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Katharine Henry9, Rachel Rudinger10

marine.carpuat@cnrc-nrc.gc.ca, me@hal3.name, fraser@ims.uni-stuttgart.de, chrisq@microsoft.com
fabienne.braune@ims.uni-stuttgart.de, aca69@sfu.ca, anni@jhu.edu, jags@umiacs.umd.edu

john.j.morgan50.civ@mail.mil, razmara@sfu.ca, a.tamchyna@gmail.com
katiebethhenry@gmail.com, rachel.rudinger@yale.edu

1National Research Council Canada 2University of Maryland, College Park 3University of Stuttgart
4Microsoft Research 5Simon Fraser University 6Johns Hopkins University 7Army Research Lab

8Charles University 9University of Chicago 10Yale University

December 24th, 2012



DOMAIN ADAPTATION IN MACHINE TRANSLATION 2

Contents

1 Introduction 5
1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Data Analysis 8
2.1 SMT quality across domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Analysis of Problems Caused by Shifting Domain 10
3.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 OLD Domain System on NEW Domains with No Tuning . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Tune on In-domain Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 SEEN Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 SENSE Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 SCORE Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Micro-level Evaluation: WADE Analysis 13
4.1 WADE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 WADE Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Phrase Sense Disambiguation for Domain Adapted SMT 16
5.1 Introduction to Phrase Sense Disambigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Vowpal Wabbit for PSD (and other NLP tasks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Integrating VW in Phrase-based Moses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Intrinsic Lexical Choice 19
6.1 Task Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Selecting Representative Phrases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 Creating the Gold Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4 Effect of Multiple References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Phrase-based PSD 21
7.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2 Phrase-based PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Soft Syntax and PSD for Hierarchical Phrase-Based SMT 22
8.1 Hierarchical Machine Translation for Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 22
8.2 Syntax Based SMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8.2.1 Hard Syntactic Constraints for Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . 23
8.2.2 Soft Syntactic Constraints for Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . 23

8.3 Integration of VW in a Hierarchical SMT System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.3.1 Estimation of a Syntax Feature Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.3.2 Estimation of a PSD probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.3.3 Calls to VW during decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



DOMAIN ADAPTATION IN MACHINE TRANSLATION 3

9 Domain Adaptation for PSD 26
9.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.2 Frustratingly Easy DA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.3 Instance Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.4 New + Old Prediction Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.5 Model interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.6 Adaptation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

10 Introduction to Vocabulary Mining 30

11 Marginals Technique for Extracting Word Translation Pairs 31
11.1 Overview of Marginals Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11.4 Marginal Matching Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11.5 Document Pair Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
11.6 Comparable Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
11.7 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11.7.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
11.7.2 Machine translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
11.7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
11.8.1 Intrinsic evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
11.8.2 MT evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

11.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11.10Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

12 Spotting New Senses 40
12.1 Topic Model Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12.2 Fill-in-the-Blank Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12.3 N-Gram Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

13 Latent Topics as Domain Indicators 42
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
13.2 Latent Topic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
13.3 Lexical Weighting Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
13.4 Discriminative Latent Variable Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

13.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
13.4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
13.4.3 Partial Derivatives for Components of θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
13.4.4 Neat Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
13.4.5 Partial Derivatives for Components of φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
13.4.6 Complete Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
13.4.7 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
13.4.8 Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

13.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
13.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
13.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



DOMAIN ADAPTATION IN MACHINE TRANSLATION 4

14 Mining Token Level Translations Using Dimensionality Reduction 49
14.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
14.2 Learning Type Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
14.4 From Type to Token Level Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

14.4.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
14.4.2 Co-Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
14.4.3 Discriminative Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

14.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
14.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

15 Summary and Conclusion 54
15.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

15.1.1 Analysis of domain effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
15.1.2 Phrase Sense Disambiguation for DAMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
15.1.3 Mining New Senses and their Translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

15.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
15.2.1 Engineering Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
15.2.2 Methodology Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
15.2.3 New Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

15.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
15.4 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



DOMAIN ADAPTATION IN MACHINE TRANSLATION 5

Old Domain New Domain (Medical)
Original German text wenn das geschieht, würden

die serben aus dem nordkosovo
wahrscheinlich ihre eigene un-
abhängigkeit erklären.

darreichungsform : weißes
pulver und klares , farbloses
lösungsmittel zur herstellung einer
injektionslösung

Human translation if that happens, the serbs from north
kosovo would probably have their
own independence.

pharmaceutical form : white powder
and clear , colourless solvent for so-
lution for injection

SMT output if that happens, it is likely that the
serbs of north kosovo would declare
their own independence.

darreichungsform : white powder
and clear , pale solvents to establish
a injektionslösung

Figure 1: Figure: Output of a SMT system. The left example is from the system’s old training domain, the right is
from an unseen new domain. Incorrect translations are highlighted in red, the two German words are unknown to the
system, while the two English words are incorrect word sense problems.

1 Introduction
Statistical machine translation (SMT) systems perform poorly when applied on new domains. This degradation in
quality can be as much as one third of the original systems performance; the figure 1 provides a small qualitative
example, and illustrates that unknown words (copied verbatim) and incorrect translations are major sources of errors.
When parallel data is plentiful in a new domain, the primary challenge becomes that of scoring good translations higher
than bad translations. This is often accomplished using either mixture models that downweight the contribution of old
domain corpora, or by subsampling techniques that attempt to force the translation model to pay more attention to
new domain-like sentences. A more sophisticated approach recently demonstrated that phrase-level adaptation can
perform better (Foster et al., 2010). However, these approaches are still less sophisticated than state-of-the-art domain
adaptation (DA) techniques from the machine learning community (Blitzer & Daumé III, 2010). Such techniques
have not been applied to SMT, likely due to the mismatch between SMT models and the classification setting that
dominates the DA literature. The Phrase Sense Disambiguation (PSD) approach to translation (Carpuat & Wu, 2007),
which treats SMT lexical choice as a classification task, allows us to bridge this gap. In particular, classification-based
DA techniques can be applied to PSD to improve translation scoring. Unfortunately, this is not enough when only
comparable data exists in the new domain. Here, we face the additional challenge of identifying unseen words and also
unknown word senses of seen words and attempting to figure out potential translations for these lexical entries. Once
we have identified potential translations, we still need to score them, and the techniques we developed for addressing
the case of parallel data directly apply.

1.1 Goals
1. Understand domain divergence in parallel data and how it affects SMT models, through analysis of carefully

defined test beds that will be released to the community.

2. Design new SMT lexical choice models to improve translation quality across domains in two settings:

(a) When new domain parallel data is available, we leverage existing machine learning algorithms to adapt
PSD models, and explore a rich space of context features.

(b) When we only have comparable data in the new domain, we will learn training examples for PSD by
identifying new translations for new senses.

1.2 Approach
While BLEU scores suggest that SMT lexical choice is often incorrect outside of the training domain, previous work
does not yet fully identify the sources of translation error for different domains, languages and data conditions. In a
preliminary analysis in a DA setting without new parallel data, we have identified unseen words and senses as the main
sources of error in many new domains, by analyzing impacts on BLEU. We conduct similar analyses for the setting



DOMAIN ADAPTATION IN MACHINE TRANSLATION 6

with new parallel data. We also consider sources of error like word alignment or decoding. We exploit parallel text to
better understand differences between general and domain-specific phrase usage (Foster et al., 2010), and their impact
on SMT.

We can learn differences between general language terms, domain-specific terms, and domain-specific usages of
general terms, by using their translations as a sense annotation. This is a complex task, since domain shifts are not
the only cause of translation ambiguity. For instance, in English to French translation, run is usually translated in the
computer domain as xcuter, and in the sports domain as courir; but other senses (such as diriger, to manage) can appear
in many domains. Sense distinctions also depend on language pairs, which suggests that comparable data in the input
language truly is necessary. For example, consider the English words virus and window. When translating into French,
regardless of whether one is in a general domain or a computer domain, they are translated the same way: as virus
and fenłtre, respectively. However, when translating into Japanese, the domain matters. In a general domain, they are
respectively translated as and ł; but in a computer domain they are transliterated.

To build SMT systems that are adapted to a new domain, we first consider the setting with parallel data from the
new domain. We build on a translation approach that explicitly models the domain-specificity of phrase pair types to
re-estimate translation probabilities (Foster et al., 2010). Rather than using static mixtures of old and new translation
probabilities, this approach learns phrase-pair specific mixture weights based on a combination of features reflecting
the degree to which each old-domain phrase pair belongs to general language (e.g., frequencies, centrality of old model
scores), and its similarity to the new domain (e.g., new model scores, OOV counts). By moving to a PSD translation
model, we can attempt much more sophisticated adaptation, and better model the entire spectrum between general
and domain specific senses. In PSD, based on training data extracted from word-aligned parallel data, a classifier
scores each phrase-pair in the lexicon, using evidence from the input-language context. Although there are certainly
non-lexical affects of domain shift, we focus on the lexicon, which is the most fruitful target given our past experience.

With parallel data, our work focuses on adapting PSD to new domains in order to learn better scores for lexical
selection. We design adaptation algorithms for PSD, by applying existing learning techniques for DA (Blitzer & Daumé
III, 2010). Such approaches typically have two goals: (1) to reduce the reliance of the learned model on aspects that
are specific to the old domain (and hence are unavailable at test time), and (2) to use correlations between related old-
domain examples and new-domain examples to port parameters learned on the old to the new domain. Such techniques
can be directly applied to the PSD translation model, using large context as features. We consider local contexts
features like in past work (Carpuat & Wu, 2007), but our approach can leverage much larger contexts (the paragraph,
or perhaps the entire document (Carpuat, 2009)) to build better models, as well as morphological features (Fraser et al.,
2012) to tackle the data sparsity issues that arise when dealing with small amounts of new domain data.

With only comparable text, we must spot phrases with new senses, identify their translations, and learn to score
them. We attack the identification challenge using context-based language models (n-gram or topic models) to identify
new usages. For example, in the computer domain, one can observe that window still appears on the English side, but
ł (the general domain word for window) has disappeared in Japanese, indicating a potential new sense. For identifying
translations we study dictionary mining (Daumé III & Jagarlamudi, 2011) or active learning (Bloodgood & Callison-
Burch, 2010). The scoring problem can be addressed exactly as before. While finding new senses and translations is
a challenging problem even in a single domain, we believe that differences that might get lost in a single domain with
plentiful data are more apparent in an adaptation setting.

1.3 Evaluation
We create standard experimental conditions for domain adaptation in SMT and make all resources available to the com-
munity. We consider three very different domains with which we have past experience: medical texts, movie subtitles
(Daumé III & Jagarlamudi, 2011) and scientific texts. We focus on French-English data, since our team includes native
speakers of these two languages. We evaluate the performance of all adapted and non-adapted translation systems us-
ing standard automatic metrics of translation quality such as BLEU and Meteor. However, we show that these generic
metrics do not adequately capture the impact of adaptation on domain-specific vocabulary, and we investigate how to
evaluate domain-specific translation quality in a more directly interpretable way. We study lexical choice accuracy
(automatically checking whether a translation predicted by PSD using source context is correct) using gold standard
annotations. We evaluate extracting this knowledge by manually correcting automatic word-alignments and also by
using terminology extraction techniques (e.g., finding translations of the keywords in scientific texts, etc).



DOMAIN ADAPTATION IN MACHINE TRANSLATION 7

1.4 Summary
Domain mismatch is a significant challenge for statistical machine translation. Our work contributes to elucidating
this problem through careful data analysis, provides test beds for future research, explores the gap between statistical
domain adaptation and statistical machine translation, and improves translation quality through novel methods for
identifying new senses from comparable corpora.



DOMAIN ADAPTATION IN MACHINE TRANSLATION 8

2 Data Analysis
We chose French-English as a test-bed language pair mostly because of the availability of data in a number of domains,
and the relative efficacy of standard translation methods. That is, we believe that SMT systems work pretty well in
this domain, so translation failures during domain shift should be attributed more to domain issues than problems with
the SMT system. There are downsides to this efficacy, however: a system that learns efficiently can also adapt more
quickly, making adaptation more challenging.

Four major domains are at play:

• Hansard: Canadian parliamentary proceedings. This large corpus consists of manual transcriptions and transla-
tions of meetings of Canada’s House of Commons and its committees1 from 2001 to 2009. Discussions cover a
wide variety of topics, and speaking styles range from prepared speeches by a single speaker to more interactive
discussions.

• EMEA: Documents from the European Medicines Agency, made available with the OPUS corpora collection
(Tiedemann, 2009). This corpus primarily consists of drug usage guidelines.

• News: News commentary corpus made available for the WMT 2009 evaluation2. It has been commonly used in
the domain adaptation literature (Koehn & Schroeder, 2007; Foster & Kuhn, 2007; Haddow & Koehn, 2012, for
instance).

• Science:: Parallel abstracts from scientific publications in many disciplines including physics, biology, and
computer science. We collected data from two distinct sources: (1) Canadian Science Publishing3 made available
translated abstracts from their journals which span many research disciplines; (2) parallel abstracts from PhD
theses in Physics and Computer Science collected from the HAL public repository (Lambert et al., 2012).

• Subs: Translated movie subtitles, available through the OPUS corpora collection (Tiedemann, 2009). In contrast
with the other domains considered, subtitles consists of informal noisy text.

Hansard EMEA Science Subs
French English French English French English French English

Sentences 8,107,356 472,231 139,215 19,239,980
Tokens 161,695,309 144,490,268 6,544,093 5,904,296 4,292,620 3,602,799 154,952,432 174,430,406
Types 191,501 186,827 34,624 29,663 117,669 114,217 361,584 293,249

Table 1: Basic characteristics of the training data in each domain.

French types English types Pair types French tokens English tokens Pair tokens
Hansard∩EMEA 17,845 13,743 63,087 6,124,518 5,522,972 6,290,162
EMEA−Hansard 16,779 15,920 431,877 419,575 381,324 2,002,943
Hansard∩Science 40,016 32,947 135,247 4,057,191 3,358,471 3,995,699
Science−Hansard 77,653 81,270 879,423 235,429 244,328 1,179,428
Hansard∩Subs 98,048 68,274 694,212 152,519,138 171,806,360 199,375,051
Subs−Hansard 263,536 224,975 6,471,868 2,433,294 2,624,046 18,649,558

Table 2: Differences between domains.

1http://www.parl.gc.ca
2http://www.statmt.org/wmt09/translation-task.html
3http://www.nrcresearchpress.com
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2.1 SMT quality across domains
In order to get a better understanding of differences between domain, we compare the translation quality of SMT
systems when translating in domain, out of domain, and using simple adaptation techniques that combined data from
both domains.

First, we compare BLEU scores obtained on test sets from each of the NEW domain for phrase-based SMT systems
trained under 3 distinct data conditions: (1) on OLD domain data only (Canadian Hansard), (2) on NEW domain data
only (News, Medical, Science and Subtitles), and (3) on the concatenation of OLD + NEW data. Table 3 shows that
BLEU score drops significantly when testing on out-of-domain data for three of the four domains considered: the
Hansard trained system yields scores that are 7 to 12 points lower than the in-domain systems. The results are different
for the News domain: the Hansard system actually translates News data with a better BLEU score than the system
trained on News. This can be explained by the small amount of parallel data available to train the News only system,
and the fact that the News corpus is much closer to the Hansard than any of the other domains considered.

Training Domain News EMEA Science Subtitles
OLD 22.61 22.72 21.22 13.64
NEW 20.33 34.83 32.49 20.57
OLD+NEW 23.82 34.76 30.17 20.41

Table 3: BLEU scores for phrase-based Moses evaluated in each NEW domain: translation quality almost always
degrades significantly when translating out of domain, and simply concatenating data from different domains does not
help.
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3 Analysis of Problems Caused by Shifting Domain

3.1 Baselines
The moses decoder and its experiment management system were used to train, tune, and test baseline systems. The
following baselines are meant to reflect the best possible performance of a system without adaptation. The OLD
domain is always text from the Canadian Hansard. Tuning is always performed on a held out set extracted from the
NEW domain. Tuning was always performed with batch MIRA. Training of the language model was performed on
either the target side of the entire parallel training data or only on the text from the NEW domain in the parallel training
data. All language models contain 5 grams and use knesser-ney smoothing.

