An introduction to Neural Networks

Fabienne Braune¹

¹LMU Munich

December 6th, 2016

Outline

- Linear models
- 2 Limitations of linear models
- Neural networks
- A neural language model
- Word embeddings

LINEAR MODELS

Binary Classification with Linear Models

Example: the seminar at < time > 4 pm will

Classification task: Do we have an < time > tag in the current position?

Word	Lemma	LexCat	Case	SemCat	Tag
the	the	Art	low		
seminar	seminar	Noun	low		
at	at	Prep	low		stime
4	4	Digit	low		
pm	pm	Other	low	timeid	
will	will	Verb	low		

Feature Vector

Encode context into feature vector:

1 2 3	bias term -3_lemma_the -3_lemma_giraffe	
	 -2_lemma_seminar -2_lemma_giraffe	
202 203	 -1_lemma_at -1_lemma_giraffe	
	 +1_lemma_4 +1_lemma_giraffe	

1

N

10

1 0

1 0

Dot product with (initial) weight vector

$$h(X) = X \cdot \Theta^{T} \qquad X = \begin{bmatrix} x_{0} = 1 \\ x_{1} = 1 \\ x_{2} = 0 \\ \cdots \\ x_{101} = 1 \\ x_{102} = 0 \\ \cdots \\ x_{201} = 1 \\ x_{202} = 0 \\ \cdots \\ x_{301} = 1 \\ x_{302} = 0 \\ \cdots \end{bmatrix} \qquad \Theta = \begin{bmatrix} w_{0} = 1.00 \\ w_{1} = 0.01 \\ w_{2} = 0.01 \\ \cdots \\ x_{101} = 0.01 \\ x_{102} = 0.01 \\ \cdots \\ x_{201} = 0.01 \\ x_{202} = 0.01 \\ \cdots \\ x_{301} = 0.01 \\ x_{302} = 0.01 \\ \cdots \end{bmatrix}$$

Prediction with dot product

$$h(X) = X \cdot \Theta^{T}$$

= $x_0 w_0 + x_1 w_1 + \dots + x_n w_n$
= $1 * 1 + 1 * 0.01 + 0 * 0.01 + \dots + 0 * 0.01 + 1 * 0.01$

Predictions with linear models

Example: the seminar at < time > 4 pm will

Classification task: Do we have an < time > tag in the current position? **Linear Model:** $h(X) = X \cdot \Theta^T$

Prediction: If h(X) > 0.5, yes. Otherwise, no.

Training: Find weight vector Θ such that h(X) is the correct answer as many times as possible.

- → Given a set T of training examples $t_1, \dots t_n$ with correct labels y_i , find Θ such that $h(X(t_i)) = y_i$ for as many t_i as possible.
- $\rightarrow X(t_i)$ is the feature vector for the i-th training example t_i

Dot product with trained weight vector

$$h(X) = X \cdot \Theta^{T} \qquad X = \begin{bmatrix} x_{0} = 1 \\ x_{1} = 1 \\ x_{2} = 0 \\ \cdots \\ x_{101} = 1 \\ x_{102} = 0 \\ \cdots \\ x_{201} = 1 \\ x_{202} = 0 \\ \cdots \\ x_{301} = 1 \\ x_{302} = 0 \\ \cdots \end{bmatrix} \qquad \Theta = \begin{bmatrix} w_{0} = 1.00 \\ w_{1} = 0.01 \\ w_{2} = 0.01 \\ \cdots \\ x_{101} = 0.012 \\ x_{102} = 0.0015 \\ \cdots \\ x_{201} = 0.4 \\ x_{202} = 0.005 \\ \cdots \\ x_{301} = 0.1 \\ x_{302} = 0.04 \\ \cdots \end{bmatrix}$$

Working with real-valued features

$$h(X) = X \cdot \Theta^{T} \qquad X = \begin{bmatrix} x_0 = 1.0 \\ x_1 = 50.5 \\ x_2 = 52.2 \\ \dots \\ x_{101} = 45.6 \\ x_{102} = 60.9 \\ \dots \\ x_{201} = 40.4 \\ x_{202} = 51.9 \\ \dots \\ x_{301} = 40.5 \\ x_{302} = 35.8 \\ \dots \end{bmatrix} \qquad \Theta = \begin{bmatrix} w_0 = 1.00 \\ w_1 = 0.001 \\ w_2 = 0.001 \\ \dots \\ x_{101} = 0.012 \\ x_{101} = 0.012 \\ x_{102} = 0.0015 \\ \dots \\ x_{201} = 0.4 \\ x_{202} = 0.005 \\ \dots \\ x_{301} = 0.1 \\ x_{302} = 0.04 \\ \dots \end{bmatrix}$$

