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Abstract

This paper describes Munich-Edinburgh-
Stuttgart’s submissions to the Eighth
Workshop on Statistical Machine Transla-
tion. We report results of the translation
tasks from German, Spanish, Czech and
Russian into English and from English to
German, Spanish, Czech, French and Rus-
sian. The systems described in this paper
use OSM (Operation Sequence Model).
We explain different pre-/post-processing
steps that we carried out for different
language pairs. For German-English we
used constituent parsing for reordering
and compound splitting as preprocessing
steps. For Russian-English we transliter-
ated the unknown words. The translitera-
tion system is learned with the help of an
unsupervised transliteration mining algo-
rithm.

1 Introduction

In this paper we describe Munich-Edinburgh-
Stuttgart’s1 joint submissions to the Eighth Work-
shop on Statistical Machine Translation. We use
our in-house OSM decoder which is based on
the operation sequence N-gram model (Durrani
et al., 2011). The N-gram-based SMT frame-
work (Mariño et al., 2006) memorizes Markov
chains over sequences of minimal translation units
(MTUs or tuples) composed of bilingual transla-
tion units. The OSM model integrates reordering
operations within the tuple sequences to form a
heterogeneous mixture of lexical translation and

1Qatar Computing Research Institute and University of
Szeged were partnered for RU-EN and DE-EN language pairs
respectively.

reordering operations and learns a Markov model
over a sequence of operations.

Our decoder uses the beam search algorithm in
a stack-based decoder like most sequence-based
SMT frameworks. Although the model is based
on minimal translation units, we use phrases dur-
ing search because they improve the search accu-
racy of our system. The earlier decoder (Durrani
et al., 2011) was based on minimal units. But we
recently showed that using phrases during search
gives better coverage of translation, better future
cost estimation and lesser search errors (Durrani
et al., 2013a) than MTU-based decoding. We have
therefore shifted to phrase-based search on top of
the OSM model.

This paper is organized as follows. Section 2
gives a short description of the model and search
as used in the OSM decoder. In Section 3 we
give a description of the POS-based operation se-
quence model that we test for our German-English
and English-German experiments. Section 4 de-
scribes our processing of the German and English
data for German-English and English-German ex-
periments. In Section 5 we describe the unsuper-
vised transliteration mining that has been done for
the Russian-English and English-Russian experi-
ments. In Section 6 we describe the sub-sampling
technique that we have used for several language
pairs. In Section 7 we describe the experimental
setup followed by the results. Finally we summa-
rize the paper in Section 8.

2 System Description

2.1 Model

Our systems are based on the OSM (Operation Se-
quence Model) that simultaneously learns trans-
lation and reordering by representing a bilingual



Figure 1: Bilingual Sentence with Alignments

sentence pair and its alignments as a unique se-
quence of operations. An operation either jointly
generates source and target words, or it performs
reordering by inserting gaps or jumping to gaps.
We then learn a Markov model over a sequence of
operations o1, o2, . . . , oJ that encapsulate MTUs
and reordering information as:

posm(o1, ..., oJ) =
J∏

j=1

p(oj |oj−n+1, ..., oj−1)

By coupling reordering with lexical generation,
each (translation or reordering) decision depends
on n− 1 previous (translation and reordering) de-
cisions spanning across phrasal boundaries. The
reordering decisions therefore influence lexical se-
lection and vice versa. A heterogeneous mixture
of translation and reordering operations enables us
to memorize reordering patterns and lexicalized
triggers unlike the classic N-gram model where
translation and reordering are modeled separately.

2.2 Training

During training, each bilingual sentence pair is de-
terministically converted to a unique sequence of
operations.2 The example in Figure 1(a) is con-
verted to the following sequence of operations:

Generate(Beide, Both)→ Generate(Länder, coun-
tries)→ Generate(haben, have)→ Insert Gap→
Generate(investiert, invested)

At this point, the (partial) German and English
sentences look as follows:

Beide Länder haben investiert

Both countries have invested
The translator then jumps back and covers the
skipped German words through the following se-
quence of operations:

Jump Back(1)→Generate(Millionen, millions)→
Generate(von, of)→ Generate(Dollar, dollars)

2Please refer to Durrani et al. (2011) for a list of opera-
tions and the conversion algorithm.