3.1.1 OLD Domain System on NEW Domains with No Tuning

The following table shows the BLEU scores obtained by decoding with a system trained exclusively on data from the
OLD domain and tested on data from each of the NEW domains. These scores are intended to show the performance
of a system that has not been exposed to in-domain data.

Domain BLEU Score
Hansard 40.69
News 22.61
Medical 20.90
Science 19.38
Subtitles 12.48

Table 4: BLEU scores of the baseline system without tuning. Language models were trained on the English side of the
Hansard corpus. During training the system was not exposed to data from the NEW domains.

The above table clearly indicates that moving to a new domain can affect the performance of a statistical machine
translation system. What is the source of the change in performance? Later we will attempt to answer this question by
analyzing different kinds of errors that occur in smt.

3.1.2 Tune on In-domain Data

The following table shows the BLEU scores that result from training on OLD domain data and tuning on data from
the NEW domain. Modified tuning and test sets were generated that were restricted to segments that were not “seen”
in the training data. Subsequent domain adaptation work will assume a small corpus of NEW domain data exists for
tuning, thus scores from those systems should achieve at least the scores given in table 5.

Domain BLEU Score
Hansard 41.54
News 23.82
Medical 28.69
Science 26.13
Subtitles 15.10

Table 5: BLEU scores from Old domain trained and NEW domain tuned systems.

3.2 Error Analysis
Next we investigate the source of decreased BLEU scores when moving to a new domain. In the following investigation
we make two key assumptions:

1. Enough parallel data is available in the new domain for tuning and testing.

2. Enough monolingual data is available in the target language of the new domain for training a language model.
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Other sections of this report will consider the case where comparable data is available in the NEW domain.
We consider four kinds of errors:

SEEN: new words in the new domain,

SENSE: new, new-domain specific, translations for known words,

SCORE: wrong preference for non-new-domain translations, and,

SEARCH: search algorithm chooses incorrect word.

3.2.1 SEEN Errors

For errors of type SEEN we conduct the following experiment. We build “augmented” phrase and reordering tables by
adding the unseen words and phrases to the tables trained on only the OLD domain data. The resulting tables are tuned
and tested on the same data from the NEW domain that is used to test and tune the OLD system. The gap between
the BLEU scores for the OLD and augmented systems indicates the improvement that can be gained by methods for
automatically discovering corrections for unseen errors. Compare table 6 to table 5 to find the gap.

domain augmented
News 23.87

Medical 31.02
Science 27.72
Subtitles 15.91

Table 6: Analysis of seen errors. Unseen words and phrases were added to the OLD system’s phrase table and reorder-
ing table.

3.2.2 SENSE Errors

For SENSE errors we perform the same kind of experiments as we did for SEEN errors except that we augment the
translation tables with translation pairs containing new senses. By definition a phrase has a new sense if it appears in
both the OLD and NEW domains on the source side language but its translations in the target language are different in
the OLD and NEW domains.

Again, compare these scores with those given in table 5 to find the gap.

domain augmented
News 23.95

Medical 30.59
Science 27.29
Subtitles 16.41

Table 7: Analysis of sense errors. Words and phrases with new senses were added to the OLD system’s phrase table
and reordering table.

3.2.3 SCORE Errors

To access score errors we run different kinds of experiments than the ones we ran for seen and sense errors. Instead
of augmenting tables, we considered the phrase pairs that were in both the OLD and NEW domain tables. The feature
scores came from either the OLD table or the NEW table. One system that we called “score old” was built with the
scores from the OLD system. The other system we called “score new” and was built with scores from the NEW table.
These experiments involved the following steps:

1. Train a system on data from the OLD domain
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2. Train a system on data from the NEW domain

3. Intersect the phrase pairs from the phrase tables from the systems built in steps 1 and 2 above

4. Build a “score old “ system by inserting scores from the phrase-pairs given in the system built in step 1

5. Build a “score new “ system by inserting scores from the phrase pairs given in the system built in step 2

6. Tune and test the systems built in the previous 2 steps on data from the NEW domain

The results in table 8 were obtained from systems with tables containing phrases in both the OLD and NEW domain
system tables and feature scores from the OLD domain table.

domain SCORE OLD SCORE NEW
News 22.80 22.22

Medical 29.23 30.23
Science 26.21 28.98
Subtitles 14.99 16.25

Table 8: Analysis of score errors. Tables trained on the OLD and NEW domains were intersected. The numbers in
the SCORE OLD column are scores that were obtained by the system trained on the OLD data. The numbers in the
SCORE NEW column are scores that were obtained by the system trained on the NEW data.

Domain BASE SEEN SENSE
News 23.82 23.87 23.95
Medical 28.69 31.02 30.59
Science 26.13 27.72 27.29
Subtitles 15.10 15.91 16.41

Table 9: BLEU scores summarizing the results of adding SEEN and SENSE errors to the OLD system.

Error Analysis Conclusions The results shown in this section are summarized in tables 9 and 8. The gap between
the scores in columns 2 and 3 of table 8 shows the impact of errors attributed to incorrect feature scores when moving
to a new domain. The scores in columns 3 and 4 of table 9 shows the impact of errors of type SEEN and SENSE
when moving to a new domain. All these results demonstrate that moving to a new domain has a large impact on the
performance of an SMT system and that errors of type SEEN, SENSE, and SCORE occur in the four domains we
considered. We hoped to show that errors of one type stood out as more severe than the others, but at least for the
phrase-based SMT systems studied in this work, this was not the case. Errors of type SCORE actually decreased when
moving to the News domain. Even if we exclude the News domain, errors of type SEEN and SENSE have different
impacts in the other domains. Errors of type SENSE are higher for the Subtitles domain while they are lower for the
Medical and Science domains.
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4 Micro-level Evaluation: WADE Analysis
Section 3 presented a macro-level study of how several error types affect translation performance (in our case, mea-
sured by BLEU). In this section, we present a micro-level evaluation tool for studying the same error types. We call
this technique WADE, or Word Alignment Driven Evaluation. WADE identifies errors on the sentence level in real
translation output, and we have developed a visualization tool for browsing error-tagged machine translation output. In
addition to sentence-level visualizations, we present aggregate statistics over all sentences in a test set.

4.1 WADE Analysis
Our WADE technique analyzes MT system output at the word level, allowing us to (1) manually browse visualizations
of data annotated with error types, and (2) aggregate counts of errors. WADE is based on the fact that we can automati-
cally word-align a test set French sentence and its reference English translation, and we can use the MT decoder’s word
alignments between a test set French sentence and its machine translation. We can then check whether our translated
sentence has the same set of English words aligned to each French word that we would hope for, given the English
reference. WADE’s unit of analysis is a word alignment between test set French words and their reference translations.

Based on the word-aligned machine translation, we automatically annotate each test-reference word alignment with
one of the following categories:

• Correct

• OOV-Freebie

• Sense-Freebie

• Score/Search Error

• OOV-Wrong

• New Sense-Wrong

We determine whether French words are out-of-vocabulary (OOV) or not by looking at the French side of the
parallel training data. We determine whether English translations of French words are new senses or not by looking
at the word-aligned parallel training data (i.e. the lexical t-table). OOV-Freebies are situations in which the correct
translation for an OOV French word is its identity (e.g. many person and place names are identical in French and
English). Sense-freebies are situations in which the correct translation for a French word is its identity, but we had
seen the French word translated as something else in the t-table4. When our MT system encounters a French word
that it does not know how to translate, its default behavior is to copy the word in the output. In both ‘freebie’ cases,
the copied word is correct. OOV-Wrong annotations occur when a French word is OOV but the identical translation is
incorrect. New Sense-Wrong annotations occur when the reference English translation of a French word is new. When
the MT system has access to the correct English translation of a French word but makes either a search or score error
and does not produce the correct translation.

4.2 Results
Figures 2 and 3 show examples of the output from the WADE visualization tool that we have created.

WADE is fundamentally based upon word alignments, so alignment errors may affect its accuracy. Such errors
are obvious in manually inspecting sentence triples using the visualizer. In developing this tool, we were particularly
skeptical that alignment errors would make aggregate counts of the above annotations uninformative. In order to
estimate how much alignment errors affect WADE, one the French speakers on our team manually inspected the word
alignments for 1,088 French-English test set sentences in the EMEA domain. Our annotator marked 133 sentences (or
12% of the data she inspected) as bad translation pairs and manually corrected the automatic word alignments in the
remaining 955 sentences.

4These cases are likely a result of a bad word alignment. Note also that, in these cases, the MT system does not translate the French word as its
previously observed English sense because either the unigram lexical translation rule was not extracted by the grammar or it was pruned from the
grammar that we used in decoding.
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Figure 2: Example of WADE visualization

Figure 3: Example of WADE visualization

Figures 4 and 5 show WADE analyses for several experimental outputs in the EMEA domain. In each figure, pairs
of bars correspond to analyses of MT output from systems trained on the following datasets: (1) Hansard domain data
only, (2) EMEA domain data only, (3) concatenation of Hansard and EMEA data.

There is no clear trend in the comparison between the analyses based on automatic alignments and the analyses
based on manual alignments. In the Hansard-only-train experimental condition, the analysis based on manual align-
ments reports fewer errors overall than the one based on automatic alignments. However, in the other two conditions,
the analyses based on manual alignments report slightly more errors overall. Although it would be nice to see more
consistency, the rank order between the experimental conditions is the same for both sets of alignments. That is, both
report that the system trained on Hansard data alone is the worst performer and the system trained on the concatenation
of the two datasets is the best performer.

In nearly all experimental conditions, score and search errors (labeled incorrect) make up the majority of errors,
followed by new sense errors and then seen (OOV) errors. However, interestingly, the system trained on Hansard
domain data only makes both more new sense errors and more seen (OOV) errors than the systems that also make
use of in-domain training data. It makes only slightly more score and search errors. This means that the performance
degradation that we observe when shifting domains can be attributed to words with new senses and unseen (OOV)
words more so than score and search errors.

4.3 WADE Conclusions
Our aggregate WADE results support the conclusions made through the macro-level analysis presented in Section 3.
That is, WADE shows that sense and seen errors account for more of the performance degradation that we observe in
shifting domains than either score or search errors. Moreover, the WADE visualizer is an effective tool for browsing
examples of all error types in real MT output.
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Figure 4: WADE results using automatic alignments. The three pairs of bars correspond to output from systems trained
on the following datasets: (1) Hansard domain data only, (2) EMEA domain data only, (3) concatenation of Hansard
and EMEA data.
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Figure 5: WADE results using manually corrected alignments. The three pairs of bars correspond to output from sys-
tems trained on the following datasets: (1) Hansard domain data only, (2) EMEA domain data only, (3) concatenation
of Hansard and EMEA data.
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5 Phrase Sense Disambiguation for Domain Adapted SMT
Our analysis of domain effects, which we covered in Section 3, shows that SMT performance degrades when translating
out of domain because of different types of lexical choice errors: SEEN (out of vocabulary errors), SENSE (known
words with unknown translation sense in the NEW domain) and SCORE (known words with known translations but
different translation probability distribution in the OLD and NEW domains). Most approaches to domain adaptation in
SMT rely on coarse uniform mixtures of OLD and NEW domain models. As a result, they do not directly target these
finer-grained lexical phenomena, and yield small improvements in BLEU score 2.

We propose to tackle domain adaptation using Phrase Sense Disambiguation (PSD) modeling Carpuat & Wu
(2007). PSD is a discriminative translation lexicon, which scores translation candidates for a source phrase using
source context, unlike standard phrase-table translation probabilities which are independent of context.

5.1 Introduction to Phrase Sense Disambigation
PSD views phrase translation as a classification task. At test time, the PSD classifier uses source context to predict
the correct translation of a souce phrase in the target language. At training time, PSD uses word alignment to extract
training instances, exactly as in a standard phrase-based SMT system. However, the extracted training instances are
not just phrase pairs, but occurrences of source phrases in context annotated with their English translations.

5.2 Vowpal Wabbit for PSD (and other NLP tasks)
We chose to use Vowpal Wabbit, implemented by John Langford, to implement PSD. Vowpal Wabbit (VW), has a fast
implementation of stochastic gradient descent and L-BFGS for many different loss functions. VW was built into a
library (for this workshop). It is very widely used for machine learning tasks.

It has built-in support for:

• Feature hashing (scaling to billions of features)

• Caching (no need to re-parse text)

• Different losses and regularizers

• Reductions framework to binary classification

• Multithreaded/multicore support

Our “weird” setting (for many machine learning researchers) is that we use label-dependent features. This is normal
for NLP researchers.

Think of it like ranking. Here is a sample problem:
x = le croissant rouge
y1 = the red croissant
y2 = the croissant red
y3 = the croissant
y4 = the red
This could be another problem in the same data set:
x = mange
y1 = eat
y2 = eats
y3 = ate
Different inputs have different numbers and definitions of possible labels, each with it’s own features. We define

the feature space as the X ∗ Y cross-product and either:

1. Regress on loss (csoaa ldf)

2. Use a classifier all-versus-all (wap ldf)

For information on these two algorithms, see the VW documentation which is available from John Langford’s VW
web page at: http://hunch.net/˜vw/

http://hunch.net/~vw/
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5.3 Integrating VW in Phrase-based Moses
When developing PSD, we extended Moses in a number of ways. Most importantly, Moses can now be linked with
the VW library and classifier predictions can be directly incorporated as features in the log-linear model. The overall
architecture was designed to be simple and extensible. PSD itself is again a library. This allowed us to use the
same code for training and decoding, avoiding code duplication and assuring consistent definition and configuration of
features. A diagram of the library is shown in Figure 6.

The logic of feature generation is clearly separated from any VW specifics. The code that extracts and generates
features simply gets an implementation of the abstract class FeatureConsumer — we provide 3 implementations. One
generates features in text format for VW and stores them in an output file. The other two use VW directly via its library
interface. In order to add different classifiers, such as MegaM, one only needs to implement this abstract class.

Figure 6: UML diagram of the PSD library.

The feature extractor contains implementations of various types of features for PSD. A configuration file (in .ini
format) specifies which features should be enabled and sets their parameters (such as context length). Using the same
configuration file in training and decoding guarantees that features will be consistent. Specifically, we implemented
the following features:

• Source/target phrase indicator features.

• Source/target phrase-internal word features.

• Source context features. Values of defined factors in a limited context window.

• Source bag-of-words features.

• Score features. Cummulative quantized translation model log-scores.

• Indicator feature marking the most frequent translation.

• Paired features. Word pair indicator features based on word alignment.

During training, our modified version of the phrase extraction routine outputs information about each extracted
phrase (sentence ID, position). This data is then used to construct training examples for VW (using the PSD library
and the VW “file consumer”) — along with the parallel corpus and (factored) annotation which includes lemmas
and morphological tags. VW model is then trained. We parallelized each of these steps and achieved a considerable
speed-up in training.

For decoding, we implemented a new feature function in Moses (PSDScoreProducer). This feature function eval-
uates all translation options of a given source span at the same time by querying VW for each of them, then inversely
exponentiating the VW score (i.e. loss) and normalizing over all the options to get a probability distribution.



DOMAIN ADAPTATION IN MACHINE TRANSLATION 18

The feature score is stateless in the sense that it does not depend on the target side. On the other hand, it does
require information about source context, and as such, it does not completely fit in the definition of stateless feature
functions in Moses. Moreover, even stateless functions are evaluated during decoding in Moses (not ahead of time),
which — aside from performance concerns — implies that the initial pruning of translation options is done without
their scores.

We therefore integrated our feature in an ad-hoc manner. This allowed us to evaluate it before decoding of each
sentence. Once translation options are collected from phrase tables, our function scores each of them. Then the initial
pruning is done. During decoding (i.e. search for the best hypothesis), our feature function is not queried. Otherwise,
PSD is a normal feature function. As such, it has a weight associated with it, which is optimized during tuning.

In terms of performance, Moses with PSD takes 80% relative longer than the Mose baseline without PSD, which
is quite efficient. We made queries to VW thread-safe and tested all of our code in a massively parallel setting.

PSD is also fully integrated in Moses’ Experiment Management System (EMS, experiment.perl) which allows
potential new users to quickly create experiments with PSD.