_

-

-

Working with real-valued features

$$h(X) = X \cdot \Theta^{T}$$

= $x_0 w_0 + x_1 w_1 + \dots + x_n w_n$
= $1.0 * 1 + 50.5 * 0.001 + \dots + 40.5 * 0.1 + 35.8 * 0.04$
= 540.5

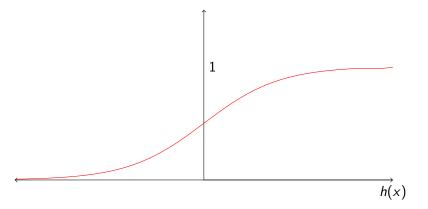
Working with real-valued features

Classification task: Do we have an < time > tag in the current position? Prediction: h(X) = 540.5

• What does 540.5 mean?

Sigmoid function

We can push h(X) between 0 and 1 using a **non-linear** activation function The **sigmoid function** $\sigma(Z)$ is often used



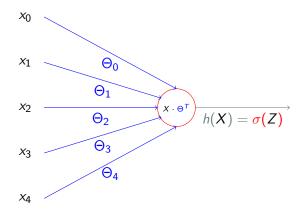
Logistic Regression

Classification task: Do we have an < time > tag in the current position? Linear Model: $Z = X \cdot \Theta^T$ Prediction: If $\sigma(Z) > 0.5$, yes. Otherwise, no.

Logistic regression:

- Use a linear model and squash values between 0 and 1.
 - Convert real values to probabilities
- Put threshold to 0.5.
- Positive class above threshold, negative class below.

Logistic Regression



LINEAR MODELS: LIMITATIONS

Decision Boundary

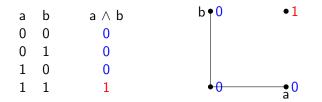
What do linear models do?

- $\sigma(Z) > 0.5$ when $Z(=X \cdot \Theta^T) \ge 0$
- Model defines a decision boundary given by X ⋅ Θ^T = 0 positive examples (have time tag) negative examples (no time tag)



When we model a task with linear models, what assumption do we make about positive/negative examples?

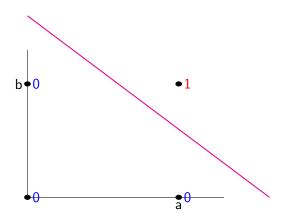
Modeling 1: Learning a predictor for \wedge



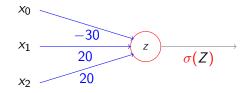
Features : a, b Feature values : binary

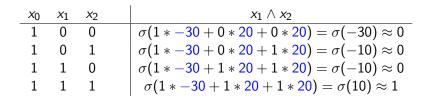
Can we learn a linear model to solve this problem?

Modeling 1: Learning a predictor for \wedge

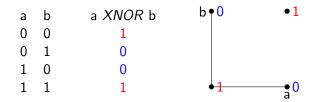


Modeling 1: Logistic Regression





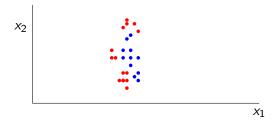
Modeling 2: Learning a predictor for XNOR



Features : a, b Feature values : binary

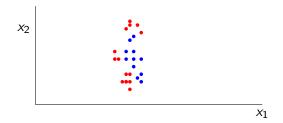
Can we learn a linear model to solve this problem?

Non-linear decision boundaries



Can we learn a linear model to solve this problem?

Non-linear decision boundaries



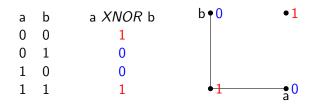
Can we learn a linear model to solve this problem? No! Decision boundary is **non-linear**.

Learning a predictor for XNOR

Linear models not suited to learn non-linear decision boundaries. Neural networks can do that.

NEURAL NETWORKS

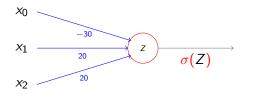
Learning a predictor for XNOR



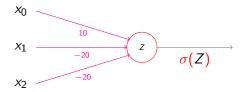
Features : a, b Feature values : binary

Can we learn a **non-linear model** to solve this problem? Yes! E.g. through function composition.

