
Statistical Machine Translation
Part III – Many-to-Many Alignments

Alexander Fraser

CIS, LMU München

2016.11.08 SMT and NMT

• Last time, we discussed Model 1 and
Expectation Maximization

• Today we will discuss getting useful
alignments for translation and a translation
model

Slide from Koehn 2008

Slide from Koehn 2009

Slide from Koehn 2009

HMM Model

• Model 4 requires local search (making small
changes to an initial alignment and rescoring)

• Another popular model is the HMM model,
which is similar to Model 2 except that it uses
relative alignment positions (like Model 4)

• Popular because it supports inference via the
forward-backward algorithm

Overcoming 1-to-N

• We'll now discuss overcoming the poor
assumption behind alignment functions

Slide from Koehn 2009

Slide from Koehn 2009

Slide from Koehn 2009

Slide from Koehn 2009

12

IBM Models: 1-to-N Assumption

• 1-to-N assumption

• Multi-word “cepts” (words in one language translated as a unit) only allowed
on target side. Source side limited to single word “cepts”.

• Forced to create M-to-N alignments using heuristics

Slide from Koehn 2008

Slide from Koehn 2009

Slide from Koehn 2009

Discussion

• Most state of the art SMT systems are built as I presented
• Use IBM Models to generate both:

– one-to-many alignment
– many-to-one alignment

• Combine these two alignments using symmetrization heuristic
– output is a many-to-many alignment
– used for building decoder

• Moses toolkit for implementation: www.statmt.org
– Uses Och and Ney GIZA++ tool for Model 1, HMM, Model 4

• However, there is newer work on alignment that is interesting!

http://www.statmt.org/

Where we have been

• We defined the overall problem and talked
about evaluation

• We have now covered word alignment

– IBM Model 1, true Expectation Maximization

– Briefly mentioned: IBM Model 4, approximate
Expectation Maximization

– Symmetrization Heuristics (such as Grow)

• Applied to two Viterbi alignments (typically from Model
4)

• Results in final word alignment

Where we are going

• We will discuss the "traditional" phrase-based
model (which noone actually uses, but gives a
good intuition)

• Then we will define a high performance
translation model (next slide set)

• Finally, we will show how to solve the search
problem for this model (= decoding)

Outline

• Phrase-based translation

– Model

– Estimating parameters

• Decoding

• We could use IBM Model 4 in the direction
p(f|e), together with a language model, p(e),
to translate

argmax P(e | f) = argmax P(f | e) P(e)

 e e

• However, decoding using Model 4 doesn’t
work well in practice

– One strong reason is the bad 1-to-N assumption

– Another problem would be defining the search
algorithm

• If we add additional operations to allow the English
words to vary, this will be very expensive

– Despite these problems, Model 4 decoding was
briefly state of the art

• We will now define a better model…

Slide from Koehn 2008

Slide from Koehn 2008

Language Model

• Often a trigram language model is used for p(e)
– P(the man went home) = p(the | START) p(man |

START the) p(went | the man) p(home | man went)

• Language models work well for comparing the
grammaticality of strings of the same length
– However, when comparing short strings with long

strings they favor short strings
– For this reason, an important component of the

language model is the length bonus
• This is a constant > 1 multiplied for each English word in the

hypothesis
• It makes longer strings competitive with shorter strings

Modified from Koehn 2008

d

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

z^n