All of our code is publicly available in the Moses repository in the branch damt phrase.
We have also created another branch which integrates VW into the Moses implementation of hierarchical models,

this branch is called damt hiero. We have particularly focused on Hiero (Chiang, 2005). Please see section 8 for more
details.



DOMAIN ADAPTATION IN MACHINE TRANSLATION 19

6 Intrinsic Lexical Choice

6.1 Task Overview
It has been observed that words acquire new senses and that the distribution of senses changes in different domains.
For the purposes of this task two senses are distinct if they are translated differently. While BLEU allows to evaluate
the overall quality of the translations, it does not directly examine how the system is doing at translating new and
ambiguous senses. To address this we created an additional method of evaluation that consists of directly examining
the accuracy of translation on phrases that are likely to change senses in our given domains. We call these phrases
representative phrases. Such a metric helps us to identify how well the system is adapting to a new domain independent
of its BLEU score, as well as to compare performance of a full-fledged MT system with output from a PSD classifier,
which could help us to select productive features without running the full MT pipeline.

6.2 Selecting Representative Phrases
For the representative phrases we wanted to identify phrases that have multiple senses within either the new or the old
domain as well as phrases that acquire new senses in the new domain.

We used a semi-automatic approach to identify representative phrases. We first used the phrase table from the
Moses output to rank the phrases in each domain using TF-IDF scores with Okapi BM25 weighting in order to identify
meaningful phrases in each of the domains. For each of the three new domains (EMEA, Science, and Subs), we found
the interesect of phrases with the old and the new domain. We then looked at the different transaltions that each of
these phrases had in the phrase table and a French speaker selected a subset of these phrases that have multiple senses.

In addition to the manually chosen phrases, we also identified words where the translation with the highest lexical
weight varied in different domains, with the intuition being that these phrases were ones that were likely to have
acquired a new sense. The top 600 phrases from this were added to the manually selected representative phrases to
form a list of 812 representative phrases.

6.3 Creating the Gold Standard
Once the list of representative phrases was established, we created the gold standard for the intrinsic lexcial choice task
as follows.

1. Extract phrase sense disambiguation files for all of the domains.

2. Filter the PSD files to only include representative phrases and their translations.

3. Create a list of distinct translations and the lexcial weight of that translation from the French to English lexical
weight file from Moses.

4. For each representative phrase rank translations by decreasing lexical weight and filter the file to only include
translations such that the lexical weight is greater than zero and the sum of lexical weights for that phrase is less
that 0.8.

5. Filter the PSD files from step 2 to only include instances where the representative phrase was translated as one
of the translations in step 4.

The resulting file is used as the gold standard for the intrinsic lexical choice task.

6.4 Effect of Multiple References
One of the disadvantages of our setup is that there is only one reference translation. As a result, there may be instances
where multiple translations are possible, and the system output is correct but does not match the reference translation.
One way that we can approximate having multiple reference sets is by calculating the Meteor score for the transla-
tions. Meteor aligns the system output to the reference translation using any combination of exact matches, stemming
matches, synonym matches (using WordNet), and paraphrase matches (using a paraphrase table created from CCB
word).
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To examine the effect of having a single reference set when translating representative phrases, we looked at Meteor
alignments between Moses output for the representative phrases and the reference translation on a system trained only
on Hansard, only on EMEA, and on Hansard concatenated with EMEA using only exact matches, only stemming
matches, only synonym matches, and only paraphrase matches. For all three systems, the majority of matches were
made by exact alignments and for EMEA and Hansard + EMEA, a very small percent of matches were made through
stemming, synonyms, or paraphrases. The only system where a significant portion of the output was aligned through
either synonyms or paraphrases was on the Hansard trained system. In this case fewer matches were made through
exact matches and instead the system relied more heavily on synonyms and paraphrases to align the data.

Table 10: Percent of Alignments Made for Representative Phrases

Trained On Exact Stemming Synonym Paraphrase
Hansard 78.02% 0.85% 1.86% 9.17%
EMEA 93.16% 0.68% 0.75% 0.86%
Hansard + EMEA 92.52% 0.45% 0.56% 1.92%

One concern was that distinct senses of a word may be counted as synonyms or paraphrases by Meteor, but may
not actually be synonymous in context. For instance, administration can be translated as either ’administration’ or
’directors’ in some cases, but it would be incorrect to translate voie d’administration as ’route of directors’. We
therefore had a French speaker annotated whether or not the alignment was correct in the context of the sentence. The
precision of the alignments is reported in 10. Over all three systems there is high precision for synonym matches.
In the EMEA trained system there is also high precision for paraphrase matches. However, only about half of the
paraphrases made in the Hansard trained system were judged to be accurate paraphrases and the concatenated system
falls in between the two.

Table 11: Precision of Meteor Representative Phrases Alignments

Trained On Synonym Paraphrase Either
Hansard 0.98 0.47 0.50
EMEA 0.98 0.95 0.95
Hansard + EMEA 0.97 0.68 0.73

6.5 Summary
We developed this intrinisc lexical choice task as an alternative evaluation metric that measures how successfully a
system translates new and ambiguous phrases in the target domain. This also allows us to compare performance
between a word-sense disambiguation classifier and a full machine translation system. Ambiguous phrases were iden-
tified through a combination of TF-IDF weighting and identifying words whose lexical weights vary greatly between
the source and target domain. Although these translations are based on a single reference translation, experiments
with Meteor demonstrate that only a small percent of additional alignments are made through synonym or stemming
matches, suggesting that the gains of having a second reference translation would be small. The intrinsic lexical choice
task will allow us to evaluate how the system specifically performs on the domain adaptation task in a precise and
informative way.
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7 Phrase-based PSD

7.1 Baseline
Before experimenting with PSD, we carried out a brief evaluation of currently available tuning algorithms. We used
one 16th of Canadian Hansards data for training, the tuning and evaluation sets were also taken from Hansards. Each of
the evaluated methods was run 5 times. Table 12 summarizes the achieved results. Batch MIRA outperformed MERT,
PRO and their combination, while none of the other methods was significantly better than any of its competitors. We
therefore used batch MIRA for tuning in all of our experiments.

Algorithm BLEU StDev
MERT 24.85 0.13
PRO+MERT 24.88 0.03
PRO 24.91 0.02
Batch MIRA 25.04 0.03

Table 12: Evaluation of tuning algorithms.

Figure 7: PSD pipeline in a phrase-based decoder.

7.2 Phrase-based PSD
In the phrase-based setting, phrase-sense disambiguation has potential to mitigate many of the inherent problems of
this approach to MT. Specifically, by looking at wider context on the source side, we can make the task of lexical
selection easier. Consider translation of “rapport” in the example in Figure 7. Even though the immediate context
(“notre”) would suggest that “relationship” is the correct translation, the word “wrote” makes the translation “report”
much more likely. This word lies outside the scope of current state-of-the-art models, yet PSD can use it to infer the
lexically correct translation.

Moreover, the generalization provided by this model could be beneficial when moving to new domains, even
without applying any techniques for domain adaptation.

We ran experiments with PSD on various domains and data sizes. So far, we have not been able to improve the
BLEU score. We are currently investigating the possible reasons for our results.
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8 Soft Syntax and PSD for Hierarchical Phrase-Based SMT
Instead of using phrase sense disambiguation for domain adaptation (5) within a phrase-based SMT system (7), we
propose to use word sense disambiguation as well as syntactic features within a hierarchical phrase-based SMT frame-
work (Chiang, 2005). For this purpose, VW has been integrated in a hierarchical MT system. Because the moses
open-source toolkit (Koehn et al., 2007) supports both phrase-based as well as hierarchical machine translation, both
integrated systems are available in moses.

8.1 Hierarchical Machine Translation for Domain Adaptation
We first show in which extent hierarchical machine translation can help domain adaptation in cases where phrase-based
systems may lack of expressive power. We consider news as our first (or old) domain and medical as our second (or
new) domain. For the same reasons as described in section 2, we work with the French-English language pair. Assume
that the following French source sentence (FNews) and English reference (ENews) belong to the news domain.

• FNews : Il a été retrouvé confiné dans une enceinte

• ENews : He has been found hidden in a building

In this first sentence pair, the French noun enceinte is translated into building and no reordering is performed. Now
consider the sentences FMed and EMed, which belong to the medical domain.

• FMed : medicament pour personnes diabétique enceinte

• EMed : medication for pregnant diabetic persons

In this second sentence pair, the French adjective enceinte is translated into pregnant and is moved in front of the
segment diabetic persons. In order to obtain a correct translation and reordering of enceinte in both domains above,
we need a model that tells us that in the sequence personne diabétique enceinte, the word enceinte has to be translated
as pregnant and moved in front of the sequence. In order to obtain this information using a phrase-based system, a
phrase-pair like PMed below has to be seen in training.

• PMed : personne diabétique enceinte→ pregnant diabetic person

• PNews : dans une enceinte→ in a building

In the same fashion, a phrase-pair like PNews has to be seen in order to correctly translate and reorder sentences
FNews and FMed. Otherwise, there is no direct way to assign high probabilities to such sequences and the reordering
decision is deferred to the lexical reordering model. Note that both phrases are relatively domain specific and hence
not likely to bee both seen during training.

Within a hierarchical, or in general a syntax-based framework, the correct translation and reordering of sentences
FNews and FMed only requires the following rules getting a high score when applied within the right domain :

• RNews : X enceinte→ X building

• RMed : X enceinte→ pregnant X

• RMedS : NP enceinte→ pregnant NP

It is obvious that such rules are more likely to be extracted from the training set than complete phrases such as
PMed.
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8.2 Syntax Based SMT
Unlike phrase-based SMT systems, where phrasal segmentation is performed on sentences provided to the machine
translation system, syntax-based SMT systems decode by parsing the provided input. Note that by ”syntax-based”,
we denote all MT systems using parsing for decoding. These include, among others, hierarchical, tree-to-string and
string-to-tree as well as tree-to-tree systems. The figure below displays a syntax-based decoding pipeline.

Input −→ Parser −→
Machine
translation
system

−→
Language
model −→ Output

When training a syntax-based system, syntactic labels obtained from parse trees can be used to annotate non-
terminals in the translation model. The annotation can either be directly attached to the SCFG rules such as in rule
RMedS in the previous section. In this case, syntactic constituents have to be directly matched during decoding.
This approach is often referred to as ”hard syntax”. Another possibility consists in adding linguistic constraints to
hierarchical models using feature functions. This approach is often referred to as ”soft syntax”. In general, models
using hard syntactic constraints tend to have coverage problems as noted by Ambati & Lavie (2008). However, work
has been done to improve coverage such as inexact constituent matching (Zollmann & Venugopal, 2006), joint decoding
(Liu et al., 2009) or parse relaxation (Hoang & Koehn, 2010).

8.2.1 Hard Syntactic Constraints for Domain Adaptation

Using hard syntax for domain adaptation has several drawbacks mainly related to the coverage problems encountered
using this approach. For instance, while a sentence like FMed fits well in such a system, translation of FNews is more
difficult. By parsing sentence FMed and applying the SCFG rules SC1 to SC4 below, the segment personne diabétique
enceinte can be correctly translated and reordered. A the top of the derivation, a rule like SC1 can be picked because
personne diabétique enceinte is very likely to be labeled as an NP by a French parser. Furthermore, SC1, as well as
SC2 to SC4, have a sufficient level of generality to be likely to be seen during training.

• SC1 : SENT/SENT→ <NP enceinte , pregnant NP>

• SC2 : NP/NP→ <NN ADJ , ADJ NN>

• SC3 : NN→ <personne , person>

• SC4 : ADJ→ <diabétique , diabetic>

However, problems arise when trying to translate sentences like FNews with rules having enceinte as lexical item
because the part of the input sentence covered by the non-terminal in the rule is no complete syntactic constituent. In
other words, in the segment confiné dans une enceinte, the segment confiné dans une does not compose a complete
syntactic constituent. In this case, hard syntactic constraints force the application of a rule like SENT/SENT →
<VPART PREP DET enceinte , VPART PREP DET building>. The forced application of such rules causes a loss of
generality over rules like X/X→ <X enceinte , X building>. SCFG rules containing linguistic syntactic constituents
are, first, less likely to be seen in training and, second, tend to apply badly on unseen data.

8.2.2 Soft Syntactic Constraints for Domain Adaptation

Using a hierarchical Phrase-based SMT system instead of a system using (hard) syntactic labels allows us to avoid
restrictions related to non-matching constituents. For instance, in a hierarchical system, the word enceinte in sentence
FNews above can be translated by using rule RNews (X enceinte→ X building). However, the removal of syntactic
labels from SCFG rules highly increases structural ambiguity. Rules such as RNews can indeed by applied to any
French sentence containing the word enceinte with X having any possible span withdraw. Combining syntactic features
with a hierarchical system restricts the structural ambiguity of hierarchical rules while allowing rule application across
syntactic constituents. This has been shown, among others by Marton & Resnik (2008), Chiang (2010) and Simianer
et al. (2012). As an example, consider the following segments in FNews and FMed after parsing :

• ( confinéV PART dansPREP uneDET enceinteNN )SENT
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• ( (personneNN diabétiqueADJ )NP enceinteADJ )NP

When translating the input sentence FNews from the News domain, the information that the word enceinte is a
noun (NN) and that its parent constituent is the whole sentence (SENT) helps the system to correctly chose rule RNews
(X enceinte→ X building) in a derivation. In the same fashion, when translating sentence FMed, the information that
enceinte is an adjective (ADJ) and is located in a noun phrase (NP) indicates that the rule RMed (enceinte→ pregnant
NP) should be picked. Hence, for domain adaptation, soft syntax allows the system to work with rule having a high
expressive power while decreasing structural ambiguity with a feature encouraging constituent matches.

8.3 Integration of VW in a Hierarchical SMT System

8.3.1 Estimation of a Syntax Feature Score

The integration of VW in hierarchical moses allows, first, to integrate soft syntactic features in this system. As seen
in section 8.2.2, such features help to reduce the structural ambiguity inherent to a hierarchical system without loss of
generality. This in turn allows better adaptation to new domains. VW is trained on a large word-aligned parallel corpus
parsed on the source language (French) side. The classifier is then called during decoding and the obtained predictions
define a syntactic score which can be used as one feature in the log linear model. A large number of features can
potentially be used to train VW. Currently the following are used :

• Constituent and parent of applied rule

• Span width of applied rule

• Type of reordering (multiple non-terminals)

In the long run, we plan to integrate more syntactic features in the system using not only source but also target
context information.

8.3.2 Estimation of a PSD probability

Because the integration of VW in a hierarchical system allows to handle a large number of features, a PSD model 5
can be added to syntactic features. The integration of PSD features further reduces structural ambiguity by helping
the system to chose rules containing the correct lexical items. For instance, in sentence FNews and FMed, given again
below, knowing that the token ”confiné” occurs in FNews helps to select R3 (X enceinte→X building) while knowing
that ”personne” occurs in FMed helps to select rule RMed (X enceinte→ pregnant X).

• personne diabétique enceinte⇒ pregnant diabetic patient

• confiné dans une enceinte⇒ hidden in a building

Hence, all features composing the PSD model integrated into phrase-based moses are also integrated into the
hierarchical version. In this setup, the combination of syntax and psd scores define one feature in the log-linear model.
Among others, the following PSD features have been integrated in hierarchical moses :

• French (source) context of rule

• Source and Target of rule

• Bag of words inside of rule

• Bag of words outside of rule

• Aligned terminals

• Rule scores (e.g. p(e|f))
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8.3.3 Calls to VW during decoding

In a hierarchical system, the number of translation options provided for a given segment of the input sentence is
typically larger than in a phrase-based system. More precisely, for each matched segment (e.g. patiente diabétique
enceinte), we have :

• N possible rule source sides :

– X/X→ <X enceinte , ...>

– X/X→ <patiente X , ...>

– X/X→ <patiente X enceinte , ...>

Then we have, for each source side :

• M possible target sides :

– X/X→ <X enceinte , pregnant X>

– X/X→ <X enceinte , X building>

A phrase-based system only matches one source phrase (with M corresponding targets) to each considered segment.
Because during decoding VW is called for each translation option, that is each matched rule, the number of calls to VW
potentially becomes very high within a hierarchical system. However, the runtime slowdown is manageable. In order
to measure this, we trained a hierarchical system using 29515 sentence-pairs from the medical domain. This training
set has also been used to train VW. Then we decoded 2000 sentences using a standard hierarchical system and a system
integrating VW. The first system uses 7 minutes to decode the given input while the second system uses 21 minutes.
Note that the training set is very small and hence results in very small rule tables. Further note that the slowdown is
reduced by the setting of an upper limit to the number of rules used to build translation options.
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9 Domain Adaptation for PSD
In this section, we apply a number of domain adaptation techniques on the PSD data in order to train a model that
uses both old and new domain data and outperforms the individual models. In Section 9.6, we intrinsically evaluate
different domain-adaptation techniques and compare them to the baselines on the EMEA32 and Science domains.

