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• Last time, we discussed Model 1 and 
Expectation Maximization 

• Today we will discuss getting useful 
alignments for translation and a translation 
model 



Slide from Koehn 2008 



Slide from Koehn 2009 



Slide from Koehn 2009 



HMM Model 

• Model 4 requires local search (making small 
changes to an initial alignment and rescoring) 

• Another popular model is the HMM model, 
which is similar to Model 2 except that it uses 
relative alignment positions (like Model 4) 

• Popular because it supports inference via the 
forward-backward algorithm 



Overcoming 1-to-N 

• We'll now discuss overcoming the poor 
assumption behind alignment functions 
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IBM Models: 1-to-N Assumption 

• 1-to-N assumption 

• Multi-word “cepts” (words in one language translated as a unit) only allowed 
on target side. Source side limited to single word “cepts”. 

• Forced to create M-to-N alignments using heuristics 
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Discussion 

• Most state of the art SMT systems are built as I presented 
• Use IBM Models to generate both: 

– one-to-many alignment 
– many-to-one alignment 

• Combine these two alignments using symmetrization heuristic 
– output is a many-to-many alignment  
– used for building decoder 

• Moses toolkit for implementation: www.statmt.org 
– Uses Och and Ney GIZA++ tool for Model 1, HMM, Model 4 
 

• However, there is newer work on alignment that is interesting! 

http://www.statmt.org/


Where we have been 

• We defined the overall problem and talked 
about evaluation 

• We have now covered word alignment 

– IBM Model 1, true Expectation Maximization 

– Briefly mentioned: IBM Model 4, approximate 
Expectation Maximization 

– Symmetrization Heuristics (such as Grow) 

• Applied to two Viterbi alignments (typically from Model 
4) 

• Results in final word alignment 



Where we are going 

• We will discuss the "traditional" phrase-based 
model (which noone actually uses, but gives a 
good intuition) 

• Then we will define a high performance 
translation model (next slide set) 

• Finally, we will show how to solve the search 
problem for this model (= decoding) 



Outline 

• Phrase-based translation 

– Model 

– Estimating parameters  

• Decoding 



• We could use IBM Model 4 in the direction 
p(f|e), together with a language model, p(e), 
to translate 

 

 

argmax  P( e | f )  =   argmax  P( f | e )  P( e )  

     e                      e 

 
 

 



• However, decoding using Model 4 doesn’t 
work well in practice 

– One strong reason is the bad 1-to-N assumption 

– Another problem would be defining the search 
algorithm 

• If we add additional operations to allow the English 
words to vary, this will be very expensive 

– Despite these problems, Model 4 decoding was 
briefly state of the art 

• We will now define a better model… 
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Language Model 

• Often a trigram language model is used for p(e) 
– P(the man went home) = p(the | START) p(man | 

START the) p(went | the man) p(home | man went) 

• Language models work well for comparing the 
grammaticality of strings of the same length 
– However, when comparing short strings with long 

strings they favor short strings 
– For this reason, an important component of the 

language model is the length bonus 
• This is a constant > 1 multiplied for each English word in the 

hypothesis 
• It makes longer strings competitive with shorter strings 



Modified from Koehn 2008 
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