The generative story of the OSM model also
supports discontinuous source-side cepts and
source-word deletion. However, it doesn’t provide
a mechanism to deal with unaligned and discon-
tinuous target cepts. These are handled through
a 3-step process3 in which we modify the align-
ments to remove discontinuous and unaligned tar-
get MTUs. Please see Durrani et al. (2011) for
details. After modifying the alignments, we con-
vert each bilingual sentence pair and its align-
ments into a sequence of operations as described
above and learn an OSM model. To this end,
a Kneser-Ney (Kneser and Ney, 1995) smoothed
9-gram model is trained with SRILM (Stolcke,
2002) while KenLM (Heafield, 2011) is used at
runtime.

2.3 Feature Functions
We use additional features for our model and em-
ploy the standard log-linear approach (Och and
Ney, 2004) to combine and tune them. We search
for a target string E which maximizes a linear
combination of feature functions:

Ê = argmax
E


J∑

j=1

λjhj(o1, ..., oJ)


where λj is the weight associated with the fea-
ture hj(o1, ..., oj). Apart from the main OSM
feature we train 9 additional features: A target-
language model (see Section 7 for details), 2 lex-
ical weighting features, gap and open gap penalty
features, two distance-based distortion models and
2 length-based penalty features. Please refer to
Durrani et al. (2011) for details.

2.4 Phrase Extraction
Phrases are extracted in the following way: The
aligned training corpus is first converted to an op-
eration sequence. Each subsequence of operations
that starts and ends with a translation operation, is
considered a “phrase”. The translation operations
include Generate Source Only (X) operation which
deletes unaligned source word. Such phrases may
be discontinuous if they include reordering opera-
tions. We replace each subsequence of reordering
operations by a discontinuity marker.

3Durrani et al. (2013b) recently showed that our post-
processing of alignments hurt the performance of the Moses
Phrase-based system in several language pairs. The solu-
tion they proposed has not been incorporated into the current
OSM decoder yet.



During decoding, we match the source tokens
of the phrase with the input. Whenever there is
a discontinuity in the phrase, the next source to-
ken can be matched at any position of the input
string. If there is no discontinuity marker, the next
source token in the phrase must be to the right of
the previous one. Finally we compute the number
of uncovered input tokens within the source span
of the hypothesized phrase and reject the phrase
if the number is above a threshold. We use a
threshold value of 2 which had worked well in
initial experiments. Once the positions of all the
source words of a phrase are known, we can com-
pute the necessary reordering operations (which
may be different from the ones that appeared in
the training corpus). This usage of phrases al-
lows the decoder to generalize from a seen trans-
lation “scored a goal – ein Tor schoss” (where
scored/a/goal and schoss/ein/Tor are aligned, re-
spectively) to “scored a goal – schoss ein Tor”.
The phrase can even be used to translate “er schoss
heute ein Tor – he scored a goal today” although
“heute” appears within the source span of the
phrase “ein Tor schoss”. Without phrase-based
decoding, the unusual word translations “schoss–
scored” and “Tor–goal” (at least outside of the soc-
cer literature) are likely to be pruned.

The phrase tables are further filtered with
threshold pruning. The translation options with
a frequency less than x times the frequency of
the most frequent translation are deleted. We use
x = 0.02. We use additional settings to increase
this threshold for longer phrases. The phrase fil-
tering heuristic was used to speed up decoding. It
did not lower the BLEU score in our small scale
experiments (Durrani et al., 2013a), however we
could not test whether this result holds in a large
scale evaluation.

2.5 Decoder

The decoding framework used in the operation se-
quence model is based on Pharaoh (Koehn, 2004).
The decoder uses beam search to build up the
translation from left to right. The hypotheses are
arranged in m stacks such that stack i maintains
hypotheses that have already translated imany for-
eign words. The ultimate goal is to find the best
scoring hypothesis, that translates all the words
in the foreign sentence. During the hypothesis
extension each extracted phrase is translated into
a sequence of operations. The reordering opera-

tions (gaps and jumps) are generated by looking at
the position of the translator, the last foreign word
generated etc. (Please refer to Algorithm 1 in Dur-
rani et al. (2011)). The probability of an opera-
tion depends on the n−1 previous operations. The
model is smoothed with Kneser-Ney smoothing.

3 POS-based OSM Model

Part-of-speech information is often relevant for
translation. The word “stores” e.g. should be
translated to “Läden” if it is a noun and to “spei-
chert” when it is a verb. The sentence “The small
child cries” might be incorrectly translated to “Die
kleinen Kind weint” where the first three words
lack number, gender and case agreement.