9.1 Baselines
The natural baseline for domain adaptation is to concatenate the old and new data and train a classifier on it. The result
of this concatenation could be different depending on the relative size of old and new and their dissimilarity. If old is
different from new and is much larger, concatenating them would probably hurt the performance.

Figure 8 illustrates the PSD accuracy for various baselines on EMEA32 and Science. The first and second bars of
each group represent EMEA32 and Science results respectively. Old and New refer to old-only and new-only models.
Old + New shows the accuracy of the classifier built on the concatenation of the old and new data. The next baseline
is the classifier that picks the most frequent translation of source phrases (argmax p(e|f)). The frequency statistics for
this baseline are collected from the phrase-table built by concatenating of the old and new phrase-tables. Finally, the
last baseline shows the percentage of time a random guessing would pick the correct translations. As the figure shows,
the concatenation baselines are slightly worse than the new-only models in both domains.

Figure 8: The PSD accuracy for different baselines on EMEA32 and Science. The first and second bars of each group
represent EMEA32 and Science results respectively.

9.2 Frustratingly Easy DA
The frustratingly easy domain adaption technique by Daumé III (2007) distinguishes between features that are common
between the old and new domains and those that have different interpretations across domains. This method augments
features in the old-domain training data by making a copy of them. Using this techniques, features that have different
meanings in old from new do not get canceled out when combining the two training sets. Daumé III (2007) shows that
this technique is very effective in domain adaptation while it requires only a few lines of code to implement.

9.3 Instance Weighting
Concatenating old and new domain data treat old and new instances in the same manner. This can degrade the scores
especially when old is large and very different from new. A better approach for domain adaptation would be to use only
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instances from old that are similar to new. Instead of setting a threshold and classifying the old-domain instances into
two classes (i.e. similar and dissimilar), we can weight each instance in the old-domain data based on the probability
with which that instance belongs to new. In other words, the more similar an old-domain instance is to the new domain,
more important it gets for the PSD classifier.

The first step is to learn a domain separator classifier. This is done by striping phrase-identity features from source
and target and learn a VW classifier to distinguish between old (with label -1) from new (with label +1). Since there are
many more features than instances5, we need to regularize the training step. Otherwise, the domain separator model
overfits (with domain-separation accuracy of 99%) and cannot generalize well.Once the domain separator model is
learned, it is applied to the old-domain data to classify the instances into two classes. However, we use only the
classification probability for each instance and we use it to weight them in old. The weighted old data, then, gets
concatenated to the original new data and a new classifier is trained on the concatenation.

Using this technique, we allow the classifier not to get biased heavily towards the old-data instances which are
larger than new-data instances. Table 13 shows the effect of the regularizer parameter value (λ) on the domain-
separator classifier as well as on the final classifier. Based on the results illustrated in this table, there is a very weak
relationship between the accuracy of the domain-separator classifier and that of the final classifier.

L1 λ Old Precision Science Precision Domsep Accuracy Classifier Accuracy
1e-03 91.21 67.81 82.31 77.93
1e-04 92.71 79.97 87.86 77.97
1e-05 93.85 84.8 90.41 78.01
1e-06 95.67 90.04 93.52 78.02

Table 13: The effect of different L1 parameter values on the domain separator classifier and the final classifier.

9.4 New + Old Prediction Feature
This is a simple adaptation technique where we do not fully use the old-domain model/data. Instead, we only use the
predictions of the old model as features in the new-domain data. Particularly, we train a model on the old-domain
data and apply it to the new-domain data (and the dev-set). Then, for each instance in the new-domain data, we add
an indicator feature on the predicted label (i.e. argmax). Alternatively, for every label, we can add a numeric feature
indicating the level to which the old-only model is confident about that label being the correct one. Our results show
that using the full old-model score (i.e. the latter case) slightly improves the accuracy of the classifier. When we use
only indicator features on one of the labels in each group, the accuracy is 77.88% while using the full old-model score
on all labels, we get 78.04% accuracy.

9.5 Model interpolation
In model interpolation, two separate models are trained on old and new and these models are interpolated linearly or
log-linearly.

Plinear(e|f) ∝ λ1Pold(e|f) + λ2Pnew(e|f)

Plog-linear(e|f) ∝ Pold(e|f)λ1Pnew(e|f)λ2

However, for our experiments since the accuracy of the old-only model is significantly lower than that of the new-
only model (in both domains), log-linear interpolation would hurt the accuracy. The interpolation weights are learned
using cross-validation on the dev-set. The model interpolation can be done offline or the predictions can be mixed
online.

5The number of total features is two orders of magnitude larger than the number of training instances due to using quadratic features
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9.6 Adaptation Results
Table 14 shows the accuracies for different baselines and different domain adaptation techniques that were used. The
results are based on two subsets of the EMEA training-set: EMEA16 and EMEA32. Unseen Dev refers to a subset
of Dev that does not have an overlap with the training-set. Similarly, Table 15 shows the results on Science unseen
dev-set.

System Dev Unseen Dev
EMEA16 EMEA32 EMEA16 EMEA32

Old 61.5 55.84
New 78.85 77.74 73.04 72.38
Old + New 76.85 75.84 70.57 69.66
FEDA (Old Aug) 78.26 77.33 72.60 71.76
Instance Weighting 78.12 77.48 72.89 71.49
Old Initialized New 75.35 73.49 66.47 65.09
New + Old Prediction Feature 78.75 78.09 72.86 72.90
Linear Mixture 78.99 77.99 73.39 72.91

Table 14: Unadapted and adapted PSD classifier accuracy on EMEA16 and EMEA32

System Dev(unseen)
Old 73.34
Science 77.92
Old + Science 77.39
FEDA (Old only) 77.92
Instance Weighting 77.97
New + Old Prediction Feature 77.88
New + Old Prediction Feature (full score) 78.04

Table 15: Unadapted and adapted PSD classifier accuracy on Science

As Table 14 and 15 show, the domain adaptation techniques we used over-perform our baselines. However, the
difference is not significant. Preliminary inspections revealed that among the dev-set instances that new-only model
was wrong in classification, only about 4% are correctly classified by the old-only model (for both EMEA and Science).
In other words, the old-only model has little information to add to what the new-only model knows already and this is
also consistent with the results we showed in Section 9.1 where the accuracy of the concatenation baseline falls behind
the new-only model in both models. We suspect this is due to the large and noisy old-domain data and the fact that the
domains are very apart. We need to experiment with more sophisticated domain adaptation approaches. The following
two contingency tables report new-only and old-only inter-model agreements on the dev-set instances.

Figure 9 illustrates the learning curve for different DA techniques. We ran all the experiments for 10 iterations and
recorded the accuracy of the intermediate models. The accuracies of all models go down after a couple of iterations
(the old-only model gets worse after the first iteration). The exception is the instance-weighting model that performs
almost constantly starting from the 5th iteration. This figure suggests that the models are over-fitting and we need to
apply some regularization penalty or train them for fewer iterations.

Old ↓ EMEA→ Correct Incorrect
Correct 57% 4%

Incorrect 21% 18%

Old ↓ Science→ Correct Incorrect
Correct 63% 4%

Incorrect 13% 20%

Table 16: Old-only and new-only inter-model agreements on the dev-set instances.
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Figure 9: Learning curve for different baselines and DA approaches over 10 iterations on the Science domain.
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10 Introduction to Vocabulary Mining
Many of the prior sections have addressed the situation where there is a large amount of parallel data in the new domain.
Such parallel data often makes significant inroads in the problems of “seen” and “sense”, that is, new domain source
language words that are either unseen in the old domain or that require new target language translations. In the absence
of parallel data, however, these are likely the most crucial problems.

The next three sections address several important questions in this area. First, we discuss one method for extracting
new translation pairs from comparable data. This could be used to provide translations for unseen words, and also to
augment the translation options for words that were already seen.

Since we may not want to mine translations for all possible words, and we might not want to augment the translation
options for all words, we next focus on a method for detecting when a word may require a new translation. Detecting
the need for a new sense is cast as a problem in classification.

There may also be a number of clustered sub-domains nestled inside our so-called OLD domain. Especially when
the provenance of the data is broad (e.g. within scientific abstracts, or in data gathered from the web) and the scale
of data begins to grow, latent sub-domains or topics seem likely to occur. We build upon prior work exploiting latent
topics, describing new ways to incorporate latent topic information as features in our system and new models for
finding latent topics.

Finally, we explore several methods for exploiting low-dimensional continuous representations of words for trans-
lation mining. Beginning from a distributional representation of words, we can learn projections into low-dimensional
spaces that minimize distance between translation pairs. Prior work is primarily concerned with learning at the type
level; here we extend that work to consider learning at the token level.
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11 Marginals Technique for Extracting Word Translation Pairs
As we showed in Sections 3 and 4, a major challenge when using a machine translation model trained on OLD-
domain parallel data (e.g. parliamentary proceedings) to translate NEW-domain text (e.g. scientific articles) is the
large number of out-of-vocabulary (OOV) and new-translation-sense (NTS) words. Acquiring translations for such
words is particularly critical in the case of little or no NEW-domain parallel data. In this section, we present a method
to identify new translations of both known and OOV source words that uses only comparable document pairs in the
NEW-domain. Starting from a joint distribution of source-target word pairs derived from the OLD-domain parallel
corpus, our method recovers a new joint distribution that matches the marginal distributions of the NEW-domain
comparable document pairs, while minimizing the divergence from the OLD-domain distribution. We also incorporate
useful orthogonal sources of information based on string similarity and monolingual word frequencies. Adding these
learned translations to our French-English MT model results in gains of over 2 BLEU points over strong baselines.

11.1 Overview of Marginals Technique
In this work, we seek to learn a joint distribution of translation probabilities over all source and target word pairs in
the NEW-domain. We begin with a maximum likelihood estimate of the joint based on a word aligned OLD-domain
corpus and update the joint using NEW-domain comparable data. We define a model based on a single comparable
corpus and then modify it slightly to learn from any number of comparable document pairs, or document aligned
comparable corpora. After learning a new joint distribution over all word pairs, we use it to update our SMT model.
This approach allows us to learn translations for previously OOV words (e.g. French cisaillement and perçage, which
translate as shear and drilling, in the scientific domain) as well as new translations for previously observed NTS words
(e.g. enceinte translates as enclosures, not place, in the scientific domain).

Our approach depends crucially on finding comparable document pairs relevant to the NEW-domain. Such pairs
could be derived from any number of possible sources, and documents may be linked based on timestamps (e.g. news
articles) or topics (inferred or manually labeled). We use Wikipedia6 as a source of comparable pairs. So-called
“interwiki links” (which link Wikipedia articles on the same topic written in different languages, such as English and
French) act as rough guidance that pages may contain very similar information. Our approach does not exploit any
Wikipedia structure beyond this initial signal, and thus is portable to alternate sources of comparable articles, such as
multilingual news articles covering the same event.

11.2 Previous Work
There is a plethora of prior work on learning bilingual lexicons from monolingual and comparable corpora. Approaches
have used a variety of signals including distributional, temporal, and topic similarity (Rapp, 1995; Fung & Yee, 1998;
Rapp, 1999; Schafer & Yarowsky, 2002; Schafer, 2006; Klementiev & Roth, 2006; Koehn & Knight, 2002; Haghighi
et al., 2008; Mimno et al., 2009; Mausam et al., 2010). Prochasson & Fung (2011) extract translations for rare medical
terms. However, all of this prior work stops short of applying bilingual lexicons to end-to-end MT. In this work, we
supplement a baseline MT system with learned translations.

Our approach bears some similarity to those of Ravi & Knight (2011), Dou & Knight (2012), and Nuhn et al.
(2012) in that we hope to learn a translation distribution despite a lack of parallel data. However, we focus on the
domain adaptation setting: parallel data in some OLD-domain acts as a starting point (or prior) for this translation
distribution. In fact, we believe that even in low resource settings, it is reasonable to assume that some initial bilingual
dictionary can be obtained, for example through crowdsourcing (Callison-Burch & Dredze, 2010) or pivoting through
related languages (Schafer & Yarowsky, 2002; Nakov & Ng, 2009).

Daumé III & Jagarlamudi (2011) mine translations for high frequency OOV words in NEW-domain text for the
purpose of domain adaptation. Although that work shows significant MT improvements, it is based upon distributional
similarity, thus making it difficult to learn translations for low frequency source words with sparse word context counts.
Our model allows us to incorporate any number of signals from monolingual corpora, including distributional simi-
larity. Additionally, this important prior work reports results based on artificially created monolingual corpora taken
from separate source and target halves of a NEW-domain parallel corpus, which may have more lexical overlap with
the corresponding test set than we could expect from true monolingual corpora. Our work mines NEW-domain-like
document pairs from Wikipedia. In the results below, we directly compare supplementing a baseline SMT model with

6www.wikipedia.org

www.wikipedia.org
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house place pregnant dress p(f)

enceinte 0.30 0.40 0.10 0 0.80

habiller 0 0 0 0.20 0.20

p(e) 0.30 0.40 0.10 0.20

(a) OLD-Domain Joint (b) NEW-Domain Marginals

house place pregnant dress girl p(f)

enceinte

?????
0.60

habiller ????? 0.20

fille
?????

0.20

p(e) 0.12 0.08 0.40 0.20 0.20

(c) Inferred NEW-Domain Joint

house place pregnant dress girl p(f)

enceinte 0.12 0.08 0.40 0 0 0.60

habiller 0 0 0 0.20 0 0.20

fille 0 0 0 0 0.20 0.20

p(e) 0.12 0.08 0.40 0.20 0.20

=

Matched 
Marginals

Figure 10: Example of starting with a joint distribution derived from OLD-domain data and inferring a NEW-domain
joint distribution based on the intuition that the new joint should match the marginals that we observe in NEW-domain
comparable corpora. In this example, a translation is learned for the previously OOV word fill, and pregnant becomes
a preferred translation for enceinte.

the translations that our model learns and those learned by the model described in Daumé III & Jagarlamudi (2011),
keeping data resources constant.

11.3 Model
Our goal is to recover a probabilistic translation dictionary in a NEW-domain, represented as a joint probability dis-
tribution p(new)(s, t) over source/target word pairs. At our disposal, we have access to a joint distribution p(old)(s, t)
from the OLD-domain (computed from word alignments), plus comparable documents in the NEW-domain. From
these comparable documents, we can extract raw word frequencies on both the source and target side, represented as
marginal distributions q(s) and q(t). The key idea is to estimate this NEW-domain joint distribution to be as similar to
the OLD-domain distribution, subject to the constraint that its marginals match those of q.

To illustrate our goal, let us consider an example. Imagine in the OLD-domain parallel data we find that accorder
translates as grant 10 times, and as tune 1 time. In the NEW-domain comparable data, we find that accorder occurs 5
times, but grant occurs only once, and tune occurs 4 times. This clearly demonstrates that accorder no longer translates
as grant most of the time; perhaps we should shift much of its mass onto the translation tune instead. Figure 10 shows
the intuition.

First we present an objective function and set of constraints over joint distributions to minimize the divergence from
the OLD-domain distribution while matching both the source and target NEW-domain marginal distributions. Next we
explore several extensions to augment this objective function and capture additional information beyond the marginals.
Optimizing this objective with a single pair of source and target marginals can be performed using an off-the-shelf
solver. In practice, though, we have a large set of document pairs, each of which can induce a pair of marginals.
Using these per-document marginals provides additional information to the learning function but would overwhelm
a common solver. Therefore, we present a sequential learning method for approximately matching the large set of
document pair marginal distributions. Finally we discuss a method for obtaining comparable document pairs relevant
to the NEW domain.

