a l inear con-
text-free language tha t requires at least t ime p r o p o r t i o n a l to n2/log n, no

mat te r how m a n y work tapes are avai lable (Gal la i re , 1969). Using
K o l m o g o r o v ' s no t ion of descr ip t iona l complexi ty as a tool, we present a
p roo f of the la t ter result that is much s impler than the count ing a rgument

given by Gal la i re (1969).
The l inear context-free language L in our p roo f is essential ly the same

one Gal la i re uses:

L = { y S x l ¢ " (x k l k >~O; Xl xk, y e {0, 1 }*; and

y = u x f v f o r s o m e i < k a n d u , v e {0, 1}*},

where w R denotes the reverse of word w. To recognize a language on-line, a
Turing machine mus t indicate before each successive inpu t symbol is
received whether the input word so far belongs to the language. F o r the
par t i cu la r l anguage L, the indica t ions will be "mono ton ic , " changing at
most once, from "no" to "yes."

* This work was supported in part by the National Science Foundation, under grant num-
ber MCS-8110430.

255
0019-9958/86 $3.00

643/69/1-3-17 Copyright © 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.

256 JOEL I. SEIFERAS

For each 1-dimensional multitape Turing machine M that recognizes L
on-line, our new proof specifies a word (in fact, exponentially many words)
of each length n that forces M to run for at least some fixed positive frac-
tion times n2/log n steps. (Since the choice of the fixed fraction can compen-
sate for any finite number of special cases, we need actually consider only
"large" lengths n.) For this purpose, we replace Gallaire's complicated
counting argument with the approach suggested by Paul (1979) and by
Paul, Seiferas, and Simon (1981), considering individual words in which y
is "algorithmically incompressible."

Following Kolmogorov, we define algorithmic incompressibility in terms
of descriptional complexity. Any computable partial function
F: {0, 1 } ' 4 {0, 1}* can be viewed as a description scheme, in terms of
which we can define a descriptional complexity KF: {0, 1 }*
{0,1,2,...,oo} by

KF(X) = min{ Idl [F(d) = x}.

(Note that we do not require our descriptions to be self-delimiting or prefix
free: F(d) and F(de) might both be defined, but yet be different.) Because
there is a "universal" computable partial function, there is some F0 for
which

V F 3 C F V XKFo(X) <~ KF(X) + CF.

Except for an additive constant, therefore, Fo is as succinct a description
scheme as any; so we define the descriptional complexity K(x) of x to be
KFo(X). A word x is (algorithmically) incompressible if K(x)>>. [xf. Since
there are 2 n binary words of length n but only 2 n - 1 possible shorter
descriptions d, there is sure to be at least one incompressible word of each
length. In fact, if we relax our standards of incompressibility by even 1
(K(x) >1 [x [- 1), which is still quite sufficient for our purposes, then most
words of each length must qualify as incompressible.

Now let us return to the specification of an input word of length n that is
hard for M. Regardless of M, we choose y to be an incompressible word of
length Ln/2J, still leaving half the desired length for prospective reverse
subwords xl. It will suffice, then, to show that we can choose each suc-
cessive xt(to be of length proportional to only the logarithm of n and yet
to require linearly many additional steps by M. Due to monotonicity, this
will require also that each successive xi not be a reverse subword ofy.

Assume inductively that x~ x~ x have been chosen as required, so that
the input prefix y $ x l (' " (x i ~(does not yet belong to L. As a con-
sequence of Lemmas 1 and 2 below, for some appropriate constant c, y is
the only word of its length Ln/2J with precisely its set of subwords of
length m = 2 log 2 n + c. It follows from this that the (-termination xi (of

CFL RECOGNITION 257

some length-m word xi that is not a reverse subword of y must require at
least t = en many/tddit ional steps by M, where e is a positive fraction that
does not depend on n. Otherwise, we could devise a short description of the
length-m subwords of y, and hence of y itself, based primarily on a
relatively small portion of the instantaneous description of M when it is
about to read xi; it could be determined separately whether each length-m
word is a subword of y by continuing the computation by M for t steps
from the provided partial instantaneous description, with the C-terminated
reverse of that candidate word as input continuation--by assumption, any
such continuation for more than t steps could safely be cut short, serving
already as decisive indication that the candidate is a subword of y. In
addition to the worktape contents within distance t of the tape heads, we
would have to include only the following: this whole discussion (suitably
formalized), specification of M, the length n, the instantaneous control
state of M, and the instantaneous locations of M's tape heads on the
provided worktape fragments. If e is small in terms of M, and if n is large,
then all this does add up to fewer than Ln/2] bits, as it should not. Except
for Lemmas 1 and 2, this concludes our proof by contradiction that each
successive xi can be chosen to be sufficiently time-consuming to yield the
desired lower bound.