In order to better learn such constraints which
are best expressed in terms of part of speech, we
add another OSM model as a new feature to the
log-linear model of our decoder, which is identi-
cal to the regular OSM except that all the words
have been replaced by their POS tags. The input
of the decoder consists of the input sentence with
automatically assigned part-of-speech tags. The
source and target part of the training data are also
automatically tagged and phrases with words and
POS tags on both sides are extracted. The POS-
based OSM model is only used in the German-to-
English and English-to-German experiments.4 So
far, we only used coarse POS tags without gender
and case information.

4 Constituent Parse Reordering

Our German-to-English system used constituent
parses for pre-ordering of the input. We parsed all
of the parallel German to English data available,
and the tuning, test and blind-test sets. We then
applied reordering rules to these parses. We used
the rules for reordering German constituent parses
of Collins et al. (2005) together with the additional
rules described by Fraser (2009). These are ap-
plied as a preprocess to all German data (training,
tuning and test data). To produce the parses, we
started with the generative BitPar parser trained on
the Tiger treebank with optimizations of the gram-
mar, as described by (Fraser et al., 2013). We then
performed self-training using the high quality Eu-
roparl corpus - we parsed it, and then retrained the
parser on the output.

4This work is ongoing and we will present detailed exper-
iments in the future.



Following this, we performed linguistically-
informed compound splitting, using the system of
Fritzinger and Fraser (2010), which disambiguates
competing analyses from the high-recall Stuttgart
Morphological Analyzer SMOR (Schmid et al.,
2004) using corpus statistics (Koehn and Knight,
2003). We also split portmanteaus like German
“zum” formed from “zu dem” meaning “to the”.
Due to time constraints, we did not address Ger-
man inflection. See Weller et al. (2013) for further
details of the linguistic processing involved in our
German-to-English system.

5 Transliteration Mining/Handling
OOVs

The machine translation system fails to translate
out-of-vocabulary words (OOVs) as they are un-
known to the training data. Most of the OOVs
are named entities and simply passing them to
the output often produces correct translations if
source and target language use the same script.
If the scripts are different transliterating them to
the target language script could solve this prob-
lem. However, building a transliteration system
requires a list of transliteration pairs for training.
We do not have such a list and making one is a
cumbersome process. Instead, we use the unsu-
pervised transliteration mining system of Sajjad et
al. (2012) that takes a list of word pairs for train-
ing and extracts transliteration pairs that can be
used for the training of the transliteration system.
The procedure of mining transliteration pairs and
transliterating OOVs is described as follows:

We word-align the parallel corpus using
GIZA++ in both direction and symmetrize the
alignments using the grow-diag-final-and heuris-
tic. We extract all word pairs which occur as 1-
to-1 alignments (like Sajjad et al. (2011)) and later
refer to them as the list of word pairs. We train the
unsupervised transliteration mining system on the
list of word pairs and extract transliteration pairs.
We use these mined pairs to build a transliteration
system using the Moses toolkit. The translitera-
tion system is applied in a post-processing step
to transliterate OOVs. Please refer to Sajjad et
al. (2013) for further details on our transliteration
work.

6 Sub-sampling

Because of scalability problems we were not able
to use the entire data made available for build-

ing the translation model in some cases. We used
modified Moore-Lewis sampling (Axelrod et al.,
2011) for the language pairs es-en, en-es, en-fr,
and en-cs. In each case we included the News-
Commentary and Europarl corpora in their en-
tirety, and scored the sentences in the remaining
corpora (the selection corpus) using a filtering cri-
terion, adding 10% of the selection corpus to
the training data. We can not say with certainty
whether using the entire data will produce better
results with the OSM decoder. However, we know
that the same data used with the state-of-the-art
Moses produced worse results in some cases. The
experiments in Durrani et al. (2013c) showed that
MML filtering decreases the BLEU scores in es-
en (news-test13: Table 19) and en-cs (news-test12:
Table 14). We can therefore speculate that being
able to use all of the data may improve our results
somewhat.

7 Experiments

Parallel Corpus: The amount of bitext used for
the estimation of the translation models is: de–en
≈ 4.5M and ru–en ≈ 2M parallel sentences. We
were able to use all the available data for cs-to-en
(≈ 15.6M sentences). However, sub-sampled data
was used for en-to-cs (≈ 3M sentences), en-to-fr
(≈ 7.8M sentences) and es–en (≈ 3M sentences).