11.4 Marginal Matching Objective
Given word-aligned parallel data in the OLD-domain and source and target comparable corpora in the NEW-domain,
we first estimate a joint distribution p(old)(s, t) over word pairs (s, t) in the old domain, where s and t range over source
and target language words, respectively. We use a simple maximum likelihood estimate based on non-null automatic
word alignments (using grow-diag-final GIZA++ alignments (Och & Ney, 2003)). Next, we estimate source and target
marginal distributions, q(s) and q(t), using simple relative frequency counts over the source and target comparable
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corpora. Our goal is to recover a joint distribution p(new)(s, t) for the new domain that matches the marginals, q(s) and
q(t), but is minimally different from the original joint distribution, p(old)(s, t).

We phrase this as a linear programming problem7:

p(new) = arg min
p
| p− p(old) | 1 (1)

subject to:
∑
s,t

p(s, t) = 1, p(s, t) ≥ 0

∑
s

p(s, t) = q(t),
∑
t

p(s, t) = q(s)

Here, joint probability matrices p and p(old) are interpreted as large vectors over all word pairs (s,t). This minimization
is subject to the normal sum of probabilities and nonnegative probabilities constraints (the first two constraints), as well
as our novel marginal matching constraints (the final two constraints).

In addition to forcing the difference between the old and new matrices to be sparse, we would also like the new
matrix to remain as sparse as possible, following prior work (Ravi & Knight, 2011). That is, we believe that the
model should add as few translation pairs as possible to account for the changes in the marginal distribution. We add a
regularization term to capture this intuition:

Ω(p) =
∑
s,t:

p(old)(s,t)=0

λr×p(s, t) (2)

If the old domain joint probability p(old)(s, t) was nonzero, there is no penalty. Otherwise, the penalty is λr times the
new joint probability p(s, t). To encourage the removal of translation pairs that become unnecessary in the new domain,
we use a λr weight on this regularization term that is greater than one. Doing so makes the benefit of a more sparse
matrix overwhelm the desire for preventing change. Any value greater than one appears to suffice; we use λr = 1.1 in
our experiments.

Inspired by the term that encodes a preference for sparse matrices, Ω(p), we include additional orthogonal cues
that words are translations of one another in the objective function (Eq (1)) with additional terms, fj(p):

p(new) = arg min
p
| p− p(old) | 1 + Ω(p) +

∑
j

λffj(p)

We define three additional fj(p) terms:

Penalty for word frequency differences: Most of the time, rare words should align to rare words, common words
should align to common words, and rare words should not align to common words. The penalty is zero if the monolin-
gual frequency of t and s is exactly the same and one if either t or s has a frequency of zero. The penalty is close to
zero if the relative frequency difference is small and close to one if it is large.

f1(p) = p(s, t) · |freq(t)− freq(s)|
freq(t) + freq(s)

Penalty for edit distance: Words that are spelled similarly are often translations of one another. Here, if the normal-
ized Levenshtein edit distance between s without accents and t is less than 0.2, no penalty is applied and a penalty of
1 is applied otherwise. We chose the 0.2 threshold manually.

f2(p) = p(s, t) ·

{
0 if lev(t,strip(s))

len(s)+len(t) < 0.2

1 otherwise

7Initially we experimented with a quadratic penalty on divergence, but here a sparse set of differences seemed to produce better results on a small
dataset.
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Penalty for differences in document-pair co-occurrence: Writing D(w) for the vector indicating the document
pairs in which w occurs, if D(s) and D(t) are dissimilar, it is less likely (s, t) is a valid translation pair. We weighted
D(w) entries with BM25 (Robertson et al., 1994). We use the set of 50,000 document-pairs which are most NEW-
domain-like, to compute these vectors.

f3(p) = p(s, t) · (1− cos(D(s), D(t)))

After manual tuning on a small amount of data, we set λf = 1
3 .

The objective can be optimized by any standard LP solver; we use the Gurobi package (Gurobi Optimization Inc.,
2013).

11.5 Document Pair Modification
While the above formulation can work for any setting in which we have access to comparable corpora, in many cases
we actually have access to comparable documents: for instance, those given by inter-language links on Wikipedia. We
modify our objective slightly because we would like to take advantage of document pair alignments. That is, since we
have information about document correspondence within our comparable corpus, we would like to match the marginals
for all document pairs.

An initial formulation our problem with multiple comparable document pairs might require the p(new) marginals to
match all of the document marginals. In general, this constraint set will be empty. Instead, we take an incremental,
online solution. Specifically, we consider a single comparable document pair at a time. For each pair, we solve
the optimization problem in Eq (1) to find the joint distribution minimally different from p(old), while matching the
marginals of this pair. Again, we use the Gurobi package to optimize the objective, now for each document pair. This
gives a new marginal distribution, tuned specifically for this pair. We then update our current guess of the new domain
marginals toward this document-pair-specific distribution, much like a step in stochastic gradient ascent.

More formally, suppose that before processing the kth document we have a guess at the NEW-domain joint distri-
bution, p(new)

1:k−1 (the subscript indicates that it includes all document pairs up to and including document k−1). We first
solve Eq (1) just on the basis of this document pair, to get a joint distribution p(new)

k , which depends only on the kth
document pair. Finally, we form a new estimate of the joint distribution by moving p(new)

1:k−1 in the direction of p(new)
k ,

via:
p(new)
1:k = p(new)

1:k−1 + ηu

[
p(new)
k − p(new)

1:k−1

]
Here, ηu is a learning rate parameter, set to 0.001 in our experiments8.

In order to account for the number of identical or near identical French to English translations, we make one
additional modification to this algorithm. After each iteration of learning, we give a slight boost to p(new)

k (s, t) for each
word s and its identity, stripped of all accents, strip(t). The size of the update is based on the frequencies of s and t.
In particular, we set pair-specific learning rates to be λs,t = λu · .00001 ·max(1,min(freq(s), freq(t)), where λu is
the same as above. So, if both s and t are seen frequently in our entire monolingual corpus, the increase is relatively
large. If t is never seen, the increase is relatively small. After minimally artificially increasing identity translations,
we normalize the learned joint distribution. Note that in the results presented below, there is often a relatively large
jump in performance from the beginning of learning to the first reported step. This is a result of this artificial identity-
translation probability boosting. Although this artificial boosting helps performance, our marginal matching-based
method for learning translations goes far beyond identical and near-identical translations.

Our updates are, in a sense, like stochastic gradient descent, using an empirical estimate of the gradient rather than
an analytic one. Unlike other empirical gradient estimates such as finite differences (FD) (Berman et al., 1987; Blum,
1954) and simultaneous perturbation (SP) (Spall, 1992), the estimate is based on the difference between the current
point and an optimal point for the specified subproblem. Such a value is expensive to compute but is likely to give an
informative search direction. In order to accelerate learning, we parallelize our algorithm. We have 8 parallel learners
update an initial joint distribution based on 100 document pairs and merge results using an average over the 8 learned
joint distributions.

8We manually tuned this parameter, based on intrinsic results over a very small corpus.
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11.6 Comparable Data Selection
It remains to select these comparable document pairs. We assume that we have enough monolingual new-domain data
in one language to rank comparable document pairs (here, Wikipedia pages) according to how NEW-domain-like they
are. In particular, we estimate the similarity to a source language (here, French) corpus in the new domain. For our
experiments, we use the French side of a new-domain parallel corpus9. We could have also targeted our learning even
more by using our NEW-domain development and test sets themselves. Doing so would increase the chances that our
source language words of interest appear in the comparable corpus. However, to avoid overfitting any particular test
set, we use the larger French side of the training data.

For each Wikipedia document pair, we measure the percent of French unigram, bigram, trigram, and 4-gram types
that are observed in the French monolingual new domain corpus and rank document pairs by the geometric mean
between the four overlap measures. In the results below, we show learning curves over these ranked document pairs.
As mentioned, we also use this ranked list of document pairs to calculate the document-pair co-occurrence penalty.
We did not explore using more sophisticated ways to identify NEW-domain-like Wikipedia pages, such as Moore &
Lewis (2010), and it is possible that a better ranking algorithm would yield additional performance gains. However,
qualitatively, the ranked of Wikipedia pages seemed very reasonable to the authors.

11.7 Experimental setup

11.7.1 Data

We use the French-English Hansard parliamentary proceedings10 as our OLD-domain parallel corpus. Containing over
8 million lines of parallel training text, it is one of the largest freely available parallel corpora for any language pair.
In order to simulate more typical data settings, we sample every 32nd line and use the resulting parallel corpus with
253, 387 lines and 5, 051, 016 tokens to train our baseline model.

We test our model using three NEW-domain corpora: (1) the EMEA medical corpus (Tiedemann, 2009), (2) a
corpus of scientific abstracts (anonymous, 2012), and (3) a corpus of translated movie subtitles (Tiedemann, 2009). We
use development and test sets to tune our MT model and then evaluate end-to-end MT performance. We use the NEW-
domain parallel training corpus only for language modeling, identifying NEW-domain-like comparable documents,
and intrinsic lexicon induction evaluation. In all parallel corpora, we normalize English data for American spelling.

11.7.2 Machine translation

We use the Moses MT framework (Koehn et al., 2007) to build a standard statistical phrase-based MT model using
our OLD-domain training data. Using Moses, we extract a phrase table with a phrase limit of five words and estimate
the standard set of five feature functions (phrase and lexical translation probabilities in each direction and a constant
phrase penalty feature). We also use a standard lexicalized reordering model and two language models based on the
English side of the Hansard training data and the English side of the given NEW-domain training corpus. Features
are combined using a loglinear model optimized for BLEU, using the n-best batch MIRA algorithm (Cherry & Foster,
2012). In our experiments below, we add new phrase pairs and new feature scores to the baseline phrase tables.

11.7.3 Experiments

For each domain, we use the marginal matching method described in Section 11.3 to learn a new, domain-adapted
joint distribution, p(new)

k (s, t), over all French and English words. We use the learned joint to compute conditional
probabilities, p(new)

k (t|s), for each French word s and rank English translations t accordingly. Before performing end-
to-end MT experiments, we evaluate the learned joint directly, by comparing it to each joint distribution based on the
word-aligned NEW-domain parallel corpora. We measure intrinsic performance using several metrics to compare the
distributions and show learning curves over increasing numbers of comparable document pairs. In each MT experiment,
we use both p(new)

k (t|s) and p(new)
k (s|t) as new feature scores for the new translation pairs and use constant values for

the old translation features on the new translation pairs. Our end-to-end MT experiments vary the following:

• We append the top-k translations for each OOV French word to the phrase table, varying k.
9We could have, analogously, used the target language (English) side of the parallel corpus and measure overlap with the English Wikipedia

documents, or even used both.
10http://www.parl.gc.ca



DOMAIN ADAPTATION IN MACHINE TRANSLATION 36

0 10000 20000 30000 40000 50000

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Number of Document Pairs

M
ea

n 
R

ec
ip

ro
ca

l R
an

k

●

EMEA
Science
Subtitles

(a) Mean Reciprocal Rank

0 10000 20000 30000 40000 50000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

●
●

●
●

●
●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Number of Document Pairs

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

●

EMEA
Science
Subtitles

(b) Mean Average Precision
Figure 11: Intrinsic bilingual lexicon induction results

French OLD top p(old)(e|f) NEW top p(gold)(e|f) MM-learned top p(new)
k (e|f)

cisaillement - shear strength shearing shear viscous newtonian
courbure - curvature bending curvatures curvature curved manifold
linéaires linear linear nonlinear non-linear linear linearly nonlinear
récepteur receiver receptor receiver y1 receptor receiver receptors

ajustement adjustment juggling adjusted adjustment fit fitting adjustment juggling fits
champ field jurisdiction scope field magnetic near-field field magnetic fields

Table 17: Hand-picked examples of Science-domain French words and their top English translations in the OLD-
domain, NEW-domain, and distribution learned by marginal matching. The first two French words are OOVs. The
next two are not OOV but only appeared four and one time, respectively, in the training data and only aligned to a
single English word. The last two examples are French words which appeared frequently in the training data but for
which the word’s sense in the new domain shifts (NTS words).

• We append the top-1 translation for all French words appearing fewer than c times, varying c.

• We compare giving existing phrase pairs constant values for the new features with using the new joint distribution
in combination with phrase-internal alignments to score p(new)

k (t|s) and p(new)
k (s|t) for existing phrase pairs.

We also perform oracle experiments in which we identify translations for French words in word-aligned develop-
ment and test sets and append these translations to baseline phrase tables. By doing so, we measure the percent of
possible BLEU score gain that we realize using our learned estimates.

11.8 Results

11.8.1 Intrinsic evaluation

Before using the translations that we learn through marginal matching to supplement an end-to-end MT model, we
evaluate our learned joint distribution p(new)

k (s, t) intrinsically, by comparing it to the joint distribution taken from a
word aligned NEW-domain parallel training corpus, p(gold)(s, t). Figure 11 shows the mean reciprocal rank and mean
average precision of learned joint distributions, p(new)

k (s, t), as a function of the number of comparable document pairs
used in learning. We learn over the 50, 000 document pairs which are most similar to each NEW-domain. Although it
appears we could make some minimal additional gains by learning over more than 50, 000, performance is fairly stable
at that point.

We experimented with making multiple learning passes over the document pairs and observed relatively small gains
from doing so. In all experiments, learning from some number of additional new document pairs resulted in higher
intrinsic performance gains than passing over the same number of document pairs which were already observed.

In the case of OOV words, it’s clear that learning something about how to translate a previously unobserved French
word is beneficial. However, our learning method also learns domain-specific new-translation senses (NTS). Table 17
shows some examples of what the marginal matching method learns for different types of source words (OOVs, low
frequency, and NTS).
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Science EMEA Subs
Simple Baseline 21.91 23.67 13.18
Accent-Stripped 22.20 24.45 13.13
Top-1 Edit Dist 22.10 24.35 12.95
Top-5 Edit Dist 21.09 22.71 12.54
Top-1 Doc Sim. 22.43 25.03 13.02
Top-5 Doc Sim. 22.06 24.42 12.90
Top-1 CCA Distrib. 21.41 - -
Top-5 CCA Distrib. 20.90 - -
Top-1 MM 23.83 26.65 13.03
Top-3 MM 22.63 25.14 12.97
Top-10 MM 22.22 23.89 12.96

Table 18: BLEU score results using several baseline phrase tables and phrase tables augmented with top-1, top-3, and
top-10 marginal matching (MM) translations for each OOV French word.

Science EMEA Subs
Strongest Baseline 22.43 25.03 13.18
Freq < 1 (OOVs) 23.83 26.65 13.03
Freq <11 24.64 26.88 13.06
Freq < 101 24.34 27.14 12.91

Table 19: BLEU scores comparing phrase tables augmented with top-1 translations for each French word with the
indicated OLD training data frequencies.

11.8.2 MT evaluation

By default, the Moses decoder copies OOV words directly into its translated output. In some cases, this is correct
(e.g. ensembles, blumeria, google). In other cases, French words can be translated into English correctly by simply
stripping accent marks off of the OOV word and then copying it to the output (e.g. caméra, éléments, molécules). In
the Science and EMEA domains, we found that our baseline BLEU scores improved from 21.91 to 22.20 and 23.67
to 24.45, respectively, when we changed the default handling of OOVs to strip accents before copying into the output.
Interestingly, performance on the Subtitles domain text did not change at all with this baseline modification. This is
likely due to the fact that there are fewer technical OOVs, which are the terms typically captured by this accent-stripping
pattern, in the subtitles domain.

Throughout our experiments, we found it critical not to eliminate the potential to get such ‘freebie’ OOV trans-
lations correct by proposing an alternate, incorrect translation. In all of the results presented below, including the
baselines, we supplement phrase tables with new candidate translations but also include accent-stripped identity, or
‘freebie’, translations in the table for all OOV words. We experimented with classifying French words as freebies or
needing a new translation, but oracle experiments showed very little improvement (about 0.2 BLEU improvement in
the Science domain), so instead of classifying words, we simply include both types of translations in the phrase tables.