Function Composition

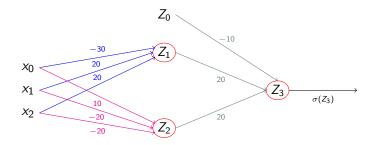


×0	x_1	<i>x</i> ₂	$x_1 \wedge x_2$
 1	0	0	pprox 0
1	0	1	pprox 0
1	1	0	pprox 0
1	1	1	pprox 1



<i>x</i> ₀	x_1	<i>x</i> ₂	$\neg x_1 \land \neg x_2$
1	0	0	pprox 1
1	0	1	pprox 0
1	1	0	pprox 0
1	1	1	pprox 0

Function Composition



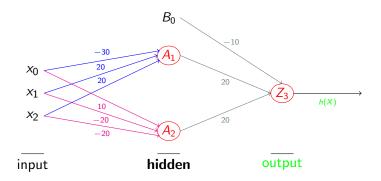
<i>x</i> ₀	x_1	<i>x</i> ₂	0	$\sigma(Z_1)$	$\sigma(Z_2)$	$\sigma(Z_3)$
1	0	0		pprox 0	≈ 1	$\sigma(1*-10+0*20+1*20) = \sigma(10) \approx 1$
1	0	1		pprox 0	pprox 0	$\sigma(1 * -10 + 0 * 20 + 0 * 20) = \sigma(-10) \approx 0$
1	1	0		pprox 0	pprox 0	$\sigma(1*-10+0*20+0*20) = \sigma(-10) \approx 0$
1	1	1		pprox 1	pprox 0	$\sigma(1*-10+1*20+1*20) = \sigma(30) \approx 1$

Feedforward Neural Network

We just created a feedforward neural network with:

- 1 input layer X (feature vector)
- 2 weight matrices $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$
- 1 hidden layer H composed of:
 - 2 activations A₁ = σ(Z₁) and A₂ = σ(Z₂) where:
 ★ Z₁ = X ⋅ Θ₁
 ★ Z₂ = X ⋅ Θ₂
- 1 output unit $h(X) = \sigma(Z_3)$ where:
 - $\blacktriangleright \ Z_3 = \mathbf{H} \cdot \Theta_3$

Feedforward Neural Network



Computation of hidden layer **H**:

- $A_1 = \sigma(X \cdot \Theta_1)$
- $A_2 = \sigma(X \cdot \Theta_2)$
- $B_0 = 1$ (bias term)

Computation of output unit h(X):

•
$$h(X) = \sigma(\mathbf{H} \cdot \Theta_3)$$

Feedforward neural network

Classification task: Do we have an < time > tag in the current position?

Neural network: $h(X) = \sigma(\mathbf{H} \cdot \Theta_n)$, with:

$$\mathbf{H} = \begin{bmatrix} B_0 = 1\\ A_1 = \sigma(X \cdot \Theta_1)\\ A_2 = \sigma(X \cdot \Theta_2)\\ \dots\\ A_j = \sigma(X \cdot \Theta_j) \end{bmatrix}$$

Prediction: If h(X) > 0.5, yes. Otherwise, no.

Getting the right weights

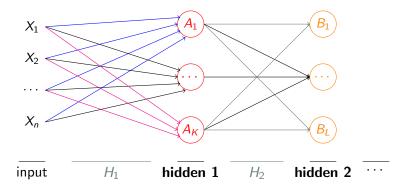
Training: Find weight matrices $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$ such that h(X) is the **correct answer** as many times as possible.

- \rightarrow Given a set T of training examples $t_1, \dots t_n$ with correct labels \mathbf{y}_i , find $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$ such that $h(X) = \mathbf{y}_i$ for as many t_i as possible.
 - \rightarrow Computation of h(X) called forward propagation
 - $\rightarrow U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$ with error back propagation

Will be covered in lecture about training of neural networks

Network architectures

Depending on task, a particular network architecture can be chosen:



Note: Bias terms omitted for simplicity

Multi-class classification

- More than two labels
- Instead of "yes" and "no", predict $c_i \in C = \{c_1, \cdots, c_k\}$
- Not just <time> label but also <etime>,<\etime>,...
- Use k output units, where k is number of classes
 - Output layer instead of unit
 - Use softmax to obtain value between 0 and 1 for each class
 - Highest value is right class

A NEURAL LANGUAGE MODEL

Neural language model

• Early application of neural networks (Bengio et al. 2003)

- Task: Given k previous words, predict the current word Estimate: P(w_t|w_{t-k}, · · · , w_{t-2}, w_{t-1})
- Problem with non-neural approaches:
 - \rightarrow Huge number of features

 w_i represented with V binary features (V is vocabulary)