Monolingual Language Model: We used all
the available training data (including LDC Giga-
word data) for the estimation of monolingual lan-
guage models: en≈ 287.3M sentences, fr≈ 91M,
es ≈ 65.7M, cs ≈ 43.4M and ru ≈ 21.7M sen-
tences. All data except for ru-en and en-ru was
true-cased. We followed the approach of Schwenk
and Koehn (2008) by training language models
from each sub-corpus separately and then linearly
interpolated them using SRILM with weights op-
timized on the held-out dev-set. We concatenated
the news-test sets from four years (2008-2011) to
obtain a large dev-set5 in order to obtain more sta-
ble weights (Koehn and Haddow, 2012).

Decoder Settings: For each extracted input
phrase only 15-best translation options were used
during decoding.6 We used a hard reordering limit

5For Russian-English and English-Russian language
pairs, we divided the tuning-set news-test 2012 into two
halves and used the first half for tuning and second for test.

6We could not experiment with higher n-best translation
options due to a bug that was not fixed in time and hindered
us from scaling.



of 16 words which disallows a jump beyond 16
source words. A stack size of 100 was used during
tuning and 200 for decoding the test set.

Results: Table 1 shows the uncased BLEU
scores along with the rank obtained on the sub-
mission matrix.7 We also show the results from
human evaluation.

Lang Evaluation
Automatic Human

BLEU Rank Win Ratio Rank
de-en 27.6 9/31 0.562 6-8
es-en 30.4 6/12 0.569 3-5
cs-en 26.4 3/11 0.581 2-3
ru-en 24.5 8/22 0.534 7-9
en-de 20.0 6/18
en-es 29.5 3/13 0.544 5-6
en-cs 17.6 14/22 0.517 4-6
en-ru 18.1 6/15 0.456 9-10
en-fr 30.0 7/26 0.541 5-9

Table 1: Translating into and from English

8 Conclusion

In this paper, we described our submissions to
WMT 13 in all the shared-task language pairs
(except for fr-en). We used an OSM-decoder,
which implements a model on n-gram of opera-
tions encapsulating lexical generation and reorder-
ing. For German-to-English we used constituent
parsing and applied linguistically motivated rules
to these parses, followed by compound splitting.
We additionally used a POS-based OSM model for
German-to-English and English-to-German exper-
iments. For Russian-English language pairs we
used unsupervised transliteration mining. Because
of scalability issues we could not use the entire
data in some language pairs and used only sub-
sampled data. Our Czech-to-English system that
was built from the entire data did better in both
automatic and human evaluation compared to the
systems that used sub-sampled data.
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cellence Program (TÁMOP 4.2.4.A/2-11-1-2012-
0001). This publication only reflects the authors’
views.

References
Amittai Axelrod, Xiaodong He, and Jianfeng Gao.

2011. Domain adaptation via pseudo in-domain data
selection. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing, pages 355–362, Edinburgh, Scotland, UK., July.
Association for Computational Linguistics.

Michael Collins, Philipp Koehn, and Ivona Kucerova.
2005. Clause Restructuring for Statistical Machine
Translation. In ACL05, pages 531–540, Ann Arbor,
MI.

Nadir Durrani, Helmut Schmid, and Alexander Fraser.
2011. A Joint Sequence Translation Model with In-
tegrated Reordering. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
1045–1054, Portland, Oregon, USA, June.

Nadir Durrani, Alexander Fraser, and Helmut Schmid.
2013a. Model With Minimal Translation Units, But
Decode With Phrases. In The 2013 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Atlanta, Georgia, USA, June. Association
for Computational Linguistics.

Nadir Durrani, Alexander Fraser, Helmut Schmid,
Hieu Hoang, and Philipp Koehn. 2013b. Can
Markov Models Over Minimal Translation Units
Help Phrase-Based SMT? In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics, Sofia, Bulgaria, August. Asso-
ciation for Computational Linguistics.

Nadir Durrani, Barry Haddow, Kenneth Heafield, and
Philipp Koehn. 2013c. Edinburgh’s Machine Trans-
lation Systems for European Language Pairs. In
Proceedings of the Eighth Workshop on Statistical
Machine Translation, Sofia, Bulgaria, August. As-
sociation for Computational Linguistics.

Alexander Fraser, Helmut Schmid, Richárd Farkas,
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