In addition to the strip-accents baseline, we compare results with three additional baselines. First, we ranked
English words11 by their Levenshtein edit distance away from each French OOV word. Second, we ranked English
words by their document-pair co-occurrence score (described in Section 11.3) with each French OOV word. Finally,
we used the CCA model described in Daumé III & Jagarlamudi (2011) to rank English words according to their
distributional similarity with each French word. Because of time constraints, we were only able to learn using 25,000
Science-domain document pairs, rather than the full 50,000 and for all domains, in the CCA baseline comparison.
However, it’s not likely that learning over more data would overcome the low performance observed so far. For each
baseline, we include one new phrase table feature with the relevant translation score on new translation pairs and an
indicator feature on accent-stripped pairs.

Table 18 shows results appending the top-1 and top-5 English translations for each OOV word using each of the
baseline methods and for each domain. Interestingly, none of the alternate baselines outperform the simplest baseline
on the subtitles data. Using document pair co-occurrences is the strongest baseline for the Science and EMEA domains.

11In particular, for each domain and each OOV French word, we ranked the set of all English words that appeared at least five times in the set
of 50,000 most NEW-domain like Wikipedia pages. Using a frequency threshold of five helped eliminate French words and improperly tokenized
English words from the set of candidates.
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Science EMEA Subs
Strongest Baseline 22.43 25.03 13.18
FF on new 24.64 26.88 13.06
FF on new + existing 24.56 26.54 12.93

Table 20: Comparison of BLEU score results (1) using the learned joint distribution to compute a feature function for
appended phrase pairs only and (2) using it in combination with phrase-internal word alignments to also compute the
feature function on existing phrase pairs. Top-1 translations are appended to source words with frequency of ten or
fewer.

Science EMEA Subs
Strongest Baseline 22.43 25.03 13.18
Mar. Match OOV 23.83 26.65 13.03
Oracle OOV 26.38 29.99 15.06
Poss. gain realized 35% 33% -8%
Mar. Match freq<11 24.64 26.88 13.06
Oracle freq<11 27.91 31.82 16.03
Poss. gain realized 40% 27% -4%

Table 21: BLEU score comparison of supplementing a phrase table with (1) strongest baseline reported in Table 18
for each domain, (2) marginal matching learned translations, and (3) oracle translations, derived from the word aligned
development and test sets. We compare supplementing translations both for OOV words and for all source words
appearing ten or fewer times in the training data.

This confirms our intuition that taking advantage of document pair alignments is worthwhile. In all cases, using the
top-1 English translation outperforms using the top-5.

Tables 18, 19, and 20 show BLEU score results using learned translations to supplement the simple baseline phrase
table. The tables show that adding only the top-1 translation for French words that appear with low frequency in the
OLD-domain training corpus and using a constant value for new feature function on existing phrase pairs outperforms
other experimental conditions.

Table 21 compares end-to-end MT performance when we supplement a baseline phrase table with our learned
translations and when we supplement a baseline phrase table with oracle translations for the same set of source words.
We compare adding translations for only OOV source words and for source words which appear ten or fewer times in
the training data. Using the marginal matching learned translations takes us 40% of the way from the baseline to the
oracle upper bound in the science domain and 27% of the way in the EMEA domain.

11.9 Discussion
BLEU score performance gains are substantial for the science and EMEA domains, but we don’t observe any translation
performance gains on the subtitles text. We believe this difference relates to the difference between a corpus domain
and a corpus register. As Lee (2002) explains, a text’s domain is most related to its topic, while a text’s register is
related to its type and purpose. For example, religious, scientific, and dialogue texts may be classified as separate
registers, while political and scientific expositions may have a single register but different domains. Our science and
EMEA corpora are certainly different in domain from the OLD-domain parliamentary proceedings, and our success
in boosting MT performance with our methods indicates that the Wikipedia comparable corpora that we mined match
those domains well. In contrast, the subtitles data differs from the OLD-domain parliamentary proceedings in both
domain and register. Although the Wikipedia data that we mined may be closer in domain to the subtitles data than the
parliamentary proceedings12, its register is certainly not film dialogues.

Although the use of marginal matching is, to the best of our knowledge, novel in machine translation, there are
related threads of research that might inspire future work. The intuition that we should match marginal distributions
is similar to work using no example labels but only label proportions to estimate labels, for example in Quadrianto
et al. (2008). Unlike that work, our label set corresponds to entire vocabularies, and we have multiple observed label

12In fact, we believe that it is. Wikipedia pages that ranked very high in our subtitles-like list included, for example, the movie The Other Side of
Heaven and actor Frank Sutton.
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OOVs translated correctly and incorrectly
Input les résistances au cisaillement par poinçonnement ...
Ref the punching shear strengths...
Baseline the resistances in cisaillement by poinconnement ...
MM the resistances in shear reinforcement...
OOV translated incorrectly
Input présentation d’ un logiciel permettant de gérer les données temporelles .
Ref presentation of software which makes it possible to manage temporal data .
Baseline introduction of a software to manage temporelles data .
MM introduction of a software to manage data plugged .
Low frequency French words
Input ...limite est liée à la décroissance très rapide du couplage électron-phonon avec la température .
Ref ...limit is linked to the rapid decrease of the electron-phonon coupling with temperature .
Baseline ...limit is linked to the decline very rapid electron-phonon linkage with the temperature .
MM ...limit is linked to the linear very rapid electron-phonon coupling with the temperature .

Table 22: Example MT outputs for Science domain. The baseline is the strip-accents baseline shown in Table 18, and
the MM output corresponds to the Top-1 MM line in the same table. In the first example, the previously OOV word
cisaillement is translated correctly by an MM-supplemented translation. The OOV poinçonnement is translated as re-
inforcement instead of strengths, which is incorrect with respect to this reference but arguably not a terrible translation.
In the second example, temporelles is not translated correctly in the MM output. In the third example, the MM-
hypothesized correct translation of low frequency word couplage, coupling, is chosen instead of the incorrect transla-
tion linkage. Also in the third example, the low frequency word décroissance is translated as the MM-hypothesized
incorrect translation linear. In the case of décroissance, the baseline’s translation, decline, is much better than the MM
translation linear.

proportions. Also, while the marginal matching objective seems quite effective in practice, it is difficult to optimize. A
number of recently developed approximate inference methods use a decomposition that bears a strong resemblance to
this objective function. Considering the marginal distributions from each document pair to be a separate subproblem,
we could approach the global objective of satisfying all subproblems as an instance of dual decomposition (Sontag
et al., 2010) or ADMM (Gabay & Mercier, 1976; Glowinski & Marrocco, 1975). On the other hand, the incremental
update of parameters also bears some resemblance to the margin infused relaxed algorithm (MIRA) (Crammer et al.,
2006), where the divergence penalty is calculated between the current proposal and the last iteration’s resulting value.
Exploring variations of these optimization techniques may lead to faster convergence or better objective function values.

Our focus in this work has been on adapting an SMT model to translate text in some NEW-domain, and our methods
may also be applicable to low-resource MT. In that setting, we can assume access to a standard dictionary or some small
amount of seed parallel text (e.g. using crowdsourcing (Post et al., 2012)) from which we can estimate the old joint
distribution, p(old)(s, t) . The rest of the pipeline for learning new translations and supplementing an SMT model would
look the same.

In the future, we plan to expand our model to learn multi-word translations. The main challenge will be, of course,
the huge increase in the source and target vocabulary sizes. We could limit the phrase set using frequency, pointwise
mutual information, or the joint distribution learned for lower order ngrams. For example, we may want to iterate over
our comparable document pairs once to learn unigram translations and then again to learn bigram translations, using
information from the first learning epoch.

11.10 Conclusions
We proposed a model for learning a joint distribution of source-target word pairs based on the idea that the distribution’s
marginals should match those observed in NEW-domain comparable corpora. Supplementing a baseline phrase-based
SMT model with learned translations results in BLEU score gains of about two points in the medical and science
domains.
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12 Spotting New Senses
Previous analysis indicates that a significant percentage of translation errors in a new domain are ”sense errors.” (See
Section 3.) That is, the word to be translated was observed in old domain training data (i.e. not OOV), but its correct
translation was never learned. Given an old domain and a new domain, it would be useful to be able to identify words
that gain at least one new translation in the new domain. New domain translations for these words could potentially
be mined from comparable new domain data (Section 10) or retrieved directly from MTurkers through in-context
translation tasks. Such words could also be a target for approaches involving active learning. The high frequency of
sense errors in new domain translations suggests that specifcally targeting these words could greatly improve translation
quality. Furthermore, the ability to identify words that gain new translations could help in assessing the difficulty of
translating in any particular new domain.

To this end, we introduce the new binary classification task of ”new sense spotting.” For any word in the intersection
of the old domain and new domain vocabularies, we would like to assign either a positive or negative label. A positive
label for word w means that there exists at least one new domain translation for w that is never the translation of w in
the old domain; a negative label means there are no new translations for w in the new domain.

12.1 Topic Model Feature
The intuition behind the topic model feature is that if a word gains a new translation in the new domain, its distribution
over topics should change when moving into the new domain as well. For example, suppose that in our old domain,
the word ”run” is only ever translated as ”courir,” as in to run a marathon, and in our new domain, ”run” may be
translated either as ”courir” or ”execute,” as in to run a computer program. Because of the new translation that ”run”
has gained in the new domain, the topic that places higher probability on related words like ”computer,” ”program,”
and ”executable,” should also place a higher probability on the word ”run.” In the old domain, however, we would
not expect a similar topic (if it exists) to give a higher probability to the word ”run.” Thus we compute the following
score:

score(w) =
∑
k∈topicsnew

Pnew(k|w)×
∑
k′∈topicsold(Pold(k

′|w)×cossim(k, k′))
For any given word, w, this score will be higher if, for each new domain topic, k, that places high probability

on w, there is an old domain topic, k’, that has a high cosine similarity to k and also places a high probability on w.
Conversely, if no such topic exists, the score will be lower, perhaps indicating the word has gained a new sense in the
new domain.

12.2 Fill-in-the-Blank Feature
Another feature we use to predict whether a word, w, gains a new sense or not is the Jenson-Shannon divergence
between two probability distributions over candidate translations of w, as learned from old domain data and new
domain data, respectively. First we build a new-domain classifier that predicts a target-side word given sentence
context, represented as a bag of words (and the spelling features thereof). The data for this classifier is target-side new
domain monoligual (or comparable) text. The computation proceeds as follows:

• For each word, w, in the source language

– Generate a set of translation candidates C(w) from all available parallel data (mostly old domain, some new
domain).

– For each available source-side sentence, s, (e.g. from comparable or monolingual data) that contains w

∗ Remove w from s. Use old domain language model to translate each unigram remaining in the sentence
to target side, generating a bag of words feature (plus spelling features).

∗ Use the classifier described above to get a distribution over the set C(w).
∗ Compute JS divergence over the set, C(w), between the distributions predicted by the old domain

language model and the new classifier.

• Return average JS divergence over all sentences.
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12.3 N-Gram Feature
Another indicator that a word has perhaps gained a new translation in the new domain is to look at that word’s closely
neighboring words. It is expected that words acquiring new senses will tend to neighbor different sets of words (e.g.
different arguments, prepositions, parts of speech, etc.). Thus, the n-gram feature is merely the ratio of the number of
new domain n-grams (up through trigrams) containing word w to the total number of new domain n-grams cotaining
w. This is done at the type level. Additionally, n-grams containing OOV words are not counted, as they may simply be
an instance of applying the same sense of a word to a new argument (e.g. a proper noun not seen in the old domain).

n-gram-score(w) = |{new−domain−ngrams−containing−w−not−found−in−old−domain}||{all−new−domain−ngrams−containing−w}|

12.4 Results
We tested the above features on a new sense spotting classification task. With no features added, the new sense spotter
correctly classifies half of the examples (a score of 0.5). Below are results for topic model-based and n-gram-based
features.

Table 23: Feature Results

Domain Topic Model N-Gram Both
EMEA 0.586 0.603 0.657
Science 0.564 0.523 0.631

Subs 0.473 0.575 0.574
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13 Latent Topics as Domain Indicators

13.1 Introduction
In this section, we consider methods that leverage document-level information in the MT task. As a motivating exam-
ple, consider translating the sentence “He couldn’t find a match.” This sentence provides little guidance on how to
translate the word ‘match’, which could be either a small instrument used to start a fire, or a correspondence between
two types of objects. Whether we include word-based, phrasal, or even very long-distance features including syntax
or argument structure, the system does not have sufficient information to pick the proper translation. However, if we
know that the topic of the document relates to finding medical documents (e.g. transplant donors) rather than starting
fires, the system may be able to predict the appropriate translation.

Indeed, previous work has shown that both explicit document-level information such as document provenance
(Chiang et al., 2011) and implicit domain indicators such as topic models (Eidelman et al., 2012) can be helpful for
the MT task. We investigated applying this type of information to the domain adaptation setting. In particular, we
are interested in whether adding document-level information to the MT model will be useful in the two different data
cases. First, we consider the case in which we lack parallel data in the new domain but we do have monolingual source
data in the new domain. Next, we consider the case in which there is some parallel data in the new domain, and we
wish to take full advantage of it in informing our topic modeling for the MT task.

13.2 Latent Topic Models
Following prior work (Eidelman et al., 2012), we start with a LDA topic model, in which each document di is rep-
resented by a mixture of topics zn. Associated with each topic zn is a probability distribution generating words
p(wi|zn, β). Given a set of documents, this model learns one topic distribution for each document and a global set of
word distribution for each topic to optimize the likelihood of the full dataset.

13.3 Lexical Weighting Models
To address the first setting, in which for the new domain we have monolingual data only, we built generative latent
topic models over the source data. The resulting topic distributions were used to create lexical weighting models that
were used in the translation model directly. They could inform as features for the PSD classifier (see Ch. 5).

Using these topic models, we explored two types of lexical weighting models: conditioning on either the document-
level distribution or the document- and token-level posterior distribution. Since Eidelman et al. (2012) found that more
peaked document-level topic distributions were most helpful for MT, we created these additional lexical weighting
models that use the per-word posterior distribution over topics with the idea that this might lead to a sharper and more
helpful model. We estimated the document-topic-conditioning lexical weighting models according to the following
criteria: For aligned word pair (e, f), compute the expected count ezn(e, f) under topic zn:

ezn(e, f) =
∑
di∈T

p(zn|di)
∑
xj∈di

cj(e, f)

Then compute the lexical probability conditioned on the topic distribution:

pzn(e, |f) =
ezn(e, f)∑
e ezn(e, f)

For the token-topic-conditioning models, we add the additional conditioning context of the source word:

ezn(e, f) =
∑
di∈T

∑
xj∈di

∑
fk∼e∈xj

p(zn|di, fk),

where

p(zn|di, fk) ∝ p(fk|zn) · p(zn|di).
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These lexical weighting models could then be added as a feature in a log-linear translation model. We compute the
lexical weight over all words in a phrase and use it as a feature in phrase-based translation:

fzn(ē|f̄) = − log{pzn(ē, |f̄)p(zn|d)}

∑
p

λphp(ē, f̄) +
∑
zn

λznfzn(ē|f̄).

13.4 Discriminative Latent Variable Topics
In this section, we consider the case in which there is parallel data available in the new domain. The traditional topic
models seen in section 13.3 are monolingual: they find a mixture of unigram distributions that optimizes the likelihood
of some monolingual document set. However, the topics only look at one side of the parallel data. Intuitively it would
make sense for the MT task to learn topics that leverage both languages. Several approaches have been suggested
for so-called polylingual topic distributions (Mimno et al., 2009; Platt et al., 2010; Jagarlamudi & III, 2010). These
approaches generally try to model the joint likelihood of both documents.

For the MT task, though, we might prefer a model of the conditional likelihood of the target language given the
source, as this is the goal we hope to achieve. Furthermore, there are several limitations of the generative topic models
that we would like to address.

A first limitation is that each word gets an equal voice in selecting the topic distribution of the document. In a
conventional LDA topic model, the probability of a document is

P (θ|α)
∏
i

P (zi|θ)P (wi|zi).

The posterior distribution over topics looks like a naı̈ve Bayes model given the words: each word gets equal weight in
selecting topics. This is unfortunate. Many common words (such as “the” or “is”) have no strong preference amongst
topics. They translate in the same way regardless of topic. Other words may be strong indicators of a particular topic
(such as “the” versus “hexachordal”).