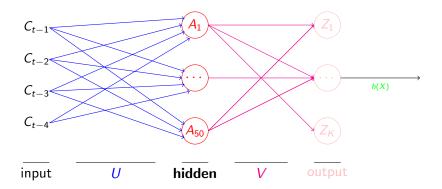
- \rightarrow Each word is sparse binary vector
- \rightarrow No way to model similarity

The cat is walking in the bedroom A dog was running in a room

Neural language model

- Solution: Associate a distributed word feature vector to each word
 → Learn shared representation for words
 - \rightarrow Learn with neural network

Feedforward Neural Network



Given words w_{t-4} , w_{t-3} , w_{t-2} and w_{t-1} , predict w_t Note: Bias terms omitted for simplicity

Context vectors

Input layer are context vectors C_{t-4} , C_{t-3} , C_{t-2} and C_{t-1}

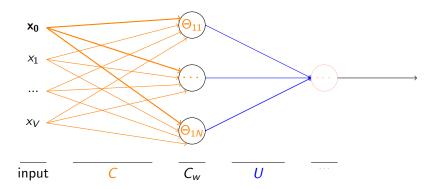
• C(i) is dot product of weight matrix C with index of w_i

•
$$W = \{ dog, cat, kitchen, table, chair \}, w_{table} =$$

Note: There is no non-linearity here

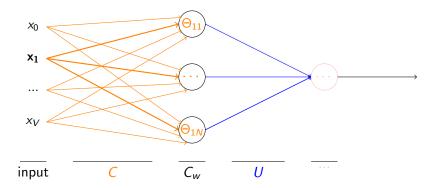
0 0 1

Context vectors



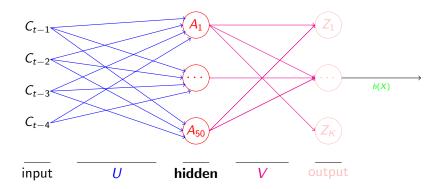
Representation of **dog** is **first** row of C Note: Bias terms omitted for simplicity

Context vectors



Do this for each word with **same** C (shared) Note: Bias terms omitted for simplicity

Feedforward Neural Network



Given contexts C_{t-4} , C_{t-3} , C_{t-2} and C_{t-1} , predict w_t Note: Bias terms omitted for simplicity

Feedforward Neural Network

- **Input layer (***X***):** Context vectors C_{t-4} , C_{t-3} , C_{t-2} and C_{t-1} Weight matrices U, V
- Hidden layer (*H*): $\sigma(X \cdot U + d)$
- Output layer (0): $H \cdot V + b$
- **Prediction:** h(X) = softmax(0)
 - Predicted class is the one with highest probability (given by softmax)

Getting the right weights

Training: Find weight matrices C, U, V (and biases b, d) such that h(X) is the **correct answer** as many times as possible.

- \rightarrow correct answer: word at position t
- → Given a set T of training examples $t_1, \dots t_n$ with **correct labels** \mathbf{y}_i (\mathbf{w}_t), find C, U, V (and biases b, d) such that $h(X) = \mathbf{y}_i$ for as many t_i as possible.
 - \rightarrow forward propagation to compute h(X)
 - \rightarrow back propagation of error to find best C, U, V (and biases b, d)

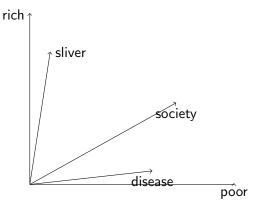
Neural language model

- Beats benchmarks
- Representation C is shared among all words

WORD EMBEDDINGS

Word Embeddings

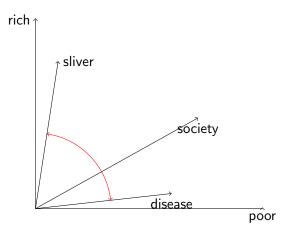
• Representation of words in vector space



Word Embeddings

• Similar words are close to each other

 \rightarrow Similarity is the cosine of the angle between two word vectors



Learning word embeddings

Count-based methods:

- Compute cooccurrence statistics
- Learn high-dimensional representation
- Map sparse high-dimensional vectors to small dense representation

Neural networks:

- Predict a word from its neighbors
- Learn (small) embedding vectors

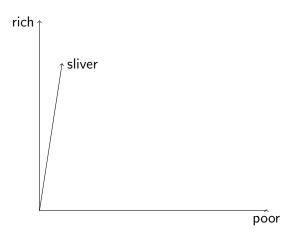
Word cooccurrence in Wikipedia

• corpus = English Wikipedia

- cooccurrence defined as occurrence within k = 10 words of each other
 - cooc.(rich,silver) = 186
 - cooc.(poor,silver) = 34
 - cooc.(rich,disease) = 17
 - cooc.(poor,disease) = 162
 - cooc.(rich, society) = 143
 - cooc.(poor,society) = 228