Finally, we turn to Lemmas 1 and 2. A repetition is a subword that
occurs in two distinct, but possibly overlapping, positions; i.e., x is a
repetition in w if UlXl) 1 = W = H2Xl) 2 for distinct prefixes ul and u 2.

LEMMA 1. I f a word has no repetition of length m, then it is determined
by its subwords of length m + 1; i.e., then it is the unique word with no
repetition of length m and with precisely its set of subwords o f length m + 1.

Proof If x is a word and a and b are single characters, then call ax a
left neighbor of xb, and call xb a right neighbor of ax. If a word has no
repetition of length m, then every subword of length m + 1 has at most one
right neighboring subword, so that the next letter (if any) following its uni-
que occurrence is determined. The word's prefix of length m + 1 is the uni-
que subword of that length with no left neighboring subword. By induc-
tion, therefore, the entire word is determined by its subwords of length
m + l . |

LEMMA 2. An incompressible word of length n has no repetition longer
than 2 log2 n plus some constant c.

Proof If a repetition's length is a slightly larger multiple of log2 n, then
we can easily obtain a too-short description of the entire word by replacing
one instance with a clear enough reference to the other. Although such a

258 J O E L I. SEIFERAS

lemma would be strong enough for our purposes, it is interesting to ask
just how long a repetition is possible and to prove the best result we can.

Let w = xyz be the entire incompressible word of length n, and suppose y
is a repetition of length 2[-log2 n] + c in xy. To describe w, we concatenate
the following information: this discussion (suitably formalized), the value
of c, the location (less than Ix]) of the beginning of the first instance of y in
xy, the location (Ixl) of the beginning of the last instance of y in xy, and
the shortened word xz. The first item should be represented by a self-
delimiting word, say c' bits long. The second item should also be self-
delimiting, at most 3 log2 c bits long, say. The two locations should be
binary radix representations, each padded with insignificant high-order
zeros to length exactly 1 + Flog2 n]. This way, the total length of the three
items following the two self-delimiting ones will be exactly n - c + 2, so that
n can be inferred and the entire description correctly parsed. The descrip-
tion is too short (and the proof by contradiction complete) provided
c -2>c '+31og2c . |

It is interesting to note, on the other hand, that every incompressible
word of length n does have a repetition of length about log2 n. In fact every
binary word of large enough length n has a repetition of length
m = Llog2 n J - 1 , since there are only 2 m ~ < n/2 distinct subwords of that
length possible. For an incompressible word, we can increase the guaran-
teed repetition length by at least 1:

PROPOSITION. Every incompressible word of large enough length n has a
repetition of length at least Llog2 hi.

Proof Suppose, to the contrary, that w = xy is an incompressible word
of length n with no repetition of length m = Llog2 n_J, and suppose y is its
suffix of length m. Since n - 2m subwords of length m already occur in x,
there are at most 2 m - - n + 2m ~< 2m possibilities for y, given x. If n is large
enough, therefore, the following suffice to describe w too succinctly: this
discussion (suitably formalized, self-delimiting), the value of m (binary
radix, self-delimiting), the serial number of y among those words of length
m that are not subwords of the prefix x (binary radix, self-delimiting), and
the literal word x. The savings by omitting y is proportional to log n, while
the nonliteral replacement is proportional to only some constant plus
loglogn. I

For y, Gallaire always uses a de Bruijn sequence, a word of some length
2 m in which each word of length m occurs contiguously (counting "wrap-
around") exactly once. It follows from the proposition, therefore, that the
words we use are in fact different from the ones Gallaire uses. Lemma 1
shows that the de Bruijn criterion is unnecessarily stringent; the crucial

CFL RECOGNITION 259

requirement is only that no subword of the appropriate length (any con-
stant time log n gives the same quantitative result) occurs more than once,
not that every one does occur.

For the counting argument he presents (only partly, actually, citing Hen-
nie, 1966, for elaboration), Gallaire must cite clever arguments that enough
de Bruijn words exist (de Bruijn, 1946; Golomb, 1967; Hall, 1967). (For a
more recent survey, see Fredricksen, 1982.) While incompressible words are
much more obviously abundant, on the other hand, we no longer even
need that abundance, since the powerful incompressibility assumption
enables us to focus exclusively on one particular word y. The result is the
clear and self-contained proof presented above.