A second limitation is that each topic learns a totally independent distribution. In practice, some words translate
in different ways depending on the topic (such as “bank”); others are more consistent across varying contexts (such as
“the”). We would like a model that addresses this with sharing.

Our idea here is to replace the generative model with a discriminative one that optimizes likelihood directly. First,
we predict the probability of each topic using a log-linear model with features from the whole source document.
This allows some words to vote strongly for particular topics, and others to quietly vacillate without influencing the
distribution substantially.

Second, we replace the translation distribution with another log-linear distribution. We assume that there are 2B

topics for some value B, and that they live in a simple hierarchy consisting of a binary tree. Say we have B = 2, so
there are four topics. Then in addition to the leaf topics 0, 1, 2, and 3, we add three “super-topics”: {0, 1}, {2, 3}, and
{0, 1, 2, 3}. When extracting features for, say, topic 2, we also emit features for the super-topics {2, 3} and {0, 1, 2, 3}.
This allows the parameter estimation procedure to set parameters at the appropriate level of the hierarchy. Words that
do not depend on the topic assignment may have most of their parameters set of the root of the topic tree. Other words
that are influenced by context may learn parameters at lower levels.

We devote the remainder of this section to the formal description of the model and estimation of its parameters.

13.4.1 Notation

• Σ,T: source and target language vocab

• S: Source language document

• T : Target language document

• s, t: source and target language words
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• K: number of topics

• Z = {z1, . . . , zk}: topics

• F : 2Σ×Z → Rm: topic feature function

• G : S×Z×T → Rn: translation feature function

• θ ∈ Rm, φ ∈ Rn: parameter vectors for topics and translations, respectively

13.4.2 Model

We aim to model the conditional likelihood of a target document given a source document, using a mixture of latent
topics:

P (T |S) =
∑
z∈Z

P (z|S)
∏

(s,t)∈(S,T )

P (t|s, z)


The topic distribution is predicted based on features of the whole source document:

P (z|S) ∝ exp(θ · F (S, z))

Each translation is predicted based only on the source word and a given topic likelihood:

P (t|s, z) ∝ exp(φ ·G(s, z, t))

So the likelihood, expanded out, is as follows:

P (T |S, θ, φ) =
∑
z∈Z

exp(θ · F (S, z))

Zθ

∏
(s,t)∈(S,T )

exp(φ ·G(s, z, t))

Zφ


Here is the log likelihood of a single target document Note that the sum over mixture components prevents the log from
further advances, unlike standard logistic regression models.

logP (T |S, θ, φ) = log
∑
z∈Z

exp(θ · F (S, z))

Zθ

∏
(s,t)∈(S,T )

exp(φ ·G(s, z, t))

Zφ


13.4.3 Partial Derivatives for Components of θ

First let us focus on computing the gradient of the topic distribution.

∂

∂θi
[logP (T |S, θ, φ)] =

∂

∂θi

log
∑
z∈Z

exp(θ · F (S, z))

Zθ

∏
(s,t)∈(S,T )

exp(φ ·G(s, z, t))

Zφ


We have that d

dx [log(f(x))] = 1
f(x)

df(x)
dx

=
1

P (T |S, θ, φ)

∂

∂θi

∑
z∈Z

exp(θ · F (S, z))

Zθ

∏
(s,t)∈(S,T )

exp(φ ·G(s, z, t))

Zφ


Push inside the sum

=
1

P (T |S, θ, φ)

∑
z∈Z

 ∂

∂θi

exp(θ · F (S, z))

Zθ

∏
(s,t)∈(S,T )

exp(φ ·G(s, z, t))

Zφ


Push across the prediction portion, which is constant with respect to θ:
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=
1

P (T |S, θ, φ)

∑
z∈Z

 ∂

∂θi

[
exp(θ · F (S, z))

Zθ

] ∏
(s,t)∈(S,T )

P (t|s, z, φ)


Quotient rule: d

dx

[
f(x)
g(x)

]
=

df(x)
dx g(x)−f(x) dg(x)

dx

(g(x))2
. In this case, f(x) is a density of exponential form so f(x) =

exp(h(x)), and g(x) is a partition function. Thus, the first term is the probability times the derivative of the density

before exponentiating:
df(x)
dx gx

(g(x))2
=

df(x)
dx

g(x) =
d exph(x)

dx

g(x) =
exph(x)

dh(x)
dx

g(x) =
f(x)

dh(x)
dx

g(x) = p(x)dh(x)dx . Regarding the second
term, that turns into a probability times an expectation

=
1

P (T |S, θ, φ)

∑
z∈Z

(P (z|S, θ) · Fi(S, z)− P (z|S, θ)
∑
z′

P (z′|S, θ)Fi(S, z′)

) ∏
(s,t)∈(S,T )

P (t|s, z, φ)



=
1

P (T |S, θ, φ)

∑
z∈Z

P (z|S, θ)
(
Fi(S, z)− Ez′|S,θ [Fi(S, z

′)]
) ∏
(s,t)∈(S,T )

P (t|s, z, φ)


13.4.4 Neat Trick

Taking the derivative of a complex product can lead to many terms. Luckily there is a compact way to represent this
product using some calculus:

∂

∂θ

[∏
i

fi(θ)

]

=
∑
i

∏
j 6=i

fj
∂

∂θ
[fi]

=
∑
i

1

fi

∏
j

fj
∂

∂θ
[fi]

=
∑
i

∏
j

fj

 1

fi

∂

∂θ
[fi]

=

∏
j

fj

∑
i

1

fi

∂

∂θ
[fi]

But we know that ∂
∂θ [log f ] = 1

f
∂
∂θ [f ], so we get:

∂

∂θ

[∏
i

fi(θ)

]
=

(∏
i

fi

)∑
i

∂

∂θ
[log fi]

This is a much nicer expression to work with, especially in our log-linear models.

13.4.5 Partial Derivatives for Components of φ

∂

∂φi
[logP (T |S, θ, φ)] =

∂

∂φi

log
∑
z∈Z

exp(θ · F (S, z))

Zθ

∏
(s,t)∈(S,T )

exp(φ ·G(s, z, t))

Zφ


We have that d

dx [log(f(x))] = 1
f(x)

df(x)
dx
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=
1

P (T |S, θ, φ)

∂

∂φi

∑
z∈Z

exp(θ · F (S, z))

Zθ

∏
(s,t)∈(S,T )

exp(φ ·G(s, z, t))

Zφ


Push inside the sum

=
1

P (T |S, θ, φ)

∑
z∈Z

 ∂

∂φi

exp(θ · F (S, z))

Zθ

∏
(s,t)∈(S,T )

exp(φ ·G(s, z, t))

Zφ


Now the first term is constant

=
1

P (T |S, θ, φ)

∑
z∈Z

P (z|S, θ) ∂

∂φi

 ∏
(s,t)∈(S,T )

exp(φ ·G(s, z, t))

Zφ


Then apply our trick

=
1

P (T |S, θ, φ)

∑
z∈Z

P (z|S, θ)

 ∏
(s,t)∈(S,T )

P (t|s, z, φ)

 ∑
(s,t)∈(S,T )

∂

∂φi

[
log

exp(φ ·G(s, z, t))

Zφ

]

=
1

P (T |S, θ, φ)

∑
z∈Z

P (z|S, θ)

 ∏
(s,t)∈(S,T )

P (t|s, z, φ)

 ∑
(s,t)∈(S,T )

(
Gi(s, z, t)− Et′|s,z [Gi(s, z, t

′)]
)

13.4.6 Complete Gradient

Consider a posterior distribution over each topic for a given document pair, defined as this:

P (z|S, T, θ, φ) =
P (T, z|S, θ.φ)

P (T |S, θ, φ)

Then the gradients are just differences between empirical counts and true counts modulated by expectation under
this distribution. So we have:

∂

∂θi
[logP (T |S, θ, φ)] = Ez∼|S,T,θ,φ

[
Fi(S, z)− Ez′|S,θ [Fi(S, z

′)]
]

∂

∂φi
[logP (T |S, θ, φ)] = Ez∼|S,T,θ,φ

 ∑
(s,t)∈(S,T )

(
Gi(s, z, t)− Et′|s,z,φ [Gi(s, z, t

′)]
)

Now for each document, we can first compute the log density of each topic under the current model, and normalize
to get a distribution. Then we gather statistics and multiply by this posterior as necessary.

13.4.7 Optimization

Currently we’re exploring batch optimization using RProp (Calandra, 2011). Note that we have to initialize with a
random vector. A zero vector sits on a saddle point with respect to likelihood, and the model fails to make progress if
we start there. We incorporate an L2 norm as a regularizer, but its weight must be small (no larger than 0.1) to allow
sharp topic distributions.
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13.4.8 Simple Example

Say we have a corpus containing the following two French-English sentence pairs, where the subscript indicates the
word alignment:

(1a) le1 régime2 démocratique3

(1b) the1 democratic3 regime2

(2a) le1 régime2 pamplemousse3

(2b) the1 grapefruit3 diet2

If we learn two latent topics, the resulting document distribution looks like this:
topic 0 topic 1

sentence 1 0.01 0.99
sentence 2 0.99 0.01

The translation distribution is:
source target super-topic01 topic0 topic1
le the 1.00 1.00 1.00
régime regime 0.45 0.99 0.01
régime diet 0.55 0.01 0.99
démocratique democratic 1.00 1.00 1.00
pamplemousse grapefruit 1.00 1.00 1.00

Clearly démocratique and pamplemousse are able to significantly influence the topic distribution, even though their
translation is not topic dependent. Also note that the translation of régime is successfully disambiguated by the topic
indicator.

Of course, this simple example could also be clearly learned by a phrasal model. The broader point is that we can
capture more global relationships with this model.

13.5 Experimental Setup
We used the canadian hansards as the old-domain and EMEA as the new domain. We trained the topic models on the
top 5,000 most frequent words in each corpus. We used vw to learn topic models for the old and new domain data. We
built topic models using 5, 10, 15, and 20 topics, with the α parameter set to 0.1 and 0.01. For the alignment data, we
used the first 250,000 sentences of each corpus.

We considered 3 different settings for the alignment data and the topic model data: old-alignment/old-topics, new-
alignments/new-topics, and old-alignments/new-topics.

13.6 Evaluation
For intrinsic evaluation of the lexical weighting models, we compared the average log likelihood of a held-out set of
new-domain data, consisting of the last 5,000 sentences of the EMEA MT training data. Table 24 summarizes the
results. We see that the conditioning on latent topics helps the log likelihood in all settings, though conditioning on

no-topic doc-topic word-topic
old-alignment, old topic -1.78 -0.47 -0.48
new-domain, new-topic -1.12 -0.26 -0.26
old-domain, new-topic -1.78 -0.27 -0.27

Table 24: Average per-word log likelihood of EMEA data

token as well as document topic distribution does not make a difference. We can also note that using a new-domain
topic model with old-domain alignments allows us to get as good a log-likelihood on the data as using new-alignments
with new-topic. This is encouraging for using these models in MT in the setting in which we have have old-domain
parallel data but only monolingual new-domain data.
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To use the lexical weighting models in the MT system, we added the lexical weights into the pre-trained phrase
table. Results are forthcoming.

The discriminative topic models are still training and results are forthcoming.

13.7 Future Work
We are currently training phrase-based MT systems using the generative and discriminative topic model features;
following that, we plan to also use these features in a hierarchical phrase-based systems. We would also like to
introduce the topics model features into the PSD classifier, since this may allow interaction between longer distance
features than those considered by the phrase-based decoder.
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14 Mining Token Level Translations Using Dimensionality Reduction
SMT systems rely on word/phrase level translation tables to translate sentences from one language into another. The
translation table lists possible translations (e.g. Table 25) of a word irrespective of the context in which the word has
occurred. For concreteness, we call them type level translations since they are independent of the word’s context. In
this section, we address the problem of re-scoring type level translations based on the word’s context. For e.g., given
the French sentence “Il a rédigé un rapport” (whose English translation is “He wrote a report”) we want to score the
English translation ‘report’ higher, where as given the sentence “Quel est le rapport” (What is the relationship) we want
to assign high score to the translation ‘relationship’. We refer to this problem as adapting type level translations to the
token level.

French English p(e|f)
rapport report 0.3
rapport document 0.3
rapport relationship 0.1
rapport reporting 0.05

Table 25: Type level translations of the French word rapport.

Mining token level translations can interact with SMT in the following three different ways: 1) to mine translations
in the new sense, i.e. once a French word has been identified as it is used in a new sense (Sec. 12) we can use
our approach to mine the translations in the new sense. 2) it can be fed as an additional feature for phrase sense
disambiguation (PSD) classifier (Sec. 5) and 3) this can be used to gather new training instance for the PSD classifier.
PSD classifier is trained for only the source and target language pairs that are observed in the translation table, but we
can address this limitation by including additional source and target language translation pairs that are mined by our
approach.

We want our approach to handle out-of-vocabulary (OOV) words and also identify the translations in the new
sense. For example, in the scientific domain, ‘rapport’ translates ‘ratio’ which is not observed in the old domain data.
Since we want our approach to handle these cases as well, we extend on the existing idea of representing words in an
interlingual representation which showed promise in mining translations for the OOV words (Haghighi et al., 2008;
Daumé III & Jagarlamudi, 2011). Our approach involves two main steps: 1) learning type vectors, i.e. representing
source and target language words in a k-dimensional interlingual representation. 2) learning to adapt the type vectors
to the token level. We will describe both these steps in detail in the following two sections, but before that we fix the
terminology that is used in this section.

14.1 Notation
In general, a bold lower case letter (x) represents a column vector, an upper case letter (X) represents a matrix and
a greek letter represents a function. Let mf and me represent the vocabulary size in French and English languages
respectively. Let φ(.) and ψ(.) represent feature functions which take a French and English word respectively and
output a feature vector. Let xi ∈ Rd1 and yj ∈ Rd2 represent the feature vectors of the French and English words
fi and ej respectively, i.e. xi = φ(fi) and yj = ψ(ej). Moreover, let ζ(.) and η(.) be functions that take a French
and English word respectively and return their lower k-dimensional vectors, i.e. ζ(fi) ∈ Rk and η(ei) ∈ Rk. We
differentiate the lower dimensional type and token level embeddings with subscripts p and k respectively.

14.2 Learning Type Vectors
We use canonical correlation analysis (CCA) (Hotelling, 1936) to learn the interlingual representation (Daumé III
& Jagarlamudi (2011)). It uses n word translation pairs as training data to learn the interlingual representation. As
mentioned above, each word is represented as a feature vector. Let X(d1×n) and Y (d2×n) represent the data matrices
with word feature vectors as the columns. Notice that the input feature vectors for French and English words are of
different lengths, i.e. d1 and d2 respectively, so their feature spaces are completely different. Finding an interlingual
representation is an attempt to map both source and target language words into a common sub-space which facilitates
us to learn the token specific vectors. In this section, we assume that the input feature functions

(
φ(.) and ψ(.)

)
are
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known and describe the use of CCA to learn the interlingual representation. Subsequently, we describe the feature
functions.

Given a multi-view data, Canonical Correlation Analysis (Hotelling, 1936) is a technique to find the projection
directions in each view so that the objects when projected along these directions are maximally aligned. Let X (d1×n)
and Y (d2×n) be the representation of n-word pairs in both the languages respectively, then CCA finds the projection
directions a and b such that.

arg max
a,b

aTXY T b
√
aTXXTa

√
bTY Y T b

arg min
a,b
||XTa− Y T b||2 s.t. aTXXTa = 1 & bTY Y T b = 1

The projection directions are obtained by solving the eigen system:[
0 Cxy
Cyx 0

] [
a
b

]
= λ

[
Cxx 0

0 Cyy

] [
a
b

]
where Cxx, Cyy are the covariance matrices for X and Y and Cxy is the cross-covariance. The projection directions
of regularized CCA solves are the eigen vectors of[

0 Cxy
Cyx 0

] [
a
b

]
= λ

[
Cxx + λI 0

0 Cyy + λI

] [
a
b

]
In general, using all the eigen vectors is sub optimal and thus retaining top eigen vectors leads to an generalizability.
So, let A ∈ R(d1×k) and B ∈ R(d2×k) be the projection directions with the top k eigenvectors a and b as columns
respectively. Then the low-dimensional type level embedding of a French word fi is given by ζp(fi) = ATφ(fi),
where φ(fi) returns the feature vector of the French word. Similarly, the low-dimensional type level embedding of an
English word ej is given by ηp(ej) = BTψ(ej).