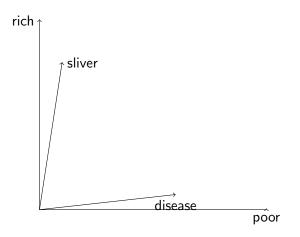
Adapted slide from Hinrich Schütze

Coocurrence-based Word Space



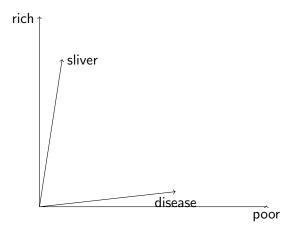
cooc.(poor,silver)=34,cooc.(rich,silver)=186

Coocurrence-based Word Space



cooc.(poor,disease)=162,cooc.(rich,disease)=17.

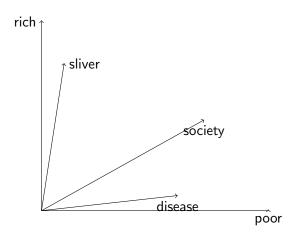
Exercise



ccooc.(poor,society)=228, cooc.(rich,society)=143
How is it represented?

Fabienne Braune (CIS)

Coocurrence-based Word Space



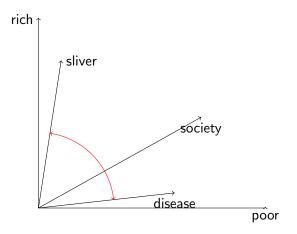
cooc.(poor,society)=228, cooc.(rich,society)=143

Dimensionality of word space

- Up to now we've only used two dimension words: rich and poor.
- Do this for all possible words in a corpus \rightarrow high-dimensional space
- Formally, there is no difference to a two-dimensional space with three vectors.
- Note: a word can have a dual role in word space.
 - Each word can, in principle, be a dimension word, an axis of the space.
 - But each word is also a vector in that space.

Adapted slide from Hinrich Schütze

Semantic similarity

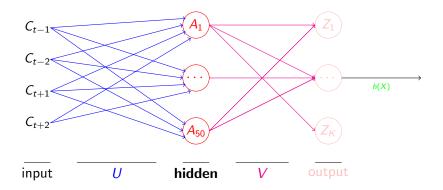


Similarity is the cosine of the angle between two word vectors

Word vectors with Neural Networks

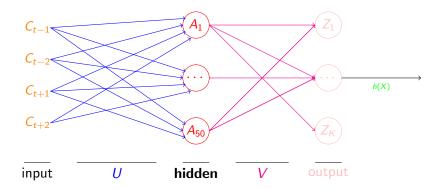
- LM Task: Given k previous words, predict the current word
 - \rightarrow For each word w in V, model $P(w_t|w_{t-1}, w_{t-2}, ..., w_{t-n})$
 - \rightarrow Learn shared representation C of word features
 - \rightarrow Input for task
- Task: Given k context words, predict the current word
 - \rightarrow Learn shared representation C of word features
 - \rightarrow Word embedding *w*

Network architecture



Given words w_{t-2} , w_{t-1} , w_{t+1} and w_{t+2} , predict w_t Note: Bias terms omitted for simplicity

Network architecture



We want the context vectors \rightarrow embed words in shared space Note: Bias terms omitted for simplicity

Simplifications

- Hidden layer: replaced by sum of contexts
- Output layer: single logistic unit
 - \rightarrow No need for distribution over words (only vector representation)
 - \rightarrow Task as binary classification problem:
 - Given input and weight matrix say if w_t is current word
 - We know the correct w_t, how do we get the wrong ones? → negative sampling

Semantic similarity task

How similar are the words:

• coast and shore; rich and money; happiness and disease; close and closet; close and open

Similarity tasks:

- WordSim-353 (Finkelstein et al. 2002)
 - Measure associations
 - close and closet
- SimLex-999
 - Only measure semantic similarity
 - close and closet

Recap

- Fitting data with non-linear decision boundary difficult with linear models
- Solution: compose non-linear functions with neural networks
- Successful in many NLP applications:
 - Language modeling
 - Learning word embeddings
- Feeding word embeddings to neural network has proven successful in many NLP tasks (e.g. sentiment analysis)

Thank you !