Like Gallaire's, unfortunately, our lower-bound argument does depend
on both the on-line restriction and the limited architecture of the multitape
Turing machine. A random-access machine can recognize L in linear time,
by building the tree of all subwords of the reverse ofy in time linear in lY[
(Weiner, 1973; McCreight, 1976; Chen and Seiferas, 1985) and then
searching down through it for each successive xi in time linear in Ixil. Off-
line, a multitape Turing machine can recognize the very similar linear con-
text-free language

L ' = (ySXlg ' " (X k I k>~O;Xl , . . . ,x~ ,y~ (0, 1}*; and

y = u x f v for i = k - 1 and some u, v e (0, 1 }* }

in linear time, using the Fischer-Paterson implementation (1974) of the
Knuth Morris-Pratt string-matching algorithm (1977). Note that the
lower-bound argument does still apply to L'. (For L', in fact, the argument
is slightly easier, since each xi in the tail of the hard input word need not
fail to be a reverse subword of y. On-line, L sounds like it might be harder;
but, off-line, L' sounds like it might be harder.)

On Turing machines with multidimensional "tapes," our argument still
does yield nontrivial lower bounds, but they are not as close to any known
upper bounds. In the argument, if M has d-dimensional tapes, then we can
obtain the desired too-short description of y if we assume the time t needed
for each next xi is bounded by a small enough fraction of n lid. This yields a
lower bound proportional to n~+l/a/logn and raises the question of
whether the Kasami upper bound (1967) can be improved using mul-
tidimensional tapes.

ACKNOWLEDGMENTS

Michael Harrison first brought Gallaire's argument to my attention. M.T. Chen helped me
to appreciate the role of de Bruijn's theorem in that argument and pointed out that the

260 JOEL I. SEIFERAS

argument must fail for a random-access machine. Larry Ruzzo pointed out that the variant L'
would work as well as Gallaire's language. Laura Sanchis and Zvi Galil provided constructive
criticism of previous versions of the manuscript.

RECEIVED January 29, 1986

REFERENCES

DE BRUIJN, N. G. (1946), A combinatorial problem, Nederl. Akad. Wetensch. Proc. 49,
758-764.

CrmN, M. T., AND SEI~RAS, J. I. (1985), Efficient and elegant subword-tree construction, in
"Combinatorial Algorithms on Words" (A. Apostolico and Z. Galil, Eds.), pp. 97-107,
Springer-Verlag, New York/Berlin.

FISCHER, M. J., AND PA~RSON, M. S. (1974), String-matching and other products, in "Com-
plexity of Computation" (R. M. Karp, Ed.), pp. 113-125, Amer. Math. Soc., Providence,
R.I.

FREDRICKSEN, H. (1982), A survey of full length nonlinear shift register cycle algorithms,
SIAM Rev. 24, 195-221.

GALLAIRV, H. (1969), Recognition time of context-free languages by on-line Turing machines,
Inform. Contr. 15, 288-295.

GOLOMB, S. W. (1967), "Shift Register Sequences," p. 131 if, Holden-Day, San Francisco.
HALL, M., JR. (1967), "Combinatorial Theory," pp. 91-99, Ginn (Blaisdell), Boston.
HARRISON, M. A. (1978), "Introduction to Formal Language Theory," Chap. 12,

Addison-Wesley, Reading, Mass.
HENNIE, F. C. (1966), On-line Turing machine computations, IRE Trans. Electron. Comput.

EC-15, 35-44.
KASAMI, T. (1967), A note on computing time for recognition of languages generated by linear

grammars, Inform. Contr. 10, 209-214.
KNUTH, D. E. MORRIS, J. H., JR., AND PRATT, V. R. (1977), Fast pattern matching in strings,

SIAM J. Comput. 6, 323-350.
McCREIGHT, E. M. (1976), A space-economical suffix tree construction algorithm, J. Assoc.

Comput. Mach. 23, 262-272.
PAUL, W. J. (1979), Kolmogorov complexity and lower bounds, in "Second International

Conference on Fundamentals of Computation Theory" (L. Budach, Ed.), pp. 325-334,
Akademie-Verlag, Berlin.

PAUL, W. J., SEIFERAS, J. I., AND SIMON, J. (1981), An information-theoretic approach to time
bounds for on-line computation, J. Comput. System Sci. 23, 108-126.

WEINER, P. (1973), Linear pattern matching algorithms, in "14th Annual Symposium on
Switching & Automata Theory," IEEE Computer Society, Long Beach, California,
pp. 1-11.