14.3 Features
In the previous section, we skipped the description of the feature functions and the selection of n-word pairs used for
training. We will describe these two aspects in this section.

From the target domain corpus we extract the most frequent words for both the languages. Of these, words that
have translation in the bilingual dictionary (learnt from Hansards) are used as training data. First, we extract feature
vectors for all the words. We use context and orthographic features. Second, using the translation probabilities of seen
words, we identify wordpairs whose feature vectors are used to learn the CCA projection directions. Finally, the type
vectors are obtained by projecting all the words into the sub-space identified by CCA as described towards the end of
the previous section.

For each of the frequent words we extract the context vectors using a window of length five. To overcome data
sparsity issue, we truncate each context word to its first seven characters. We discard all the context features which
co-occur with less than five words. We convert the frequency vectors into TFIDF vectors, center the data and then
binarize the vectors depending on if the feature value is positive of not. We convert this data into word similarities
using linear dot product kernel. We also represent each word using the orthographic features, with n-grams of length 1-
3 and convert them into TFIDF form and subsequently turn them into word similarities (again using the linear kernel).
Since we convert the data into word similarities, the orthographic features are relevant even though the script of source
and target languages differ. Where as using the features directly rending them useless for languages whose script is
completely different like Arabic and English. For each language we linearly combine the kernel matrices obtained
using the context vectors and the orthographic features. We use incomlete cholesky decomposition to reduce the
dimensionality of the kernel matrices. We do the same pre-processng for all words.

Since a word can have multiple translations, and that CCA needs only one translation, we form a bipartite graph
with the training words in each language as nodes and the edge weight being the translation probability of the word
pair. We then run Hungarian algorithm to extract maximum weighted bipartite matching (Jonker & Volgenant, 1987).
We then run CCA on the resulting pairs of the bipartite matching to get the projection directions in each language. We
retain only the top 35% of the eigenvectors to form the projection directions A and B. In other relevant experiments,
we have found that this setting of CCA outperforms the baseline approach.
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14.4 From Type to Token Level Embeddings
In this section, we describe our approach to adapt type level word embeddings to the token level. For clarity, we use the
French word ‘rapport’ as the running example. Table 26 shows two different contexts in which the word occurred and
also shows the target language translation in both the cases. We use such word aligned parallel data as training data for
the token level adaptation. Notice that the words in the context give an indication of the target translation, e.g. the cue
word ‘rédigé’ in the first sentence is a good indicator that the translation could be ‘report’. We refer to the word that
we are adapting as the focus word and the words in its context as cue words. We limit the cue words to be a window of
words around the focus word.

Il          a redige un

He        wrote        a             report

rapport Quel     est       le rapport

What    is        the       relationship

Table 26: Two different contexts/tokens of the word ‘rapport’. Notice that the word translates into different English
words depending on the context.

As described above, we first use CCA to get the type vectors for all the words. Then the token vector of the focus
word is assumed to be a weighted linear combination of the cue word type vectors.13 Formally, given a French word
fi its token vector ζt(fi) is given as:

ζt(fi) = w0ζp(fi) +
∑

fj∈N (fi)

wfjζp(fj) (3)

where ζp(.) is a function that returns the type vector of a French word, N (fi) returns the cue words that are in the
neighbourhood of the focus word fi, wfj is the contribution of the cue word fj towards adapting the focus word and
w0 is a special weight which indicates the contribution of the focus word towards itself. Intuitively, we would expect
the type and token vectors of a word to be closer so we would expect w0 to be higher than the other weights.

We use word aligned parallel data to learn the weight vector. For each French token, we also know its English
translation. So, we want to find the weight vector such that the token vector of the French word is closer to the type
vector of the English word.14 This can be expressed using the following objective function:

argmin
w0,w

∑
i

∣∣∣∣ζt(fi)− ηp(ei)∣∣∣∣2 (4)

argmin
w0,w

∑
i

∣∣∣∣∣∣(w0ζp(fi) +
∑

fj∈N (fi)

wfjζp(fj)
)
− ηp(ei)

∣∣∣∣∣∣2 (5)

Intuitively, we are using the cue words to capture the contextual information. And the target language translations
provide additional information about the sense in which the focus word is used in each of the contexts. The idea is that
all the contexts in which the focus word translates to the same word should modify the type vector in the same way.

If we consider a window of length two words around the focus word, then the token vector of ‘rapport’ in the above
two running examples is given as:

w0ζp(rapport) + wrédigéζp(rédigé) + wunζp(un) (6)
w0ζp(rapport) + westζp(est) + wleζp(le) (7)

And the weights are learned such that the resulting token vectors are close to the type vectors ηp(report) and ηp(relationship)
respectively. Thus the cue words help us differentiate the different senses of the focus word.

14.4.1 Optimization

Since the adaptation function (Eq. 3) is linear in terms of the weight vector, it can rewritten as a matrix-vector product
which will become useful when we try to learn the weights. Let Z be a (k×mf ) matrix which stores the type vectors

13Why weighted linear combination, argument from the compositionality literature.
14Token and Type rather than Token vectors in both the languages.
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of all the French words. The ith column of Z stores the type vector of the French word fi. Let Ii be a mf×(mf + 1)
indicator matrix. The first column of this matrix indicates the word type of the focus word and the rest of the columns
indicate the context words around the focus word.

Ii(1, j) =

{
1, if focus word is fj
0, otherwise

(8)

Ii(j + 1, j) = frequency of fj in the window around the focus word (9)

The rest of the elements of this matrix are set to zero, hence this is a very sparse matrix. Let w̃ = [w0 wT ]T then the
adaptation function in Eq. 3 can be rewritten as ζt(fi) = Z Ii w̃ and the objective function in Eq. 5 can be rewritten
as follows:

argmin
w̃

∑
i

| ZIiw̃ − ηp(ei) | 2 (10)

Differentiating and setting the derivative with respect to w̃ will result in the following linear system of equations which
can be solved very efficiently.15 (∑

i

ITi Z
TZIi

)
w̃ =

∑
i

ITi Z
T ηp(ei) (11)

14.4.2 Co-Regularization

In the previous adaptation model, the weight of a cue word depends only on the cue word and not on the focus word.
A cue word such as ‘rédigé’ (wrote) can be a good indicator for the focus word ‘rapport’, but it may not be such a good
indicator for a different focus word such as ‘premier’ (whose possible translations are prime minister, first day). Here
we propose an extension of the previous model where the weight depends on the cue word and the focus word. In other
words, there is a weight vector specific to every focus word.

ζt(fi) = ZIiw̃fi

But at the same time, it introduces many parameters into the model and may lead to data sparsity problem. In order
to overcome the sparsity issue we tie the all the weight vectors by a common weight vector (w̃), i.e. we assume
w̃fi ← w̃ + r̃fi , and try to minimize the residual vector r̃(.) as much as possible. The objective function under this
model is expressed as follows:

argmin
w̃,r̃(.)

∑
i

| ZIi(w̃ + r̃fi)− ηp(ei) | 2 + λ
∑
fj

| r̃fj | 2 (12)

14.4.3 Discriminative Adaptation

Both the above models only use the target translation of a French word and ignore other candidate possible translations.
For example, in the first running example the previous models only use the fact that the word ‘rapport’ translates to
‘report’ but they ignore the fact that there are other candidate translations (‘document’, ‘relationship’, etc.) and that
‘report’ is a better choice than the remaining candidate translations. In this model, we explicitly use this information.
The aim is to learn a weight vector such that the token vector is closer to the correct translation but is farther from the
other candidate translations.

Before formulating the new objective function, we slightly rewrite the objective function shown in Eq. 10 as
follows:

argmin
w̃

∑
i

| ZIiw̃ − ηp(ei) | 2 (13)

argmax
w̃

∑
i

2 w̃T ITi Z
T ηp(ei)−

∑
i

w̃T ITi Z
TZIiw̃ (14)

15The left hand side of this equation can be computed efficiently as the element wise product of ZTZ and the co-variance of the indicator matrices.
It is efficient in terms of both space and time compared to its naive implementation.
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We add the discriminative term to the above function such that the token vector moves away from the other candidate
translations. The resulting new objective function is given by:

argmax
w̃

∑
i

2 w̃T ITi Z
T ηp(ei)−

∑
i

w̃T ITi Z
TZIiw̃ + µ

∑
i

∑
ej∈trans(fi) & ei!=ej

w̃T ITi Z
(
ηp(ei)− ηp(ej)

)
(15)

where trans(fi) returns the English translations of the French word fi.

14.5 Experiments
We experiment with the task of reranking the candidate translations based on the context of a French focus word. We
train all the models on approximately 20K tokens between French and English and are evaluated on approximately
7.4K tokens. Both the training and test tokens come from the EMEA domain and the translation dictionary used to
train the type vectors is obtained by running giza++ on the Hansards French-English parallel data. We automatically
word align the parallel data in both the directions and intersect the alignments. We also ignore all the tokens whose
fertility is more than one. We only select French and English word pairs that are aligned at least 20 times, hence the
French words that we consider are highly ambiguous. We report the accuracy of the top scored translation according
to different models.

Method Accuracy
Random 40.29
Max. Probable 57.84
Best cue-word 61.85
Token Adapt. 55.20
Co-regularization 59.15
Disc. Adapt. 60.21
PSD. Classifier 70.10

Table 27: Accuracy of the top-ranked translation.

Table 27 shows the results of few baseline systems and different adaptation models. The first two baselines,
‘Random’ and ‘Max. Probable’ choose a random word and maximum probable word according to p(ej |fi) as the
translation respectively. Both these models ignore the context words around the focus word. The third baseline, ‘Best
cue-word’ uses context words. Given a focus word, first it selects a best cue-word based on the training data and
choose the translation given the focus word and the best cue word. Simple token adaptation yields lower results but
the two extensions co-regularization and discriminative adaptation give approximately 5 point improvement over the
plain adaptation model. But the performance is still less than the best cue-word based method. Finally, we also report
results using a phrase sense disambiguation (PSD) classifier. We train a classifier using context words, POS tags and
positional features. The PSD classifier gives best results. But, notice that PSD classifier uses additional information
that is not available to the other baselines.

14.6 Future Work
In this work, we explored the idea of adapting word type embeddings to the token level based on the context words.
All the models proposed here use weighted linear combination as the model for the adaptation. In the error analysis,
we observed that the training accuracies are also very low which indicates that the model is not sophisticated enough to
capture the intricacies of the problem. We want to extend the adaptation model by associating a transformation matrix
with each cue word rather than a scalar weight. We also want to see if providing the score computed by our model as
a feature to the PSD classifier will improve the accuracies of the PSD classifier.
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15 Summary and Conclusion

15.1 Summary

15.1.1 Analysis of domain effects

We conducted a detailed analysis of domain effects in SMT, and showed that they are not uniform across domains.
Starting from the Canadian Hansard as the OLD domain, we consider 4 NEW domains. While moving to the News
domain does not significantly benefit from NEW domain data, all other domains (Medical, Subtitles, Science) benefit
substantially from NEW data.

We showed that standard simple SMT adaptation methods are only sometimes effective. Concatenating OLD and
NEW data often harms translation quality in both the OLD and NEW domain. Linear and log-linear mixture models
are a better starting point, but there is large room for improvement.

We showed that domain shift errors are distributed amongst 3 major categories in most NEW domains: SEEN
(OOV in the NEW domain), SENSE (word that is known in the OLD domain but is translated in a previously unseen
sense in the NEW domain), and SCORE (known word with known translations but different translation probability
distributions in the OLD and NEW domains). This suggests that fine-grained approaches to domain adaptation that
take into account global and local contextual information are necessary to substantially improve translation quality.

15.1.2 Phrase Sense Disambiguation for DAMT

In order to model context in SMT, we used “Phrase Sense Disambiguation” (PSD), which is a discriminative context-
dependent translation model for SMT.

We showed that it can model lexical choice across domains. In intrinsic lexical choice tasks, we showed that
sentence-level context alone can fix lexical choice errors when shifting domains. We also applied statistical domain
adaptation algorithms to PSD classifiers. However, these algorithms have not proved useful yet.

Note that PSD training and scoring is fully integrated in Moses. We implemented a fast fully-automated experiment
pipeline that is easy to use and extend. We are currently tracking a few remaining bugs.

15.1.3 Mining New Senses and their Translations

We have proposed promising methods to

• detect new senses. We explored a vast feature space including n-gram, topics, marginal matching, language
model perplexity and others, and improved performance from mid 60s AUC to over 70 in the Medical and
Science domains.

• mine useful translation for OOVs from both comparable and parallel data. In particular, we designed a new
method based on document pair marginal matching, and extended the use of low-dimentional embeddings to
mine translations at the token rather than type level.

• learn topic distinctions targeted at MT.

15.2 Contributions

15.2.1 Engineering Contributions

Vowpal Wabbit The work done for the workshop resulted in significant changes to the Vowpal Wabbit toolkit.
Most importantly, VW is now not only a stand-alone tool that has to be run from the command line, but also a fully

linkable library that can be directly integrated in other software projects.
In addition, we contributed significant extensions to the core classifier that make it better suited to NLP applications.

VW now supports (1) label-dependent features that are commonly used in NLP reranking tasks, (2) cost sensitive
classification, and (3) complex feature interaction.

All these changes are publicly available from the DAMT branch of the vowpal wabbit git repository.
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Moses We contributed to the Moses Statistical Machine Translation toolkit. Several optimizations were added. For
instance, we parallelized significance-based phrase-table pruning to reduce the time needed to run the full training
pipeline. We improved the experiment management system and fixed many bugs. DAMT team members submitted
247 commites to github and added 6917 lines of code.

The most significant contribution is the integration of VW and Moses, which represents the first integration of a
general purpose classifier in Moses. It is a solid and tight integration. VW-augmented Moses can be built and run out-
of-the-box. It is fully integrated in the experiment management system and can be easily extended with new features
thanks to a flexible interface.

This tight integration makes VW-Moses remarkably fast: phrase-based decoding takes 180% run time of standard
Moses, and is fully parallelized.

Finally, VW was integrated both in phrase-based and Hiero Moses. A common interface was designed to allow for
consistent feature definitions.

15.2.2 Methodology Contributions

The workshop also contributed to defining a methodology for domain adaptation work.
We defined several MT domain adaptation tasks using the Canadian Hansard as the OLD domain, and three very

different NEW domains: Medical, Science and Subtitles. We defined controlled experimental conditions to compare
and contrast the impact of adaptation algorithms in these various conditions.

We also defined two stand-alone translation lexical choice tasks: (1) translation disambiguation, and (2) new trans-
lation sense detection. These tasks are defined on the exact same data as the MT test sets and target domain-relevant
vocabulary. They allow to evaluate MT system components and very heterogeneous systems on the same subtasks,
even before full integration in a SMT system.

We defined an experiment management system for automatic evaluation of new features (for new sense detection.)
All our data sets and evaluation frameworks will be freely available online.

15.2.3 New Techniques

Our contributions include several new techniques.
First, we conducted the first complex classifier integration into a SMT decoder, with a feature extraction framework

shared between the Hiero and Phrase-based decoding frameworks.
Second, we proposed a new discriminative topic model that is domain-specific and translation aware.
Third, we introduced a new method for translation mining based on document-pair marginal matching.
Finally, we proposed an approach to perfom dictionary mining at the token levelas needed in domain-adapation

settings, rather than at the coarse type level that has been more commonly explored in previous work.

15.3 Future work
Immediate next steps:

• Debug extrinsic PSD

• Improve DA representation

• Extend soft-syntactic features for Hierarchical Moses further

• Integrate mined translation examples and topic models into MT and PSD

• Package up data and software for release

• Moses+VW already available!

Longer term research directions:

• Non-lexical domain divergence issues: we have promising preliminary results using syntax

• Other language pairs and directions (More distant language; Into morphologically richer languages)
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• Less structured text/genre (e.g., informal communication)

• Scale topic models to really large heterogeneous corpora: break away from OLD to NEW domain adaptation
and move toward web translation
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